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Abstract

Query optimizers, crucial components of relational database management systems, are
responsible for generating efficient query execution plans. Despite many advances in
the database community over the last few decades, most popular relational database
management systems today still use cost-based optimizers that do not always model
the underlying data’s characteristics accurately. These cost-based optimizers brutally
slow down a query if they make even one gross underestimate of a database table’s
cardinality. In this work, we improve on native cost-based optimizer performance by
identifying the most ideal join algorithms for query execution plans in two popular
relational database management systems, PostgreSQL and Microsoft SQL. First, we
gather baseline query execution times for the entire IMDb Join Order Benchmark
under different subsets of usable join algorithms to show that no subset yields high
performance across all queries. We then show that it is feasible to use deep rein-
forcement learning to choose one of these subsets for each query seen and achieve far
better performance on the intensive JOB queries. Finally, we introduce the idea of
𝑘-edits, showing results that indicate that for some queries, isolating just 1 “bad” join
and changing its join algorithm can yield better performance. Our work suggests that
reinforcement learning with both coarse and fine decisions shows huge potential for
the future of query optimization and relational database management systems.
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Chapter 1

Introduction

Relational databases were inspired by the need for large, organized services capable

of delivering data to users without exposing said data’s internal representation. Codd

first proposed this idea, formalizing data in terms of sets and their manipulation based

on mathematical operations [2]. Functionally, relational databases divide their data

into relations, tables of attributes grouped into rows. Relations can be compared

and composed with various relational algebra operations, which form the basis for

high-level query languages, such as SQL, that are used to deliver the underlying data

to users.

A great amount of research over the last few decades has led to modern relational

database management systems (RDBMSs) like Microsoft SQL Server, PostgreSQL,

Amazon Relational Database Service, and more, giving computer science researchers

and software developers great flexibility in constructing solutions tailored to their

work. Each RDBMS implements its own query optimizer (see Figure 1-1 for an

example), which attempts to determine and execute the most efficient strategy for

each user-given query. In particular, the optimizer selects, for each join between two

relations in a query, an operator that specifies through a join algorithm how the

relations’ data should be processed together. Note that each RDBMS offers its own

set of join algorithms. For example, SQLite only offers the nested loop join, Postgres

adds hashing and merge-sort on top of this, and MySQL/MariaDB go so far as to

introduce batched key access (BKA) algorithms for efficient scanning of data.
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Figure 1-1: Traditional query optimizer architecture; taken from [6]. Given a query,
the optimizer chooses the query plan it believes is best based on cardinality estimates
for the relations involved in the query and the cost model’s response to these estimates
across possible plans that are semantically equivalent.

Why might it be useful to look at join algorithms in query execution plans? To

answer this, we need to think about the following questions:

∙ How might cost-based query optimizers do poorly?

∙ Even with a good query plan, how much of a performance hit can we expect

from choosing the wrong join algorithm to join two relations?

Consider that most cost-based query optimizers compute cardinality estimates for

relations through heuristics based on simple assumptions such as data uniformity and

independence [6]. They then choose the best query plan according to these estimates.

However, choosing query plans this way can be devastating in practice if the data does

not follow the optimizer’s assumptions—a table 𝑇 of size 106 might be estimated to

have only 103 rows, thus impacting the actions the optimizer decides to take. The

optimizer may choose a nested loop algorithm to join 𝑇 and some 𝑈 if it believes that

𝑇 only has 103 rows, regardless of the overall query plan, due to nested loops being

efficient for small amounts of data. This would result in a significant slowdown versus

a plan that uses hashing to join 𝑇 and 𝑈 .

If we can do better than cost-based models that are fed wrong cardinality estimates

by selecting join algorithms that are more reflective of the data and queries given, we

may not have to compromise on performance. This thesis explores this problem of

join algorithm selection and serves as a collection of experiments upon which to base

16



further work. We experiment with multiple techniques for choosing join algorithms

using queries from the Join Order Benchmark [6] and identify several key points:

∙ If we isolate the join algorithms used across the entire DBMS to favor those

that improve performance on more intensive queries, other queries will suffer as

a result. There is no configuration that is ideal for every query.

∙ For queries involving gross optimizer underestimates (such as the example with

𝑇 above), it is possible to achieve consistent performance gains through deep

Bayesian reinforcement learning.

∙ For some intensive queries, suggesting a change of algorithm for just one join

may yield significantly better performance.

In Chapter 2, we cover in more detail the building blocks for our methods and rele-

vant work. In Chapter 3, we isolate different subsets of join algorithms used by the

Postgres query optimizer and run, under each subset, all JOB queries to provide a

baseline and further motivate the problem. In Chapter 4, we improve on the Post-

gres optimizer’s performance by modeling join algorithm selection as a reinforcement

learning problem (specifically the contextual multi-armed bandit problem), using a

deep Bayesian neural network to choose a subset of join algorithms for each JOB

query encountered. In Chapter 5, we move away from this broad approach of choos-

ing subsets of join algorithms and begin to investigate the effects of modifying up

to 𝑘 join algorithms in a given query. In Chapter 6, we compare our results from

Chapters 3 to 5. We conclude in Chapter 7 with a discussion on how the experiments

shown in this work may lead to exciting progress in query optimization.
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Chapter 2

Background and Related Work

In this chapter, we first provide more detail that serves as a reference for our methods

in Chapters 3 to 5—we cover the JOIN operator, reinforcement learning, and the

Join Order Benchmark. We then discuss the state-of-the-art in query optimization

and continue to motivate the problem of efficient join algorithm selection in query

execution plans. Note that we use relations and tables interchangeably.

2.1 The JOIN operator

JOIN is a binary operator that returns a combination of rows from two relations

based on common attributes. Formally, given two relations 𝑅1 = {𝐴,𝐵,𝐶, . . .}, 𝑅2 =

{𝑋, 𝑌, 𝑍, . . .} and join conditions 𝐶 = {𝑅1.𝐴 𝜃 𝑅2.𝑋, ...}, where 𝜃 is an arbitrary

relationship between two attributes, we generate 𝑅3 with rows containing content

from both 𝑅1 and 𝑅2 that satisfy 𝐶. The most common join type, and the only

one we are concerned with in this thesis, is the inner join where, for each 𝑐𝑖 ∈ 𝐶,

𝜃 represents equality (=). Conditions such as <,≤, >, etc. are beyond the scope of

our work. Some other types of joins are shown in Figure 2-1.
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Figure 2-1: Four join types are shown here. The inner join is most commonly used,
and support for other types of joins depends on the DBMS used.

2.1.1 Basic join algorithms

JOIN requires an algorithm for scanning and aggregating relations. Many such al-

gorithms exist, allowing workloads to scale from single-server contexts to large, dis-

tributed networks on thousands of cores. Here, we describe the three basic join

algorithms available in PostgreSQL and Microsoft SQL Server, our RBDMSs of inter-

est in this work. In later chapters, we analyze performance in scenarios that involve

only these three algorithms.

Nested loop join

The nested loop join is the most basic join algorithm, iterating through all rows of

𝑅2 for each row in 𝑅1—the Cartesian product—to find matches on join attributes. It

is the most simple join algorithm to implement and runs in 𝑂(|𝑅1| × |𝑅2|) time.

Hash join

Let 𝑅1 be the smaller of the two relations by cardinality. The hash join treats 𝑅1 as

the build input and 𝑅2 as the probe input. Using memory, the algorithm builds a hash

table over the build input and then scans the probe input for matches with the built

20



hash table. This algorithm runs in 𝑂(|𝑅1|+|𝑅2|) time. If there is not enough memory

in which to fit the entire build input, the algorithm proceeds in phases, working on

portions at a time; this is known as a grace hash join.

Sort-merge join

The sort-merge join relies on both 𝑅1 and 𝑅2 being sorted, using two pointers to

compare the join attribute desired. Both tables are first sorted (assuming they are

unsorted) based on the join attribute. Both are then scanned in parallel linearly, with

matching rows on the join attribute combined for the final output table.

There are three cases to consider when thinking about the runtime:

1. If both 𝑅1 and 𝑅2 are already sorted, sort-merge runs in 𝑂(|𝑅1| + |𝑅2|) time,

as there is no need to actually sort the tables.

2. If 𝑅1 is sorted and 𝑅2 is not, we only need to sort 𝑅1, giving us 𝑂(|𝑅1| log |𝑅1|+

|𝑅2|).

3. If both 𝑅1 and 𝑅2 are unsorted, we sort both, giving us 𝑂(|𝑅1| log |𝑅1| +

|𝑅2| log |𝑅2|).

Case 3 is, in practice, very slow, and as such, sort-merge join works ideally when

one or both tables are already sorted.

2.2 Machine learning

Many human problems involve making decisions or predictions. Machine learning

takes these problems to algorithmic models, using example data and past experience

to optimize some criteria [1]. These models refine their knowledge over time, with

their decision and prediction accuracy dependent on the type of data they are exposed

to and the quality of their experience.

A basic example is object recognition—given an image of a cat and two possible

classifications, dog or cat, can a machine learning model correctly identify the image

as that of a cat?
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Advanced examples include predicting stock market prices based on decades of

financial data and defeating an opponent in chess.

2.2.1 Reinforcement learning

Reinforcement learning is a subset of machine learning that focuses on allowing some

agent to make informed decisions in a complex environment. The environment is

represented at time 𝑡 by some state 𝑠𝑡 conveyed to the agent. Based on what it knows

about the environment and its own policy 𝑃 for interpreting the environment, the

agent takes an action 𝑎𝑖 ∈ 𝐴 = {𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑛}. After taking 𝑎𝑖, the agent is given

reward 𝑄(𝑎𝑖) = 𝑟𝑡. This process continues with 𝑠𝑡+1 and so on until there are no more

actions left to take. One cycle of decision-making is called an episode, and the agent

must learn to maximize its reward across episodes.

2.2.2 The exploration-exploitation dilemma & multi-armed ban-

dits

When training a reinforcement learning model, there is inherently a conflict between

exploration and exploitation. When attempting to maximize rewards across episodes,

pure exploitation based on the best-known action drives the agent towards a locally

optimal solution that may fail to account for other actions that could yield a better

payoff in the long term despite poor performance in the short term. On the other

hand, pure exploration, although beneficial for agent flexibility in a highly dynamic

environment, reduces learning potential and thus reward potential for the agent.

Multi-armed bandits are one type of problem in which we encounter this exploration-

exploitation dilemma. The agent chooses 𝑎𝑡, one of 𝑘 arms, or actions, at each round.

The environment samples reward 𝑟𝑡 for the agent from a probability distribution un-

known to the agent after the arm is pulled. Over time, the agent must balance playing

the arm that historically gives large rewards and exploring other arms that may lead

to bigger future payoffs.

22



2.3 The Join Order Benchmark

There are many moving parts in any RDBMS, but in this work, we focus only on

the query optimizer. As mentioned in Chapter 1, the query optimizer attempts to

generate the most efficient execution plan for any given query. However, what the

optimizer believes to be the best plan may very well be a poor plan, sometimes orders

of magnitudes worse than the actual best plan.

Previous research has generated many benchmarks for challenging query optimiz-

ers. In particular, the Join Order Benchmark [6] is a set of 113 SQL queries that

select data across 21 tables from the Internet Movie Database, IMDb. These queries

are structured such that they might be asked by movie enthusiasts. For example,

Query 13d returns ratings and release dates for all movies produced in the US.

The Join Order Benchmark shows that even industrial-strength query optimizers

built with decades of developer experience often produce large errors for cardinality

estimation [6]. These errors in cardinality estimation heavily influence many parts of

the final query plan chosen by the optimizer, such as the join order of the relations

in the query, the join algorithms used between relations, and the types of operators

used to scan database indices.

