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Abstract

We investigate the use of unsupervised deep learning to create a general purpose au-
tomated fault detection system for manufacturing equipment. Unexpected equipment
faults can be costly to manufacturing lines, but data driven fault detection systems
often require a high level of application specific expertise to implement and continued
human oversight. Collecting large labeled datasets to train such a system can also
be challenging due to the sparse nature of faults. To address this, we focus on unsu-
pervised deep learning approaches, and their ability to generalize across applications
without changes to the hyper-parameters or architecture. Previous work has demon-
strated the efficacy of autoencoders in unsupervised anomaly detection systems. In
this work we propose a novel variant of the deep auto-encoding Gaussian mixture
model, optimized for time series applications, and test its efficacy in detecting faults
across a range of manufacturing equipment. It was tested against fault datasets from
three milling machines, two plasma etchers, and one spinning ball bearing. In our
tests, the model is able to detect over 80% of faults in all cases without the use of
labeled data and without hyperparameter changes between applications. We also find
that the model is capable of classifying different failure modes in some of our tests,
and explore other ways the system can be used to provide useful diagnostic informa-
tion. We present preliminary results from a continual learning variant of our fault
detection architecture aimed at tackling the problem of system drift.
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Chapter 1

Introduction

In the manufacturing sector, unplanned downtime caused by unexpected machine
faults can be highly costly and is estimated to reduce factory output by between
5% and 20% [8]. Automated fault detection (AFD) systems can help mitigate much
of this damage by monitoring sensor data and flagging anomalies before problems
become more serious. With advanced warning, maintenance can be scheduled ahead
of any catastrophic failures, referred to as predictive maintenance (PdM). A 2017
survey by GE estimates over 80% of organizations had experienced an episode of
unplanned downtime in the past three years, costing an average of $260,000 an hour,
half of which were caused by unexpected hardware failures [3|. This suggests that
there may be large efficiency gains to be made in manufacturing should these methods

be more widely adopted.

In this work, we address three potential barriers to more widespread adoption of
AFD systems. The first involves the difficulties of retrofitting sensors onto older
machinery. For equipment that does not come with integrated sensors and monitors,
invasive sensor installation can risk damaging the equipment in question, and in a
factory setting, may require shutting down production lines. The second problem
we address is the lack of large labeled datasets to train such systems. Faults are
inherently a rare event and every failure may be different. The final barrier we hope

to address is the high level of domain-specific expertise that can be required to build
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an effective AFD system. Tailor made solutions often rely on an intimate knowledge
of the machinery in question and its failure modes. To address these three issues we
frame our problem as a more general case of anomaly detection and leverage advances
in unsupervised learning to build system models without labeled data. In this work,
we propose and test a deep learning architecture capable of detecting faults across a
wide range of manufacturing equipment without labeled data or application specific

configuration.

1.1 Model Summary

In this thesis, we propose a new architecture for automated fault detection: the Re-
current Deep Autoencoding Gaussian Mixture Model (RDAGMM). The core of our
model is a sliding window autoencoder. This architecture allows our system to model
incoming sensor data in an unsupervised way, and provides the flexibility to gener-
alize across applications. The autoencoder is trained to compress and reconstruct
incoming windows of sensor data, with a series of convolutional layers. A recurrent
unit in the final layer of the encoder allows the model to track long term trends
outside the scope of a single window. The autoencoder outputs two vectors useful
for anomaly detection, the latent state (compressed representation) and the residuals
vector (reconstruction error). These two outputs are passed to a secondary classi-
fication network that is trained to minimize the negative log likelihood (NLL) of a
Gaussian mixture model. The NLL is used as our final “anomaly score”: a measure
of how aberrant the monitored equipment’s behavior is at any given moment in time.
Setting a threshold on the anomaly score provides a binary label as to whether the
system is performing normally or if there is a fault. Clustering the compressed latent
state representations provides unsupervised labeling of different fault types useful for

diagnostic purposes.
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1.2 Evaluation

To test the ability of our model to generalize across applications, we collected a range
of datasets containing sensor readings from bearings, milling machines, and circuit
fabrication equipment. As well as covering a range of equipment, these datasets vary
in terms of types of signals being recorded, the number of sensor channels available,

and the sampling frequency. Half of our datasets exclusively use non-invasive sensors.

All of the datasets contain labeled faults that either occurred naturally while the
machine was in use, or were intentionally induced for testing purposes. In all of the
above cases, we evaluate the accuracy with which our system can separate faulty
from nominal behavior. We also investigate the ability of our system to classify
different types of faults, attribute faults to specific sensor channels, and provide other

information useful for fault diagnosis and predictive maintenance.

1.3 Thesis Outline

The next chapter of this thesis contains a review of unsupervised anomaly detection
techniques in the literature, with an emphasis on methods used in this project. Chap-
ter 3 then describes our model architecture in more detail, the methods used for fault
detection and classification, and the details of the models used as a baseline for com-
parison. Chapter 4 details the various data sets and fault detection tasks we use to
test our method. Chapter 5 contains the results of our tests. In Chapter 6, we discuss
our preliminary work collecting more expansive datasets and testing improvements to
our architecture. Finally, we conclude with a discussion of our results and suggestions

for further work in Chapter 7.
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Chapter 2

Theory & Literature Review

Our work draws on literature in the fields of anomaly detection, fault detection, and

unsupervised learning. In this chapter, we summarize the relevant related research.

2.1 Anomaly Detection

Mechanical faults in machinery can often be detected and even predicted by finding
the appearance of anomalies in the available sensor readings. While it is difficult to
rigorously define anomalies, they can intuitively be thought of as observations that
seem abnormal given historical data. In this paper, we will be using the definition
of anomalies given by Hawkins as points which “deviate so significantly from other
observations as to arouse suspicion that they were generated by a different mecha-

nism” [14].

Anomalies can be further subdivided into two classes, point anomalies and contex-
tual anomalies. While point anomalies can and often are detected as limit violations of
normal operating parameters, contextual anomalies are only detectable with regards
to surrounding values or readings from other sensors. Conceptually, they require some
knowledge of what the signal should look like to compare against. For example, with
an accurate model of nominal system behavior, an anomaly score can be calculated

as the size of the residual; the absolute error between the model’s predictions and the
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Figure 2-1: Residual based anomaly detection. Red and black points highlight two
anomalies which are detectable as points with a residual value above a threshold.

recorded sensor data, as shown in Figure 2-1.

In this work, we focus on unsupervised anomaly detection for multivariate time
series. Without access to expert knowledge of the system, we first learn a model of
nominal system performance using historical data, and then detect anomalies as a
function of the predictive accuracy of our model, our model’s state, and other learned

metrics.

2.2 Deep Unsupervised Modeling

In the field of deep learning, unsupervised methods used for anomaly detection can
be roughly subdivided into three categories, based on their learning objective and
anomaly scoring technique. These are time series forecasting, clustering techniques,
and compression based methods. In this section, we review the theory and literature
behind these methods. All three have close analogs to traditional anomaly detection

methods, rely on the assumption that faults are relatively rare or not present in the
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training data, such that accurate models of nominal behavior can be trained without

labels.

2.2.1 Time Series Forecasting

Time series forecasting involves building a model to predict future values of a time
series, typically using a sliding window of past values. A classic method to solve this
problem is to construct an autoregressive moving average (ARMA) models in which
predicted future values 7; are computed as a linear combination of past values y;_;

and error terms €,_;, as defined in Equation 2.1:

p p
U = Z Q; X Yp_; + Z Bi€i—i (2.1)
i=1 i=1

where a; and f; represent the learned model parameters. Anomalies can then be
detected as periods of abnormally large errors in the model predictions indicating a
break from historical trends. as shown in Figure 2-2. For example, Qin et al. used this
combination of ARMA and a statistical threshold on the residuals vector to detect

faults in satellite systems [31].

—— Sensor Data
Prediction
Confidence Interval

z \ J\‘ J\ /\ /\f

Sensor Value

0 20 40 60 80 100
Time

Figure 2-2: ARIMA Forecast. After fitting a model on historical data, future values
are predicted on a rolling basis. Points which fall outside the projected confidence
interval and labeled as anomalies.

In the field of deep learning, a common architecture for time series predictions are

RNNs (Recurrent Neural Networks), particularly LSTMs (Long Short-Term Memory)
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and GRUs (Gated Recurrent Units). These networks maintain an internal state and
at each time step, produce an output and updated state as a function of both the
prior state and current input. In the field of anomaly detection, this method has
proven effective at detecting faults in cyber-physical systems [27] as well as in satellite

systems [10], in both cases improving on industry standard techniques.

2.2.2 Compression

Compression based techniques such as principal component analysis (PCA) learn to
compress segments of the incoming time series to a lower dimensional representation
by learning common factors of variation. In PCA, this involves decomposing his-
torical data using singular value decomposition and reducing the dimension of the
dataset using the vectors associated with the k largest singular values, known as the
principal components. This technique produces a linear model that explains the max-
imum variance. Signals are then compressed and reconstructed by projection onto

the principal components, as shown in Figure 2-3.

