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Abstract

This thesis consists of three chapters on technological innovation, diffusion, and practice
style among physicians.

The first chapter investigates the effect of age on a surgeon’s propensity to use new medical
procedures. I identify a large number of medical technologies undergoing diffusion by a
well-defined risk set of physicians by exploiting the parent-descendant relationship among
ICD9-CM inpatient procedure codes where each new code has a well-defined antecedent.
I find that surgeons that are ten years older at the time of new-code approval are sixteen
percent less likely to use this code. Evidence from the diffusion of new pharmaceuticals,
diagnostic codes, and minimally invasive procedures suggests that this effect may be driven
by skill acquisition costs rather than information frictions.

In the second chapter, I study the impact of market size on the development of novel surg-
eries, an important domain of medical innovation where intellectual property rights, approval
regulation, and financial incentives play only a minor role. Using the codification of ICD9
CM procedure codes as a novel measure of new-surgery development, I investigate the be-
havior of surgical innovation and compare it to pharmaceuticals where traditional innovative
institutions are salient. I find that the two processes follow very different aggregate trends.
Despite this difference, I estimate a positive and significant elasticity of surgical innovation
with respect to potential market size by leveraging quasi-exogenous changes in potential
market size due to shifting US demographics.

The third chapter, joint with Amy Finkelstein, Matthew Gentzkow, Peter Hull, and Heidi
Williams, studies the role of physician practice style in Medicare geographic spending varia-
tion. We estimate a model that allows for variation in patient demand, physician treatment
intensity, and regional supply-side factors, as well as patient-physician sorting. The model
is identified by quasi-experimental migration of Medicare patients and physicians and their
matching within regions. We find that physicians vary greatly in their treatment inten-
sity. Our baseline decomposition suggests that about 30 percent of regional variation in
health care utilization is explained by differences in average physician treatment intensity,
20 percent by other area supply factors, and 50 percent by differences in patient demand.
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1 Chapter 1
The Age of Modern Medicine

1.1 Introduction

The successful adoption of cost-effective technologies is commonly touted as an essential compo-

nent of achieving better value at lower cost in the healthcare sector (Cutler (2005), Chandra and

Skinner (2012), Skinner and Staiger (2012)). Although various institutional and financial factors

underlying technological diffusion have received much attention in healthcare economics, the role

of physician demographics in this process has remained relatively underexplored. This is surpris-

ing because concerns about the impact of an aging labor force on workers’ ability to keep up with

the technological frontier have been gaining in prominence (Deming and Noray (forthcoming)).

A natural implication of these ideas is that the impact of physician age on healthcare technology

adoption is an important, yet unanswered question.

This paper explores the differential adoption patterns of younger and older physicians of mul-

tiple technologies in an important domain of medical innovation - surgical procedures. To do so,

I employ a novel measure of technological diffusion that uses the branching structure of annual
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revisions to ICD-9-CM procedure codes. The evolution of codes creates a linkage of each new

code to an older one that serves as its technological substitute. This feature of the system allows

me to study the simultaneous diffusion of multiple technologies by consistently identifying each

diffusing innovation’s older technological substitutes and agents that are “at risk” for adoption.

These are key challenges to the study of diffusion more broadly and overcoming them allows me

to confront the data with a model explaining the effects of aging based on the latest insights in

psychology and economics.

I find a negative relationship between age and surgical procedure adoption. My analyses show

that a 10-year-increase in age is associated with a 16% (1.8 percentage points) decrease in the

propensity to use the new procedure codes. The results are invariant to the addition of various

medical and demographic controls for the physicians and their patient mix to the specifications.

This suggests that patient selection is not a driver of the results and is consistent with the idea that

innovations within the same category are likely to be used by phyisicians with a similar skill-set

on patients with a similar medical condition and outlook. Lastly, I perform a simple counterfactual

exercise implying that the gains from removing the age-based barriers to adoption are likely to

be large. In particular, my estimates suggest that helping older physicians achieve the adoption

propensity of the youngest group of doctors will increase technology adoption rates by 19%.

I document two additional patterns that shed light on the properties of the likely root cause of

these differences. First, I test whether the differences between young and old are due to differential

adoption (extensive-margin) or differential use conditional on adopting (intensive margin). I find

suggestive evidence that extensive-margin frictions are likely to be important in this context. Sec-

ond, I investigate the persistence of the difference by examining the evolution of this gap over time

and document that it remains significant years after the introduction of a new code. This indicates

that the underlying mechanisms are not transient in nature and may lead to long-term differences

in technological capabilities between the young and the young.

I interpret the patterns in the data through an economic model of adoption nesting the dominant

paradigm of the cognitive effects of aging within psychology. The model features a physician

agent making adoption decisions driven by a central trade-off - fixed costs of technology adotion

incurred in the present versus benefits to patients in the future. The model indicates that there are

two channels for the impact of age on this decision. First, higher age decreases in the value of
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adoption through lower expected remaining practice life. Second, increases in age affect the costs

of adoping new technology through an underlying substitution between practical experience and

ability to deal with novel situations.

I continue by presenting empirical evidence for the two channels in the conceptual framework.

First, I use the model to derive a simple empirical test of the career life expectancy channel that

relies on including an interaction between arrival rate and age in my specifications. Second, I

perform an analogous analysis in two settings where fixed adoption costs are likely to be lower

- new diagnostic code use and novel pharmaceutical drug presrciptions - and one setting where

the same costs are likely to be relatively high - minimally invasive procedures. Consistent with

the model’s predicitons, I find that there is no age-based gradient in the first two settings, but a

relatively steeper gradient in the latter setting.

This result is not simply of theoretical interest, but has important policy implications. In partic-

ular, there is an active policy concern for the maintenance and expansion of physician skills after

graduating from medical school (Society of American Gastrointestinal and Endoscopic Surgeons

(SAGES) (2020)). Previous research in technology diffusion has suggested that information fric-

tions could be important barriers for the spread of new innovations (Agha and Molitor (2018)).

My study suggests that these frictions are not likely to play a big role in the current setting and

that skill-acquisition costs are more important barriers to diffusion. Together with the counterfac-

tual results from above, they strongly imply that policies that subsidize physician investment in

new skill acquisition are the only method to achieve large and lasting gains in effective technology

diffusion.

1.2 Related literature

This paper is closely related to a prolific literature on technological diffusion in healthcare. Tech-

nological diffusion has been traditionally seen as an important factor behind both the large gains

in welfare and increases in costs in healthcare markets over the past few decades (Cutler (2005),

Chandra and Skinner (2012), Skinner and Staiger (2012)). Additionally, popular models of dif-

fusion in the sector imply that small differences in provider adoption propensities can have large

effects on steady-state outcomes and costs (Skinner and Staiger (2012)). This has led to much
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attention devoted to the causes and consequences of technological diffusion in empirical work

(Baker and Phibbs (2002), Skinner and Staiger (2012), Clemens and Gottlieb (2014)). The popu-

larly explored determinants of technological adoption include health insurance expansions (Weis-

brod (1991), Finkelstein (2007)), health insurance financial incentives (Baker and Phibbs (2002),

Acemoglu and Finkelstein (2008), Clemens and Gottlieb (2014)), and opinion leadership (Agha

and Molitor (2018)).

Physician demographic determinants of technological diffusion, on the other hand, remain un-

derexplored. Most of the empirical evidence on this topic comes from case studies in the diffusion

of prescription pharmaceuticals or surgical procedures that looks at the correlation between adop-

tion behavior and a variety of physician or practice characteristics.1 2While such studies constitute

important forays into the issue, they offer conflicting evidence on the magnitude and direction of

the age-adoption profile. Additionally, extrapolating to other domains of innovation in medicine

or even other prescription medications or procedures is difficult.

On the one hand this is surprising. Recent research in labor and financial economics has raised

concerns that the aging of the labor force may lead to a decreased ability of workers to keep up

with the technological frontier. For instance, Deming and Noray (forthcoming) find that the wage

premium commanded by STEM workers relative to their non-STEM counterparts declines with

age. The authors explain this pattern as a result of the inability of older workers to keep up with

the fast changes in the technological frontier of these fields.

Furthermore, changes in the ability to learn and adapt with time have been the focus of other

influential studies in economics. For instance, Agarwal et al. (2009) find that consumer financial

mistakes follow a hump-shaped pattern with age, where financial skill peaks in middle-age and then

quickly deteriorates afterwards. Similarly, Korniotis and Kumar (2009) find that while investment

knowledge increases with age, investment skill declines. Both studies lean on a rich literature in

1Examples in the case of medical procedures include Escarce (1996), Beckelis et al. (2017), Artis et al. (2006),
Forte et al. (2010), and Gratwohl et al. (2010). Examples in the case of drugs include Steffensen et al. (1999), Mark
et al. (2002), Johannesson and Lundin (2002), Kozyrskyj et al. (2007), Bourke and Roper (2012), and Huskamp et al.
(2013).

2I am aware of only one study in this space - Glass and Rosenthal (2004) - which analyzes the diffusion of a large
number of similar technologies (new pharmaceuticals) in order to draw more general conclusions about the behavior
of healthcare providers in this space. The authors investigate the diffusion of 32 new pharmaceuticals (some first
in class and some follow-on drugs) and relate it to the demographic characteristics of prescribing physicians using
logistic regression.
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psychology (see, e.g., Samanez-Larkin and Knutson (2015) for a review) to explain these patterns

as the result of the interplay of practical experience (crystallized intelligence) and ability to deal

with novel situations (fluid intelligence). That is, while older workers may have more practical

experience that helps with a task, they are also less likely to engage with complex tasks that require

novel learning. This body of knowledge strongly suggests that demographic aging effects are likely

to be very important in healthcare where technology moves at a rapid pace.3

On the other hand, the lack of work in this area in healthcare economics faces unique chal-

lenges. One such difficulty is the measurement of technological diffusion consistently for a broad

set of technologies. As mentioned above, while case studies offer an interesting look into the prob-

lem, their very nature precludes broad conclusions. Measuring many new technologies well using

conventional data sources in this sector is challenging because one needs to identify consistently

a large number of innovations, their substitutes, and the people who are likely to use them.4This

study aims to overcome these difficulties by employing a novel measure of technology diffusion

that uses the evolution of procedural codes to allow a glimpse into the link between physician age

and technology adoption decisions across multiple innovations.

1.3 Institutional background

The central method of measuring innovation in this study is the International Classification of Dis-

ease, 9th Revision, Clinical Modification (ICD-9-CM). This is a system of about 3,500 four-digit

procedural codes which is used by virtually all hospitals in the US to document inpatient pro-

cedures for financial and analytical purposes. The system has a hierarchical organization where

3In a different context where adaptability and learning are important, a body of papers in labor economics has
investigated the relationship between individual inventiveness as measured by great inventions or patent applications
and age. Studies in this space look at the relationship, either in the cross-section or a panel setting, between individual
inventor age and scientific creativity as measured by e.g., patent applications. Examples include Henseke and Tivig
(2008), Feyer (2008), Mariani and Romanelli (2007), Schettino et al. (2008), and Hoisl (2007). The typical finding in
these studies is that individual creativity has an inverted U-shape and peaks around 50 years of age (Frosch (2011)).
Another strand has looked at the age composition of specific firms or industries and its relationship to firm performance
as measured by output or propensity to adopt new technologies. Examples include Hellerstein et al. (1999), Crepon
et al. (2003), annd Meyer (2009). The typical finding in these studies is, again, that middle-aged workers tend to be
more productive than both their younger and older counterparts.

4Traditionally, this has only been possible in the case of pharmaceuticals where a large number of trackable new
technologies is available. However, pharmaceuticals represent a case where the likely adoption barriers are lack of
information rather than the need for skill acquisition and learning. They also represent a case where profit-maximizing
firms have an incentive to keep physicians informed of the existence and applicability of the product, so that the
system’s institutions are built to counteract some of the effects of interest in this study (Scott-Morton and Kyle (2011)).
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similar procedures that affect the same condition, organ, and system form sequences that are nu-

merically close to each other. Close groups of 4-digit codes refer to the same kind of operation

performed using different methods or approaches, 5 procedures starting with the same two digits

typically affect the same organ or medical condition,6 and close clusters of two starting digits refer

to entire systems (United States General Accounting Office (GAO) (2002)).7 The preservation of

this hierarchical structure has been an implicit goal as the system evolves due to changes in medical

practices and knowledge.

I identify new and old surgical procedures and define the risk set of doctors using the evolu-

tion history of ICD-9-CM inpatient procedure codes. Every year, the CMS, the federal agency

responsible for maintaining the system, issues revisions, including code additions, deletions, and

edits. For each code addition, the agency documents the kind of procedure it designates and the

parent code that was previously used to denote instances of this procedure. I define the procedures

falling under the newly added code as the “new technology” and those that continue to fall under

the parent code, which was previously used to designate the procedures that now fall under the new

code, as the “old technology”. The set of doctors who were observed using the parent code in the

year of codification is the new technology’s relevant risk set.

A simple example may help clarify my data construction procedure. In 2008, the CMS in-

troduced ICD-9-CM procedure code 53.62, “laparoscopic incisional hernia repair with graft or

prosthesis” to differentiate it from its parent code 53.61, “other open incisional hernia repair with

graft or prosthesis”. Prior to the introduction of code 53.62, 53.61 was used to denote both open

and laparoscopic incisional hernia repairs.8 In my analysis, 53.62 is an example of a “new pro-

cedure” and 53.61 is an example of its substitute “old procedure.” The risk set of interest in this

example is the set of doctors who were observed using code “53.61” in 2008. I then compare the

propensity of younger physicians in this set to use the code over the next 5 years relative to that of

older doctors.

5For example, codes in the 53.5-53.7 refer to various kinds of ventral and diaphragmatic hernia repair: 53.51
denotes “incisional hernia repair”, 53.61 denotes “open ventral hernia repair”, and 53.71 stands for “laparoscopic
repair of diaphragmatic hernia”

6For instance, codes starting with “53” refer to hernia repair in general, “52” - to operations of the pancreas, etc.
7For example, codes beginning with “01” to “05” refer to operations on the nervous sytem, codes beginning with

“06” to “07” refer to operations on the endocrine system and so on.
8In the case of many laparoscopic procedures, this was accomplished by using the parent code and a “laparoscopy”

code modifier 54.21.
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This example procedure’s technological profile illustrates the thought experiment behind my

empirical strategy. In particular, an incisional hernia is a spilling of internal tissue through its

surrounding abdominal muscle wall due to a weakness from a previously existing incision. “Open

hernia repair” refers to the traditional open approach that involves fully “opening” the abdomen to

repair the bulging. “Laparoscopic hernia repair” refers to a novel minimally invasive approach that

conducts the repair through two small incisions at the side of the patient’s abdomen (American

College of Surgeons (2012)). 9 In this case, the innovation, laparoscopy, is documented by the

new code, and its older technological substitute, the open approach, is denoted by the old code. I

identify the physicians that use the procedure at the point when the new code was introduced and

then follow the adoption propensity among them conditional on their age in 2008.

The same example also illustrates some of the subtler points in interpreting the results from my

analysis. Specifically, the definition of technological space that I use, pairs of parent and descen-

dant codes, is typically narrower than definitions used by other authors writing about individual

procedures. For instance, in a 2013 article in Surgical Endoscopy, Colavita et al. explore the rates

and outcomes of open and laparoscopic ventral hernia repair in a nationally representative dataset

of inpatient stays, the Nationwide Inpatient Sample. They define “open ventral hernia repair” us-

ing codes “53.61” and “53.69” and “laparoscopic ventral hernia repair” using codes “53.62” and

“53.63”. Procedure code “53.63”, “other laparoscopic repair of other hernia of anterior abdominal

wall with graft or prosthesis” is the descendant for parent code “53.69”, “other and open repair

of other hernia of anterior abdominal wall with graft or prosthesis.” In my analysis, the pairs

“53.61”-“53.62” and “53.69”-”53.63” are separate technologies due to the way these procedures

are classified in the ICD9-CM.

The narrower definition of technological space I use may thus be interpreted as that of compo-

nent technologies. In particular, the technologies I use here are in some sense the subdivisions of

broader categories of surgical procedures. The magnitude of the estimates and the baseline diffu-

sion levels in the analysis sample may or may not, therefore, match those of broader categories in

the medical literature. In the case of hernia repair here, the baseline diffusion rates of laparoscopy

9Many authors have commented on the benefits of laparoscopy in terms of patient recovery time and experience
of post-operative pain as well as on the relatively low take-up of the procedure due to the difficulty of learning it. In
particular, the laparoscopic approach essentially requires re-learning the procedure as the surgeon’s access and field of
view are significantly altered by the instruments she has to use (Edwards and Bailey (2000), Sood et al. (2015), Bansal
et al. (2016)).
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in the two pairs of codes - 21% and 23% respecitvely - are close to each other and to the 18%

laparoscopy rate identified by Colavita et al. (2013). However, this may not necessarily be true in

all cases.10 In the appendix, I consider some of the ways in which this narrower definition may be

important for the estimation and interpretation of the results.

In the full analysis, I stack all technologies that satisfy the sample restrictions (broadly, new-

code additions where the previous code has undergone only a single revision in the sample period)

and compare the propensity of younger relative to older physicians to use the new code. As out-

lined above, the advantage of this approach is that it can be consistently applied to a large number

of diffusing technologies to analyze their adoption path. For each surgical procedure of interest,

the system provides a method of determining the set of procedures which are likely to act as its

technological substitutes as the procedures that continue being designated under the parent code.

It also identifies the group of agents for whom this new technology is likely to be relevant as the

physicians who have already gained the human capital necessary to specialize in the treatment of

a particular organ or condition. To the best of my knowledge, this is the first study in health eco-

nomics outside of the realm of prescription pharmaceuticals where these challenges to measuring

the large-scale diffusion of technology have been overcome.

1.4 Data and Empirical Framework

The primary dataset used in this project is comprised of the inpatient stays of a 20% sample of US

Medicare beneficiaries between 2001 and 2013. These data contain information on the patient’s

diagnoses and existing medical conditions, all services provided, length of stay, a variety of demo-

graphic characteristics, and the identities of the operating and attending physicians. The advantage

of these data in investigating the relationship between age and adoption is that they contain de-

tailed information on a pysician’s surgical history at the individual patient level as well as relevant

patient characteristics. This allows me to measure with precision a physician’s adoption decisions

and evaluate the role of patient selection, an important concern in healthcare contexts.

10Additionally, recall that new and old surgeries are not perfect substitutes and there may be some fuzziness in how
a procedure is coded. Hence, depending on the authors’ purpose, it is possible that a study may define the relevant
technological space as a combination of parent codes and only some of their descendant codes or vice versa depending
on the authors’ purpose (see, e.g., Panaich et al. (2016)’s study on the use of atherectomy).
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1.4.1 Analysis sample

As described in the institutional setup, I define the set of technological substitutes for each new

procedure as the procedure or set of procedures which were designated under the new procedure’s

parent code prior to codification. In order to obtain a set of procedure swith well-defined risk-sets,

I restrict to instances of code revisions that involve only a single parent code where both the parent

and descendant codes are still being used at the end of my sample window. This drops revisions

where the new procedures were designated under multiple parent codes prior to codification and

instances where the parent code was completely deleted and split off into multiple descendant

categories. As shown in the appendix, single-parent codification events represent the lion’s share

of ICD9-CM. In order to ensure that I observe the entire diffusion path of a new code in the primary

patient sample, I also restrict to revisions that occur in or after 2001. This gives me 85 instances

of code revisions. I extract all instances when the primary procedure of a Medicare inpatient stay

was documented using one of these codes.

Next, I turn to the definition of the set of doctors that are at risk for adoption for each new

procedure. I define the risk set as those physicians that are observed performing the parent code

in the year of the introduction of the new code. In the case of hernia repair for example, I look at

physicians that show up as operating physicians in the inpatient file on claims where the primary

procedure is 53.61, ventral hernia repair, in 2008. I then follow these physicians after the introduc-

tion of 53.62, lap ventral hernia repair, in 2008. The outcome of interest is the adoption of 53.62

post 2008 and the independent variable of interest - the age of these operating physicians in 2008.

I obtain age information from the AMA Physician Masterfile, a database containing information

on the education, career, and demographics of 1.4 million current and past physicians (American

Medical Association (2020)). The general analysis then stacks all 85 revisions and measures the

effect of age on adoption as a single parameter.

In what follows, I will call the set of codes used in each of these 85 revisions a “treatment

category”. For instance, the ventral hernia repair treatment category contains the codes “53.61”

and “53.62”, where the former is the parent code and the latter is the descendant code. A specific

treatment category always contains a single parent code (by sample construction), but may contain

multiple descendant codes.
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This set of treatment categories spans a wide variety of body systems and medical conditions.

Table A1 in the appendix summarizes the number of code changes and percent of sample ob-

servations covered by each aggregate category of ICD9-CM procedure codes (in the hierarchical

structure introduced above, these are sequences of codes defined by their first two digits). The di-

gestive, cardiovascular, and muscoskeletal systems are the most important body systems in terms

of their influence on the sample. The table also shows that there is a substantial amount of variation

in the number of observations per treatment category as some procedures have many more patients

than others. 11

Table 1.1 contains summary statistics for the sample. Panel A describes the sample at the

procedure level. As this is Medicare, patients tend to be older, on average 74 years old, with

roughly equal numbers of men and women and about 10% of patients having chronic conditions

in the year prior to their visit to the doctor in my sample. Panel B contains statistics at the doctor

level. The physicians are 53 years old on average, with physicians mostly men, reflecting the

gender imbalance in the surgical professions. I observe each doctor for 3.5 years on average,

indicating that I have a decent number of physicians that appear more than once in the observed

procedures. In total I observe 179,000 procedures by 27,000 doctors in 85 different treatment

categories.

Figure 1.1 offers a first look into the doctor age distribution in this sample. Figure 1.1 is a

histogram of the age of physicians at the time the new code in the relevant treatment category is

introduced. The distribution is roughly bell-shaped, with a range of ages and a large mass between

40 and 60 years old. This indicates that there is a lot of variation in the main explanatory variable

of interest and that the variation is coming from physicians at all ages and especially from those

that are in the prime years of their careers.

Given that the point of codification is a particular point in the diffusion of a new technology

11There is a significant number of codes in “miscellaneous” or “not elsewhere classified” categories. The official
nomenclature behind these categories, however, is slightly misleading as the space constraints in the system have
forced the CMS to put some codes more naturally classified as part of other systems into the miscellaneous categories.
the codes in the “not elsewhere classified” category, which account for a large share of the observations in the sample,
are six new procedures for cardiac resynchronization pacemakers, some of which have defibrillation capabilities.
Normally, these procedures would be entered in the three-digit sequences 37.7 and 37.8, but those were completely
full at the time the CMS made its decision. As a result, the CMS was forced to assign the new codes to the sequence
beginning with “00”, which is outside of their natural hierarhichal place. The issues with space are one of the major
reasons why the US has chosen to transition to the newer ICD10-PCS as of October 2015 (United States General
Accounting Office (GAO) (2002)).
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when it has been deemed sufficiently important by the medical community to receive a new code,

it is not immediately clear that these technologies are actually still diffusing at the point when the

new codes are introduced. Figure 1.2 investigates this question by plotting a diffusion S-curve of

the fraction of new codes used in a treatment category by year relative to new code introduction.

In particular, each point on the graph is a relative-year coefficient from the following equation

estimated on the entire sample:

yipdt = β0 +∑
t

β1tRYt(p)+ γp + τt + εipdt (1)

where where i indexes patients, d indexes operating physicians, p indexes treatment category, and

t indexes calendar years and y is a dummy for whether the new or old code within a treatment

category is used. RYt(p) are indicators for year relative to the codification of the new code in

treatment category p. The omitted category is relative year 1.12 It is clear that while diffusion

seems relatively slow at this point already, it has not stopped and the innovations introduced by the

new codes seem to still be gaining use in their relevant markets.

1.4.2 Empirical framework

In order to analyze the data, I use a simple linear probability model that relates new procedure use

to physician age. This specification allows for a simple, transparent, yet flexible way of measuring

the effect of interest. In particular, I run empirical specifications of the following form:

yipdt = β0 +β1Ad p +β2Xidt + γp + τt + εipdt (2)

where i indexes patients, d indexes operating physicians, p indexes treatment category, and t

indexes calendar years. y is an outcome of interest (most importantly, a dummy for whether the

new or old code within a treatment category is used), Ad p is operating physician d’s age in the year

when the new code for treatment category p was introduced, X is a vector of patient observables

(dummies for patient 5-year age bins, sex, and race, Medicaid receipt, and 26 chronic conditions

lagged by a year),13 γp is a vector of treatment category fixed effects, and τt is a vector of calendar

12Since relative year 0 is defined as the year in the October of which the code change was implemented, I omit it
from the specification due to the partial coverage involved and run the specification on years 1-7.

13These include acute myocardial infarction, Alzheimer’s disease, atrial fibrillation, cataract, chronic kidney dis-
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year fixed effects. As discussed above, the necessary assumption to interpret the coefficient β1

as causal is selection on observables - conditional on the treatment category, older and younger

physicians are similar on all relevant unobservable characteristics that may be correlated with

adoption propensity. I explore the validity of this assumption by successively adding patient and

doctor observables to my specifications below and showing that the results are not sensitive to

doing so.

This specification models the decision to use a new procedure as a linear probability process.

Specifically, each year increase in doctor age at codification shifts the absolute14 probability of

new procedure use by an equal amount across the age distribution, various treatment categories,

and in all calendar years. The inclusion of treatment category and calendar year fixed effects

controls flexibly for the baseline level of diffusion in the technological branch and secular changes

in adoption across relative years.

The choice of model in the case of binary dependent variables has received much attention in

the econometric literature (see, e.g., Angrist and Pischke (2008) for an exposition). The linear

probability model has the advantage of offering easy-to-interpret estimates of the marginal effects

of interest, while not taking a stance on the “correct” non-linear functional form to use. Nonlinear

methods such as probit and logit have the advantage of having predicted probabilities in the unit

interval and not inducing model-driven heteroskedasticity in the residuals. I choose linear prob-

ability for the baseline specifications due to its simplicity and transparency. However, in Table

A3 in the appendix, I perform robustness checks showing the results from estimating the baseline

specifications using logit. The resulting marginal effects are very close to those estimated by OLS.

1.5 Results

In this section, I document the negative relationship between age and new technology use. This

relationship is robust to the inclusion of a variety of patient observables and stems from extensive-

ease, chronic obstructive pulmonary disorder, heart failure, diabetes, glaucoma, hip/pelvic fracture, ischemic heart
dsease, depression, osteoporosis, rheumatoid arthritis/osteoarthritis, stroke/transient ischemic attack, breast cancer,
colorectal cancer, prostate cancer, lung cancer, endometrial cancer, anemia, asthma, hyperlipidemia, benign prostatic
hyperplasia, hypertension, and acquired hypothyroidism.

14One can model the effect of age as being dependent on the baseline rate of diffusion in each treatment category.
This is what popular non-linear models such as logit and probit do. However, as discussed in this section, the average
marginal effects computed in this way are not much influenced by the choice of model.
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margin adoption decisions as opposed to intensive-margin usage choices. The age-based diffusion

differences remain stable even after a few years have passed, suggesting that the age penalty is per-

sistent rather than temporary. Finally, in order to interpret the magnitude of this effect, I perform

two counterfactual exercises investigating the impact on overall diffusion of, first, changing every-

one’s adoption propensity to that of younger physicians and, second, of a few decades of physician

aging at the rate of aging of the overall workforce.

1.5.1 Main results

Figure 1.3, which is a binscatter of the regression from specification (2) including the full set of

controls offers a visual summary of the baseline results in this paper. The slope is -0.0019 im-

plying that a 10-year increase in doctor age at the introduction of a new code is associated with

a 1.9 percentage-point decrease in the probability of new code use. The effect is also econom-

ically meaningful - since the average probability of new code use in this sample is 16 percent,

the marginal effect of a 10-year-increase in age translates to about 12 percent. The pattern in the

relationship between age and adoption is is fairly linear. In particular, there is no evidence of an

initial learning period where physicians improve on their adoption propensity. The shape of the

age-adoption profile will receive further attention in the conceptual framework below. Finally, the

effect of interest is present throughout the age distribution and is not driven by outliers in the data.

I proceed by showing the regression specification coefficients from running various versions

of specification (2). This allows me to test for statistical significance and observe changes in the

coefficients as more observables are added, which will serve as an indicator for selection. Table 1.2

presents the results from this analysis. Column (1) contains the baseline specification regressing

the new procedure indicator on doctor age at new code introduction including treatment category

and calendar year fixed effects. Standard errors are clustered at the treatment category level. The

coefficient is statistically significant at the 5% level and indicates that a 10-year-increase in age at

the introduction of a new code is associated with a 1.8 percentage-point decrease in the probability

of new code use.