What differentiates the JOB from other benchmarks was the authors’ purpose

in writing it: to explicitly model and show the difficulty of join ordering, a problem

related to join algorithm selection. These queries are challenging to execute efficiently

due to how many joins are involved in each and actual correlations in the data that

classical query optimizers do not account for in their cost models. Thus, these queries

are useful for our work, as we want to investigate join algorithm selection on queries

that expose optimizers’ weaknesses when handling many joins.

2.4 State-of-the-art in query optimization

Prior to the widespread adoption of machine learning in computer science research,

work in query optimization did not address two key problems:
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1. Many query optimizers do not guarantee efficient, hands-free operation—experts

in the field with years of experience must manually tune optimizers to improve

performance for production purposes and attempt to offset any errors these

optimizers might make.

2. Characteristics of queries with poor performance are not taken into account for

future optimization on new queries—most optimizers work from scratch with

static assumptions about each query.

Several systems have been developed that address shortcomings in either the entire

query optimizer or parts of it with machine learning methods. Neo replaces the default

query optimizer end-to-end, using deep neural networks to determine join orders, join

algorithms, and access paths (index scan, table scan, etc.) [9]. DQ [5] and ReJOIN

[10] specialize, using reinforcement learning to find the best join ordering for given

queries. These three systems demonstrate significant improvements over Postgres’s

query optimizer and prove that there is a space for machine learning methods in query

optimization that address the two problems above.

Despite their improvements over Postgres, however, Neo, DQ, and ReJOIN do

not isolate join algorithm selection. Bao, another recent system, applies per-query

optimization hints that steer the query optimizer to an ideal query plan [8]. Bao

handles only boolean options available in the RDBMS used, such as disabling nested

loop joins, forcing index usage, etc. Our experiments in Chapter 4 use the same

technique of applying query hints at runtime, but unlike Bao, we consider only hints

related to join algorithms and work with a deep Bayesian neural network and not a

tree-based convolutional neural network.
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Chapter 3

Baseline Experiment with Join

Algorithm Subsets in Postgres

In this chapter, we conduct our baseline experiment on the Join Order Benchmark in

Postgres. For every element of the power set of the three join algorithms available in

Postgres except the empty set, we restrict Postgres to only use the algorithms present

in that element when generating query plans. We then run all JOB queries under

that element and analyze their execution times. We use our results to show that on

top of cardinality estimation errors, join algorithm selection introduces non-negligible

performance loss when done incorrectly.

3.1 Hardware setup

The experiment described here was conducted on the Windows Subsystem for Linux,

Ubuntu 18.04.5 flavor, in Windows 10. Appendix A describes the hardware specifica-

tions of our machine. We expect different hardware than that used here to produce

different numerical results. However, given that the IMDb dataset on which the JOB

runs is small enough (3.6GB) to fit into memory on modern machines (those with at

least 4GB of RAM), the overall performance trends noted in our experiment should

extrapolate well to other hardware configurations—Postgres should still choose the

same types of operators, and performance should be affected more by the CPU used
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and disk I/O.

3.2 Postgres configuration

Our experiment uses Postgres 12.4. All settings are untouched and kept similar to

those at the time of installation, that is, no “pre-tuning” is done. On top of the base

Postgres installation, we also have pg_hint_plan [11] installed as an extension, which

allows users to fine-tune query plans with run-time hints; we use pg_hint_plan later

in Chapter 5.

3.3 Method

Let 𝐿 represent nested loop joins, 𝐻 represent hash joins, and 𝑀 repre-

sent sort-merge joins. There are 23 − 1 non-empty subsets to consider:

{𝐿}, {𝐻}, {𝑀}, {𝐿,𝐻}, {𝐿,𝑀}, {𝐻,𝑀}, {𝐿,𝐻,𝑀}.

Our method can be summarized in the following steps:

1. Enable the query planning settings [4] that correspond to the algorithms present

in the current subset and disable all others. These include

∙ enable_hashjoin,

∙ enable_mergejoin,

∙ enable_nestloop.

2. Run all 113 JOB queries and document the performance of each in a Pandas

DataFrame. The metric for performance here is wall clock time, equiv-

alent to elapsed real time. Ensure that Postgres runs each query with a

cold start to maintain independence. This is done by restarting Postgres and

clearing all system page caches with echo 1 > /proc/sys/vm/drop_caches.

3. Repeat until all join algorithm subsets are tested.
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An extended method to account for parallelization involves running the same

steps, but with max_parallel_workers_per_gather set to 0 in Postgres to see what

happens when we restrict parallelization. This extended procedure tests the effect of

modern CPUs with many cores and threads on query execution.

3.4 Results

3.4.1 Query execution times and remarks

Following the procedure in Section 3.3, we ran all 113 queries under all 7 different join

algorithm subsets. A Pandas DataFrame is available for inspection and data analysis.

Table A.1 shows the numbers from this DataFrame.

Note that for some queries in the DataFrame, several subsets of enabled join

algorithms yield roughly the same performance, with differences of a second or two.

This is due to Postgres’s prioritization of some algorithms over others when there are

multiple options available. For example, Postgres still uses only nested loops for Query

16b and runs it in about 70s when restricted to {𝐿}, {𝐿,𝐻}, {𝐿,𝑀} and {𝐿,𝐻,𝑀}

due to its severe underestimation of table cardinalities. The underestimates imply

that using nested loops would be better than hashing or sorting and merging a small

amount of data, guiding the query optimizer to a bad choice. The final nested loop

operator for the query plan with {𝐿,𝐻,𝑀} enabled predicts a cardinality of 2960,

but the actual cardinality is 3710592, making the prediction off by a factor of over

1000. Hashing here clearly would have been the better decision.

We do not show empirical data regarding parallelization, as investigating paral-

lelization is tangential to the goals of this work, but a summary of what we observed

can be found in Section 3.4.2.

3.4.2 Key observations

From our results, we note the following:

∙ There is no single subset of join algorithms that yields the best per-
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formance on all 113 JOB queries. To achieve good performance, one must

empirically compare all 7 configurations as we have done here and set a specific

configuration for each query before execution.

∙ Poor cardinality estimation can steer the query optimizer to disas-

trous results [6]. In particular, Postgres severely underestimates the size of

the final output and some of the intermediate tables for query 16b from the JOB,

which creates a 100% bias for the nested loop algorithm when it is available.

Only by disabling the nested loop algorithm can we achieve fast performance on

this query and others like it. Ultimately, the cost model may be a good one, but

if its cardinality inputs are not, query execution suffers in snowballing fashion.

∙ Parallelization makes a huge difference for algorithms that support

it. With just two parallel workers under a hash join operator, Postgres achieves

an almost 3x increase in performance over having a single worker. This is, of

course, dependent on the hardware used in practice.

With these observations in mind, the problem of join algorithm selection becomes

better motivated. We have shown that under default Postgres conditions, even with

potentially optimal join orders (assuming some of the plans chosen by Postgres had

the ideal orders) as described in existing research [5, 8, 10], join operators that use

the wrong algorithms due to bad cardinality estimates introduce large performance

overheads. This extends tangentially into the question of what hardware can add to

performance once the right algorithms are chosen—parallelization may yield further

improvement depending on how many CPU cores are available for workers and the

cost model’s parameters for parallel operations.
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Chapter 4

Join Algorithm Selection as a

Reinforcement Learning Problem

In this chapter, we formulate join algorithm selection as a contextual multi-armed

bandit problem [7] in which each bandit arm represents a Postgres configuration

that enables a subset of the three join algorithms covered in Chapter 2 and used

in Chapter 3. We train a deep Bayesian network that uses Thompson sampling to

learn the appropriate join algorithm subset for any JOB query given at runtime. Our

numbers suggest the following:

1. For more intensive queries, such as 16b, a learned approach does quite well

across at least 3000 episodes and 15-20 encounters with each query. Our deep

Bayesian network allows Postgres to prioritize hash joins consistently on queries

where large cardinality underestimates are made.

2. For less intensive queries that execute relatively quickly to begin with, a learned

approach performs either the same as or worse than Postgres.

4.1 Reinforcement learning formulation

Formally, given agent 𝐴, which is the neural network, at time step / episode 𝑡, we

provide 𝐴 with context 𝐶𝑡 representing an aggregate of information about the query
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given, 𝑞𝑡. Specifically, we provide

1. an 𝑛-dimensional binary vector 𝑅𝑡 (the relation vector), where 𝑛 is the number

of relations in the database queried and 𝑅𝑡𝑖 = 1 if relation 𝑖 is involved in any

joins in 𝑞𝑡

2. and the upper triangular matrix (including the diagonal to handle self-joins) 𝑇𝑡

of the binary symmetric square matrix 𝑀𝑡 (the join predicate matrix ) of size

𝑛 × 𝑛, where 𝑀𝑡𝑖𝑗 = 1 and 𝑀𝑡𝑗𝑖 = 1 if relations 𝑖 and 𝑗 are paired in a join

predicate in 𝑞𝑡. We have |𝑇𝑡| = 𝑛(𝑛+ 1)/2.

Given 𝐶𝑡 = (𝑅𝑡,𝑀𝑡), 𝐴 chooses an arm/action 𝑎𝑡 corresponding to enabling a join

algorithm subset and receives reward 𝑟𝑡 = −(𝑠1.5𝑡 ), where 𝑠𝑡 is the actual execution

time of 𝑞𝑡 after choosing 𝑎𝑡. Note that 𝑟𝑡 is intended to punish poor execution time

exponentially. 𝐴 then moves on to episode 𝑡+1 and repeats this process, the ultimate

goal of which is to minimize total query execution time across all episodes experienced

so far.

This formulation can be extended to include the other configurable Postgres op-

tions, similar to what Bao has done.

4.2 Neural network and episode overview

We conduct our experiment with the Python space_bandits library [3], which pro-

vides a collection of deep Bayesian neural network implementations that use Thomp-

son sampling, an effective method for solving contextual multi-armed bandit prob-

lems.

Our chosen network (the class NeuralBandits, link available here) performs full

Bayesian linear regression on the last layer. All numbers are based on 1) the database

with 𝑛 = 21 tables created from the IMDb dataset and 2) the Join Order Benchmark

queries. Relevant details include:

∙ 7 actions possible (configurations corresponding to the join algorithm subsets),
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∙ input vectors of length 𝑛+ 𝑛(𝑛+ 1)/2 = 252 representing the concatenation of

𝑅𝑡 and the flattened form of 𝑇𝑡 from Section 4.1,

∙ initial learning rate 0.1,

∙ hidden layer sizes [128, 128, 64],

∙ the Adam optimization algorithm,

∙ and 100 initial blind round-robin pulls on each arm before sampling actions

from the posterior.

Note that because we have 100 initial round-robin pulls on each arm, the network

does not actually start to make decisions on its own until episode 701, with the initial

700 acting as “base knowledge”.

An episode is shown visually in Figure 4-1 and is summarized as follows:

1. The network receives input vector 𝑉 of size 252 generated from a randomly

sampled JOB query 𝑄 from the designated training set.

2. The network chooses one of the seven actions available. Each action corresponds

to one of the subsets in the set of non-empty join algorithm subsets discussed

in previous chapters. Until each action has been chosen at least 100 times, we

select one in round-robin fashion.

3. All join algorithm types are disabled in Postgres.

4. The join algorithms in the subset for the action chosen are enabled in Postgres.

5. Postgres runs 𝑄 with a cold cache and reports execution time 𝑠.

6. We reward the network with −(𝑠1.5) to punish poor decisions more than good

ones.

7. The network updates its history and its Bayesian linear regressor.

31



Postgres
Join Order Benchmark query set Featurizer Neural network

sampled query Q’s1
contents for tables/joinsQ in its entirety2

feature vector3
for Q (1 x 252)

disable all join algorithms4
and clear system caches

join algorithm subset5
to restrict Postgres to

enable join algorithms6
from given subset

execute Q7

Q’s execution time (s)8

update episode history,9
process reward

repeat from Step 110

Figure 4-1: Overview of reinforcement learning method with join algorithm subsets.
This flow diagram corresponds holistically with the steps outlined in Section 4.2.

enable_nestloop, enable_hashjoin, and enable_mergejoin are the Postgres

settings used to enable the algorithms in any given subset. Join algorithm subsets in

this process are analogous to Bao’s hint sets [8]: each algorithm in a subset implies a

hint to allow that algorithm during query execution.
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Figure 4-2: A query execution time comparison of Postgres’s query optimizer and our
deep Bayesian neural network. Queries are sorted in descending order by baseline
Postgres execution time. The orange data point for each query is the average of its
execution times (when encountered by our neural network) across all 3500 episodes.

