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ABSTRACT


Conversational agents are increasingly common in everyday life. Dialogue with these agents is 
often limited to the task at hand, and is not focused on conversation as a shared social 
experience. Previous work has demonstrated that strengthening the user-agent relationship 
increases the agent’s efficacy, and leads to a more enjoyable user experience. I present a 
relationship-driven dialogue system that aims to strengthen and expand the relationship 
between the agent and user. The system uses a knowledge graph to represent relevant 
information about the world and the agent’s and user’s preferences. When choosing a 
response, a novel probabilistic approach, called MRF-Chat, models the mutual knowledge of 
the agent and the user, as well as the contextual relevance of concepts in candidate 
responses. In human evaluations, the system was considered significantly more collaborative, 
engaging, and trusted by human partners in a semi-structured interaction on food preferences.
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Introduction 

Since ELIZA, a computer psychotherapist, was created by Joseph Weizenbaum at MIT 

in 1966[1], there has been an incredible amount of research in creating computer 

programs that can emulate human conversation. After ELIZA came PARRY[2], and 

eventually, in 1995, perhaps the first modern chat bot, A.L.I.C.E.[3]. Since then, 

enormous progress has been made in both processing and generating human 

language. Conversational agents such as Alexa and Siri are household names. When 

we call the support numbers of the companies that provide the goods and services 

that we use in our everyday lives, we are often greeted by a friendly virtual agent 

instead of a human voice. Even when we converse with real humans through email, 

text messages, and other electronic communication media, the writing of our 

responses is increasingly assisted by conversational AI systems .
1

Until recently, conversational agents existed primarily on the internet or in virtual call 

centers. With the advent of Amazon’s Alexa, Google Home, and the first social robot 

for the home, Jibo, conversational agents have entered mainstream life. Last year, a 

report from NPR and Edison Research[4] estimated that 60 million American adults have 

smart speakers, such as Amazon’s Echo Dot, in their homes. The prevalence of 

conversational agents in modern life will continue to increase as virtual assistants 

become more common. Over time, social robots, which engage in emotionally 

intelligent interactions with humans, will become more common in our homes, in our 

workplaces, and in our hospitals. As these agents become increasingly ubiquitous, 

 See Google Smart Compose, Smart Reply, Intercom, Drift, Point API, and many others.1
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there is a growing need for systems that allow the agents to engage in intelligent, 

empathetic, and relational conversation with humans.


The majority of research in conversational AI has focused on goal- or task-oriented 

dialogue systems. Generally, a goal-oriented dialogue system aims to guide a human 

user through a process in order to gather appropriate information, triage an existing 

issue, or execute a desired command. Examples include scheduling an Amtrak train 

ticket with a virtual agent over the phone, asking Siri to remind you about a meeting, or 

ordering a pizza through Alexa. In the most naive form, a goal-oriented system may be 

made of hand-written rules and responses that follow a defined interaction flow[5]. In 

more sophisticated systems, neural network language models may recognize user 

intent[6], information may be synthesized from large databases and communicated to 

the user in natural language[7], and massive transformer-based models may generate 

text from scratch[8]. No matter how simple or complex, these systems have well-

defined end goals to accomplish.


While goal-oriented dialogue systems can provide highly engaging interactions in the 

contexts they are developed for, they are unable to have unstructured conversations on 

a wide range of topics. However, the majority of human-human conversations are not 

explicitly goal-oriented, and instead cover a broad range of topics in a casual setting. 

Small talk, chit-chat, and conversations between friends cannot be modeled with goal-

oriented systems. In order to create conversational agents that can converse with 

humans in social contexts, we must develop open-domain dialogue systems that 

allow agents to talk about a wide range of topics without a structured end goal.
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One may raise the question: “Why do we want to have casual conversations with 

computers? Why not limit interactions with machines to goal-based tasks?”. The 

reasons are two-fold. First, humans generally use a social model when interacting with 

autonomous robots[9]. By enabling robots, and conversational agents in general, to 

have more social dialogue with humans, they can provide a much more engaging and 

emotionally satisfying experience to the people that interact with them. Second, by 

creating a stronger social fabric between the agent and the user, the agent can more 

effectively deliver any desired support or intervention. Recent research has found that 

social robots can help college students improve their psychological wellbeing[10], help 

young children learn language more effectively[11], and promote social connectedness 

among older adults[12]. By improving an agent’s ability for social interaction, the agent 

can become a more effective tool for increasing the quality of human lives.


While the chat bots of the late 20th century could naively engage in broad conversation 

to some extent, the field of modern open-domain dialogue is very young. In order to 

build a system that can talk about a wide range of topics, a more complex and 

generalizable approach is needed than hand-crafted systems can provide, and that 

approach is neural language models. While the field of natural language processing 

(NLP) has existed for quite some time, the effective use of neural networks in NLP is 

recent and rapidly developing. In 2013, the long short-term memory network (LSTM) 

was introduced as a promising model for NLP[13], and in 2015, the advent of attention 

systems greatly improved the performance of LSTMs and other recurrent neural 

network (RNN) architectures[14]. Since 2018, transformer-based language models[15] 
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that are pre-trained on massive amounts of text, such as BERT[16] and GPT[17], have 

become the standard for high-performance on many tasks in the NLP community.


Even with many recent advancements in NLP, open-domain dialogue is still far from 

solved. Open-domain dialogue models can be broadly categorized into two types: 

retrieval models and generative models. Retrieval models take an input utterance 

from the user, and attempt to select a best response from a large, fixed list of 

candidates. Since the responses are fixed, they are generally coherent, but the system 

is limited by a finite set of possible responses, making it difficult or sometimes 

impossible to properly respond to utterances that are different than examples in the 

training data. On the other hand, generative models take a user utterance as input, and 

create a response from scratch based on probabilistic outputs from the model. Until 

recently, generative models struggled to produce rich and coherent responses, but 

extremely complex models such as GPT-2[17], and very recently, GPT-3[18], have shown 

more promise in generating fluent responses. However, while state-of-the-art retrieval 

and generative models can often produce coherent and on-topic responses, they still 

struggle to create responses that are logically consistent with the conversational 

history. In practice, dialogue systems are often complex combinations of various 

independent modules, including several skills or modules that are responsible for 

handling specific types of interactions or topics, and possibly combining one or more 

retrieval models with rule-based systems to cover a wide variety of use cases[20]. 
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One of the greatest drivers of progress in open-domain dialogue has been the Alexa 

Prize. Started in the fall of 2016, the Alexa Prize[21] is a university competition hosted by 

Amazon where selected academic teams build conversational agents, referred to as 

“socialbots”. The goal of the competition is to create engaging and coherent dialogue 

with humans on a variety of topics, including sports, entertainment, and politics. The 

grand prize objective set by the competition is a coherent 20 minute conversation 

between the agent and the user. As part of the competition, teams are required to 

publish about their work, so there is a wide range of available literature about recent 

work in conversational AI, especially in incorporating known information into dialogue. 

Many Alexa Prize dialogue systems are incredibly complex, built by teams often of 

nearly a dozen researchers over several months.


While recent work in open-domain dialogue has made great advances towards better 

human-computer conversions, there are three key issues that often occur: 


1. Conversation is limited to several pre-defined topics, and if the user tries to move 

conversation away from one of those topics, the agent may forcefully move the 

conversation back to the original topic[22,64].


2. The agent is primarily focused on inserting knowledge into the conversation, not on 

creating a shared social experience with the user[23].


3. The quality of the conversation is defined by it’s length, breadth of topics, or 

amount of information used, not by the user’s enjoyment, rapport between the user 

and the agent, or the desire for the user to have more conversations in the future[21].
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All three of these issues stem from a single source, a view of conversation as a set of 

concrete skills to acquire and metrics to achieve, not as a highly-nuanced and 

collaborative social experience. If an agent can talk more coherently about a wider 

range of topics for a longer time, mustn’t it be a better conversational partner for a 

human to interact with? The problem with this line of reasoning is that values the 

technical skill of conversation over the reason why the conversation is happening in the 

first place: as a shared social experience between both parties. While many daily 

conversations between humans aim to achieve a specific end goal or to communicate 

certain information, many others conversations happen for purely social reasons. Small 

talk when meeting someone new, casual conversations between friends, and 

conversations about weekend plans between coworkers over coffee all serve almost 

exclusively social goals. When was the last time that you measured the quality of a 

conversation with your friend by its length and topical rigor?


I believe that conversational agents should converse with humans as partners in a 

shared experience that focuses on developing the relationship between the agent and 

the user. By focusing on the interests and knowledge of both parties, and exploring the 

common ground between them, conversational agents will be able to provide more 

enjoyable and fulfilling conversations to the people who talk with them, and will be able 

to more effectively deliver support and interventions to improve human lives. 


In order to move towards this vision, I present a relationship-driven dialogue system 

that aims to strengthen and expand the relationship between the agent and user by 

using natural conversation to learn about each other, share experiences, and find 

common ground. The system uses a knowledge graph of Wikidata entities to represent 
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relevant information about the world, the agent’s and user’s preferences, and 

conversational history. When choosing a response, a novel probabilistic approach, 

called MRF-Chat, is used to model the mutual knowledge of both the agent and the 

user, as well as the contextual relevance of concepts included in candidate responses. 

Finally, I demonstrate how the system can be used to improve a semi-structured 

interaction for a goal-oriented task, recommending a healthy recipe for dinner. The 

remainder of this document is structured as follows:


Related Work (p. 12) - Related work in open-domain dialogue  

System Design (p. 15) - A description of the system and its components  

MRF-Chat (p. 30) - Background, algorithm design, and evaluation of MRF-Chat alone 

Evaluation Setup (p. 55) - Experimental setup for evaluating the system 

Results (p. 63) - Results and findings 

Discussion & Future Work (p. 69) - Next Steps for relational conversational agents 
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Related Work 

The Alexa Prize[21] is a university competition hosted by Amazon where selected 

university teams build conversational agents. The goal of the competition is to create 

engaging and coherent dialog with humans on a variety of topics, including sports, 

entertainment, and politics. The grand prize objective set by the competition is a 

coherent 20 minute conversation between the agent and the user. As part of the 

competition, teams are required to publish about their work, so there is a wide range of 

available literature about recent work in conversational AI, especially in incorporating 

known information into dialogue. In addition, Amazon has released the Topical Chat 

dataset[24], which contains nearly eleven thousand knowledge-grounded human-to-

human conversations about topics used in the competition.


