
Fault Detection in Manufacturing Equipment Using
Unsupervised Deep Learning

by

Damien W. Martin

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2021

c○ Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 15th, 2021
Certified by. .

Duane S. Boning
Clarence J. LeBel Professor of Electrical Engineering and Computer

Science
Thesis Supervisor

Certified by. .
Jeffrey H. Lang

Vitesse Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Fault Detection in Manufacturing Equipment Using

Unsupervised Deep Learning

by

Damien W. Martin

Submitted to the Department of Electrical Engineering and Computer Science
on January 15th, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

We investigate the use of unsupervised deep learning to create a general purpose au-
tomated fault detection system for manufacturing equipment. Unexpected equipment
faults can be costly to manufacturing lines, but data driven fault detection systems
often require a high level of application specific expertise to implement and continued
human oversight. Collecting large labeled datasets to train such a system can also
be challenging due to the sparse nature of faults. To address this, we focus on unsu-
pervised deep learning approaches, and their ability to generalize across applications
without changes to the hyper-parameters or architecture. Previous work has demon-
strated the efficacy of autoencoders in unsupervised anomaly detection systems. In
this work we propose a novel variant of the deep auto-encoding Gaussian mixture
model, optimized for time series applications, and test its efficacy in detecting faults
across a range of manufacturing equipment. It was tested against fault datasets from
three milling machines, two plasma etchers, and one spinning ball bearing. In our
tests, the model is able to detect over 80% of faults in all cases without the use of
labeled data and without hyperparameter changes between applications. We also find
that the model is capable of classifying different failure modes in some of our tests,
and explore other ways the system can be used to provide useful diagnostic informa-
tion. We present preliminary results from a continual learning variant of our fault
detection architecture aimed at tackling the problem of system drift.

Thesis Supervisor: Duane S. Boning
Title: Clarence J. LeBel Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Jeffrey H. Lang
Title: Vitesse Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

This project has been an incredibly rewarding experience and I’ve learned an enor-

mous amount over its course. For that I want to thank my advisors, Professor Duane

Boning and Professor Jeff Lang for their invaluable guidance throughout this project.

As well as Vivek, Oliver, and the rest of the team at HARTING and Lam Research

for their support and technical expertise.

For helping me get this far I want to thank Ian, Meagan, and my friends in the

extended Senior House community for always being there when I needed it most. Mr.

Oles for getting me started down this path. Most of all, thank you parents, for all of

the above and more. I couldn’t have done it without you.

5

6

Contents

1 Introduction 17

1.1 Model Summary . 18

1.2 Evaluation . 19

1.3 Thesis Outline . 19

2 Theory & Literature Review 21

2.1 Anomaly Detection . 21

2.2 Deep Unsupervised Modeling . 22

2.2.1 Time Series Forecasting . 23

2.2.2 Compression . 24

2.2.3 Clustering . 25

2.2.4 Hybrid Approaches . 27

2.2.5 Variational Autoencoders . 28

3 Methods 31

3.1 Neural Network Architecture . 32

3.1.1 Autoencoder . 33

3.1.2 Bottleneck . 34

3.1.3 Estimation Network . 35

3.1.4 Training and Loss Functions 35

3.1.5 Network Optimization . 36

3.2 Anomaly Scoring System . 37

3.2.1 Anomaly Score . 37

7

3.2.2 Fault Labels and Thresholding 38

3.2.3 Fault Classification . 38

3.3 Preprocessing Steps . 39

3.4 Model Evaluation . 39

3.4.1 Fault Detection . 39

3.4.2 Baselines . 40

3.4.3 Classification Accuracy . 40

3.4.4 Fault Detection With Hidden Information 41

3.4.5 Diagnostics and Predictive Maintenance 41

4 Experiment Design and Data Sets 43

4.1 Synthetic Generator . 44

4.2 Bearing . 44

4.3 Mill . 45

4.3.1 Chiron Mill . 46

4.3.2 Nazha Mill . 46

4.3.3 NASA Mill . 47

4.4 ADI Etcher . 48

5 Experimental Results 51

5.1 Bearing . 51

5.1.1 Detection Accuracy . 52

5.1.2 Fault Classification . 52

5.2 Mill Chiron . 54

5.2.1 Detection Accuracy . 54

5.3 Mill Nazha . 56

5.3.1 Detection Accuracy . 56

5.4 Mill NASA . 58

5.4.1 Detection Accuracy . 58

5.4.2 Detection Accuracy With Hidden Information 59

5.4.3 Clustering . 61

8

5.5 Etcher ADI . 62

5.5.1 Detection Accuracy . 62

5.5.2 Clustering . 65

5.5.3 Drift Detection and Fault Diagnosis 66

5.6 Run Time . 67

6 Ongoing Projects 69

6.1 MIT Etcher Dataset . 69

6.2 Continuous Learning . 73

6.3 Conditional Decoding . 76

6.4 Change Point Detection . 77

7 Conclusion and Future Work 79

7.1 Performance . 79

7.2 Data Efficiency . 81

7.3 Real World Application . 82

7.4 Thresholding . 82

7.5 Interpretability . 83

7.6 Architecture Improvements . 84

7.7 Conclusion . 84

9

10

List of Figures

2-1 Residual based anomaly detection. Red and black points highlight two

anomalies which are detectable as points with a residual value above a

threshold. 22

2-2 ARIMA Forecast. After fitting a model on historical data, future values

are predicted on a rolling basis. Points which fall outside the projected

confidence interval and labeled as anomalies. 23

2-3 Anomaly detection via compression. In this example 2d sensor data

is projected onto the first PCA component, a 1d representation. The

square of the distance between the original points location and the

projected value after compression is used as the anomaly score. 24

2-4 Anomaly detection by clustering. 𝑅 denotes the radius to the decision

boundary and 𝑐 is the cluster center. 26

3-1 Fault detection system overview. 31

3-2 Schematic for the full neural network architecture. Convolutional lay-

ers are used for compression and reconstruction. The latent state is

calculated by a recurrent unit. A probability distribution over class la-

bels is output by the estimation network. Not pictured above, through-

out training the empirical mean and variance of each class is tracked.

The anomaly score is computed as the NLL of new data point being

generated by the GMM parameterized by the empirical distribution. . 33

11

3-3 Scale diagram of the convolutional layers in the encoder and decoder

networks. Window length is shown as the width of each filter and as

pictured is halved during each encoding step. Channel count is shown

is shown as the height. Filters are stacked in z. 34

4-1 Case Western bearing experimental setup [21]. 45

4-2 New vs. worn cutting tool. Chips can be seen in the tip of the blade. 45

4-3 Measure of tool wear on the cutting edge of the mill insert [1]. 47

4-4 Sample of channels from the ADI etcher dataset. 48

5-1 Histogram of log anomaly scores for each 0.1s window of sensor data, as

calculated by the RDAGMM. Blue and orange indicate that the sensor

data was recorded with a healthy or damaged bearing, respectively. . 53

5-2 Anomaly score calculated for every window of time in our test dataset

by the RDAGMM. Color indicates the true labels for the type of fault

induced on the bearing. Green indicates the runs with an undamaged

bearing. 53

5-3 Unsupervised class labels assigned to each run in the test dataset after

refitting a GMM with unknown number of classes. Runs are perfectly

separated by fault type. 54

5-4 Histograms of 𝑘-fold cross validation results on the Chiron Mill dataset

with three model architectures in order of increasing complexity. Plot-

ted on the X axis is normalized log anomaly score, and the Y axis

represents the total number of trials which fall in this range. Runs

with a new tool are shown in blue and runs with a damaged tool are

shown in orange. 55

5-5 Mill Nazha ROC curves. Curves for all three models overlap perfectly. 57

5-6 Comparison of anomaly scores generated by all three models for test

runs in the Nazha Mill dataset. Faulty runs with the cooling system

shut off are shown in orange. Nominal runs are shown in blue. 57

5-7 NASA Mill ROC - Normalized by run type. 59

12

5-8 NASA Mill ROC curves with hidden variables. 60

5-9 NASA Mill Anomaly Scores. Each plot represents runs with a unique

combination of machine settings and material being cut. The log

anomaly scores are plotted against the measured tool wear for each

run. 61

5-10 NASA Mill unsupervised clustering results. Color denotes the true

labels for each run, and the x axis shows the predicted cluster label. . 62

5-11 ADI etcher ROC curves. 63

5-12 Histogram of log anomaly scores for each run in the ADI etch test

dataset. Successful etches are shown in blue and failed runs are shown

in orange. 64

5-13 Histogram of anomaly scores assigned by our model to runs of each

recipe. 65

5-14 Unsupervised clustering of the ADI etcher runs. Color denotes the true

labels, and the x axis shows the label assigned by our system. 65

5-15 Visualization of RDAGMM latent space values for each ADI etching

run using first two principal components. 66

5-16 True labels for etcher runs and predicted GMM class labels shown

chronologically. 67

6-1 Etcher power measurement experimental setup. 70

6-2 Three phase current signal - single etch. 70

6-3 Anomaly scores assigned to runs during the month of August. A sharp

spike in the residual score can be seen on August 12th after which

the machine went unused for 10 days. On August 24th the anomaly

score begins spiking again leading to a machine jam as shown in red.

Following the repairs, the anomaly score drops again as shown in green. 71

6-4 Sample of runs from before and after maintenance was performed on

the etcher. Following repairs, current draw appears more stable during

the etching phase. 72

13

6-5 Contactless sensor prototype. The sensor clips onto the outside of pow-

erlines and combines multiple measurements of the surrounding electric

and magnetic fields provide accurate current and voltage readings ro-

bust against external sources of noise. 73

6-6 Overlay of temperature reading over the course of 100 etching runs.

Failed etches are shown in red and successful etches are shown in blue 75

6-7 Residual error for the 100 runs in Figure 6-6 containing a mix of faulty

and successful etches. A heat map is used to indicate the magnitude

of the residual vector. Blue indicates low compression loss and red

indicates a high compression loss. At timestep 𝑖 = 𝑡 − 1 no faults

are present in the training data. As the system is trained on batches

containing faults at timesteps 𝑡 and 𝑡 + 1, the predicted temperatures

rise steadily. 75

6-8 Network diagram for conditional variational autoencoder. Discrete

variable are appended onto the latent state vector before decoding and

used to normalize residuals before computing a final anomaly score . 76

6-9 Change point detection on synthetic data. The rate of change of the

latent state value is plotted on the y axis against time. Change points

between system states are denoted with red dots. 78

7-1 Chronological anomaly scores for the ADI Etcher and Nazha Mill eval-

uation datasets. 80

14

List of Tables

4.1 Fault Detection Datasets . 43

4.2 Mill Chiron Experiments . 46

4.3 NASA Mill Experiments . 47

5.1 Accuracy Scores Across All Datasets 51

5.2 Bearing Fault Detection Accuracy . 52

5.3 Mill Chiron Experiments . 55

5.4 Mill Nazha Fault Detection Accuracy 56

5.5 NASA Mill Detection Accuracy - Normalized Run Type 58

5.6 NASA Mill Detection Accuracy - Hidden Variables 59

5.7 Etcher MIT Results . 63

7.1 Detection Accuracies at Zero False Positives 83

15

16

Chapter 1

Introduction

In the manufacturing sector, unplanned downtime caused by unexpected machine

faults can be highly costly and is estimated to reduce factory output by between

5% and 20% [8]. Automated fault detection (AFD) systems can help mitigate much

of this damage by monitoring sensor data and flagging anomalies before problems

become more serious. With advanced warning, maintenance can be scheduled ahead

of any catastrophic failures, referred to as predictive maintenance (PdM). A 2017

survey by GE estimates over 80% of organizations had experienced an episode of

unplanned downtime in the past three years, costing an average of $260,000 an hour,

half of which were caused by unexpected hardware failures [3]. This suggests that

there may be large efficiency gains to be made in manufacturing should these methods

be more widely adopted.