4.3 Results and discussion

We trained our deep Bayesian network from scratch for 3500 episodes on the entire

JOB. Training overall was quick, taking about 10 hours. We did not split the JOB into

training and testing sets, opting instead to think of our training process as a stream

of arbitrary user inputs from which to build knowledge of the ideal decisions. Thus,

each episode’s query was a random sample from the JOB. Over time, as the network

encountered each query more and more, its performance increased dramatically, with

many intensive queries such as 16b showing consistent speed-ups after only 10-15

encounters. We show the baseline time versus the average of all the encounters across

the 3500 episodes for each query in Figure 4-2. The average baseline execution time

across all 113 queries was 12.00s, and the average execution time across all 3500

episodes with our neural network was 6.92s, a 42% decrease from the baseline.

Note that many queries which were already efficient under Postgres’s query opti-

mizer (the right side of Figure 4-2) performed worse under our neural network. This

is due to the network learning that hash joins are, on average, more ideal than nested

loops, which leads to occasional decisions to use hash joins (by restricting 𝐿, and per-
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haps 𝑀 , from the chosen subset) even on queries for which nested loops are the most

efficient. Still, with a 42% decrease in average execution time, our network arguably

performs well above the baseline.

Given our results, we see this particular method as a viable use case for read-

heavy databases that encounter some fixed set of frequent queries. Upon initial

encounters, some of these queries would indeed run slowly, but after several more, the

network would know what the approximately ideal join algorithm subsets are for each.

With this method comes potential weakness for queries that are already sufficiently

optimized, but the gains for more intensive queries offset this weakness.
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Chapter 5

𝑘-edits for Join Algorithm Selection

In Chapter 4, we provided coarse hints, those that affect query execution on a broader

level, to the query optimizer through the seven join algorithm subsets. Each of these

subsets served as a collection of hints to, system-wide for Postgres, disable those not

included and enable those included.

In this chapter, we shift our focus to fine hints and address the following question:

is it possible to identify and fix some number of “bad joins” in a query plan without

disabling any join types at all? We first describe how specific joins can be modified

in both Postgres and SQL Server. We then introduce the idea of 𝑘-edits, suggesting 𝑘

modifications to the join algorithms in each query plan chosen by the query optimizer.

We finally conduct an experiment that shows that, across all the JOB queries, 1-edits

are optimal for performance improvements, but are only doable efficiently with more

fluid systems like Postgres. We also make a case for the intractability of the set of

𝑘-edits for 𝑘 ≥ 3, which renders the exploitation of anything beyond 1 and 2-edits

impractical.

5.1 Specifying join hints in Postgres and SQL Server

Postgres. We use pg_hint_plan [11], a third-party Postgres extension, to provide

explicit hints as to how certain tables should be joined together. As far as we know,

no official solution from Postgres exists, short of modifying the original source code,
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to provide run-time query hints.

As a practical example of pg_hint_plan’s operation, take Query 17f, shown in
Listing 5.1. Each line containing AND and two tables represents a potential join where
the condition is equality between the columns mentioned.

Listing 5.1: Query 17f from the original Join Order Benchmark.
SELECT

MIN(n.name) AS member_in_charnamed_movie

FROM

cast_info AS ci,

company_name AS cn ,

keyword AS k,

movie_companies AS mc,

movie_keyword AS mk,

name AS n,

title AS t

WHERE

k.keyword = ’character -name -in -title’

AND n.name LIKE ’%B%’

AND n.id = ci.person_id

AND ci.movie_id = t.id

AND t.id = mk.movie_id

AND mk.keyword_id = k.id

AND t.id = mc.movie_id

AND mc.company_id = cn.id

AND ci.movie_id = mc.movie_id

AND ci.movie_id = mk.movie_id

AND mc.movie_id = mk.movie_id;

We can explicitly state which join algorithms to use for pairs of tables by prepend-

ing a comment to the query. We might prepend /*+ HashJoin(n ci) */ or, if we

want to specify more than one, /*+ MergeJoin(ci mc) NestLoop(ci mk) */. At

runtime, pg_hint_plan detects these prepended comments and changes the query

optimizer’s output.

SQL Server. Unlike Postgres, which requires extensions or source-code-level

modification, SQL Server provides built-in syntax to explicitly force join algorithms

on pairs of tables. However, with this benefit comes stricter standards on how the

SQL should be written for every query: to specify explicit join algorithms, queries

must be ANSI-compliant, that is, inner joins must be declared with INNER JOIN and
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not implicitly with FROM-WHERE clauses as 17f does in Listing 5.1. We can rewrite every

INNER JOIN as INNER {J} JOIN, where J can be among LOOP, HASH, and MERGE.

Note that the original JOB queries are not ANSI-compliant—we rewrite them in

Section 5.3 to work with the SQL Server part of our experiment.

5.2 𝑘-edits

We define 𝑘-edits as query plans for which exactly 𝑘 join algorithms are explicitly

specified.

More formally, let 𝑄 be a query of interest. Let 𝑛

be the number of join predicates—explicit join statements be-

tween pairs of tables, ex. AND n.id = ci.person_id and

INNER JOIN keyword k ON mk.keyword_id = k.id—in 𝑄. Let 𝑘 ≤ 𝑛 be the

number of predicates whose join algorithms we want to modify and 𝑚 be the number

of distinct join algorithms available (for Postgres and SQL Server, 𝑚 = 3).

Given 𝑘,𝑚, and 𝑛, we have
(︀
𝑛
𝑘

)︀
total possible combinations of predicates to modify.

Each combination has 𝑘 predicates that each needs to be assigned one of 𝑚 join

algorithms. This gives us a search space, or equivalently, the set of 𝑘-edits, of size(︀
𝑛
𝑘

)︀
𝑚𝑘. One can see that this search space grows exponentially with 𝑘.

5.3 Method

Here, we divide our experiment into two parts, as what needs to be done differs

significantly between Postgres and SQL Server.

Postgres. We first run any given JOB query with a cold cache to establish a

baseline for comparison with our 𝑘-edits method. We then parse its contents to

find all join predicates of the form r1.attr1 = r2.attr2 and extract the set 𝑅𝐽 of

all relations involved in ≥ 1 join predicate. We then enumerate the set of 1-edits

involving elements from 𝑅𝐽 and prepend each 1-edit to the query before running the
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query with a cold cache. For each 1-edit, if the query plan Postgres generates is still

the same with that 1-edit included, we skip it. After every execution, we restore the

query to how it was before to prepare for the next 1-edit.

SQL Server. We run the given query as is with a cold cache for the baseline time.

We convert the query to ANSI-compliant form (multiple solutions exist on the Web

for automatically rewriting queries). After conversion, we parse the new, semantically

equivalent query to find all instances of the form INNER JOIN {x} that involve only

two relations. With SQL Server’s built-in query hint functionality, we enumerate the

set of 1-edits and add the relevant algorithms in place of {x}. As with Postgres, we

run the query with a cold cache to eliminate bias.

5.4 Results

We conducted, for Postgres and SQL Server, their respective methods. All results

were gathered on the same machine described in Appendix A. Separate baseline times

are available in Table A.2 to serve as a comparison between the Postgres and SQL

Server query optimizers.

Postgres. Our Postgres results in Listing B.1 (too large to fit here) show, for

each JOB query, the baseline time, hints applied that resulted in new query plans,

query execution time under those hints, and total number of hints skipped. Of the

113 queries, 63, or 55%, were sped up with 1-edits compared to the baseline. The

average improvement was 7.9s across all queries that executed faster. Notably, almost

all hints generated were skipped, with some queries skipping all hints generated for

them entirely. It is clear that our method was not enough to force the query optimizer

to make many changes to the default query plans.

We also tested 𝑘 = 3 on Query 6f, where 𝑚 = 3 and 𝑛 = 5, giving us a total of(︀
5
3

)︀
33 = 270 3-edits. Listing 5.2 shows an excerpt of these edits and their execution

times. There was no large difference between all the 3-edits, with all unable to bring

the execution time under 19 seconds. We believe 𝑘 ≥ 3 to be highly intractable—

assuming, in the best-case scenario, each 3-edit takes 20 seconds to execute and that
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there are about 100 unskipped 3-edits, that gives us 100 · 20 = 2000 seconds, or 33

minutes, just to explore the set of 3-edits for one query. Repeating this for every

query at runtime is clearly not feasible, and for successive 𝑘, the search space grows

exponentially.

Listing 5.2: 3-edits on Query 6f. We show 10 out of the 108 3-edits used for brevity.
Working with query 6f.sql.

Baseline time: 63.51s.

6f.sql: Hint HashJoin(ci mk) HashJoin(ci n) HashJoin(k mk) resulted in a runtime of

20.75s.

6f.sql: Hint HashJoin(ci mk) HashJoin(ci n) MergeJoin(k mk) resulted in a runtime of

19.73s.

6f.sql: Hint HashJoin(ci mk) NestLoop(ci n) HashJoin(k mk) resulted in a runtime of

20.5s.

6f.sql: Hint HashJoin(ci mk) NestLoop(ci n) MergeJoin(k mk) resulted in a runtime of

19.84s.

6f.sql: Hint HashJoin(ci mk) MergeJoin(ci n) HashJoin(k mk) resulted in a runtime of

20.62s.

6f.sql: Hint HashJoin(ci mk) MergeJoin(ci n) MergeJoin(k mk) resulted in a runtime of

19.96s.

6f.sql: Hint NestLoop(ci mk) HashJoin(ci n) HashJoin(k mk) resulted in a runtime of

20.61s.

6f.sql: Hint NestLoop(ci mk) HashJoin(ci n) MergeJoin(k mk) resulted in a runtime of

19.86s.

6f.sql: Hint NestLoop(ci mk) NestLoop(ci n) HashJoin(k mk) resulted in a runtime of

20.42s.

6f.sql: Hint NestLoop(ci mk) NestLoop(ci n) MergeJoin(k mk) resulted in a runtime of

19.76s.

. . .

. . .

. . .

Skipped 162 hints out of 270 available.

SQL Server. Our SQL Server method showed no improvements over the baseline

and instead slowed execution by at least two orders of magnitude; we conducted this

method on only Query 16b and did not continue further. For Query 16b, we found

the rewriting process extremely complex—to isolate all joins, basic conversion to

the ANSI standard was not enough, as demonstrated by the JOIN-ON-AND clauses in

Listing 5.3, which still have not isolated all pairs of tables being joined. We rewrote

the query again in a nested fashion that corresponds to the join order given by SQL
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Server, shown in Listing 5.4, but SQL Server largely changed parts of the query plan

when we specified explicit joins, even for queries outside of 16b.

Figure B-1 shows the default SQL Server plan for 16b. When the full join-isolated

form of 16b (Listing 5.4) is analyzed, we get the same query plan as the default. When,

however, explicit nested loop joins are indicated for every INNER JOIN to match the

default plan, SQL Server introduces table spools, shown in Figure B-2. Ultimately,

we terminated execution when the first join in Figure B-2 continued to run for over

five hours. The same occurs even if table spools are disabled.