Perhaps the most relevant system from the Alexa Prize is BYU-EVE[25], a knowledge 

graph based dialogue system created at Brigham Young University. BYU-EVE uses a 

knowledge graph to store information about the world, as well as simple 

representations of the user and the agent, that consists of their “likes” and “dislikes”, 

as well as some other information such as nicknames. The system uses several 

response generators to create candidate agent utterances, including emotional 

mirroring and discussion about user information in the knowledge graph. In order to 

choose candidate responses, the system uses conversational scaffolding, which 

compares the user’s input and each candidate responses against a dataset of 

conversations. The dataset is publicly available on GitHub[26]. The creators of BYU-EVE 

designed dialogue with their conversational agent as both learning about the user and 
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sharing the agent’s preferences, and their knowledge graph-based system was the first 

approach that explicitly modeled this task. However, their response generation did not 

allow for a broad range of responses, and their response selection algorithms did not 

model the shared conversational experience of the agent and the user when ranking 

candidate responses.


XiaoIce[27] is a social chatbot developed by Microsoft that is extremely popular, 

especially in China, with over 660 million active users. XiaoIce is designed to be an AI 

companion that uses emotional understanding to form a bond with the user, while 

serving a wide range of functionalities. XiaoIce uses a hierarchical dialogue policy to 

handle both chit-chat conversation and task-oriented requests, an emotional 

computing module, and a massive proprietary knowledge base. While XiaoIce has 

been extremely successful at forming long-term relationships with many users[27], the 

system is extremely complex, consisting of hundreds of individual skills and models 

built on an enormous amount of propriety data. Previously, Microsoft had also created 

the infamous Tay bot, which was released on Twitter in 2016, but was removed almost 

immediately due to inflammatory posts. Tay set a strong example towards the 

importance of effectively filtering how external information is used for learning, as well 

as carefully examining candidate responses. 


Empathetic Dialogues[28] is a dataset of conversations grounded in emotional 

situations. Conversations were crowdsourced from 810 Amazon Mechanical Turk 

(MTurk) workers, who engaged in conversations about how they felt in various 

emotional scenarios. The resulting dataset comprises 24,850 conversations, divided 

into approximately 80% train, 10% validation, and 10% test partitions. The authors 
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trained and evaluated several models on the dataset, including a Transformer-based 

retrieval architecture[15], retrieval using BERT[16], and an end-to-end Transformer 

generative model. For retrieval models, all training set utterances are used as 

candidates. In order to augment the unsupervised models, the authors trained a 

classifier to predict an emotion label for each utterance, and prepend this label to each 

utterance before they are encoded, which they refer to as EmoPrepend-1. While the 

Empathetic Dialogues dataset allows for the creation of more empathetic retrieval-

based conversational agents, additional work is required to explicitly model 

conversation as a shared relational experience beyond emotion-related responses.


Additionally, work led by Justine Cassell at Carnegie Melon has explored the creation 

of a system for human-agent rapport management[29], as well as incorporating 

conversational strategies employed by humans into dialogue systems[30]. At 

Northeastern, Ameneh Shamekhi and Timothy Bickmore have created models for 

predicting long-user engagement with virtual agents[31], specifically in the context of 

health interventions.
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System Design 

The relational dialogue system that I present here is composed of four main stages: 

Input utterance Pre-Processing, followed by Knowledge Graph Development, then 

Candidate Response Generation, and finally Response Selection. During Pre-

Processing, the input utterance from the user is prepared for use by downstream 

components, and several pieces of information are extracted so that Knowledge Graph 

Development and Candidate Response Generation can occur. In Knowledge Graph 

Development, the system’s knowledge graph is expanded and modified in order to 

model both the user and the agent preferences, as well as relevant concepts from 

Wikidata and their relations. During Candidate Response Generation, many potential 

responses for the agent to say to the user are generated and gathered, and finally, 

during Response Selection, a best response is chosen. Figure 1 shows a visualization 

of the components contained in each stage.
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FIGURE 1: OVERVIEW OF ALL SYSTEM COMPONENTS



In this chapter, I give an overview of how each stage fits into the entire system, and 

how they each function independently. In the following chapter I describe in detail the 

system's key contribution in response selection, MRF-Chat.


Pre-Processing  
Pre-processing sets the foundation for the later stages by extracting the appropriate 

information from the input utterance. This process occurs in three stages of increasing 

abstraction:


1. Coreference Resolution & Dependency Parsing: Coreference resolution is 

performed to replace pronouns with their matching nouns from earlier in the 

utterance, if possible. This modified input is then processed by a SpaCy[32] 

dependency parser, producing a syntax tree which is later used to for concept 

extraction and subject-verb-object triple extraction. 


2. Concept Extraction & Entity Linking: Named entities and non-pronoun noun 

chunks identified in the dependency parse are compiled into a list of concepts. The 

matching node in the knowledge graph is found for each concept if it exists, 

otherwise a Wikidata search will be performed later during the Knowledge Graph 

Development phase to add the concept.


3. Topic Detection & Sentiment Analysis: A list of most relevant nodes in the 

knowledge graph is compiled, including the nodes representing occurring 

concepts, as well as other relevant nodes (e.g. the topic “pet” may be listed when 

“dog” is mentioned). For sentiment analysis, a sentiment score and subjectivity 
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score are computed for the input utterance. Highly subjective utterances with 

strong positive or negative sentiment will later be used to infer user preferences.


Knowledge Graph Development  
In order to have conversations that seek to develop the relationship between the agent 

and the user, the Relational Dialogue system must be able to form a model of the user, 

and of the agent itself. Just like in human-human relationships, the agent’s knowledge 

about the user will expand over time, and the agent will seek to discuss topics that are 

relevant to both itself and the user. Additionally, in order to converse about a wide 

range of topics in an open-domain dialogue setting, it is essential that the system has 

access to basic knowledge about the world, and the relationships of common 

concepts and things. In order to accomplish these goals, the system uses a knowledge 

graph that contains information about the world from Wikidata, and allows for user and 

agent models to be build on top of that platform. 


Wikidata Knowledge Graph 
The core of the knowledge graph is based on Wikidata[33]. Wikidata is a Wikimedia 

project that seeks to structure the world’s knowledge, and contains information about 

an extremely broad variety of concepts, people, places, and things. Wikidata consists 

of over ninety-one million entities, which are connected to each other by various types 

of properties. For example, "dog" has the property "subclass of" to "pet", and "carrot" 

has "color" to "orange". This structure is easily adapted to a knowledge graph, in 

which each Wikidata entity is represented by a node, and the properties that connect 

entities are edges between those nodes. Examples of portions of the Wikidata-based 
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FIGURE 2: EXAMPLE PORTIONS OF THE WIKIDATA-BASED KNOWLEDGE GRAPH



knowledge graph can be seen in Figure 2. Neo4j[34], a popular graph database 

platform, is used to support the knowledge graph.


Knowledge Graph Expansion 
Since the entire Wikidata knowledge graph is extremely large, only a small subgraph of 

relevant entities is held. During conversation, relevant information is retrieved from the 

Wikidata API and is added to the graph. Additionally, several “Graph Bots” run in the 

background during conversation, strategically expanding the knowledge graph so that 

relevant information can be used in conversation.


Graph Expansion During Conversation 
After the user’s utterance is pre-processed, all identified concepts are searched for in 

Wikidata, and added to the knowledge graph if a Wikidata match is found. First, each 

extracted concept is searched for by comparing against the names and known aliases 

for every node in the knowledge graph. If a concept has not already been added, a 

Wikidata search is done for the concept’s text in the user utterance using the Wikidata 

API. If any matching Wikidata entities are found, the top entity returned from the search 

is downloaded and added to the knowledge graph as a new node, and each of its 

properties are added as new edges to placeholder neighboring nodes. The placeholder 

neighbors will later be downloaded by the Local Expansion Bot (described below).


Graph Bots 
While the Relational Dialogue system is running, several Graph Bots run in the 

background in order to expand the knowledge graph with relevant information that may 

be useful in conversation:
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- Local Expansion Bot: Downloads all neighboring entities to nodes that have been 

mentioned by the user. This ensures that basic information about concepts occurring 

in conversation is present in the knowledge graph.


- Ontology Bot: Many Wikidata entities have "instance of” or “subclass of” properties. 

For example, “dog” is a subclass of “pet”, and “Virgil” is an instance of “human”.  

The Ontology Bot downloads these properties up to 4 degrees from all entities 

mentioned by the user, in order to learn relationships between those entities.


- Sibling Bot: For all entities that the user is known to like or dislike (discussed next in 

User/Agent Modeling), find that entity’s parent entity (to which it has a “subclass of” 

relationship), and download all entities that also have a “subclass of” relationship to 

that parent node. For example, “horse” and “cattle” would be downloaded as 

siblings of “pig”, since they are all subclasses of “domesticated animal”.


User/Agent Modeling 
The Wikidata-based knowledge graph provides a platform on which a complex models 

of both the user and the agent can be built. While there are many ways in which each 

persona can be modeled, I use a preferences-based model as an initial approach. The 

likes and dislikes of the user are stored in the knowledge graph by identifying the 

appropriate Wikidata entities that the user refers to in conversation, and can later be 

used for driving conversation, or for recommendations (as shown later in Evaluation 

Setup). In order to build a model of both the user and agent in the knowledge graph, a 

node is added for the user, as well as for the agent. Edges can later be added to 
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connect these nodes to other entities in the knowledge graph in order to build the 

persona model.


User Preference Extraction 
During conversation, the user’s preferences are extracted through a combination of a 

very specific rule-based system that matches statements such as “I really like tacos” or 

“I hate broccoli”, as well as a much more generalized approach that combines 

sentiment and subjectivity analysis. In both systems, the concepts extracted during 

Pre-Processing are used as candidates for new preferences, and if a preference is 

found, either a “like” or “dislike” edge is added between the user’s node and the 

appropriate entity node in the knowledge graph.


During Pre-Processing, each sentence in the user’s input utterance is analyzed for both 

sentiment and subjectivity using the Vader Sentiment Intensity Analyzer[35] and the 

TextBlob Sentiment Subjectivity score[36]. If the sentence has high subjectivity and high 

sentiment (subjectivity ≥ 0.5, compound sentiment ≥ .05), the associated concepts are 

considered likes or dislikes based on the positivity/negativity of the sentiment score.