A major reason why older and younger physicians may differ in their adoption probabilities

is if their patient populations are different in ways that are relevant for technological adoption.

Columns (2) and (3) of Table 1.2 aim to evaluate the likelihood that this is a substantial issue in
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the current setting. Column (2) adds indicators for 26 lagged chronic conditions, and column (3) -

binary indicators for patient sex, race, 5-year-age-bins, and receipt of Medicaid - to the regression.

The coefficients on doctor age remain essentially unchanged. This exercise demonstrates that the

observable characteristics of patient populations for older and younger doctors practicing within

the same treatment category do not appear to be differentially correlated with adoption propensity.

This is, of course, no guarantee that there are no unobservable patient characteristics important for

technology adoption that differ across older and younger physicians. However, it is an indicator

that suggests that patient selection is unlikely to play an important role in this setting.

Another major set of counfounding factors are potentially unobserved doctor characteristics

that are correlated with age and adoption. Most salient among these are the institutions where

doctor practice and cohort-based changes in adoption propensity. Column (4) investigates this

possibility by including fixed effects for doctor gender, AMA hospital, and medical school. Physi-

cian gender is a salient characteristic that has been changing across cohorts as more women have

entered surgical specialties. Controlling for it is intended to test for the possibility that cohort ef-

fects play a major role by investigating the change in coefficient magnitude due to this addition.

Similarly, hospital and medical school fixed effects are intended to control for doctor selection

across medical institutions. These are imperfect controls as there may be other cohort characteris-

tics that I do not observe that may be important for adoption and since physician selection across

institutions may include a dynamic component that is not captured by controlling for hospitals at

a point in time. Nonetheless, the fact that the coefficient remains essentially unchanged due to the

addition of these characteristics indicates that, again, unobserved doctor characteristics may not be

salient factors driving the age-adoption results.

Finally, column (5) breaks up the independent variable into 10-year bins in order to allow for

non-linear effects in age in light of previous results that have found an inverse-U shape to relevant

age-outcome profiles. The omitted category is doctors that are 30-39 years old at codification. The

results indicate that the observed pattern is linear in nature as opposed to the hump-shaped profile

observed in various studies in labor economics. One conjecture as to the source of this difference

that I will not be able to test in the current setting is the role of medical school. In particular,

while previous studies attribute the hump-shape to the competing effects of experience and general

cognitive decline, the presence of structured residency training well into a doctor’s practice career
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may effectively cut off from observation the initial upward slope in outcomes due to procedural

experience.

One way to interpret the magnitude of these results is in terms of a counterfactual. How much

would the diffusion of medical procedures in the economy change if older physicians had the

adoption propensity of younger doctors? This can be quantified by calculating the change in the

use of new procedures for each of the age groups used in the analysis so far based on the estimates

from the baseline specification (2). In particular, I calculate the change in the overall average usage

of new technologies if each 10-year age group increased its probability of new-code utilization in

order to match the usage among the youngest age group of 30-39 year olds. In practice, this

involves taking an average of the estimated age group regression coefficients from column (5) in

Table 1.2 weighted by the fraction of patients seen by each age group. The majority of patients

in the sample (over 130,000) are seen by physicians in the 40-49 and 50-59 age groups, so these

estimates have an outsize influence on the final calculation. I find that the absolute probability of

new code usage will increase by 3 percentage points, which represents a 19-percent increase in the

rate of new-technology usage.

1.5.2 Extensive vs intensive margin

Extensive margin

The nature of the age-based barriers to adoption can be further characterized by determining

whether it originates at the point of adoption (extensive margin) or in the secondary stage of us-

ing the procedure conditional on adopting. In particular, the outcome in Table 1.2 combines both

intensive and extensive margins as it is influenced both by whether physicians are more likely to

use the new code at all and, if they do, by how intensively they use it. One way of disentangling

the two is to investigate the effect of age on any use of the procedure (adoption) by physicians. I

do this by collapsing dataset to doctor-treatment category level and asking the question of whether

physicians that are older at codification are less likely to be seen using the procedure at all in a

specific period of time after new code introduction. In particular, I run the following specification:

ypd = β0 +∑
b

β1bAge Bin(b)pd +β2Xd + γp + τt(p)+ εpd (3)
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where ypd is a dummy for whether doctor d is observed using the new code in treatment cate-

gory p in 1,3,5, or 7 years, AgeBinpd are 10-year age bins, Xd is a vector of physician observables,

including physician sex, 2014 hospital ID, and med school ID dummies, and τt(p) are year dum-

mies for the year t when the new code in treatment category p was introduced. One barrier to

this approach is the fact that I only observe 20% of the Medicare beneficiaries that a doctor sees,

or in other words, a small fraction of all the procedures that a doctor performs. This introduces

a large amount of measurement error on the left-hand side, which will decrease the power of this

analysis. In order to mitigate this problem, I keep only doctors that have at least 5 procedures of

the respective treatment category in sample.

Table 1.3 shows the results from this exercise, where the outcome in columns (1)-(4) is whether

the physician uses the new code in 1,3,5, or 7 years respectively. The results display the same linear

pattern where older age groups are less likely to use the newer codes at all and indicate that the

barriers to adoption seem to occur in the initial learning stage of the procedure. Comparing the

results in these columns to column (5) of Table 1.2 indicates that the extensive-margin gradient

is, if anything, potentially steeper than the combined one suggesting that while there is a large

discrpancy between older and younger physicians in terms of learning a new procedure, older

physicians are just as likely or potentially more likely than young physicians to use it conditional

on adopting.

Figure 1.4 illustrates these results graphically by plotting the coefficients from the four regres-

sions side by side. The figure makes two things salient. First, the linear pattern in adoption is

preserved across different ways of defining the period of extensive margin adoption. Second, most

of the technological diffusion occurs within 3 years of codification with only small increases in the

spread of these new procedures after that.

Intensive margin

Given the results from the previous subsection, it may be useful to confirm that intensive-margin

differences between older and younger physician adopters are less pronounced. I do this by running

the baseline specification (2) on the subset of adopters in the years after they have been observed
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using the new code for the first time.15 The results are in Table 1.4 and Figure 1.5 respecitvely.

Table 1.4 repeats the regressions in Table 1.2 on the specified subsample and Figure 1.5 is a bin-

scatter of the regression including the full set of controls in column (4). It is easy to see that while

there is still a negative relationship between age and new-code usage, the differences are much

diminshed in both absolute and relative terms. The binscatter confirms that the slope is nearly flat.

This analysis confirms that differences in the intensity of new-code usage conditional on adopting

are less important in this context than extensive-margin adoption decisions.

1.5.3 Dynamic patterns

The results in Section 1.5.1 combine the effect of age on new code use over all years after codi-

fication within a treatment category into a single estimate. We may be interested in the dynamic

patterns of this effect. For instance, if older doctors are less likely to adopt in the first few years

after codification, but then rapidly catch up, this pattern will still show up as an age-adoption ef-

fect in the baseline estimates, but may merit a different policy response than if older physicians

were continually falling behind younger physicians over all years post introduction. One way of

investigating the dynamic patterns of adoption is to look into the differential effect of year relative

to codification for younger and older physicians by running the following specification:

yipdt = ∑
t

β1tRYt(p)xDAd p +∑
t

β2tRYt(p)+β3Xidt + γp + τt + εipdt (4)

where RYt(p) are relative year indicators for year relative to introduction for treatment category

p, DAd p is doctor age at codification for treatment category p and the set of controls is the full set

of controls from column (5) in Table 1.2 above (i.e., including both patient and doctor observables,

as well as calendar year and treatment category fixed effects). Since relative year 0 is defined as

the year in the October of which the code change was implemented, I omit it from the specification

due to the partial coverage involved and run the specification on relative years 1-7. The omitted

category is relative year 1. Intuitively, this specification estimates the relative-year new-code use

profile for different age groups and takes differences across age groups within relative years to

15As has been remarked in the past, even if baseline specification (2) satisfies selection on observables, this is
not necessarily true in the case of an intensive-margin regression since I am conditioning on an outcome, namely
extensive-margin adoption (Angrist and Pischke (2008)). Hence, this part of the analysis should be thought of as an
accounting exercise.
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evaluate how the effect of age changes as a new code goes through its diffusion cycle.16

The results are displayed in Figure 1.6 below where I have plotted the coefficients β1t from the

regression above. It is apparent that the age difference arises immediately at codification (which

is unsurprising given the advanced stage in technological diffusion that these procedures are likely

to be in) and then increases as time goes by. The estimates suggest that a 10-year increase in age

decreases the probability that a physician will use the new code in relative year 3 by slightly over

4 percentage points while it does so by only 1 percentage point in relative year 1. This indicates

that older physicians are not catching up to and are in fact falling behind younger ones as a new

code goes through its diffusion process.

1.6 Conceptual framework

In order to interpret the patterns found in the data, I construct a single-agent technology adop-

tion model that incorporates the standard framework on the effects of aging from psychology and

economcis research. I begin with a multi-period economy with J doctors indexed by j. At the start

of each period doctors face a probability p(a j) of retiring, where a j is doctor j’s age (normalized

to the number of periods a doctor has been present in the sector) and p(a j) increasing in a j. Re-

tiring doctors are replaced by young doctors who start at age a j = 0. The economy has a finite

set of available surgical procedures S with each doctor performing a subset S j of S and individual

procedures being indexed by s. Each period a doctor performs procedure s on ns
j patients.

Each period, a new treatment technology available for a randomly chosen procedure s enters

the market. Adoption costs cs
j for new technology in procedure s consist of two components. The

first is a “systematic” component σ s
j that represents aspects of the task that require skills that are

are transferrable from the doctor’s previous experience with procedures in this surgical category.

Examples include using tools and devices specific to this surgical category or knowledge of the

relevant anatomic area. This component of adoption costs represents the popular idea that there are

returns to experience and that “experiential capital” (in the terminology of Agarwal et al. (2009))

16To show the intuition behind this specification, I plot, in Appendix Figure A1 the coefficients from a regression
of new code use on relative year using the same controls performed separately for physicians 30-39 at codification and
physicians 60-69 at codification. The coefficients of interest β1t in (4) take the difference between the two curves in
each realtive year and average this difference across all ages. Even in that figure, one can see the increasing difference
between older and younger physicians as time goes by.
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has positive effects on performance.

The second component of adoption costs, ιs
j , consists of “idiosyncratic” skill requirements that

do not benefit from previous experience in this surgical category. Instead, these adoption barriers

come from novel concepts or methodologies that a surgeon needs to internalize. Examples include

the use of new surgical tools or learning how to operate on a new organ within the same anatomic

area. This component of adoption costs represents the idea within psychology that one’s overall

ability to deal with novel concepts and challenges is useful in learning how to perform complex

tasks.

These two components of adoption costs showcase the idea that there are benefits and costs to

the aging process. As one gets older, one gains experience with the world and the specific tasks she

engages with and this experience pays off in terms of performance (crystallized intelligence). At

the same time, one’s ability or willingness to engage with new concepts and challenges diminishes,

leading to losses in one’s general analtical capabilities (fluid intelligence). This trade-off implies

that the quality of one’s decision making follows an inverted-U shape. The sweet-spot in terms of

decision-making and ability to deal with challenges has been identified as middle age in previous

studies.

I formalize the two adoption cost components in the following way:

cs
j = σ

s
j + ι

s
j (5)

σ
s
j = f (es

j) (6)

ι
s
j = α(a j)+ ε

s
j (7)

where es
j represents surgeon j’s previous experience with procedure s, and α(·) is a function

representing the impact of aging on surgeon analytic skill or fluid intelligence. Additionally, εs
j

represents other randomly distributed unobserved shocks to the difficulty of learning procedure s

by surgeon j, which includes unobserved procedure difficulty or match quality of the procedure

with the surgeon. Note that since every surgeon starts off at age 0 and performs a constant number

of procedures per period, then es
j = ns

j ∗ a j, so that older surgeons using a particular procedure
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s have more experience with that procedure. Lastly, I assume that f ′(es
j) < 0, α ′(a j) > 0, and

α ′′(a j)+ f ′′(es
j)≥ 0.

All of the major assumptions have standard interpretations within the fluid/crystal intelligence

framework. The additive separability of σ s
j and ιs

j is a simplification that models crystal intelli-

gence and fluid intelligence as two different processes that are separately affected by aging. This

is a standard approach in the literature and while potential interactions between these two forces

could be interesting in their own right, exploring them is beyond the scope of this study. The as-

sumptions that f ′(es
j) < 0 and α ′(a j) > 0 simply formalize the opposite effects of age on crystal

and fluid intelligence described above: older doctors have more experience, but may have lower

analytical capital due to the aging process. The assumption on curvature, α ′′(a j)+ f ′′(es
j) ≥ 0,

guarantees that there is a point in the age profile after which increases in age necessarily lead to

lower adoption propensity.

The overall shape of the cost-age profile is determined by the exact form of α(a j) and f (es
j).

For instance, Agarwal et al. (2009) assume that α(a j) is linear with age and f (es
j) is concave due

to decreasing returns to experience. This yields a hump-shaped profile where performance initially

increases with age until it hits a “sweet spot” in middle age after which performance declines.

However, the exact shape and properties of these functions depend on the characteristics of the

tasks of interest. For instance, if the novel tasks that are being learned are simply extensions of

old tasks, one could imagine a world where idiosyncratic adoption costs do not change with age

because analytic capital plays little role in the relevant context. In that case, one would expect a

flat or even positive age-adoption profile as the dominant force in the adoption costs is f (·), the to

experience. Similarly, if the tasks being learned are completely novel experience may have little

impact on adoption costs and the age profile will be determined by α(·), so one may expect to

observe no gains to performance in early years and a generally downward-sloping age-adoption-

cost profile.

Next, I turn to the benefit-side of the physician decision problem. The relative benefit for

patient i treated by the new alternative in s is bi where bi follows a distribution Fj(·) with a positive

mean (so the procedure is on average beneficial to patients). For simplicity, I assume that each

procedure is affected by innovation only once. A physician using s has to decide whether to learn
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the new technology affecting the procedure. A doctor’s utility if she adopts is: ∞

∑
t=0

[β (1− p(a j + t))]t ∑
i∈ns

j

bi

−{c(a j)
}

(8)

The first term shows the present discounted value of adopting for the doctor’s patients with t

indexing time periods and i indexing patients. The second term refers to the adoption costs for the

technology. The expression above shows that a doctor will adopt if:

ε
s
j ≤

{
∞

∑
t=0

φ
j

t (a j)θ
j

i (n j)

}
− (α(a j)+ f (ns

j ∗a j)) = T (a j,ns
j) (9)

where φ
j

t (a j) = [β (1− p(a j + t))]t is the discount factor adjusted for a doctor’s individual

retirement probability and θ
j

i (n
s
j) = ∑i∈ns

j
bi is total single-period patient benefit.

The implied age-adoption profile is determined by the exact assumptions on p(·) and c(·). On

the benefit side, the current structure of the problem guarantees that d
da j

φ
j

t (a j) < 0. This comes

from the fact that older physicians have less expected practice time, which means that the benefits

of learning a new skill accrue to fewer patients. Since the adjusted individual discount factor

φ
j

t decreases with age due to increased retirement probability, older doctors will also find it less

beneficial to adopt a new technology. More subtly, doctors of the same age that are less exposed to

innovation due to the fraction of their patients treated by the affected service are also less likely to

adopt. c(a j) may increase or decrease initially depending on the relative importance of experience

and analytic skill in adoptoin costs. This in turn means that the presence or absence of an initial

increase in the propensity to adopt is an indicator for the nature of the new surgical procedures and

the kinds of skill capital required to adopt them.

On the cost side, c(a j) may increase or decrease initially depending on the exact properties

of α(a j) and f (ns
j ∗ a j). This in turn is dependent on the nature of the skills that need to be

acquired. Technologies that rely mostly on novel sets of skills that rely on analytical rather than

experiential capital will likely have α(a j) as the dominant force behind the age-adoption profile.

This implies little gain to experience and a mostly negative slope to costs. Technologies that do not

require much analytical capital or that rely mostly on previous experience to be adopted are likely

to exhibit initial decreases in adoption costs due to age and thus an inverted-U shape to the age-
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adoption profile, which is familiar from studies in other domains of economics and psychology.17

The baseline empirical results suggest that adopting new surgical procedures has high require-

ments of analytical capital relative to experiential capital. In particular, the patterns in the figures

above show a mostly linear relationship between age and adoption with no apparent gains to ex-

perience in the younger age ranges. This negative and linear relationship is reminiscent of the

negative and linear functional form on analytical capital degradation assumed by Agarwal et al.

(2009) and implies that surgical procedure adoption requires the acquisition of novel skills that are

not readily available from the surgeon’s previous experience in a treatment category.

These findings have important implications for policy. They suggest that barriers to adoption do

not arise from frictions in the ability of surgeons to apply skills that they already have to a relevant

domain. This would be the case for instance if younger and older surgeons differed only in their

knowledge of new procedures entering the market. Instead, the results indicate that the barriers to

adoption have to do with a more fundamental mismatch betweem the skill-set of older surgeons and

what is required to learn newer technologies. In the following section, I offer additional evidence

that is consistent with this idea and other empirical predictions of the model.

1.7 Further empirical tests

In this section, I confront the model with the data in order to test two key empirical predictions

- the type of adoption coss associated with a procedure are key for the shape of the age-adoption

profile and age affects the present discounted value of patient benefits. First, I show that the age-

adoption profile is significantly steeper for a subgroup of procedures that are considered novel and

difficult to learn, namely minimally invasive procedures. Second, I repeat the baseline analysis

in two healthcare technology adoption contexts where information rather than skill acquisition is

likely to be the main barrier to adoption, diagnostic codes and prescription pharmaceuticals, the

age-adoption profile is flat. Lastly, I use the conceptual framework to derive a simple test of the

first channel that relies on including an interaction of physician age with a measure of her annual

17Notice that it is also possible to model the benefits of adoption as being dependent on the skill and experience
components of aging. While this structure may generate some interesting patterns through interactions between those
components and the probability of retirement, which is also dependent on age, the basic conclusion that experience-
heavy technologies should push the age-adoption profile towards positive gradients and that analysis-heavy technolo-
gies should push it towards more negative values still stands.
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arrival rate in the baseline specification.

1.7.1 Adoption costs

I proceed by testing the idea that the skill acquisition costs involved with technology adoption

are likely drivers behind the shape of the age-adoption profile. In particular, the linearity in the

documented age-adoption profile for surgical procedures indicates that technology adoption in this

context requires mostly analytic capital and does not benefit much from previous experience with

surgical procedures within the same treatment category. This suggests that the age-adoption profile

should be flat in settings where previous experience is highly applicable or where analytic capital

is not required. I test this implication of the model in two ways. First, I show that the age-adoptin

profile is steeper for minimally invasive surgeries, which are popularly thought to be quite difficult

to learn. Second, I explore two settings where the main technology-adoption barriers are likely to

be informational in nature: usage of new diagnostic codes and of new prescription pharmaceuticals.

This distinction is of policy as well as theoretical interest. In particular, prior research has

suggested that information can be a key barrier to the adoption of new technologies (Agha and

Molitor (2018)). The adoption of new surgical procedures naturally requires both information and

skill acquisition. Therefore, a possible policy response to the existence of an age-adoption pro-

file would be to strive to inform surgeons better of the available procedures that are potentially

relevant to them. However, taking the theory developed here seriously would suggest that in ad-

dressing the age-adoption profile as a policy concern through information interventions would only

be beneficial if the informational barriers to acquisition grow harder to surmount with age. I will

aim to show that this is not the case. In particular, even if information is important to technol-

ogy diffusion in general, this importance does not vary systematically with age. Thus, a policy

response to the existence of an age-adoption profile will have to focus on helping surgeons support

the analytically-intensive skill-set they need to stay at the technological frontier.

Minimally invasive procedures

The theoretical model from the previous section predicts that as the difficulty of learning the new

procedures increases in terms of analytic resources required, the age-adoption profile should be-

come steeper. This is a straightforward testable prediction. In practice, however, it is difficult
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to find a consistent measure of the difficulty of learning multiple new procedures. A simpler ap-

proach is to identify subgroups of procedures which are generally considered difficult to adopt and

test whether the slope of the age-adoption profile changes within those subgroups. In the surgical

context, multiple authors have identified minimally invasive approaches to common surgeries as

a group of procedures which is difficult to learn and substantively different from its traditional

open counterparts. In particular, minimally invasive surgeries (MIS), which perform the procedure

through small incisions in the patient’s body, offer restricted access and information flow to the

surgeon as she needs to operate using specialized tools based on a video feed (Edwards and Bailey

(2000), Sood et al. (2015), Bansal et al. (2016)). This suggests that a simple test of the model

would be to check whether minimally invasive procedures have a steeper age-adoption profile than

the average procedure.

I perform this test in two steps. First, I use the procedure’s ICD9-CM description to identify

code changes that pertain to the addition of minimally invasive approaches to the respective treat-

ment category. In particular, I define these as code changes where the new code has the words

“thoracoscopic”, “laparoscopic”, “endoscopic”, or “bronchoscopic” in its description and where

the old code in the treatment category does not. For instance, code “07.84 - Thoracoscopic total

excision of thymus” was differentiated in 2007 from code “07.82 - Other total excision of thymus”

and thus this code change is classified in the minimally invasive category due to the presence of

“thoracoscopic” in the description of “07.84”. Note that the entire treatment category (observations

of both 07.82 and of 07.84) are included in the minimally invasive category. The resulting group

has 28 codes in the minimally invasive category. Next, I run a version of the baseline specification

that includes an interaction of doctor age with the minimally invasive group indicator:

yipdt = β0 +β11(MIS)p×Ad p +β2Ad p +βeXidt + γp + τt + εipdt (10)

where 1(MIS)p is an indicator for minimally invasive surgery as described above. The model

predicts that β1should be negative, meaning that the slope of the age adoption profile is steeper for

the more difficult to learn MIS. The results from this exercise are presented in Table 1.5. Columns

(1)-(4) successively add observables to the group of controls as in the baseline specification. The

coefficient on β1 is negative and significant as predicted by the model. The magnitudes involved
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are also quite substantial - while β2 implies that a 10-year increase in age is associated with a 0.6

percentage-point decrease in the probability of adoption, the magnitude of the gradient increases

to 4.6 percentage-points for minimally-invasive surgeries. Therefore, the results from this exercise

are consistent with the implications of the theoretical model. In particular, technological adoption

that requires higher amounts of fluid intelligence has a steeper age-based gradient.

Diagnostic codes

I continue the tests of the model implications by looking at analogous settings where information

rather than skill-acquisition is likely the most important barrier to adoption. A particularly attrac-

tive feature of the ICD9-CM diagnosis code setting is that its institutions are analogous to the ones

that govern procedure codes. Speicifically, diagnosis codes are revised through biannual commit-

tee meetings, where new codes are differentiated from older designations to reflect advances in

medical knowledge. Similarly to procedure codes, diagnosis codes are hierarchically organized in

increasing specificity with regards to the body system and organ affected as well as the type of

condition that is being recorded. Medical conditions branch out of a parental category as more

is learned about a specific condition. This means that many of the foundations of the procedure

analysis are preserved in the diagnosis code setting as well.

There are two prominent differences, however. First, diagnosis codes are used both in the

outpatient and inpatient setting. This means that in principle the analysis would not be restricted

to inpatient procedures only. Second, identifying the exact physician responsible for a particular

diagnosis may not be straightforward. This is especially true in inpatient settings where multiple

doctors are taking care of a particular patient.

In order to adjust for this feature of the environment, I focus on a specific setting where the

physician responsible for a diagnosis can be easily identified, namely PCP office visits. In particu-

lar, I follow an analogous methodology to the one used for procedure codes in identifying diagnosis

codes which come from a single parental code which continued being used even after the new code

introduction. I take code introductions between 2001 and 2013 and look at the primary diagnosis

on Medicare provider claims in the same period submitted for services performed by PCPs in an

office setting. The resulting sample has over 5 million observations with 137 thousand doctors in

almost 300 treatment categories. More sample construction details are presented in the appendix.
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I run regressions of the following form analogous to the one used in the main analysis above:

yipdt = β0 +β1Ad p +β2Xidt + γp + τt + εipdt (11)

where all relevant variables have definitions identical to the one from above. The outcome of

interest yid pt is whether the primary diagnosis on the claim is one of the old or new codes post

codification of a new diagnosis. The results are presented in Table 1.6 below. The age-adoption

profile for new diagnosis codes is essentially flat and precisely estimated. The table indicates

that there are no statistically significant differences between younger and older doctors in their

propensity to use the new diagnostic code within a diagnostic category. The addition of various

observables does not affect the magnitude of the estimates, which is consistent with the procedure

analysis from above. Furthermore, the presented estimates are statistically significantly different

from the estimates for medical procedures suggesting that the lack of statistical significance is not

due to statistical noise.

The appendix contains a binscatter for this regression (Figure A5). It also presents some of the

summary tables and figures that correspond to the diagnosis code sample (Figure A4, Table A6).

The most notable feature is that the diffusion of these new codes is much more muted than the one

for procedure codes. There is only a slight upward trend, indicating that the entry of new diagnosis

codes occurs at the flat portion of the S-curve of the diagnostic technology.

Overall, the results point to two conclusions. First, technologies where the adoption barrier is

information costs seem to have a much flatter age-adoption profile. Second, interpreted through

the lens of the model, the results imply that there is little gain to experience or penalty to aging

with respect to adopting new diagnostic codes. This is consistent with the finding that procedures

that require a higher skill investment exhibit a steeper age-adoption profile. I turn next to test-

ing this hypothesis in another setting where information is likely to be important - prescription

pharmaceuticals. 18

18One caveat to this analysis is that it is agnostic about the role of relative patient benefits in diagnostic versus
procedure codes. In particular, an additional factor that could lead to a flatter age-adoption profile in the case of
diagnostic codes is lower relative patient benefits to receiving the correct new diagnosis as opposed to the incorrect
old diagnosis. While this is certainly a possibility, the small magnitude and statistical insignificance of the estimates
makes it difficult to draw conclusions from an interaction-based analysis similar to the one employed in the case of
procedure codes above.
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Prescription pharmaceuticals

I continue the investigation of the role of information as an adoption barrier by analyzing age and

adoption in prescription pharmaceuticals. Existing research on pharmaceutical markets suggests

that the main barriers associated with the adoption of new drugs are largely informational in nature.

This may include knowledge that a new drug exists, knowledge of its benefits relative to poten-

tial competitors, as well as knowledge of what patients are likely to benefit from its prescription

(Dickstein (2018)). Therefore, a test of the effect of age on new drug adoption in this setting will

reveal the extent to which age impacts the adoption barriers associated with informational frictions

as opposed to skill acquisition.

Pharmaceutical markets are also attractive because drugs are organized in therapautic classes

that offer a compelling analogue to the branching structure of ICD9-CM procedure codes. In par-

ticular, therapeutic classes are groups of pharmaceuticals that have similar chemical composition

and physiological pathways of action. This means that drugs in the same therapeutic class are

likely to be used on a similar population of patients by the same physician.19 However, a major

difference would be that in the case of pharmaceutical markets, a new drug gets its own designation

immediately upon approval and thus its diffusion process can be monitored from the time it was

first marketed, while in the case of procedures, this is infeasible.

I use introductions of new chemical compounds into existing therapeutic classes to investigate

the effect of age on pharmaceutical adoption. I use Medicare Part D Event files for 2006-2015 and

define new technology as a new compound introduced in an already existing therapeutic class. An

important difference with the procedural analysis is that there are multiple chemical compounds per

therapeutic class introduced between 2006 and 2015. I choose to run the analysis by defining the

use of new technology as the use of any new compound within a therapeutic class. Hence, in order

to measure technological adoption propensity, I will be comparing the use of drugs introduced in

or after 2006 to drugs introduced before 2006. The risk set of physicians is defined as doctors who

were prescribing in the relevant therapeutic class in the year of the new compound’s introduction.

The final sample has 55,195,851 observations by 359,965 physicians in 58 therapeutic classes

over the 10-year period. Sample construction details are in the appendix. Consistently with the

19Nonetheless, just like in the case of procedures, drugs in the same therapeutic class are not perfect substitutes for
each other (Johansen and Richardson (2016)).
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procedural analysis from above, I run regressions of the following form:

yicdt = β0 +β1Adc +β2Xidt + γc + τt + εicdt (12)

where i indexes patients, d indexes operating physicians, c indexes therapeutic classes, and t

indexes calendar years. y is a dummy for whether a new (post-2006 approval year) or old (pre-2006

approval year) compound within a therapeutic class is used, Adc is prescribing physician d’s age

in the year when therapeutic class c first receives a new drug , X is a vector of the same patient

observables as above (dummies for patient 5-year age bins, sex, and race, Medicaid receipt, and

26 chronic conditions lagged by a year), γp is a vector of treatment category fixed effects, and τt is

a vector of calendar year fixed effects.