15 ===+ Residual c H Nominal Points
~ 2D Sensor Data o 1z Anomaly
) 10 Anomaly o8 m 10 —— Threshold
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] & o 08
>
_ 00 e 06
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-15 0.0 it g N 0
2 a 0 1 2 3 2 ) 0 1 2 3
Sensor Value 1 First Principal Component
(a) Raw sensor data. (b) MSE after compression.

Figure 2-3: Anomaly detection via compression. In this example 2d sensor data is
projected onto the first PCA component, a 1d representation. The square of the dis-
tance between the original points location and the projected value after compression
is used as the anomaly score.

As with forecasting methods, anomalies can then be detected as increases in the
magnitude of the residual vector between the original incoming signal and the com-

pressed version of this signal [25], [17]. This is due to the fact anomalies will be poorly
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compressed, as a consequence of failing to follow common factors of variation found

in the nominal training data.

In the field of deep learning, unsupervised compression is often performed with
autoencoders [12], [11], [37], [26], [16], [30], [13]. These neural networks reduce the
dimension of the data to k hidden variables, known as the latent state, and are
trained to reconstruct the original inputs using SGD (Stochastic Gradient Descent) or
an equivalent optimization algorithm. With a nonlinear activation function between
layers such as RELU (Rectified Linear Units), this is directly analogous to a non-linear

form of PCA.

2.2.3 Clustering

Clustering based anomaly detection involves grouping incoming data into classes using
algorithms such as k-means or Gaussian mixture models [9] [36] [38] [39]. Anomalies
can then be detected as points which fall outside of known clusters, or as points that
fall into clusters that are known to be associated with faults. These methods tend
to perform poorly on high dimensional data sets, and thus are often combined with
methods like PCA to first project the data to a lower dimensional feature space before

clustering.

In unsupervised anomaly detection, one popular technique is OC-SVDD (One class
- Support Vector Data Description) [33]. These systems attempt to separate nom-
inal points into a single class by finding the smallest possible hyper-sphere which

encapsulates the majority of training data as shown in Figure 2-4.
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Figure 2-4: Anomaly detection by clustering. R denotes the radius to the decision
boundary and c is the cluster center.

This is accomplished by minimizing the constrained optimization problem formu-

lated in Equation 2.2:

1
min R° + o EZ &

5.t ||B(ws) — el < B2+ & (2.2)

where R is the radius of the hyper-sphere, c is the cluster center, ®; is the encoding
function, and &; is a slack variable denoting the radial distance of anomalous point
from the boundary of the hyper-sphere. In this framework, the anomaly score is cal-
culated as the radial distance of every point from the cluster center, and the threshold
is determined by the hyper-parameter 0 < v < 1 which acts as a prior on the expected

percentage of anomalies within the training data set [33].
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2.2.4 Hybrid Approaches

Several recent state of the art approaches to unsupervised anomaly detection are based
on combining and tightly integrating the three aforementioned approaches to anomaly
detection. Forecasting, clustering, and compression based anomaly detection comple-
ment each other in a variety of ways, and combinations of these approaches often
prove effective and robust. For example, as mentioned above, clustering techniques
such as k-means, GMMs, and SVDDs are often used on the compressed representa-
tion from PCA or on the latent state of a trained autoencoder, because the reduction
in input dimension can reduce training time, improve generality, and prevent over-
fitting. Making use of this synergy, Deep Autoencoding Gaussian Mixture Models
(DAGMMs), proposed by Zong et al. [40], simultaneously train an autoencoder to
compress and reconstruct the inputs, as well as an auxiliary estimation network to
predict sample class based on the autoencoders latent state and the mean squared
residual error. After empirically determining the parameters of the cluster centers,
anomalies are detected as a function of the sample data point energy, analogous to the
negative log likelihood under the GMM framework, as shown in Equation 2.3. This
method effectively combines clustering based anomaly detection with the residual

error {from reconstruction:

— log( EK: exp(=2(z — ) "S5 (2 — #kz)/Q)) (2.3)
P Varz o
where K represents the number of clusters, u; and Y define the cluster means and
variances, ¢, defines the mixture probability, and z is the latent state vector. Autoen-
coders are key to many hybrid approaches to fault detection because they can very
naturally be used to complement both forecasting and clustering methods. OC-neural
networks in particular can be thought of as a single end-to-end method of training
both the compressive, feature-crafting stage, and the clustering step. Similarly, by
shifting the target vector in time, autoencoders can be trained to both compress and
predict future values, allowing for better detection of contextual anomalies that may

be missed by compression alone [22].
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2.2.5 Variational Autoencoders

Variational inference is the practice of using optimization algorithms to efficiently
find approximations of unknown distributions, when calculating exact maximum
likelihood solutions may be intractable [2]. In the case of VAEs (Variational Au-
toencoders), we begin by assuming that our input data x is generated by a random
process as a function of an unobserved state z, where z is drawn from an unknown
distribution pg«(2) and x from pg«(z|z). A deep encoding neural network is trained
to parameterize a distribution g4(z|z) (typically Gaussian) to approximate the true
po~(z|x). The decoder network is trained to approximate py-(z|z) and reconstruct
the input from the latent state. To this end, given an input x, our encoding net-
work produces a mean and standard deviation for the distribution g4(z|x). A value
for the latent state is then sampled from this distribution, where z ~ N (u, o), and
the decoder produces an approximate value x, for the sampled value, as defined in

Equation 2.4:

L, 0, <— Enc(z)
z ~ qo(z]x) = N (s, 02) (2.4)

x, < Dec(z)
where Enc and Dec represent the encoding and decoding networks, respectively.

This method has multiple benefits when compared to deterministic autoencoders.
Because standard autoencoders place no restrictions on how the latent state is rep-
resented internally, small changes in the latent state can lead to drastic changes in
the output. By contrast, in a VAE, stochastically sampling the latent state from
a distribution forces the system to encode similar samples nearby in latent space.
This allows for more robust clustering and more interpretable results when analyzing
the effect of individual dimensions of the latent state. It also allows for the decoder
to function as a generative model by sampling from within the prior distribution of

states.
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For time series modeling this method can be further improved by using variational
methods to train recurrent RNNs, allowing for the prior distribution to be updated

sequentially, conditional on the previous state |28, 22, 16].
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Chapter 3

Methods

In this chapter, we first describe the architecture of the proposed FDS (Fault Detec-
tion System) in more depth, and the methods we used to evaluate the performance
of our system. At a high level there are four main components to the FDS tested
in this project: a normalization layer, a symmetrical encoding-decoding scheme, an

information bottleneck, and an anomaly scoring mechanism, as shown in Figure 3-1.

A

Normalization Anomaly
Encoder Decoder )
Layer T —»-| Residual Vector Scoring System

Normalization
Data

Windowed Time Series
Inputs

Figure 3-1: Fault detection system overview.

The normalization layer serves to standardize the scale and variance of each input
channel. When working with multivariate time series, values from various sensors can
span many orders of magnitude causing some signals to have an outsized effect on

the loss function.
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The encoder-decoder system represents the function learned to compress incoming
windows of data and to reconstruct said inputs from the latent state. The bottleneck
defines how information is compressed between the encoding and decoding network.
The anomaly scoring system defines the clustering, residual processing, and other
methods used to compute a final anomaly score. For binary fault detection, this
involves reducing the incoming sensor data to a single value, representing the anomaly
score, and setting a threshold on this score to detect faults. For fault classification,

this involves clustering the data into an unknown number of classes.

3.1 Neural Network Architecture

With the exception of preprocessing steps such as normalization, our system is imple-
mented as a single end-to-end differentiable deep neural network. Our neural network
architecture builds off of the DAGMM, with modifications to optimize the architec-
ture performance on time series applications. Our network architecture can be seen
in Figure 3-2, highlighting the convolutional and recurrent components and the class
estimation network.

First, a CNN (convolutional neural network) is used the encode the incoming
time series window. A GRU (gated recurrent unit) tracks these encoded windows, and
outputs a latent state vector as a low dimensional representation of the current state of
the machine. A transposed convolutional network then reconstructs an approximation
of the original input window from the latent state vector. Finally, our estimation
network assigns a class label to each window, based on the features from the residual
vector and the latent state, with the goal of finding a clustering that maximizes the
likelihood of generation by a Gaussian mixture model.

This architecture was chosen to maximize the ability of our system to generalize
across applications by combining many aspects of anomaly detection systems that
have shown success previously. To allow it to detect a wide range of anomalies, it
combines both a residual and clustering objective with optimizations specific to time

series applications. To improve robustness without tuning, it features a number of
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Figure 3-2: Schematic for the full neural network architecture. Convolutional layers
are used for compression and reconstruction. The latent state is calculated by a
recurrent unit. A probability distribution over class labels is output by the estimation
network. Not pictured above, throughout training the empirical mean and variance
of each class is tracked. The anomaly score is computed as the NLL of new data point
being generated by the GMM parameterized by the empirical distribution.

auxiliary losses to regularize the network as a whole. It was also chosen to maximize
the potential for future work in predictive maintenance and diagnostics, due to its
rich output space including the per channel residuals vector, compressed latent state,
and cluster centers. The following sections describe each sub-network in more detail.