Listing 5.3: Query 16b in

ANSI-compliant form.
SELECT

MIN(an.name) AS

cool_actor_pseudonym ,

MIN(t.title) AS

series_named_after_char

FROM aka_name an

INNER JOIN cast_info ci

ON an.person_id = ci.person_id

INNER JOIN movie_companies mc

ON ci.movie_id = mc.movie_id

INNER JOIN company_name cn

ON mc.company_id = cn.id

INNER JOIN movie_keyword mk

ON ci.movie_id = mk.movie_id

AND mc.movie_id = mk.movie_id

INNER JOIN keyword k

ON mk.keyword_id = k.id

INNER JOIN name n

ON an.person_id = n.id

AND n.id = ci.person_id

INNER JOIN title t

ON ci.movie_id = t.id

AND t.id = mk.movie_id

AND t.id = mc.movie_id

WHERE

cn.country_code = ’[us]’

AND k.keyword = ’character -name

-in -title ’;

Listing 5.4: Query 16b in full join-isolated form. The

nested join order here is the same as that provided by

SQL Server’s query optimizer.
select min(j.name), min(j.title) from (

select ci.name , ci.title from name n inner join (

select an.name , ci.person_id , ci.title from aka_name an inner join (

select an.id, ci.person_id , ci.title from aka_name an inner join (

select ci.person_id , t.title from cast_info ci inner join (

select ci.id, t.title from cast_info ci inner join (

select mc.title , mc.t_id as id from company_name cn inner join (

select mc.company_id , mc2.title , mc2.t_id from movie_companies mc inner

join (

select mc.id, t.title , t.id as t_id from movie_companies mc inner join (

select title , id from title t inner join (

select movie_id from movie_keyword mk inner join (

select mk.id from (

select id from keyword k where k.keyword = ’character -name -in-title ’) k

inner join

movie_keyword mk on mk.keyword_id = k.id

) mk2 on mk.id = mk2.id

) mk on mk.movie_id = t.id

) t on mc.movie_id = t.id

) mc2 on mc.id = mc2.id

) mc on mc.company_id = cn.id where cn.country_code = ’[us]’

) t on ci.movie_id = t.id

) t on ci.id = t.id

) ci on an.person_id = ci.person_id

) ci on an.id = ci.id

) ci on n.id = ci.person_id

) j;

In Section 5.5, we discuss insights from this 𝑘-edits experiment and describe

changes to our methodology that may generate clearer results.
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5.5 Discussion

Our experiment with 𝑘-edits suggests two ideas to consider:

1. To increase query performance as efficiently as possible when performing manual

join algorithm selection, fluid systems like Postgres that do not enforce stan-

dards on execution are ideal. To adapt to any kind of query, including those

that are not ANSI-compliant, we cannot rely on a system like SQL Server that

forces rewrites and changes query plans entirely when even one edit is made.

The goal is to take any query given and achieve efficient execution with as little

processing overhead as possible—implementing an intelligent database query

rewriter to accommodate the quirks of various RBDMSs is beyond the scope of

our work.

2. To improve Postgres performance with 1-edits even further and prevent skipping

of hints, any pg_hint_plan hint comment blocks must also account for the

default join order provided by the query optimizer. Just providing the 1-edits

by themselves causes Postgres to alter only the leaf node joins in a query plan

that match an edit, as any join above the initial one is between intermediate

join results (not original tables mentioned in the 1-edits) and another original

table. This suggests that our method in this chapter may be more practical for

bushy query plans with many leaf nodes than for left-deep query plans.

To have more hints take effect, we must add a Leading(t5 (t4 (t3 (...))))

construct from pg_hint_plan that matches the exact join order provided by

Postgres for every query. We expect this method to require significantly more

complex parsing, as the join algorithm hints must take a different form as well.

With our results, it is not immediately clear that 𝑘-edits can provide consistent,

large speed-ups, but our numbers are a step in the right direction.
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Chapter 6

Comparison of Results from

Experiments

In this chapter, we compare the results of our three experiments on Postgres and

single out reinforcement learning with coarse hints as the best-performing method for

query speed-ups among our methods in this work.

We show a comparison of our three experiments for the six slowest JOB queries

in Figure 6-1. Data for all 113 queries is available, but the six queries shown here

are representative enough of the more intensive queries from the JOB. We do not

account for potential changes to our methods—it may very well be the case that a

more refined approach to 𝑘-edits, such as the one we describe at the end of Chapter 5,

outperforms reinforcement learning. We also do not go further with our SQL Server

results, as we worked with SQL Server in only Chapter 5.

6.1 Deep Bayesian neural network versus Postgres

Across the 6 queries in Figure 6-1, our neural network performed the best, with

significant speed-ups compared to default Postgres after about 10-20 encounters with

each query. In addition, of the 18 intensive queries from the JOB that each took at

least 25 seconds to execute under default conditions (Table C.1), 100% executed in

less than half their original times after learning from scratch from 0 to 3500 episodes.
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Figure 6-1: Postgres performance comparison of the Postgres query optimizer, our
deep Bayesian network, and 1-edits on the six slowest JOB queries. The blue rep-
resents Postgres’s optimizer, the red represents our deep Bayesian network, and the
orange represents the best execution time with 1-edits. The 𝑥-axis represents sequen-
tial encounters with the query for the neural network; it is a nonfactor for default
Postgres and 1-edit times.

20a, an extreme improvement, went from 44.14s to just 0.21s. Least noticeable was

16c, which went from 25.32s to 9.32s.

6.2 1-edits versus Postgres

1-edits also beat default Postgres, but not as much as we had hoped, with our neural

network still outperforming 1-edits significantly. Notably, for all six queries in Fig-

ure 6-1, our neural network converged to a time below half that of the best 1-edit.

We suspect that the changes outlined in Section 5.5 would increase the amount of

hints explored by Postgres and, consequently, its best time for most JOB queries.
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Chapter 7

Conclusion

We showed in this thesis that poor cardinality estimation produces a snowball effect

in query plan generation and execution, that reinforcement learning with coarse hints

is quick to bootstrap and quick to outperform, and that 1-edits independent of join

orders provide decent, but not ideal, speed-ups.

A significant consequence of this work is highlighting machine learning’s poten-

tial for query optimization research. We hope our methods and data will be used to

explore different approaches to guiding conventional cost-based query optimizers to-

wards the best query plans. For example, we demonstrated a brute-force search over

the set of 1-edits for each JOB query in this work, but what about training a neural

network to learn the most ideal 1-edits with join orders accounted for given informa-

tion about a query? What about a hybrid approach that marries both join algorithm

subset isolation and 𝑘-edits, where intensive queries are improved with either coarse

hints or fine edits chosen by a neural network? These exciting next steps and our

methods in this work share in common the ideas of exploiting past knowledge about

both failures and successes and looking for correlations where conventional research

does not—naturally, these ideas play well into machine learning.

We also see tremendous potential for developers and their productivity. Should a

machine learning system that can accurately and consistently improve performance

across any database and query set (not just for IMDb and the Join Order Bench-

mark) be made easily accessible to the public, developers would be able to shift gears
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from hours of manual RDBMS tuning to hours of mission-critical programming. We

envision many models, each trained on a separate production database. With re-

inforcement learning, these models can improve as more and more queries arrive,

decreasing production latency over time.
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Appendix A

Baseline JOB execution times in

PostgreSQL and Microsoft SQL

Server

All the results in these tables were obtained on the Windows Subsystem for Linux

(v2.0) with the following hardware:

∙ Intel Core i9-10900K, 10 cores / 20 threads @ 4.0GHz,

∙ 64GB DDR4 2400MHz RAM, 24GB of which was allocated to WSL,

∙ Samsung 850 EVO 1TB SSD,

∙ NVIDIA GeForce RTX 2080, 8GB GDDR6 memory.

All numbers shown are in seconds.
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Table A.1: Baseline JOB execution times in Postgres un-

der all seven join algorithm subsets.

{𝐿} {𝐻} {𝑀} {𝐿,𝐻} {𝐿,𝑀} {𝐻,𝑀} {𝐿,𝐻,𝑀}

1a 0.28 1.56 8.03 0.39 0.34 1.50 0.39

1b 0.07 1.51 8.21 0.23 0.08 1.51 0.23

1c 0.28 1.53 1.77 0.33 0.29 1.55 0.35

1d 0.07 1.47 7.27 0.23 0.08 1.59 0.24

2a 3.68 1.91 11.16 4.19 4.21 1.97 4.20

2b 3.24 1.93 10.94 3.78 3.89 1.93 3.87

2c 3.22 1.19 4.13 3.24 3.15 1.23 3.18

2d 7.69 2.01 9.64 7.90 8.07 2.01 7.97

3a 5.38 5.19 11.79 5.05 5.52 5.14 5.34

3b 3.48 4.85 11.35 3.01 3.44 4.70 3.42

3c 8.78 5.11 16.83 8.45 8.72 5.22 8.47

4a 2.21 1.65 7.91 2.29 2.31 1.68 2.42

4b 1.48 1.63 2.22 0.31 1.57 1.70 0.31

4c 2.14 1.64 8.44 2.58 2.60 1.65 2.59

5a 0.46 0.63 10.58 0.44 0.46 0.67 0.45

5b 0.43 0.62 4.76 0.44 0.45 0.66 0.46

5c 1.08 5.01 10.80 1.01 1.03 4.99 0.98

6a 0.75 8.10 10.36 0.72 0.86 7.97 0.84

6b 5.80 8.35 3.96 5.45 5.64 8.02 5.39

6c 0.11 8.34 3.94 0.11 0.12 8.26 0.11

6d 57.03 7.93 10.82 57.08 56.38 8.56 56.72

6e 0.85 8.00 10.26 0.84 0.83 7.87 0.68

6f 57.25 8.57 43.81 56.12 56.79 8.47 56.64

7a 21.22 8.85 11.63 20.49 21.28 8.75 20.69

Continued on next page
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Table A.1: Baseline JOB execution times in Postgres un-

der all seven join algorithm subsets.

{𝐿} {𝐻} {𝑀} {𝐿,𝐻} {𝐿,𝑀} {𝐻,𝑀} {𝐿,𝐻,𝑀}

7b 9.19 8.99 11.14 9.14 9.18 8.92 8.82

7c 17.45 10.11 14.60 17.03 17.73 10.28 16.47

8a 14.22 8.25 14.49 14.22 14.33 8.48 14.08

8b 1.14 8.14 8.66 1.03 1.12 8.25 1.04

8c 41.25 9.32 20.80 4.87 14.50 9.42 4.74

8d 35.55 8.93 20.90 3.71 13.10 8.61 3.62

9a 1.51 9.56 22.37 1.49 1.54 9.73 1.48

9b 1.41 9.12 15.90 1.44 1.47 9.65 1.46

9c 3.14 9.69 23.24 3.03 3.20 9.45 3.06

9d 19.24 9.76 26.57 6.61 17.14 10.02 6.46

10a 11.17 7.69 19.62 6.47 10.01 8.01 6.54

10b 4.66 7.96 9.96 2.74 3.93 7.78 2.73

10c 5.77 7.87 16.54 8.09 30.58 8.16 8.07

11a 1.22 2.02 0.81 1.14 1.21 0.53 1.23

11b 0.97 1.89 1.48 1.18 1.18 1.17 1.19

11c 2.95 1.94 0.63 3.23 3.16 0.50 3.02

11d 3.18 1.84 0.74 3.28 3.73 0.40 3.68

12a 2.41 4.97 5.98 2.47 2.46 4.90 2.47

12b 0.09 5.03 6.71 0.25 0.11 5.24 0.25

12c 17.65 4.85 12.55 6.82 17.64 4.72 6.79

13a 15.07 5.09 11.40 5.74 14.94 5.12 5.73

13b 7.60 5.23 7.34 2.46 7.41 5.15 2.49

13c 7.39 4.93 7.20 2.43 7.38 4.94 2.44

13d 13.35 6.71 13.07 5.87 13.24 6.49 5.90

Continued on next page

49



Table A.1: Baseline JOB execution times in Postgres un-

der all seven join algorithm subsets.