Mentioned Concept Tracking 
In addition to preferences, all concepts that are mentioned by the user are recorded in 

the knowledge graph by adding a “mentioned” edge between the user and the 

appropriate entity node. This allows for a generating responses about concepts are 

related to past topics in the knowledge graph, and for lower-fidelity recommendations 

that are build upon by the user’s preferences.
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Pre-Loading Agent Model 
In order to build a model of the agent’s preferences, the same preference extraction 

procedures can be applied to the agent’s utterances. In order to pre-build a model of 

the agent, existing agent utterances that are designed for its persona can be 

processed to form that initial model. In the case of an existing conversational agent like 

Jibo, that has many prompts and responses that have been hand written to use in 

various scenarios, each written utterance can be treated in the same way as a typical 

user input, undergoing Pre-Processing, and then User Preference Extraction. This 

process builds a model of the agent in the knowledge graph in the same way that a 

user model is built through conversation. In order to provide additional information to 

the agent model, or to create an agent model when no pre-written agent utterances are 

present, the agent model can be built by hand. Relationships can be directly added 

between the agent node and desired entities in the knowledge graph in order to build 

such a model. Balancing the agent’s existing persona with expanding it from selected 

utterances is a challenging task (as is ensuring that selected responses are consistent 

with the persona), so in my experiments the agent’s persona is not explicitly grown, 

however this would be valuable future work.


Candidate Response Generation  
Once all pre-processing and knowledge graph development is done, many candidate 

responses are chosen/generated, one of which will later be chosen to use during the 

Response Selection phase. A base pool of candidates are chosen using a retrieval 

approach inspired by BYU-EVE’s scattershot algorithm[25], and the pool is expanded to 

include responses that are generated using relevant contextual topics identified in pre-
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processing, as well as information encoded in the knowledge graph. Additionally, the 

system includes a rule-based generation module for handling the semi-structured 

conversation framework used in evaluation (described later in Evaluation Setup), as 

well as a module specifically designed to handle greetings and initial pleasantries such 

as “How are you?”, which are typically very challenging for neural-only approaches to 

handle effectively.


Retrieval-Based Candidates 
Scattershot Candidate Selection 
Since scoring candidates during Response Selection is very computationally 

expensive, it is essential to limit the number of candidates as much as possible in order 

to minimize latency, while still maintaining a high quality of responses. For BYU-EVE, 

Fulda et al.[25] proposed the Scattershot algorithm for response prioritization (a 

component of candidate response selection). Given a corpus of conversations 

represented as a set of utterance-response pairs, and an utterance embedding 

function that converts a text utterance into a dense vector representing a point in a 

high-dimensional space, Fulda et al.’s Scattershot algorithm scores a potential 

response to an input utterance by first finding the top  utterances in the corpus that 

are most similar to the input utterance (similarity is computed as the cosine similarity of 

the input and reference utterance’s embeddings), and then using the embeddings of 

the actual responses to those top utterances as reference points. The candidate 

response that is closest to any of the reference embeddings is given the highest score. 

This approach is very lightweight as embeddings of utterances in the corpus can be 

computed once and cached for use during later conversation, although it is fairly naive 

n
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compared to typical neural language models that recently have shown the most 

success for response selection[37].


In order to leverage the original Scattershot algorithm’s strength as a lightweight 

heuristic for response scoring, while still getting the benefits of typical neural language 

models, I use a hybrid approach. During the Candidate Response Generation phase, a 

modified version of the Scattershot algorithm is used to down-select potential 

candidates that are taken from the corpus, instead of scoring novel ones based on the 

corpus’ conversations. I refer to this process as Scattershot Candidate Selection. Later,  

during the Response Selection phase, the retrieved candidates, alongside additional 

generated ones, will be scored. The Scattershot Candidate Selection algorithm uses 

the actual responses to the utterances that are the most similar to the input as 

candidates: Given a corpus of conversations , represented as the set of utterance-

response pairs , an utterance embedding function 

 that converts a text utterance into a dense vector representing a point in a 

high-dimensional space, and an input utterance :


1. Compute the similarity score  between  and  for each , where 

similarity is computed as the cosine similarity between  and 




2. Find the list of most-similar  corpus examples , with the greatest 

similarity scores 


D

Di = (Di,utterance, Di,response)

embed()

U

Si U Di,utterance Di ∈ D

embed(U )

embed(Di,utterance)

n Dj1, Dj1, …, Djn

Sj1, Sj1, …, Sjn
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3. The list of candidates is then the corresponding responses of the top corpus 

examples: 


This approach allows for a high-quality pool of candidate responses to be rapidly found 

from the corpus of examples, while allowing for better response selection to happen 

later through a more sophisticated process. The Relational Dialogue system uses 

Google’s Universal Sentence Encoder[38] as the embedding function, which allows for 

high-quality embeddings over a wide range of input utterance lengths. The 

embeddings of all utterances in the example corpora to be pre-computed and cached, 

so Scattershot Candidate Selection can be done with minimal latency (100,000 

potential candidates can be searched in around 70ms on CPU).


Corpora for Retrieving Candidates 
In my experiments, both the Empathetic Dialogues dataset[28] and the ConvAI 

dataset[39] are used for sourcing response candidates. Between the two corpora there 

are 96,557 utterance-response pairs (64,636 from Empathetic Dialogues, 31,921 from 

ConvAI). The ConvAI dataset provides a wide platform of open discussions on many 

topics, which the Empathetic Dialogues dataset complements with conversations 

about emotional experiences. The top 20 candidates are taken from each corpus using 

the Scattershot Candidate Selection algorithm to form the overall set of retrieval-based 

candidates. Using 20 candidates from each dataset was empirically found to provide 

an optimal balance of response quality and Response Selection latency.


Dj1,response, Dj1,response, …, Djn,response
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Knowledge Graph Candidates 
By using the existing user and agent models in the knowledge graph, and working to 

expand them and explore potential common ground, knowledge graph generators seek 

to create conversation that develops the relationship and mutual knowledge between 

the user and conversational agent. In the current Relational Dialogue system, there are 

two key knowledge graph generators: the Ask Preference Generator, and the Share 

Preference Generator, which seek to learn more about the user’s preferences, and 

share the agent’s preferences with the user. There are many other ways that the 

knowledge graph could be used to drive conversation towards these goals, I discuss 

several potential additions later on in the Discussion & Future Work.


Ask Preference Generator 
The Ask Preference Generator uses existing knowledge about the user’s likes and 

dislikes, along with the topic of conversation, to ask the user about their preferences 

around similar concepts. For example, if it is known that the user likes eating beef, a 

possible generated utterance would be: “Since you like beef, do you also like lamb?”. 

Similarly, if the user likes swimming and sports are being discussed, a possible 

utterance would be: “I was wondering, do you like biking?”. In order to identify 

concepts to ask about, the Ask Preference Generator uses the following algorithm, 

given the user’s known likes/dislikes from the knowledge graph, as well as the current 

topic identified in Pre-Processing:


1. Identify the 3 most relevant liked/disliked concepts to the conversation, computed 

as the cosine similarity of their Universal Sentence Encoder encodings with that of 
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the current topic concept. Only include concepts that have high (greater than 0.5)  

cosine similarity with the topic.


2. For each of those concepts, find their children and sibling nodes (a child node has 

relationship “Subclass Of” to the concept’s node, and a sibling node and the 

concept node both have a “Subclass Of” relationship to some parent node)


3. For each concept node and up to 5 of the most relevant sibling and child nodes, 

generate a candidate response


Once the list of liked/disliked concepts and their related concepts to ask about has be 

compiled, responses are generated using a complex template that allows for a wide 

variety of responses to be generated, each of which asks the user about their 

preferences around the new concept.


Share Preference Generator 
The Share Preference Generator works similarly to the Ask Preference Generator, 

except it instead shares the agent’s preferences of concepts that are related to the 

topic of conversation. Given the agent’s known likes/dislikes from the knowledge 

graph, as well as the current topic identified in Pre-Processing:


1. Identify most relevant liked/disliked concepts to the conversation, computed as the 

cosine similarity of their Universal Sentence Encoder encodings with that of the 

current topic concept. Only include concepts that have high (greater than 0.5)  

cosine similarity with the topic.


2. For each relevant liked/disliked concept generate a candidate response
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Candidate utterances are generated in a similar template-based method to the Ask 

Preference Generator.


Response Selection  
Once all of the candidate responses have been chosen, the final step is to select a best 

response to say to the user. This is done with a combination of a BERT language model 

and MRF-Chat, a novel algorithm for improving response selection by modeling the 

mutual knowledge of the agent and the user, as well as the contextual relevance of 

concepts that occur in candidate responses.


The candidate responses are first scored by a BERT-based model that was trained on 

the Empathetic Dialogues dataset. The model takes the user utterance and a candidate 

response as input, and outputs a score for the likelihood that the candidate is a good 

response to the user input. 


The candidate responses are then also scored by MRF-Chat. During conversation, 

MRF-Chat builds a semantic graph of concepts occurring in conversation, as well as 

other relevant concepts, and models both the user’s and agent’s knowledge of those 

concepts, as well as each concept’s relevance to the conversation. Similarly to the 

BERT model, MRF-Chat produces a likelihood score for each candidate based on 

conversational history. MRF-Chat’s motivation, design, and independent evaluation are 

described in detail later in the MRF-Chat chapter.


Finally, the best response is chosen by multiplying each candidate’s score from the 

BERT language model with its score from MRF-Chat, and then the candidate response 
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with the greatest final score is used. Candidates that are duplicates of utterances that 

previously occurred in the current conversation, as well as candidates with only three 

or fewer words, are never selected.
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MRF-Chat 

I completed the MRF-Chat project working alongside Ishaan Grover. 

With advances in deep learning, the natural language understanding community has 

seen a recent proliferation of open-domain dialog systems[42,43], as well as several 

competitions such as the Amazon Alexa Prize[40] and ConvAI[41]. Most existing state- 

of-the-art approaches include training end-to-end models (often on very specific 

datasets) that account for various conversational features such as repetition, 

specificity[44], emotional content of response[28], knowledge graphs of related entities[45] 

and even the persona of the agent[37] when retrieving a response utterance from a set 

of candidate utterances. While deep-learning methods have shown reasonable results, 

the problem of open-domain dialog conversations is far from solved. In natural 

conversations, humans often view each other as cognitive agents. Thus, it is important 

for conversational agents to explicitly model the cognitive processes humans use when 

conversing with each other. 	 


The cognitive theory of mutual knowledge posits that speakers and listeners maintain 

mental models of the knowledge and beliefs they share with each other to find 

common ground for communication[46,47]. It follows that in a two-person conversation, 

each speaker maintains both a model of their partner’s knowledge, and a model of the 

knowledge they have communicated to their partner. These models provide information 

about about their mutual knowledge and help in deciding the next utterance. Further, 

as the conversation continues, each speaker updates their mental models as they gain 
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new information from and provide new information to their partner. Consider the 

following hypothetical conversation: 


Speaker 1: Did you see the new Avenger’s movie? (U1)  

Speaker 2: Yes, I loved Thor’s character in it. (U2)  

Speaker 1: Me too! Do you watch superhero movies? (U3) 

With U1, Speaker 1 offers "Avengers", "Movie" and related concepts as common 

ground (context) for the conversation. Speaker 2 realizes that Speaker 1 knows about 

Avengers, so they must also know about the related concept "Thor". Thus, Speaker 2 

says U2 and offers "Thor" and related concepts as common ground. Now, Speaker 1 

realizes from U1 and U2 that the concept "superhero movies" has the highest "mutual 

knowledge" and says U3. 