All networks were implemented using tensorflow, keras, and alibi-detect [35].

3.1.1 Autoencoder

The core of our fault detection system is a sliding window autoencoder. To allow
for easier recognition of time-independent features, our architecture uses 1D convolu-
tional and transposed convolutional layers as the encoder and decoder, respectively,
with all convolutions taking place over the time axis. The signal is compressed lead-
ing up to the bottleneck by using a convolution stride of two, effectively halving the
window size at each encoding layer. The de-convolutional layers in the decoder then

up-sample the latent state using transposed convolutions until the output matches
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the original dimension of the input window, as shown in Figure 3-3. All of the models
tested in this work use four layers in both the encoder and decoder with a window size
of 128 and 64 kernels each of size 16. This method has the added benefit of scaling
the network size and number of parameters with the number of input channels as this

dimension is held constant through compression and reconstruction.

“ﬂl%, % rﬁ% ﬁﬁrﬁ % L —%
ﬂ@ = T ", I = T — B
- T [— T I, T J,El% —
L — . L [ —
R W B

Input Window Convolution Convolution Covar Matrix VAE Latent State Deconvolution Deconvelution Reconstructed Window

Figure 3-3: Scale diagram of the convolutional layers in the encoder and decoder
networks. Window length is shown as the width of each filter and as pictured is
halved during each encoding step. Channel count is shown is shown as the height.
Filters are stacked in z.

3.1.2 Bottleneck

The bottleneck of our neural network controls the final layer of compression and how
the latent state is represented internally. In our architecture, we use a variational
GRU. At every timestep ¢ the GRU outputs a mean i, and variance o,, parameter-
izing a posterior distribution over latent state values q(z;|x¢, 2;—1). It takes as input
the current output from the encoder x;, and the distribution over latent state values
from the previous time step p.; and o, effectively performing a Bayesian update on
the distribution over latent state values. A value for the latent state z; is then sam-
pled from the distribution ¢;(2;|x¢, z;—1). This recursive element allows our system to
track long term trends beyond the length of our input window when calculating the
current latent state. The Kullback-Leibler divergence between the distribution ¢ and
an independent normal is then added to the loss as described in Section 2.2.5. The
variational objective further improves performance by adding a form of regularization
to the size of the information bottleneck as well as improving the interpretability of

the final latent state values.
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3.1.3 Estimation Network

The estimation network assigns class labels to every input window as a function of
the latent state and the residuals vector. It takes as input the sampled value for
the latent state z;, and features from the residual vector z, such as the MSE and
cosine similarity, and returns a probability distribution over class labels. These two
features were used in line with the original DAGMM paper [40], but the method is
agnostic to the choice of residual features. These two vectors define the size of the
clustering space for the network. The size of the latent state vector and the number
of clusters are both set as hyperparameters in advance. In this work, our model
uses a latent state vector of size ten, with two cluster centers across all datasets.
We found our detection accuracies and classification accuracies to be fairly robust to
changes in these hyperparameters. Note that the class labels calculated here are not
the ones used for calculating the classification accuracy; the final labels are computed
by a separate procedure described in Section 3.2.3. The estimation network itself
is implemented as a fully connected dense network with two layers ending with a

softmax activation function.

3.1.4 Training and Loss Functions

The network is trained to minimize two loss functions. The first is the reconstruction
loss, defined as the MSE (Mean Squared Error) between the normalized input window

x; and the reconstructed input window 2 after compression, as shown in Equation 3.1:

1 N
rec:NZ“% 2| |2) (3.1)
=0

where N is the number of points in a training batch. This objective pushes the

encoder to compress the input as efficiently as possible.

The second function is the clustering loss under the GMM framework. To calculate

the clustering loss, the empirical means p; and co-variance matrices X, and mixture
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components ¢, for each class k (collectively referred to as ©.,,,) are tracked and
updated throughout training. The rate at which the parameters defining every cluster
are changed after every training batch is controlled by a hyperparameter 5 as shown
in Equation 3.2, where Z is the collection of encoded windows in a single training

batch.

ZZiEZ p(klzi)zi

Zziezpaf‘zi)

ZzieZ p(klzi) (2 — pur)?
ZZZEZ p(k|zi)

pr = B* pp + (1 = B) *
(3.2)

This update method ensures that the cluster means and variances change smoothly
between batches and makes network training more stable. The clustering loss is then
calculated as the negative likelihood of a batch of data being generated by a GMM

with the aforementioned parameters, as shown in Equation 3.3:

— exp(—.5(z — ) TS0 (2 — )
Lgmm = ~log (Z > o R ) (33)

keK z,€eZ

where k is the number of clusters.

3.1.5 Network Optimization

Several design choices are made to improve the performance and robustness of our
models. Every network makes use of 1.2 weight regularization. Optimization during
training was performed using ADAM. One of the goals of this project was to design
the system to be robust to hyperparameter tuning. All hyperparameters in our system
were initially chosen using values from similar architectures in the literature. After
finding a set of parameters that performed well on a synthetically generated dataset,
all hyperparameters were kept fixed for all further tests on all of our other datasets. It
remains an area of future work to determine how much performance can be improved
with careful tuning or how to optimize hyperparameters in an automated fashion by

incorporating some form of meta-learning.
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3.2 Anomaly Scoring System

This section details how our model is used to detect faults and to provide diagnostic
information about the type and causes of different faults. Pseudocode for generating

fault labels and class labels using a trained model is shown below in Algorithm 1.

Algorithm 1 Fault Detection & Classification

1. procedure AFD(¢cne, Pdec, Pests Oemp, T, X) > Input: Trained NN weights ¢;
GMM parameters O; threshold 7, and test dataset X

2: gls — (benc(X)

3: X' ¢ Ggec(ls)

4: Z. — X — X'

5: 7 < concatenate(Z,, zZjs)

6: T 4= ¢est(g)

7 Anomaly_Score <= NLL(Z, T|Ocpmyp)

8: Anomaly__Score < (Anomaly _Score — pias(Xa)) /oas(Xa)
9: Fault _Labels < (Anomaly Score > )

100 BICym « Inf

11: for ¢ in range(N) do

12: ©; = argmaze (p(2]0)) > Refit GMM with i clusters using EM
13: if BIC,,;, > BIC(Z,0;) then

14: O* + 6,

15: BIszn < BIO(E, @z)

16: Class_ Labels = ©*(z)

17: return Fault Labels, Class Labels, O*

3.2.1 Anomaly Score

The anomaly score for every window of sensor data is equivalent to the clustering
loss Lgm, calculated as the negative log likelihood with reference to the empirical
GMM as shown in Equation 3.3. As values of the probability density function defined
by the GMM, the ratio of two anomaly scores can be used to calculate the relative
likelihood of seeing two given windows of sensor data. For datasets that are further
discretized into runs, such as a single wafer etch in the plasma etcher database, the
mean anomaly score of all windows contained in its duration is used to represent the
entire run. More generally, for continuous data without clear boundaries between

runs, anomalies can be found on different time scales by taking the moving average
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of the anomaly score over the given duration.

3.2.2 Fault Labels and Thresholding

This section describes how thresholds are set and runs are assigned a final label
of faulty or anomalous using a validation dataset X,. First, anomaly scores are
computed for every run in the validations dataset AS. For datasets containing discrete
variables X, defining separate run types, such as the etch recipe being performed,
we further compute the mean pa5(Xy) and standard deviation o45(Xy) for runs of
each type independently. We use these statistics to normalize the anomaly scores for
each run type. The threshold to detect faults is then set by default at two standard

deviations above the mean.

3.2.3 Fault Classification

For data sets with multiple types of faults, we also test the ability of our model to
classify each type of fault. To use our model as an unsupervised classifier, the test data
is passed through our trained model to compute the mean residual vector and latent
state representation for each run. An unsupervised Gaussian mixture model is then fit
to cluster the concatenated residuals and latent state. The number of clusters in the
Gaussian mixture model is chosen automatically by iterating over a range of values
and choosing the model with lowest BIC (Bayesian Information Criterion) score [5].
The BIC is a measure of how well a model fits a given dataset with an added penalty

term for the number of parameters in the model, as shown in Equation 3.4:

BIC = klnn —2In L (3.4)

where k is the number of fitted parameters in the model, L is the loss of the fitted
model, and n is the number of data points in the training set. Assuming the test data
contains both faulty and normal data, not all clusters will be associated with faults.
Separating true fault clusters can be accomplished by one of three methods. Firstly,

clusters associated with faults are likely to have a significantly higher anomaly score
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than usual. Secondly, if any known faults exist in the test data these few labels can
be used to determine the meaning of different clusters. Finally clusters representing
a healthy machine state will fall close to the empirical cluster centers found during

the training.

3.3 Preprocessing Steps

Before passing the raw data to our neural network model we perform two prepro-
cessing steps. The first is shifting the raw sensor data to the frequency domain and
the second is normalization. For the first step, every channel is broken into 10 fre-
quencies using the absolute value of the short term Fourier transform, equivalent to
the square root of the PSD (Power Spectral Density). The PSD was then centered
and scaled to zero mean and unit variance. The test and validation datasets were
similarly transformed and normalized using the mean and standard deviation from
the training dataset. The normalized PSD was then used as the input to our neural

network.