The results are presented in Table 1.7. Column (1) has the baseline specification without any

patient observables, column (2) adds lagged chronic condition indicators and column (3) - binary

indicators for patient sex, race, 5-year-age-bins, and receipt of Medicaid. Column (4) breaks out

the age variable into 10-year bins. The estimates are statistically insignificantly different from

0 and quite precisely estimated in all columns. The result in column (1) sugests that a 10-year

incrase in doctor age in the year a therapeutic class receives an innovation is associated with a

0.01 percentage point decrease in the probability of prescribing one of the new drugs that enter the

therapeutic class in the sample period. The standard errors, clustered at the therapeutic class level,

allow for the rejection at the 5% level of results as high as a 0.05 percentage-point decrease. It

is easy to see that the effect of age on adoption propensity in this context is more than 100 times

smaller in absolute terms than its effect in the context of ICD9-CM procedures. Of course the

mean level of new-drug use in this context is much lower at 1.7% partly because each therapeutic

class can have a large number of chemical compounds in it. However, even taking this base level

into account the relative magnitude of the age effect is more than 10 times lower than in the case

of procedures. Finally, the results are consistent across columns, again suggesting that patient

selection is not important in this setting.20

Overall the results from this exercise suggest that the effect of age on adoption is mediated

through the high fixed costs of skill acquisition in the context of medical procedures. Older physi-

20Since all of these drugs are follow-on drugs in their respective therapeutic classes, these results are also consistent
with the findings of Glass and Rosenthal (2004), who find no effect of age on the adoption of follow-on drugs.
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cians are not at disadvantage in obtaining new information about existing treatments. However,

they may be less willing to invest in the skills necessary to learn new procedures. This is an impor-

tant consideration from a policy perspective because it indicates that simply spreading awareness

about new technological options is unlikely to have much of an effect on diffusion. Policy-makers

interested in boosting the adoption of new procedures have to take into account the associated

skill-acquisition costs faced by physicians in this space.

1.7.2 Present-discounted value of patient benefits

The empirical tests so far explored variation in the adoption costs side as a test of the theoretical

framework. However, the model also posits that age can affect adoption through its impact on the

benefit side of the physician’s decision. In particular, increases in age lead physicians to adopt

less because of decreases in the present-discounted value (PDV) of the benefits that will accrue

to their patients due to the new technology. The model shows that this channel is affected by the

physician’s arrival rate - the number of patients she expects to see in her practice over the lifetime

of her medical activity. As the number of patients increases, the physician is more likely to take on

the fixed costs associated with technology adoption. This can be seen in equation (9) above:
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The sign of this expression is ambiguous. In particular, the effect on the marginal return to an
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positive or negative depending on the relative size of these effects. The results from the baseline

regression indicate that the age-adoption profile is roughly linear, so that f ′′(ns
j ∗a j) is likely to be

small in magnitude. Therefore, equation (14) can be approximated by:
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That is, increases in the arrival rate increase the penalty of age through the present-discounted

value of benefits channel and decrease it through the returns to experience channel. Intuitively, for

physicians with many patients, holding all else equal, the return to having an additional expected

year in practice is higher since more patients will benefit from this opportunity to use the new

technology. This in turn means that younger physicians should be much more likely to invest in

the fixed costs required for technology adoption. At the same time, however, if the returns to

experience are high, it is possible that a higher arrival rate leads to a shallower age-adoption profile

due to the gains from performing more surgeries.

This prediction of the model offers an opportunity for a simple empirical test. In particular,

including an interaction of a measure of a doctor’s arrival rate with age at codification in the

baseline specifications can tell us whether the benefits channel is likely to be important in this

setting. Specifically, if the coefficient on the interaction is non-negative or non-significant, then

the PDV channel is overwhelmed by the experience channel and thus the negative slope of the

age-adoption profile is driven by the adoption-cost sie of the model. However, if the coefficient on

the interaction is negative and significant, then the PDV channel is strong enough to show through

even the decreases in the age-penalty due to increased experience. While this may not allow for

an exact measurement of the magnitude of the benefits channel, it is an indication of its relative

importance.

The main challenge for this exercise is choosing a measure of the arrival rate. In what follows,

I use the average number of annual procedures that a doctor is observed performing in the sample
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period. This is not the only way to measure the arrival rate, but is attractive for two main reasons.

First, it is simple, transparent, and easy to interpret. Second, the sample I’m working with is a 20%

sample of Medicare beneficiaries. This means that I observe only a small fraction of the actual

procedures performed by any single physician. This means that using a more granular measure of

arrival rate (e.g., number of patients in a set number of periods before or after adoption or within

a particular treatment category) may be exceedingly noisy due to the relatively small number of

per-physician observations in the sample. To illustrate, 10th, 25th, 50th, 75th, and 90th percentiles

of this variable are 1.33, 2.14, 3.71, 6.63, and 10.62 respectively.

I re-run the baseline specifications from above in the following updated form:

yipdt = β0 +β1Ad p ∗Nd +β2Ad p +β3Nd +β2Xidt + γp + τt + εipdt (17)

where Nd is the average number of annual procedures that a doctor is observed performing

in the sample period re-centered so that Nd is mean-0 (i.e., to form Nd I subtract from average

number of annual procedures the overall mean for each doctor). This is done so that the coefficient

β2 can be interpreted as the age gradient at the mean of the arrival rate distribution as opposed to

an arrival rate of 0 (which is not even in the sample). I compute the average by excluding from

the total number of physician procedures, the number of new procedures performed by the surgeon

in order to avoid a mechanical relationship between the dependent variable and the interaction

regressor of interest. The results are shown in Table 1.8 below.

Columns (1)-(4) consecutively add observables as done in the baseline case above. Column (5)

interacts the age bins with Nd instead of a linear age term. The coefficient on age at codification is

of similar magnitude and significance to what was found in the baseline case. The coefficient on

Nd in column (4) implies that an additional procedure performed by a doctor on an annual basis

increases the probability that a physician will adopt a new procedure by 1 percentage point. The

coefficient on the interaction of interest β1 is negative as predicted and significant at the 10% level

in all specifications. The magnitude implies that an additional 10 annual procedures increases the

doctor age gradient by 0.1 percentage point, which is almost a 60% increase in the size of the

baseline coefficient.

Despite the significant role for doctor benefits in the age-adoption gradient, the results from this
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estimation indicate that PDV can only account for part of the observed effect of age on adoption. In

particular, the baseline estimate of the size of the age-adoption gradient is 0.17 percentage points

decrease in adoption propensity for each year increase in doctor age. If I assume age has no effect

on adoption costs and that the effect is fully mediated through this channel, doctors would need

to perform 17 in-sample procedures on average in order for the age gradient to be fully accounted

for by this channel. This number of procedures is past the 95th percentile in the analysis sample,

indicating that it is unlikely that the benefit-side of the model can account fully for the age-adoption

gradient. Nevertheless, this analysis has shown that patient benefits do seem to be important and

that the predictions of the model regarding their influence do seem to be borne out in the data.

Finally, these findings are in line with the linearity of the age-adoption profile, which, as noted

above, suggests that experience gains are not important in this environment.

1.8 Robustness

In this section, I consider robustness of the baseline results to various aspects of the empirical

research design. I begin by testing the cohesiveness and technological similarity of the procedures

included in the treatment category definition. I then proceed by investigating reasonable changes

in the analysis sample. First, I consider changing the set of technologies considered based on the

number of procedures observed. Second, I offer two related but different definitions of the risk set

and show that the results are robust to these changes.

1.8.1 Treatment category cohesiveness

I begin by testing the idea that medical procedures that are in the same treatment category constitute

technological substitutes. In particular, my analysis is based on the assumption that procedures that

used to be designated by the same code are an appropriate technological space and the physicians

that practice within a treatment category are “at risk” for adoption. This assumption can be false

if treatment categories contain disparate procedures which are lumped together without regard to

their medical similarity or technological profile. I test this idea in three ways.

The first test of this idea is a simple descriptive exercise. The basic idea is to use other avail-

able medical information in a patient’s record in order to evaluate whether the patients falling in
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the same treatment category tend to be medically similar to each other. If patients falling within

the same treatment category have similar medical profiles, this would indicate that the likely pro-

cedures performed under that treatment category are also medically similar. A parsimonious way

of accomplishing this is to use information on the DRGs for inpatient stays. As discussed above,

DRGs are used to categorize patients into reimbursement-relevant groups whose members share

similar medical conditions and require similar resource intensity. While the specific surgical proce-

dure performed on the patient plays a role in determining her DRG, the classification relies heavily

on patient diagnoses and other medical information such as the presence of relevant comorbidities

and is therefore an independent source of information on a patient’s medical condition.

In Appendix Figure A2 below (construction details in the appendix), I show that the majority

of patients in the same treatment category fall in the same DRG indicating that patients in the same

treatment category are indeed similar in their medical conditions and that treatment categories

do not tend to contain procedures that treat vastly different medical conditions. Additionally, as

explained in the appendix, I find that the vast majority of patients treated using new procedure

codes fall within DRGs that are observed with the old procedure codes. This indicates that on

average hospital reimbursement tends to stay the same for new and old procedures removing this

particular channel as a possible mechanism of action behind the age-adoption profile documented

in this study.

The second test of the treatment category as a cohesive group of procedures is use the proce-

dure description to exclude from the analysis sample treatment categories that appear like they may

contain disparate groups of procedures. In particular, I exclude all treatment categories which men-

tion the word “other” in their description. Examples are “open and other cecectomy” and “other

operations on cul-de-sac”. The idea is that treatment categories with non-specific descriptions may

be more likely to include unrelated procedures. The results from running the baseline specification

with a full set of controls are in column (1) of Table 1.9 below. The doctor-age estimate is negative,

significant, and close in magnitude, both in absolute and relative terms, to the baseline estimates.

This indicates that the results are not driven by treatment categories that may contain disparate

procedures, at least based on their description.

The last test of treatment category as a cohesive group of procedures is based on the hierarchical

structure of the ICD9-CM and the tendency of the system to group medically similar procedures
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close to each other. Specifically, I restrict the analysis to treatment categories where the new proce-

dure code is in the same two-digit category as the old code. This includes for instance procedures

such as “34.51 - Decortication Of Lung” and its corresponding new code “34.52 - Thoracoscopic

Decortication Of Lung” because they both fall within two-digit category “34 - Operations On Chest

Wall, Pleura, Mediastinum, And Diaphragm.” This procedure excludes cases where the new code

falls outside of the parent procedure’s two-digit category. An example is “88.75 - Diagnostic Ul-

trasound Of Urinary System” and its corresponding new code “00.25 - Intravascular Imaging Of

Renal Vessels” because the former falls within category “88 - Other Diagnostic Radiology And

Related Techniques” and the latter - within “00 - Procedures And Interventions, Not Elsewhere

Classified.” The idea is that procedures which receive new designations far from the original’s

position within the hierarchical system are more likely to be unrelated to the other procedures in

the treatment category.

The results are listed in column (2) of Table 1.9 below. The doctor-age estimate is still negative,

significant, and close to the baseline results. This indicates that the results are not driven by code-

changes where the new code is in a different two-digit category than the original. Together with the

results from column (1) this analysis indicates that treatment categories are likely to be cohesive

groups of procedures.

1.8.2 Sample definition

This subsection tests the influence of the partial sample of Medicare patients observed on the

baseline results. In particular, since I observe only a 20% sample of Medicare beneficiaries, I

see only a fraction of the procedures performed within the treatment categories of interest. If

the only effect of this feature of the underlying data is to induce classical measurement error in the

dependent variable of interest (i.e., I observe the true adoption rate of physicians within a treatment

category with a linearly additive independent error term), then this has no bearing on the bias or

consistency of the estimates in my specifications. However, one may be worried for instance that

the probability of a new procedure being observed is correlated with the age of the physician (e.g.,

older physicians are worse at coding new procedures using the appropriate code). This is a general

problem that would be exacerbated in an environment where some treatment categories have only

a few observations (e.g., less than 20 procedures in the entire sample) since it may create “outlier”
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treatment categories that might drive the results.

One way of addressing this issue is to restrict the sample to treatment categories which have

a relatively high number of observations. The idea is that larger treatment categories are less

likely to experience the measurement error I outlined above and are also less likely to have that

measurement error be correlated with the doctor’s age since these categories may be financially

more important to the hospitals in terms of Medicare reimbursement. In column (3) of Table 1.9,

I restrict the sample to treatment categories that have at least 500 procedures in the sample frame.

The results are statistically significant and close to those from the baseline specifications indicating

that small treatment categories are not driving the results.

Second, I test for robustness to the risk set definition. As outlined above, the baseline sample

defines the risk set for each treatment category as the set of doctors who are observed using the

treatment category in the year of codification. This definition could be problematic due to the

fact that codification occurs in October of each year, so that this risk set includes some physicians

who were using the parent code in the months leading up to October and some who were using

it after October possibly as a result of the availability of the new code within that category. I

therefore check how the results change if I change the definition to doctors who are observed

using the treatment category one or two years prior to codification. This significantly changes

the sample for two reasons. First, physicians may exit the labor force, the treatment category, or

treatment of Medicare patients in the years leading up to codification, so that the set of physicians

observed using the treatment category farther back in time is increasingly different from the set of

physicians observed using the treatment category at and immediately after codification. Second,

the 20% sampling issue means that only a fraction of the procedures that a doctor uses are observed

in any given year, so that the doctors who are observed using a given treatment category in 2007

and 2009 for instance is different from the set of physicians observed using the same treatment

category in 2006 and 2009.

The results are in columns (4) and (5) in Table 1.9. Column (4) changes the risk set definition

to those physicians observed using the procedure in the year prior to codification and column (5) -

to those physicians observed using the procedure two years prior to codification. Both results are

significant and close in magnitude to those of the baseline specification. As outlined above, the

sample decreases substantially with these changes leading to column (5) being significant only at
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the 10% level. Still, the results from those columns indicate that the results are not sensitive to the

definition of the risk set.

1.9 Conclusion

This paper considers the effect of physician age on the propensity to adopt new technology in the

form of medical proceures. Relative to previous literature on the subject, it proposes a method

of analyzing a large number of technologies undergoing diffusion with a well-defined risk-set of

doctors who may consider adopting the technology and who are likely to be similar on salient un-

observable characteristics that may bias estimation. The results indicate that younger doctors are

more likely to use new procedures, that this difference is largely explained by extensive-margin

decisions whether to learn the procedure in the first place, and that the difference only increases

as the diffusion process plays out. Incorporating the arrival rate of new procedures in the analysis

implies that the present discounted value of patient benefits is an important channel that explains

some, but not all of this effect. An analogous analysis of diagnostic codes and pharmaceuticals

suggests that the age-adoption profile is likely highly influenced by the fixed costs of skill acquisi-

tion required for the adoption of new medical procedures and that informational barriers are likely

to play a negligible part in this setting.

It is important to stress that these findings do not take a stand on welfare. As discussed above,

older physicians may face real higher costs and lower benefits of adoption, which should induce

lower adoption. To the extent that physicians are fully internalizing the expected patient benefits

that arise from the use of new technology and weigh that against their own real costs of adoption,

the results here are not indicative of an inefficiency in the market. However, to the extent that a

policy maker believes that new medical technology has patient benefits that may not be internalized

by the physician (or that the market has multiple equilibria due to technology spillovers), this

paper suggests that the most effective interventions intended to accelerate the diffusion process are

interventions that target the skill-acquisition costs associated with learning new procedures such

as structured training classes and increased financial support for learning procedures.

48



1.10 Figures and Tables

Figure 1.1: Distribution of Doctor Age at Codification

Notes: The histogram displays the distribution of doctor age at new code 
introduction for all treatment categories. Each observation represents a 
procedure on an inpatient claim.
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Figure 1.2: Diffusion S-Curve

Notes: The figure plots the coefficient from a regression of new code dummy on year relative to 
new code introduction with treatment category fixed effects and controls for calendar year, 
patient age, race, sex, chronic conditions, and Medicaid receipt, and doctor controls for AMA 
hospital ID, med school ID, and gender. 
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Figure 1.3: Baseline Regression Binscatter

Notes: The figure is a binscatter of the baseline specification (4). The figure is constructed by 
estimating the residuals from separate regressions of the new code dummy and doctor age on the 
full set of patient and physician controls, dividing them into quantiles, adding the means of the 
dependent and independent variable respectively, and plotting hte results. The grey line is a line 
of best fit whose slope equals the slope in the main specification. 

51



Figure 1.4: Extensive Margin Results

Notes: Figure shows the coefficients estimated from running specification (5) on different measures 
of extensive margin adoption. The bands are 95-percent confidence intervals based on standard 
errors clustered at the treatment category level. 
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Figure 1.5: Intensive Margin Reults

Notes: The figure plots the coefficient from a regression of new code dummy on year relative to new 
code introduction with treatment category fixed effects and controls for calendar year, patient age, 
race, sex, chronic conditions, and Medicaid receipt, and doctor controls for AMA hospital ID, med 
school ID, and gender. The sample is all operations by surgeons who have adopted the new code in 
the treatment categor after they are first observed using the new code.
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Figure 1.6: Dynamic Patterns of Age-Based Adoption Differences

Notes: Figure shows the coefficients estimated from running specification (6) using the full set of 
patient and doctor controls. The bands are 95-percent confidence intervals based on standard errors 
clustered at the treatment category level. 
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Table 1.1: Sample Summary Statistics

Notes: Table shows summary statistics for the sample. Panel A shows means calculated at the 
patient procedure level, while panel B does so at the doctor-year level. 

Table 1.2: New Code Use Baseline Regressions

Notes: Table shows the results from running specification (2) on the main analysis sample including successively more 
controls to the specification. Standard errors are clustered at the treatment category level.
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Table 1.3: Extensive Margin Analysis

Notes: Table shows the coefficients estimated from running specification (3) on different measures of extensive margin 
adoption. Standard errors are clustered at the treatment category level. 

Table 1.4: New Code Use (Intensive Margin)

Notes: Table shows the results from running specification (4) on the sample of adopters after they are first seen using the 
new code including successively more controls to the specification. Standard errors are clustered at the treatment category 
level.
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Table 1.5: Minimally Invasive Surgery Analysis

Notes: Table shows the results from running specification (10) on the baseline analysis sample including successively more 
controls to the specification. Standard errors are clustered at the treatment category level.

Table 1.6: New Diagnostic Code Use Analysis

Notes: Table shows the results from running specification (11) on the diagnostic code use analysis sample including 
successively more controls to the specification. Standard errors are clustered at the treatment category level.
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Table 1.7: New Drug Use Analysis

Notes: Table shows the results from running specification (12) on the pharmaceutical analysis sample including 
successively more controls to the specification. Standard errors are clustered at the therapeutic class level.

Table 1.8: Arrival Rate Analysis

Notes: Table shows the results from running specification (17) on the baseline analysis sample including 
successively more controls to the specification. Standard errors are clustered at the treatment category level.
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Table 1.9: Robustness

Notes: Table shows the results from running various robustness checks on the baseline specification. Standard errors are 
clustered at the treatment category level.
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2 Chapter 2
Surgical Innovation and the Challenge of
Changing Demographics

2.1 Introduction

The question of whether technological innovation is driven by scientific opportunity or demand-

pull incentives has long been of substantial interest to academic economics (Acemoglu and Linn

(2004)). From a theoretical perspective, standard economic models yield strong predictions about

the behavior of potential inventors when faced with changes in expected demand. Testing them

can therefore further our knowledge of economic behavior. From a policy perspective, innovation

is frequently linked to important outcomes such as productivity growth and thus understanding its

drivers is an important objective. This question is especially salient in the context of healthcare,

where innovation has been credited with achieving substantial improvements in patient outcomes,

as well as inducing increases in costs, over the past century (Cutler and Kadiyala (2003), Nordhaus

(2003), Cutler (2005), Murphy and Topel (2006), Jayachandran et al. (2010), Chandra and Staiger
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(2007), Chandra and Skinner (2012)). Perhaps unsurprisingly much of the existing empirical re-

search on the impact of demand-side changes on innovation comes from this part of the economy.

The core of this evidence is formed by a successful line of research that has investigated the impact

of various shocks to potential market size on innovation in the pharmaceutical sector (Acemoglu

and Linn (2004), Finkelstein (2004), Dubois et al. (2015)).21

A somewhat overlooked aspect of this line of inquiry is that the answer to this question are

inextricably linked with the market institutions under which innovation takes place. Much of the

theory on this question assumes that innovation is driven by profit-maximizing firms in a setting

where firms are incentivized to innovate through government-sanctioned monopolies due to intel-

lectual property protection. This structure matches the market institutions of the pharmaceutical

sector quite well. However, this type of market organization is far from ubiquitous and is, by some

metrics, the exception rather than the norm. For example, a survey of 1,478 R&D labs by Cohen

et al. (2003) finds that there is a variety of mechanisms other than patents that firms use to protect

intellectual property, including secrecy, lead time, use of complementary marketing and manufac-

turing capabilities. In fact, patents are one of the less popular methods among a majority of firms

and industries with the salient exception of pharmaceuticals.

A radically different form of market organization can be observed in another important domain

of medical innovation, surgeries. Surgical innovation has played a crucial role in cost and benefit

changes over the past half a century. For instance, a third of the huge decrease in cardiovascular

mortality that occurred in the middle of the twentieth century comes from the development of sur-

gical interventions such as coronary artery bypass graft, angioplasty, and catheterization (Cutler

and Kadiyala (2003)). Surgical innovation is organized around a very different set of institutions

21

One reason for interest here is that the rapidly changing demographics of Western societies induce changes in market
size due to demand (Acemoglu and Linn (2004)). This gives rise to the question of whether current market structures
in the sector are well-equipped to respond to such these changes. A separate, but related reason is that many popular
government policies in the health sector (e.g., patent term, generic-entry regulation, excise taxes, health insurance
coverage expansions) have a direct effect on the market size for various medical products. This means that innovation
effects due to changes in those policies are a first-order concern (Finkelstein (2004)). These effects have always held
a prominent place in public policy discussions. One recent example is the ongoing debate about pharmaceutical price
controls in the US, a policy which will directly impact the potential market size for pharmaceutical firms by limiting
the potential surplus that can be extracted from the firm’s monopoly. Perhaps unsurprisingly, the ability of industry to
deliver ongoing innovative products under these proposed policies has been a central point in these debates (see, e.g.,
Wayne Winegarden (2020)).
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than pharmaceuticals. Novel surgical development is organized around the independent activity of

multiple decentralized surgeons and academic medical centers (Chang and Luft (1991)). Intellec-

tual property protection is weak and government regulation is very light Meier (2015)). Hence,

innovating surgeons can likely recoup only a fraction of the value of their investment (Chang and

Luft (1991)). The development of a new surgery is a highly incremental process that relies on

the adoption and improvement activity of multiple practitioners as well as communication through

professional meetings and publications as opposed to the directed and structured development and

marketing activity of a pharmaceutical company (Chang and Luft (1991), Scott-Morton and Kyle

(2011)).

At the same time, formal evaluation of new methods and approaches is rare and fraught with

methodological difficulties due to reasonable ethical constraints (Savulescu et al. (2016)). This

means that only the major procedures that show vast differences in (non-randomized) patient out-

comes are likely to survive to the end of the development stage (Chang and Luft (1991)). This is

a process which is likely to direct innovative efforts quite differently from pharmaceuticals, where

RCTs with sometimes small relative benefits can help generate profitable inventions (Scott-Morton

and Kyle (2011)). In light of the radically different market institutions and the deliberate blunting

of financial incentives, the traditional mechanism said to underlie the impact of potential market

size changes, the question of whether surgical innovation responds to changes in potential market

size at all looms large.22 This project aims to provide an answer.

I do so by overcoming two of the main challenges faced by empirical researchers in this context:

measuring surgical innovation and finding credible ways of studying its causes. First, the weak IP

protection around surgeries means that surgeons are less likely to patent their inventions (with

some special exceptions addressed below) (Meier (2015)). This means that a traditionally popular

method of measuring innovative activity, namely patent counts, is not reliable in this setting as

patents for new surgical techniques do not track well all new surgical techniques.23 Additionally,

the lack of government regulation in this space means that exogenous quasi-experimental variation

22From a theoretical perspective, the answer to this question can help us refine traditional economic models of
innovation and explore the applicability of alternative mechanisms to encourage research and devleopment. For a
policy-maker, an answer can help with understanding the drivers of innovation in the important setting of surgical
innovation, and, more broadly, in contexts where intellectual property protection has only a limited scope for incen-
tivizing innovators.

23While individual novel surgeries may be identified through, e.g., claims data, doing so at scale has been difficult.
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is hard to find. The present study thus aims to address both of these challenges by offering a

novel measure of surgical innovation and by identifying a source of exogenous variation that can

be used to study this important economic area. Using these tools, I explore two questions. First,

does surgical innovation look different from pharmaceutical innovation? Second, does surgical

innovation respond to changes in potential market size.

The paper’s first contribution towards this goal is to use a novel measure of surgical innovation.

This measure allows me to offer the first, to my knowledge, systematic description of surgical

inventions over the past three decades. Specifically, I use the annual revisions to the ICD9-CM

system of coding medical procedures to identify novel surgical approaches. This method yields the

universe of important surgical advancements over the past 20 years. Importantly for my empirical

approach, these surgical procedure codes are organized in a hierarhichcal system based on the

part of the human anatomy impacted by the procedure. This organization naturally lends itself to

assignment to a well-defined market for surgical procedures.24

This measure allows me to document that at least in the aggregate pharmaceutical and surgical

innovation markets seem to follow different trends in accordance with their different institutional

settings. In particular, I juxtapose trends in overall counts of novel pharmaceutical and surgical

innovation in a comparable set of therapeutic markets. The results from this investigation show that

the patterns in surgical invention are strikingly different from those in pharmaceutical invention.

While the trends in some markets for surgical innovation match those for pharmaceuticals quite

closely, other markets show no or even negative correlation between the two. These differences

lend additional weight to the claim that surgical innovation markets are different from markets

for pharmaceutical innovation and thus to the question of whether surgical innovation responds to

changes in potential market size at all.

I then move onto the main part of the analysis and investigate the impact of potential market

size on surgical innovation. I solve the well-known problem of reverse causality between potential

market size and innovation by using demographic shifts over three decades as a quasi-exogenous

24There is one other study that I am aware of in the economics literature which uses the idea that procedure codes
may track innovation. Lichtenberg (2014) studies the impact of medical innovation on cancer mortality and uses, as
one of his measures of medical innovation, novel procedures as measured by cancer-related radiation and surgical CPT
codes that were introduced after 1995. While the author uses a different coding system, with a different definition of
innovation based on that coding system, for the purposes of investigating a different question, the core insight remains
close to the one used in this study.
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source of variation in the independent variable of interest. Inspired by the work of Acemoglu and

Linn (2004), this approach is particularly well-suited in the case of surgical innovation because

patient age predicts strongly the incidence of various surgical procedures.

I estimate a positive and significant elasticity of surgical innovation with respect to potential

market size. My baseline estimate of 1.57 is lower in magnitude than those reported in Acemoglu

and Linn (2004) and Dubois et al. (2015) for pharmaceuticals, but still implies a substantial re-

sponse of surgical innovations to changes in potential market size. On the extensive-margin, a

doubling of potential market size increases the probability that a given surgical market receives

an innovation by 85%. Finally, I find that innovation responds more strongly to lags than leads in

market size. These results suggest that surgical innovation will respond to increased demand for

novel procedures from older patients, but they leave the question of how this happens unanswered.

These results have important implications for economic policy. A long-running argument in

economics posits that one of the most prominent benefits of intellectual-property protection and

financial incentives is the ability of markets to deliver welfare-enhancing innovation (Goldman and

Lakdawalla (2011)). This paper offers evidence that while this may be sufficient in some cases, it

is by no means necessary. The presence of significant levels of surgical innovation that respond

to changes in market size indicates that non-standard market institutions may offer a complement,

if not an alternative, to traditional profit-maximizing research and development. This possibility

is especially salient in the current climate of concerns about the productivity and direction of

corporate pharmaceutical research (e.g., Pammolli et al. (2010), Oostrom (2020)). Naturally, the

feasibility and desirability of such arrangements depends.on the exact mechanism of action in this

setting, but this paper lays the foundations for future exploration in this direction.

2.2 Institutional background

2.2.1 Surgical innovation

The drivers of surgical innovation are of substantive economic interest due to, among other factors,

the unique organization of markets in this domain. Unlike markets for pharmaceutical and device

innovation, these markets are not centered around the activity of profit-maximizing private compa-

nies granted limited monopolies and regulated by public agencies. Instead, they differ along three
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major dimensions: development, regulation, and diffusion. I explore each of these dimensions in

detail below.

The development of novel surgeries depends on the character of the innovation under consider-

ation. Minor alterations to existing techniques occur in the course of the surgeon’s normal practice

if the improvement is considered more efficient or beneficial for the patient’s specific situation.