Along with mutual knowledge, humans also account for contextual relevance of 

concepts used as the conversation flows from one topic to another. That is, even 

though a concept may be familiar to both interlocutors at one point during the 

conversation, it may not remain relevant when they discuss another topic. 


While the theory of mutual knowledge forms the basis of grounding in conversation and 

contextual relevance plays a vital role in human conversations, to the best of our 

knowledge, there hasn’t been an attempt to create a algorithm that explicitly models 

these processes. To this end, we propose a novel probabilistic approach using Markov 

Random Fields (MRF) to augment existing deep-learning methods for improved next 
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utterance prediction. In the rest of this paper, we refer to deep-learning models as base 

models and refer to our algorithm as MRF-Chat. 


The first step towards building such an algorithm is to accurately make inferences 

about a person’s knowledge from partial information. We draw inspiration from work by 

Grover et al.[48] and formulate this task as an inference problem on Markov Random 

Fields (MRF). For each speaker, inference on the MRF after observing known concepts 

gives the conditional marginal probabilities of knowing any concept in the graph. We 

provide further details of this work in the Background section. For next utterance 

predictions, we use inferences from the MRF with predictions from the base model to 

get the combined probability of each candidate being the next utterance given the 

context of the conversation. 


The primary contribution of our work in this section is an algorithm (MRF-Chat) to 

improve open-domain conversational agents based on the cognitive theory of mutual 

knowledge. Our algorithm incorporates contextual relevance of all prior concepts to 

make predictions. It is domain agnostic and independent of the base model used. 

Using both, human and automatic evaluation methods, we show that MRF-Chat when 

used with an existing state-of-the-art model[37] significantly improves performance. 


The rest of this section is organized as follows. We first give relevant related work and 

preliminaries essential to our problem. Next, we provide the central algorithm MRF-

Chat. We then discuss the details of our experimental setup and evaluation 

methodology. We finally present experimental results and discussion.
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Preliminaries 
A Markov Random Field (MRF) is an undirected graphical model of a joint distribution. 

It is specified by a graph  and a set of random variables  where 

 correspond to vertices . An edge  

between nodes  and  captures interactions between nodes. These interactions are 

defined by potential functions  which are often represented as energy functions 

and then transformed into probabilities by adopting Gibbs distribution. Thus, for a 

given MRF:


G = (V, E ) E

X = {X1, X2, X3 . . . Xn} V = {v1, v2, v3 . . . vn} eij

Xi Xj

ϕ(x)

33

FIGURE 3: INTEGRATION OF MRF-CHAT AND A BASE MODEL. WHEN THE USER SAYS AN 
UTTERANCE, THE BASE MODEL PRODUCES A PROBABILITY FOR EACH CANDIDATE 
RESPONSE UTTERANCE. MRF-CHAT ALSO GENERATES NEW PROBABILITIES FOR EACH 
CANDIDATE. THESE PROBABILITIES ARE COMBINED TO CHOOSE THE FINAL RESPONSE. 



 		 (1)


 		 	 	 (2)


 	 	 	 	 (3)


where: 


-  is the set of all maximal cliques


-  is the potential function for clique 


- is the energy function for clique 


- 


-  is the partition function


Inference on MRF gives the marginal probabilities of each node. While exact inference 

on MRFs is computationally intractable, several approximation methods such as Belief 

Propagation and Markov Chain Monte Carlo (MCMC) are often used in practice.


Background 
Recently, Grover et al.[48] experimentally validated and presented a model for predicting 

children's vocabulary from partial information of their existing vocabulary knowledge. 

P(X1, X2 . . . Xn) = 1
Z ∏

C
ϕc(xc)

Z = ∑
x

∏
C

ϕc(xc)

ϕc(xc) = e−E(xc)

C

ϕc(xc) c

E(xc) c

ϕc(xc) ≥ 0

Z
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They based their model on assumptions based on the psycholinguistic theory of 

semantic learning which states that humans learn new words by forming semantic 

associations with words they already know. The fundamental assumption made by the 

model was that if it is observed that a child knows a given word, the child must have 

learned the word by forming semantic associations with words they already knew. 

Thus, it is likely that the child knows words that are semantically related to the given 

word.  


The salient features and steps for model construction are as follows:


- Build a semantic network where nodes represent words and edges represent 

relationships between those words. The semantic network built using GloVe word 

vectors[49] by making pairwise comparisons between nodes and adding an edge if 

the cosine similarity is above a certain threshold.


- Construct an MRF factor graph corresponding to the semantic network. The nodes 

of the MRF represent the probability of knowing concepts and the pairwise potential 

functions (refer to P1: Mutual Knowledge) represent how each node influences its 

neighbors.


- Observe existing knowledge and perform inference to find conditional marginal 

probabilities of all the nodes in the graph.


While the authors used the model for predicting vocabulary knowledge of children for 

their particular use case, we argue that the same fundamental assumptions of learning 
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words/concepts apply to adults as well and the model is applicable in our problem 

setup.


Related Work 
In recent years, great progress has been made in dialogue systems. Many traditional 

dialogue systems were purpose-built for specific tasks[50], and are made up of various 

components, such as dialogue state management, intent recognition and slot filling 

modules[51], as well as specific response generators to handle different scenarios. 

These goal-oriented systems move through specific well-defined conversational states 

in order to reach an end goal, e.g. retrieving information about a flight's arrival time, or 

booking a train ticket. With the advent of consumer voice assistants such as Amazon's 

Alexa, Google Home, and the social robot Jibo, these specialized dialogue approaches 

have been expanded into much larger systems, providing the user with many individual 

skills, each of which are built for a specific task or experience, each with their own 

dialogue state management, intent recognition, response generation, etc. While these 

systems are providing increasingly complex user experiences, they are generally 

unable to engage in chit-chat or other general, non-goal oriented, dialogue.


On the other hand, open-domain dialogue systems are designed to engage in casual 

conversation, without a specific end goal. Perhaps the oldest well-known example is 

ELIZA[1], which used a combination of pattern matching and careful substitution to 

emulate a psychotherapist. While today's open-domain dialogue systems are much 

more sophisticated, they often still leverage rule-based parsing and response 

templates to augment more advanced techniques[52,53]. The best examples of such 
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systems can be found in the Alexa Prize competition[20], a university competition 

hosted by Amazon where selected university teams build conversational agents, 

referred to as “socialbots”. The goal of the competition is to create engaging and 

coherent dialog with humans on a variety of topics, including sports, entertainment, 

and politics. 


Outside of the Alexa Prize, most open-domain dialogue systems are either retrieval 

models that select a response based on conversational history from a large set of 

candidates, or generative models that produce novel responses. In this work, we focus 

on augmenting one key retrieval approach, the Key-Value Memory Net model trained 

on Persona-Chat by Zhang et al.[37]. This model is available pre-trained and open 

source .
2

Persona-Chat 
The Persona-Chat dataset[37] is a crowd-sourced dataset of conversations where each 

speaker bases their responses on a given persona. The dataset consists of 162,064 

utterances over 10,907 dialogues. 1000 dialogues are set aside for validation, and 968 

are set aside for test. After the dataset was collected, the authors trained and 

evaluated several retrieval and generative models on the corpus. At the start of each 

conversation, the chosen model is conditioned on either the user's persona, the 

agent's own persona, both personas, or neither. The best performing model was a key-

Value Memory Network[54] that performs attention over the training dialogue histories 

and personas in order to predict the best response. In our experiments, we use their 

 https://github.com/facebookresearch/ParlAI/tree/personachat/projects/personachat2
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pre-trained Key-Value Memory Net model trained on Persona-Chat, which we refer to 

as the base model.


The MRF-Chat Algorithm 
We consider the setting where a user and agent take turns interacting with each other. 

Given a base model, we wish to incorporate the following salient features into the 

conversational agent. 


- P1: The agent should account for mutual knowledge. That is, the agent should 

choose utterances (from a set of candidate utterances) such that both, the agent and 

the user have knowledge about the concepts used in those utterances (common 

ground).


- P2: The agent should account for contextual relevance of concepts being used in 

the conversation at any given time. That is, the agent should appropriately discount 
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the mutual knowledge of a concept if it is not relevant to the current conversation 

(even if it was relevant earlier).  


More formally, for a prior utterance said by the agent , a prior utterance said by 

the user , and a set of candidate utterances  and a base model , we 

want to select a response utterance  for the agent such that it 

satisfies P1 and P2.


We now discuss the steps for solving P1 and P2 separately and then discuss a method 

to combine them to generate a salient response. 


P1: Mutual Knowledge 
Formally, we define mutual knowledge of a concept as the probability that both the 

agent and user know the given concept given the concepts they have used in their 

respective utterances. The steps for P1 (shown in Figure 4) are first broadly outlined 

and subsequently detailed follows.


1. Extract relevant concepts from ,  and .


2. Create a semantic graph containing all the extracted concepts from , , 

 as well as all concepts semantically related to them.


3. Construct a corresponding MRF and perform inference first using extracted 

concepts from  as positive observations, then using extracted concepts from 

 as positive observations. This step provides the individual marginal 

probabilities of the agent and user knowing the concepts (Figure 5).


Uagent

Uuser Ucandidates M

Uresponse ∈ Ucandidates

Uagent Uuser Ucandidates

Uagent Uuser

Ucandidates

Uagent

Uuser
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4. Compute the joint distribution of both the agent and user knowing a given concept.


Concept Extraction 

The first step in processing an input utterance, ,  or , is to extract 

the relevant concepts. For example, given the utterance "I love dogs, even though I'm 

allergic to them", the concepts "love", "dogs", and "allergic" should be identified. In 

order to achieve this task, we use Yake[55], which is an open-source keyword extraction 

tool that provides state-of-the-art performance in a lightweight package. Given an 

utterance, Yake returns a list of keywords, each with a corresponding relevance score 

 (since Yake scores closer to 0 indicate higher relevance, we use 

Uagent Uuser Ucandidates

rc,yake ∈ [0,1]
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FIGURE 5: EXAMPLE OF INFERENCE ON MRF. RED NODES CORRESPOND TO POSITIVE 
OBSERVATIONS. PROBABILITIES OF KNOWING A NODE ARE SHOWN BELOW CONCEPT 
NAMES WITHIN THE NODES. 



 instead). We also experimented with RAKE[56] keyword extraction and 

well as spaCy[32] noun chunks, but we found Yake to be more effective for our 

purposes.