In this work, we address three potential barriers to more widespread adoption of

AFD systems. The first involves the difficulties of retrofitting sensors onto older

machinery. For equipment that does not come with integrated sensors and monitors,

invasive sensor installation can risk damaging the equipment in question, and in a

factory setting, may require shutting down production lines. The second problem

we address is the lack of large labeled datasets to train such systems. Faults are

inherently a rare event and every failure may be different. The final barrier we hope

to address is the high level of domain-specific expertise that can be required to build

17

an effective AFD system. Tailor made solutions often rely on an intimate knowledge

of the machinery in question and its failure modes. To address these three issues we

frame our problem as a more general case of anomaly detection and leverage advances

in unsupervised learning to build system models without labeled data. In this work,

we propose and test a deep learning architecture capable of detecting faults across a

wide range of manufacturing equipment without labeled data or application specific

configuration.

1.1 Model Summary

In this thesis, we propose a new architecture for automated fault detection: the Re-

current Deep Autoencoding Gaussian Mixture Model (RDAGMM). The core of our

model is a sliding window autoencoder. This architecture allows our system to model

incoming sensor data in an unsupervised way, and provides the flexibility to gener-

alize across applications. The autoencoder is trained to compress and reconstruct

incoming windows of sensor data, with a series of convolutional layers. A recurrent

unit in the final layer of the encoder allows the model to track long term trends

outside the scope of a single window. The autoencoder outputs two vectors useful

for anomaly detection, the latent state (compressed representation) and the residuals

vector (reconstruction error). These two outputs are passed to a secondary classi-

fication network that is trained to minimize the negative log likelihood (NLL) of a

Gaussian mixture model. The NLL is used as our final “anomaly score”: a measure

of how aberrant the monitored equipment’s behavior is at any given moment in time.

Setting a threshold on the anomaly score provides a binary label as to whether the

system is performing normally or if there is a fault. Clustering the compressed latent

state representations provides unsupervised labeling of different fault types useful for

diagnostic purposes.

18

1.2 Evaluation

To test the ability of our model to generalize across applications, we collected a range

of datasets containing sensor readings from bearings, milling machines, and circuit

fabrication equipment. As well as covering a range of equipment, these datasets vary

in terms of types of signals being recorded, the number of sensor channels available,

and the sampling frequency. Half of our datasets exclusively use non-invasive sensors.

All of the datasets contain labeled faults that either occurred naturally while the

machine was in use, or were intentionally induced for testing purposes. In all of the

above cases, we evaluate the accuracy with which our system can separate faulty

from nominal behavior. We also investigate the ability of our system to classify

different types of faults, attribute faults to specific sensor channels, and provide other

information useful for fault diagnosis and predictive maintenance.

1.3 Thesis Outline

The next chapter of this thesis contains a review of unsupervised anomaly detection

techniques in the literature, with an emphasis on methods used in this project. Chap-

ter 3 then describes our model architecture in more detail, the methods used for fault

detection and classification, and the details of the models used as a baseline for com-

parison. Chapter 4 details the various data sets and fault detection tasks we use to

test our method. Chapter 5 contains the results of our tests. In Chapter 6, we discuss

our preliminary work collecting more expansive datasets and testing improvements to

our architecture. Finally, we conclude with a discussion of our results and suggestions

for further work in Chapter 7.

19

20

Chapter 2

Theory & Literature Review

Our work draws on literature in the fields of anomaly detection, fault detection, and

unsupervised learning. In this chapter, we summarize the relevant related research.

2.1 Anomaly Detection

Mechanical faults in machinery can often be detected and even predicted by finding

the appearance of anomalies in the available sensor readings. While it is difficult to

rigorously define anomalies, they can intuitively be thought of as observations that

seem abnormal given historical data. In this paper, we will be using the definition

of anomalies given by Hawkins as points which “deviate so significantly from other

observations as to arouse suspicion that they were generated by a different mecha-

nism” [14].

Anomalies can be further subdivided into two classes, point anomalies and contex-

tual anomalies. While point anomalies can and often are detected as limit violations of

normal operating parameters, contextual anomalies are only detectable with regards

to surrounding values or readings from other sensors. Conceptually, they require some

knowledge of what the signal should look like to compare against. For example, with

an accurate model of nominal system behavior, an anomaly score can be calculated

as the size of the residual; the absolute error between the model’s predictions and the

21

(a) Sensor signal 𝑦 and system model 𝑦. (b) Residual vector - 𝑎𝑏𝑠(𝑦 − 𝑦).

Figure 2-1: Residual based anomaly detection. Red and black points highlight two
anomalies which are detectable as points with a residual value above a threshold.

recorded sensor data, as shown in Figure 2-1.

In this work, we focus on unsupervised anomaly detection for multivariate time

series. Without access to expert knowledge of the system, we first learn a model of

nominal system performance using historical data, and then detect anomalies as a

function of the predictive accuracy of our model, our model’s state, and other learned

metrics.

2.2 Deep Unsupervised Modeling

In the field of deep learning, unsupervised methods used for anomaly detection can

be roughly subdivided into three categories, based on their learning objective and

anomaly scoring technique. These are time series forecasting, clustering techniques,

and compression based methods. In this section, we review the theory and literature

behind these methods. All three have close analogs to traditional anomaly detection

methods, rely on the assumption that faults are relatively rare or not present in the

22

training data, such that accurate models of nominal behavior can be trained without

labels.

2.2.1 Time Series Forecasting

Time series forecasting involves building a model to predict future values of a time

series, typically using a sliding window of past values. A classic method to solve this

problem is to construct an autoregressive moving average (ARMA) models in which

predicted future values 𝑦𝑡 are computed as a linear combination of past values 𝑦𝑡−𝑖

and error terms 𝜖𝑡−𝑖, as defined in Equation 2.1:

𝑦𝑡 =

𝑝∑︁
𝑖=1

𝛼𝑖 × 𝑦𝑡−𝑖 +

𝑝∑︁
𝑖=1

𝛽𝑖𝜖𝑡−𝑖 (2.1)

where 𝛼𝑖 and 𝛽𝑖 represent the learned model parameters. Anomalies can then be

detected as periods of abnormally large errors in the model predictions indicating a

break from historical trends. as shown in Figure 2-2. For example, Qin et al. used this

combination of ARMA and a statistical threshold on the residuals vector to detect

faults in satellite systems [31].

Figure 2-2: ARIMA Forecast. After fitting a model on historical data, future values
are predicted on a rolling basis. Points which fall outside the projected confidence
interval and labeled as anomalies.

In the field of deep learning, a common architecture for time series predictions are

RNNs (Recurrent Neural Networks), particularly LSTMs (Long Short-Term Memory)

23

and GRUs (Gated Recurrent Units). These networks maintain an internal state and

at each time step, produce an output and updated state as a function of both the

prior state and current input. In the field of anomaly detection, this method has

proven effective at detecting faults in cyber-physical systems [27] as well as in satellite

systems [10], in both cases improving on industry standard techniques.

2.2.2 Compression

Compression based techniques such as principal component analysis (PCA) learn to

compress segments of the incoming time series to a lower dimensional representation

by learning common factors of variation. In PCA, this involves decomposing his-

torical data using singular value decomposition and reducing the dimension of the

dataset using the vectors associated with the 𝑘 largest singular values, known as the

principal components. This technique produces a linear model that explains the max-

imum variance. Signals are then compressed and reconstructed by projection onto

the principal components, as shown in Figure 2-3.

(a) Raw sensor data. (b) MSE after compression.

Figure 2-3: Anomaly detection via compression. In this example 2d sensor data is
projected onto the first PCA component, a 1d representation. The square of the dis-
tance between the original points location and the projected value after compression
is used as the anomaly score.

As with forecasting methods, anomalies can then be detected as increases in the

magnitude of the residual vector between the original incoming signal and the com-

pressed version of this signal [25], [17]. This is due to the fact anomalies will be poorly

24

compressed, as a consequence of failing to follow common factors of variation found

in the nominal training data.

In the field of deep learning, unsupervised compression is often performed with

autoencoders [12], [11], [37], [26], [16], [30], [13]. These neural networks reduce the

dimension of the data to 𝑘 hidden variables, known as the latent state, and are

trained to reconstruct the original inputs using SGD (Stochastic Gradient Descent) or

an equivalent optimization algorithm. With a nonlinear activation function between

layers such as RELU (Rectified Linear Units), this is directly analogous to a non-linear

form of PCA.

2.2.3 Clustering

Clustering based anomaly detection involves grouping incoming data into classes using

algorithms such as k-means or Gaussian mixture models [9] [36] [38] [39]. Anomalies

can then be detected as points which fall outside of known clusters, or as points that

fall into clusters that are known to be associated with faults. These methods tend

to perform poorly on high dimensional data sets, and thus are often combined with

methods like PCA to first project the data to a lower dimensional feature space before

clustering.

In unsupervised anomaly detection, one popular technique is OC-SVDD (One class

- Support Vector Data Description) [33]. These systems attempt to separate nom-

inal points into a single class by finding the smallest possible hyper-sphere which

encapsulates the majority of training data as shown in Figure 2-4.

25

Figure 2-4: Anomaly detection by clustering. 𝑅 denotes the radius to the decision
boundary and 𝑐 is the cluster center.

This is accomplished by minimizing the constrained optimization problem formu-

lated in Equation 2.2:

min𝑅2 +
1

𝑣𝑛

∑︁
𝑖

𝜉𝑖

𝑠.𝑡.||Φ𝑘(𝑥𝑖)− 𝑐||2 < 𝑅2 + 𝜉𝑖

𝜉𝑖 ≥ 0,∀𝑖

(2.2)

where 𝑅 is the radius of the hyper-sphere, 𝑐 is the cluster center, Φ𝑘 is the encoding

function, and 𝜉𝑖 is a slack variable denoting the radial distance of anomalous point

from the boundary of the hyper-sphere. In this framework, the anomaly score is cal-

culated as the radial distance of every point from the cluster center, and the threshold

is determined by the hyper-parameter 0 < 𝑣 < 1 which acts as a prior on the expected

percentage of anomalies within the training data set [33].

26

2.2.4 Hybrid Approaches

Several recent state of the art approaches to unsupervised anomaly detection are based

on combining and tightly integrating the three aforementioned approaches to anomaly

detection. Forecasting, clustering, and compression based anomaly detection comple-

ment each other in a variety of ways, and combinations of these approaches often

prove effective and robust. For example, as mentioned above, clustering techniques

such as 𝑘-means, GMMs, and SVDDs are often used on the compressed representa-

tion from PCA or on the latent state of a trained autoencoder, because the reduction

in input dimension can reduce training time, improve generality, and prevent over-

fitting. Making use of this synergy, Deep Autoencoding Gaussian Mixture Models

(DAGMMs), proposed by Zong et al. [40], simultaneously train an autoencoder to

compress and reconstruct the inputs, as well as an auxiliary estimation network to

predict sample class based on the autoencoders latent state and the mean squared

residual error. After empirically determining the parameters of the cluster centers,

anomalies are detected as a function of the sample data point energy, analogous to the

negative log likelihood under the GMM framework, as shown in Equation 2.3. This

method effectively combines clustering based anomaly detection with the residual

error from reconstruction:

𝐸(𝑧) = −𝑙𝑜𝑔(
𝐾∑︁
𝑘=1

𝜑𝑘
𝑒𝑥𝑝(−2(𝑧 − 𝜇𝑘)𝑇Σ−1

𝑘 (𝑧 − 𝜇𝑘)/2)√︀
|2𝜋Σ𝑘|

) (2.3)

where 𝐾 represents the number of clusters, 𝜇𝑘 and Σ𝑘 define the cluster means and

variances, 𝜑𝑘 defines the mixture probability, and 𝑧 is the latent state vector. Autoen-

coders are key to many hybrid approaches to fault detection because they can very

naturally be used to complement both forecasting and clustering methods. OC-neural

networks in particular can be thought of as a single end-to-end method of training

both the compressive, feature-crafting stage, and the clustering step. Similarly, by

shifting the target vector in time, autoencoders can be trained to both compress and

predict future values, allowing for better detection of contextual anomalies that may

be missed by compression alone [22].