For instance, vagotomy is a treatment for peptic ulcer disese involving the severance of the vagus

nerve. The procedure can be performed by ligating different sections of the nerve. More selective

approaches can be considered variations to the overall procedure. Over the course of the surgeon’s

practice and through communication via peer reviewed publications and professional conferences,

the novel alteration is perfected and diffused (Chang and Luft (1991)).

Major novel surgeries follow a somewhat more formal process that usually occurs at academic

medical centers. After conceiving of a novel surgical approach, the innovating surgeon usually

tries it on animal models to confirm physiological feasibility and compatibility with life. After ex-

perimentation with animal models has been considered sufficiently successful, the new procedure

is attempted on a suitable patient. The medical code of ethics plays an important role in this step

of the process. Typically only patients without a viable medical alternative are considered eligible

for major novel procedures. If the procedure is considered to have a suitably successful outcome,

it is shared with the wider medical community and improved upon through professional journals

and meetings (Chang and Luft (1991)).

An example may help clarify this process. The first coronary artery bypass surgery was per-

formed in 1960 by Robert Goetz in Albert Einstein College of Medicine-Bronx Municipal Hospital

Center in New York. Prior to performing the procedure on a patient, the surgical team had devel-

oped the concept and trained their skills on dogs. The graft was successful and when the patient

eventually died 13 months later, an autopsy revealed that the graft was still functional. Subse-

quently, the procedure was performed in Johns Hopkins in 1962 and in Houston in 1964. Spread

and further development of the surgery was somewhat sporadic due to the high mortality among

eligible patients and the need to confirm procedure graft patency, which could take years if patients

survived for longer. The procedural approach which would eventually become the gold standard

in CABG was not performed until 1968 in Saint Luke’s Hospital in NYC (Melly et al. (2018)).25

25It is also worth pointing out that various ideas and incremental surgical advancements which would make CABG
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Still, the procedure was considered so revolutionary and beneficial that it had achieved widespread

acceptance by 1974 (Bunker et al. (1978)).

The specific features of this process mean that it is not nearly as regulated as the correspond-

ing processes in pharmaceutical and device innovation. The reason is that the natural regulatory

framework to be applied in this case is that of human subjects research, as outlined by the fa-

mous Belmont Report. The report distinguishes between the use of novel methods for thereapeutic

and research purposes. Research is performed primarily for the purpose of obtaining generaliz-

able knowledge with any benefits accruing to its subjects taking a secondary role in the objective

function. As such, research is governed by a host of federal regulations collectively named the

Common Rule. 26 However, therepautic use of a novel method is performed primarily for the

benefit of the patient and is not governed by the former regulations. Surgical innovation strikes an

uneasy balance between these two categories. Many surgical innovators would see their work as

primarily benefiting the patient and potentially creating generalizable knowledge as a secondary

boon from the procedure. However, such activity could easily cross the line into territory more

akin to human-subject research27 and this line has not been defined with any reasonable degree of

specificity either by the Belmont Report or by subsequent federal regulation. In practice, it is up to

individual surgeons to decide whether their activity constitutes research and thus whether it should

fall under the relevant established rules and guidelines. In such cases, internal review boards at the

surgeon’s institution will review the research protocol and permit or forbid the use of a procedure

and the broader research design (Laakmann (2015)).

The large amount of physician discretion in this setting and lack of formal guidelines is rooted

in a host of difficult issues faced by doctors and patients. The first is a recognition that there is a

vast amount of heterogeneity among patients in terms of medical needs, anatomical features, and

personal preferences when it comes to surgical procedures.28 Our current intellectual framework

possible date back to 1910 when the concept of operating on the coronary circulation was first described (Melly et al.
(2018).

26One example is the requirement for all research protocols and the system of obtaining informed consent to be
screened by an internal review board (Laakmann (2015)).

27For instance, in the Ancheff v. Hartford Hospital trial, the plaintiff asserted that his treatment with a dosage of
the drug gentamicin that was double the conventional FDA-aproved dose constituted a part of an undisclosed clinical
trail. Ultimately, the Connecticut Supreme Court decided that the jury has the prerogative in determining whether such
a program constitutes research as the Belmont Report offers insufficient guidance (Laakmann (2015)).

28An example of this is the treatment of breast cancer via mastectomy (complete removal of the breast) or lumpec-
tomy (local excision of the tumor). While the two approaches have statistically similar outcomes, there is a vast
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therefore recognizes that a physician should be able to adapt to this heterogeneity in her approach.

The second is that medicine is subject to an intense amount of technological change and knowledge

accumulation, which means that the frontier of medical solutions and knowledge is constantly

shifting and a physician should be allowed to shift with it. The third is that there is still a large

number of difficult medical conditions for which there is no standard or widely accepted treatment

(or even any treatment at all). Binding a physician with a regulatory standard may take away her

ability to serve patients who may have little other recourse for alleviation of their issues (Laakmann

(2015)).

An example may help clarify some of the difficult issues that surround these choices. the

first successful cardiac transplant in the US, which was only the fourth attempted human cardiac

transplant in the world, did not undergo institutional review as the operating surgeon, Dr Norman

Shumway of Stanford, claimed he was trying to save the patient’s life, and thus the urgency of

the patient’s condition was considered reason enough to forego research approval (Chang and Luft

(1991), Golf (2017)). However, the possibility of cardiac transplantation had been an area of active

interest and arguably a broader research agenda that spanned surgeons from multiple countries and

generations, each of whom incrementally contributed to the anatomic knowledge necessary to

perform such a difficult procedure. The feasibility of such a procedure in humans was an area of

active academic debate where, naturally, empirical evidence from actual attempted operations held

much sway (Golf (2017)). Cast in this light, Dr Shumway’s life-saving procedure had many of the

hallmarks of a research project that would have been subject to federal regulation.

In practice, one of the primary factors constraining the use of novel procedures in the US is

a surgeon’s liability under the court system. Patients who suffer injury or bad outcome during a

procedure may bring a federal malpractice lawsuit against the performing physician.29 In such

cases, the plaintiff has to prove four things: that the surgeon had a duty to the patient, that she

breached the standard of care, that the patient suffered compensable injury as a result, and that

the defendant’s actions caused the injury. Surgical innovation in of itself is not grounds for lit-

difference between them in terms of other characteristics. Women electing the former need to consider the cost of
disfigurement and possibility of cosmetic surgery, while those choosing the latter may have to undergo chemotherapy
and radioation therapy as well as risk local recurrence. The choice in this setting cannot be ethically imposed by a
standardized system of guidelines with our current state of knowledge (Laakmann (2015)).

29While the pathway for a novel procedure which was performed as part of a formal research study is slightly
different, the main parameters of the court’s decision process remain unchanged.
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igation. The defendant has to prove that such innovation breached the standard of care and the

court’s decision in such cases is often governed by the surgeon’s reputation, the existence of other

surgeons who believe the attempted procedure to be feasible (as established through expert testi-

mony, papers, profesisonal meetings and conferences, etc), and the existence of a widely accepted

non-innovative treatment for the patient’s condition. In general, courts have been cognizant of the

surgeon’s need to adapt to a patient’s needs as well as the changing technological landscape of

medicine and thus innovation in of itself has not been a ground for successful litigation. However,

even here innovation is generally seen as acceptable when the primary beneficiary is the patient as

opposed to the accumulation of knowledge for society (Mastroianni (2006)).

Differences between surgical and pharmaceutical innovation extend to the diffusion process

as well. In the case of pharmaceuticals and devices, the FDA requires companies to conduct

large-scale randomized controlled trials to verify the safety and efficacy of a drug. Therefore, the

evaluation of the relative benefits of a novel treatment largely happens prior to its mass diffusion.

Once FDA approval is granted, the inventing firm spreads knowledge about the drug through pro-

motional and informational campaigns directed at physicians (Scott-Morton and Kyle (2011)). In

contrast, due to the lack of a formal regulatory evaluation and approval processes in the case of

novel surgeries, the decision about what new surgeries work well and thus should be adopted, is

largely left up to the professional surgical community. This means that the surgeries that are likely

to spread are those that have a large difference in outcomes relative to the existing treatment (if

any) and those that treat untreatable conditions where the alternative is extremely low quality of

life or death. This evaluation is done informally through the use of case-studies or small-sample

analyses of treated patients. RCTs are rarely used and if they are conducted at all, this usually

happens after a procedure has gained somewhat wide acceptance (Chang and Luft (1991)).3031

Perhaps unsurprisingly, the lack of standardized procedures to determine the relative usefulness of

30An example of this process is the spread of laparoscopic cholecystectomy in the 1980s and the 1990s. The pro-
cedure was not evaluated by an IRB since it was used in treating individual patients. Neither surgeons, nor insurers
viewed it as experimental since it was not part of a formal research study and the fundamental objective of the proce-
dure remained the same as that of open cholecystectomy. Eventually, RCTs were performed to evaluate the procedure,
but only after it had spread widely and become standard accepted practice in the community (Mastroianni (2006),
Laakmann (2015)).

31Some of the reasons for this are practical in nature: the difficulty in actually implementing double-blinding
in randomization as well as the need to account for differences in skill level and experience of surgeons with each
procedure. A different set of constrants has to do with the fact that randomizing a patient into a surgical procedure
will almost certainly violate traditional medical ethics (Savulescu et al. (2016)).
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new prcoedures has been an active area of interest in the medical literature on surgical innovation

(see, e.g., Savulescu et al. (2016)).

These differences in the organization of markets for surgical and pharmaceutical innovation

have led to differences in the incentives behind innovation. The literature on pharmaceutical inno-

vation has argued that the benefits to a company considering whether to engage in the process are

the expected profits from having a patent-induced monopoly on the market for its novel molecule

for a preset period of time post-invention. The costs include the often substantial fixed costs of

innovation which have to do with the discovery of a new chemical compound and the costs of

guiding this product through the multiple stages of testing and regulatory approval (Scott-Morton

and Kyle (2011)).32

In surgical innovation, on the other hand, intellectual property plays very little role. The reason

is that patent law does not protect novel surgeries, unless they contain a novel device.33 This means

that the innovating surgeon is generally not able to recoup the costs of her innovative effort through

a patent-enforced monopoly. Therefore, the financial returns to innovative activity are more limited

than in the case of pharmaceuticals (Chang and Luft (1991)).

The sources and quantity of funding for surgical innovation are consistent with the lack of

promise of financial returns for this activity. Surgical innovation relies largely on non-private

sources of funding. These include grants from the National Institutes of Health (NIH), National

Science Foundation (NSF), and Veterans’ Administration (VA), as well as funding from an aca-

demic center’s School of Medicine or Department of Surgery. While industry and private foun-

dations do provide funding for some projects, this funding tends to be a minority of the overall

sources of finance for innovative surgical activity. For example, in a survey of Association of

Academic Surgery members, Rikkers et al. (1985) find that only 24% of financing for surgical

innovation comes from the latter two sources with the rest coming from federal or academic funds.

32DiMasi et al. (2003) estimate that the cost of innovation per new molecule is over $800 million in 2000 dollars.
33The 1997 Omnibus Consolidated Appropriations Act created a new section in the patent law’s provision of

damages limitations. The new law “deprives patentees of remedies for infringement by a medical practitioner’s perfor-
mance of a medical activity, absent exceptions” (Meier (2015)). The major exception under the law is when patented
use of a composition of matter contributes to the novelty of the method under considerations. This is commonly taken
to refer to medical drugs and devices. The law is widely interpreted to mean that while surgical procedures that do
not involve novel devices may be patented, patent infringement litigation is not available to patentees when the patent
is violated in the process of providing medical care, which would cover the vast majority of uses of the patented
invention. However, in cases where novel devices are part of the surgical method being patented, such infringement
litigation is still available (Meier (2015)).
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Additionally, funding for surgical innovation is traditionally considered to be relatively low and

decreasing in priority for federal agencies providing funds for biomedical research. For instance,

Moses et al. (2015) finds that health services research receives only 20% of total healthcare re-

search funds. Hu et al. (2015) find that NIH grants to academic surgeons have declined by 20%

since 2004 and Adler and Chen (2010) find that only 6% of American Association of Endocrine

Surgeons (AAES) were funded for endocrine surgery research in the 90s and this number further

dropped to 3% in the 2000s. These patterns are consistent both with the lack of financial returns

to innovation and with the high amount of uncertainty that needs to be resolved before the value of

any given innovation is determined.

Since innovative activity in this space largely takes place in academic centers, various re-

searchers have proposed non-financial incentives for innovation. For instance, some authors have

suggested that innovating surgeons are largely incentivized through increased academic prestige

and higher chances of tenure due to their innovative work (Chang and Luft (1991)). Others have

posited that user-driven innovation may play an important role in settings such as medicine (De-

Monaco et al. (2006)). The underlying idea is that product manufacturers may be unable to capture

the entire consumer surplus of additional product variety due to information asymmetries and

transaction costs. However, product users can capture the entire surplus from their own innovative

activity even if they can capture none of the benefits accruing to other users. Thus, if individual

surplus is high enough and fixed costs of innovation low enough, user-driven innovation can drive

product variety in a market. This result requires two conditions: that users derive utility from

their own invention and that information asymmetries and transaction costs prevent firms from

capturing all of the consumer surplus (Henkel and von Hippel (2004)). Medical innovation due

to physicians fits these conditions quite closely. Since medical ethics puts patient well-being in

a primary position in a surgeon’s objective function this renders improvements to said well-being

through innovation self-rewarding. Similarly, physicians dealing with a difficult medical problem

have access to the myriad important and often difficult to communicate issues that concern pa-

tients with a particular condition. Such “sticky” information makes it difficult for firms to offer the

optimal amount of product variety (Hippel (1994)). 34

34Funding for this activity comes from federal agencies (NIH), industry, private funds, and clinical research funds.
However, the costs of this innovative process tend to be lower both because of the lower regulatory burden and because
of the decreased ability of actors to recoup their investment after an innovation has been proven to be effective.
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Therefore, one may expect higher market size to incentivize higher innovative activity in both

surgical and pharmaceutical markets. However, this effect is likely to act through different chan-

nels. In the case of pharmaceuticals, the likely channel is increased expected profits due to higher

quantity consumed. For surgeries, however, a larger potential market means a more important

problem to be solved. This can mean either higher prestige awarded to those that manage to offer

feasible solutions or increased self-reward to those who are primarily concerned with their patients’

well-being. In either case, one should expect an increase in innovative activity as the need for a

particular surgery increases.

I formalize these forces through a framework in the spirit of Benabou and Tirole (2003) model

of intrinsic and extrinsic motivation in the Appendix. The framework features an agent who decides

whether to complete a research project that has both a private and a public benefit, but which

has an a priori unknown cost of completion. The social planner who has private information on

the project costs faces a choice of how much of an external reward to offer to the researcher.

Under standard distributional assumptions on the cost signal, the social planner’s problem has

a unique solution with higher project costs inducing higher extrinsic rewards, but with higher

extrinsic rewards causing agents to revise their expectations of project costs upwards.

The model clarifies several of the patterns to be expected from the empirical analysis and of

the institutional setup discussed above. First, all else equal, higher intrinsic motivation leads to

higher researcher involvement and research output. To the extent that larger market size implies

a more important or prestigious problem to solve, one should then expect that increases in market

size will lead to more research output. Second, the costs and research production process drive

the choice of extrinsic rewards. For projects that are very expensive, but which have relatively low

private benefits, as is pharmaceutical innovation, the power of intrinsic motivation to motivate re-

search may be limited, leading to proportionately higher extrinsic rewards (e.g., IP-induced market

protection). On the other hand, processes which consist of multiple steps with correlated research

costs (such as the case with surgical innovation) may induce the social planner to reduce the ex-

trinsic motivation even more as the costs of the agent’s expectation updating increases. Finally,

since offering extrinsic rewards is socially costly (e.g., consumer deadweight loss from monopoly

pricing), intrinsically motivated innovation is preferable from a social welfare perspective.
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2.2.2 ICD9 Codes and Revisions

To make progress on answering the question whether surgical innovation does indeed respond to

changes in market size, I use revisions in the International Classification of Diseases 9th Edition,

Clinical Modification (ICD9 CM) system of coding medical procedures to measure surgical in-

novation. ICD9 CM is a complete system of classification for medical procedures (both surgical

and non-surgical) performed on patients in the US. It is mandatory for use on inpatient claims

submitted by hospitals for reimbursement by Medicare. It is jointly maintained by the Center for

Medicare and Medicaid Services (CMS) and National Center for Health Statistics (NCHS) (United

States General Accounting Office (GAO) (2002)). The system is maintained and updated through

biannual meetings of the ICD-9-CM Coordination and Maintenance Committee. These meetings

focus on proposed revisions to the system, usually to add codes for new and distinct medical pro-

cedures and are attended by representatives from relevant federal agencies, private industry, the

American Hospital Association, and the American Medical Association among others. Summaries

from the proceedings (and, more recently, audio and video recordings), as well as final changes to

the system, including new procedure codes, are posted on the relevant agencies’ websites (Centers

for Medicare & Medicaid Services (CMS) (2020)).

In deciding whether to add a new code for a given medical procedure, the CMS and NHCS con-

sider whether it is sufficiently different from similar procedures that already have codes, whether

it is safe and effective, and whether it is widely accepted by the medical community. While there

are no hard rules about when a procedure is sufficiently differentiated and accepted to receive a

new code, the meetting attendees discuss various sources of evidence such as empirical studies

on patient outcomes and technical details of the procedure implementation to make a determina-

tion. The goal is to maintain an expressive, yet succinct system of coding medical procedures.

The chief constraint is that for a variety of reasons the system allows for a limited number of

codes to be created,35 so that minor modifications to existing procedures are unlikely to be judged

35The system is hierarchichically organized based on human physiciology and surgical approach. This means that
similar procedures are grouped together. However, each procedure code uses up to four digits with similar procedures
sharing the first two to three digits in their designation. This means that there is only a finite number of novel proce-
dures that fall into a given category (For instance, “Operations on the Cardiovascular System” are typically expressed
by codes with first two digits in the range 35-39. Within this range, operations that have to do with insertion and
removal of pacemaker and pacemaker components reside in the range 3770-3789). Space constraints have been an
issue for the CMS previously with the agency having to create novel subcategories in the “incorrect” categories in
order to keep the system up to date (Continuing with the pacemaker example, in 2002, CMS decided that six new
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sufficiently important to receive their own designation (United States General Accounting Office

(GAO) (2002), Centers for Medicare & Medicaid Services (CMS) (2020)).

An example of this process is given by the addition of code 81.88, “Reverse total shoulder

replacement” to the system in 2010. Conventional shoulder replacement, marked by code 81.80

up until that point, involves replacing the shoulder joint by placing an artificial ball and stem at

the top of the patient’s humerus (a long bone forming part of the upper arm) and socket in her

glenoid cavity (a part of the shoulder forming the joint connecting it with the arm). The procedure

is used to treat conditions such as osteoarthritis and restore functionality to the patient’s upper arm.

However, in patients with serious conditions such as rotator cuff arthropathy (a type of degenerative

joint disease), this procedure may not be indicated. In such patients, shoulder replacement may be

performed by swapping the positions of the ball and socket implants. While the procedure does

not restore full functionality, it tends to alleviate pain and improve quality of life. After examining

evidence for the different surgical approach and patient population for this procedure relative to

traditional shoulder replacement, the CMS judged that reverse shoulder replacement is sufficiently

different that it requires its own code. The agency revised the system so that code 81.88 was added

for this new procedure, while code 81.80, which up until that point was used to denote both kinds

of shoulder replacement was revised to denote only traditional shoulder replacement (Centers for

Medicare & Medicaid Services (CMS) (2009)).

This example illustrates some of the strengths in using revisions to the ICD-9-CM system as

a measure of surgical innovation. The first is almost universal coverage. Since ICD-9-CM is de-

signed to offer a complete system of describing procedures (not least because it is legally required

of hospitals to use), the agencies in charge are incentivized to keep track of all changes in medical

practice in order to keep the system functional and up-to date. The second is an objective (from

an economics researcher’s perspective) measure of what constitutes an innovation. Specifically,

as highlighted in the previous section, surgical innovation has an incremental character that is

closely tied to its diffusion and acceptance among professionals. Therefore, it can be challenging

to determine at what point in its development process, a new surgical approach can be deemed a

procedures that include pacemakers with defibrillation capabilities warrant their own codes. However, at that point,
the pacemaker code section was already full and there was no space for new codes. Consequently, the CMS assigned
the relevant codes to codes starting with 00, “Procedures and Inverventions, Not Elsewhere Classified” (United States
General Accounting Office (GAO) (2002)).
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fully-fledged innovation.36 The determination of the CMS in this case, based on input by various

professionals in the area, offers one way of doing so without introducing the need for a possibly

arbitrary judgment call from the researcher.

Naturally, the example also highlights some of the weaknesses of this measure. The first and

foremost is that there may be a sometimes substantial lag between the time a procedure is first

performed and the time it is finally codified For instance, the earliest records of laparoscopic hernia

repair in the US date back to the 1980s, but the ICD9-CM code for this approach did not come

about until 2008 (LeBlanc and Ger (2001), Centers for Medicare & Medicaid Services (CMS)

(2007)). Given the incremental nature of surgical innovation, it is not immediately obvious that

the first time a procedure is performed should be considered the time of its “invention”, but it does

highlight the issue of how to determine when exactly an invention occurred. In this paper, I follow

precedent in the literature and deal with this issue by aggregating invention and potential market

size measures into multi-year windows (Acemoglu and Linn (2004)).

The second weakness is that the code system my present some ambiguity in how to count in-

novations. This stems from the structural limits to the expressiveness of the ICD9 system. Specif-

ically, as highlighted above, the system’s hierarchichal structure combined with limited spots for

new digit imposes a hard limit to to the number of codes that can be incorporated. This means

that in some cases, closely related, but distinct medical procedures may be grouped under the same

code. For instance, there is a single code for multiple-vessel percutaneous angioplasty (3605),

while the procedure may be importantly differentiated by the number of vessels involved and the

type of device used (stent, catheter, or laser) (United States General Accounting Office (GAO)

(2002)). Therefore, it is not a priori clear whether a single new code always means the same thing

when applied to different systems and procedures. This can be a problem if the degree to which

this happens is correlated with the underlying innovative potential of a particular CCS category.

One prominent way in which this could happen is due to differential saturation of the various

subsections of the code system is.

In this paper, I choose to be agnostic about this issue and treat a new code as a self-contained

piece of innovation. This is equivalent to assuming that there is an underlying true measure of novel

36This is much less challenging in the case of pharmaceutical innovation for instance, where a new molecule that
is approved by the FDA offers an easy to measure relatively uncontroversial measure of innovative output.
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procedures and the former specificity issues amount to classic measurement error on this measure.

One justification for this assumption is that even if different sections of the system are variously

constrained by space, the CMS has introduced “miscellaneous” sections, i.e., codes beginning with

“00” and “17”, where codes from full subsections may be placed. This decreases the incentive to

aggregate different procedures into single codes. At the same time, the CCS classifier correctly

puts procedures from the “misc” and regular sections into the relevant CCS group (United States

General Accounting Office (GAO) (2002)).

The final weaknesses have to do with what I cannot observe using this measure. Since it places

an implicit threshold on the level of development of a procedure before it can be measured, this

also means that I cannot observe innovative activity that hasn’t reached this threshold yet. This

includes for instance novel procedures that are still in the process of incremental improvement and

discussion by the medical community. Lastly, I do not observe who is primarily responsible for the

innovation, be it surgeon or medical center. This means while I can conduct the analysis in cases

where aggregate causal factors are of interest (such as market size), I am constrained in my ability

to talk about specific mechanisms.

2.3 Analysis Sample

2.3.1 Surgical markets

I use the Agency for Healthcare Research and Quality (AHRQ)’s Clinical Classification Software

(CCS) to define surgical markets. This is a three-level grouping of procedures into medically

meaningful categories performed with the help of medical and coding professionals. At the high-

est level, there’s 16 possible categories corresponding to groups of procdures performed on body

systems - “Operations on the cardiovascular system”, “Operations on the nervous system”, etc. At

the second level, we have procedures for specific approaches or organs: “Heart valve procedures”,

“Coronary artery bypass graft”, etc. At the lowest level, there’s further specification of the kind

of procedure performed: “Bypass of one coronary artery”, “Bypass of two coronary arteries”, etc.

There are 206 second-level categories and 345 third-level categories. I employ the second level of

calssification in my analysis. Categories at this level have the benefit of being broad enough to in-

clude multiple procedures directed towards similar counditions while being specific enough for the
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included procedures to be similarly affected by purported demographic changes. Since the lowest

level includes mostly variations of a single procedure it is too specific to be a market, while the

highest level may include groups of procedures which are differentially affected by demographic

changes.37

In calculating relevant market sizes and innovation counts, I focus on a broad definition of

surgical procedures developed by AHRQ. This definition includes invasive procedures (“involving

incision, excision, manipulation, or suturing of tissue that penetrates or breaks the skin or enters

a body cavity through an existing orifice; typically requires use of an operating room; and also

typically requires regional anesthesia, general anesthesia, or sedation to control pain”) as well as

“a broader group of diagnostic and less invasive therapeutic surgeries...that may not fit the more

strict definition of surgery applied for the narrow flag, but are often performed in surgical set-

tings” (Agency for Healthcare Research and Quality, Rockville, MD (2020b)). Examples include

C-sections, biopsies, joint replacements, catheterization. Example of procedures that do not fit

definition are blood transfusion, vaccination, and radiosurgery. Since the focus of this study is sur-

gical procedures and since non-surgical procedures are likely to have different market dynamics, I

restrict both innovation counts and market size counts to ICD9 CM codes that fulfill this definition.

2.3.2 Potential market size

One of the advantages of the CCS taxonomy is that it allows a relatively straightfoward construc-

tion of the independent variable of interest, potential market size. My empirical strategy relies on

exploiting the impact of broad demographic shifts due to the aging US population on the size of

surgical markets. In order to implement this, I estimate the age composition of the patients in a

given surgical market at the start of the sample period and then project how market size would

37An example may help clarify this point. Appendix Figures B1 and B2 show the age profiles of CCS Level 2
categories 10.3 (nephrectomy) and 10.4 (kidney transplant). The figures plot the share of individuals in the population
in a given age bin that get the procedure in question. Thus Figure B1 shows that the incidence of nephrectomy rises
steadily over an individual’s middle age until it peaks in the 60s and 70s. Figure B2 shows that the peak of kidney
transplant incidence occurs substantially earlier, in one’s 40s and 50s. This means that the same population shift
towards old age may impact these two procedures differently - while the effect may be unambiguously to increase the
number of nephrectomy patients, it may increase or decrease the number of kidney transplant patients depending on
the exact shape of the demographic shift. Nonetheless, both of these procedures fall under CCS Level 1 category 10 -
“Operations on the urinary system.” Therefore, calculating a single age profile for Level 1 procedures as an exposure
to subsequent demographic shifts may mask important heterogeneity among the Level 2 procedures that make the
group up and thus bias the empirical results.
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change based on demographic shifts alone. The aim is to purge variation in the independent vari-

able coming from surgical innovation itself - any shifts in market size due to increased quantity

and/or quality of the surgeries in that market.

In order to estimate the time-invariant age-composition of each market, I use two sources

of data - the National Inpatient Sample (NIS) and the National Survey of Ambulatory Surgery

(NSAS). The National Inpatient Sample is a representative sample of all hospital discharges in the

US prepared by the AHRQ as part of its Health Cost Utilization Project (HCUP). The NSAS is

a nationally representative survey of patients performed in outpatient settings. Since 1994 is the

earliest year when the NSAS is available and since I need data on both inpatient and outpatient

surgeries in order to construct accurate measures of the age composition of each surgery’s patients,

I take 1994 as the earliest year in the analysis. Both the NSAS and NIS contain information on

patient characteristics and the medical procedures that the patients underwent during their stay. For

each CCS Level 2 market, I use the surveys to estimate the total number of surgeries performed in

that category in 1994 by 10-year age bins.

I then use the CPS to estimate the total population in each age bin in each year between 1994

and 2013. I then use this market information to project the total market size forward from 1994.

Specifically, potential market size is defined as:

Mct = ∑
a

ucaiat (18)

where Mct denotes the projected number of surgeries needed in CCS category c in period t,

uca represents the number of surgeries from CCS category c per person in 10-year-age-group a

(calculated using NIS and NSAS in 1994), and iat represents the number of people in age-group a

in period t (calculated using CPS). This method is analogous to that used by Acemoglu and Linn

(2004).