3.4 Model Evaluation

To evaluate the performance of our model, we test its ability to detect faults across all
of our datasets. For datasets with multiple types of faults, we tested the ability of the
model to accurately classify different fault modes. The following sections outline how

our models are tested and the evaluation metrics used to judge model performance.

3.4.1 Fault Detection

The primary metric we use to judge our model is the overall detection accuracy.
For this purpose, on all datasets, the model is trained on approximately 70% of
the available known good data. A further 10% of the known good data is used for
threshold setting, and the remaining data including all instances of faults are used

as our test data. The trained model is then used to calculate anomaly scores for all
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runs in the test dataset. All runs in the test dataset with an anomaly score higher
than the threshold are classified as faults, and the remaining runs are classified as
nominal. We evaluate our model by calculating the true positive rate, true negative
rate, and overall accuracy. The theoretical effectiveness of our model to detect faults
independent of the threshold setting method is measured using the area under the

ROC (Receiver Operating Characteristic) curve, or AUC.

3.4.2 Baselines

To test how significantly the performance of our system is affected by the addition
of the estimation network and the recurrent unit, we test our method against two
baseline models with these pieces disabled. To isolate the effect of these pieces,
besides the changes explicitly listed in this section, all hyperparameters concerning
the network size, training time, and input pipeline are kept the same as our final
model. The first baseline method is a DAGMM without a recurrent unit following the
final encoding layer. Instead, the final layer of the encoder is used as the bottleneck.
To this end, the final layer of the encoder was used to parameterize the normal
distribution from which the latent state was sampled directly. This change makes
the DAGMM stateless, such that the anomaly score assigned at any given moment
in time is independent of all sensor data outside of the current input window. The
second baseline model is a variational autoencoder without an estimation network.
Instead of using the GMM clustering objective to calculate the anomaly score, this
model uses the MSE loss from compression and reconstruction. Together these two
baselines are used to establish how important the clustering and forecasting elements

are to successful fault detection on each dataset.

3.4.3 Classification Accuracy

To evaluate the performance of the clustering method, we compare the ground truth
labels to the predicted labels and use the NMI (Normalized Mutual Information)

between the two sets of labels as our metric. The NMI is a measure of the agreement
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between two sets of labels that is invariant to permutations and falls within the range
[0, 1], with one corresponding to identical labels and zero indicating that there is no
correlation between the two sets of labels [24]. The definition of the NMI is shown
below in Equation 3.5, where Y is the vector of true class labels, C is the vector of

predicted cluster labels, I is the mutual information, and H is the entropy.

H(X) = = 3 xp(X = 2)log(p(z = X))

[(Y;C)=H(Y)— H(Y|C) (3.5)
2x I(Y;C)
NMIY.C) = gm0

3.4.4 Fault Detection With Hidden Information

During operation, some details of how a machine is being used may not be recorded
electronically. For example, the material being cut by a milling machine is rarely
tracked. In the event our model does not have access to this information, it will need
to be inferred to accurately gauge how anomalous a given window of sensor data is.
To evaluate the robustness of our model when missing information, on datasets with
multiple run types, we also measure the detection accuracy without normalizing the
anomaly scores by run type. We also test the ability of our model to classify runs

with different system settings, using the same process as described in Section 3.4.3.

3.4.5 Diagnostics and Predictive Maintenance

In this section, we describe the methods we explore to extract diagnostic information
from our model and a method we propose to predict faults in advance. The two
goals of this method are to narrow down the moments in time and the channels
most relevant to detecting a particular fault. This level of interpretability can help
engineers determine the true cause of different faults and speed up repair efforts. To
do so, we isolate channels and windows with the highest anomaly scores above the
empirical average on runs that were labeled as faults. We then overlay the known

good and faulty runs in the test dataset to see if clear differences in the signals
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could be seen. Our second goal is to search for evidence of system drift before a
fault occurred that could potentially be used to improve detection rates should the
same fault occur again, or to predict the remaining useful life such that predictive
maintenance can be scheduled in advance. To accomplish this, we use the cluster
centers computed as described in Section 3.2.3 representing the average latent state
value and residual error on each channel for a given run type. The difference between
a cluster center of known good runs and of known faults represents the direction of
travel in latent space associated with a specific failure mode. We look to see if the
probability of faults occurring increases consistently along this dimension and if drift

in that direction can be detected prior to a fault occurring.
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Chapter 4

Experiment Design and Data Sets

In this chapter, we outline our data collection methods and describe the various fault
detection tasks our system is tested against in more detail. To test our system’s ability
to generalize, we collect a range of datasets from different types of manufacturing
equipment. Across all datasets, features such as the sampling rate, number of sensor
channels, and amount of training data vary greatly, as do the types of sensors in each
experiment. For every dataset, we test the accuracy with which the fault system
can separate nominal points from faults. For datasets with multiple fault types, we
also test the classification accuracy of the system. For reference, a summary of the

characteristics of each dataset is shown in Table 4.1.

Table 4.1: Fault Detection Datasets

Dataset Sampling Freq. (Hz) No. of Channels Input Signals

Synthetic Arbitrary - -

Bearing 1200 2 Vibration

Mill (Chiron) 1000 3 Vibration
Current

Mill (NASA) 250 6 Acoustic
Vibration

Mill (Nazha) 200 3 Vibration

Etcher (ADI) 2 30 Mixed
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4.1 Synthetic Generator

To guide the early development of our model architecture we developed a synthetic
data generator. Our generator models a target system as a Markov chain, where
each node represents a discrete state for the machine. Systems can be initialized with
an arbitrary number of sensor channels, machine states, and transition probabilities
between states. At each time step, the current state determines the signal produced
on every sensor channel. Signals are produced as linear combinations of sine waves
with amplitudes and phases determined by the state, with additive Gaussian noise.
Our early architectures are tested on their ability to detect faults represented as states
which are not present in the training data. The interpretability of the models was also
tested by measuring our ability to classify the machine state using the compressed
representation in the latent state and the ability of the system to classify the channels

associated with each fault.

4.2 Bearing

In this dataset collected by Case Western Reserve University [21], a fan supported
by circular ball bearings was spun at various speeds using a twohorse power motor,
as shown in Figure 4-1. Small defects were introduced to the inner raceway, outer
raceway, or balls in the bearing using electro-discharge machining. Vibration data
was collected at 12,000 Hz from accelerometers at both the drive end and fan end
of the motor housing. The data is divided into runs approximately 120,000 samples
long. There are four runs with an undamaged bearing and four runs with each of
the three fault types. The goal of our task is to successfully detect which run used a

damaged bearing and classify where in the ball bearing the fault is located.

¢
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Figure 4-1: Case Western bearing experimental setup [21].

4.3 Mill

We consider data from three different milling machines, including two collecting in
collaboration with HARTING, and one from a public repository by NASA. In two
cases the fault being detected is damage to the cutting tool as shown in Figure 4-2.
Over time chips form in the cutting edge, and if left unchecked, these can eventually
lead to the tool snapping. In the final case, the cooling system was switched off for

the final few cutting runs. The details of each dataset are discussed further below.

(a) Healthy Cutting Tool (b) Damaged Tool

Figure 4-2: New vs. worn cutting tool. Chips can be seen in the tip of the blade.
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4.3.1 Chiron Mill

In this fault detection dataset, a Chiron milling machine was used to drill through
steel plates at various speeds with either a new or worn tool. Three different cutting
speeds were tested with each trial being run twice for a total of 12 runs, as shown
in Table 4.2. Three axis accelerometer data was recorded at 1000 Hz from a sensor

placed above the cutting tool.

Table 4.2: Mill Chiron Experiments

Cutting Speed

700 mm,/min 950 mm,/min 1200 mm /min
Tool New | Exp 1.1 | Exp 1.2 | Exp 2.1 | Exp 2.2 | Exp 3.1 | Exp 3.2
Condition | Used | Exp 4.1 | Exp 4.2 | Exp 5.1 | Exp. 5.2 | Exp 6.1 | Exp. 6.2

The goal of this fault detection task is to see if the model can separate out the
drilling runs with a worn tool, after training on cutting runs with the new tool.
Given the small number of runs available to us, we run a k-fold evaluation, training
the model on every possible combination of four new tool runs and testing on the
remaining eight runs. To compare anomaly scores across trials, the anomaly scores
are scaled to have a standard deviation of one and shifted such that zero represented

the highest anomaly score given to a run with a new tool.

4.3.2 Nazha Mill

In these experiments, a fault was induced in a milling machine by switching off the
cooling system. Our model is trained using three axis vibration data from 50 cutting
runs and tested on another 50 runs including 10 faults. Data was sampled at 2000

Hz.
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Table 4.3: NASA Mill Experiments

Case Depth of Cut (mm) Feed Rate (mm/m) Material

1 1.5 0.5 Cast Iron
2 0.75 0.5 Cast Iron
3 0.75 0.25 Cast Iron
4 1.5 0.25 Cast Iron
5 1.5 0.5 Steel
6 0.75 0.5 Steel
7 0.75 0.25 Steel
8 1.5 0.25 Steel

4.3.3 NASA Mill

In this publicly available data set provided by the NASA Ames Prognostics Data
Repository [1], a milling machine was repeatedly used to drill through metal plates
under varying conditions, as shown in Table 4.3.