27

2.2.5 Variational Autoencoders

Variational inference is the practice of using optimization algorithms to efficiently

find approximations of unknown distributions, when calculating exact maximum

likelihood solutions may be intractable [2]. In the case of VAEs (Variational Au-

toencoders), we begin by assuming that our input data 𝑥 is generated by a random

process as a function of an unobserved state 𝑧, where 𝑧 is drawn from an unknown

distribution 𝑝𝜃*(𝑧) and 𝑥 from 𝑝𝜃*(𝑥|𝑧). A deep encoding neural network is trained

to parameterize a distribution 𝑞𝜑(𝑧|𝑥) (typically Gaussian) to approximate the true

𝑝𝜃*(𝑧|𝑥). The decoder network is trained to approximate 𝑝𝜃*(𝑥|𝑧) and reconstruct

the input from the latent state. To this end, given an input 𝑥, our encoding net-

work produces a mean and standard deviation for the distribution 𝑞𝜑(𝑧|𝑥). A value

for the latent state is then sampled from this distribution, where 𝑧 ∼ 𝒩 (𝜇, 𝜎), and

the decoder produces an approximate value 𝑥𝑟 for the sampled value, as defined in

Equation 2.4:

𝜇𝑧, 𝜎𝑧 ←− 𝐸𝑛𝑐(𝑥)

𝑧 ∼ 𝑞𝜃(𝑧|𝑥) = 𝒩 (𝜇𝑧, 𝜎𝑧)

𝑥𝑟 ←− 𝐷𝑒𝑐(𝑧)

(2.4)

where 𝐸𝑛𝑐 and 𝐷𝑒𝑐 represent the encoding and decoding networks, respectively.

This method has multiple benefits when compared to deterministic autoencoders.

Because standard autoencoders place no restrictions on how the latent state is rep-

resented internally, small changes in the latent state can lead to drastic changes in

the output. By contrast, in a VAE, stochastically sampling the latent state from

a distribution forces the system to encode similar samples nearby in latent space.

This allows for more robust clustering and more interpretable results when analyzing

the effect of individual dimensions of the latent state. It also allows for the decoder

to function as a generative model by sampling from within the prior distribution of

states.

28

For time series modeling this method can be further improved by using variational

methods to train recurrent RNNs, allowing for the prior distribution to be updated

sequentially, conditional on the previous state [28, 22, 16].

29

30

Chapter 3

Methods

In this chapter, we first describe the architecture of the proposed FDS (Fault Detec-

tion System) in more depth, and the methods we used to evaluate the performance

of our system. At a high level there are four main components to the FDS tested

in this project: a normalization layer, a symmetrical encoding-decoding scheme, an

information bottleneck, and an anomaly scoring mechanism, as shown in Figure 3-1.

Figure 3-1: Fault detection system overview.

The normalization layer serves to standardize the scale and variance of each input

channel. When working with multivariate time series, values from various sensors can

span many orders of magnitude causing some signals to have an outsized effect on

the loss function.

31

The encoder-decoder system represents the function learned to compress incoming

windows of data and to reconstruct said inputs from the latent state. The bottleneck

defines how information is compressed between the encoding and decoding network.

The anomaly scoring system defines the clustering, residual processing, and other

methods used to compute a final anomaly score. For binary fault detection, this

involves reducing the incoming sensor data to a single value, representing the anomaly

score, and setting a threshold on this score to detect faults. For fault classification,

this involves clustering the data into an unknown number of classes.

3.1 Neural Network Architecture

With the exception of preprocessing steps such as normalization, our system is imple-

mented as a single end-to-end differentiable deep neural network. Our neural network

architecture builds off of the DAGMM, with modifications to optimize the architec-

ture performance on time series applications. Our network architecture can be seen

in Figure 3-2, highlighting the convolutional and recurrent components and the class

estimation network.

First, a CNN (convolutional neural network) is used the encode the incoming

time series window. A GRU (gated recurrent unit) tracks these encoded windows, and

outputs a latent state vector as a low dimensional representation of the current state of

the machine. A transposed convolutional network then reconstructs an approximation

of the original input window from the latent state vector. Finally, our estimation

network assigns a class label to each window, based on the features from the residual

vector and the latent state, with the goal of finding a clustering that maximizes the

likelihood of generation by a Gaussian mixture model.

This architecture was chosen to maximize the ability of our system to generalize

across applications by combining many aspects of anomaly detection systems that

have shown success previously. To allow it to detect a wide range of anomalies, it

combines both a residual and clustering objective with optimizations specific to time

series applications. To improve robustness without tuning, it features a number of

32

Figure 3-2: Schematic for the full neural network architecture. Convolutional layers
are used for compression and reconstruction. The latent state is calculated by a
recurrent unit. A probability distribution over class labels is output by the estimation
network. Not pictured above, throughout training the empirical mean and variance
of each class is tracked. The anomaly score is computed as the NLL of new data point
being generated by the GMM parameterized by the empirical distribution.

auxiliary losses to regularize the network as a whole. It was also chosen to maximize

the potential for future work in predictive maintenance and diagnostics, due to its

rich output space including the per channel residuals vector, compressed latent state,

and cluster centers. The following sections describe each sub-network in more detail.

All networks were implemented using tensorflow, keras, and alibi-detect [35].

3.1.1 Autoencoder

The core of our fault detection system is a sliding window autoencoder. To allow

for easier recognition of time-independent features, our architecture uses 1D convolu-

tional and transposed convolutional layers as the encoder and decoder, respectively,

with all convolutions taking place over the time axis. The signal is compressed lead-

ing up to the bottleneck by using a convolution stride of two, effectively halving the

window size at each encoding layer. The de-convolutional layers in the decoder then

up-sample the latent state using transposed convolutions until the output matches

33

the original dimension of the input window, as shown in Figure 3-3. All of the models

tested in this work use four layers in both the encoder and decoder with a window size

of 128 and 64 kernels each of size 16. This method has the added benefit of scaling

the network size and number of parameters with the number of input channels as this

dimension is held constant through compression and reconstruction.

Figure 3-3: Scale diagram of the convolutional layers in the encoder and decoder
networks. Window length is shown as the width of each filter and as pictured is
halved during each encoding step. Channel count is shown is shown as the height.
Filters are stacked in z.

3.1.2 Bottleneck

The bottleneck of our neural network controls the final layer of compression and how

the latent state is represented internally. In our architecture, we use a variational

GRU. At every timestep 𝑡 the GRU outputs a mean 𝜇𝑧,𝑡 and variance 𝜎𝑧,𝑡 parameter-

izing a posterior distribution over latent state values 𝑞(𝑧𝑡|𝑥𝑡, 𝑧𝑡−1). It takes as input

the current output from the encoder 𝑥𝑡, and the distribution over latent state values

from the previous time step 𝜇𝑧,𝑡 and 𝜎𝑧,𝑡 effectively performing a Bayesian update on

the distribution over latent state values. A value for the latent state 𝑧𝑡 is then sam-

pled from the distribution 𝑞𝑡(𝑧𝑡|𝑥𝑡, 𝑧𝑡−1). This recursive element allows our system to

track long term trends beyond the length of our input window when calculating the

current latent state. The Kullback-Leibler divergence between the distribution 𝑞 and

an independent normal is then added to the loss as described in Section 2.2.5. The

variational objective further improves performance by adding a form of regularization

to the size of the information bottleneck as well as improving the interpretability of

the final latent state values.

34

3.1.3 Estimation Network

The estimation network assigns class labels to every input window as a function of

the latent state and the residuals vector. It takes as input the sampled value for

the latent state 𝑧𝑙𝑠 and features from the residual vector 𝑧𝑟 such as the MSE and

cosine similarity, and returns a probability distribution over class labels. These two

features were used in line with the original DAGMM paper [40], but the method is

agnostic to the choice of residual features. These two vectors define the size of the

clustering space for the network. The size of the latent state vector and the number

of clusters are both set as hyperparameters in advance. In this work, our model

uses a latent state vector of size ten, with two cluster centers across all datasets.

We found our detection accuracies and classification accuracies to be fairly robust to

changes in these hyperparameters. Note that the class labels calculated here are not

the ones used for calculating the classification accuracy; the final labels are computed

by a separate procedure described in Section 3.2.3. The estimation network itself

is implemented as a fully connected dense network with two layers ending with a

softmax activation function.

3.1.4 Training and Loss Functions

The network is trained to minimize two loss functions. The first is the reconstruction

loss, defined as the MSE (Mean Squared Error) between the normalized input window

𝑥𝑖 and the reconstructed input window 𝑥′
𝑖 after compression, as shown in Equation 3.1:

ℒ𝑟𝑒𝑐 =
1

𝑁

𝑁∑︁
𝑖=0

(||𝑥𝑖 − 𝑥′
𝑖||22) (3.1)

where 𝑁 is the number of points in a training batch. This objective pushes the

encoder to compress the input as efficiently as possible.

The second function is the clustering loss under the GMM framework. To calculate

the clustering loss, the empirical means 𝜇𝑘 and co-variance matrices Σ𝑘, and mixture

35

components 𝜑𝑘 for each class 𝑘 (collectively referred to as Θ𝑒𝑚𝑝) are tracked and

updated throughout training. The rate at which the parameters defining every cluster

are changed after every training batch is controlled by a hyperparameter 𝛽 as shown

in Equation 3.2, where 𝑍 is the collection of encoded windows in a single training

batch.

𝜇𝑘 = 𝛽 * 𝜇𝑘 + (1− 𝛽) *
∑︀

𝑧𝑖∈𝑍 𝑝(𝑘|𝑧𝑖)𝑧𝑖∑︀
𝑧𝑖∈𝑍 𝑝(𝑘|𝑧𝑖)

Σ𝑘 = 𝛽 * Σ𝑘 + (1− 𝛽) *
∑︀

𝑧𝑖∈𝑍 𝑝(𝑘|𝑧𝑖)(𝑧𝑖 − 𝜇𝑘)2∑︀
𝑧𝑖∈𝑍 𝑝(𝑘|𝑧𝑖)

(3.2)

This update method ensures that the cluster means and variances change smoothly

between batches and makes network training more stable. The clustering loss is then

calculated as the negative likelihood of a batch of data being generated by a GMM

with the aforementioned parameters, as shown in Equation 3.3:

ℒ𝑔𝑚𝑚 = −𝑙𝑜𝑔

(︃∑︁
𝑘∈𝐾

∑︁
𝑧𝑖∈𝑍

𝜑𝑘
𝑒𝑥𝑝(−.5(𝑧𝑖 − 𝜇𝑘)𝑇Σ−1

𝑘 (𝑧𝑖 − 𝜇𝑘))

(|2𝜋Σ𝑘|).5

)︃
(3.3)

where 𝑘 is the number of clusters.

3.1.5 Network Optimization

Several design choices are made to improve the performance and robustness of our

models. Every network makes use of L2 weight regularization. Optimization during

training was performed using ADAM. One of the goals of this project was to design

the system to be robust to hyperparameter tuning. All hyperparameters in our system

were initially chosen using values from similar architectures in the literature. After

finding a set of parameters that performed well on a synthetically generated dataset,

all hyperparameters were kept fixed for all further tests on all of our other datasets. It

remains an area of future work to determine how much performance can be improved

with careful tuning or how to optimize hyperparameters in an automated fashion by

incorporating some form of meta-learning.

36

3.2 Anomaly Scoring System

This section details how our model is used to detect faults and to provide diagnostic

information about the type and causes of different faults. Pseudocode for generating

fault labels and class labels using a trained model is shown below in Algorithm 1.