The age profiles of the CCS Level 2 procedures indicate that demographic shifts are likely

to be a powerful influence on projected market size. Figure 2.1 displays the variation in the age

profile across categories. In order to provide a summary visual measure of this variation, I divide

the CCS Level 2 categories into three age groups (0-29 year-old, 30-59 year-old, and 60 year-old

and older) based on the age group that is responsible for most of the patients for the respective
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category. The figure shows the number of CCS Level 2 categories in each of these age bins. The

figure shows that there is a large number of categories in each of the coarse age bins. This means

that broad demographic shifts such as the overall aging of the US population are likely to affect

different CCS Level 2 categories quite differently and thus that empirical tests based on changes

in projected market size are likely to have power to detect significant changes in the number of

surgical innovations for a particular market.

The existence of multiple waves of the NSAS and NIS allows me to examine the stability of

the age-profiles of these procedures. To do so, I use the methodology from above to construct

age profiles for all years when both datasets are available (1994, 1995, 1996, and 2006). I then

examine the correlation between the age profiles in these various waves of the sample. The results

are presented in Table 2.1. The first row computes raw correlations between the age-bin-surgery

counts in each pair of years shown in the columns. The second row computes these correlations

within each level-2 CCS surgical category and then averages the correlations over all categories.

Both rows show a high degree of persistence of the age profiles for these surgical categories. This

suggests that CCS is a valid classification of surgical procedures and a reasonable candidate for

market definition.

2.3.3 Pharmaceutical classes

Another advantage of the CCS system is that it allows for a relatively straightforward comparison

with well-established classifications of pharmaceutical products. Specifically, the anatomy-based

organization of CCS corresponds closely to the higher levels of the Anatomic Therapeutic Chem-

ical (ATC) pharmaceutical classification system. ATC classifies pharmaceuticals based on the

anatomic system they act upon and the drug’s pharmacological properties. The system has five

levels. The top level classifies drugs based on the system they act upon. The second level uses

the drug’s therapeutic area and each successive level adds more pharmacological detail to the clas-

sification system. For example, the anticoagulant dabigatran etexilate used in the prevention of

blood clots and strokes and approved by the FDA in 2010 has ATC Level 5 code B01AE07. Its

Level 1 through Level 4 categorizations are respectively “B - Blood and blood-forming organs”,

“B01 - Antithrombotic agents”, “B01A - Antithrombotic agents”, and “B01AE-Direct thrombin
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inhibitors” (World Health Organization (2020)). 38

ATC is a popular system for use in research on pharmaceutical innovation (e.g., Agha et al.

(2020), Dubois et al. (2015)). One of its advantages in the present context is the fact that the

higher levels of the system are based on anatomic systems that match closely the systems used

in CCS. This allows me to define markets (anatomic systems) where pharmaceutical and surgical

innovation are comparable. I can therefore compare patterns in surgical innovation to those in

pharmaceutical innovation, which has been much more extensively studied in the literature.

I begin by identifying CCS and ATC categories where there is a clear match based on the

anatomic system where the procedure or pharmaceutical acts. The crosswalk is shown in Table

2.2 below. For most of the systems, the match is fairly clear, but there are some categories where

there is no obvious match. These include for instance “Obstetric procedures” on the CCS side and

“Antiparasitic products, insecticides, and repellents” on the ATC side. I exclude these categories

and focus on the systems where there is a clear match. This leaves me with ten systems: alimentary

tract, hemic/lymphatic system, cardiovascular system, dermatologicals, genito-urinary system, en-

docrine system, musculo-skeletal system, nervous system, respiratory system, and sensory organs.

I measure pharmaceutical innovation in each category as the number of new moleculary entity

(NME) approvals by the FDA. A new molecular entity is a drug that contains at least one active

moiety that has not been approved by the FDA before. There are multiple ways of measuring

pharmaceutical innovation (e.g., total FDA approvals). However, the number of NMEs is typically

employed as a measure of novel and impactful inventions since it requires that the new products

considered contain a chemical component that has not been previously approved by the authorities

(see, e.g., Dubois et al. (2015)). Since the relevant comparison is with surgical procedures which

did not exist or were not recognized as separate procedures previously, this seems like the most

natural comparison group.

I obtain the list of NME approvals between 1994 and 2013 from the FDA. Using three large

web databases on biochemical products (BioPortal, Drugbank, the National Library of Medicine’s

PubChem), I find the ATC classification for each of these products and assign them to one of the

38Since pharmaceuticals can act through multiple channels and be used for different conditions, it is possible for a
drug to have multiple ATC designations. However, of the 640 new molecular entities in my sample, 557 have a single
ATC classification.
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ten systems used for this part of the analysis.39 I also use the ICD9 revisions to count the number

of new surgeries in each of these markets over the sample period. I also aggregate to four-year

intervals as I do in the main analysis.

2.4 Results

2.4.1 Comparison with pharmaceutical markets

I begin by displaying the results from the descriptive analysis comparing surgical and pharmaceu-

tical innovation. Figure 2.2 shows the total innovation counts in each of these markets ordered by

pharmaceutical innovation counts. There are two take-aways from the figure. First, the most inno-

vative markets as measured by NMEs and new surgical codes conform with popular ideas of what

areas of the body are traditionally treated by pharmaceuticals and surgeries. For instance, the car-

diovascular system is commonly perceived as an area of intense technological development over

the past few decades and ranks highly both in terms of surgical and pharmaceutical innovation.

The nervous system is an area of the body where until recently few surgical remedies have been

available, but where drugs play an important role (e.g., through the recent rise in anti-depressant

medication (Cutler (2005))). Accordingly, this system ranks highly in pharmaceutical innovation

counts, but not as highly in surgical innovation counts. Finally, we have systems such as the

musculo-skeletal system where recent advancements in joint replacement and minimally invasive

surgery have been quite important, but where pharmaceutical remedies have been less salient (see,

e.g., Hansen and Bozic (2009)).

Second, the figure presents more evidence that surgical and pharmaceutical innovation markets

are quite different. For instance, while some classes (e.g., nervous system) rank quite highly in

terms of pharmaceutical innovation and somewhat middling in terms of surgical innovation, others

(e.g., alimentary system) rank quite highly in terms of innovation for both. The overall correlation

in rank between the two sets of innovation is 0.39, indicating innovative efforts are positively, but

imperfectly correlated.

39If a new molecular entity has multiple ATC designations, I assign it to all of the systems under which it falls.
The underlying assumption is that if an innovation affects two separate systems, it can be counted as two separate
innovations. However, since the vast majority of NMEs in the sample has a single ATC match, this is not an important
restriction.
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Figure 2.3 then takes this evidence one step further by showing the trends in these markets over

time. Specifically, it depicts the total innovation counts in each of the body system markets identi-

fied in the previous section in four-year intervals over the sample period. The graph shows that the

dynamics of surgical innovation are quite different from the dynamics of pharmaceuticals. While

some markets seem to show parallel trends (e.g., sensory organs), others show no or even negative

correlation between the two (e.g., cardiovascular system). These differences are consistent with

the different institutional organization of the two kinds of markets highlighted above. Most of the

pharmaceutical markets show a stable or smoothly decreasing trend over time. This is consistent

with concerns voiced by some researchers of decreasing industry output of innovative drugs (Pam-

molli et al. (2010)). It is also consistent with a research process that is stable, directed, and driven

by rational design. The surgical innovation counts on the other hand exhibit quite disparate trends

and higher variance around the trend. This pattern is consistent with the decentralized nature of the

process and the fact that innovative activity is driven by incremental technological breakthroughs

achieved by individual surgeons.

Finally, Figure 2.4 shows a simple scatterplot of the two innovation measures. Specifically, it

shows the raw number of new procedures versus new pharmaceuticals in each ATC - Level 1 bin

and 4-year time interval. The scatterplot shows that the two measures are essentially uncorrelated.

In particular, the slope of the line of best fit is 0.02. This is yet another indication that at least in

the aggregate, the two sets of markets follow different trends and processes.

2.4.2 Impact of potential market size

Visual evidence

The previous section has documented evidence consistent with the possibility that the different in-

stitutional setup of surgical and pharmaceutical markets has resulted in different market dynamics.

These institutions such as market competition and profit incentives have great theoretical impor-

tance in driving the responsiveness of innovation to potential market size. These two observations

give rise to the concern that markets that need more surgical innovation may not receive it. Ac-

cordingly, this section investigates whether increases in market size do indeed lead to higher levels

of surgical innovation.
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I begin with a visual representation of the variation underlying my results. Figure 2.5 shows the

trends in the share of population due to individuals in three broad age groups - 0-29,30-59, and 60+.

The figure shows that the share of individuals in the youngest age group is consistently declining,

while that of individuals in the oldest age group is consistently increasing over the sample period.

The share of individuals in the middle age group displays a flat inverse-U shaped trend with an

initial increase and a slow decline after the early 2000s.

Figure 2.6 then scales these population trends by the probability that an individual in these age

groups will receive surgery using the 1994 NIS and NSAS sample. This transformation gives the

projected share of surgeries in each age group in the sample period where the trend movements

are coming from the population movements displayed in Figure 2.5. Since older individuals are

significantly more likely to receive surgery, the figure shows high share of surgeries due to the

oldest and middle age group. The increase in projected surgeries due to the oldest group is much

more pronounced as is the decrease due to the youngest group. The inverse-U shape due to the

middle age group is also much more pronounced here.

Lastly, Figure 2.7 then connects these trends with the trends in innovation counts. In particular,

I begin by taking all CCS categories and assigning them to an age group the group where the

most procedures from the respective category were performed (e.g., for “Procedures of the Eye”,

the group 60 and over had the highest number of procedures in 1994 and thus it was classified

as a “60 and over” group of procedures). Then, for each age group, I plot the share of total

surgical innovations that occurred in CCS categories in that group in four-year intervals starting

in 1994. The trends displayed in Figure 2.7 mirror those from Figure 2.6. In particular, there is a

general increase in the share of new procedures for the oldest age group and a general decline in

procedures for the other two age groups that is more pronounced for the middle age group after the

early 2000s when the share of population due to the middle-aged group starts steeply declining.

This is precisely the type of variation that I will be exploiting in the analytical specifications. These

specifications use this variation much more efficiently, however, since they use more detailed age

profiles for each CCS category that exploits variation coming from demographic shifts at a finer

level.
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Analytic specifications

The first econometric challenge in this setting comes from the likely non-linearity of the functional

dependence between innovation and potential market size and the fact that this is a setting where

the dependent variable takes on the value of zero in a non-trivial fraction of observations. In

particular, I take as a starting point and target for estimation the result of traditional models of

innovation (e.g., Acemoglu and Linn (2004)) that new product entry is an exponential function of

the independent variables:

E[Nct |ζct ] = exp(α logMct +ζc +µt) (19)

where Nct represents the number of new procedure codes in category c in period t, Mct is market

size as above, ζc is CCS-category fixed effects and µt denotes period-fixed effects. The parameter

of interest α is the elasticity of innovation with respect to potential market size.

The distribution of the dependent variable is typically assumed to be Poisson. While a Poisson

regression will yield consistent and efficient parameter estimates if the distributional assumptions

are correct, these estimates may be both inconsistent and inefficient if these assumptions turn out

to be wrong (Blackburn (2007), Correia et al. (2013)). Thus, concerns about functional form

assumptions usually steer researchers towards using a linear model. The benefit of doing so is that

under standard assumptions, OLS will yield the best linear approximation to the true non-linear

conditional expectation function regardless of the latter’s exact form. in a minimum mean-squared

error sense (Angrist and Pischke (2008)).

This leads to the second challenge, which is that the preferred log-log form of the linear specifi-

cation cannot be effectively implemented in a setting where the dependent variable takes on values

of 0 (in the current case, this happens because there are periods of no new surgeries for some

markets). The traditional approach has been to set the log of the number of innovations equal to

0 in those cases and include a dummy for “0 on the left-hand side” as an independent variable,

which yields biased estimates (Acemoglu and Linn (2004)). An additional issue in this kind of

specification is that even if all the dependent variable values are strictly positive and the log-log

functional form is correct, heteroskedasticity in the error term may bias the coefficients of interest

badly (see, e.g., Blackburn (2007)).
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There is no single widely accepted solution to the combination of all of these issues, so I take

an approach that is standard in the literature and estimate both non-linear and linear models that

are relatively better at solving different sides of these problems. For my non-linear specification,

I use a quasi-maximum likelihood (QML) Poisson count model. The QML has the benefit of

requiring only that the conditional mean function be specified correctly for the consistency of the

parameter estiamtes. In other words, even if the distribution of potential innovation is not Poisson,

the QML procedure will still yield consistent estimates of α . The cost of this approach is that if

the distribution is not Poisson, then the parameter estimates may be inefficient (Blackburn (2007),

Correia et al. (2013)).

To implement a linear specification, I use the inverse hyperbolic sine (IHS) transformation of

the number of new codes for a CCS category in a given period. The IHS transformation allows me

to approximate a log-log specification while allowing for markets and periods of zero-innovation

on the left-hand side:

IHS(Nct) = β logMct +ζc +µt + εct (20)

Here β also has an interpretation of elasticity of innovation with respect to market size. The

benefit of this approach is that it is simple, transparent, and yields an unbiased estimate of β

if the errors are homoskedastic conditionally independent of logMct . However, the estimate of

β may differ markedly from the estimate of α due to three reasons. First, the left-hand side is

an approximation to, and not an exact match of the functional form in equation (19). Second,

as mentioned previously, in the presence of heteroskedasticity in the error term, the estimates of

β may be biased. Third, estimates of equation (20) implicitly use the linear functional form to

extrapolate to cells with zero innovation in all periods. The Poisson QML on the other hand relies

on a subsample of markets which change the number of innovations from period to period. This

implicitly drops all markets that have no innovation whatsoever during the sample period.

The results are presented in Table 2.3 below. The first three columns show estimates from the

Poisson model, while the last two columns show estimates from the linear model. Colum (1) shows

the main Poisson specification from equation (19) above. Columns (2) and (3) use instead the lag

or lead value of that variable respectively. Column (4) shows the baseline linear specification in
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(2), while column (5) uses a 0-1 indicator for any innovation in a given CCS category on the LHS.

The results in all columns are positive and significant. The interpretation of the estimate in

column (4) is that a 1% increase in expected market size is associated with a 1.5% increase in

surgical innovation in that market. Similarly, Column (1) shows that a 1% increase in expected

market size is associated with a 20% increase in surgical innovation. Lag maket size is more

highly correlated with innovations than lead market size suggesting that expectations of market

size changes do not play a big role in this setting. The estimate in column (5) indicates that at least

some of the market size effect comes from the extensive margin.

As highlighted above, there are a variety of reasons why the estimates from the linear and

QML estimations may differ. The observation counts in columns (1) and (4) are quite different,

indicating that the effective set of markets which inform the estimate changes substantially between

the Poisson QML and linear regression. As suggested by the discussion above, both methods of

estimation have relative strengths and weaknesses. While QML has the benefit of consistency even

under misspecification, it may not deal well with a large fraction of zero-innovation markets. The

linear estimation on the other hand may yield biased estimates in the presence of heteroskedasticity

and relies at least partially on functional form to deal with zero-innovation markets. In what

follows, I will use the linear estimation results as the preferred set of parameter estimates because

the large fraction of zero-innovation markets seem to play an important role in this setting and

because it is more in line with other estimates of the role of market size in driving innovation in

the healthcare context.

To investigate the possibility that the presented here are driven by outliers, I create a binscatter

of the regression in equation (20). Specifically, I residualize the inverse hyperbolic sine of innova-

tions on the left-hand side from year and market fixed effects and plot them against the similarly

residualized values of log expected market size. The results are presented in Figure 2.8. The figure

clearly shows that while the relationship between the two variables of interest is somewhat noisy,

the positive slope is not driven by outliers.

Given the importance of no-innovation markets in the current setting, I prefer the estimates

in column (4) as my baseline specification because they are in some sense agnostic towards the

presence of such markets. These estimates are lower than the comparable estimates of around 3%

found in Acemoglu and Linn (2004) and Dubois et al. (2015). It is notable as well that the high end
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of the estimates in these two papers (12% in the former and 32% in the latter) are also comparable

to the high-end estimates here. These results suggest that while novel surgeries are responsive to

market size changes, they are less responsive than pharmaceuticals. This is again consistent with

the different institutional setup of the surgical market. supply-side constraints on the role of profits

due to incrased expected market size in driving innovation.

2.5 Discussion

The results from this investigation indicate that even though surgical markets lack the institutions

prescribed by standard theory as instrumental for innovation, they are likely to respond to the

changes in demand for procedures due to the aging of the US population. This result is policy-

relevant for a variety of reasons. First, perhaps obviously, it suggests that regulatory intervention

to boost innovation in order to satisfy increased demand among the elderly is not required. Calls

for private-sector involvement of various aspects of healthcare in order to improve outcomes have

been common throughout the past few decades (as visible in, e.g., the design of Medicare Part D

(Megellas (2006))). Some surgeons have even attempted (unsuccessfully) to license procedures

they invent (Judge (1997)). This paper suggests that government reform towards strengthening

intellectual property rights is not called for in this setting.

Second, the results raise some interesting possibilities for optimizing medical innovation. The

model of physician-driven innovation has proven to be a robust alternative to firm-based research

and development in this context. One cannot help but wonder whether it hides a possible solu-

tion (or part of a solution) for some of the issues with pharmaceutical innovation that have gained

salience in recent years. First, a number of economists have raised worries about a possible decline

in innovative productivity.among pharmaceutical firms (Pammolli et al. (2010)). Second, recent re-

search has shown that firm profit incentives may be introducing a bias in the size and significance

of measured pharmaceutical effectiveness, a result which raises the worry that some not insignif-

icant fraction of pharmaceuticals entering the market are ineffective or less effective than widely

believed (Oostrom (2020)). Physician driven innovation follows a wholly different development

process and is likely less affected by financial bias.

The extent to which this can be helpful depends of course on the questions of “what kind of

86



innovation can we achieve” and “what exactly are the mechanisms at play”. As highlighted in

the institutional background section above, innovations that can be developed using this model are

likely to be less capital-intensive than what can be achieved using profit maximization. Addition-

ally, whether the mechanism is user-driven innovation or academic prestige or even happenstance

innovation can matter a great deal for the possible implementation of this model in other settings

or its improvement in the current setting. These are questions that will be left for further study.
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2.6 Figures and Tables

Figure 2.1: Age Profile Variation

Notes: The histogram displays the distribution of doctor age at new code 
introduction for all treatment categories. Each observation represents a 
procedure on an inpatient claim.
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Figure 2.2: Total Innovation Counts Ordered by Number of NMEs

Notes: Figure shows the total number of pharmaceutical and surgical innovations in ten groups 
defined so as to match relevant ATC Level 1 categories. The categories are ordered by the total 
number of pharmaceutical innovations. Pharmaceutical innovations are defined as New 
Molecular Entities. Surgical innovations are defined as new ICD9 procedure codes. 
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Figure 2.3: Innovation Trends by ATC Class

Notes: Figure shows the trends in the raw number of pharmaceutical and 
surgical innovations in ten groups defined so as to match relevant ATC 
Level 1 categories. Each dot represents the total number of surgical or 
pharmaceutical innovations over a four-year interval starting in the year 
defined by the dot's x-coordinate. Pharmaceutical innovations are 
defined as New Molecular Entities. Surgical innovations are defined as 
new ICD9 procedure codes. 
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Figure 2.4: Scatterplot of Surgical vs Pharmaceutical Innovation Count

Notes: Figure shows a scatterplot of the raw number of surgical and 
pharmaceutical  innovations in ten groups defined so as to match 
relevant ATC Level 1 categories. Each dot represents the total number of 
surgical or pharmaceutical innovations over one of the sample's four-
year intervals. The red line represents the line of best fit between these 
two variables (slope of 0.02). Pharmaceutical innovations are defined as 
New Molecular Entities. Surgical innovations are defined as new ICD9 
procedure codes. 
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Figure 2.5: Share of Population in Different Age Groups

Notes: The figure shows trends in the share of total US population in each of three age bins over 
the sample period 1994-2013: 0-29 year-old, 30-59 year-old, and 60 year-old and older. The 
poulation count data comes from the American Community Survey. 
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Figure 2.6: Projected Share of Surgical Procedures for Different Age Groups

Notes: The figure shows trends in the share of total projected US surgeries in each of three age bins 
over the sample period 1994-2013: 0-29 year-old, 30-59 year-old, and 60 year-old and older. I begin 
by calculating the share of total surgeries in each age group in 1994 using the National Inpatient 
Sample and National Survey of Ambulatory Surgery. Then I project the number of surgeries forward 
using only demographic changes to the number of people in each group calculated using the 
American Community Survey. 
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Figure 2.7: Share of New Procedures Belonging to Different Age Groups

Notes: The figure shows trends in the share of total surgical innovation  in each of three age bins 
over the sample period 1994-2013: 0-29 year-old, 30-59 year-old, and 60 year-old and older. The 
surgical innovaiton counts come from introductions of novel ICD9 CM surgical procedure codes. 
Each novel surgery is assigned to the age group that has the highest share of patients receiving 
surgeries in the procedures CCS-Level 2 category. These counts are then aggregated to four-year 
intervals the first year of which is indicated by each dot's x-coordinate. 
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Figure 2.8: Baseline Regression Binscatter

Notes: Figure shows a binscatter of the baseline specification (2) regressing the inverse hyperbolic 
sine of surgical innovation on log projected market size including year and market fixed effects. 

Table 2.1: Stability of Age Profiles

1994/1995 1995/1996 1996/2006
Correlation 0.996 0.997 0.954
Mean correlation by category 0.906 0.911 0.795

Notes: Table shows the correlation between the estimated age profiles of CCS Level 2 categories 
across different waves of the National Inpatient Sample/National Survey of Ambulatory Surgery. 
The age profile of each category is the share of surgeries performed on patients from each 10-year- 
age bin.  The top row shows the raw correlation between the shares across all age bins and 
categories between each pair of years. The bottom row first calculates this correlation across age 
bins within a category and then averages these correlations for each pair of years. 
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Table 2.2: CCS-ATC Designation Correspondence

Notes: Table shows the correspondence between CCS Level 1 and ATC Level 1 categories used for the comparison between 
surgical and pharmaceutical innovation in the text. 

Table 2.3: Effect of Potential Market Size on Surgical Innovation

Notes: Table shows the results from running specifications (1) and (2) on the main analysis sample. Columns (1)-(3) show 
results from using a Poisson specification using current, lag, or lead projected market size respectively. Standard errors are 
clustered at the CCS Level 2 category level.
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3 Chapter 3
Geographic Variation in Healthcare Uti-
lization: The Role of Physicians

The most expensive piece of medical equipment, as the saying goes, is a doctor’s pen.

Atul Gawande, “The Cost Conundrum”

3.1 Introduction

The intensity of per-capita healthcare utilization varies widely across the U.S, but its causes are

not well understood. A leading example is the substantial geographic variation among over-65

Medicare enrollees. Existing evidence suggests supply-side factors are key drivers of these dis-

parities (Skinner, 2011; Chandra et al., 2012), explaining about half of the observed geographic

variation (Finkelstein et al., 2016). This supply side encompasses both the practice styles of local
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physicians40 and other aspects of the practice environment such as hospital capacity, physical cap-

ital, and organizational, financial, and legal incentives. Recent work has documented substantial

variation in practice patterns across physicians (Currie and MacLeod, 2020; Chan et al., 2020), but

little is known about the quantitative importance of this variation relative to area-level differences

in practice environments.41 Decomposing the role of supply-side factors along these lines is es-

sential for understanding potential impacts of policies aiming to reduce health care expenditures

or improve health outcomes.

This paper quantifies the role of physicians in explaining the geographic variation in Medicare

utilization. One widely-held view is that physicians play a large role; for example, Cutler et al.

(2019) link patient and physician responses to treatment vignettes with area Medicare expenditures

and argue that physician beliefs about treatment are the key driver of regional variation. On the

other hand, Molitor (2018) examines changes in physicians’ treatment intensity for Medicare heart

attack patients as they move across regions and concludes that cardiologist practice styles explain

relatively little variation in treatment intensity; other aspects of the practice environment instead

appear to be the main driver.

Our empirical approach analyzes variation in patient-physician encounter networks in a nationally-

representative sample of over-65 Traditional Medicare beneficiaries to fit parsimonious models for

two different outcomes: average utilization (“treatment intensity”) by a patient-physician pair, and

the number of physicians seen by each patient in each year. Both models are identified by quasi-

experimental variation in patient and physician migration, with the utilization model also allowing

flexible within-region matching of physicians and patients conditional on observables. We follow

prior literature in focusing on variation across hospital referral regions (HRRs).

To isolate variation in physicians’ average treatment intensity, we estimate a three-way fixed

effects linear regression of utilization at the level of patient-physician pairs, allowing for fixed

unobserved heterogeneity in patient demand, physician practice style, and other regional supply

factors. We estimate substantial variation across physicians in average treatment intensity. The

40In keeping with previous literature, we use practice style to signify the preferences, training, and experience of
individual physicians. This defnition is embodied in time-invariant physician factors that affect spending as well as
physician mover relative year effects in our empirical analysis.

41For example, Reinhardt (2019) writes: “It takes a hard-core economist, beholden to faith-based theories, to
believe that these [geographic] variations reflect demand by patients, forged by their knowledge about the appropriate
care for their medical conditions. Much more probably these variations reflect the belief among physicians of what is
the appropriate care or the financial incentives physicians face to favor one treatment over another."
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majority of this variation is within region, although there are also pronounced differences in aver-

age physician effects across HRRs.

For the analysis of the number of physicians seen by each patient in a year, we estimate a

two-way fixed effects Poisson regression that decomposes the number of physicians seen into

patient demand and regional supply factors. We find a high amount of variation in both patient

and regional factors. For instance, moving the average patient to an HRR that has a one standard

deviation higher place effect increases her expected number of encounters by 0.26. We also find

that patients and places contribute roughly equally to the observed geographic variation in number

of encounters.

We then combine estimates from the two models to construct a sequential decomposition of re-

gional variation in annual per capita healthcare utilization, quantifying the roles of patients, physi-

cians, and residual (non-physician) area supply-side factors. Consistent with Finkelstein et al.

(2016), we find that around half of regional utilization variation arises from the non-random dis-

tribution of patients with different demand for care. We further find that over 90 percent of this

patient component arises from differences in demand for the number of physicians seen in a year,

a channel potentially related to healthcare fragmentation. A much smaller share of the overall

patient component is attributable to differential demand for per-physician utilization, with virtu-

ally no role for sorting of patients with different demand-side preferences across physicians with

different practice styles. Understanding heterogeneity in the demand for physician quantity thus

appears central for characterizing the role of patients in regional utilization gaps.

The next step in our decomposition is to investigate the drivers of the remaining supply-side

variation. We find that around three-fifths of the supply-side component of variation is due to

differences in physician practice style. The remaining two-fifths of the supply-side component

reflects residual (non-physician) place-based factors. We again find an important role of places

on the number of physicians seen, consistent with earlier findings on the importance of healthcare

fragmentation on utilization (Agha et al., 2019; Frandsen et al., 2015; Baicker and Chandra, 2004).

Sorting of patients with different demand-side preferences across physicians of different practice

styles has almost no impact.

The bottom line is that variation in physician practice style explains around 30 percent of the

overall geographic variation in healthcare utilization. This is a significant share that still leaves
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much room for other place-related supply side factors to play a role. We find a more limited role of

physicians when focusing on specific physician specialties, such as cardiologists and primary care

physicians, which have been the focus on prior literature. The more limited role for physicians

in explaining geographic variation arises in part because of a strong negative correlation between

where high intensity physicians are located and regions’ residual supply-side factors.

Our analysis builds on a growing empirical literature that uses quasi-experimental changes in

location or matching to separately identify individual heterogeneity from the systematic effects

of geography or institutions, typically using linear fixed effect models. Prominent examples in

the study of healthcare spending include Song et al. (2010), Molitor (2018), and Finkelstein et al.

(2016). A similar approach is used outside healthcare to study determinants of wage variation

(Abowd et al., 1999), wage inequality (Card et al., 2013; Card et al., 2016), neighborhood effects

(Aaronson, 1998; Chetty and Hendren, 2018), cultural assimilation (Fernandez and Fogli, 2006),

workplace shirking (Ichino and Maggi, 2000), brand preferences (Bronnenberg et al., 2012), and

tax reporting (Chetty et al., 2013), among other topics. While most of this literature decomposes

outcome variation in terms of two sources (e.g. patients and places, or workers and firms), our

setting requires modeling a third dimension (physicians) in addition to patients and other supply-

side factors.

The remainder of the paper is organized as follows. Section 3.2 presents the data and summary

statistics. Section 3.3 describes our model and empirical strategy. Section 3.4 presents our findings.

Section 3.5 concludes.

3.2 Data and Summary Statistics

3.2.1 Data and Variable Definitions

Our analysis draws from a 20 percent random sample of Medicare beneficiaries, covering encoun-

ters between patients and physicians from 1998 to 2013. We define an encounter by aggregating

all unique patient-physician interactions in each year, including claims for inpatient and outpatient

care as well as physician services. For each interaction we observe the type and quantity of care

provided, as well as the primary diagnosis. We also observe patient demographic information, in-

cluding age, sex, race, and zip code of residence, as well as physician clinical specialty. Appendix
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C.1 provides more detail on our sample and variable construction.