Measurements of tool wear (V B) were taken between runs by using a microscope
to measure the distance in millimeters between the cutting edge and the end of the
abrasive wear on the tool, as shown in Figure 4-3. These readings provide our first
continuous measure of degradation to the health of the monitored equipment, in
contrast to the binary fault labels in the other data sets. Our fault detection system
is trained on 70% of the available runs with a V' B below .3mm and tested on the
remaining runs. To judge performance as well as measuring the accuracy of the
binary prediction, we also explore the regression loss, using the system to predict
tool wear from both the latent state and the anomaly score as a supervised modeling
problem. In real world applications, slow degradation in performance is far more
common than sudden failures. In these tests, we explore adapting our model for this

purpose and how it may be used to predict upcoming faults.

abrasive wear

VB

flank face of insert

Figure 4-3: Measure of tool wear on the cutting edge of the mill insert [1].
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4.4 ADI Etcher

This dataset contains internal sensor readings from a Lam plasma etcher that was
used in a production line by ADI. This fault detection dataset was originally gathered
and analyzed in the masters thesis of three previous authors, O. Mahklouk [23], H.
He [15], and T. Chen [7|. The dataset contains 4000 total wafer etches split between
two different wafer recipes, labeled recipe 920 and recipe 945. During production,
a fault occurred which caused approximately 700 of the etched wafers to fail an
electronic test performed afterward. Each run contains readings from 30 separate
channels, including sensors recording voltages, pressures, temperatures, and more
from throughout the machine, a sample of which are shown in Figure 4-4. Each
sensor channel was sampled at 2Hz, and runs typically contain either 300 or 600

samples each, depending on the recipe.
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Figure 4-4: Sample of channels from the ADI etcher dataset.

On this data set, we test the ability of our system to detect which wafers would
fail the e-test based on the sensor readings. During both training and testing, our

system is not given access to the recipe being run, and we use this to further test the
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ability of our system to classify different run types. Our system is trained on 2400
nominal runs, using a further hundred runs for threshold setting, and tested on the
remaining 1500 runs which contain an almost even split between faulty and nominal.

As the largest dataset available to us and the only one containing an organically
occurring fault while the machine was actively being used for production in industry,
this is also the dataset on which we seek to detect evidence of system drift prior to a

fault.
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Chapter 5

Experimental Results

In this chapter, we outline our system tests and experimental results. Results are
organized by the type of machine being monitored. For every dataset, we test the
overall detection accuracy for our model and our two baselines. For datasets with
multiple fault types, we further measure the unsupervised classification accuracy.
Finally, for datasets with multiple types of runs, such as varying etch recipes or milling
speeds, we further break down our results by run type. The final fault detection

accuracy of our system across all datasets is shown in Table 5.1.

Table 5.1: Accuracy Scores Across All Datasets

Dataset VAE DAGMM RDAGMM
Bearing 1.00  1.00 1.00
Mill (Chiron) 0.93 0.99 0.99
Mill (NASA) 0.73  0.77 0.82
Mill (Nazha) 0.95 0.95 0.90
Etcher (ADI) 0.77 0.80 0.81

5.1 Bearing

The first set of results are based on the dataset collected by Case Western Reserve

University [21]|, as summarized in Section 4.2. In this dataset, a fan supported by
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circular ball bearings was spun at various speeds using a two horsepower motor.
Small faults were introduced to either the inner raceway, outer raceway, or balls in
the bearing using electro-discharge machining. The goals of our system in this task
is to successfully detect when the bearing has been damaged, and to segment runs

with faults in different locations to separate fault classes.

5.1.1 Detection Accuracy

In the fault detection test, our model and our two baselines are able to perfectly
classify all runs with a damaged bearing. As shown in Figure 5-1, even when runs
are broken down in smaller fragments of only 0.1s, two orders of magnitude (noting
the log scale on this figure) separate the anomaly scores for windows having a healthy

versus a damaged bearing.

Table 5.2: Bearing Fault Detection Accuracy

VAE DAGMM RDAGMM

Accuracy 1.00 1.00 1.00
False Positive Rate 0.00 0.00 0.00
True Positive Rate 1.00  1.00 1.00
ROC Area Under Curve 1.00 1.00 1.00

5.1.2 Fault Classification

Our unsupervised classification algorithm is similarly able to perfectly classify the
runs by the type of fault. The refitted GMM finds the correct number of clusters
in the test set and provides an equivalent labeling with an NMI of 1, as shown in
Figure 5-3. Figure 5-2 shows the anomaly scores for each moment in time, with color
denoting the type of fault. Visually there is a notable difference between runs with a

healthy bearing, damage to the raceway, or damage to the balls.
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Figure 5-1: Histogram of log anomaly scores for each 0.1s window of sensor data,
as calculated by the RDAGMM. Blue and orange indicate that the sensor data was
recorded with a healthy or damaged bearing, respectively.
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Figure 5-2: Anomaly score calculated for every window of time in our test dataset by
the RDAGMM. Color indicates the true labels for the type of fault induced on the
bearing. Green indicates the runs with an undamaged bearing.
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Unsupervised Clustering of Bearing Test Runs
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Figure 5-3: Unsupervised class labels assigned to each run in the test dataset after
refitting a GMM with unknown number of classes. Runs are perfectly separated by
fault type.

5.2 Mill Chiron

In this task, we test the ability of our system to separate milling runs with either a
new or damaged tool, based on the Chiron mill data summarized in Section 4.3.1.
Due to the small number of runs available, a k-fold evaluation is run to test the
performance of our system. In each iteration, the model is trained on six cutting runs
with a new tool, and tested on the remaining ten runs, two with a new tool and eight
with a damaged tool. This evaluation loop is run for all 15 possible train/test split

combinations.

5.2.1 Detection Accuracy

For all models, the majority of worn tool cutting runs are separable from those with
the new tool, using the anomaly score. As shown in Table 5.3, the DAGMM and
RDAGMM both outperform the vanilla autoencoder, with only a single false negative

and no false positives.

o4



Table 5.3: Mill Chiron Experiments

VAE DAGMM RDAGMM

Accuracy 0.93 0.99 0.99
False Positive Rate 0.00  0.00 0.00
True Positive Rate 0.82 0.99 0.99

The distribution of anomaly scores for our model and both baselines is shown
in Figure 5-4. For the latter two models, the only misclassification occurs when the
model is trained exclusively on the lower speed runs. With no high speed runs present
in the training set, these runs are assigned a significantly higher anomaly score during

test evaluation.
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Figure 5-4: Histograms of k-fold cross validation results on the Chiron Mill dataset
with three model architectures in order of increasing complexity. Plotted on the X
axis is normalized log anomaly score, and the Y axis represents the total number of
trials which fall in this range. Runs with a new tool are shown in blue and runs with
a damaged tool are shown in orange.
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5.3 Mill Nazha

In these experiments using the Nazha mill dataset as summarized in Section 4.3.2; a
fault was induced in the milling machine by switching off the cooling system. Similar
to the previous task, our model is trained using three-axis vibration data from fifty
cutting runs with the milling machine operating normally. It is then tested on forty

additional runs, including ten faults where the cooling system was switched off.

5.3.1 Detection Accuracy

At the two-sigma threshold, our model and the two baselines successfully detect every
fault in the evaluation dataset, with all models scoring above 90% as summarized
in Table 5.4. Our model has the highest false positive rate, with three additional

misclassified runs, leading to the lowest overall accuracy overall.

Table 5.4: Mill Nazha Fault Detection Accuracy

VAE DAGMM RDAGMM

Accuracy 0.95 0.95 0.90
False Positive Rate 0.07 0.07 0.13
True Positive Rate 1.00  1.00 1.00
ROC Area Under Curve 0.99 0.99 0.99

Independent of thresholding, all three models perform equivalently as classifiers,
as shown by the ROC curves in Figure 5-5, with an area under each curve of 0.99.
The full distributions of anomaly scores for our model and both baselines are shown

in Figure 5-6.
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Mill Harting Fault Detection ROC
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Figure 5-5: Mill Nazha ROC curves. Curves for all three models overlap perfectly.
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Figure 5-6: Comparison of anomaly scores generated by all three models for test runs
in the Nazha Mill dataset. Faulty runs with the cooling system shut off are shown in
orange. Nominal runs are shown in blue.
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5.4 Mill NASA

In this task, we train our system on milling runs from the NASA mill dataset sum-
marized in Section 4.3.3. The model is trained on 80% of runs with measured tool
wear below 0.3mm. The remaining runs are used as the test dataset and we evaluate
the ability of the model to distinguish runs with a more damaged tool. The system
is provided acoustic, vibration, and motor current readings. The material being cut,
motor speed, and depth of cut were all changed between runs. With these three
variables taking two values each, there are a total of eight run types. Anomaly scores
were normalized independently for each run type. We further test the fault detection
accuracy if the material and machine settings are not known and the ability of our

model to classify these different run types.