Algorithm 1 Fault Detection & Classification
1: procedure AFD(𝜑𝑒𝑛𝑐, 𝜑𝑑𝑒𝑐, 𝜑𝑒𝑠𝑡,Θ𝑒𝑚𝑝, 𝜏,𝑋) ◁ Input: Trained NN weights 𝜑;

GMM parameters Θ; threshold 𝜏 , and test dataset 𝑋
2: �⃗�𝑙𝑠 ← 𝜑𝑒𝑛𝑐(𝑋)
3: 𝑋 ′ ← 𝜑𝑑𝑒𝑐(𝑙𝑠)
4: �⃗�𝑟 ← 𝑋 −𝑋 ′

5: �⃗� ← 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(�⃗�𝑟, �⃗�𝑙𝑠)
6: �⃗� ← 𝜑𝑒𝑠𝑡(�⃗�)
7: 𝐴𝑛𝑜𝑚𝑎𝑙𝑦_𝑆𝑐𝑜𝑟𝑒← 𝑁𝐿𝐿(�⃗�, �⃗�|Θ𝑒𝑚𝑝)
8: 𝐴𝑛𝑜𝑚𝑎𝑙𝑦_𝑆𝑐𝑜𝑟𝑒← (𝐴𝑛𝑜𝑚𝑎𝑙𝑦_𝑆𝑐𝑜𝑟𝑒− 𝜇𝐴𝑆(𝑋𝑑)) /𝜎𝐴𝑆(𝑋𝑑)
9: 𝐹𝑎𝑢𝑙𝑡_𝐿𝑎𝑏𝑒𝑙𝑠← (𝐴𝑛𝑜𝑚𝑎𝑙𝑦_𝑆𝑐𝑜𝑟𝑒 > 𝜏)

10: 𝐵𝐼𝐶𝑚𝑖𝑛 ← 𝐼𝑛𝑓
11: for 𝑖 in range(𝑁) do
12: Θ𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥Θ (𝑝(�⃗�|Θ)) ◁ Refit GMM with 𝑖 clusters using EM
13: if 𝐵𝐼𝐶𝑚𝑖𝑛 > 𝐵𝐼𝐶(�⃗�,Θ𝑖) then
14: Θ* ← Θ𝑖

15: 𝐵𝐼𝐶𝑚𝑖𝑛 ← 𝐵𝐼𝐶(�⃗�,Θ𝑖)

16: 𝐶𝑙𝑎𝑠𝑠_𝐿𝑎𝑏𝑒𝑙𝑠 = Θ*(𝑧)
17: return Fault_Labels, Class_Labels, Θ*

3.2.1 Anomaly Score

The anomaly score for every window of sensor data is equivalent to the clustering

loss ℒ𝑔𝑚𝑚, calculated as the negative log likelihood with reference to the empirical

GMM as shown in Equation 3.3. As values of the probability density function defined

by the GMM, the ratio of two anomaly scores can be used to calculate the relative

likelihood of seeing two given windows of sensor data. For datasets that are further

discretized into runs, such as a single wafer etch in the plasma etcher database, the

mean anomaly score of all windows contained in its duration is used to represent the

entire run. More generally, for continuous data without clear boundaries between

runs, anomalies can be found on different time scales by taking the moving average

37

of the anomaly score over the given duration.

3.2.2 Fault Labels and Thresholding

This section describes how thresholds are set and runs are assigned a final label

of faulty or anomalous using a validation dataset 𝑋𝑣. First, anomaly scores are

computed for every run in the validations dataset 𝐴𝑆. For datasets containing discrete

variables 𝑋𝑑, defining separate run types, such as the etch recipe being performed,

we further compute the mean 𝜇𝐴𝑆(𝑋𝑑) and standard deviation 𝜎𝐴𝑆(𝑋𝑑) for runs of

each type independently. We use these statistics to normalize the anomaly scores for

each run type. The threshold to detect faults is then set by default at two standard

deviations above the mean.

3.2.3 Fault Classification

For data sets with multiple types of faults, we also test the ability of our model to

classify each type of fault. To use our model as an unsupervised classifier, the test data

is passed through our trained model to compute the mean residual vector and latent

state representation for each run. An unsupervised Gaussian mixture model is then fit

to cluster the concatenated residuals and latent state. The number of clusters in the

Gaussian mixture model is chosen automatically by iterating over a range of values

and choosing the model with lowest BIC (Bayesian Information Criterion) score [5].

The BIC is a measure of how well a model fits a given dataset with an added penalty

term for the number of parameters in the model, as shown in Equation 3.4:

BIC = 𝑘 ln𝑛− 2 ln �̂� (3.4)

where 𝑘 is the number of fitted parameters in the model, �̂� is the loss of the fitted

model, and 𝑛 is the number of data points in the training set. Assuming the test data

contains both faulty and normal data, not all clusters will be associated with faults.

Separating true fault clusters can be accomplished by one of three methods. Firstly,

clusters associated with faults are likely to have a significantly higher anomaly score

38

than usual. Secondly, if any known faults exist in the test data these few labels can

be used to determine the meaning of different clusters. Finally clusters representing

a healthy machine state will fall close to the empirical cluster centers found during

the training.

3.3 Preprocessing Steps

Before passing the raw data to our neural network model we perform two prepro-

cessing steps. The first is shifting the raw sensor data to the frequency domain and

the second is normalization. For the first step, every channel is broken into 10 fre-

quencies using the absolute value of the short term Fourier transform, equivalent to

the square root of the PSD (Power Spectral Density). The PSD was then centered

and scaled to zero mean and unit variance. The test and validation datasets were

similarly transformed and normalized using the mean and standard deviation from

the training dataset. The normalized PSD was then used as the input to our neural

network.

3.4 Model Evaluation

To evaluate the performance of our model, we test its ability to detect faults across all

of our datasets. For datasets with multiple types of faults, we tested the ability of the

model to accurately classify different fault modes. The following sections outline how

our models are tested and the evaluation metrics used to judge model performance.

3.4.1 Fault Detection

The primary metric we use to judge our model is the overall detection accuracy.

For this purpose, on all datasets, the model is trained on approximately 70% of

the available known good data. A further 10% of the known good data is used for

threshold setting, and the remaining data including all instances of faults are used

as our test data. The trained model is then used to calculate anomaly scores for all

39

runs in the test dataset. All runs in the test dataset with an anomaly score higher

than the threshold are classified as faults, and the remaining runs are classified as

nominal. We evaluate our model by calculating the true positive rate, true negative

rate, and overall accuracy. The theoretical effectiveness of our model to detect faults

independent of the threshold setting method is measured using the area under the

ROC (Receiver Operating Characteristic) curve, or AUC.

3.4.2 Baselines

To test how significantly the performance of our system is affected by the addition

of the estimation network and the recurrent unit, we test our method against two

baseline models with these pieces disabled. To isolate the effect of these pieces,

besides the changes explicitly listed in this section, all hyperparameters concerning

the network size, training time, and input pipeline are kept the same as our final

model. The first baseline method is a DAGMM without a recurrent unit following the

final encoding layer. Instead, the final layer of the encoder is used as the bottleneck.

To this end, the final layer of the encoder was used to parameterize the normal

distribution from which the latent state was sampled directly. This change makes

the DAGMM stateless, such that the anomaly score assigned at any given moment

in time is independent of all sensor data outside of the current input window. The

second baseline model is a variational autoencoder without an estimation network.

Instead of using the GMM clustering objective to calculate the anomaly score, this

model uses the MSE loss from compression and reconstruction. Together these two

baselines are used to establish how important the clustering and forecasting elements

are to successful fault detection on each dataset.

3.4.3 Classification Accuracy

To evaluate the performance of the clustering method, we compare the ground truth

labels to the predicted labels and use the NMI (Normalized Mutual Information)

between the two sets of labels as our metric. The NMI is a measure of the agreement

40

between two sets of labels that is invariant to permutations and falls within the range

[0, 1], with one corresponding to identical labels and zero indicating that there is no

correlation between the two sets of labels [24]. The definition of the NMI is shown

below in Equation 3.5, where 𝑌 is the vector of true class labels, 𝐶 is the vector of

predicted cluster labels, 𝐼 is the mutual information, and 𝐻 is the entropy.

𝐻(𝑋) = −
∑︁
𝑥∈𝑋

×𝑝(𝑋 = 𝑥)𝑙𝑜𝑔(𝑝(𝑥 = 𝑋)−1)

𝐼(𝑌 ;𝐶) = 𝐻(𝑌)−𝐻(𝑌 |𝐶)

𝑁𝑀𝐼(𝑌,𝐶) =
2× 𝐼(𝑌 ;𝐶)

𝐻(𝑌) + 𝐻(𝐶)

(3.5)

3.4.4 Fault Detection With Hidden Information

During operation, some details of how a machine is being used may not be recorded

electronically. For example, the material being cut by a milling machine is rarely

tracked. In the event our model does not have access to this information, it will need

to be inferred to accurately gauge how anomalous a given window of sensor data is.

To evaluate the robustness of our model when missing information, on datasets with

multiple run types, we also measure the detection accuracy without normalizing the

anomaly scores by run type. We also test the ability of our model to classify runs

with different system settings, using the same process as described in Section 3.4.3.

3.4.5 Diagnostics and Predictive Maintenance

In this section, we describe the methods we explore to extract diagnostic information

from our model and a method we propose to predict faults in advance. The two

goals of this method are to narrow down the moments in time and the channels

most relevant to detecting a particular fault. This level of interpretability can help

engineers determine the true cause of different faults and speed up repair efforts. To

do so, we isolate channels and windows with the highest anomaly scores above the

empirical average on runs that were labeled as faults. We then overlay the known

good and faulty runs in the test dataset to see if clear differences in the signals

41

could be seen. Our second goal is to search for evidence of system drift before a

fault occurred that could potentially be used to improve detection rates should the

same fault occur again, or to predict the remaining useful life such that predictive

maintenance can be scheduled in advance. To accomplish this, we use the cluster

centers computed as described in Section 3.2.3 representing the average latent state

value and residual error on each channel for a given run type. The difference between

a cluster center of known good runs and of known faults represents the direction of

travel in latent space associated with a specific failure mode. We look to see if the

probability of faults occurring increases consistently along this dimension and if drift

in that direction can be detected prior to a fault occurring.

42

Chapter 4

Experiment Design and Data Sets

In this chapter, we outline our data collection methods and describe the various fault

detection tasks our system is tested against in more detail. To test our system’s ability

to generalize, we collect a range of datasets from different types of manufacturing

equipment. Across all datasets, features such as the sampling rate, number of sensor

channels, and amount of training data vary greatly, as do the types of sensors in each

experiment. For every dataset, we test the accuracy with which the fault system

can separate nominal points from faults. For datasets with multiple fault types, we

also test the classification accuracy of the system. For reference, a summary of the

characteristics of each dataset is shown in Table 4.1.

Table 4.1: Fault Detection Datasets

Dataset Sampling Freq. (Hz) No. of Channels Input Signals
Synthetic Arbitrary - -
Bearing 1200 2 Vibration
Mill (Chiron) 1000 3 Vibration

Mill (NASA) 250 6
Current
Acoustic
Vibration

Mill (Nazha) 200 3 Vibration
Etcher (ADI) 2 30 Mixed

43

4.1 Synthetic Generator

To guide the early development of our model architecture we developed a synthetic

data generator. Our generator models a target system as a Markov chain, where

each node represents a discrete state for the machine. Systems can be initialized with

an arbitrary number of sensor channels, machine states, and transition probabilities

between states. At each time step, the current state determines the signal produced

on every sensor channel. Signals are produced as linear combinations of sine waves

with amplitudes and phases determined by the state, with additive Gaussian noise.

Our early architectures are tested on their ability to detect faults represented as states

which are not present in the training data. The interpretability of the models was also

tested by measuring our ability to classify the machine state using the compressed

representation in the latent state and the ability of the system to classify the channels

associated with each fault.

4.2 Bearing

In this dataset collected by Case Western Reserve University [21], a fan supported

by circular ball bearings was spun at various speeds using a twohorse power motor,

as shown in Figure 4-1. Small defects were introduced to the inner raceway, outer

raceway, or balls in the bearing using electro-discharge machining. Vibration data

was collected at 12,000 Hz from accelerometers at both the drive end and fan end

of the motor housing. The data is divided into runs approximately 120,000 samples

long. There are four runs with an undamaged bearing and four runs with each of

the three fault types. The goal of our task is to successfully detect which run used a

damaged bearing and classify where in the ball bearing the fault is located.

‘

44

Figure 4-1: Case Western bearing experimental setup [21].

4.3 Mill

We consider data from three different milling machines, including two collecting in

collaboration with HARTING, and one from a public repository by NASA. In two

cases the fault being detected is damage to the cutting tool as shown in Figure 4-2.