Our geographic unit of analysis is a hospital referral region (HRR), as defined by the 1998

Dartmouth Atlas. An HRR is a collection of zip codes aggregated to approximate a tertiary hospital

market. Following Finkelstein et al. (2016), we use the patient’s zip code of residence to define

location, regardless of where the claim is incurred. We categorize a patient as a “non-mover” if

her HRR of residence does not change during our sample period, and as a “mover” if her HRR

of residence changes exactly once. We drop patients whose HRR of residence changes more

than once.42 To match the timing at which we observe each patient’s residence, we define all

outcomes for year t to be totals of claims submitted between April 1 of year t and March 31 of

year t +1. As in Finkelstein et al. (2016), we measure our primary outcome of interest (healthcare

utilization) through an index of the use of medical resources that adjusts for regional variation in

administratively set prices.

Following Molitor (2018), we use the claims data to define mover and non-mover physicians.

For each physician practicing in a given HRR, we define a “practice episode” as the period between

the first and last encounter date with patients residing in that HRR. We then define the physician’s

primary HRR as the one whose practice episode contains the most patients and her secondary HRR

as the highest-patient-count HRR whose practice episode does not overlap with that of the primary

HRR. A physician mover is defined as a physician who has both a primary and secondary HRR,

and physician non-movers are defined as those with only a primary HRR. 4344

As a supplementary analysis, we investigate the determinants of healthcare spending variation

in three specialty settings (primary care physicians, cardiologists, and dermatologists) that have

been the focus of previous literature and where doctor practice style may be expected to play an

important role. We form these subsamples by restricting the baseline sample to encounters with

42Following Finkelstein et al. (2016), we also exclude a small number of patient movers for whom the location of
observed claims does not clearly shift from the origin location to the destination location. Specifically, we drop any
patient mover for whom the share of claims in the destination HRR as a share of claims in either origin or destination
HRRs does not increase by at least 0.75 in the years after the move.

43Analogously to the case of patients described in the previous footnote, some physicians in our sample are ob-
served treating patients from multiple HRRs without satisfying the definition of a move. Unlike the case of patients,
however, there is a relatively high number of such physicians, making us wary of excluding all of them. Since the
drivers of such cross-HRR practice are poorly understood, we prefer to rely on the more transparent quasi-exogenous
patient moves for our identification. We therefore code physicians separately for each HRR in which they practice
within a given year.

44Some observations have a missing physician ID. We include a separate fixed effect for each HRR that is assigned
to the observations in that HRR with missing physician IDs.
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physicians from the respective specialty. In all cases, we define a doctor’s specialty as the specialty

listed on the plurality of her claims submitted in her capacity as a performing physician. For

cardiologists and dermatologists, we use “cardiology” and “dermatology” as the relevant specialty.

For primary care physicians (PCPs), we use “internal medicine”, “family medicine”, and “general

practice”. Finally, for the PCP subsample, following previous literature (e.g., Fadlon and Parys,

2019), we assign each patient in each year a single “primary” PCP based on the plurality of PCP-

related claims submitted on account of that patient and assign all PCP spending for that patient and

year to the primary PCP.

3.2.2 Sample Restrictions and Summary Statistics

We impose several restrictions to arrive at our main analysis sample. From the 16.7 million origi-

nal patients, we drop a 75% random sample of non-movers in order to simplify computation. We

further exclude all patient-years where the patients are younger than 65 or older than 99, where

the patients are enrolled in Medicare Advantage, and where patients are not subscribed to Medi-

care Part A and B for all months in a year. Our baseline analysis sample contains 144.1 million

encounters between 3.1 million patients and 2.1 million physicians, corresponding to 23.7 million

patient-years and 11.5 million physician-years. The estimation sample is restricted to the largest

connected set of physician, places, and patients, which includes the vast majority (99%) of encoun-

ters in the full analysis sample.45

Panel A of Table 3.1 summarizes our sample of patient movers and non-movers. The two

groups are broadly similar, with movers being slightly older and more likely to be female, white,

and living initially in the South and West. Both non-movers and movers have on average around

$7,800 in utilization a year and see between five and six physicians annually.

Panel B of Table 3.1 likewise summarizes our sample of physician movers and non-movers.

These two groups have a similar geographic distribution, though non-movers have a lower annual

average utilization for Medicare patients of around $48,000, compared with $130,000 for movers.

Physicians in the former group see around 41 Medicare patients annually on average, while those

in the latter group see 106 Medicare patients annually.

45Specifically, the largest connected set has 142.7 million out of 144.1 million encounters, 2.9 out of 3.1 million
patients, and virtually all physicians (excluding 300 of 2.1 million).
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Figure 3.1 summarizes the geographic distribution of patient utilization across HRRs. Average

annual HRR-level utilization is $6,975 with a standard deviation of $776. The map of this fig-

ure illustrates the high degree of geographic variation in utilization, with the South and Midwest

outpacing lower-spending areas in the West and Northeast.46

As detailed in the next section, our empirical framework leverages the quasi-exogenous mi-

gration of both patient and physician movers in order to characterize the drivers of geographic

variation in Figure 3.1. There is significant variation in the types of moves made by both physi-

cians and patients. To illustrate this, Figure 3.2 shows the gap in average log utilization between

the origin and destination HRRs of patient movers (Panel A) and physician movers (Panel B).

Both distributions appear symmetric, indicating no systematic imbalance in moves from high- to

low-utilization areas. The standard deviations of these distributions are also substantial, at 0.25 for

patients and 0.39 for physicians, with a substantial share of moves in both cases involving changes

in region-average log spending of more than 0.5.

A natural question is of course why patients in this sample are choosing to move. Data from

the Health and Retirement Survey (Finkelstein et al., 2016) and the Longitudinal Survey of Aging

(Choi, 1996), which ask individuals for their reason to move, lead to similar conclusions. The

most frequently reported reason for moves in this age group is to be near/with children or other

kin, followed by health reasons, financial reasons, or other amenities..

3.3 Model and Empirical Framework

3.3.1 Model

Our primary analysis is based on two models of healthcare utilization: one characterizing the aver-

age annual utilization per physician-patient pair, and one characterizing the number of physicians

seen by each patient in each year. We show below how these models can be combined to decom-

pose the observed geographic variation in utilization across regions into components attributable

to patient demand, physician practice style, and other regional supply-side factors. We consider a

set of physicians d, patients i, years t, and HRRs j.

46The geographic distribution of spending remains fairly stable across years of our sample. For example, the rank
correlation between a HRR’s utilization in the first and second half is 0.9.
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Encounter Utilization

We refer to each physician-patient pair observed in a given year (i,d, t) as an encounter. Both

patients and physicians may move across HRRs. We let j (i, t) denote the HRR of patient i in year t,

and we let j (d, t) denote the HRR of physician d in year t. We assume that patients and physicians

both differ in their average taste for more intensive treatment, as captured by respective parameters

αi and δd , and that other area supply factors shift utilization via a parameter γ j. Differences

in patient tastes for intensity (αi) may reflect preferences or unobserved health; differences in

physicians’ tastes for intensity (δd) may reflect differences in their beliefs and in their training.

Finally, differences in other area supply factors (γ j) might include other aspects of the practice

environment such as hospital capacity, physical capital, and organizational, financial, and legal

incentives.

Patient i’s utility from a utilization level of y from physician d in year t is assumed to take the

form uidt(y) = αiy− 1
2(y−hidt)

2, where higher values of hidt represent worse latent patient health.

Physicians choose utilization to maximize uidt(y)+δdy net of costs cidt(y) = (γj(i,t)+gidt)y, where

higher values of gidt denote higher marginal costs. The resulting utilization in encounter (i,d, t) is

given by:

yidt = argmaxuidt(y)+δdy− cidt(y)

= αi +δd + γj(i,t)+hidt +gidt . (21)

Equation (21) specifies a three-way fixed effects model for encounter utilization yidt in terms of

an individual effect αi, a physician effect δd , and a residual place effect γ j capturing non-physician

area supply factors. Utilization yidt is defined as the log spending of patient i with physician d in

year t. This is only observed (or defined) for the subset of patient-physician matches that actually

take place that year. Our specification assumes that αi, δd , and γ j are additively separable in the

equation for log utilization; this has the intuitive implication that patient, physician, and other

area supply factors affect the level of utilization multiplicatively. Thus, for example, the (level)

utilization of patients who are sicker or prefer more intensive care (i.e., have higher αi) will vary

more across physicians than that of patients who are healthy or rarely seek care (i.e., have low αi).

To bring this model to data, we assume the residual variation in patient health (hidt) and in
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cost of care (gidt) can be forecasted by a time effect (τt) and sets of time-varying patient and

physician observables xit and wdt given encounter location locations j: i.e. that E[hidt + gidt |

x,w, j] = τt + x′itβ +w′dtθ . This yields a linear regression model of

yidt = αi +δd + τt + γj(i,d,t)+ x′itβ +w′dtθ + εidt , (22)

satisfying E[εidt | x,w, j] = 0. The residual εidt captures the unforecastable component of utilization,

which is idiosyncratic conditional on the identity of the physician and patient, the year and location

of encounters j, and the observables (x,w).

Encounter Quantity

We model the number of physicians seen by each patient in each year, a quantity we denote by Nit ,

as a Poisson random variable with mean λit . Thus, for each k = 0,1,2, . . .

Pr(Nit = k) =
exp(−λit)λ

k
it

k!
. (23)

A Poisson approximation for Nit is appropriate for counting matches between patient i and a large

number of potential physicians d, an event indicated by 1[πidt > νidt ] for uniform νidt , given a

small average match probability πidt and sufficiently uncorrelated νidt (Walsh, 1955). We model

the expected match rates λit by

lnλit = α
n
i + τ

n
t + γ

n
j(i,t)+ x′itβ

n, (24)

allowing for persistent unobserved heterogeneity across both individuals and regions with the fixed

effects αn
i and γn

j . This model would follow if, for example, the νidt were independent across

physicians d and the predicted match probabilities were multiplicative in patient and place effects

and the controls.

HRR Utilization

The encounter log spending model (21) implies a specification for log patient-year spending yit

and, in turn, the average log spending ȳ j in each region j. We next show how estimates of this
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specification can be used, along with estimates of the encounter quantity model (23)-(24), to de-

compose regional utilization differences into factors attributable to patients, physicians, and places.

Let Dit denote the set of physicians d which patient i sees in year t, with Nit = |Dit |. Aggregat-

ing over this set, we obtain log patient-year spending as

yit = ln

(
1

Nit
∑

d∈Dit

expyidt

)
+ lnNit

= αi + τt + γj(i,t)+ x′itβ + εit , (25)

where we normalize yit to zero when Nit = 0. Here εit = lnNit +ln
(

1
Nit

∑d∈Dit exp
(
δd +w′dtθ + εidt

))
captures the potential contribution of physicians to patient i’s log spending in year t, either through

the number of encounters Nit or through per-encounter utilization.

To better characterize the role of physicians in per-encounter utilization, we further decompose

εit . Let D∗(n, j, t) denote a random set of physicians of size n practicing in HRR j in year t and

define

δ it = E

[
ln

(
1

Nit
∑

d∈D∗(Nit ,j(i,t),t)
exp
(
δd +w′dtθ + εidt

))
| Nit

]
(26)

as the typical contribution of physicians to patient i’s utilization in time t if she were to select Nit

physicians at random from her HRR j(i, t). The expectation in δ it is taken both with respect to the

random sets of physicians D∗(Nit , j(i, t), t) and the unforecastable contribution of utilization εidt .

Thus δ it captures the typical utilization due to the regional availability of physicians with different

practice styles, removing differences in how patients select different physicians from an HRR. To

capture the importance of such physician selection, we further define

σit = E

[
ln

(
1

Nit
∑

d∈Dit

exp
(
δd +w′dtθ + εidt

))
| Nit

]
−δ it (27)

as the patient’s expected difference in physician-driven utilization given her actual chosen set

of physicians Dit and a random set of the same size. We then have εit = δ it + σit + νit where

νit = εit −E
[
ln
(

1
Nit

∑d∈Dit exp
(
δd +w′dtθ + εidt

))
| Nit

]
gives an idiosyncratic component of pa-
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tient utilization. Substituting this into Equation (25) yields

yit = αi + τt + γj(i,t)+ x′itβ + lnNit +δ it +σit +νit . (28)

Aggregating Equation (28) across patients and years, we obtain a model of the average utiliza-

tion y j ≡ E[yit | j(i, t) = j] in HRR j:

y j = p j(α j + γ j +N j +δ j +σ j) (29)

where p j = Pr(Nit > 0 | j(i, t) = j) denotes the probability of positive utilization among patient-

years in HRR j, α j is the average patient-year component αi+τt +x′itβ among those with positive

utilization in HRR j, N j is the average number of log physician encounters among those with

positive utilization in HRR j, δ j is the average physician component δ it for patients in HRR j, and

σ j is the average selection component for patients in HRR j.

We use estimates of Equations (29) and the Poisson model (23)-(24) to compute counterfactual

HRR utilization in six incremental steps. First, we set σ j = 0 to simulate a counterfactual in which

there is no systematic matching of higher-utilization patients to higher or lower-utilization physi-

cians across HRRs. Second, we equalize δ j across regions to simulate a counterfactual in which

there is additionally no systematic sorting of physicians with different practice styles across HRRs.

Third, we equalize α j to simulate a counterfactual in which there is additionally no systematic sort-

ing of patients with different per-encounter utilization demand across HRRs. Fourth, we use the

Poisson model to equalize patient effects on the average number of physicians seen, affecting both

p j and N j. This step simulates a counterfactual in which there is additionally no systematic sort-

ing of patients with different demand for physician quantity. The fifth and sixth steps similarly

equalize place effects on per-encounter utilization and the number of physicians seen, respectively.

These remaining steps quantify the remaining variation in non-physician supply-side factors across

regions. Each counterfactual step is defined formally in Appendix C.2.47

It is worth emphasizing that each step in our counterfactual analysis, while quantifying the rel-

ative importance of physicians, patients, and places in geographic utilization variation, represents

a partial-equilibrium analysis. In practice, policies which affect patient or physician mobility, or

47Although our decompositions are sequential, we obtain consistent results with alternative sequencing.
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which equalize residual supply-side factors across regions, are likely to have a variety of general

equilibrium effects that are outside of our model and scope of this analysis.

3.3.2 Estimation and Identification

In our baseline estimation of the utilization and encounter models, Equations (22) and (24), the

patient observables xit consist of year effects, dummies for five-year age bins, and relative-year

fixed effects ρr(i,t) for patients who move between HRRs, where for a mover who moves during

year t∗i , the relative year is r(i, t) = t − t∗i (we normalize ρr(i,t) to zero for non-movers). The

physician observables wit include similar relative-year fixed effects for physician movers, again

normalized to zero for non-movers.

We estimate the parameters of the utilization model (22) by a three-way fixed effects linear re-

gression on the full set of physician-patient matches that occur each year. We use these estimates to

form simulation-based estimates of average physician utilization and selection terms δ it and σit .48

In calculating all HRR- and physician-year-averages, we upweight patient non-mover encounters

by a factor of four to take into account our patient sampling procedure. Finally, we estimate the

parameters of the encounter quantity model (24) by a two-way fixed effect Poisson regression in

the full sample of patient-years, both those with and without physician encounters, using the same

vector of patient observables xit as in the utilization model.49

Identification of the utilization model from equation (22) leverages the variation from patient

and physician moves across regions, as well as the within-region variation in patient-physician

matches. Absent migration, relative patient and physician utilization effects within each HRR may

be identified by conditionally idiosyncratic matching between physicians and patients (Abowd

et al., 1999). Quasi-experimental movement across HRRs identifies place effects, and thus the

average patient and physician effect in each HRR.

To build intuition for the roles that movers play in identification, consider a special case with

no time effects or time-varying controls and where a group of patients in each region see a repre-

sentative non-moving physician d( j). Identification of the variation in combined physician-place
48Specifically, for each patient and year, we take a random draw of physicians from her HRR with the number of

physicians equalling her actual number of encounters for this patient and year. We use these simulated encounters
averaged over 100 random draws to form estimates of δ it and σit .

49Hausman et al. (1984) establish the consistency of conditional maximum likelihood estimation of such models,
which we implement with two high-dimensions using the algorithm of Guimaraes (2014).
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effects γ j ≡ δd( j)+ γ j is then given by a “common trends” assumption on the utilization of patient

movers: that the unobserved trends in patient health and cost of care εidt for movers between dif-

ferent HRRs are typical in the population. Formally, for the individuals who move from HRR k to

HRR j between time t−1 and t the observed utilization trend is

E[yidt | j(i,d, t) = j, j(i,d, t−1) = k]−E[yid,t−1 | j(i,d, t) = j, j(i,d, t−1) = k]

= γ j− γk +E[εidt− εid,t−1 | j(i,d, t) = j, j(i,d, t−1) = k], (30)

identifying relative place effects γ j− γk when E[εidt − εid,t−1 | j(i,d, t) = j, j(i,d, t− 1) = k] = 0.

This common trends assumption would be violated if (for example) patients move in response to

an expected change in their healthcare needs.

Just as patient migration can separate the contribution of patient utilization effects from other

factors, physician migration can separate the contribution of physicians. To again see this simply,

consider a group of physicians who move from HRR k to HRR j between time t − 1 and t and

treat a representative group of non-moving patients in each period. By the same logic as before,

when these movers are representative in terms of their unobserved trends in εidt a comparison of

average physician utilization before and after the move identifies the difference in α j + γ j, where

α j denotes the average αi of non-moving patients in HRR j. Combining these differences with

the identified difference in αi and γ j from the patient mover quasi-experiment allows for a full

separation of the variation in αi, δd , and γ j.

In practice, identification of Equation (22) is also assisted by the inclusion of time-varying

patient- and physician-level controls xit and wdt . Including time and patient age effects weakens the

key common trends assumptions to allow movers and matching to vary across these dimensions.

Similarly, including relative year effects for movers allow for arbitrary differences in utilization

before and after a move, while imposing the restriction that these changes are the same regardless of

the origin and destination of the move. While allowing for persistent unobserved patient, physician,

and region heterogeneity, the assumption of common trends in per-encounter utilization imposes

several important restrictions on the data. Most notably, it requires there to be no sudden changes

in utilization demand which coincide with the timing of moves or the systematic matching to

particular physicians. This assumption would be violated if, for example, patients systematically
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respond to a negative shock to their health by moving to high-utilization areas or seeking out more

intensive physicians. We show some supportive evidence for common trends in the next section.

Identification of the nonlinear model of encounter quantity (equation (24)) similarly follows

from exogenous patient migration. Specifically, as we show in Appendix C.2, conditional max-

imum likelihood estimates of the place effects γ j can be obtained from contrasts in log growth

rates of encounter quantity across movers with different origin and destination pairs. In this case

the nonlinear model imposes a common trends assumption on potential log encounter growth rates

(instead of potential level changes, as in the linear utilization model). We again build support for

this assumption in the next section.

3.4 Results

3.4.1 Preliminary descriptive results

Before estimating our main models, we present some descriptive evidence of the average changes

in utilization when patients and physicians move across different regions. This analysis illustrates

a key source of the variation we use to estimate the models, and provides some support for the key

identifying assumptions. Our approach builds on the earlier analysis of Finkelstein et al. (2016)

and Molitor (2018) who study utilization changes for patient and cardiologist movers, respectively.

To motivate this event study analysis, we consider a restricted version of our patient-year uti-

lization model (25) in which the contribution of physicians is additively separable in a patient’s

location and year: εit = ε̄j(i,t)+ ε̃i + ε̌t +ηit . Here ε̄ j captures the overall regional contribution

to utilization via physician availability and matching, while ε̃i + ε̌t captures residual physician-

driven utilization specific to the patient and year and ηit is an idiosyncratic error. For each patient

mover i, write d(i) and o(i) as the indices of her destination and origin HRRs, respectively, and

write ∆i = ȳd(i)− ȳo(i) as the average difference in observed utilization between her destination and

origin HRR. Further write Si =
(
γd(i)+ ε̄d(i)− (γo(i)− ε̄o(i))

)
/∆i as the share of this observed uti-

lization difference that is due to the causal effect of places, either through physicians (ε̄d(i)− ε̄o(i))

or other regional supply-side factors (γd(i)− γo(i)). We can then rewrite the utilization (25) for
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movers as

yit = α̃i + τ̃t +(1[r(i, t)> 0]Si)∆i + x′itβ +ηit , (31)

where α̃i = αi + ε̃i + γo(i)− ε̄o(i) and τ̃t = τt + ε̌t .

Equation (31) motivates a patient event study regression of the form

yit = α̃i + τ̃t +θr(i,t)∆i + x′it β̃ +ηit , (32)

where the relative-year coefficients θr capture how average annual utilization changes in the years

preceding and following a move across HRRs, as a share of the average observed difference in

observed between the destination and origin HRRs ∆i. Given the model, we expect these coeffi-

cients to be near zero for the years preceding a move (r < 0) and to reflect the average share Si

of utilization differences which is due to place-based factors (both due to physicians or other area

supply-side conditions) for the years following a move (r > 0).

While we derived Equation (32) for patient movers, an analogous derivation follows for aver-

age physician utilization and physician movers. In this case the change in relative-year coefficients

θr following a move captures the average share of observed physician utilization differences across

regions which is due to place-based factors, either due to patients or other area supply-side factors.

We describe this derivation in more detail in Appendix C.2, where we also show how both deriva-

tions can be extended to relax the assumption of additively-separable εit , allowing for time-varying

differences in the contribution of physicians via the available physician stock δ it , patient-physician

matching σit , and the number of physicians seen Nit .

Panel A of Figure 3.3 plots estimates of the relative-year coefficients in Equation (32). We

estimate this regression on the full sample of patient movers and non-movers, normalizing ∆i to

zero for the latter group. The outcome yit is again the log annual spending of patient i in year t,

normalized to zero when no spending takes place. The control vector xit again contains indicators

for five-year age bins and the relative-year main effects ρr(i,t).

The patient event study shows that the average utilization of movers is stable in the years pre-

ceding a move, conditional on the controls, while in the years following a move average patient

utilization changes sharply in the direction of the observed difference in average HRR utiliza-
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tion. The lack of pronounced pre-trends is consistent with the identifying assumption of quasi-

experimental patient migration, while the sustained post-move jump indicates an important role of

regional supply-side factors in annual patient utilization.50 Quantitatively, we estimate an event

study jump of around 0.5. This is consistent with the earlier finding of Finkelstein et al. (2016) and

suggestive that supply-side factors (both due to physicians and other regional drivers) account for

around half of the observed geographic variation in annual patient utilization with the remaining

50% due to differences in patient demand.

Panel B of Figure 3.3 presents an analogous event study analysis of utilization changes for

physician movers. We now plot estimates of relative-year coefficients from a regression of

ydt = α̃d + τ̃t +θr(d,t)∆d +w′dt β̃ +ηdt , (33)

where now ydt denotes the log spending of physician d in year t, the control vector wdt includes

relative-year fixed effects, and ∆d gives the difference in average log utilization between a moving

physician’s origin and destination HRR (again normalized to zero for non-movers). The relative-

year coefficients θr thus now capture the change in log utilization for physician movers in each

relative year r as a share of ∆d .

As with the patient event study, the physician event study shows that the average utilization of

movers is stable prior to a move (consistent with our identifying assumption of quasi-experimental

physician migration). Following a move, physician utilization changes sharply by around 70-80%

of the observed difference in average utilization between her destination and origin HRR. This

is broadly consistent with the earlier finding of Molitor (2018) in showing that regional factors

play an important role in physician behavior, while also suggesting an important role of persistent

physician practice styles. Here an event study jump of 0.7 suggests that regional factors (both due

the local demand of patients and other factors) account for around 70% of the observed geographic

variation in annual physician utilization, with the remaining 30% due to differences in physician

50One possible source of bias in this exercise may come from endogenous moves caused by patients seeking better
care due to worsening health status. While we cannot fully rule out such sources of bias, the patterns we observe in the
data suggest that they are likely to be small. Gradual worsening of health status that would lead to eventual relocation
would tend to show up as pre-trends in our motivating event studies. Although sudden negative health shocks that
cause immediate movement to a more intensive area might occur without causing pre-trends, such changes might lead
to a spike in utilization immediately following a move. However we also find relatively flat post-trends in our event
study analysis.
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practice intensity.

Lastly, to illustrate the source of identifying variation underlying our Poisson model of number

of encounters, we present an event study analysis from a regression of the form

lnNit = α̃
n
i + τ̃

n
t +θ

n
r(i,t)∆

n
i + x′it β̃

n +η
n
it , (34)

where now the outcome is the log number of encounters of patient i in year t (normalized to zero

for patient-years with no encounters), the control vector xit and relative-year coefficients θr(i,t)

are defined as in Equation (32) above, and ∆n
i is the average observed difference in number of

log encounters between destination and origin HRRs for patient movers (normalized to zero for

non-movers). Equation (34) can be derived from a linear approximation to the Poisson model

(23)-(24).51 Just as with the patient- and physician-utilization event studies presented in Figure

3.3, the shape of the pre- and post-trends and the size of the event study jump illustrate the patient

mover variation that underly our encounter model estimates.

The results from this analysis are presented in Figure 3.4. As with the utilization event stud-

ies, both the pre- and post-trends are stable, which is consistent with the assumption of quasi-

exogenous patient migration. The event study jump of around 0.6 indicates that place-based fac-

tors account for 60% of the observed geographic variation in encounter quantity, with differences

in patient demand accounting for the remaining 40%.

Taken together, the event studies in Figures 3.3 and 3.4 suggest a non-trivial role for patient,

physician, and place heterogeneity in affecting geographic distribution of healthcare utilization.

At the same time, this descriptive analysis cannot by itself yield a complete accounting of the

importance of patients and physicians in driving spending differences. To do so, we estimate the

two models described in Section 3.3.

3.4.2 Model Estimates

We summarize our estimates of the encounter quantity model (23)-(24) and per-encounter utiliza-

tion model (22) graphically in Figures 3.5 and 3.6. Given our interest in geographic variation we

51Formally, using Equation (24), E[lnNit | x, j]≈ lnE[Nit | x, j] = α̃n
i +τn

t +(1[r(i, t)> 0]Sn
i )∆n

i +x′itβ
n for movers,

for α̃n
i = αn

i + γn
o(i) and where Sn

i = (γd(i) − γo(i))/∆n
i denotes the share of the observed difference in average log

encounters attributable to the place effects γn
j .
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plot histograms of the average estimated patient and physician effects across HRRs along with

the estimated region effects for each model. Broadly, these estimates confirm the findings of the

motivating event studies that each of these factors plays an important role in driving geographic

variation in healthcare utilization.

Figure 3.5 shows results for the number of encounters. The two panels indicate that patients and

places exhibit a high dispersion, but contribute equally to overall differences in the HRR-average

number of encounters. Panel A is a histogram of the average expected number of encounters in

each HRR if each patient’s effect was replaced with the sample’s average patient effect, The figure

thus displays the geographic variation induced by places alone if differences in patient population

across HRRs were eliminated. The results show that moving the average patient one standard de-

viation up in the distribution of HRR effects increases the expected number of encounters by about

0.26. Panel B repeats this exercise for patients by plotting a histogram of the average expected

number of encounters in each HRR if each patient’s place effect was replaced with the sample’s

average place effect. Again, the figure shows geographic variation induced by differences in pa-

tient population alone if differences in place effects were eliminated. The standard deviation of

these averages is almost exactly equal to that in Panel A at 0.25. It indicates that a one standard

deviation increase in average patient population intensity is associated with an expected increase

of 0.25 in demanded encounters.

Panel A of Table 3.3, which reports the variance-covariance matrix for the HRR-averages of the

patient and place components of the encounter quantity model, shows that they are positively cor-

related. The variance of both components is around 0.06-0.07 consistent with the results shown in

Figure 3.5. The covariance is 0.02, or about a third of the individual variance of each of these com-

ponents. This shows that patients that demand more encounters also sort to places which induce

higher encounter numbers, thereby contributing to overall geographic dispersion in spending. As

we will show in our formal counterfactual analysis, the factors inducing higher encounter numbers

play a crucial role in driving cross-HRR variation in utilization.