{𝐿} {𝐻} {𝑀} {𝐿,𝐻} {𝐿,𝑀} {𝐻,𝑀} {𝐿,𝐻,𝑀}

14a 8.59 5.15 6.40 8.56 8.44 5.35 8.72

14b 4.32 5.41 5.80 3.83 3.79 5.19 4.20

14c 15.39 5.35 11.85 14.99 15.52 5.23 15.34

15a 3.32 5.27 14.20 3.27 3.31 5.60 3.31

15b 0.49 5.67 8.09 0.48 0.51 5.64 0.44

15c 4.49 5.21 14.79 4.59 4.20 5.04 4.43

15d 5.61 5.63 14.48 5.60 5.74 5.40 5.50

16a 6.60 8.95 29.73 5.78 6.57 8.71 5.78

16b 70.95 9.95 52.65 70.53 70.52 10.07 69.86

16c 25.58 9.16 51.54 26.33 26.11 9.05 25.53

16d 23.22 9.20 51.30 22.62 22.85 8.96 22.06

17a 64.12 8.72 21.04 63.62 63.66 8.83 63.71

17b 62.02 9.05 20.06 61.01 60.51 8.54 61.25

17c 59.71 8.72 18.79 58.82 59.11 8.74 58.89

17d 61.76 8.48 18.92 60.22 60.40 8.55 59.81

17e 64.02 9.20 52.04 64.21 64.01 9.14 64.18

17f 66.60 8.91 21.43 66.65 66.56 9.00 67.02

18a 22.18 11.94 19.16 20.47 22.36 11.32 20.62

18b 3.67 11.36 20.45 3.67 5.03 11.12 3.60

18c 64.19 11.60 21.24 22.18 22.25 11.39 22.99

19a 1.52 12.86 25.74 1.54 1.56 12.61 1.53

19b 0.86 12.29 16.93 0.87 0.93 13.03 0.97

19c 8.39 13.03 26.42 4.39 4.91 12.85 7.90

19d 44.00 13.57 30.87 13.27 13.56 13.62 13.13

Continued on next page
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Table A.1: Baseline JOB execution times in Postgres un-

der all seven join algorithm subsets.

{𝐿} {𝐻} {𝑀} {𝐿,𝐻} {𝐿,𝑀} {𝐻,𝑀} {𝐿,𝐻,𝑀}

20a 0.07 0.18 0.20 0.06 0.09 0.20 0.08

20b 34.19 9.06 13.96 33.12 34.08 9.25 33.66

20c 29.45 9.17 20.54 29.44 29.45 9.14 30.00

21a 0.93 5.55 0.96 1.28 1.28 1.30 1.29

21b 1.23 5.47 0.97 1.23 1.15 1.21 1.10

21c 1.25 5.57 1.43 1.15 1.02 1.05 1.22

22a 8.69 5.62 7.24 8.56 8.74 5.39 8.36

22b 7.07 5.59 7.05 6.85 7.35 5.54 7.18

22c 15.02 5.79 9.18 15.05 15.02 5.91 14.82

22d 17.92 5.77 13.82 18.49 17.84 5.47 16.72

23a 7.07 5.48 8.78 2.16 7.41 5.62 2.30

23b 1.15 5.33 8.44 1.13 1.17 4.86 1.18

23c 10.37 5.56 8.59 4.22 10.38 5.34 4.25

24a 8.00 13.09 19.89 6.54 9.12 13.05 7.68

24b 0.28 12.93 17.76 0.29 0.31 13.53 0.53

25a 37.44 11.83 21.63 36.37 35.91 12.26 35.22

25b 2.43 11.99 13.21 2.43 2.58 12.16 2.38

25c 52.65 12.24 22.59 52.03 53.92 12.39 52.57

26a 23.22 9.42 21.23 13.09 27.30 9.65 20.80

26b 3.73 9.52 21.73 2.42 3.90 9.61 2.86

26c 62.49 9.60 21.32 40.24 31.04 9.71 29.89

27a 0.94 5.68 0.98 0.22 0.23 0.58 0.25

27b 1.24 5.56 0.94 0.21 0.17 1.21 0.19

27c 0.41 5.76 1.04 1.26 0.76 1.11 0.26

Continued on next page
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Table A.1: Baseline JOB execution times in Postgres un-

der all seven join algorithm subsets.

{𝐿} {𝐻} {𝑀} {𝐿,𝐻} {𝐿,𝑀} {𝐻,𝑀} {𝐿,𝐻,𝑀}

28a 6.41 5.79 14.74 19.61 18.47 5.89 6.50

28b 5.33 5.62 12.63 6.73 5.12 5.73 7.17

28c 13.97 5.98 14.56 8.55 13.91 6.04 7.47

29a 0.48 14.43 15.42 3.42 0.40 14.61 0.68

29b 0.55 14.78 15.93 0.58 0.37 14.94 1.24

29c 3.25 14.05 28.33 1.24 1.23 14.97 4.56

30a 17.42 12.33 21.50 20.68 20.38 12.15 20.08

30b 2.72 12.23 13.88 2.65 2.68 12.00 2.68

30c 41.45 12.42 21.58 42.07 42.40 12.27 41.88

31a 8.78 12.83 21.76 8.29 5.96 12.29 8.39

31b 2.75 12.55 13.30 2.61 2.73 12.49 2.74

31c 9.04 12.56 22.68 8.17 5.91 12.35 8.35

32a 0.08 0.72 2.70 0.07 0.08 0.69 0.08

32b 3.58 1.64 2.68 3.50 3.29 1.35 3.10

33a 0.37 1.89 1.82 0.55 0.58 2.71 0.28

33b 0.44 1.90 1.61 0.40 0.46 1.86 0.47

33c 0.58 1.92 3.50 0.81 0.40 1.86 0.38

Table A.2: Baseline times in Postgres and SQL Server

with all joins enabled and no other settings changed. This

is equivalent to running all queries under {𝐿,𝐻,𝑀}.

Query PostgreSQL Microsoft SQL Server

1a 0.45 0.70

Continued on next page
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Table A.2: Baseline times in Postgres and SQL Server

with all joins enabled and no other settings changed. This

is equivalent to running all queries under {𝐿,𝐻,𝑀}.

Query PostgreSQL Microsoft SQL Server

1b 0.36 2.51

1c 0.47 0.56

1d 0.38 1.31

2a 4.72 3.14

2b 3.71 3.11

2c 3.62 3.06

2d 8.78 3.23

3a 5.30 2.55

3b 4.12 1.42

3c 10.33 4.39

4a 2.84 0.75

4b 0.41 0.55

4c 2.61 0.79

5a 0.57 3.77

5b 0.61 0.40

5c 1.19 3.87

6a 1.05 0.42

6b 6.66 1.55

6c 0.21 0.16

6d 65.57 6.66

6e 1.07 0.43

6f 66.09 6.56

7a 24.75 4.46

Continued on next page
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Table A.2: Baseline times in Postgres and SQL Server

with all joins enabled and no other settings changed. This

is equivalent to running all queries under {𝐿,𝐻,𝑀}.

Query PostgreSQL Microsoft SQL Server

7b 10.76 5.19

7c 19.78 74.87

8a 16.07 4.86

8b 1.26 1.07

8c 5.18 7.49

8d 4.18 6.54

9a 1.76 4.98

9b 1.72 2.19

9c 3.49 5.64

9d 7.17 7.00

10a 7.20 3.16

10b 3.18 2.94

10c 9.29 4.98

11a 1.49 0.34

11b 1.48 0.60

11c 4.26 0.53

11d 4.46 0.55

12a 2.88 1.68

12b 0.38 1.80

12c 7.45 3.45

13a 6.37 7.58

13b 2.89 1.49

13c 2.84 1.38

Continued on next page
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Table A.2: Baseline times in Postgres and SQL Server

with all joins enabled and no other settings changed. This

is equivalent to running all queries under {𝐿,𝐻,𝑀}.

Query PostgreSQL Microsoft SQL Server

13d 6.38 7.17

14a 9.73 6.92

14b 4.33 5.38

14c 17.87 7.39

15a 3.64 1.76

15b 0.65 0.84

15c 4.94 3.11

15d 6.35 5.11

16a 7.43 1.31

16b 81.67 35.98

16c 29.54 12.18

16d 27.26 10.82

17a 73.72 22.58

17b 71.34 13.79

17c 69.46 12.63

17d 69.82 14.87

17e 73.96 22.75

17f 77.03 18.47

18a 22.98 6.47

18b 4.31 3.38

18c 24.48 12.41

19a 1.76 9.86

19b 1.21 1.12

Continued on next page
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Table A.2: Baseline times in Postgres and SQL Server

with all joins enabled and no other settings changed. This

is equivalent to running all queries under {𝐿,𝐻,𝑀}.

Query PostgreSQL Microsoft SQL Server

19c 9.21 27.76

19d 14.80 330.01

20a 0.17 2.08

20b 38.94 5.17

20c 33.24 5.42

21a 1.48 0.43

21b 1.58 0.40

21c 1.40 0.46

22a 10.14 9.04

22b 8.24 8.95

22c 16.77 9.38

22d 20.05 8.62

23a 2.58 1.94

23b 1.42 1.50

23c 4.91 1.95

24a 8.20 2.63

24b 0.65 0.45

25a 40.43 12.13

25b 2.84 1.06

25c 59.63 20.49

26a 26.05 5.69

26b 3.28 1.56

26c 33.40 6.83

Continued on next page
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Table A.2: Baseline times in Postgres and SQL Server

with all joins enabled and no other settings changed. This

is equivalent to running all queries under {𝐿,𝐻,𝑀}.

Query PostgreSQL Microsoft SQL Server

27a 0.36 0.42

27b 0.28 0.35

27c 0.36 0.41

28a 7.03 7.58

28b 8.62 6.18

28c 9.21 7.99

29a 0.94 0.42

29b 1.73 0.41

29c 4.92 1.95

30a 22.85 8.00

30b 3.06 1.18

30c 47.92 8.94

31a 10.40 11.26

31b 3.15 27.38

31c 10.30 13.83

32a 0.17 0.10

32b 3.69 1.30

33a 0.39 13.25

33b 0.51 0.28

33c 0.48 0.23
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Appendix B

𝑘-edits Results

Listing B.1: 1-edits performed on all 113 JOB queries in Postgres. The output lines

show for each query 1) the query processed, 2) the baseline execution time with no

modification, 3) edits used, and 4) the total count for skipped edits.
- - - - - - - - - - - -

Working with query 33a.sql.

Baseline time: 0.36s.

Hints used for modifications: [].

Skipped 57 hints out of 57 available.

- - - - - - - - - - - -

Working with query 14a.sql.

Baseline time: 8.41s.

14a.sql: Hint HashJoin(k mk) resulted in a runtime of 5.96s.

14a.sql: Hint MergeJoin(k mk) resulted in a runtime of 5.95s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 28 hints out of 30 available.

- - - - - - - - - - - -

Working with query 1c.sql.

Baseline time: 0.41s.

1c.sql: Hint NestLoop(it mi_idx) resulted in a runtime of 0.34s.

1c.sql: Hint MergeJoin(it mi_idx) resulted in a runtime of 0.81s.

Hints used for modifications: [’NestLoop(it mi_idx)’, ’MergeJoin(it mi_idx) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 8a.sql.

Baseline time: 14.31s.

8a.sql: Hint NestLoop(mc cn) resulted in a runtime of 14.4s.

8a.sql: Hint MergeJoin(mc cn) resulted in a runtime of 14.72s.

Hints used for modifications: [’NestLoop(mc cn)’, ’MergeJoin(mc cn) ’].
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Skipped 22 hints out of 24 available.

- - - - - - - - - - - -

Working with query 3a.sql.

Baseline time: 5.3s.

3a.sql: Hint HashJoin(k mk) resulted in a runtime of 2.21s.

3a.sql: Hint MergeJoin(k mk) resulted in a runtime of 2.65s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 10 hints out of 12 available.

- - - - - - - - - - - -

Working with query 32b.sql.

Baseline time: 3.02s.

32b.sql: Hint HashJoin(mk k) resulted in a runtime of 0.6s.