Over time chips form in the cutting edge, and if left unchecked, these can eventually

lead to the tool snapping. In the final case, the cooling system was switched off for

the final few cutting runs. The details of each dataset are discussed further below.

(a) Healthy Cutting Tool (b) Damaged Tool

Figure 4-2: New vs. worn cutting tool. Chips can be seen in the tip of the blade.

45

4.3.1 Chiron Mill

In this fault detection dataset, a Chiron milling machine was used to drill through

steel plates at various speeds with either a new or worn tool. Three different cutting

speeds were tested with each trial being run twice for a total of 12 runs, as shown

in Table 4.2. Three axis accelerometer data was recorded at 1000 Hz from a sensor

placed above the cutting tool.

Table 4.2: Mill Chiron Experiments

Cutting Speed

700 mm/min 950 mm/min 1200 mm/min

Tool

Condition

New Exp 1.1 Exp 1.2 Exp 2.1 Exp 2.2 Exp 3.1 Exp 3.2

Used Exp 4.1 Exp 4.2 Exp 5.1 Exp. 5.2 Exp 6.1 Exp. 6.2

The goal of this fault detection task is to see if the model can separate out the

drilling runs with a worn tool, after training on cutting runs with the new tool.

Given the small number of runs available to us, we run a k-fold evaluation, training

the model on every possible combination of four new tool runs and testing on the

remaining eight runs. To compare anomaly scores across trials, the anomaly scores

are scaled to have a standard deviation of one and shifted such that zero represented

the highest anomaly score given to a run with a new tool.

4.3.2 Nazha Mill

In these experiments, a fault was induced in a milling machine by switching off the

cooling system. Our model is trained using three axis vibration data from 50 cutting

runs and tested on another 50 runs including 10 faults. Data was sampled at 2000

Hz.

46

Table 4.3: NASA Mill Experiments

Case Depth of Cut (mm) Feed Rate (mm/m) Material
1 1.5 0.5 Cast Iron
2 0.75 0.5 Cast Iron
3 0.75 0.25 Cast Iron
4 1.5 0.25 Cast Iron
5 1.5 0.5 Steel
6 0.75 0.5 Steel
7 0.75 0.25 Steel
8 1.5 0.25 Steel

4.3.3 NASA Mill

In this publicly available data set provided by the NASA Ames Prognostics Data

Repository [1], a milling machine was repeatedly used to drill through metal plates

under varying conditions, as shown in Table 4.3.

Measurements of tool wear (𝑉 𝐵) were taken between runs by using a microscope

to measure the distance in millimeters between the cutting edge and the end of the

abrasive wear on the tool, as shown in Figure 4-3. These readings provide our first

continuous measure of degradation to the health of the monitored equipment, in

contrast to the binary fault labels in the other data sets. Our fault detection system

is trained on 70% of the available runs with a 𝑉 𝐵 below .3mm and tested on the

remaining runs. To judge performance as well as measuring the accuracy of the

binary prediction, we also explore the regression loss, using the system to predict

tool wear from both the latent state and the anomaly score as a supervised modeling

problem. In real world applications, slow degradation in performance is far more

common than sudden failures. In these tests, we explore adapting our model for this

purpose and how it may be used to predict upcoming faults.

Figure 4-3: Measure of tool wear on the cutting edge of the mill insert [1].

47

4.4 ADI Etcher

This dataset contains internal sensor readings from a Lam plasma etcher that was

used in a production line by ADI. This fault detection dataset was originally gathered

and analyzed in the masters thesis of three previous authors, O. Mahklouk [23], H.

He [15], and T. Chen [7]. The dataset contains 4000 total wafer etches split between

two different wafer recipes, labeled recipe 920 and recipe 945. During production,

a fault occurred which caused approximately 700 of the etched wafers to fail an

electronic test performed afterward. Each run contains readings from 30 separate

channels, including sensors recording voltages, pressures, temperatures, and more

from throughout the machine, a sample of which are shown in Figure 4-4. Each

sensor channel was sampled at 2Hz, and runs typically contain either 300 or 600

samples each, depending on the recipe.

Figure 4-4: Sample of channels from the ADI etcher dataset.

On this data set, we test the ability of our system to detect which wafers would

fail the e-test based on the sensor readings. During both training and testing, our

system is not given access to the recipe being run, and we use this to further test the

48

ability of our system to classify different run types. Our system is trained on 2400

nominal runs, using a further hundred runs for threshold setting, and tested on the

remaining 1500 runs which contain an almost even split between faulty and nominal.

As the largest dataset available to us and the only one containing an organically

occurring fault while the machine was actively being used for production in industry,

this is also the dataset on which we seek to detect evidence of system drift prior to a

fault.

49

50

Chapter 5

Experimental Results

In this chapter, we outline our system tests and experimental results. Results are

organized by the type of machine being monitored. For every dataset, we test the

overall detection accuracy for our model and our two baselines. For datasets with

multiple fault types, we further measure the unsupervised classification accuracy.

Finally, for datasets with multiple types of runs, such as varying etch recipes or milling

speeds, we further break down our results by run type. The final fault detection

accuracy of our system across all datasets is shown in Table 5.1.

Table 5.1: Accuracy Scores Across All Datasets

Dataset VAE DAGMM RDAGMM

Bearing 1.00 1.00 1.00

Mill (Chiron) 0.93 0.99 0.99

Mill (NASA) 0.73 0.77 0.82

Mill (Nazha) 0.95 0.95 0.90

Etcher (ADI) 0.77 0.80 0.81

5.1 Bearing

The first set of results are based on the dataset collected by Case Western Reserve

University [21], as summarized in Section 4.2. In this dataset, a fan supported by

51

circular ball bearings was spun at various speeds using a two horsepower motor.

Small faults were introduced to either the inner raceway, outer raceway, or balls in

the bearing using electro-discharge machining. The goals of our system in this task

is to successfully detect when the bearing has been damaged, and to segment runs

with faults in different locations to separate fault classes.

5.1.1 Detection Accuracy

In the fault detection test, our model and our two baselines are able to perfectly

classify all runs with a damaged bearing. As shown in Figure 5-1, even when runs

are broken down in smaller fragments of only 0.1s, two orders of magnitude (noting

the log scale on this figure) separate the anomaly scores for windows having a healthy

versus a damaged bearing.

Table 5.2: Bearing Fault Detection Accuracy

VAE DAGMM RDAGMM

Accuracy 1.00 1.00 1.00

False Positive Rate 0.00 0.00 0.00

True Positive Rate 1.00 1.00 1.00

ROC Area Under Curve 1.00 1.00 1.00

5.1.2 Fault Classification

Our unsupervised classification algorithm is similarly able to perfectly classify the

runs by the type of fault. The refitted GMM finds the correct number of clusters

in the test set and provides an equivalent labeling with an NMI of 1, as shown in

Figure 5-3. Figure 5-2 shows the anomaly scores for each moment in time, with color

denoting the type of fault. Visually there is a notable difference between runs with a

healthy bearing, damage to the raceway, or damage to the balls.

52

Figure 5-1: Histogram of log anomaly scores for each 0.1s window of sensor data,
as calculated by the RDAGMM. Blue and orange indicate that the sensor data was
recorded with a healthy or damaged bearing, respectively.

Figure 5-2: Anomaly score calculated for every window of time in our test dataset by
the RDAGMM. Color indicates the true labels for the type of fault induced on the
bearing. Green indicates the runs with an undamaged bearing.

53

Figure 5-3: Unsupervised class labels assigned to each run in the test dataset after
refitting a GMM with unknown number of classes. Runs are perfectly separated by
fault type.

5.2 Mill Chiron

In this task, we test the ability of our system to separate milling runs with either a

new or damaged tool, based on the Chiron mill data summarized in Section 4.3.1.

Due to the small number of runs available, a 𝑘-fold evaluation is run to test the

performance of our system. In each iteration, the model is trained on six cutting runs

with a new tool, and tested on the remaining ten runs, two with a new tool and eight

with a damaged tool. This evaluation loop is run for all 15 possible train/test split

combinations.

5.2.1 Detection Accuracy

For all models, the majority of worn tool cutting runs are separable from those with

the new tool, using the anomaly score. As shown in Table 5.3, the DAGMM and

RDAGMM both outperform the vanilla autoencoder, with only a single false negative

and no false positives.

54

Table 5.3: Mill Chiron Experiments

VAE DAGMM RDAGMM

Accuracy 0.93 0.99 0.99

False Positive Rate 0.00 0.00 0.00

True Positive Rate 0.82 0.99 0.99

The distribution of anomaly scores for our model and both baselines is shown

in Figure 5-4. For the latter two models, the only misclassification occurs when the

model is trained exclusively on the lower speed runs. With no high speed runs present

in the training set, these runs are assigned a significantly higher anomaly score during

test evaluation.

(a) VAE (b) DAGMM

(c) RDAGMM

Figure 5-4: Histograms of 𝑘-fold cross validation results on the Chiron Mill dataset
with three model architectures in order of increasing complexity. Plotted on the X
axis is normalized log anomaly score, and the Y axis represents the total number of
trials which fall in this range. Runs with a new tool are shown in blue and runs with
a damaged tool are shown in orange.

55

5.3 Mill Nazha

In these experiments using the Nazha mill dataset as summarized in Section 4.3.2, a

fault was induced in the milling machine by switching off the cooling system. Similar

to the previous task, our model is trained using three-axis vibration data from fifty

cutting runs with the milling machine operating normally. It is then tested on forty

additional runs, including ten faults where the cooling system was switched off.

5.3.1 Detection Accuracy

At the two-sigma threshold, our model and the two baselines successfully detect every

fault in the evaluation dataset, with all models scoring above 90% as summarized

in Table 5.4. Our model has the highest false positive rate, with three additional

misclassified runs, leading to the lowest overall accuracy overall.

Table 5.4: Mill Nazha Fault Detection Accuracy

VAE DAGMM RDAGMM

Accuracy 0.95 0.95 0.90

False Positive Rate 0.07 0.07 0.13

True Positive Rate 1.00 1.00 1.00

ROC Area Under Curve 0.99 0.99 0.99

Independent of thresholding, all three models perform equivalently as classifiers,

as shown by the ROC curves in Figure 5-5, with an area under each curve of 0.99.

The full distributions of anomaly scores for our model and both baselines are shown

in Figure 5-6.

56

Figure 5-5: Mill Nazha ROC curves. Curves for all three models overlap perfectly.

Figure 5-6: Comparison of anomaly scores generated by all three models for test runs
in the Nazha Mill dataset. Faulty runs with the cooling system shut off are shown in
orange. Nominal runs are shown in blue.

57

5.4 Mill NASA

In this task, we train our system on milling runs from the NASA mill dataset sum-

marized in Section 4.3.3. The model is trained on 80% of runs with measured tool

wear below 0.3mm. The remaining runs are used as the test dataset and we evaluate

the ability of the model to distinguish runs with a more damaged tool. The system

is provided acoustic, vibration, and motor current readings. The material being cut,

motor speed, and depth of cut were all changed between runs. With these three

variables taking two values each, there are a total of eight run types. Anomaly scores

were normalized independently for each run type. We further test the fault detection

accuracy if the material and machine settings are not known and the ability of our

model to classify these different run types.

5.4.1 Detection Accuracy

This section details the ability of our model to detect faults if the depth of cut,

material, and feed rate are all known at the time of evaluation. Table 5.5 shows

the fault detection rates for our model and benchmarks when setting thresholds for

each run type independently. Our model outperforms both benchmarks with a final

accuracy of 82%. Our model also outperformed both baselines independent of the

threshold, as shown by the ROC curves in Figure 5-7.

Table 5.5: NASA Mill Detection Accuracy - Normalized Run Type

VAE DAGMM RDAGMM

Accuracy 0.73 0.77 0.82

False Positive Rate 0.10 0.00 0.00

True Positive Rate 0.73 0.77 0.85

ROC Area Under Curve 0.88 0.92 0.95

58

Figure 5-7: NASA Mill ROC - Normalized by run type.