Figure 3.6 shows results for per-encounter utilization. The three panels plot histograms of the

HRR-average patient, physician, and residual area supply side effects.52 The figure shows that

52The non-linearity of the Poisson model requires us to transform the estimated effects into predicted values in
order to visualize their variation on a meanintful scale. However, the linear per-encounter utilization model allows
for the effects to be plotted directly, with the variation displayed on the histograms providing an accurate sense of the
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while all three factors exhibit a high degree of geographic variation, average place and physician

dispersion (with a standard deviation of 0.13) surpasses average patient dispersion (with a stan-

dard deviation of 0.02).53 3.2 shows furthermore that the 0.13 standard deviation in HRR-average

physician effects is a small share of the overall variation in practice style differentiation: the over-

all standard deviation of physician fixed effects is 0.88, with an average standard deviation of 0.87

within HRRs. In other words, a physician with one standard deviation more intensive practice

style is estimated to have an 88% higher level of spending per patient-year encounter. Given this

estimate, we find that moving a physician’s treatment intensity from the bottom decile to the top

decile would almost triple the amount of healthcare spending among Medicare beneficiaries.54

Table 3.3, Panel B, reports the variance-covariance matrix for the individual components of the

utilization model: patient effects αi, effects δd , and residual are supply-side effects γ j, averaged

to the HRR level. As shown in Figure 3.6 the HRR-average physician effects have a standard de-

viation of around 0.13, similar to the standard deviation in residual-supply-side effects. Average

patient effects have a smaller standard deviation of 0.03, and are positively correlated with average

physician practice intensity and with residual supply-side factors. There is a strong negative cor-

relation between HRR-average physician practice intensity and residual area supply side factors.

Using the estimated covariance and variance in Table 3.3 we estimate this correlation as -0.85. This

suggests that while physician practice intensity varies widely across regions, a patient who moves

from a low-intensity to a high-intensity HRR need not see a large increase in her utilization, as the

change in available physicians may be offset by other supply-side factors.55 We now investigate

this possibility directly.

3.4.3 Geographic Variation Counterfactuals

To decompose the geographic variation in utilization into its constituent components, we conduct

the counterfactual analysis described in Section 3.3.1. These decompositions augment the analysis

magnitude of the estimated variation.
53The relatively low variation of the HRR-average patient effects may be surprising given the fact that patients

explain 50% of overall geographic variaiton in spending. As we show in our counterfactual results below, much of this
contribution comes through patient demand for physician encounters.

54Appendix Figure C3 visualizes the underlying geographic variation in physician effects. Areas with most-
intensive physicians tend to be in the South, Mid-West and South-West of the country, while low-intensity areas
tend to be in the West and North-East.

55One caveat is that these tables use the raw estimates and do not correct for sampling variation.
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in Section 3.4.2 by incorporating both the variance and covariance terms for the individual effects

in the utilization model, and by incorporating estimates from the encounter quantity model.

Table 3.4 presents the decomposition results between specific groups of high- and low-utilization

HRRs. Specifically, we show the decomposition for HRRs above and below the median level of

average patient spending (columns 1-3), the top and bottom quartile (columns 4-6), and the top

and bottom decile (columns 7-9). In each case, the first column shows how the the absolute differ-

ence in average utilization changes as we restrict different parts of the model, the second column

shows the percentage change, and the third column shows the cumulative percentage change in

utilization. Appendix C.2 provides more details on these counterfactual calculations.

Since the results are qualitatively similar across the comparisons, we focus our attention on

the above / below median HRR decomposition. The difference in average log patient utilization

between HRRs above/below the median is 0.272. This difference drops by 5%, to 0.257, once

we eliminate patient-physician selection. This small effect is consistent with the low variance in

average selection shown in the last row of Table 3.3, Panel B. The difference decreases by a further

31% of the original difference, to 0.173, once average differences in physician practice styles

are removed. In other words, differences in physicians practice style explain about 30 percent

of the difference in utilization between high and low utilization HRRs. This substantial but not

overwhelming drop is consistent with the finding in Table 3.2, that while there is a high level of

variation in physician effects, much of this variation occurs within healthcare markets.

Eliminating patient differences in utilization per encounter and number of encounters further

reduces the above/below median average LnRBU difference by 3% and 50% of the original differ-

ence. The small magnitude of the impact of patient-driven differences in utilization per encounter

is consistent with the small variance of HRR-average patient effects from the utilization model,

documented in Table 3.3, Panel B. The quite large role for patient-driven differences in the number

of encounters is consistent with the large overall patient demand share in Figure 3.3. Variation

in residual place-based factors account for the remaining 11% of cross-geographic variation in

spending, consistent with Panel A of Figure C2. Interestingly, eliminating residual place effects

on utilization per encounter actually increases spending differences by 16%. This stems from

the strong negative correlation of residual place effects with average physician practice styles and

selection shown in Table 3.3, Panel B.
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Taken together, this decomposition of regional variation into patient, physician, and other sup-

ply side factors yields several striking findings. First, the single biggest driver of cross-HRR vari-

ation is patient demand. Consistent with Finkelstein et al. (2016), we find that around half of

regional utilization variation arises from the non-random distribution of patients with different de-

mand for care. Our analyses here further indicate that almost all (over 90 percent) of the patient

component reflects differences in patient demand for the number of different physicians seen in

a year, rather than differential patient demand for per-physician utilization, or sorting of patients

with different demand-side preferences across physicians with different practice styles. These re-

sults are consistent with existing literature pointing to the importance of practice style variation in

individual specialties and of fragmentation in the delivery of healthcare (Agha et al., 2019; Frand-

sen et al., 2015; Baicker and Chandra, 2004). Somewhat more surprising is the fact that patient-

physician selection seems to play no role in these differences; pairing of more expensive patients

with more expensive physicians does not seem to vary systematically across different HRRs.

Second, differences in physician practice styles across regions explain about 30 percent of ge-

ographic variation in utilization. Physicians display substantial differences in practice-styles: a

90th percentile physician will spend about 3 times more per patient encounter than a 10th per-

centile physician. This large variation in physician practice style is consistent with recent findings

similarly documenting substantial variation in practice patterns across physicians in prescribing

anti-depressants (Currie and MacLeod, 2020) and in interpreting chest x-rays (Chan et al., 2020).

However, our estimates suggest that most of this variation is within rather than across regions,

which mitigates the contribution of physician heterogeneity to regional variations.

Finally, we find a relatively small role for residual supply-side area factors in contributing to

regional variation. These factors, which may include provider capacity and organizational forms as

well as regional norms, are only about half as important as physician practice style in contributing

to regional variations.

3.4.4 Specialty Case Studies

Taken together, our primary analysis finds that physicians do not play the overwhelming role in

driving geographic variation. This is broadly consistent with the finding of Molitor (2018) for

cardiologist treatment decisions, though it is at odds with some conventional wisdom and earlier
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suggestive findings for other specialties (e.g. Cutler et al., 2019). Notably, our model estimates do

not suggest that variation in physician practice style is limited but that this variation is mostly found

within regions and is negatively correlated with other place-based drivers of utilization across

regions.

To confirm the robustness of these findings, we conduct a series of subsample analyses that de-

compose the geographic utilization of three physician specialities: primary care physicians (PCPs),

cardiologists, and dermatologists. These are specialties where one may expect a high role of indi-

vidual practice styles, with PCPs and cardiologists being of particular focus in the earlier literature.

We first identify physicians of each specialty and estimate versions of our two models, (22) and

(23)-(24), for their utilization and encounter quantity. We then decompose differences in specialty-

specific average log spending across HRRs, as in Table (3.4), using the sequence of counterfactuals

derived in Section (3.3.1).

Table 3.5 shows that differences in physician practice style play even less of a role in the ob-

served variation in specialty-specific utilization across regions than in our main sample analysis.

The table displays our geographic counterfactual decomposition of the spending difference be-

tween above- and below-median HRRs for log annual spending for the three specialties.56 Focus-

ing on columns (1)-(3), we see that the overall difference between above and below median-HRRs

for log annual patient PCP spending is 0.422. This difference drops down by 2% once the selection

channel is eliminated and remains essentially constant (or even increases slightly) once physician

practice style differences are eliminated. Patients account for a relatively smaller share of overall

spending differences (7% total, of which 4% is attributed to patient demand for utilization per en-

counter and 3% to patient demand for number of encounters. The remaining 93% can be attributed

to residual place-based supply-side components, of which 26% are due to effects on utilization per

encounter and 67% are due to effects on number of encounters. Just as in our baseline results,

physicians do not explain a majority of the geographic variation in patient spending. We observe a

similar pattern in the cardiologist and dermatologist decompositions in columns (4)-(6) and (7)-(9).

Physicians explain between 3% and 10% of overall variation. While the relative role of patients

and places shifts across specialties, it does so in patterns that are consistent with previous studies

56As before, these counterfactual results are very stable across different ways of defining the high- and low-
spending HRRs based on percentiles of the HRR spending distribution.
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(e.g., Molitor (2018) on cardiologists).57

However, while physicians explain little of the overall geographic spending differences, vari-

ation in physician practice styles as a whole is quite significant and mostly found within regions.

Table 3.6 illustrates this point by presenting the within- and between-HRR components of physi-

cian practice style variation for each of the specialty samples. In all three cases, the majority of

variation in practice styles occurs within rather than across medical markets. This echoes the re-

sults from our baseline analysis and underlines once more the fact that our findings are consistent

with an important role for physicians in determining spending levels overall.

Finally, we note that, just as in the baseline sample, part of the reason why physicians do not ex-

plain more of the geographic variation in spending is because average practice styles are negatively

correlated with other place-based drivers of utilization. Table 3.7 reports the variance-covariance

matrix for the individual components of the encounter quantity model (Panel A) and utilization

model (Panel B) averaged at the HRR-level for each of the specialty samples. A strong negative

correlation between average practice styles and other place-based factors is easily observable in

all three cases. As in the baseline sample, a patient moving from a low-spending area to a high-

spending area may not witness a large increase in utilization because average physician practice

styles and residual place-based factors partially cancel each other’s influence.58

3.5 Conclusion

While patient demand and regional supply-side factors have both been shown to play important

roles in driving geographic variation in U.S. healthcare spending, the role of physicians is less

well-understood. We fill this gap by leveraging the quasi-experimental migration and matching

of Traditional Medicare patients and physicians, estimating a model of encounter quantity and

per-encounter utilization that allows for variation in patient demand, physician practice intensity,

and other regional supply side differences. Consistent with past work, we find that around half

57Appendix Figures C4, C5, and C6 confirm the outsize role of non-physician place effects in driving geographic
differences in physician utilization for PCPs, cardiologists, and dermatologists via an event study analysis paralleling
that of Figure 3.3.

58Interestingly, a high negative correlation between patients and places is also visible in the case of PCPs in Panel
A, which indicates that negative sorting of patients who demand more encounters to places that are less likely to supply
them may also be decreasing the role of place-based factors in explaining geographic variation in spending. In the
other two cases, the two components of encounter quantity are only weakly correlated with each other.
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of regional utilization variation arises from the non-random distribution of patients with different

demand for care. On the supply side, we find that three-fifths of place-based drivers of utilization

are due to differences in physician practice style. The number of different physicians a patient sees

each year, a measure which could be interpreted as health care fragmentation, plays an important

role in the supply side and drives the majority of the demand side. Non-physician factors account

for two-fifths of the supply-side drivers and one-tenth of the overall variation. We find that the

modest role of physician practice styles in explaining geographic variation arises not because of

limited variation in physician practice intensity, but because of a strong negative correlation be-

tween where high intensity physicians are located and average regional per capita spending; both

within and between HRRs there is substantial variation.
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3.6 Figures and Tables

Figure 3.1: Distribution of Annual Patient Utilization Across HRRs

Notes: The map shows the distribution of average annual patient utilization by HRR, in quintiles defined in the legend.
The histogram displays the marginal distribution of average annual patient utilization by HRR. The sample is the
baseline sample of all patient-years for movers and non-movers (N = 23,678,685 patient-years).
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Figure 3.2: Destination-Origin Gaps in Average Patient Utilization

A. Patients

B. Physicians

Notes: This figure shows the difference in HRR-average annual utilization between the origin and destination HRRs
of patient (Panel A) and physician (Panel B) movers. The samples are all patient movers (Panel A, N = 6,011,147
patient-years) and physician movers (Panel B, N=1,069,099 physician-years).

122



Figure 3.3: Mover Event Study for Per-Encounter Utilization

A. Patients

B. Physicians

Notes: This figure shows the estimated θr coefficients in Equation (32) for patient movers (Panel A) and in Equation
(33) for physician movers (Panel B). The coefficient for relative year -1 is normalized to 0. The dependent variable
in Panel A is normalized log annual patient spending and the control vector includes indicator variables for five-year
age bins and relative-year effects for movers. The dependent variable in Panel B is normalized log annual physician
spending and the control vector includes relative-year effects for movers. Dashed lines indicate upper and lower
bounds of the 95 percent confidence interval for each θr estimate. The sample is all patient-years (Panel A, N =
23,678,685 patient-years) or physician-years (Panel B, N = 11,472,923 physician-years).
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Figure 3.4: Mover Event Study for Encounter Quantity

Notes: This figure shows the estimated θr coefficients in Equation (34) for patient movers. The coefficient for relative
year -1 is normalized to 0. The dependent variable is normalized log annual number of encounters, set equal to zero for
patients with zero encounters, spending and the control vector includes indicator variables for five-year age bins and
relative-year effects for movers. Dashed lines indicate upper and lower bounds of the 95 percent confidence interval
for each θr estimate. The sample is all patient-years (N = 23,678,685 patient-years).
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Figure 3.5: HRR-Average Patient and Place Components: Encounter Quantity

A. Variation in Place Effects

B. Variation in Patient Effects

Notes: Histograms display the geographic distribution of the patient- and place-components of the estimates from our
Poisson encounter quantity model (23)-(24). The top panel replaces each patient’s own patient component (patient,
year, relative-year, and age-bin fixed effects) with the average for the entire sample, then simulates the projected
number of encounters for each patient using these parameters and averages down to the HRR level. The bottom panel
does the same, but replaces the place effect with the average for the entire sample instead. The sample is the baseline
sample of all patients (N = 23,678,685 patient-years).
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Figure 3.6: HRR-Average Patient, Physician, and Regional Fixed Effects: Per-Encounter Utiliza-
tion

Panel A Patients

Panel B Physicians

Panel C Residual Supply Factors

Notes: Histograms displays the distribution of HRR-average components of utilization estimated from our encounter-
level model (22). Panel A shows the distribution of HRR-averages of patient fixed effects from the specification. Panel
B shows the distribution of HRR-average physician effects. Panel C shows the distribution of the estimated residual
supply factors. In all panels, we list the mean, standard deviation, and interquartile range of the respective component
weighted by the number of encounters that occur in that HRR. The sample is the baseline sample of all encounters (N
= 144 million encounters).
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Table 3.1: Sample Summary Statistics

(1) (2)
Non-movers Movers

Share female 0.56 0.60
Share white 0.85 0.88
Mean age first observed 71.02 72.51
Share first observed residence:
   Northest 0.20 0.17
   South 0.39 0.42
   Midwest 0.25 0.20
   West 0.16 0.22
Annual utilization:
   Mean $7,811 $7,765
   S.D. $12,138 $9,687
Number of chronic conditions:
   Mean 2.98 3.32
   S.D. 2.15 2.03
Annual number of encounters:
   Mean 5.14 5.64
   S.D. 3.67 3.40
Number of patients 2,443,020 650,264

Share first observed residence:
   Northest 0.20 0.19
   South 0.38 0.36
   Midwest 0.24 0.25
   West 0.18 0.20
Annual utilization:
   Mean $48,454 $130,082
   S.D. $904,700 $239,895
Annual number of encounters:
   Mean 41.42 106.38
   S.D. 526.38 105.77
Number of doctors 7,874,704 134,045

A. Patients

B. Physicians

Notes: In Panel A, rows for female, white, age first observed, and first observed residence report the shares of patients
with the given characteristics among movers and non-movers. The sample is the baseline sample of all patient-years
for movers and non-movers (N = 23,678,685 patient-years). Panel B has the analogous statistics for the sample of all
physician movers and non-movers (N = 11,472,923 physician-years)
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Table 3.2: Within- and Between-HRR Components of Physician Practice Style Variation

Component Standard Deviation

Overall 0.88
Within-HRR 0.87
Between-HRR 0.13

Notes: This table is based on estimation of Equation (22) and displays the overall (row 1) standard deviation in
physician fixed effects as well as within- (row 2) and between- (row 3) HRR components. Row 2 displays the standard
deviation of physician fixed effects after the average of physician effects in each physician’s HRR is subtracted from
her fixed effect estimate. Row 3 shows the standard deviation of these HRR-average estimates.

Table 3.3: Covariance Matrices of Per-encounter Utilization Components

Residual place-based factors 0.066
Patients 0.022 0.062

Residual place-based factors 0.020
Patients 0.000 0.001
Physicians -0.017 0.001 0.020
Patient-physician selection -0.005 0.000 0.003 0.005

B. Encounter Utilization Model

A. Encounter Quantity Model

Notes: This table is based on estimation of from our Poisson encounter quantity model, equations (23)-(24). (Panel
A), and encounter utilization model, equation (22) (Panel B), in the baseline sample and lists the variance-covariance
matrix for the individual components in the two models averaged to the HRR level.The patient component in both
panels includes patient effect, relative years, calendar years, as well as 5-year age bins. The physician component
in Pael B includes physician effects and relative years. The place and patient components in Panel A are formed
analogously to those in Figure 3.5. The place component replaces each patient’s own patient component (patient, year,
relative-year, and age-bin fixed effects) with the average for the entire sample, then simulates the projected number of
encounters for each patient using these parameters and averages down to the HRR level. The patient component does
the same, but replaces the place effect with the average for the entire sample instead.
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Table 3.4: Geographic Variation Counterfactuals

Level
% decline

(increment)
% decline 

(cumulative)
Level

% decline
(increment)

% decline 
(cumulative)

Level
% decline

(increment)
% decline 

(cumulative)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Observed 0.272 0.451 0.658

Patient-physician selection 0.257 -5% -5% 0.425 -6% -6% 0.631 -4% -4%

Physicians 0.173 -31% -36% 0.281 -32% -38% 0.426 -31% -35%

Patients 0.031 -53% -89% 0.066 -48% -85% 0.127 -45% -81%
   Of which: patient effects in utilization per encounter 0.165 -3% -39% 0.271 -2% -40% 0.415 -2% -37%
   Of which: patient effects in # encounters 0.031 -50% -89% 0.066 -45% -85% 0.127 -44% -81%

Residual place-based factors 0.000 -11% -100% 0.000 -15% -100% 0.000 -19% -100%
   Of which: residual place-based effects in utilization per encounter 0.075 16% -72% 0.130 14% -71% 0.232 16% -65%
   Of which: residual place-based effects in # encounters 0.000 -28% -100% 0.000 -29% -100% 0.000 -35% -100%

Above/below median Top/bottom 25% Top/bottom 10%

Notes: This table is based on estimation of Equation (22), Equation (23)-(24), and the counterfactuals described in Section 3.4.3. Each pair of columns partitions
HRRs into two groups based on percentiles of average log patient utilization. The first row in each panel reports the observed difference in average log patient
utilization between the two areas. Each successive row reports this difference under a particular counterfactual, along with the incremental and cumulative
percentage change relative to the first row baseline. The second row reports the counterfactual difference if there were no differential physician selection within
regions. The third row reports the difference if there additionally there were no variation in physician intensity in healthcare within an encounter across region. The
fourth row reports the difference if additionally there were no differential sorting of patients’ demand for healthcare within an encounter across regions. The fifth
row reports the difference if additionally there were no differential sorting of patients’ demand for healthcare encounters across regions. The sixth row reports the
difference if additionally there were no variation in place effects on healthcare utilization within an encounter. The last row reports the difference if additionally
there were no place effect on number of encounters across regions. The sample is all encounters (144 million encounters of 3 million patients with 2 million
physicians).
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Table 3.5: Geographic Variation Counterfactuals (Specialties)

Level
% decline

(increment)
% decline 

(cumulative)
Level

% decline
(increment)

% decline 
(cumulative)

Level
% decline

(increment)
% decline 

(cumulative)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Observed 0.422 0.511 0.472

Patient-physician selection 0.412 -2% -2% 0.482 -6% -6% 0.443 -6% -6%

Physicians 0.413 0% -2% 0.465 -3% -9% 0.460 4% -3%

Patients 0.393 -5% -7% 0.393 -14% -23% 0.259 -43% -45%
   Of which: patient effects in utilization per encounter 0.458 -8% -10% 0.458 -2% -10% 0.458 -8% -10%
   Of which: patient effects in # encounters 0.393 4% -7% 0.393 -13% -23% 0.259 -35% -45%

Residual place-based factors 0.000 -93% -100% 0.000 -77% -100% 0.000 -55% -100%
   Of which: residual place-based effects in utilization per encounter 0.313 -19% -26% 0.367 -5% -28% 0.225 -7% -52%
   Of which: residual place-based effects in # encounters 0.000 -74% -100% 0.000 -72% -100% 0.000 -48% -100%

Above/below median (PCPs) Above/below median (Cardiologists) Above/below median (Dermatologists)

Notes: This table is based on estimation of Equation (22), Equation (23)-(24), and the counterfactuals described in Section 3.4.3. Each group of columns partitions
HRRs into two groups based on the median of average log patient utilization for each specialty sample. The first row in each panel reports the observed difference
in average log patient utilization between the two areas. Each successive row reports this difference under a particular counterfactual, along with the incremental
and cumulative percentage change relative to the first row baseline. The second row reports the counterfactual difference if there were no differential physician
selection within regions. The third row reports the difference if there additionally there were no variation in physician intensity in healthcare within an encounter
across region. The fourth row reports the difference if additionally there were no differential sorting of patients’ demand for healthcare across regions. The fifth and
sixth row break this change into two separate sequential steps eliminating patient effects on the demand ofr care within an encounter and for healthcare encounters
respectively. The seventh row reports the difference if additionally there were no variation in place effects on healthcare utilization. The last two rows break this
change into two separate sequential steps eliminating place effects on care within an encounter and number of encounters across regions respectively. The samples
are the three specialty samples as listed in the columns.
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Table 3.6: Within- and Between-HRR Components of Physician Practice Style Variation (Specialties)

Component
Standard Deviation 

(PCPs)
Standard Deviation 

(Cardiologists)
Standard Deviation 
(Dermatologists)

Overall 0.62 0.93 0.58
Within-HRR 0.61 0.88 0.48
Between-HRR 0.14 0.32 0.32

Notes: This table is based on estimation of Equation (22) in each of the specialty samples listed in the columns and displays the overall (row 1) standard deviation
in physician fixed effects as well as within- (row 2) and between- (row 3) HRR components. Row 2 displays the standard deviation of physician fixed effects after
the average of physician effects in each physician’s HRR is subtracted from her fixed effect estimate. Row 3 shows the standard deviation of these HRR-average
estimates.

Table 3.7: Covariance Matrices of Per-Encounter Utilization Components (Specialties)

Residual place-based factors 0.1139 0.0104 0.0021
Patients -0.0719 0.1041 0.0002 0.0035 -0.0008 0.0026

Residual place-based factors 0.055 0.265 0.242
Patients 0.000 0.002 0.004 0.004 -0.004 0.007
Doctors -0.033 0.001 0.037 -0.231 -0.004 0.220 -0.237 0.000 0.247
Patient-doctor selection 0.002 0.001 -0.002 0.003 0.051 0.005 -0.047 0.062 0.014 -0.001 -0.015 0.017

Cardiologists Dermatologists

A. Encounter Quantity Model

B. Encounter Utilization Model

PCPs Cardiologists Dermatologists

PCPs

Notes: This table is based on estimation of from our Poisson encounter quantity model, equations (23)-(24). (Panel A), and encounter utilization model, equation
(22) (Panel B), in each of the three specialty samples and lists the variance-covariance matrix for the individual components in the two models averaged to the HRR
level.The patient component in both panels includes patient effect, relative years, calendar years, as well as 5-year age bins. The physician component in Pael B
includes physician effects and relative years. The place and patient components in Panel A are formed analogously to those in Figure 3.5. The place component
replaces each patient’s own patient component (patient, year, relative-year, and age-bin fixed effects) with the average for the entire sample, then simulates the
projected number of encounters for each patient using these parameters and averages down to the HRR level. The patient component does the same, but replaces
the place effect with the average for the entire sample instead.
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A Appendix for Chapter 1

A.1 Additional sample characteristics and an evaluation of the cohesiveness
of treatment categories

Apart from spanning a wide variety of systems and conditions, the codes in this analysis are repre-
sentative of the lion’s share of the kinds of code changes that the CMS tends to implement in terms
of the number of parent and descendant codes involved. Table A2 in the appendix is an attempt
at such a classification. Of the 636 coding changes that have occurred over the past few decades,
the vast majority, 440, have involved a single parent code and a single descendant code like the
treatment categories in this analysis. A relativley small number, 52, have involved the introduction
of a completely new code without a parental code. 44 are cases of the complete splitting off of
a parental code into multiple descendant codes with the subsequent deletion of the parental code.
Finally, 100 changes have involved multiple parental codes contributing to a new descendant code,
sometimes over multiple years and code change cycles. The table shows that most of the code re-
visions that the CMS has implemented involve the splitting off of one or multiple procedures from
a single parental code that continues its existence afterwards. Cases of “pure innovation” where a
new code is added without an antecedent or of “mixed innovation” where multiple parental codes
contribute to a given descendant code are relatively rare. Overall, the treatment categories selected
represent what may be considered usual types of codification events and span a wide variety of
body systems indicating that the results presented are not driven by idiosyncracies in the kinds of
operations that are being considered.

Given the fact that new code introductions frequently involve the splitting off of procedures
from the parental code and that one cannot observe all the different kinds of procedures that are
performed within a treatment category (since not all of them have codes), one concern for this
analysis is whether treatment categories could be including disparate procedures that are otherwise
unrelated to one another. If that is the case, then doctors working within the same treatment
category are not a well-defined risk set for the new procedures that are split off from that category
and the older procedures that remain within the parent code may not represent technologies that
are closely related to the procedure represented by the new code.

In order to evaluate the medical similarity of patients within a treatment category, I collect
information on the DRGs for the inpatient stay for the procedures in the main sample. Currently,
there are over 700 active DRGs, but this number has fluctuated over the years. In order to simplify
the analysis, I aggregate the DRGs up one level into DRG “Groups” by classifying together clusters
of DRGs that refer to the same condition and procedure taken, but differentiate reimbursement
by the presence of complicating conditions. For instance, DRGs 001 and 002 refer to “heart
transplant” with and without major complicating conditions. While the presence of such conditions
affects the resource intensity of care, the underlying medical condition and surgical approach are
the same in the two cases and thus I aggregate them and other similar DRG clusters into a single
group.

Note that even with this level of aggregation, each treatment category has patients from a
variety of DRGs. This is because the determination of a DRG comes from a complex combination
of patient diagnoses and surgical procedures and has a hierarchical component where the most
resource intensive condition for a hospital stay takes precedence over others. This means that even
if a particular surgical procedure of interest was performed on the patient, it may not be treating
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the medical condition that ends up determining the patient’s DRG.
For each treatment category, I calculate the share of observations from that treatment category

that fall within the top DRG group, the second most used DRG group, etc. I then average these
across treatment categories, weighting by the number of observations in each treatment category,
and plot these average shares for DRG group ranks up to 10. The results are shown in Figure
A2. The graph shows that even with the complex nature of DRG determination, the amount of
clustering of patients within a treatment category is remarkably high. The most popular DRG
group receives, on average, 60 percent of the observations in a treatment category and the top
2 - over 80 percent. This implies that the patients treated within a treatment category tend to
be medically similar and is an indication that treatment categories do not include disparate and
unrelated procedures. Additionally, almost 98% of observations associated with newly introduced
codes fall within one of the DRGs previously used for the old treatment category indicating that
new codes are used on patients that are medically similar to those that are treated in the parent
category. This is consistent with the hierarchichal nature of the ICD9-CM, which tends to place
similar procedures in close proximity with each other in the numbering system.

A.2 Impact of using components of technology rather than broad technol-
ogy

In this section, I evaluate the potential impacts of using a narrow definition of surgical categories
in my analysis. As outlined above, some authors and practitioners may find it more natural to de-
fine surgeries as groups of ICD9-CM codes as opposed to individual codes. This poses two types
of challenges to my analysis. The first is econometric in nature and concerns the potential bias
or inconsistency of the estimators introduced by a potential mismatch between the definition of
technology used in this paper and that used by practitioners. The second is an external validity
challenge - if there is a mismatch between the technology space defined in this study and in in-
dividual healthcare studies, how useful are these estimates for drawing broader conclusions about
technology diffusion in this space?