32b.sql: Hint MergeJoin(mk k) resulted in a runtime of 0.61s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 16 hints out of 18 available.

- - - - - - - - - - - -

Working with query 13b.sql.

Baseline time: 2.61s.

13b.sql: Hint NestLoop(it miidx) resulted in a runtime of 7.31s.

13b.sql: Hint MergeJoin(it miidx) resulted in a runtime of 2.04s.

Hints used for modifications: [’NestLoop(it miidx)’, ’MergeJoin(it miidx) ’].

Skipped 31 hints out of 33 available.

- - - - - - - - - - - -

Working with query 21c.sql.

Baseline time: 1.07s.

21c.sql: Hint HashJoin(mk k) resulted in a runtime of 0.23s.

21c.sql: Hint MergeJoin(mk k) resulted in a runtime of 0.23s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 40 hints out of 42 available.

- - - - - - - - - - - -

Working with query 6b.sql.

Baseline time: 5.5s.

6b.sql: Hint HashJoin(k mk) resulted in a runtime of 0.96s.

6b.sql: Hint MergeJoin(k mk) resulted in a runtime of 0.95s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 15c.sql.

Baseline time: 4.37s.

15c.sql: Hint NestLoop(it1 mi) resulted in a runtime of 4.39s.

15c.sql: Hint MergeJoin(it1 mi) resulted in a runtime of 4.45s.

Hints used for modifications: [’NestLoop(it1 mi)’, ’MergeJoin(it1 mi) ’].

Skipped 40 hints out of 42 available.

- - - - - - - - - - - -

Working with query 26c.sql.
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Baseline time: 27.67s.

Hints used for modifications: [].

Skipped 51 hints out of 51 available.

- - - - - - - - - - - -

Working with query 10a.sql.

Baseline time: 6.41s.

10a.sql: Hint NestLoop(cn mc) resulted in a runtime of 9.37s.

10a.sql: Hint MergeJoin(cn mc) resulted in a runtime of 6.47s.

Hints used for modifications: [’NestLoop(cn mc)’, ’MergeJoin(cn mc) ’].

Skipped 19 hints out of 21 available.

- - - - - - - - - - - -

Working with query 22d.sql.

Baseline time: 16.66s.

22d.sql: Hint HashJoin(k mk) resulted in a runtime of 8.23s.

22d.sql: Hint MergeJoin(k mk) resulted in a runtime of 8.29s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 46 hints out of 48 available.

- - - - - - - - - - - -

Working with query 2d.sql.

Baseline time: 7.45s.

2d.sql: Hint HashJoin(mk k) resulted in a runtime of 3.06s.

2d.sql: Hint MergeJoin(mk k) resulted in a runtime of 3.0s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 9a.sql.

Baseline time: 1.59s.

9a.sql: Hint HashJoin(an n) resulted in a runtime of 1.77s.

9a.sql: Hint MergeJoin(an n) resulted in a runtime of 2.23s.

Hints used for modifications: [’HashJoin(an n)’, ’MergeJoin(an n) ’].

Skipped 25 hints out of 27 available.

- - - - - - - - - - - -

Working with query 9d.sql.

Baseline time: 6.56s.

9d.sql: Hint NestLoop(mc cn) resulted in a runtime of 6.68s.

9d.sql: Hint MergeJoin(mc cn) resulted in a runtime of 6.58s.

9d.sql: Hint HashJoin(ci rt) resulted in a runtime of 11.48s.

9d.sql: Hint MergeJoin(ci rt) resulted in a runtime of 11.91s.

Hints used for modifications: [’NestLoop(mc cn)’, ’MergeJoin(mc cn)’, ’HashJoin(ci rt

)’, ’MergeJoin(ci rt) ’].

Skipped 23 hints out of 27 available.

- - - - - - - - - - - -

Working with query 15a.sql.

Baseline time: 3.29s.

15a.sql: Hint NestLoop(cn mc) resulted in a runtime of 3.29s.

61



15a.sql: Hint MergeJoin(cn mc) resulted in a runtime of 3.28s.

Hints used for modifications: [’NestLoop(cn mc)’, ’MergeJoin(cn mc) ’].

Skipped 40 hints out of 42 available.

- - - - - - - - - - - -

Working with query 4b.sql.

Baseline time: 0.39s.

4b.sql: Hint NestLoop(it mi_idx) resulted in a runtime of 1.42s.

4b.sql: Hint MergeJoin(it mi_idx) resulted in a runtime of 1.39s.

Hints used for modifications: [’NestLoop(it mi_idx)’, ’MergeJoin(it mi_idx) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 12b.sql.

Baseline time: 0.32s.

12b.sql: Hint NestLoop(mi_idx it2) resulted in a runtime of 0.16s.

12b.sql: Hint MergeJoin(mi_idx it2) resulted in a runtime of 0.99s.

Hints used for modifications: [’NestLoop(mi_idx it2)’, ’MergeJoin(mi_idx it2) ’].

Skipped 28 hints out of 30 available.

- - - - - - - - - - - -

Working with query 6a.sql.

Baseline time: 0.84s.

6a.sql: Hint HashJoin(k mk) resulted in a runtime of 0.83s.

6a.sql: Hint MergeJoin(k mk) resulted in a runtime of 1.91s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 6f.sql.

Baseline time: 54.46s.

6f.sql: Hint HashJoin(k mk) resulted in a runtime of 17.9s.

6f.sql: Hint MergeJoin(k mk) resulted in a runtime of 18.56s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 6c.sql.

Baseline time: 0.19s.

6c.sql: Hint HashJoin(k mk) resulted in a runtime of 0.9s.

6c.sql: Hint MergeJoin(k mk) resulted in a runtime of 0.92s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 12c.sql.

Baseline time: 6.78s.

12c.sql: Hint NestLoop(mi_idx it2) resulted in a runtime of 16.98s.

12c.sql: Hint MergeJoin(mi_idx it2) resulted in a runtime of 7.73s.

Hints used for modifications: [’NestLoop(mi_idx it2)’, ’MergeJoin(mi_idx it2) ’].

Skipped 28 hints out of 30 available.
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- - - - - - - - - - - -

Working with query 19b.sql.

Baseline time: 0.98s.

19b.sql: Hint HashJoin(t mc) resulted in a runtime of 0.93s.

19b.sql: Hint MergeJoin(t mc) resulted in a runtime of 0.88s.

Hints used for modifications: [’HashJoin(t mc)’, ’MergeJoin(t mc) ’].

Skipped 37 hints out of 39 available.

- - - - - - - - - - - -

Working with query 16a.sql.

Baseline time: 6.13s.

16a.sql: Hint HashJoin(mk k) resulted in a runtime of 2.31s.

16a.sql: Hint MergeJoin(mk k) resulted in a runtime of 1.7s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 31 hints out of 33 available.

- - - - - - - - - - - -

Working with query 13d.sql.

Baseline time: 5.91s.

13d.sql: Hint NestLoop(it miidx) resulted in a runtime of 13.19s.

13d.sql: Hint MergeJoin(it miidx) resulted in a runtime of 6.08s.

Hints used for modifications: [’NestLoop(it miidx)’, ’MergeJoin(it miidx) ’].

Skipped 31 hints out of 33 available.

- - - - - - - - - - - -

Working with query 29c.sql.

Baseline time: 4.47s.

Hints used for modifications: [].

Skipped 84 hints out of 84 available.

- - - - - - - - - - - -

Working with query 31a.sql.

Baseline time: 8.54s.

31a.sql: Hint HashJoin(k mk) resulted in a runtime of 7.16s.

31a.sql: Hint MergeJoin(k mk) resulted in a runtime of 7.21s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 58 hints out of 60 available.

- - - - - - - - - - - -

Working with query 32a.sql.

Baseline time: 0.15s.

32a.sql: Hint HashJoin(mk k) resulted in a runtime of 0.19s.

32a.sql: Hint MergeJoin(mk k) resulted in a runtime of 0.19s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 16 hints out of 18 available.

- - - - - - - - - - - -

Working with query 22a.sql.

Baseline time: 8.32s.

22a.sql: Hint HashJoin(k mk) resulted in a runtime of 5.2s.

22a.sql: Hint MergeJoin(k mk) resulted in a runtime of 5.2s.
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Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 46 hints out of 48 available.

- - - - - - - - - - - -

Working with query 16d.sql.

Baseline time: 21.85s.

16d.sql: Hint HashJoin(mk k) resulted in a runtime of 7.16s.

16d.sql: Hint MergeJoin(mk k) resulted in a runtime of 6.7s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 31 hints out of 33 available.

- - - - - - - - - - - -

Working with query 13a.sql.

Baseline time: 5.84s.

13a.sql: Hint NestLoop(it miidx) resulted in a runtime of 14.73s.

13a.sql: Hint MergeJoin(it miidx) resulted in a runtime of 4.41s.

Hints used for modifications: [’NestLoop(it miidx)’, ’MergeJoin(it miidx) ’].

Skipped 31 hints out of 33 available.

- - - - - - - - - - - -

Working with query 15d.sql.

Baseline time: 5.75s.

15d.sql: Hint NestLoop(it1 mi) resulted in a runtime of 5.89s.

15d.sql: Hint MergeJoin(it1 mi) resulted in a runtime of 5.85s.

Hints used for modifications: [’NestLoop(it1 mi)’, ’MergeJoin(it1 mi) ’].

Skipped 40 hints out of 42 available.

- - - - - - - - - - - -

Working with query 14b.sql.

Baseline time: 3.87s.

14b.sql: Hint HashJoin(k mk) resulted in a runtime of 2.51s.

14b.sql: Hint MergeJoin(k mk) resulted in a runtime of 2.5s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 28 hints out of 30 available.

- - - - - - - - - - - -

Working with query 3b.sql.

Baseline time: 3.33s.

3b.sql: Hint HashJoin(k mk) resulted in a runtime of 1.57s.

3b.sql: Hint MergeJoin(k mk) resulted in a runtime of 1.98s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 10 hints out of 12 available.

- - - - - - - - - - - -

Working with query 6e.sql.

Baseline time: 0.85s.

6e.sql: Hint HashJoin(k mk) resulted in a runtime of 0.82s.

6e.sql: Hint MergeJoin(k mk) resulted in a runtime of 1.95s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -
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Working with query 31c.sql.

Baseline time: 8.58s.

31c.sql: Hint HashJoin(k mk) resulted in a runtime of 7.21s.

31c.sql: Hint MergeJoin(k mk) resulted in a runtime of 7.2s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 58 hints out of 60 available.

- - - - - - - - - - - -

Working with query 18c.sql.

Baseline time: 22.23s.

18c.sql: Hint NestLoop(it2 mi_idx) resulted in a runtime of 61.19s.

18c.sql: Hint MergeJoin(it2 mi_idx) resulted in a runtime of 22.99s.

Hints used for modifications: [’NestLoop(it2 mi_idx)’, ’MergeJoin(it2 mi_idx) ’].

Skipped 25 hints out of 27 available.

- - - - - - - - - - - -

Working with query 30c.sql.

Baseline time: 39.92s.

Hints used for modifications: [].

Skipped 63 hints out of 63 available.

- - - - - - - - - - - -

Working with query 24b.sql.

Baseline time: 0.63s.

Hints used for modifications: [].

Skipped 54 hints out of 54 available.

- - - - - - - - - - - -

Working with query 1a.sql.

Baseline time: 0.44s.

1a.sql: Hint NestLoop(it mi_idx) resulted in a runtime of 0.39s.

1a.sql: Hint MergeJoin(it mi_idx) resulted in a runtime of 0.83s.

Hints used for modifications: [’NestLoop(it mi_idx)’, ’MergeJoin(it mi_idx) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 11d.sql.

Baseline time: 3.14s.

11d.sql: Hint HashJoin(mk k) resulted in a runtime of 0.26s.

11d.sql: Hint MergeJoin(mk k) resulted in a runtime of 0.26s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 28 hints out of 30 available.