5.4.2 Detection Accuracy With Hidden Information

Without normalizing anomaly scores by run type, our model and both baselines

perform substantially worse. Our model still outperforms the two benchmarks as

shown in Table 5.6, with a final detection accuracy of 0.67%, a 14% decline from the

previous results. Independent of thresholding, our model also outperforms the two

benchmarks as shown by the ROC curves in Figure 5-8, but the AUC is similarly

reduced across all three models.

Table 5.6: NASA Mill Detection Accuracy - Hidden Variables

VAE DAGMM RDAGMM

Accuracy 0.59 0.62 0.67

False Positive Rate 0.19 0.19 0.19

True Positive Rate 0.59 0.62 0.65

ROC Area Under Curve 0.78 0.77 0.80

59

Figure 5-8: NASA Mill ROC curves with hidden variables.

This decline in performance is due to the fact, as shown by the unnormalized

anomaly scores in Figure 5-9, that while a roughly linear relationship can be seen

between the tool wear and the log anomaly score for runs of the same type, the range

of anomaly scores assigned to runs of each type varies dramatically. For example,

focusing on the top two plots of Figure 5-9, on runs where iron is being cut to a

depth of 1.5mm with a feed rate of 0.5, the optimal threshold to maximize detection

accuracy is around an NLL of 3.25. By contrast, when the depth of cut is reduced

to 0.75mm, this threshold is higher than the vast majority of faults. Setting a single

threshold for all run types becomes impossible.

60

Figure 5-9: NASA Mill Anomaly Scores. Each plot represents runs with a unique
combination of machine settings and material being cut. The log anomaly scores are
plotted against the measured tool wear for each run.

5.4.3 Clustering

The reduction in accuracy seen above is mirrored by the results of our unsupervised

clustering algorithm. In this instance, our system failed to meaningfully label different

run types. As shown in Figure 5-10, our system groups runs into 5 clusters with an

NMI to the true labels of 0.35.

61

Figure 5-10: NASA Mill unsupervised clustering results. Color denotes the true labels
for each run, and the x axis shows the predicted cluster label.

5.5 Etcher ADI

In the data-set provided by ADI as summarized in Section 4.4, our model has access

to all internal sensors and monitors within a plasma etcher during operation; a total

of 30 channels including temperatures, pressures, voltages, and gas concentrations.

The etcher was being used to execute two different wafer recipes titled “recipe 920”

and “recipe 945”. After approximately 200 runs, a fault occurred which resulted in a

long sequence of failed etches before the machine was repaired and normal operation

resumed. In this trial, we train our models on 1000 successful etching runs and then

evaluated the ability of our model and the baseline approaches to classify the failed

etches by anomaly score.

5.5.1 Detection Accuracy

The results of our model detection accuracy compared to our two baselines are summa-

rized in Table 5.7. As shown, our model slightly outperforms the VAE and DAGMM,

with a two-sigma threshold scoring the highest accuracy and TPR as well as the

lowest FPR.

62

Table 5.7: Etcher MIT Results

VAE DAGMM RDAGMM

Accuracy 0.77 0.80 0.81

False Positive Rate 0.18 0.12 0.12

True Positive Rate 0.72 0.72 0.74

ROC Area Under Curve 0.90 0.88 0.90

Figure 5-11 shows the comparative efficacy of our model as a fault classifier at all

thresholds compared to our two baseline models. Our model outperforms the VAE

at low false positive rates and underperforms at false positive rates above 40%.

Figure 5-11: ADI etcher ROC curves.

As shown in Figure 5-12, approximately 65% of the failed runs can be immediately

separated from the successful runs, with anomaly scores that are orders of magnitude

larger than the average, noting the log score in the plot. The remaining failed runs

are mixed in with successful etches.

63

Figure 5-12: Histogram of log anomaly scores for each run in the ADI etch test
dataset. Successful etches are shown in blue and failed runs are shown in orange.

Notably, the vast majority of detection errors made by our system are on the runs

following the 920 recipe. Figure 5-13 shows the log anomaly scores for every run

separated by recipe, and it can be seen that the responses are very different. For

the 920 recipe, our model performs substantially better, with a detection accuracy of

92% and 83% of runs being cleanly separable, with an order of magnitude jump in

the anomaly score. By contrast, on runs following recipe 945 our model could only

separate out 50% of the failed runs in the same way, with the decision boundaries as

shown. The remaining runs with a log anomaly score of less than 3.5 roughly follow a

sum of two Gaussian distributions; the first, centered around a log anomaly score of

2.3, generating only successful runs, and the second, centered around 2.9, generating

an even mix of failed and successful runs. This pattern is reflected in the results of

our classification algorithm as discussed next in Section 5.5.2.

64

(a) 920 recipe. (b) 945 recipe.

Figure 5-13: Histogram of anomaly scores assigned by our model to runs of each
recipe.

5.5.2 Clustering

This section shows the results of our unsupervised classification algorithm. It is

unknown whether this etch dataset contains multiple fault types that led to the failed

etches. Our classification algorithm groups the runs in our test dataset into five

clusters; Figure 5-14 shows the composition of the five clusters found by our system

using the dataset provided true labels.

Figure 5-14: Unsupervised clustering of the ADI etcher runs. Color denotes the true
labels, and the x axis shows the label assigned by our system.

65

As pictured in Figure 5-14, the first four classes almost perfectly segment the runs

by both recipe and fault label, with only a single false positive in class 3 and 53

false negatives in class 2, out of a total of 1150 runs in these classes. The final class

contains a 50/50 split of successful and failed runs, all from the 945 recipe. The NMI

score for this labeling is 0.75.

5.5.3 Drift Detection and Fault Diagnosis

In this section, we explore how our model could potentially be used to build diagnostic

tools and predict faults in advance of failures. The ADI etcher dataset is used for

this purpose, as the only dataset recorded from a machine actively being used in

industry that encountered a fault organically. The first goal of these tests is to use

our model to pinpoint or connect meaningful differences between failed and successful

etches to specific sensor channels and moments in time. The second goal is to find

temporal trends prior to a fault that could be used to predict the remaining useful

life and preemptively schedule maintenance. Figure 5-15 shows visually how runs are

encoded by the RDAGMM in latent space. For both run types, a clear increase in

fault density can be seen as the run encodings transition from the bottom left to the

bottom right.

Figure 5-15: Visualization of RDAGMM latent space values for each ADI etching run
using first two principal components.

66

The distribution of run types and assigned class labels are shown chronologically in

Figure 5-16. Notably, there are no misclassifications after the machine was repaired

around run number 1000. All false positives occur prior to the first failed etch.

Additionally, the recipe 945 runs before the fault began are all given a fifth class label

containing a number of faults as well. This class corresponds to class label 4 shown

previously in Figure 5-14. Asymmetry in classification rates and labelings before and

after the fault is consistent with the hypothesis that there was detectable degradation

in the machine’s health proceeding wafers failing to pass a downstream e-test.

Figure 5-16: True labels for etcher runs and predicted GMM class labels shown
chronologically.

5.6 Run Time

In this section, we comment on the computational resources needed for training and

inference. All training was performed using a single Nvidia 2070 GPU. Inference was

performed using an Intel i7 CPU. Training on our largest dataset, the ADI etcher

readings, requires approximately 4 hours. The inference steps require 0.24s per run.

In all cases, both training and inference ran substantially faster than the duration

of the time series being analyzed, opening the possibility for real time training and

inference.

67

68

Chapter 6

Ongoing Projects

In this chapter, we describe preliminary explorations of improvements to the RDAGMM

architecture, and present results using the recording platform we developed to acquire

fault detection datasets for further development of the system.

6.1 MIT Etcher Dataset

Key limitations of the datasets used in this work are the artificial nature of the faults,

the lack of repeat faults, and the lack of data leading up to the failure. Ideally, to

test the viability of our system in a real world setting, particularly the diagnostic

and predictive maintenance aspects, would require long term readings from manufac-

turing equipment in active use. To this end, in partnership with MIT.nano and the

Microsystems Technology Laboratories, we have developed and installed a recording

platform in the Integrated Circuits Laboratory monitoring a Lam 590 plasma etcher,

shown in Figure 6-1b. The plasma etcher is frequently used by a variety of researchers,

private groups, and for teaching purposes.

Our recording platform connects between the etcher and the wall power supply

and collects three phase current and voltage going into the machine. As shown in

Figure 6-1a, the recording platform consists of two boxes, the first containing a twelve

volt power supply and a Raspberry Pi 4. The second contains the current and volt-

age sensors as well as two high speed analog-to-digital converters. The sensors are

69

(a) Sensor Boxes (b) Lam 590 Plasma Etcher

Figure 6-1: Etcher power measurement experimental setup.

capable of sampling at 12,000 Hz to capture high frequency transients. The sensors

run continuously, and are monitored by a software trigger that automatically begins

recording when it detects that the machine is in active use. When the system detects

the etcher is not in use, files are uploaded to a network drive for long term storage.

While machine use dropped considerably due to the pandemic, in the six months since

we began recording, we have accumulated approximately 150 etching runs, a sample

of which is shown in Figure 6-2.

Figure 6-2: Three phase current signal - single etch.

During this time the etcher has suffered from one fault. An electrode gap error

on August 24, 2020, caused the machine to jam and triggered routine maintenance,

during which it was discovered that there was a vacuum leak in the etch chamber. It

70

Figure 6-3: Anomaly scores assigned to runs during the month of August. A sharp
spike in the residual score can be seen on August 12th after which the machine went
unused for 10 days. On August 24th the anomaly score begins spiking again leading
to a machine jam as shown in red. Following the repairs, the anomaly score drops
again as shown in green.

is unknown when the leak began. Figure 6-3 shows the anomaly scores assigned to

the runs around that period of time. Immediately prior to the fault occurring we see

the anomaly score spike, and then fall significantly following repairs. Similar spikes

can be seen earlier in the month as well, with no fault being reported. To generate

these results our system is trained on 50 etching runs from the month prior to the

fault.

For all of these runs, the etch recipe and other machine settings are unknown.

Tests are ongoing to determine if spikes in the anomaly score are correlated with

faults, or possibly are being caused by novel run settings and other factors. Given

the difficulty of this problem, we expect significantly more data will be required to

properly train the system. We are, however, cautiously optimistic that ultimately

faults will be detectable solely through supply power measurements. Figure 6-4a

and Figure 6-4b show a sample of etching runs from before and after maintenance

71

was performed due to the jam. Visually the current draw appears far more stable

following the repairs, indicating that changes in the machine health cause detectable

changes in the power signals.

(a) Prior to machine jam.

(b) Post repairs.

Figure 6-4: Sample of runs from before and after maintenance was performed on the
etcher. Following repairs, current draw appears more stable during the etching phase.

72

The current recording platform uses a commercial voltage sensor connected di-

rectly to the three phase power lines. To further test the efficacy of fault detection

systems using noninvasive sensors, a second sensor box shown in Figure 6-5 was built

using a prototype of a contactless combined current and voltage sensor developed

by A. Casallas [4]. Exploration of power monitoring of industrial equipment using

these and other prototypes, in conjunction with our deep learning architecture, is a

promising avenue for future work.

(a) Sensor box for use in clean room. (b) Sensor prototype.

Figure 6-5: Contactless sensor prototype. The sensor clips onto the outside of power-
lines and combines multiple measurements of the surrounding electric and magnetic
fields provide accurate current and voltage readings robust against external sources
of noise.

6.2 Continuous Learning

This section details our proposed solution to the problem of system drift. Over long

periods of time, the behavior of a target piece of equipment will naturally change.

This can lead to a steady decrease in the performance of a fault detection system. To

combat this, we propose a continuous version of our algorithm, the weights of which

are constantly updated by training on new batches of data as they are recorded. This

allows our model to drift along with the system. At each time step 𝑡 the network

73

weights are updated by training for one epoch, and the model weights at each time

step 𝜑𝑡 are stored. Evaluation on a new batch of data at timestep 𝑗 can then be

performed with model weights from any previous time step 𝑖. These weights are

used to compute the residual vector 𝑅𝑒𝑠(𝑖,𝑗), latent state representation 𝐿𝑆(𝑖,𝑗), and

Gaussian mixture model parameters Θ(𝑖,𝑗) for each batch as shown in Algorithm 2,

where 𝑖 represents the last batch the network weights were trained on and 𝑗 represents

the batch being evaluated. Comparison of the model predictions using weights from

different time steps can be used as a proxy for how much the system has drifted in

that time.