Thus, using the concept extraction module, we have concepts 


-  from 


-  from 


-  from 


- Set of all concepts 


It is important to note that there exist many strategies to generate the set  

and any reasonable strategy is usable. Since our task is to improve  using MRF-

Chat, in our experiments we use top k responses from ,  instead 

of the entire candidate set. This is done primarily for computational efficiency in 

running our experiments. In practice, we found that it was rarely the case where MRF-

chat would find . Increasing the value of  allows for more candidates 

to be considered, but at the cost of latency.


Building the Semantic Network 
The core component of MRF-Chat is a semantic graph, where the nodes represent 

individual concepts and edges represent semantic relationship between concepts. A 

common measure of semantic distance between two words is to take the cosine 

rc = 1 − rc,yake

Cagent Uagent

Cuser Uuser

Ccandidates Ucandidates

C = Cagent ∪ Cuser ∪ Ccandidates

Ucandidates

M

M UtopK ⊆ Ucandidates

Uresponse ∉ UtopK k
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distance between their word embeddings. Since our concepts are single words, we 

define the semantic distance between two concepts as the cosine distance between 

their pre-trained common crawl GloVe word vectors (300 dimensional)[49]. Two words 

with vector representations  and  are said to be semantically similar if 

.


In order to build a semantic network, we further find a set of all semantically similar 

concepts  such that  is in the vocabulary of Common crawl word 

vectors. We now build a semantic graph  such that 

. We perform pairwise comparisons between nodes in  and add an 

edge between all pairs of nodes that are semantically similar. In order for the graph to 

represent real-world knowledge of salient concepts, we exclude very frequent words 

such as "yes", "me", "what", etc. We use word frequencies from the SUBTLEX-US 

database[57], excluding words with a Zipf value of less than 5.75 based on empirical 

trials. 


As the conversation continues, and the algorithm processes new utterances from the 

user and agent, graph G is always augmented with new concepts from the immediately 

preceding user user-agent utterance pair rather than re-computed for it. In this way, the 

algorithm expands its graph of concepts it considers as the conversation continues.


Inference on the MRF 

The end goal of this step is to construct an MRF  and its 

corresponding factor graph from some semantic graph  and perform 

v1 v2

cos(v1, v2) ≥ ϵ

Csimilar ci,similar

Gsemantics = (V, E )

V = C ∪ Csimilar V

Gmrf = (Vmrf , Emrf )

Gr = (Vr, Er)
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inference on it. To construct the MRF, we use the same method and potential functions 

(given below) as Grover et al.[48]. 


  	 	 (4)


where  is the cosine distance between the word embeddings corresponding to 

 and .


Thus, we know that  and . Inference on extremely large 

factor graphs can be computationally infeasible in terms of run-times for real-time 

conversational agents. To avoid such problems, we construct a local subgraph 

 of   which only includes concepts (and related 

concepts) from the preceding agent-user utterance pair. That is, . Therefore, 

 is constructed from . Every node in  is mapped to a Bernoulli random 

variable that represents the probability of the user/agent knowing a particular concept 

(depending on the observed nodes).


Now, we first perform inference on  using concepts in . This gives the 

conditional marginal probability of the agents knowledge of each concept given the 

concepts used in the agents previous utterance. We also perform inference on  

using concepts in  to get conditional marginal probability of the users knowledge 

of each concept given the concepts used in their previous utterance. Thus, for a given 

concept, let  be a random variable that represents the probability that the agent 

ϕ(Xi, Xj) = [e−(1−s(wi,wj)) e−s(wi,wj)

e−s(wi,wj) e−(1−s(wi,wj))]

s(wi, wj)

wi wj

|Vmrf | = |Vr | |Emrf | = |Er |

Glocal = (Vlocal, Elocal) Gsemantics

Vlocal = C

Gmrf Glocal Gmrf

Gmrf Cagent

Gmrf

Cuser

Xagent
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knows a given node and  represent the probability that the user knows a given 

concept. Then, inference, we have  and , and we wish 

to find . Here, we make the simplifying assumption that 

the agent's and user's knowledge of a concept are conditionally independent of 

concepts used in each other's utterances (that is, they generate utterances based on 

the knowledge they had prior to the conversation) in a given agent-user utterance pair. 

Now, we have the joint distribution, 


     	 	 (5)


We now define a define a Bernoulli random variable  for each concept 

representing the probability that both the user and the agent know the given concept 

(Mutual knowledge). 


P1: Contextual Relevance 
As an agent and user interact for multiple turns, the contextual relevance of each 

concept will vary in time. For example, if the user and agent discuss "superhero 

movies" initially but then go on to talk about their favorite desserts, the contextual 

relevance of "superhero movies" decreases with time. This relevance decays with each 

pair of turns as they discuss other topics. To capture this notion of relevance in time, 

we define contextual relevance of a concept as the mixture of distributions of all 

previous  from the MRF where the weight for each distribution is 

Xuser

P(Xagent |Cagent) P(Xuser |Cuser

P(Xagent, Xuser |Cagent, Cuser)

P(Xagent, Xuser |Cagent, Cuser) = P(Xagent |Cagent)P(Xuser |Cuser)

Xmutual

P(Xmutual)
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exponentially decayed with every pair of turns of the conversation . Let mutual 3

knowledge of concept c be  in the  turn and let  be a random variable 

representing the contextual relevance after the  turn, then:


 		 	 (6)


where  is the normalizing constant and  defines the rate at which we decay 

the weights. A higher  lowers the rate of decay and results in weighting prior mutual 

knowledge more heavily.


From Contextual Relevance to Next Utterance Probabilities 
Up until now, we have found the contextual relevance of each key concept while taking 

into account mutual knowledge of both, the agent and the user. However, we wish to 

find the probability of each candidate utterance  being a salient next 

utterance.


In order for the agent to optimize the contextual relevance of concepts across the 

response utterance, it is essential to reward the presence of concepts that are believed 

to be shared knowledge between the agent and the user, and to also penalize the 

presence of concepts that are believed to not be shared. Likewise, concepts that the 

agent believes are neutral, i.e. neither more relevant or less relevant than all other 

P(Xi) ith Rn

nth

P(Rn) = 1
Z

n

∑
i=1

λn−iP(Xi)

Z λ ∈ [0,1]

λ

u ∈ Ucandidates

 Note that we index from the 0th turn and assume that the agent started the conversation. In 3

this case, the first inference occurs after the first pair of turns. In case the user starts the 
conversation, there is no notion of mutual knowledge in the 0th turn, so we only account for the 
users knowledge and start accounting for the agent's knowledge from the 0th turn.
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concepts, should have no effect on the response selection. In order to achieve this, for 

each concept  with contextual relevance , we assign a score equal to 

. Further, find the mean of all scores,  of nodes in . Now, for each 4

candidate utterance , having concepts  with expectations 

 and yake concept relevance scores , the 

final score for the utterance is given by:


 	 	 (7)


This means that every additional concept that is believed to be mutual knowledge 

increases the candidate's score, each concept that is considered of average likelihood 

does not affect the score, and each concept that is believed to be below average 

likelihood reduces the score. Further each concept is weighed by its relevance in the 

utterance. Given final scores for each utterance, we find the final probability of each 

utterance being the next salient utterance according to MRF-chat by applying softmax 

normalization. 


Combining Predictions (Augmenting with MRF-Chat) 

We wish to estimate the probability of the utterance  being the next utterance, and 

have two separate models MRF-Chat and M (deep-learning model) that estimate this 

probability. Thus, we have  and  and want to find 

c Xc,mutual

E[Xc,mutual] μ Glocal

u ∈ Ucandidates c1, c2, c3 . . . cn

μ1, μ2, μ3 . . . μn r1,yake, r2,yake, r3,yake . . . rn,yake

score = 1
n

n

∑
i=1

ri,yake(μi − μ)

u

P(u |MRF − Chat) P(u |M )

 Since  is Bernoulli, the expectation is just )4 Xc,mutual P(Xc,mutual) = 1
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. Assuming the two models to be conditionally independent, 

the bayes optimal method to combine these distributions is given by[58]:


	 	  (8)


Experimental Details 
For our experimental setup, we consider two models: 1) The base model[37] and 2) The 

base model augmented with MRF-Chat. For each conversation in the Persona-Chat 

test set, we used the first 4 turns as context and processed each utterance as 

described in “The MRF-Chat Algorithm” section in order to update marginal 

probabilities and priors after each pair of turns (2 updates in total). We then produced a 

response to follow as the next utterance in the conversation using both MRF-Chat 

augmented with base model and the base model alone. For our ablation study, we 

repeat this response generation process for each value of the decay factor 

 (  means that we only consider the most recent user-agent 

utterance pair and ignore the previous turn). We exclude conversations in which MRF-

Chat and the base model selected the same response from human ratings (the number 

of excluded conversations for each value of  is reported in Table 1).


In our experiments, we use the top ten scoring candidates from the base model (top 

). For the semantic graph, we  manually tested different values of semantic 

similarity on different words, we set . In order to improve latency without 

affecting performance, we only consider the 100,000 most common words from 

GloVe[49]. Further, we use GloVe vectors to build the graph instead of other publicly 

P(u |MRF − Chat, M )

P(u |MRF − chat, M ) ∝ P(u |MRF − chat)P(u |M )

λ ∈ {0,0.3,0.6} λ = 0

λ

K = 10

ϵ = 0.6
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available semantic graphs like ConceptNet[59], Wikidata[33], etc. due to the ability of 

computing semantic similarity between any given pair of words.


Evaluation Methods 
When evaluating our algorithm, we primarily focus on human ratings, as automated 

metrics for often poor for evaluating dialogue[60]. In order to collect human ratings, we 

ran crowdsourcing tasks on Amazon Mechanical Turk (MTurk) as shown in Figure 6. 

MTurk workers then rated each conversation, comparing the MRF-Chat's (augmented 

with the base model) response with the base model's response. Each conversation is 

rated once for each unique response produced by MRF-Chat (if two values of  

produce the same response for a conversation, that response is only rated a single 

time to avoid redundancy).


Inspired by the Acute-Eval setup[61], we show each worker the conversational context 

and ask them to choose the "better" response between the MRF-Chat response and 

the base model's response. Specifically, we ask which response is better based on the 

conversation, and which response is more on topic. For both questions, we a use four-

point scale, with labels "Response 1 is much better", "Response 1 is slightly better", 

"Response 2 is slightly better", and "Response 2 is much better". In our results, we 

look at the distribution of responses across the four options, as well as simplified into 

the binary categories of either Win/Loss for MRF-Chat against the base. We also ask 

the worker to briefly justify their answers, which we found increases the quality of 

ratings. In addition to asking the worker for justification, we require that they are 

located in the United States or United Kingdom (since all of our conversations are in 

λ
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English). These design decisions helped to ensure that we received high-quality 

annotations.