5.4.1 Detection Accuracy

This section details the ability of our model to detect faults if the depth of cut,
material, and feed rate are all known at the time of evaluation. Table 5.5 shows
the fault detection rates for our model and benchmarks when setting thresholds for
each run type independently. Our model outperforms both benchmarks with a final
accuracy of 82%. Our model also outperformed both baselines independent of the

threshold, as shown by the ROC curves in Figure 5-7.

Table 5.5: NASA Mill Detection Accuracy - Normalized Run Type

VAE DAGMM RDAGMM

Accuracy 0.73 0.77 0.82
False Positive Rate 0.10 0.00 0.00
True Positive Rate 0.73 0.77 0.85
ROC Area Under Curve 0.88 0.92 0.95
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NASA Mill Fault Detection ROC
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Figure 5-7: NASA Mill ROC - Normalized by run type.

5.4.2 Detection Accuracy With Hidden Information

Without normalizing anomaly scores by run type, our model and both baselines
perform substantially worse. Our model still outperforms the two benchmarks as
shown in Table 5.6, with a final detection accuracy of 0.67%, a 14% decline from the
previous results. Independent of thresholding, our model also outperforms the two
benchmarks as shown by the ROC curves in Figure 5-8, but the AUC is similarly

reduced across all three models.

Table 5.6: NASA Mill Detection Accuracy - Hidden Variables

VAE DAGMM RDAGMM

Accuracy 0.59 0.62 0.67
False Positive Rate 0.19 0.19 0.19
True Positive Rate 0.59 0.62 0.65
ROC Area Under Curve 0.78 0.77 0.80
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NASA Mill Fault Detection ROC
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Figure 5-8: NASA Mill ROC curves with hidden variables.

This decline in performance is due to the fact, as shown by the unnormalized
anomaly scores in Figure 5-9, that while a roughly linear relationship can be seen
between the tool wear and the log anomaly score for runs of the same type, the range
of anomaly scores assigned to runs of each type varies dramatically. For example,
focusing on the top two plots of Figure 5-9, on runs where iron is being cut to a
depth of 1.5mm with a feed rate of 0.5, the optimal threshold to maximize detection
accuracy is around an NLL of 3.25. By contrast, when the depth of cut is reduced
to 0.75mm, this threshold is higher than the vast majority of faults. Setting a single

threshold for all run types becomes impossible.
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Figure 5-9: NASA Mill Anomaly Scores. Each plot represents runs with a unique
combination of machine settings and material being cut. The log anomaly scores are
plotted against the measured tool wear for each run.

5.4.3 Clustering

The reduction in accuracy seen above is mirrored by the results of our unsupervised
clustering algorithm. In this instance, our system failed to meaningfully label different
run types. As shown in Figure 5-10, our system groups runs into 5 clusters with an

NMI to the true labels of 0.35.
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Unsupervised Clustering NASA Mill
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Figure 5-10: NASA Mill unsupervised clustering results. Color denotes the true labels
for each run, and the x axis shows the predicted cluster label.

5.5 FEtcher ADI

In the data-set provided by ADI as summarized in Section 4.4, our model has access
to all internal sensors and monitors within a plasma etcher during operation; a total
of 30 channels including temperatures, pressures, voltages, and gas concentrations.
The etcher was being used to execute two different wafer recipes titled “recipe 920”
and “recipe 945”. After approximately 200 runs, a fault occurred which resulted in a
long sequence of failed etches before the machine was repaired and normal operation
resumed. In this trial, we train our models on 1000 successful etching runs and then
evaluated the ability of our model and the baseline approaches to classify the failed

etches by anomaly score.

5.5.1 Detection Accuracy

The results of our model detection accuracy compared to our two baselines are summa-
rized in Table 5.7. As shown, our model slightly outperforms the VAE and DAGMM,
with a two-sigma threshold scoring the highest accuracy and TPR as well as the

lowest FPR.
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Table 5.7: Etcher MIT Results

VAE DAGMM RDAGMM

Accuracy 0.77 0.80 0.81
False Positive Rate 0.18 0.12 0.12
True Positive Rate 0.72 0.72 0.74
ROC Area Under Curve 0.90 0.88 0.90

Figure 5-11 shows the comparative efficacy of our model as a fault classifier at all
thresholds compared to our two baseline models. Our model outperforms the VAE

at low false positive rates and underperforms at false positive rates above 40%.

Etcher Fault Detection ROC
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—— ROC curve AE: (AUC score = 0.9)
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Figure 5-11: ADI etcher ROC curves.

As shown in Figure 5-12, approximately 65% of the failed runs can be immediately
separated from the successful runs, with anomaly scores that are orders of magnitude
larger than the average, noting the log score in the plot. The remaining failed runs

are mixed in with successful etches.
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Figure 5-12: Histogram of log anomaly scores for each run in the ADI etch test
dataset. Successful etches are shown in blue and failed runs are shown in orange.

Notably, the vast majority of detection errors made by our system are on the runs
following the 920 recipe. Figure 5-13 shows the log anomaly scores for every run
separated by recipe, and it can be seen that the responses are very different. For
the 920 recipe, our model performs substantially better, with a detection accuracy of
92% and 83% of runs being cleanly separable, with an order of magnitude jump in
the anomaly score. By contrast, on runs following recipe 945 our model could only
separate out 50% of the failed runs in the same way, with the decision boundaries as
shown. The remaining runs with a log anomaly score of less than 3.5 roughly follow a
sum of two Gaussian distributions; the first, centered around a log anomaly score of
2.3, generating only successful runs, and the second, centered around 2.9, generating
an even mix of failed and successful runs. This pattern is reflected in the results of

our classification algorithm as discussed next in Section 5.5.2.
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Figure 5-13: Histogram of anomaly scores assigned by our model to runs of each
recipe.

5.5.2 Clustering

This section shows the results of our unsupervised classification algorithm. It is
unknown whether this etch dataset contains multiple fault types that led to the failed
etches. Our classification algorithm groups the runs in our test dataset into five
clusters; Figure 5-14 shows the composition of the five clusters found by our system

using the dataset provided true labels.
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Figure 5-14: Unsupervised clustering of the ADI etcher runs. Color denotes the true
labels, and the x axis shows the label assigned by our system.
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As pictured in Figure 5-14, the first four classes almost perfectly segment the runs
by both recipe and fault label, with only a single false positive in class 3 and 53
false negatives in class 2, out of a total of 1150 runs in these classes. The final class
contains a 50/50 split of successful and failed runs, all from the 945 recipe. The NMI

score for this labeling is 0.75.

5.5.3 Drift Detection and Fault Diagnosis

In this section, we explore how our model could potentially be used to build diagnostic
tools and predict faults in advance of failures. The ADI etcher dataset is used for
this purpose, as the only dataset recorded from a machine actively being used in
industry that encountered a fault organically. The first goal of these tests is to use
our model to pinpoint or connect meaningful differences between failed and successful
etches to specific sensor channels and moments in time. The second goal is to find
temporal trends prior to a fault that could be used to predict the remaining useful
life and preemptively schedule maintenance. Figure 5-15 shows visually how runs are
encoded by the RDAGMM in latent space. For both run types, a clear increase in
fault density can be seen as the run encodings transition from the bottom left to the

bottom right.
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Figure 5-15: Visualization of RDAGMM latent space values for each ADI etching run
using first two principal components.
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The distribution of run types and assigned class labels are shown chronologically in
Figure 5-16. Notably, there are no misclassifications after the machine was repaired
around run number 1000. All false positives occur prior to the first failed etch.
Additionally, the recipe 945 runs before the fault began are all given a fifth class label
containing a number of faults as well. This class corresponds to class label 4 shown
previously in Figure 5-14. Asymmetry in classification rates and labelings before and
after the fault is consistent with the hypothesis that there was detectable degradation

in the machine’s health proceeding wafers failing to pass a downstream e-test.
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Figure 5-16: True labels for etcher runs and predicted GMM class labels shown
chronologically.

5.6 Run Time

In this section, we comment on the computational resources needed for training and
inference. All training was performed using a single Nvidia 2070 GPU. Inference was
performed using an Intel i7 CPU. Training on our largest dataset, the ADI etcher
readings, requires approximately 4 hours. The inference steps require 0.24s per run.
In all cases, both training and inference ran substantially faster than the duration
of the time series being analyzed, opening the possibility for real time training and

inference.
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Chapter 6
Ongoing Projects

In this chapter, we describe preliminary explorations of improvements to the RDAGMM
architecture, and present results using the recording platform we developed to acquire

fault detection datasets for further development of the system.