Algorithm 2 Continuous FDS Training and Prediction
1: procedure CAFD(𝑆𝑦𝑠) ◁ Input: A continuous source of sensor data from a

monitored system
2: 𝐹𝐷𝑆0 ← 𝐼𝑛𝑖𝑡_𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝑊𝑒𝑖𝑔ℎ𝑡𝑠()
3: 𝑡 = 0
4: while 𝑇𝑟𝑢𝑒 do
5: 𝑡 = 𝑡 + 1
6: 𝑋𝑡 ← 𝑆𝑦𝑠.𝑝𝑢𝑙𝑙_𝑏𝑎𝑡𝑐ℎ_𝑑𝑎𝑡𝑎()
7: 𝐹𝐷𝑆𝑡 ← 𝐹𝐷𝑆𝑡−1.𝑓 𝑖𝑡(𝑋𝑡)
8: if 𝑡 > 𝑤𝑎𝑟𝑚_𝑠𝑡𝑎𝑟𝑡 then
9: 𝑅𝑒𝑠(𝑡−1,𝑡), 𝐿𝑆(𝑡−1,𝑡),Θ(𝑡−1,𝑡) ← 𝐹𝐷𝑆𝑡−1.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋𝑡)

10: 𝑅𝑒𝑠(𝑡−2,𝑡), 𝐿𝑆(𝑡−2,𝑡),Θ(𝑡−2,𝑡) ← 𝐹𝐷𝑆𝑡−2.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋𝑡)

We hypothesize that these time lagged predictions can be used to estimate the

rate of system drift as the difference in the model accuracies over time. Second order

effects, such as the rate of system drift, could then potentially be used to improve fault

detection accuracy and possible estimate the remaining time to failure. As a proof

of concept, we run a version of this algorithm on the ADI etcher database detailed

in Section 4.4. Our model is trained and evaluated chronologically on batches of 100

runs. Figure 6-6 shows an overlay of the temperature readings from one sensor for

100 etching runs. Temperatures are noticeably higher during failed etches.

74

Figure 6-6: Overlay of temperature reading over the course of 100 etching runs. Failed
etches are shown in red and successful etches are shown in blue

Figure 6-7 shows the magnitude of the residual vector, or compression loss, on

the same 100 runs using model weights from three different points in time. The first

training batch at time 𝑡− 1 contains no failed etches, batch 𝑡 contains a mix of faulty

and successful runs, and batch 𝑡+1 contains only failed etches. Comparing the results

from these three sets of model weights, we can see that as more faults are introduced

into the training data, the predicted temperature rises.

(a) 𝑖 = 𝑡− 1 (b) 𝑖 = 𝑡 (c) 𝑖 = 𝑡+ 1

Figure 6-7: Residual error for the 100 runs in Figure 6-6 containing a mix of faulty
and successful etches. A heat map is used to indicate the magnitude of the residual
vector. Blue indicates low compression loss and red indicates a high compression loss.
At timestep 𝑖 = 𝑡−1 no faults are present in the training data. As the system is trained
on batches containing faults at timesteps 𝑡 and 𝑡+ 1, the predicted temperatures rise
steadily.

75

6.3 Conditional Decoding

This section details our proposed solution to the problem of discrete run types. In our

test on the ADI etcher database, we see vastly different anomaly detection accuracies

on recipe 920 (90%) compared to recipe 945 (60%). This was true even after nor-

malizing the anomaly scores for each run type independently. To better incorporate

discrete variables 𝑌 , defining independent run types, we propose using a conditional

decoder to reconstruct the input window as a function of both the latent state and

the discrete variables, as shown in Figure 6-8.

Figure 6-8: Network diagram for conditional variational autoencoder. Discrete vari-
able are appended onto the latent state vector before decoding and used to normalize
residuals before computing a final anomaly score

To this end, as well as being used to normalize inputs and residuals by run type,

the discrete variables would be appended to the latent state vector before being used

as the input to both the estimation network and the decoder. We hypothesis that this

should allow the model to better separate variance due to faults, and variance due

to machine settings and usage. Conditional variational autoencoders have already

been used to great effect in anomaly detection tasks [29] and fault detection tasks

[32]. In preliminary testing, we find using a conditional VAE improves the detection

accuracy of the VAE by approximately 5% on the ADI etcher dataset. We expect the

RDAGMM to see a similar increase in performance from this addition as well.

76

6.4 Change Point Detection

In the datasets used in this thesis, our raw sensor data is grouped into runs, such

as a single etch, and the mean anomaly score for the duration of the run is used

to represent the whole. In practice, the labels for the start and the end of different

phases of operation may not be available, and in some cases may not exist. To

address this, we explored integrating a change point detection algorithm into our

model to automatically segment time series data into phases. We implemented and

tested a version of the time series segmentation algorithm proposed by Lee et al. [19].

In this method, the raw time series input 𝑋 is compressed using a sliding window

autoencoder onto a reduced feature space �⃗�. The rate of change of the latent state

at each time point ∆𝑧[𝑡] is then computed, given by ∆�⃗�[𝑡] = �⃗�[𝑡 − 1] − �⃗�[𝑡]. Change

points are then predicted as local maxima in the ∆�⃗�[𝑡] vector using a peak finding

algorithm. Figure 6-9 shows the results of our preliminary tests of this method against

a stochastically generated synthetic data set. To generate the dataset, as described in

Section 4.1, at each moment in time a true system state is determined by iteratively

following a Markov chain. Signals are then generated as the sum of four sinusoids

with amplitude and frequency determined by the system state. In our tests, true

changes in the system state are all detectable as local maxima in the rate of change

in the latent state vector. It remains an active area of inquiry how automated signal

segmentation can be integrated into our system to improve fault detection rates.

77

Figure 6-9: Change point detection on synthetic data. The rate of change of the latent
state value is plotted on the y axis against time. Change points between system states
are denoted with red dots.

78

Chapter 7

Conclusion and Future Work

The primary goal of this project is to evaluate whether an unsupervised learning

system could function as a general purpose fault detection system across a range of

equipment, without expert knowledge, hyperparameter tuning, or other application

specific changes. To this end, we propose a modified version of the DAGMM and

evaluate its performance across a range of fault detection tasks. In this section, we

summarize our results in the context of these goals and present our suggestions for

future work.

7.1 Performance

The model appears to generalize well across applications from a variety of machines,

with a range of sensor channels (between 2-30 in our results), a range of sampling

rates (between 2 and 1200Hz) as well as a variety of sensor types. On the Bearing

and Chiron Mill datasets our system scores above a 99% classification accuracy. On

the remaining datasets, the majority of faults are always distinguishable by a spike

in the anomaly score often spanning multiple orders of magnitude. For example,

Figure 7-1 shows the chronological anomaly scores assigned to the Nazha Mill and

ADI Etcher datasets. In the Nazha Mill results, we see an enormous spike in the

anomaly score on the first run following the cooling system being disabled. Similarly,

on the ADI Etcher database, while many faults were missed, at any threshold level our

79

system would have thrown an alarm by the third failed etch, potentially preventing

the subsequent 700 failed runs. We see the same effect in the NASA Mill dataset,

our test case with a continuous measure of tool wear. Some individual runs with

a worn tool are missed, particularly the borderline cases. However, the majority of

faults had anomaly scores hundreds, or even thousands, of times higher than the

most anomalous run with an undamaged tool, and tended to grow exponentially as

the tool became more damaged. In all cases, we believe the fault detection ability of

our system is high enough to be of practical use.

(a) Etcher ADI (b) Mill Nazha

Figure 7-1: Chronological anomaly scores for the ADI Etcher and Nazha Mill evalu-
ation datasets.

Notably, our system has significantly lower scores (by accuracy and ROC AUC) on

the ADI Etcher and NASA Mill datasets. We believe this is due to the limited ability

of our system to separate changes due to variance in how the machine is used, such as

the etch recipe being run or material being cut with a milling machine, from changes

due to faulty system behavior. This problem is most clearly seen in the NASA Mill

dataset which contains eight possible cutting configurations and a continuous measure

of tool wear. Without normalizing the anomaly scores by run type, the accuracy falls

substantially from 82% to 67%. Even after normalization, the inability of the model

to classify runs with different system settings leads us to believe these factors are

still affecting the anomaly score, reducing our system’s ability to tease out the effects

80

of tool wear. We see a similar effect with the ADI etcher results, which span two

etching recipes. In that instance, the detection accuracies for the 920 recipe are

approximately 90% compared to 60% for the 945 recipe. This suggests the model as

implemented would perform substantially better in highly repetitive settings, such as

manufacturing lines, compared to a setting like a machine shop with more variance

in how the equipment is being used. As discussed in Section 6.3 we believe better

integrating discrete variables into the model using a conditional decoder will help

solve this problem. It remains an exercise of future work how best to address it in

the case of hidden variables, where the model is working with imperfect information.

7.2 Data Efficiency

Our results suggest that our model can be effective even in settings with very little

training data. On the bearing dataset our model is trained on only 30 seconds of

vibration data, and then successfully detects and classifies all faults in the test set.

Similarly, on the Chiron mill dataset, our model is trained on only six cutting runs,

and then separates faults perfectly in all but one of the k-fold evaluation runs. How-

ever, the one error on the Chiron mill evaluation is emblematic of another weakness

of our system. The misclassification occurs on an evaluation loop when the model has

no high speed runs in its training data. The anomaly score that our model computes

is not necessarily a measure of the probability of a fault, only that something has

changed compared to the data available in the training set. Any time a variable such

as the run speed takes a value that is not present in the training data, our model

has a high probability of flagging the instance as a possible fault. When the training

data available to our model does not cover the full range of machine settings, this can

lead to a high level of false positives. We believe the amount of training data needed

to effectively train our system will vary substantially depending on the complexity of

the machine in question, the number of sensor channels, and the variance in use.

81

7.3 Real World Application

While our results are encouraging, further work is needed to demonstrate the efficacy

of our model in practical applications. Primarily this is due to the fact that in

real world scenarios degradation to machine health is often a gradual process as in

the NASA Mill dataset, as opposed to the sudden change seen in the other mill

datasets (e.g. by switching out the new tool for one with more significant wear).

In these scenarios, detection of system drift over longer timescales can be critical

to detecting faults. The induced faults used in the majority of our tests may prove

to be easier to detect than those that occur naturally. In addition, the presence

of faults being mistakenly added to the training dataset can cause our model to

misclassify future faults with a similar signature. It remains an important open

question how the detection accuracy of our model will drop as a function of the

percentage of faults present in the training dataset. The continual learning version

of our detection algorithm may address this challenge, but more real world data

spanning longer duration is necessary to further develop and test the efficacy of such

an approach.

7.4 Thresholding

In this work, thresholds on the anomaly score are set at two standard deviations

above the mean on a validation dataset. In practice, optimal thresholding should

incorporate a cost-benefit analysis of the risk of missed failures versus the number of

false positives. Because failures are typically very rare occurrences, even a small false

positive rate can lead to the vast majority of warnings being false alarms, effectively

negating the usefulness of the fault detection system. On the other hand, in some

scenarios, even a single missed fault can be extremely costly, especially in scenarios

where it can cause further damage to equipment downstream in the production line.

Equally important is the time span within which fault needs to be detected. Using

the milling machine as an example, the important event to be avoided may be a tool

82

snapping during operation. Using a FDS to detect tool wear with some margin for

error, if runs can be batched into periods longer than a single cutting run, and the

probability of a missed detection could be reduced significantly (exponentially w.r.t.

batch size if we could assume missed detections were independently distributed). For

some applications, it is promising that in our tests our model can detect the majority

of faults even at very high threshold levels. Table 7.1 shows the percentage of faults

our system detects with a threshold set such that there isn’t a single false positive.

For applications that require low false negative rates on short time scales, it remains

to be seen how much the performance of our system can be improved with further

optimization.