In addition to human ratings, we compute BLEU scores[62], comparing both the base 

model and MRF-Chat's response against the actual response in the test conversation, 

following previous work in dialogue[63]. We measure the mean length, in words, across 

all responses from the base model and MRF-Chat for each value of , as well as the 

number of concepts extracted by Yake[55]. Increased utterance length has been used to 

gain insight into the performance of dialogue systems in the past[39], but measuring the 

number of concepts present in utterances is a less typical approach that allows us to 

λ
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FIGURE 6: OUR MECHANICAL TURK HUMAN EVALUATION SETUP. WORKERS READ FOUR 
TURNS OF CONVERSATIONAL HISTORY, AND THEN ARE ASKED TO COMPARE THE 
RESPONSE CHOSEN BY THE BASE MODEL ALONE TO THE RESPONSE FROM MRF-CHAT. 



not only gain insight into the length of our selected utterances, but also into the density 

of unique concepts within them.


Results 
The results from our human evaluation can be found in Table 1. The number of wins 

and losses for MRF-Chat (augmented with base model) against the base KV Memory 

model are displayed, along with the p-values for each result. For reference, the number 

of conversations in which MRF-Chat produced the same response as the base model 

are included. MRF-Chat outperformed the base model significantly  ( ) on 

both questions, for all three values of decay factor . That is, human annotators believe 

that the response from MRF-chat (augmented with base model) were better and more 

on-topic.


As  increases, we see a slight decrease in the p-value of MRF-Chat's improvement 

over the base model, but still outperforming it significantly. This is surprising, as a 

higher value of  means that older conversation history is being weighed more heavily 

p < 0.001

λ
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Dialogue 
System

Q1: Better Q1: On Topic Equivalent 
ResponsesWin/Loss p-value Win/Loss p-value

335/220 < .000001 334/217 < .000001 413

370/279 0.000206 368/276 0.000168 319

364/278 0.000397 362/276 0.000382 325MRF-Chat 
( )λ = 0.6

MRF-Chat 
( )λ = 0.3

MRF-Chat 
( )λ = 0

TABLE 1: HUMAN EVALUATION RESULTS: WIN/LOSS COUNT FOR MRF-CHAT AGAINST THE KV 
MEMORY NETWORK ALONE. MRF-CHAT CONSISTENTLY IMPROVES HUMAN RATINGS. ALL 
RESULTS ARE SIGNIFICANT (  ). p < 0.001



in comparison to the last user and agent utterance, and one may expect that 

increasing the use of conversation history would increase performance. However, since 

the conversation is rather short (2 turns), we hypothesize that the concepts in the 

immediately preceding turn are significantly more important (compared to the turn 

before) when generating a response. This result is consistent when we compare the 

algorithm with  and  as a lower value of  slightly improves the p-value. 

However, we believe that a larger value of  will be essential for effective performance 

in longer conversations as the conversation starts to reference more and more 

previously mentioned concepts. Future work will examine the performance of the 

model on longer conversations. 


λ = 0.6 λ = 0.3 λ

λ
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TABLE 2: AVERAGE OF BLEU-1,-2,-3,-4 SCORES FOR EACH APPROACH. VALUES IN 
PARENTHESIS ARE COMPUTED USING ONLY THE MRF-CHAT RESPONSES THAT WERE 
DIFFERENT THAN THOSE FROM THE KV MEMORY MODEL. 

Dialogue System Average 
BLEU

KV Memory 4.44

4.54 (4.70)

4.56 (4.69)

4.56 (4.69)MRF-Chat ( )λ = 0.6

MRF-Chat ( )λ = 0
MRF-Chat ( )λ = 0.3

Dialogue System Utterance Length Utterance Concepts

KV Memory 11.72 ± 3.42 4.46 ± 1.82

11.12 ± 3.44 (10.65 ± 3.39) 4.07 ± 1.72 (3.77 ± 1.62)

11.09 ± 3.39 (10.83 ± 3.33) 4.05 ± 1.65 (3.88 ± 1.58)

11.08 ± 3.40 (10.85 ± 3.35) 4.05 ± 1.65 (3.90 ± 1.58)

MRF-Chat ( )λ = 0.3
MRF-Chat ( )λ = 0

MRF-Chat ( )λ = 0.6
TABLE 3: MEAN UTTERANCE LENGTH, IN WORDS, AND MEAN NUMBER OF CONCEPTS 
EXTRACTED BY YAKE. VALUES IN PARENTHESIS ARE COMPUTED USING ONLY THE MRF-
CHAT RESPONSES THAT WERE DIFFERENT THAN THOSE FROM THE KV MEMORY MODEL. 



Automated Metrics 
Mean BLEU scores for the KV Memory base model and MRF-Chat with each value of 

, as well as BLUE scores exclusively on conversations in which MRF-Chat produced a 

different response than the base model, can be found in Table 2. MRF-Chat 

(augmented with the base model) consistently achieves better mean BLEU scores 

compared to the base model across all values of . 


We find that MRF-Chat tends to produce shorter utterances than the KV Memory base 

alone (see Table 3). We also find that the average number of concepts extracted by 

Yake[55] from each of MRF-Chat's responses is less than that of the KV Memory model. 

Since our human evaluation indicates that MRF-Chat's responses are better and more 

λ
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FIGURE 7: AN EXAMPLE OF HOW MRF-CHAT PRODUCES BETTER RESPONSES WITH FEWER 
BUT MORE RELEVANT CONCEPTS. 



on topic than KV Memory alone, this suggests that MRF-Chat produces utterances 

with fewer, more relevant concepts. This is by design, as our algorithm rewards 

concepts that are believed to be known to both the agent and the user based off of the 

conversation, and penalizes concepts that are less relevant (Equation 7). An example 

conversation showing this phenomenon can be seen in Figure 7. 


Conclusions and Future Work 
In this chapter, we have introduced MRF-Chat, an algorithm for improving open-

domain conversational agents based on the cognitive theory of mutual knowledge. The 

algorithm incorporates the contextual relevance of all prior concepts used in 

conversation in order to make predictions. Additionally, it is domain agnostic and 

independent of the base model used. Using human and automatic evaluation methods, 

we show that MRF-Chat can significantly improve the quality of responses in dialogue 

when combined with the KV Memory base trained on the Persona-Chat corpus. We 

found significant improvements over the base model in terms of the responses being 

on-topic as well as the overall quality of responses across various values of the prior 

weight . We further show that our algorithm produces slightly shorter utterances, with 

fewer but more relevant concepts, than the base alone.


While this algorithm provides a step forward in improving the quality of open-domain 

dialogue systems, as demonstrated by our consistent improvements over the Persona-

Chat KV Memory model in human evaluation, future work will investigate and evaluate 

augmentation of other state-of-the-art approaches with MRF-chat. Next, our human 

evaluations use short conversation histories (4 turns), and we hypothesize that longer 
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conversations would enable our approaches to be the most effective. Additionally,  it is 

essential that dialogue systems can effectively manage longer, more complex 

conversations, so we plan on evaluating MRF-Chat on longer conversation histories.
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Evaluation Setup 

In the MRF-Chat chapter, I showed that MRF-Chat can significantly improve the quality 

of responses in dialogue by augmenting the KV Memory base model. In this chapter, I 

describe the full end-to-end evaluation of the Relational Dialogue system. Using a 

semi-structured conversation framework focused on food preferences, I gathered a 

total of 92 conversations between 23 human participants and either the full relational 

dialogue system or a reduced baseline system. After each conversation, participants 

rated the conversational agent on typical open-domain dialogue characteristics 

(engaging, interesting, human sounding), as well as on social/relational characteristics 

(collaborative, trust, caring, understanding).


Semi-Structured Conversation Framework 
In order to measure the system’s performance on both general chit chat and in an 

application-focused environment, the interactions gathered for evaluation combined 

open dialogue with the tasks of deciding on a healthy meal. While the conversations 

are focused around the topic of food, no modifications would be necessary to discuss 

other common topics in a similar way (besides the knowledge graph augmentation 

used for the final recipe recommendation). In this sense, the system is truly an open 

domain dialogue system. Here, food is used as an example of a common topic that 

two individuals may casually discuss, as well as an example of a space where the 

system can be used to aid in a concrete goal, i.e. the recommendation of a healthy 

meal.
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The entire interaction consists of two conversations. The first conversation begins 

around food in general, and participants then discussed a variety of topics in the first 

conversations. The system starts the conversation with the prompt “Hi there, what’s 

your favorite thing to eat”, after which the user and system converse freely. In the 

second conversation, the system starts with “Let’s figure out what to eat for dinner. 

What kind of meat sounds good to you?”. What followed is generally a more task-

focused and collaborative discussion around food preferences and what to choose for 

dinner. After ten turns of open dialogue (five user utterances and five system 

responses), the system recommends a healthy recipe for dinner chosen from a set of 

twenty candidates (described next in “Knowledge Graph Augmentation - Recipes”). An 
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FIGURE 8: CONVERSATIONS BETWEEN PARTICIPANT AND RELATIONAL DIALOGUE SYSTEM.



example pair of conversations that a participant had with the full Relational Dialogue 

system can be seen in Figure 8. Both conversations are started by the fixed prompt 

from the system, followed by 10 turns of unstructured interaction. The second 

conversation is then concluded with the recipe recommendation.


Knowledge Graph Augmentation - Recipes 
Recipe Scraping 
For evaluation, an additional layer of healthy recipes was added to the knowledge 

graph. This serves as an example of how the knowledge graph can easily be expanded 

or adapted to serve new goals, and a similar expansion could easily be done with other 

topics such as sports, books, movies, etc. Twenty recipes were scraped from the 

USDA’s ChooseMyPlate website, which provides many healthy eating recipes and 

recommendations. The recipes included a wide range of proteins and vegetables, as 

well as several vegetarian options.


Knowledge Graph Augmentation 
In order to incorporate the recipes into the knowledge graph, each recipe was added 

as a new node type “RecipeNode”. Each recipe’s ingredients were searched in 

Wikidata and added to the knowledge graph using the same entity linking process from 

Pre-Processing, and an “Ingredient” edge was added between each recipe’s node and 

its ingredients’ Wikidata nodes. In this way, the recipes were incorporated seamlessly 

into the knowledge graph, without any modifications to the Wikidata graph structure. 