- - - - - - - - - - - -

Working with query 17d.sql.

Baseline time: 58.62s.

17d.sql: Hint HashJoin(mk k) resulted in a runtime of 19.48s.

17d.sql: Hint MergeJoin(mk k) resulted in a runtime of 20.94s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 25 hints out of 27 available.

- - - - - - - - - - - -
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Working with query 23a.sql.

Baseline time: 2.33s.

23a.sql: Hint NestLoop(cct1 cc) resulted in a runtime of 2.33s.

23a.sql: Hint MergeJoin(cct1 cc) resulted in a runtime of 2.37s.

Hints used for modifications: [’NestLoop(cct1 cc)’, ’MergeJoin(cct1 cc) ’].

Skipped 46 hints out of 48 available.

- - - - - - - - - - - -

Working with query 21b.sql.

Baseline time: 1.08s.

21b.sql: Hint HashJoin(mk k) resulted in a runtime of 0.26s.

21b.sql: Hint MergeJoin(mk k) resulted in a runtime of 0.26s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 40 hints out of 42 available.

- - - - - - - - - - - -

Working with query 11b.sql.

Baseline time: 0.99s.

11b.sql: Hint HashJoin(mk k) resulted in a runtime of 0.21s.

11b.sql: Hint MergeJoin(mk k) resulted in a runtime of 0.21s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 28 hints out of 30 available.

- - - - - - - - - - - -

Working with query 29b.sql.

Baseline time: 1.41s.

Hints used for modifications: [].

Skipped 84 hints out of 84 available.

- - - - - - - - - - - -

Working with query 8d.sql.

Baseline time: 3.78s.

8d.sql: Hint NestLoop(an1 n1) resulted in a runtime of 3.67s.

8d.sql: Hint MergeJoin(an1 n1) resulted in a runtime of 3.63s.

8d.sql: Hint NestLoop(mc cn) resulted in a runtime of 3.93s.

8d.sql: Hint MergeJoin(mc cn) resulted in a runtime of 3.82s.

8d.sql: Hint HashJoin(ci rt) resulted in a runtime of 9.13s.

8d.sql: Hint MergeJoin(ci rt) resulted in a runtime of 10.5s.

Hints used for modifications: [’NestLoop(an1 n1)’, ’MergeJoin(an1 n1)’, ’NestLoop(mc

cn)’, ’MergeJoin(mc cn)’, ’HashJoin(ci rt)’, ’MergeJoin(ci rt) ’].

Skipped 18 hints out of 24 available.

- - - - - - - - - - - -

Working with query 9c.sql.

Baseline time: 3.46s.

9c.sql: Hint NestLoop(an n) resulted in a runtime of 3.26s.

9c.sql: Hint MergeJoin(an n) resulted in a runtime of 5.99s.

Hints used for modifications: [’NestLoop(an n)’, ’MergeJoin(an n) ’].

Skipped 25 hints out of 27 available.

- - - - - - - - - - - -
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Working with query 17b.sql.

Baseline time: 59.15s.

17b.sql: Hint HashJoin(mk k) resulted in a runtime of 19.9s.

17b.sql: Hint MergeJoin(mk k) resulted in a runtime of 21.22s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 25 hints out of 27 available.

- - - - - - - - - - - -

Working with query 30b.sql.

Baseline time: 2.78s.

Hints used for modifications: [].

Skipped 63 hints out of 63 available.

- - - - - - - - - - - -

Working with query 26b.sql.

Baseline time: 2.72s.

Hints used for modifications: [].

Skipped 51 hints out of 51 available.

- - - - - - - - - - - -

Working with query 2c.sql.

Baseline time: 3.07s.

2c.sql: Hint HashJoin(mk k) resulted in a runtime of 0.2s.

2c.sql: Hint MergeJoin(mk k) resulted in a runtime of 0.2s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 15b.sql.

Baseline time: 0.54s.

15b.sql: Hint HashJoin(cn mc) resulted in a runtime of 0.61s.

15b.sql: Hint MergeJoin(cn mc) resulted in a runtime of 0.64s.

Hints used for modifications: [’HashJoin(cn mc)’, ’MergeJoin(cn mc) ’].

Skipped 40 hints out of 42 available.

- - - - - - - - - - - -

Working with query 17f.sql.

Baseline time: 64.28s.

17f.sql: Hint HashJoin(mk k) resulted in a runtime of 22.18s.

17f.sql: Hint MergeJoin(mk k) resulted in a runtime of 22.77s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 25 hints out of 27 available.

- - - - - - - - - - - -

Working with query 21a.sql.

Baseline time: 1.05s.

21a.sql: Hint HashJoin(mk k) resulted in a runtime of 0.28s.

21a.sql: Hint MergeJoin(mk k) resulted in a runtime of 0.31s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 40 hints out of 42 available.

- - - - - - - - - - - -
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Working with query 18a.sql.

Baseline time: 21.13s.

18a.sql: Hint NestLoop(it2 mi_idx) resulted in a runtime of 21.54s.

18a.sql: Hint MergeJoin(it2 mi_idx) resulted in a runtime of 21.2s.

Hints used for modifications: [’NestLoop(it2 mi_idx)’, ’MergeJoin(it2 mi_idx) ’].

Skipped 25 hints out of 27 available.

- - - - - - - - - - - -

Working with query 24a.sql.

Baseline time: 7.36s.

Hints used for modifications: [].

Skipped 54 hints out of 54 available.

- - - - - - - - - - - -

Working with query 8c.sql.

Baseline time: 4.75s.

8c.sql: Hint NestLoop(a1 n1) resulted in a runtime of 4.69s.

8c.sql: Hint MergeJoin(a1 n1) resulted in a runtime of 4.65s.

8c.sql: Hint NestLoop(mc cn) resulted in a runtime of 4.98s.

8c.sql: Hint MergeJoin(mc cn) resulted in a runtime of 4.89s.

8c.sql: Hint HashJoin(ci rt) resulted in a runtime of 8.93s.

8c.sql: Hint MergeJoin(ci rt) resulted in a runtime of 11.03s.

Hints used for modifications: [’NestLoop(a1 n1)’, ’MergeJoin(a1 n1)’, ’NestLoop(mc cn

)’, ’MergeJoin(mc cn)’, ’HashJoin(ci rt)’, ’MergeJoin(ci rt) ’].

Skipped 18 hints out of 24 available.

- - - - - - - - - - - -

Working with query 27a.sql.

Baseline time: 0.4s.

Hints used for modifications: [].

Skipped 63 hints out of 63 available.

- - - - - - - - - - - -

Working with query 5c.sql.

Baseline time: 1.09s.

5c.sql: Hint NestLoop(ct mc) resulted in a runtime of 1.13s.

5c.sql: Hint MergeJoin(ct mc) resulted in a runtime of 1.1s.

Hints used for modifications: [’NestLoop(ct mc)’, ’MergeJoin(ct mc) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 28b.sql.

Baseline time: 6.96s.

Hints used for modifications: [].

Skipped 69 hints out of 69 available.

- - - - - - - - - - - -

Working with query 3c.sql.

Baseline time: 7.87s.

3c.sql: Hint HashJoin(k mk) resulted in a runtime of 3.52s.

3c.sql: Hint MergeJoin(k mk) resulted in a runtime of 4.09s.
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Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 10 hints out of 12 available.

- - - - - - - - - - - -

Working with query 31b.sql.

Baseline time: 2.85s.

31b.sql: Hint HashJoin(k mk) resulted in a runtime of 0.5s.

31b.sql: Hint MergeJoin(k mk) resulted in a runtime of 0.5s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 58 hints out of 60 available.

- - - - - - - - - - - -

Working with query 29a.sql.

Baseline time: 0.79s.

Hints used for modifications: [].

Skipped 84 hints out of 84 available.

- - - - - - - - - - - -

Working with query 6d.sql.

Baseline time: 52.98s.

6d.sql: Hint HashJoin(k mk) resulted in a runtime of 18.05s.

6d.sql: Hint MergeJoin(k mk) resulted in a runtime of 17.51s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 20b.sql.

Baseline time: 31.82s.

20b.sql: Hint HashJoin(k mk) resulted in a runtime of 34.61s.

20b.sql: Hint MergeJoin(k mk) resulted in a runtime of 34.52s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 34 hints out of 36 available.

- - - - - - - - - - - -

Working with query 17c.sql.

Baseline time: 56.47s.

17c.sql: Hint HashJoin(mk k) resulted in a runtime of 19.11s.

17c.sql: Hint MergeJoin(mk k) resulted in a runtime of 20.69s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 25 hints out of 27 available.

- - - - - - - - - - - -

Working with query 28a.sql.

Baseline time: 5.85s.

Hints used for modifications: [].

Skipped 69 hints out of 69 available.

- - - - - - - - - - - -

Working with query 26a.sql.

Baseline time: 20.88s.

Hints used for modifications: [].

Skipped 51 hints out of 51 available.

69



- - - - - - - - - - - -

Working with query 11c.sql.

Baseline time: 3.12s.

11c.sql: Hint HashJoin(mk k) resulted in a runtime of 0.97s.

11c.sql: Hint MergeJoin(mk k) resulted in a runtime of 1.01s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 28 hints out of 30 available.

- - - - - - - - - - - -

Working with query 4a.sql.

Baseline time: 2.52s.

4a.sql: Hint HashJoin(k mk) resulted in a runtime of 3.43s.

4a.sql: Hint MergeJoin(k mk) resulted in a runtime of 3.44s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 13c.sql.

Baseline time: 2.62s.

13c.sql: Hint NestLoop(it miidx) resulted in a runtime of 7.57s.

13c.sql: Hint MergeJoin(it miidx) resulted in a runtime of 1.92s.

Hints used for modifications: [’NestLoop(it miidx)’, ’MergeJoin(it miidx) ’].

Skipped 31 hints out of 33 available.

- - - - - - - - - - - -

Working with query 22b.sql.

Baseline time: 7.31s.

22b.sql: Hint HashJoin(k mk) resulted in a runtime of 3.37s.

22b.sql: Hint MergeJoin(k mk) resulted in a runtime of 3.38s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 46 hints out of 48 available.

- - - - - - - - - - - -

Working with query 19a.sql.

Baseline time: 1.59s.

19a.sql: Hint HashJoin(n an) resulted in a runtime of 2.01s.

19a.sql: Hint MergeJoin(n an) resulted in a runtime of 2.39s.

Hints used for modifications: [’HashJoin(n an)’, ’MergeJoin(n an) ’].

Skipped 37 hints out of 39 available.

- - - - - - - - - - - -

Working with query 2a.sql.

Baseline time: 4.29s.

2a.sql: Hint HashJoin(mk k) resulted in a runtime of 1.92s.

2a.sql: Hint MergeJoin(mk k) resulted in a runtime of 1.59s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 7a.sql.

Baseline time: 21.56s.
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7a.sql: Hint HashJoin(lt ml) resulted in a runtime of 21.44s.

7a.sql: Hint MergeJoin(lt ml) resulted in a runtime of 21.45s.

Hints used for modifications: [’HashJoin(lt ml)’, ’MergeJoin(lt ml) ’].

Skipped 31 hints out of 33 available.

- - - - - - - - - - - -

Working with query 18b.sql.

Baseline time: 3.78s.

18b.sql: Hint NestLoop(it2 mi_idx) resulted in a runtime of 3.78s.

18b.sql: Hint MergeJoin(it2 mi_idx) resulted in a runtime of 5.25s.

Hints used for modifications: [’NestLoop(it2 mi_idx)’, ’MergeJoin(it2 mi_idx) ’].

Skipped 25 hints out of 27 available.

- - - - - - - - - - - -

Working with query 17a.sql.

Baseline time: 64.87s.

17a.sql: Hint HashJoin(mk k) resulted in a runtime of 21.13s.

17a.sql: Hint MergeJoin(mk k) resulted in a runtime of 20.94s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 25 hints out of 27 available.

- - - - - - - - - - - -

Working with query 4c.sql.