Table 7.1: Detection Accuracies at Zero False Positives

Dataset Detection Accuracy

Bearing 1.0

Mill (Chiron) 0.99

Mill (Nasa) 0.8

Mill (Nazha) 0.86

Etcher (ADI) 0.65

7.5 Interpretability

For the purpose of quickly diagnosing and repairing faults or discounting false posi-

tives, the interpretability of a fault detection system is extremely beneficial. To this

end, one of the strengths of our system is the richness of the internal representation.

Namely, the anomaly score can be broken down by both channel and time to isolate

the specific sensors and periods that had the greatest contribution to a positive fault

prediction. Secondly, as demonstrated with the ADI Etcher dataset the clustering

algorithm can be used to calculate a specific direction between normal and faulty

runs, in terms of either changes to the residual or the latent space vector. We hy-

pothesize that by using a small number of known faults, and monitoring drift in the

83

RDAGMM cluster centers, it may be possible to estimate remaining useful life and

schedule maintenance in advance of faults. It remains an exercise of future work to

test the efficacy of such a system and explore the best way diagnostic tools could be

fashioned from the internal representation of our model. As an example, disentangled

variational autoencoders have been shown in practice to find internal representations

where each latent value can be mapped to a meaningful generative factor [6]. In our

system, this may significantly improve interpretability if it allows values in the latent

space to be mapped to physically meaningful quantities in the device, such as tool

speed or predicted wear in a milling machine.

7.6 Architecture Improvements

There are two changes to the neural network itself we believe could further improve

performance. The first would be to use wavenets to encode the raw sensor data in-

stead of the convolutional layers tested in this work. Wavenets have recently been

used to great success in generative model for high sample rate, raw audio files [34].

The window size for a wavenet increases exponentially with the number of parameters.

In our model, this could potentially allow us to dramatically increase the window size

allowing for better detection of long term trends. The second change we recommend

is the incorporation of an attention network. Attention networks have in recent years

have achieved state of the art results on numerous time series application includ-

ing fault detection [18, 20] and should further improve the model’s ability to detect

temporal trends.

7.7 Conclusion

The motivating question behind this project was to explore how well a fault detection

system could perform given the least possible information. Our results suggest unsu-

pervised learning techniques may allow for effective fault detection systems without

any knowledge of the target system, the types of sensors being used to monitor it,

84

or labeled examples of faults. Even if the performance of fully unsupervised systems

fail to match that of systems created with expert knowledge, which may not always

be the case, we believe the benefits of an out-of-the-box solution to any given fault

detection task would be substantial. We hope this work serves as a step towards this

goal.

85

86

Bibliography

[1] A. Agogino and K. Goebel. BEST lab, UC Berkeley. Milling Data Set. NASA
Ames Prognostics Data Repository, NASA Ames Research Center, 2007.

[2] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference:
A review for statisticians. Journal of the American Statistical Association,
112(518):859–877, Jan. 2016.

[3] Vanson Borne, ServiceMax, and GE Digital. After the fall: The costs, causes
and consequences of unplanned downtime. 2017.

[4] A. Casallas. Contactless voltage and current estimation using signal processing
and machine learning. Master’s thesis, Massachusetts Institute of Technology,
Aug. 2019.

[5] Joseph E. Cavanaugh and Andrew A. Neath. Generalizing the derivation of
the Schwarz information criterion. Communications in Statistics-Theory and
Methods, 28(1):49–66, 1999.

[6] Ricky TQ Chen, Xuechen Li, Roger B. Grosse, and David K Duvenaud. Isolating
sources of disentanglement in variational autoencoders. In Advances in Neural
Information Processing Systems, pages 2610–2620, 2018.

[7] T. Chen. Anomaly detection in semiconductor manufacturing through time series
forecasting using neural networks. Master’s thesis, Massachusetts Institute of
Technology, Aug. 2018.

[8] Dave Crumrine and Doug Post. When true cost of downtime is unknown, bad
decisions ensue. International Society of Automation. Jan. 2016.

[9] Mariela De Lucas Alvarez and David M. Lane. A Hidden Markov Model appli-
cation with Gaussian Mixture emissions for fault detection and diagnosis on a
simulated AUV platform. In OCEANS 2016 MTS/IEEE Monterey, OCE 2016.
Institute of Electrical and Electronics Engineers, Nov. 2016.

[10] Kai Ding, Sheng Ding, Andrey Morozov, Tagir Fabarisov, and Klaus Janschek.
On-line error detection and mitigation for time-series data of cyber-physical sys-
tems using deep learning based methods. In Proceedings - 2019 15th European
Dependable Computing Conference, EDCC 2019, pages 7–14. Institute of Elec-
trical and Electronics Engineers, Sep. 2019.

87

[11] Teguh Handjojo Dwiputranto, Noor Akhmad Setiawan, and Teguh Bharata Aji.
Machinery equipment early fault detection using Artificial Neural Network based
Autoencoder. In Proceeding - 2017 3rd International Conference on Science
and Technology-Computer, ICST 2017, pages 66–69. Institute of Electrical and
Electronics Engineers, Aug. 2017.

[12] Jicong Fan, Wei Wang, and Haijun Zhang. Autoencoder based high-dimensional
data fault detection system. In Proceedings - 2017 IEEE 15th International
Conference on Industrial Informatics, INDIN 2017, pages 1001–1006. Institute
of Electrical and Electronics Engineers, Nov. 2017.

[13] Long Gao, Donghui Li, Ding Li, and Haiyan Yin. An improved LSTM based sen-
sor fault diagnosis strategy for the air-cooled chiller system. In Chinese Control
Conference, CCC, volume 2019-July, pages 4990–4995. IEEE Computer Society,
Jul. 2019.

[14] D. M. Hawkins. Identification of Outliers. Springer Netherlands, 1980.

[15] H. He. Applications of reference cycle building and k-shape clustering for
anomaly detection in the semiconductor manufacturing process. Master’s thesis,
Massachusetts Institute of Technology, Aug. 2018.

[16] Yang Huang, Chiun Hsun Chen, and Chi Jui Huang. Motor fault detection
and feature extraction using RNN-based variational autoencoder. IEEE Access,
7:139086–139096, 2019.

[17] Yongjun Jin, Chenlu Qiu, Lei Sun, Xuan Peng, and Jianning Zhou. Anomaly
detection in time series via robust PCA. In 2017 2nd IEEE International Con-
ference on Intelligent Transportation Engineering, ICITE 2017, pages 352–355.
Institute of Electrical and Electronics Engineers, Oct. 2017.

[18] E. Kim, S. Cho, B. Lee, and M. Cho. Fault detection and diagnosis using self-
attentive convolutional neural networks for variable-length sensor data in semi-
conductor manufacturing. IEEE Transactions on Semiconductor Manufacturing,
32(3):302–309, 2019.

[19] Wei-Han Lee, Jorge Ortiz, Bongjun Ko, and Ruby B. Lee. Time series segmen-
tation through automatic feature learning. CoRR, abs/1801.05394, 2018.

[20] Ding Li, Donghui Li, Chengdong Li, Lin Li, and Long Gao. A novel data-
temporal attention network based strategy for fault diagnosis of chiller sensors.
Energy and Buildings, 198:377 – 394, 2019.

[21] K. A. Loparo. Case Western Reserve University Bearing Data Center. Bearings
Vibration Data Sets, Case Western Reserve University: http://csegroups.case.
edu/bearingdatacenter/home, pages 22–28, 2012.

88

[22] Yiwei Lu, K. Mahesh Kumar, Seyed Shahabeddin Nabavi, and Yang Wang.
Future frame prediction using convolutional VRNN for anomaly detection. In
2019 16th IEEE International Conference on Advanced Video and Signal Based
Surveillance, AVSS 2019. Institute of Electrical and Electronics Engineers, Sep.
2019.

[23] O. Makhlouk. Time series data analytics: Clustering-based anomaly detection
techniques for quality control in semiconductor manufacturing. Master’s thesis,
Massachusetts Institute of Technology, Aug. 2018.

[24] Aaron F. McDaid, Derek Greene, and Neil Hurley. Normalized mutual infor-
mation to evaluate overlapping community finding algorithms. arXiv preprint
arXiv:1110.2515, 2011.

[25] Baligh Mnassri, El Mostafa El Adel, Bouchra Ananou, and Mustapha Ouladsine.
Fault detection and diagnosis based on PCA and a new contribution plot. IFAC
Proceedings Volumes, 42(8):834–839, Jan. 2009.

[26] Mahnoosh Nadjarpoorsiyahkaly and Chee Peng Lim. A hybrid neural classifier
for dimensionality reduction and data visualization and its application to fault
detection and classification of induction motors. In Proceedings - 2011 6th In-
ternational Conference on Bio-Inspired Computing: Theories and Applications,
BIC-TA 2011, pages 146–150, 2011.

[27] Dawei Pan, Zhe Song, Longqiang Nie, and Benkuan Wang. Satellite teleme-
try data anomaly detection using Bi-LSTM prediction based model. In 2020
IEEE International Instrumentation and Measurement Technology Conference
(I2MTC), pages 1–6. Institute of Electrical and Electronics Engineers, May 2020.

[28] Pangun Park, Piergiuseppe Di Marco, Hyejeon Shin, and Junseong Bang. Fault
detection and diagnosis using combined autoencoder and long short-term mem-
ory network. Sensors (Switzerland), 19(21), Nov. 2019.

[29] A. A. Pol, V. Berger, C. Germain, G. Cerminara, and M. Pierini. Anomaly detec-
tion with conditional variational autoencoders. In 2019 18th IEEE International
Conference On Machine Learning And Applications (ICMLA), pages 1651–1657,
2019.

[30] Oleksandr I. Provotar, Yaroslav M. Linder, and Maksym M. Veres. Unsuper-
vised anomaly detection in time series using LSTM-based autoencoders. In
2019 IEEE International Conference on Advanced Trends in Information Theory,
ATIT 2019 - Proceedings, pages 513–517. Institute of Electrical and Electronics
Engineers, Dec. 2019.

[31] Lang Qin and Qianqian Zhang. New algorithm for multiple satellite faults detec-
tion and exclusion based on time series prediction. In 2017 Forum on Cooperative
Positioning and Service, CPGPS 2017, pages 345–350. Institute of Electrical and
Electronics Engineers, Oct. 2017.

89

[32] You ren Wang, Guo dong Sun, and Qi Jin. Imbalanced sample fault diagno-
sis of rotating machinery using conditional variational auto-encoder generative
adversarial network. Applied Soft Computing, 92:106333, 2020.

[33] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed
Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class
classification. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4393–4402, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018.

[34] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

[35] Arnaud Van Looveren, Giovanni Vacanti, Janis Klaise, and Alexandru Coca.
Alibi-Detect: Algorithms for outlier and adversarial instance detection, concept
drift and metrics. GitHub repository, 2019.

[36] Tao Xinmin, Du Baoxiang, and Xu Yong. Bearings fault diagnosis based on GMM
model using Lyapunov exponent spectrum. In IECON Proceedings (Industrial
Electronics Conference), pages 2666–2671, 2007.

[37] Jae Wan Yang, Young Doo Lee, and In Soo Koo. Convolutional autoencoder-
based sensor fault classification. In International Conference on Ubiquitous and
Future Networks, ICUFN, volume 2018-July, pages 865–867. IEEE Computer
Society, Aug. 2018.

[38] Jianbo Yu. Fault detection using principal components-based Gaussian mix-
ture model for semiconductor manufacturing processes. IEEE Transactions on
Semiconductor Manufacturing, 24(3):432–444, Aug. 2011.

[39] Yu Zhang, Chris Bingham, Michael Gallimore, and Darren Cox. Novelty detec-
tion based on extensions of GMMs for industrial gas turbines. In 2015 IEEE
International Conference on Computational Intelligence and Virtual Environ-
ments for Measurement Systems and Applications, CIVEMSA 2015. Institute of
Electrical and Electronics Engineers, Jul. 2015.

[40] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki
Cho, and Haifeng Chen. Deep autoencoding gaussian mixture model for unsu-
pervised anomaly detection. In International Conference on Learning Represen-
tations, 2018.

90