The knowledge graph can be easily augmented in this way for a wide variety of tasks 

or specific contexts.
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Knowledge Graph Initialization 
In order to minimize time spent downloaded Wikidata information during 

conversations, the knowledge graph was pre-loaded with all Wikidata entities within 2 

degrees of the recipe ingredients using the Local Expansion Bot. When combined with 

the pre-loaded agent model created from existing Jibo utterances (as described in the 

Knowledge Graph Development section), the resulting graph that was used as the 

starting graph for each interaction contained a total of 3,972 nodes. Since the 

knowledge graph is always a partially-downloaded representation of all Wikidata 

entities and their relationships that is continuously expanded to fit the needs of 

conversation, these entities could be downloaded at runtime instead. However, since 

there is a high likelihood they will be used, it is reasonable to download them ahead of 

time. This practice is applicable to any time that the future topic of conversation is 

generally known. There is little drawback of downloading additional entities ahead of 

time, besides the increased storage needed to save the knowledge graph. If storage 

and compute are not an issue, the entirety of Wikidata could theoretically be pre-

downloaded into the knowledge graph, but that would result in an enormous amount of 

required storage. The knowledge graph’s implementation minimizes the effects of 

increased total graph size on runtime latency.


Recipe Recommendation 
The recipe to recommend to the user leverages the knowledge graph to infer the user’s 

preferences beyond just the ingredients or foods they have mentioned. For example, if 

the participant is known to like steak, it can be inferred that there’s a very high 

probability that they like beef in general, and a possibility that they like other meats. 
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While this inference can be done through a wide range of techniques (e.g. MRF), for 

this evaluation a relatively simple approach is used to calculate the score for each 

recipe:


1. Find all of the paths  between the user node and the recipe node 

that are no longer than 5 nodes (including the user and recipe nodes). Paths may 

not visit the same node twice, may not include any non-Wikidata nodes outside of 

the user/recipe endpoints (the path may not move through another recipe, user, or 

agent). By definition, any node adjacent to the user node is connected to the user 

node by either a “likes”, “dislikes”, or “mentioned” edge.


2. Assign each path a weight inverse to its length, with a path of user-ingredient-

recipe receiving a weight of 1: 


3. Assign each path a valence  if the user dislikes the adjacent node, and 

 otherwise. 


4. Compute the recipe’s final score: 


In the baseline system, each recipe’s score is simply the number of ingredients that the 

user is known to like or has mentioned without sentiment, minus the number of 

ingredients the user is known to dislike. This is equivalent to the full knowledge graph 

P = p1, p2, …, pi

wi = 1
length(p) − 2

vi = − 1

vi = 1

Srecipe = ∑
pi∈P

wivi
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approach with the restriction that the path found must have only three nodes (the user, 

the ingredient, and the recipe).


Baseline System 
In order to evaluate the effects of the key components of the Relational Dialogue 

system (MRF-Chat, Knowledge Graph Response Generation, Use of Knowledge Graph 

in Recipe Recommendation), the evaluation focuses on comparing the complete 

Relational Dialogue system to a reduced baseline system without those key 

components. The baseline system uses the entire pre-processing pipeline (concept 

extraction, entity linking, sentiment analysis, etc.), but only uses retrieval-based 

candidates, and neural-only Response Selection without MRF-Chat. In order to choose 

a recipe to recommend, the baseline system can only use information about whether 

the user likes or dislikes the exact ingredients of the recipe, that is, it cannot use 

knowledge graph relationships to infer possible preferences. While the baseline system 

does not use the knowledge graph for generating responses or choosing a recipe to 

recommend, and does not use MRF-Chat in Response Selection, all system 

components are executed in the baseline system so that there is no difference in 

latency between the baseline system and the entire Relational Dialogue system in 

evaluation (for example, in the baseline system MRF-Chat is run as normal given the 

conversational history and candidate utterances, but the outputted scores are never 

used).
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Experimental Details 
In order to gather conversations for evaluation, twenty-three participants were 

recruited. All participants were current or recent undergraduate students. The majority 

of participants (19 of 23) had engineering, math, or science-related backgrounds, but 

no participant had significant experience in the design or development of 

conversational agents or natural language processing systems. Each participant 

interacted with both the full Relational Dialogue system and the baseline system, 

following the two-conversation format described above for each system. Half of the 

participants were assigned to interact with the baseline system before the full system, 

and half interacted the the full system before the baseline. The system was run on a 

2019 MacBook Pro with 2.8 GHz Quad-Core Intel Core i7 CPU and 16 GB 2133 MHz 

LPDDR3 RAM. Participants were able to type in their utterances and see system 

responses through Zoom remote controls (unfortunately interactions could not be 

gathered in person due to the pandemic). Gathering in-person interactions, as opposed 

to through Mechanical Turk, allowed for an exceptionally high quality of data.


After each conversation, the participant answered a questionnaire, rating the system on 

a scale of 1-10 (1=Strongly Disagree, 10=Strongly Agree) for several metrics. In total, 

each participant filled out 4 questionaries (one after the first conversation and one after 

the second, for both the baseline and full system). The questionnaire used for the 

second conversation is identical to the first questionnaire except for the addition of two 

questions. The questions were as follows:
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Typical Dialogue Metrics 
My conversational partner is engaging

My conversational partner is interesting

My conversational partner sounds human


Relational Metrics 
My conversational partner is collaborative

I trust my conversational partner

My conversational partner cares about me

My conversational partner understands me


Recommendation Metrics (2nd Conversation Questionnaire only) 
My conversational partner knows my food preferences

My conversational partner suggested a good meal for me


Once the participant completed the interactions with both systems, they were 

additionally asked which conversational partner/system they preferred speaking to. 

This provides an absolute metric to compare the two systems overall.
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Results 

Overall, the Relational Dialogue system showed very strong results compared to the 

baseline system. When participants were asked which conversational partner they 

preferred talking to (between the baseline and full Relational Dialogue system), 

seventeen out of twenty-three said they preferred the Relational Dialogue system 

(participants never knew which of the two systems they interacted with was which, 

they only knew that they had interacted with two different systems). This is an 

overwhelming win showing the benefits of MRF-Chat and the knowledge graph 

generators, and is statistically significant even with the small sample size ( ).


When asked why they preferred the relational system often said that it provided “more 

interesting conversation” and “stayed on topic more”. Figure 10 shows an example of 

p < 0.05
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Which Conversational Partner 

Did You Prefer Talking to?

Baseline
6 Preferred

Relational
17 Preferred

FIGURE 9: THE MAJORITY OF PARTICIPANTS PREFERRED TO TALK TO THE RELATIONAL 
DIALOGUE SYSTEM OVER THE BASELINE.



how the Relational Dialogue system provides more on-topic responses than the 

baseline system. One participant felt that the Relational Dialogue system had “more 

empathy towards [them]”, and another said that it “seemed a bit more personable, 

willing to talk more about themself”.


When participants preferred the baseline system, they often mentioned that the 

Relational Dialogue system felt more stuck on one topic when they tried to change the 

course of the conversation. An example of this phenomenon occurs in Figure 11. One 

participant felt that the baseline system’s conversations “flowed more naturally” from 

topic to topic, and another participant tried to change the topic away from food but the 

agent resisted. The combination of the these comments would suggest that while the 
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FIGURE 10: A COMPARISON OF CONVERSATION 2 BETWEEN A PARTICIPANT AND BOTH THE 
BASELINE AND FULL RELATIONAL DIALOGUE SYSTEM. THE RELATIONAL DIALOGUE SYSTEM 
PRODUCED MORE ON-TOPIC AND RELEVANT RESPONSES.



Relational Dialogue system is able to have a more interesting and coherent 

conversation than the baseline, and at times allows for better conversational flow, 

additional work is needed to ensure that the system can appropriately adapt to the 

topic of conversation when the user desires a more significant change.


The Ask Preference Generator was used in 16 out of 46 conversations between a 

participant and the Relational Dialogue system (this does not include additional times 

that the Ask Preference Generator created candidate responses that weren’t ultimately 

chosen). These 16 conversations happened with 12 out of the 23 participants. The Ask 

Preference Generator responses were typically only chosen once or twice in the entire 

interaction (9 out of 12 participants). Interesting, all three participants who received Ask 
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FIGURE 11: A COMPARISON OF CONVERSATION 1 BETWEEN A PARTICIPANT AND BOTH THE 
BASELINE AND FULL RELATIONAL DIALOGUE SYSTEM. WHILE THE RELATIONAL DIALOGUE 
SYSTEM’S RESPONSES ARE MORE ON-TOPIC, THEY LIMIT THE FLOW OF CONVERSATION.



Preference Generator responses more than twice (thrice for two participants, four times 

for the other) preferred the baseline system. Of the other nine, the one participant that 

preferred the baseline received two Ask Preference Generator responses. These results 

would suggest that excess use of the Ask Preference Generator may result in lower 

conversational quality, which would not be surprising as 3 or 4 similar responses in an 

interaction of 13 total agent utterances may seem fairly repetitive. 


Questionnaire Results 
The Relational Dialogue system also showed promising results across the majority of 

characteristics asked about in the questionnaires. The results for participants’ ratings 

of Relational Dialogue vs. baseline on each characteristic for each conversation 
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TABLE 4:  HUMAN RATING RESULTS: WIN/TIE/LOSS COUNT FOR THE RELATIONAL SYSTEM 
AGAINST THE BASELINE. A WIN IS WHEN THE PARTICIPANT RATED THE RELATIONAL SYSTEM 
HIGHER THAN THE BASELINE FOR THE RESPECTIVE CHARACTERISTIC (TIE IF SAME RATING, 
LOSS IF LOWER RATING). CELLS ARE GREEN IF THE RELATIONAL SYSTEM WON THE 
MAJORITY OF THE TIME (RED FOR MAJORITY LOSS). RESULTS IN BOLD ARE STATISTICALLY 
SIGNIFICANT (  ). p < 0.05

Characteristic Conversation 1 
Win/Tie/Loss

Conversation 2 
Win/Tie/Loss

Overall 
Win/Tie/Loss

Engaging 9 / 4 / 10 14 / 4 / 5 23 / 8 / 15

Interesting 10 / 6 / 7 14 / 1 / 8 24 / 7 / 15

Sounds Human 12 / 2 / 9 12 / 2 / 9 24 / 4 / 18

Collaborative 12 / 5 / 6 12 / 7 / 4 24 / 12 / 10

Trust 8 / 11 / 4 12 / 5 / 6 20 / 16 / 10

Cares About Me 6 / 5 / 12 14 / 2 / 7 20 / 7 / 19

Understands Me 12 / 3 / 8 13 / 3 / 7 25 / 6 / 15

Knows My 

Food Preferences N/A 13 / 4 / 6 13 / 4 / 6

Suggested a Good 
Meal for Me N/A 10 / 7 / 6 10 / 7 / 6



independently and combined can be see in Table 4. While results on Conversation 1 

were more evenly spread, the Relational Dialogue system was given a higher rating by 

the majority of participants on 8 of the 9 characteristics for Conversation 2, and 6 of 

the 9 characteristics overall. The Relational Dialogue system was rated as significantly 

more engaging and collaborative on Conversation 2, and significantly more 

collaborative and trusted by participants overall (  for all).