Baseline time: 2.3s.

4c.sql: Hint HashJoin(k mk) resulted in a runtime of 3.48s.

4c.sql: Hint MergeJoin(k mk) resulted in a runtime of 3.44s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 19d.sql.

Baseline time: 13.73s.

19d.sql: Hint HashJoin(rt ci) resulted in a runtime of 19.04s.

19d.sql: Hint MergeJoin(rt ci) resulted in a runtime of 17.68s.

Hints used for modifications: [’HashJoin(rt ci)’, ’MergeJoin(rt ci) ’].

Skipped 37 hints out of 39 available.

- - - - - - - - - - - -

Working with query 8b.sql.

Baseline time: 1.21s.

8b.sql: Hint HashJoin(mc cn) resulted in a runtime of 1.14s.

8b.sql: Hint MergeJoin(mc cn) resulted in a runtime of 1.16s.

Hints used for modifications: [’HashJoin(mc cn)’, ’MergeJoin(mc cn) ’].

Skipped 22 hints out of 24 available.

- - - - - - - - - - - -

Working with query 33b.sql.

Baseline time: 0.55s.

Hints used for modifications: [].

Skipped 57 hints out of 57 available.

- - - - - - - - - - - -
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Working with query 14c.sql.

Baseline time: 15.63s.

14c.sql: Hint HashJoin(k mk) resulted in a runtime of 7.67s.

14c.sql: Hint MergeJoin(k mk) resulted in a runtime of 7.85s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 28 hints out of 30 available.

- - - - - - - - - - - -

Working with query 33c.sql.

Baseline time: 0.47s.

Hints used for modifications: [].

Skipped 57 hints out of 57 available.

- - - - - - - - - - - -

Working with query 7c.sql.

Baseline time: 17.63s.

7c.sql: Hint HashJoin(it pi) resulted in a runtime of 5.91s.

7c.sql: Hint MergeJoin(it pi) resulted in a runtime of 6.15s.

Hints used for modifications: [’HashJoin(it pi)’, ’MergeJoin(it pi) ’].

Skipped 31 hints out of 33 available.

- - - - - - - - - - - -

Working with query 23b.sql.

Baseline time: 1.26s.

23b.sql: Hint HashJoin(k mk) resulted in a runtime of 1.0s.

23b.sql: Hint MergeJoin(k mk) resulted in a runtime of 2.39s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 46 hints out of 48 available.

- - - - - - - - - - - -

Working with query 10b.sql.

Baseline time: 2.87s.

10b.sql: Hint NestLoop(cn mc) resulted in a runtime of 4.41s.

10b.sql: Hint MergeJoin(cn mc) resulted in a runtime of 2.93s.

Hints used for modifications: [’NestLoop(cn mc)’, ’MergeJoin(cn mc) ’].

Skipped 19 hints out of 21 available.

- - - - - - - - - - - -

Working with query 20a.sql.

Baseline time: 0.15s.

Hints used for modifications: [].

Skipped 36 hints out of 36 available.

- - - - - - - - - - - -

Working with query 25a.sql.

Baseline time: 35.75s.

25a.sql: Hint HashJoin(k mk) resulted in a runtime of 32.64s.

25a.sql: Hint MergeJoin(k mk) resulted in a runtime of 32.06s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 40 hints out of 42 available.

- - - - - - - - - - - -
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Working with query 30a.sql.

Baseline time: 19.03s.

Hints used for modifications: [].

Skipped 63 hints out of 63 available.

- - - - - - - - - - - -

Working with query 5b.sql.

Baseline time: 0.55s.

5b.sql: Hint NestLoop(ct mc) resulted in a runtime of 0.53s.

5b.sql: Hint MergeJoin(ct mc) resulted in a runtime of 0.54s.

Hints used for modifications: [’NestLoop(ct mc)’, ’MergeJoin(ct mc) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 9b.sql.

Baseline time: 1.56s.

9b.sql: Hint HashJoin(an n) resulted in a runtime of 15.69s.

9b.sql: Hint MergeJoin(an n) resulted in a runtime of 15.76s.

Hints used for modifications: [’HashJoin(an n)’, ’MergeJoin(an n) ’].

Skipped 25 hints out of 27 available.

- - - - - - - - - - - -

Working with query 16b.sql.

Baseline time: 72.48s.

16b.sql: Hint HashJoin(mk k) resulted in a runtime of 23.82s.

16b.sql: Hint MergeJoin(mk k) resulted in a runtime of 23.76s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 31 hints out of 33 available.

- - - - - - - - - - - -

Working with query 2b.sql.

Baseline time: 3.27s.

2b.sql: Hint HashJoin(mk k) resulted in a runtime of 1.8s.

2b.sql: Hint MergeJoin(mk k) resulted in a runtime of 1.9s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 28c.sql.

Baseline time: 7.71s.

Hints used for modifications: [].

Skipped 69 hints out of 69 available.

- - - - - - - - - - - -

Working with query 5a.sql.

Baseline time: 0.55s.

5a.sql: Hint NestLoop(ct mc) resulted in a runtime of 0.55s.

5a.sql: Hint MergeJoin(ct mc) resulted in a runtime of 0.54s.

Hints used for modifications: [’NestLoop(ct mc)’, ’MergeJoin(ct mc) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -
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Working with query 27c.sql.

Baseline time: 0.31s.

Hints used for modifications: [].

Skipped 63 hints out of 63 available.

- - - - - - - - - - - -

Working with query 23c.sql.

Baseline time: 4.4s.

23c.sql: Hint NestLoop(cct1 cc) resulted in a runtime of 4.38s.

23c.sql: Hint MergeJoin(cct1 cc) resulted in a runtime of 4.53s.

Hints used for modifications: [’NestLoop(cct1 cc)’, ’MergeJoin(cct1 cc) ’].

Skipped 46 hints out of 48 available.

- - - - - - - - - - - -

Working with query 11a.sql.

Baseline time: 1.0s.

11a.sql: Hint HashJoin(mk k) resulted in a runtime of 0.24s.

11a.sql: Hint MergeJoin(mk k) resulted in a runtime of 0.25s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 28 hints out of 30 available.

- - - - - - - - - - - -

Working with query 12a.sql.

Baseline time: 2.6s.

12a.sql: Hint NestLoop(mi_idx it2) resulted in a runtime of 2.62s.

12a.sql: Hint MergeJoin(mi_idx it2) resulted in a runtime of 2.81s.

Hints used for modifications: [’NestLoop(mi_idx it2)’, ’MergeJoin(mi_idx it2) ’].

Skipped 28 hints out of 30 available.

- - - - - - - - - - - -

Working with query 25b.sql.

Baseline time: 2.57s.

25b.sql: Hint HashJoin(k mk) resulted in a runtime of 2.6s.

25b.sql: Hint MergeJoin(k mk) resulted in a runtime of 2.59s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 40 hints out of 42 available.

- - - - - - - - - - - -

Working with query 27b.sql.

Baseline time: 0.25s.

Hints used for modifications: [].

Skipped 63 hints out of 63 available.

- - - - - - - - - - - -

Working with query 22c.sql.

Baseline time: 14.81s.

22c.sql: Hint HashJoin(k mk) resulted in a runtime of 9.0s.

22c.sql: Hint MergeJoin(k mk) resulted in a runtime of 8.95s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 46 hints out of 48 available.

- - - - - - - - - - - -
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Working with query 10c.sql.

Baseline time: 8.19s.

10c.sql: Hint NestLoop(chn ci) resulted in a runtime of 8.17s.

10c.sql: Hint MergeJoin(chn ci) resulted in a runtime of 8.84s.

10c.sql: Hint NestLoop(cn mc) resulted in a runtime of 8.18s.

10c.sql: Hint MergeJoin(cn mc) resulted in a runtime of 8.09s.

Hints used for modifications: [’NestLoop(chn ci)’, ’MergeJoin(chn ci)’, ’NestLoop(cn

mc)’, ’MergeJoin(cn mc) ’].

Skipped 17 hints out of 21 available.

- - - - - - - - - - - -

Working with query 20c.sql.

Baseline time: 29.16s.

20c.sql: Hint HashJoin(k mk) resulted in a runtime of 32.88s.

20c.sql: Hint MergeJoin(k mk) resulted in a runtime of 32.69s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 34 hints out of 36 available.

- - - - - - - - - - - -

Working with query 1b.sql.

Baseline time: 0.31s.

1b.sql: Hint NestLoop(it mi_idx) resulted in a runtime of 0.14s.

1b.sql: Hint MergeJoin(it mi_idx) resulted in a runtime of 0.37s.

Hints used for modifications: [’NestLoop(it mi_idx)’, ’MergeJoin(it mi_idx) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 17e.sql.

Baseline time: 64.36s.

17e.sql: Hint HashJoin(mk k) resulted in a runtime of 21.16s.

17e.sql: Hint MergeJoin(mk k) resulted in a runtime of 20.96s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 25 hints out of 27 available.

- - - - - - - - - - - -

Working with query 19c.sql.

Baseline time: 8.33s.

19c.sql: Hint HashJoin(rt ci) resulted in a runtime of 23.56s.

19c.sql: Hint MergeJoin(rt ci) resulted in a runtime of 23.34s.

Hints used for modifications: [’HashJoin(rt ci)’, ’MergeJoin(rt ci) ’].

Skipped 37 hints out of 39 available.

- - - - - - - - - - - -

Working with query 7b.sql.

Baseline time: 8.09s.

7b.sql: Hint HashJoin(lt ml) resulted in a runtime of 9.35s.

7b.sql: Hint MergeJoin(lt ml) resulted in a runtime of 9.22s.

Hints used for modifications: [’HashJoin(lt ml)’, ’MergeJoin(lt ml) ’].

Skipped 31 hints out of 33 available.

- - - - - - - - - - - -
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Working with query 1d.sql.

Baseline time: 0.31s.

1d.sql: Hint NestLoop(it mi_idx) resulted in a runtime of 0.15s.

1d.sql: Hint MergeJoin(it mi_idx) resulted in a runtime of 0.37s.

Hints used for modifications: [’NestLoop(it mi_idx)’, ’MergeJoin(it mi_idx) ’].

Skipped 13 hints out of 15 available.

- - - - - - - - - - - -

Working with query 25c.sql.

Baseline time: 52.76s.

25c.sql: Hint HashJoin(k mk) resulted in a runtime of 49.2s.

25c.sql: Hint MergeJoin(k mk) resulted in a runtime of 49.19s.

Hints used for modifications: [’HashJoin(k mk)’, ’MergeJoin(k mk) ’].

Skipped 40 hints out of 42 available.

- - - - - - - - - - - -

Working with query 16c.sql.

Baseline time: 26.07s.

16c.sql: Hint HashJoin(mk k) resulted in a runtime of 8.16s.

16c.sql: Hint MergeJoin(mk k) resulted in a runtime of 7.7s.

Hints used for modifications: [’HashJoin(mk k)’, ’MergeJoin(mk k) ’].

Skipped 31 hints out of 33 available.
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Appendix C

Performance Comparison Charts

Table C.1: Comparison of execution times for JOB

queries that took more than 25s and their maximum

speed-ups with our deep Bayesian neural network. There

are 18 queries shown here.

Postgres Neural network

6d 55.75 8.10

6f 56.06 8.63

16b 70.41 10.27

16c 25.32 9.32

17a 62.60 8.91

17b 59.93 9.17

17c 57.48 8.86

17d 58.75 8.44

17e 62.07 8.89

17f 65.01 8.83

20a 44.14 0.21

20b 33.87 9.59

Continued on next page
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Table C.1: Comparison of execution times for JOB

queries that took more than 25s and their maximum

speed-ups with our deep Bayesian neural network. There

are 18 queries shown here.

Postgres Neural network

20c 28.88 9.44

25a 34.96 12.32

25c 51.58 11.90

26a 34.49 9.81

26c 36.02 9.67

30c 51.37 12.09
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