6.1 MIT Etcher Dataset

Key limitations of the datasets used in this work are the artificial nature of the faults,
the lack of repeat faults, and the lack of data leading up to the failure. Ideally, to
test the viability of our system in a real world setting, particularly the diagnostic
and predictive maintenance aspects, would require long term readings from manufac-
turing equipment in active use. To this end, in partnership with MIT.nano and the
Microsystems Technology Laboratories, we have developed and installed a recording
platform in the Integrated Circuits Laboratory monitoring a Lam 590 plasma etcher,
shown in Figure 6-1b. The plasma etcher is frequently used by a variety of researchers,
private groups, and for teaching purposes.

Our recording platform connects between the etcher and the wall power supply
and collects three phase current and voltage going into the machine. As shown in
Figure 6-1a, the recording platform consists of two boxes, the first containing a twelve
volt power supply and a Raspberry Pi 4. The second contains the current and volt-

age sensors as well as two high speed analog-to-digital converters. The sensors are
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(a) Sensor Boxes (b) Lam 590 Plasma Etcher

Figure 6-1: Etcher power measurement experimental setup.

capable of sampling at 12,000 Hz to capture high frequency transients. The sensors
run continuously, and are monitored by a software trigger that automatically begins
recording when it detects that the machine is in active use. When the system detects
the etcher is not in use, files are uploaded to a network drive for long term storage.
While machine use dropped considerably due to the pandemic, in the six months since
we began recording, we have accumulated approximately 150 etching runs, a sample
of which is shown in Figure 6-2.
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Figure 6-2: Three phase current signal - single etch.

During this time the etcher has suffered from one fault. An electrode gap error
on August 24, 2020, caused the machine to jam and triggered routine maintenance,

during which it was discovered that there was a vacuum leak in the etch chamber. It
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Etcher MIT Anomaly Scores
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Figure 6-3: Anomaly scores assigned to runs during the month of August. A sharp
spike in the residual score can be seen on August 12th after which the machine went
unused for 10 days. On August 24th the anomaly score begins spiking again leading
to a machine jam as shown in red. Following the repairs, the anomaly score drops
again as shown in green.

is unknown when the leak began. Figure 6-3 shows the anomaly scores assigned to
the runs around that period of time. Immediately prior to the fault occurring we see
the anomaly score spike, and then fall significantly following repairs. Similar spikes
can be seen earlier in the month as well, with no fault being reported. To generate
these results our system is trained on 50 etching runs from the month prior to the

fault.

For all of these runs, the etch recipe and other machine settings are unknown.
Tests are ongoing to determine if spikes in the anomaly score are correlated with
faults, or possibly are being caused by novel run settings and other factors. Given
the difficulty of this problem, we expect significantly more data will be required to
properly train the system. We are, however, cautiously optimistic that ultimately
faults will be detectable solely through supply power measurements. Figure 6-4a

and Figure 6-4b show a sample of etching runs from before and after maintenance
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was performed due to the jam. Visually the current draw appears far more stable
following the repairs, indicating that changes in the machine health cause detectable

changes in the power signals.
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(b) Post repairs.

Figure 6-4: Sample of runs from before and after maintenance was performed on the
etcher. Following repairs, current draw appears more stable during the etching phase.

72



The current recording platform uses a commercial voltage sensor connected di-
rectly to the three phase power lines. To further test the efficacy of fault detection
systems using noninvasive sensors, a second sensor box shown in Figure 6-5 was built
using a prototype of a contactless combined current and voltage sensor developed
by A. Casallas [4]. Exploration of power monitoring of industrial equipment using
these and other prototypes, in conjunction with our deep learning architecture, is a

promising avenue for future work.

(a) Sensor box for use in clean room. (b) Sensor prototype.

Figure 6-5: Contactless sensor prototype. The sensor clips onto the outside of power-
lines and combines multiple measurements of the surrounding electric and magnetic
fields provide accurate current and voltage readings robust against external sources
of noise.

6.2 Continuous Learning

This section details our proposed solution to the problem of system drift. Over long
periods of time, the behavior of a target piece of equipment will naturally change.
This can lead to a steady decrease in the performance of a fault detection system. To
combat this, we propose a continuous version of our algorithm, the weights of which
are constantly updated by training on new batches of data as they are recorded. This

allows our model to drift along with the system. At each time step t the network
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weights are updated by training for one epoch, and the model weights at each time
step ¢, are stored. Evaluation on a new batch of data at timestep j can then be
performed with model weights from any previous time step ¢. These weights are
used to compute the residual vector Res; ), latent state representation LS, j), and
Gaussian mixture model parameters ©; ;) for each batch as shown in Algorithm 2,
where 7 represents the last batch the network weights were trained on and j represents
the batch being evaluated. Comparison of the model predictions using weights from
different time steps can be used as a proxy for how much the system has drifted in

that time.

Algorithm 2 Continuous FDS Training and Prediction

1: procedure CAFD(Sys) > Input: A continuous source of sensor data from a
monitored system
FDSy < Init_ Network Weights()
t=0
while True do
t=t+1
X, < Sys.pull_batch _data()
FDS; < FDS, 1.fit(Xy)
if t > warm__start then
RGS(t,Lt), LS(tfl,t)a G(tfl,t) < FDSt_l.pTGdiCt(Xt)
Resq_24), LS(t72,t), @(t,Q’t) < FDS,_s.predict(X;)

[y
<

We hypothesize that these time lagged predictions can be used to estimate the
rate of system drift as the difference in the model accuracies over time. Second order
effects, such as the rate of system drift, could then potentially be used to improve fault
detection accuracy and possible estimate the remaining time to failure. As a proof
of concept, we run a version of this algorithm on the ADI etcher database detailed
in Section 4.4. Our model is trained and evaluated chronologically on batches of 100
runs. Figure 6-6 shows an overlay of the temperature readings from one sensor for

100 etching runs. Temperatures are noticeably higher during failed etches.
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Figure 6-6: Overlay of temperature reading over the course of 100 etching runs. Failed
etches are shown in red and successful etches are shown in blue

Figure 6-7 shows the magnitude of the residual vector, or compression loss, on
the same 100 runs using model weights from three different points in time. The first
training batch at time ¢t — 1 contains no failed etches, batch ¢ contains a mix of faulty
and successful runs, and batch t+1 contains only failed etches. Comparing the results
from these three sets of model weights, we can see that as more faults are introduced

into the training data, the predicted temperature rises.
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Figure 6-7: Residual error for the 100 runs in Figure 6-6 containing a mix of faulty
and successful etches. A heat map is used to indicate the magnitude of the residual
vector. Blue indicates low compression loss and red indicates a high compression loss.
At timestep ¢ = t—1 no faults are present in the training data. As the system is trained
on batches containing faults at timesteps ¢ and ¢ + 1, the predicted temperatures rise
steadily.
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6.3 Conditional Decoding

This section details our proposed solution to the problem of discrete run types. In our
test on the ADI etcher database, we see vastly different anomaly detection accuracies
on recipe 920 (90%) compared to recipe 945 (60%). This was true even after nor-
malizing the anomaly scores for each run type independently. To better incorporate
discrete variables Y, defining independent run types, we propose using a conditional
decoder to reconstruct the input window as a function of both the latent state and

the discrete variables, as shown in Figure 6-8.
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Figure 6-8: Network diagram for conditional variational autoencoder. Discrete vari-
able are appended onto the latent state vector before decoding and used to normalize
residuals before computing a final anomaly score

To this end, as well as being used to normalize inputs and residuals by run type,
the discrete variables would be appended to the latent state vector before being used
as the input to both the estimation network and the decoder. We hypothesis that this
should allow the model to better separate variance due to faults, and variance due
to machine settings and usage. Conditional variational autoencoders have already
been used to great effect in anomaly detection tasks [29] and fault detection tasks
[32]. In preliminary testing, we find using a conditional VAE improves the detection
accuracy of the VAE by approximately 5% on the ADI etcher dataset. We expect the

RDAGMM to see a similar increase in performance from this addition as well.
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6.4 Change Point Detection

In the datasets used in this thesis, our raw sensor data is grouped into runs, such
as a single etch, and the mean anomaly score for the duration of the run is used
to represent the whole. In practice, the labels for the start and the end of different
phases of operation may not be available, and in some cases may not exist. To
address this, we explored integrating a change point detection algorithm into our
model to automatically segment time series data into phases. We implemented and
tested a version of the time series segmentation algorithm proposed by Lee et al. [19].
In this method, the raw time series input X is compressed using a sliding window
autoencoder onto a reduced feature space 2. The rate of change of the latent state
at each time point Az[t] is then computed, given by AZ[t] = 2[t — 1] — 2[t]. Change
points are then predicted as local maxima in the AZ[t] vector using a peak finding
algorithm. Figure 6-9 shows the results of our preliminary tests of this method against
a stochastically generated synthetic data set. To generate the dataset, as described in
Section 4.1, at each moment in time a true system state is determined by iteratively
following a Markov chain. Signals are then generated as the sum of four sinusoids
with amplitude and frequency determined by the system state. In our tests, true
changes in the system state are all detectable as local maxima in the rate of change
in the latent state vector. It remains an active area of inquiry how automated signal

segmentation can be integrated into our system to improve fault detection rates.
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Figure 6-9: Change point detection on synthetic data. The rate of change of the latent
state value is plotted on the y axis against time. Change points between system states
are denoted with red dots.
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Chapter 7

Conclusion and Future Work

The primary goal of this project is to evaluate whether an unsupervised learning
system could function as a general purpose fault detection system across a range of
equipment, without expert knowledge, hyperparameter tuning, or other application
specific changes. To this end, we propose a modified version of the DAGMM and
evaluate its performance across a range of fault detection tasks. In this section, we
summarize our results in the context of these goals and present our suggestions for

future work.