The Relational Dialogue system performed much better in Conversation 2 than 

Conversation 1 when compared to the baseline. It is unclear whether this effect is due 

to the Relational Dialogue system being able to perform more effectively in the context 

of Conversation 2 specifically, or if conversing with the systems for longer provides 

more information about which the participant can make a stronger decision about the 

fundamental capabilities of each system.


Results show that participants felt that the the Relational Dialogue system provided 

better meal suggestions slightly more often than the baseline, and the majority felt that 

the Relational Dialogue system better understood their food preferences. While more 

data is needed to determine if these results are statistically significant, these initial 

findings are promising.


Knowledge Graph Development 
During the first conversation that participants had with the full Relational Dialogue 

system, an average of 7.5 nodes were added to the user model in the knowledge graph 

(stdev=4.5, min=0, max=19), and an average of 112.1 nodes were added to the initial 

knowledge graph (stdev=52.3, min=23, max=255). In the second conversation, the 

p < 0.05
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same average of 7.5 nodes were added to the user model (stdev=4.4, min=1, max=21), 

and a slightly higher average of 149.9 nodes were added to the entire knowledge graph 

(stdev=114.9, min=0, max=410). No correlation was found between either the number 

of nodes added to the user model or the number of nodes aded to the knowledge 

graph and user ratings. While this may seem surprising at first, this mirrors the initial 

MRF-Chat finding, which was that while MRF-Chat produces responses with more 

relevant concepts, the number of concepts occurring in conversation does not differ 

significantly. It is possible that a similar trend is occurring here, where the relevance 

and quality of the concepts occurring in conversation is more significant than the 

amount. Since less relevant concepts are often found in less coherent responses, it is 

reasonable to hypothesize that similar patterns could be found here, with the Relational 

Dialogue system performing at its best when producing highly relevant concepts 

without significant effect on the abundance of concepts, although additional work is 

needed to understand these effects when using the entire Relational Dialogue system.


Latency 
Interactions were gathered on a 2019 MacBook Pro with a 2.8 GHz Quad-Core Intel 

Core i7 CPU. On average, Pre-Processing took 258ms, Candidate Response 

Generation took 198ms, API requests to Wikidata took 378ms, neural response scoring 

took 2054ms, and MRF-Chat scoring took 977ms, for a total average latency of 

3865ms. This latency could be dramatically reduced (likely to below 2 seconds) by 

running the neural response scoring model on GPU.
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Discussion & Future Work 

Ethical Considerations & Data Privacy 
While it is important to evaluate the ethical implications of any system, it is especially 

important to keep them in mind for this project. Establishing trust and rapport with a 

user increases how important it is that the agent’s actions and uses are ethically sound 

and unbiased, and that the technology is not used for malice or exploitation. As 

transformer-based generative models such as GTP-3[17] continue to create increasingly 

human-sounding text, and algorithms like MRF-Chat allow for an increased perception 

of understanding, it is important that similar systems are not used for deception or 

manipulation.


It is also important to consider issues of transparency and privacy around the data 

gathered about each individual in the knowledge graph, as well as the ability to explain 

how any decisions or recommendations based on the knowledge graph are made. The 

knowledge graph’s design makes explainability very simple, as it is a symbolic system 

with a relatively small number of understandable concepts. It is also very easy to 

visualize a user’s data in the knowledge graph, and to make modifications to that 

information by adding or deleting nodes and edges.


Improving Agent/User Modeling 
Richer User Modeling 
While modeling the user’s preferences allows for a valuable representation of the user 

that can be used to drive conversation, there are many ways in which that model could 

be expanded to support richer interaction. Initially, the model could be expanded to 
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include key information about the user, perhaps including basic knowledge about their 

friends and family, their age, their home town, etc. By developing the ability to 

effectively extract more relationships between concepts in utterances, the graph can 

then be expanded to include additional information that comes up. For example, if the 

user mentions “Mark and I went to the beach yesterday”, a “visited” relationship could 

be added between the user node and the beach.


Development of Agent 
Through conversation, the agent could learn and its personality would grow, aligning 

some of its own preferences with the user’s, and expanding its own unique identity as 

the relationship develops. While core features of the agent’s character will be fixed, the 

agent can form opinions on new topics. It will be important to identify highly 

controversial or unwanted opinions, and prevent the agent from adopting them. This 

can be done initially using existing sentiment detection techniques to detect topics 

with negative connotations.


Improving Agent Responses 
Improved Ask Preference Generator + Response Selection 
In some cases, the Ask Preference generator helps improve the conversational 

experience by exploring the user’s interest in concepts that are relevant to 

conversation. However, there are other cases when the Ask Preference generator 

breaks down, reducing the quality of conversation. There are two main issues with the 

Ask Preference generator that occurred occasionally in evaluation. The first issue is 

asking about unusual concepts, and the second is too frequent use of the Ask 

Preference generator. Examples of both of these issues can be seen in Figure 12. First, 

the agent asks the user if they like “dishes” because they like “steaks”. While dishes (in 
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this context the meaning of dish similar to a recipe, e.g.  “a chicken dish”) are relevant 

to steaks (steak is a type of food or dish in the Wikidata ontology), it would be unusual 

for a human to ask the question. In order to overcome this, additional work is needed 

to predict how likely it is that any given concept would be brought up in conversation. 

Since typical language models for open-domain dialogue are trained on entire 

utterances, an utterance that is generally a reasonable reply, but has one or two key 

words that are unusual, may still receive a high score. 


Regarding the second issue, using the Ask Preference generator multiple times in an 

interaction was linked to lower system ratings (while it appeared that a single use of the 
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FIGURE 12: AN EXCERPT FROM A PARTICIPANT’S INTERACTION WHERE THE ASK 
PREFERENCE GENERATOR BREAKS DOWN.



Ask Preference generator corresponded with higher ratings, additional evaluation is 

required to confirm this trend). While this issue could be easily fixed by limiting how 

often the Ask Preference generator produces candidate responses, the issue is a 

symptom of a deeper problem. MRF-Chat favors concepts that are relevant to the 

conversation, and are likely known by both the agent and the user. In most cases, this 

mechanism increases the quality of selected responses, however there are some 

cases, such as the multiple Ask Preference issue, where it results in the repetition of 

similar responses or topics. To address this, further work is needed to model not only 

what concepts are relevant, but also to model how the topic of conversation should 

change over time.


Additional Knowledge Graph Generation 
As the knowledge graph is expanded to include more complex models of both the user 

and the agent, they ways in which it can be used for conversation will grow. The agent 

could bring up information in the knowledge graph in conversation, or use the 

knowledge to inquire about the user’s experiences.


A significant issue with many existing dialogue systems is a lack of logical consistency 

in the agent’s responses[19]. For example, an agent may say they like a certain food, or 

say they had a certain experience, and then later say the opposite. The knowledge 

graph could be used to prevent this issue.


Response Combination 
One of the limitations of a primarily-retrieval based approach is that while the agent’s 

utterance is chosen to be the best overall way of responding to the user, the response 

may not address all parts of the user’s utterance. By combining various candidate 

responses appropriately, the system may be able to create more complex responses 

72



that address the user’s utterance and drive the conversation forward. For example, 

BYU-EVE[25] uses an emote/answer/offer framework, where the agent appropriate 

responds to the user, and then offers something new. This framework could be 

expanded to ensure that the user’s questions are answered, to allow the agent to share 

things about itself at the right moments, and to increase the overall coherent-ness of 

responses.


Further Evaluation 
While the conducted evaluation showed strong initial results for the Relational Dialogue 

system, additional evaluation is needed to further understand some of the trends 

observed in the interactions, as well as the strengths and weaknesses of various 

subcomponents in the system. Initially, continuing the existing evaluation with many 

more participants would improve the statistical significance of the results, and offer 

more clarity around some of the observations. The next key area to address is 

evaluating how the system performs on different types of conversations, and how the 

user’s perception of the agent changes over time. Did the Relational Dialogue system 

outperform the baseline on the second conversation more significantly because of the 

nature of the second conversation’s framing and content, and is that difference 

repeatable in other types of conversations? Does the user having more conversation 

with the systems result in a higher separation in ratings between the baseline and the 

full system over time? What kinds of conversational scenarios does the Relational 

Dialogue system perform will in, and where does it struggle? To address these 

questions, similar evaluation can be conducted with new types of conversations, 

different topics besides food preferences, and with longer sequences of conversations 

over time.
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Additional work is also needed to understand the different effects of MRF-Chat vs. the 

knowledge graph generators on the overall quality of experience. In order to measure 

these effects, there are several approaches that will help give insight into each 

component. Initially, gathering more interactions may help reveal trends between the 

use of the knowledge graph generators and user ratings. Then, an ablation study could 

be performed, evaluating the system with knowledge graph generators and without 

MRF-Chat, and vise versa. Over time, developing a robust method for evaluating each 

knowledge graph generator independently would greatly aid in the development of new 

generators for new applications.


Another key area for further evaluation is how exploring different types and amounts of 

concepts in conversation affects the user’s experience, as well as the specific effects 

of user model development. Results in the initial MRF-Chat evaluation found that the 

quality of conversational concepts was more important to human ratings than the 

number of them, and an analysis of similar effects is needed to determine if the same 

trend occurs with the entire Relational Dialogue system.
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Conclusion 

In this thesis, I presented the Relational Dialogue system through the following:


1. A Wikidata-based knowledge graph that contains information about the world, and 

provides a platform for modeling the preferences of both the user and the agent in 

order to generate agent utterances that seek to learn about the user and share the 

agent’s preferences.


2. MRF-Chat, a novel probabilist approach to augmenting retrieval-based dialogue 

systems. MRF-Chat models the mutual knowledge of the agent and user, as well as 

the contextual relevance of all concepts appearing in conversation and in candidate 

responses. In human evaluations, MRF-Chat was found to produce significantly 

better and more on topic responses when compared to a state-of-the-art baseline.


3. An example application of the Relational Dialogue system, using a semi-structured 

conversational framework around food preferences in order to drive conversation 

with the user, and ultimately make a healthy meal recommendation based on their 

learned preferences.


In human evaluations, the majority of participants preferred conversing with the 

Relational Dialogue system over the baseline (17/23, p < 0.05). The Relational Dialogue 

system was rated significantly more engaging, collaborative, and trusted by the users. 

These results show the benefit of the knowledge graph and of MRF-Chat, and lay the 

groundwork for future work that approaches human-computer dialogue as a shared 

social experience between the agent and the user.
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