7.1 Performance

The model appears to generalize well across applications from a variety of machines,
with a range of sensor channels (between 2-30 in our results), a range of sampling
rates (between 2 and 1200Hz) as well as a variety of sensor types. On the Bearing
and Chiron Mill datasets our system scores above a 99% classification accuracy. On
the remaining datasets, the majority of faults are always distinguishable by a spike
in the anomaly score often spanning multiple orders of magnitude. For example,
Figure 7-1 shows the chronological anomaly scores assigned to the Nazha Mill and
ADI Etcher datasets. In the Nazha Mill results, we see an enormous spike in the
anomaly score on the first run following the cooling system being disabled. Similarly,

on the ADI Etcher database, while many faults were missed, at any threshold level our
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system would have thrown an alarm by the third failed etch, potentially preventing
the subsequent 700 failed runs. We see the same effect in the NASA Mill dataset,
our test case with a continuous measure of tool wear. Some individual runs with
a worn tool are missed, particularly the borderline cases. However, the majority of
faults had anomaly scores hundreds, or even thousands, of times higher than the
most anomalous run with an undamaged tool, and tended to grow exponentially as
the tool became more damaged. In all cases, we believe the fault detection ability of

our system is high enough to be of practical use.

Etcher ADI Anomaly Scores (RDAGMM) Mill Nazha Anomaly Scores (RDAGMM)
Successful Run 1 —— Threshold .
Failed Etch - Fault
- . Nominal
P S RS . Validation
g “@ *rimg s L
Q 0 L . o
19} 9]
(%] - . 2}
> A OAS T >
o o W He e =
£ . e 1S
o o
= C 200
< <
sy |
Run Number 7 Run Number
(a) Etcher ADI (b) Mill Nazha

Figure 7-1: Chronological anomaly scores for the ADI Etcher and Nazha Mill evalu-
ation datasets.

Notably, our system has significantly lower scores (by accuracy and ROC AUC) on
the ADI Etcher and NASA Mill datasets. We believe this is due to the limited ability
of our system to separate changes due to variance in how the machine is used, such as
the etch recipe being run or material being cut with a milling machine, from changes
due to faulty system behavior. This problem is most clearly seen in the NASA Mill
dataset which contains eight possible cutting configurations and a continuous measure
of tool wear. Without normalizing the anomaly scores by run type, the accuracy falls
substantially from 82% to 67%. Even after normalization, the inability of the model
to classify runs with different system settings leads us to believe these factors are

still affecting the anomaly score, reducing our system’s ability to tease out the effects
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of tool wear. We see a similar effect with the ADI etcher results, which span two
etching recipes. In that instance, the detection accuracies for the 920 recipe are
approximately 90% compared to 60% for the 945 recipe. This suggests the model as
implemented would perform substantially better in highly repetitive settings, such as
manufacturing lines, compared to a setting like a machine shop with more variance
in how the equipment is being used. As discussed in Section 6.3 we believe better
integrating discrete variables into the model using a conditional decoder will help
solve this problem. It remains an exercise of future work how best to address it in

the case of hidden variables, where the model is working with imperfect information.

7.2 Data Efficiency

Our results suggest that our model can be effective even in settings with very little
training data. On the bearing dataset our model is trained on only 30 seconds of
vibration data, and then successfully detects and classifies all faults in the test set.
Similarly, on the Chiron mill dataset, our model is trained on only six cutting runs,
and then separates faults perfectly in all but one of the k-fold evaluation runs. How-
ever, the one error on the Chiron mill evaluation is emblematic of another weakness
of our system. The misclassification occurs on an evaluation loop when the model has
no high speed runs in its training data. The anomaly score that our model computes
is not necessarily a measure of the probability of a fault, only that something has
changed compared to the data available in the training set. Any time a variable such
as the run speed takes a value that is not present in the training data, our model
has a high probability of flagging the instance as a possible fault. When the training
data available to our model does not cover the full range of machine settings, this can
lead to a high level of false positives. We believe the amount of training data needed
to effectively train our system will vary substantially depending on the complexity of

the machine in question, the number of sensor channels, and the variance in use.
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7.3 Real World Application

While our results are encouraging, further work is needed to demonstrate the efficacy
of our model in practical applications. Primarily this is due to the fact that in
real world scenarios degradation to machine health is often a gradual process as in
the NASA Mill dataset, as opposed to the sudden change seen in the other mill
datasets (e.g. by switching out the new tool for one with more significant wear).
In these scenarios, detection of system drift over longer timescales can be critical
to detecting faults. The induced faults used in the majority of our tests may prove
to be easier to detect than those that occur naturally. In addition, the presence
of faults being mistakenly added to the training dataset can cause our model to
misclassify future faults with a similar signature. It remains an important open
question how the detection accuracy of our model will drop as a function of the
percentage of faults present in the training dataset. The continual learning version
of our detection algorithm may address this challenge, but more real world data
spanning longer duration is necessary to further develop and test the efficacy of such

an approach.

7.4 Thresholding

In this work, thresholds on the anomaly score are set at two standard deviations
above the mean on a validation dataset. In practice, optimal thresholding should
incorporate a cost-benefit analysis of the risk of missed failures versus the number of
false positives. Because failures are typically very rare occurrences, even a small false
positive rate can lead to the vast majority of warnings being false alarms, effectively
negating the usefulness of the fault detection system. On the other hand, in some
scenarios, even a single missed fault can be extremely costly, especially in scenarios
where it can cause further damage to equipment downstream in the production line.
Equally important is the time span within which fault needs to be detected. Using

the milling machine as an example, the important event to be avoided may be a tool
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snapping during operation. Using a FDS to detect tool wear with some margin for
error, if runs can be batched into periods longer than a single cutting run, and the
probability of a missed detection could be reduced significantly (exponentially w.r.t.
batch size if we could assume missed detections were independently distributed). For
some applications, it is promising that in our tests our model can detect the majority
of faults even at very high threshold levels. Table 7.1 shows the percentage of faults
our system detects with a threshold set such that there isn’t a single false positive.
For applications that require low false negative rates on short time scales, it remains
to be seen how much the performance of our system can be improved with further

optimization.

Table 7.1: Detection Accuracies at Zero False Positives

Dataset Detection Accuracy

Bearing 1.0
Mill (Chiron) 0.99
Mill (Nasa) 0.8
Mill (Nazha) 0.86
Etcher (ADI) 0.65

7.5 Interpretability

For the purpose of quickly diagnosing and repairing faults or discounting false posi-
tives, the interpretability of a fault detection system is extremely beneficial. To this
end, one of the strengths of our system is the richness of the internal representation.
Namely, the anomaly score can be broken down by both channel and time to isolate
the specific sensors and periods that had the greatest contribution to a positive fault
prediction. Secondly, as demonstrated with the ADI Etcher dataset the clustering
algorithm can be used to calculate a specific direction between normal and faulty
runs, in terms of either changes to the residual or the latent space vector. We hy-

pothesize that by using a small number of known faults, and monitoring drift in the
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RDAGMM cluster centers, it may be possible to estimate remaining useful life and
schedule maintenance in advance of faults. It remains an exercise of future work to
test the efficacy of such a system and explore the best way diagnostic tools could be
fashioned from the internal representation of our model. As an example, disentangled
variational autoencoders have been shown in practice to find internal representations
where each latent value can be mapped to a meaningful generative factor [6]. In our
system, this may significantly improve interpretability if it allows values in the latent
space to be mapped to physically meaningful quantities in the device, such as tool

speed or predicted wear in a milling machine.

7.6 Architecture Improvements

There are two changes to the neural network itself we believe could further improve
performance. The first would be to use wavenets to encode the raw sensor data in-
stead of the convolutional layers tested in this work. Wavenets have recently been
used to great success in generative model for high sample rate, raw audio files [34].
The window size for a wavenet increases exponentially with the number of parameters.
In our model, this could potentially allow us to dramatically increase the window size
allowing for better detection of long term trends. The second change we recommend
is the incorporation of an attention network. Attention networks have in recent years
have achieved state of the art results on numerous time series application includ-
ing fault detection [18, 20] and should further improve the model’s ability to detect

temporal trends.

7.7 Conclusion

The motivating question behind this project was to explore how well a fault detection
system could perform given the least possible information. Our results suggest unsu-
pervised learning techniques may allow for effective fault detection systems without

any knowledge of the target system, the types of sensors being used to monitor it,
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or labeled examples of faults. Even if the performance of fully unsupervised systems
fail to match that of systems created with expert knowledge, which may not always
be the case, we believe the benefits of an out-of-the-box solution to any given fault
detection task would be substantial. We hope this work serves as a step towards this

goal.
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