To answer the first question, I use a simple econometric framework that incorporates the model
I’ve relied on in my analysis and adds the feature of treatment category groups. In particular,
imagine a world with a single surgical operation X (e.g., repair of inguinal hernia) that has two
subcategories, A and B, indexed by p (e.g., repair of direct inguinal hernia and repair of indirect
inguinal hernia) where each of the subcategories corresponds to a treatment category in my analy-
sis. Imagine further that treatment of patient i with a new procedure within a treatment category p
by doctor j is determined through a simple threshold rule:

1{New}i jp = (β0 +β1Age j−ψi ≥ θp)

where 1{New}i jp is a new-procedure indicator, Age j is doctor j’s age in years, ψi is an un-
observed patient appropriateness factor, and θp is treatment-category-specific threshold. If ψi is
uniformly distributed,59 this implies that

Pr{New}i jp = β0 +β1Age j +θp

59This is a simplified version of the random utility model proposed by Heckman and Snyder (1977) where unob-
servable shocks across choice alternatives are independently, but not identically distributed.
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which then leads to the baseline regression specification:

1{New}i jp = β0 +β1Age j + γp + εi jp

The estimate of the age effect is simply:

β̂1 =
Cov(Age j,1{New}i jp)

Var(Age j)

This estimate would be unbiased and consistent under the normal assumptions of conditional
independence of the error term from doctor age conditional on observables.

How can the presence of a broader technological definition affect the validity of this assump-
tion? First, it is easy to see that if patients are randomly distributed across the two treatment
categories A and B, then the presence of X as a grouping of A and B has no bearing on the estima-
tor. However, if the presence of a higher grouping of procedures induces doctors to select patients
into one category or the other non-randomly, this may lead to bias in the estimator. To see a simple
case of this, suppose that a doctor uses a simple threshold rule to determine which sub-category to
assign the patient to:

1{A}i jp = ηi ≥ τp

This can correspond either to the resolution of uncertainty in the patient’s underlying medical
condition (e.g., does she require a direct or indirect hernia repair) or to the documentation of the
procedure afterwards in the presence of ambiguity (was the procedure performed closer to direct or
indirect hernia repair). In that case, we have (assuming a similar distribution of doctor age across
A and B):

β̂1 =
Cov(Age j,1{New}i jp)

Var(Age j)
=

=
Cov(Age j,1{New}i jp|ηi ≥ τp)

Var(Age j)
×Pr(ηi ≥ τp)+

Cov(Age j,1{New}i jp|ηi < τp)

Var(Age j)
×Pr(ηi < τp)

If ηi, the patient appropriateness for treatment category A is independent from her appropri-
ateness for treatment with new technology, then the above reduces to the unbiased case. However,
if patient treatment category appropriateness is correlated with the likelihood of receiving the new
surgical procedure, the coefficient above can be biased. The bias can be positive if large treatment
categories within a surgical procedure have most of the patients that are more likely to get the new
technology or negative if large treatment categories have fewer of the new-technology appropri-
ate patients. Additionally, some of the treatment categories within a surgical procedure may be
dropped out of my analysis due to sample restrictions. The overall direction of the bias in the
sample will depend on the balance of these factors across broader surgical technologies.

Naturally, evaluating the sensitivity of the results to these potential issues can be difficult with-
out a proper definition of broader surgical technology in all cases. However, the fact that the
estimates do not change substantially due to resonable perturbations in the set of treatment cate-
gories used as described in the Robustness section above is one indication that this kind of bias
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may not be very important in this setting.
This framework can also help me answer the second challenge listed above - about the rele-

vance of the estimator to other definitions of technological space when it comes to surgical pro-
cedures. One potential interpretation of this question is about whether the best way to define the
age-adoption parameter β1is at the treatment category level or broader surgical procedure level. To
the extent that adopting a particular broader surgical procedure requires familiarity with multiple
subcategories, the procedure-level parameter will be a weighted average of the treatment-category-
level parameters. Since my sample restrictions work at the treatment-category level, it is possible
that the set of treatment categories considered cannot be neatly partitioned into a set of broader
surgical procedures, all of whose components are in the sample. In that sense, it is possible that
the overall parameter estimate from my analysis does not match that which may be obtained if
one were to perform a similar analysis on surgical procedures more broadly defined. While my
definition of the technological space is driven in many ways by the issue of measurement, the fact
that the estimates are very robust to changes in the set of treatment categories considered indicates
that this kind of cross-treatment category/within-surgical-procedure variation in β1 unlikely to be
important.

A.3 Impact of delay in codification
In this section, I consider the likely effect of the delay between innovation and codification on
my estimates. In particular, as outlined in the institutional background section above, surgical
innovation is a gradual and incremental process and there could be substantial delay between the
time a procedure is first used (or even first widely established) and the time it receives its own
ICD9-CM code. This delay means that I’m able to measure the age-adoption gradient only after
the innovation has had some time to diffuse in the relevant market. This feature of my setup may
have an effect on the estimated age-adoption gradient.

I use the model I developed in the theoretical section to identify two channels through which
this may occur. The first is entry into the market of younger physicians. In particular, since
codification could occur more than a decade after a procedure is first performed, it is possible
and likely that medical programs may begin incorporating it into their curricula by the time I first
observe the new procedure. This means that at least some of the physicians in the sample are
likely to have seen the procedure during their education and thus to have benefitted from formal
instruction in mastering it. This will push the age-adoption gradient to be steeper than if it were
measured when an innovation first entered the market.

The second channel is increased exposure. In particular, as a technology becomes more widely
used, there could be adoption spillovers as new users have a firmer foundation and support network
to draw upon in learning the new procedure. This means that as time goes by, the parameters of
the adoption process change as the market and its institutions may adapt to the presence of new
technology. The extent to which this benefits younger or older physicians is ambiguous, however.
On the one hand, it is possible that adoption in the early stages of a technology requires a lot of
fluid intelligence and ability and willingness to deal with unfamiliar concepts, which will tend to
steepen the age-adoption profile as older physicians will be less likely to adopt. However, it is
also possible that only individuals with a lot of experience and clout with the institutions involved
will be able to make the most out of adoption. In that case, older physicians may be more likely
to experiment with a new technology, which would flatten the age-adoption profile. The overall
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direction of these changes is ambiguous.

A.4 Impact of medical school and residency
The impact of medical education is a natural candidate as a potential mechanism for the docu-
mented age-adoption profile effect. Physicians who go to highly qualified programs may be more
prone to adopt new technology either because of underlying skill type or because of the educa-
tion they obtain. In order to test this idea, I used medical school rankings produced by US News &
World Report to create a dummy for a doctor’s medical school belonging to the top 15 in the nation
(Abigail Hess (2019)). I then ran the same specification as in equation (2) above, but adding an
interaction between this dummy and doctor age. The results are presented in Table A4. Attending
a top medical school does not seem to have a statistically significant influence on the age effect on
propensity to adopt.

Another related question is whether the results are driven by the fact that the analysis sample
may contain some doctors who have not completed their residency and some who have. In particu-
lar, it is possible that the effect is driven by the completion of residency whereby current residents
are learning all the new technologies due to their program while physicians who have completed
their training and who tend to be older are not doing so. In order to investigate this possibility, I
re-run the baseline specification (2) on the subsample of observations due to physicians who have
completed their residency.60 The results are presented in Table A5 and are essentially identical to
the main results in the paper. This is perhaps unsurprising given that less than 98 out of 178,000
observations in the sample are due to residents.61

Nonetheless, a slightly different form of the same question is whether the results documented
here are due to the possibility that getting to the frontier is easier when one is close to the frontier. In
particular, doctors are brought to the skill frontier at the time they graduate. If there are large fixed
costs to skill investment that increase with the number of new skills that have not been acquired in
the past, one would expect that the rest of a physician’s career is marked by a slow decay of skills
relative to the medical frontier. This idea would imply that physicians who are close to the moment
they graduated would be much more likely to acquire new skills relative to those of the same age
who are farther from graduation. A simple way of testing this possibility is to re-do the baseline
regression and see if observations due to residents fall above or below the regression line. I perform
this exercise in Figure A3 below. Specifically, I define as “residents/recent graduates” individuals
who are either residents or are within 5 years of their graduation date and were 40 at the time they
graduated. This gives me about 6,000 observations in this category, which I split into 4 quantiles
based on age at code introduction. I then split the remaining 172,000 observations in 96 quantiles,
so that each quantile in the two subsamples has roughly an equal number of observations. I plot
these points in a binscatter having partialled out all relevant controls from the regressions above
from the dependent and independent variables and having added back the overall mean of each
subsample to each point. The regression line I fit is the regression line using the overall sample.

As is apparent from Figure A3, recent graduates lie below the regression line. This indicates
that recent graduates are less likely to use the new code in a treatment category relative to more
experienced physicians at their age. While this is somewhat counterintuitive, it is consistent with

60I drop physicians with missing values on year of training from this exercise.
61The rest of the sample differences are due to physicians with missing values on year of training.
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previous literature in age-decision profiles that indicates that initial experience is beneficial to
decision-making. In particular, one possibility is that individual doctors need some experience “on
the job” before gaining the confidence and skills necessary to adopt new technology successfully.

A.5 Diagnostic code sample construction
I take all physicians, identified by UPIN-NPI pair,62 who submit claims between 2001 and 2013
and identify PCPs as those submitting the majority of their claims under a specialty identified as
“general practice”, “family practice”, or “internal medicine”. I limit to claims by PCPs where the
place of service is identified as “office” in order to remove observations where PCPs performed
services in inpatient or other institutional settings where the ultimate agent behind the patient
diagnosis and medical service provided is unclear. I identify doctor age using the AMA Masterfile
and various patient observables using the denominator file as in the basline sample. I further limit
to claims whose primary diagnosis code satisfies the diagnostic category restrictions. In particular,
I look at diagnostic categories which were revised exactly once between 2001 and 2013 where
there is a single parental code and where both the parental and descendent codes are in use up
to and including 2013. Table A6 below includes some summary statistics for the sample, while
Figure A4 shows the overall diffusion pattern (S-curve) for the codes adjusting for patient mix and
parental diagnostic category. As noted above, the diffusion curve is somewhat flatter than that in
the procedure code analysis, perhaps reflecting the possibility that diagnostic knowledge diffuses
more quickly than medical procedures. Figure A5 shows a binscatter of the regression in column
(4) of Table 1.6. The flat age-adoption profile in the case of diagnostic codes is evident with no
outliers seemingly driving the presented results.

A.6 Prescription pharmaceuticals sample construction
I use Medicare Part D files for 2006-2015. These are prescription-level datasets that contain all
prescriptions filled by 20% of Medicare beneficiaries with data on the exact drug and package
used (NDC11 codes), quantity filled, date and location where the prescription was filled as well
as the NPI of the prescribing physician. I combine all prescriptions of a single compound by a
given physician to a given beneficiary in a single year into a single observation. I use the FDA
Orange Book to identify the approval date for each chemical compound and define a drug’s ther-
apeutic class using the American Hospital Formulary Service® (AHFS) 8-level classification of
256 therapeutic classes as used by Einav et al. (2018). Drugs in a class have similar mechanisms of
action or chemical structure and are used to treat similar or related diseases. I use the set of NDCs
considered by Einav et al. (2018) and focus on therapeutic classes that received a new chemical
compound between 2006 and 2015 based on FDA approval date. I use the AMA Masterfile to
identify the age of the prescribing physician and the Medicare Denominator file to add patient
characteristics.

I begin with the sample of all baseline NDCs used in Einav et al. (2018). The list, generously
provided by the authors, has information on the corresponding chemical entity (non-proprietary
name), related brands used to market the drug (proprietary name), the therapeutic class designa-
tions of each drug and the application number used in the FDA application. I use the application

62I use the NBER’s UPIN-NPI crosswalk to fill-in any missing values
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number for each chemical compound to merge approval year information from the FDA Orange
Book. Chemical compounds are identified as “Ingredients” in the Orange Book. For each ingre-
dient, I find the earliest listed approval year (separate drugs using the same ingredient such as
generics get different approval years) and designate the earliest year as the approval year of the
chemical compound (i.e., the first year the chemical compound entered the market in any form).
There are 88 out of 2,537 application numbers that have multiple ingredients associated with them
and I drop these from the analysis. Additionally, while typically a single ingredient may corre-
spond to multiple non-proprietary names (due to variations in spelling), there are 44 (out of 987)
non-proprietary names that are associated with multiple ingredients. I drop these from the analysis
as well.

I define a therapeutic class as “treated” if any of its drugs received its earliest approval between
2006 and 2015. Note that a single drug may be part of multiple therapeutic classes as it may be used
to treat disparate medical conditions. In those cases, I define all therapeutic classes that include a
newly approved drug as treated. I take all treated classes and merge them on to the Part D event
files. I collapse down to the beneficiary-physician-drug-year level, so that all prescriptions for a
given chemical compound (ingredient) by a single doctor for a single patient in a single year count
as a single prescription event, or observation, in the sample. If a prescription drug has multiple
therapeutic classes associated with it, I include all prescription events for that drug as separate
observations for each of the drug’s therapeutic classes. The resulting dataset is at the prescription
event level where each prescription event corresponds to a single therapeutic class used for the
respective drug.
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A.7 Appendix Tables and Figures

Figure A1: Relative Year Effects for Two Age Groups

Notes: The figure plots  the coefficients from a regression of new code 
use on relative year using the same controls performed separately for 
physicians 30-39 at codification and physicians 60-69 at codification. 
The dotted lines represent 95-percent confidence intervals.
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Figure A2: Share of Observations by DRG Group Rank

Notes: The figure shows the share of observations in each treatment category that  
falls within the first, second, third, etc. most populated DRG group for that 
treatment category. Shares are averages across treatment categories weighted by 
the number of observations within that treatment category.
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Figure A3: Binscatter of Regression Showing Residents and Non-Residents

Notes: The figure shows a binscatter of the baseline regression splitting 
observations into residents/recent graduates (doctors within 2 years of completing 
residency that are 40 or less at the time of completion) and more experienced 
physicians (not fulfilling those conditions).
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Figure A4: New Diagnosis Code Diffusion S-Curve

Notes: The figure plots the coefficient from a regression of new diagnostic code dummy on year 
relative to new code introduction with treatment category fixed effects and controls for calendar 
year, patient age, race, sex, chronic conditions, and Medicaid receipt, and doctor controls for 
AMA hospital ID, med school ID, and gender. 
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Figure A5: New Diagnosis Code Baseline Regression Binscatter

Notes: The figure is a binscatter of the baseline specification (9). The figure is constructed by 
estimating the residuals from separate regressions of the new code dummy and doctor age on 
the full set of patient and physician controls, dividing them into quantiles, adding the means 
of the dependent and independent variable respectively, and plotting hte results. The grey line 
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Table A1: Code Changes by Anatomic System

Number of 
Code Changes

% of Total Code 
Changes

Number of 
Observations

% of Total 
Observations

Operations On The Digestive System 26 31% 35,518 20%
Miscellaneous Diagnostic And Therapeutic Procedures 15 18% 7,854 4%
Operations On The Cardiovascular System 14 16% 40,509 23%
Operations On The Musculoskeletal System 7 8% 39,724 22%
Operations On The Female Genital Organs 6 7% 2,272 1%
Operations On The Respiratory System 4 5% 2,527 1%
Procedures And Interventions , Not Elsewhere Classified 3 4% 46,460 26%
Operations On The Integumentary System 3 4% 1,488 1%
Operations On The Nervous System 3 4% 2,090 1%
Operations On The Endocrine System 2 2% 19 0%
Operations On The Urinary System 1 1% 163 0%
Operations On The Nose, Mouth, And Pharynx 1 1% 75 0%

Notes: Table shows the distribution of of ICD9‐CM procedure code changes in sample by body system they represent. 

Table A2: Code Changes

Change Type
Number of 
instances

Multiple previous codes 100
No previous code 52
One previous code, which was subsequently deleted 44
One previous code, which was kept after the change 440

Notes: Table shows the number of ICD9-CM procedure code changes by type. 
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Table A3: Baseline Analysis Using Logit

Notes: Table shows the results from running the baseline
specification using a logit model. Standard errors are clustered at the
treatment category level. 
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Table A4: Impact of Medical School Rank

Notes: Table shows the results from running the main
specification with an interaction with an indicator for
having attended a top-15 medical school. Standard errors
are clustered at the treatment category level.
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Table A5: Impact of Removing Residents

Notes: Table shows the results from running the baseline specification (9) on a subsample of non-
residents. Standard errors are clustered at the treatment category level. 
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Table A6: Diagnosis Code Sample Summary Statistics

Panel A: Patient Level
Mean S.D

Share of patients with any chronic condition 0.08 0.27
Share of white patients 0.89 0.32
Share of male patients 0.50 0.50
Share on medicaid 0.18 0.38
Patient age 73.83 10.45
Share treated with new code 0.13 0.34
Number of patients in sample
Number of observations in sample

Panel B: Doctor-Year Level
Mean S.D

Age 50.41 9.90
Share male 0.80 0.40
Total years in sample 5.13 2.80
Number of treatment categories 2.58 1.71
Probability of using new code 0.14 0.28
Number of doctors in sample

650,100
5,319,067

132,006
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B Appendix for Chapter 2

B.1 A Toy Model of User Innovation
I outline a simple toy model showing how the extent of external rewards may be driven by the na-
ture of the innovative activity. I follow closely Benabou and Tirole (2003)’s framework of extrinsic
and intrinsic motivation. Suppose the social planner has a research project which costs c ∈ [c,c̄]
to complete and has a social benefit B if successfully finished. In this context c may represent the
various costs associated with inventing a new drug or researching a new procedure - capital expen-
ditures, opportunity cost of labor (or surgeon time), costs of obtaining financing for the project,
regulatory costs of clearing the project’s output, etc. The project can be completed by a research
agent, who has a private benefit from successfully doing so of b. b can represent for instance any
private altruistic benefit from contributing to social welfare through one’s work, academic or social
prestige due to the accomplishment, the sense of achievement from success in a difficult and im-
portant task. The agent does not observe the exact cost of the project before committing to it, but
knows that it has a distribution with cdf F(c) and observes a signal σ with cdf G(σ) and pdf g(σ)
of the project’s difficulty. I assume that the signal’s distribution has the monotone likelihood ratio
property (MLRP): for σ1 > σ2, g(σ1|c)

g(σ2|c) is decreasing in c. This property guarantees that as the cost
increases, high realizations of the signal σ become less likely. In other words, a high realization of
σ indicates a lower likely value of c.

The project has a success rate of θ . The social planner may choose to offer an additional
reward of r to the researcher contingent upon the successful completion of the project. Such
rewards can take many forms - examples are explicit research awards or the opportunity to profit
from a temporary government-sanctioned monopoly enforced through intellectual property rights.
However, the reward comes at a cost f (r) with f ′(r) > 0 to the planner. Since this is a social
planner, the reward itself is simply a transfer from one party to another. But the planner may
suffer economic costs such as the deadweight loss associated with monopolies or with the taxation
required to obtain the funds for r. The cost of the reward is assumed to increase with the size of
the reward as would be the case, for instance, if a pharmaceutical’s monopoly period were to be
extended for a longer period of time inducing a higher deadweight loss to society.

The game is played in the following stages: the social planner observes the project costs and
decides on the reward r, then the researcher observes r as well as σ and decides whether to commit
to the task with the decision marked by i ∈{0,1}.

The agent’s expectation of the project costs is ĉ(σ ,r) = E[c|σ ,r] and thus she will commit to
the project if θ(b+ r) ≥ ĉ(σ ,r). The MLRP guarantees that there exists a threshold σ∗(r) such
that the agent commits to the project if and only if σ ≥ σ∗(r). The social planner then maximizes
the following objective function with respect to r:

θ [1−G(σ∗(r)|c)][B− f (r)]

As in Benabou and Tirole (2003), in the non-degenerate equilibrium, higher project costs are
associated with higher rewards, but the higher rewards also induce agents to revise their expecta-
tions of the project costs upwards.

The model allows an interpretation of some of the patterns observed in the data and institu-
tions of surgical innovation. First, a higher degree of intrinsic motivation b will induce, ceteris
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paribus, the social planner to offer lower extrinsic rewards r. Thus, surgeons’ medical ethics and
the promise of professional prestige will be associated with lower explicit rewards from the so-
cial planner. Thus, the high intrinsic motivation of the surgeon motivators means that even in the
absence of intellectual property rights, innovation may still occur. Second, higher intrinsic mo-
tivation and lower rewards are associated with a lower degree of social welfare loss f (r). Thus,
surgical innovation, which does not require temporary monopolies is relatively more beneficial to
society for a project of the same overall value B. At the same time, the degree to which the social
planner can rely on intrinsic motivation here is limited by the magnitude project costs c. If the
project costs significantly more than any reasonable realization of b, then the social planner has no
choice but to resort to extrinsic rewards to encourage innovation. This is consistent with a world
where pharmaceutical innovation has significant financial costs that likely have to be reimbursed
through significant external rewards.

The intrinsic motivation effect may be reinforced by the technological profile of the mode of
innovation. The model so far has assumed a single project where the social planner has to decide on
a reward scheme. However, one may imagine that the innovation project may proceed in multiple
separate stages where the agent has to agree to commit to each stage separately. This is especially
applicable to the case of surgical innovation where a single novel surgical approach is developed
through an incremental process where multiple patients have to undergo the procedure and the
procedure’s parameters are refined as it is used more and more. In pharmaceutical innovation, on
the other hand, the research project is completed in one go and the returns to the agent transpire
at that point. If the social planner has to decide on the reimbursement scheme for each stage
separately and in advance, the fragmentation of the research process may serve to further lower the
social planner’s use of an external reward.

Imagine, for instance, that the game was modified in the following way: there are now two
sub-projects, with rewards B1,B2, the social planner observes the cost c, which is the same for
both stages, and offers separate rewards r1and r2,. Imagine that the agent still observes a signal σ ,
observes only the reward r1 before committing to the first project and then, after her commitment
decision, she observes the reward r2 for the second project and decides whether to commit to that
one as well. In this case, the social planner’s objective function takes the following modified form:

θ [1−G(σ∗1 (r1)|c1)][B1− f (r1)]+θ [1−G(σ∗2 (r1,r2)|c2)][B2− f (r2)]

Relative to a world where only the first stage exists, the social planner’s incentives to offer a
high external reward for this first project r1 are diminished by the fact that the agent will update
her expectations of the difficulty of the project based on this reward and thus require a poten-
tially higher reward in the second stage to exert effort. Formally, while d

dr1
σ∗1 (r1) > 0 as before,

∂

∂ r1
σ∗2 (r1,r2) < 0, which exerts a downward pressure on the optimal choice of r1. Hence, the

incremental nature of surgical innovation induces the social planner to offer even lower external
rewards.

A separate, but related point may be made about the choice of method of offering external
rewards. In the case of pharmaceuticals, intellectual property monopolies are the method of choice
- the social planner ties the size of the reward to the overall social benefit from the innovative effort
as revealed through market demand. The cost of said monopoly is the deadweight loss due to
monopoly pricing and decreased patient access to drugs that already exist. However, in a world of
fragmented innovation monopoly power may also be associated with a high amount of transaction
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costs - developing the next stage of the surgical procedure may require licensing from a number
of other agents who have developed methods relevant to the procedure, and this may increase
the social costs of offering the external reward substantially. It is therefore perhaps unsurprising
that the main method of rewarding innovation financially in this sector may come through one-off
grants from various agencies that do a poor job of revealing the benefit of the innovation, but avoid
the high social costs that will likely result from the enforcement of intellectual property.

The question of method of rewarding invention is also relevant for the impact of market size on
innovation. In the case of pharmaceuticals, sicne the reward for invention is closely tied to overall
consumer benefit of the product (through monopoly pricing), market size enters indirectly through
the r term. However, in the case of surgeons, we have seen that this reward plays a rather minimal
role. The model therefore suggests that market size enters through the surgeon’s own intrinsic
motivator b. This can occur for instance if surgeons feel more internally motivated to work on
problems that will benefit more people and are considered more important for society in gneral. It
can also occur if there is more academic prestige associated with solving a bigger problem. Both
of these propositions are salient features in doctors’ own conceptualization of their work and in the
system of academic prestige that underlies much of the work in academic medical centers.
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B.2 Appendix Figures and Tables

Figure B1: Nephrectomy Procedures Per Capita

Notes: The figure plots  the fraction of individuals in each age bin in the 
population that get a procedure in CCS category 10.3 (nephrectomy).

152



Figure B2: Kidney Transplant Procedures Per Capita

Notes: The figure plots  the fraction of individuals in each age bin in the 
population that get a procedure in CCS category 10.4 ((kidney transplant)).
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C Appendix for Chapter 3

C.1 Data Appendix
In order to construct our baseline set of patient-physician encounters, we identify the physician
in the claims data who is most likely to be responsible for the patient’s treatment decision. In
the inpatient and outpatient claims data, this is the attending physician, and in carrier files this is
the referring physician. In particular, federal law requires that attending physicians attest to each
patient’s diagnoses and procedures. Medicare also requires that the attending physician be listed
on any claim that contains services other than nonscheduled transportation. Similarly, Medicare
requires that any claims that contain services and items that are the results of a physician’s order
or referral list the referring physician.63 A physician-patient encounter therefore consists of all
services provided to that patient as a result of the decisions of that physician in her capacity as
an attending or referring physician. This procedure ensures that we pick out the relevant decision
maker and that coverage of this decision maker in the data is maximized due to the relevant federal
regulations.

The raw sample contains the interactions of approximately 13 million patients and 1.7 million
physicians. We identify physicians through a combination of their National Provider Number
(NPI) and Universal Provider Identification Number (UPIN). An individual physician is a unique
combination of UPIN-NPI. We use a crosswalk prepared by the National Bureau of Economic
Research (NBER) which matches UPINs and NPIs that appear together in the claims data. If a
single NPI appears with multiple UPINs and vice versa, each unique combination is considered an
different physician. An exception is made when a UPIN only appears in combination with a single
NPI or a missing value, in which case missing values are set to the unique NPI that corresponds
to said UPIN. We follow a similar procedure when there is a single UPIN or a missing value
corresponding to a given NPI.

18 million out of the 144 million encounters in our baseline sample have a missing physician
identifier. The vast majority of these encounters have a missing physician identifier because there is
no UPIN or NPI listed on a subset of a patient’s medical claims in a given year. Additionally, there
are instances of claims in the raw data with erroneous values for the relevant physician’s UPIN and
NPI. An erroneous value is a value that does not follow the correct format of these two identifiers:
a letter followed by five digits for UPINs and 10 digits for NPIs. We set these values to missing
as well. An exception is made for surrogate UPINs such as “INT000” and “RES000”, which are
sometimes listed on claims when the responsible physician is yet to be issued a UPIN (e.g., if she
is a resident) (Solutions, 2017). These UPIN values are kept intact and not set to missing.

Patients can exit our sample for three primary reasons: death, switching to Medicare Advan-
tage, and exiting the 65-99 age window. About a third of patients die in our sample window, and
their mortality is similar for movers and non-movers. About a fifth exits from switching to Medi-
care Advantage. We observe the average non-mover for 10.5 years and the average mover for 11.6
years, with part of the difference being mechanical since the mover label is contingent on observ-
ing a patient for at least 2 years. Correspondingly, we observe the average non-mover physician
for 10.6 years and the average mover physician for 8.1 years.

We exclude patients who moved more than once and whose share of claims in the destination

6342 CFR 412.46 - Medical review requirements, Medicare Processing Manual Chapters 25 and 26
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HRR did not exceed that in the origin HRR by at least 0.75 after the move. For analytic tractability
our baseline analysis excludes patients whose HRR of residence changes multiple times.

To construct our physician mover definition, we follow a methodlogy analogous to the one
developed by Molitor, 2018. We begin by calculating the number of patients that each physician
sees in each HRR we observe her. We keep physicians who are observed in more than one HRR
and HRRs where each of these physicians sees more than one patient. For each of these physician-
HRR combinations, we form treatment episodes as the period of time between the first and last
encounter of a physician with a patient in that HRR. We define a physician’s primary HRR as the
one in which she sees the most patients. A physician’s secondary HRR as the highest-patient-
count HRR whose treatment episode does not overlap with that of the primary HRR (we take the
one closest in time to the primary HRR in case of a patient-count tie). A physician’s origin HRR
could be the primary or secondary HRR depending on which one occurs earlier in time. For each
move, relative year -1 is the final year of the origin HRR treatment episode and relative year +1 is
the first year of the destination HRR treatment episode.

We assign a separate physician ID to each practice episode for physician non-movers. We do
the same for physician movers for any non-primary and non-secondary practice episode. In prac-
tice, this means treating physicians who see patients from multiple HRRs as multiple independent
physicians. We do so to avoid using cross-HRR identifying variation coming from an individual
physician’s practice patterns outside of a move. We prefer to rely on variation coming from quasi-
exogenous cross-HRR physician moves, which is much better understood and more easily verified
as satisfying our identifying assumptions.

We construct our specialty visit subsamples using the following methodology.64 For each spe-
cialty, we begin by identifying all carrier claims for patients in the baseline sample where the per-
forming physician specialty matches the desired specialty. For the PCP subsample, this includes
“general practice”, “family medicine”, or “internal medicine”. For the cardiology and dermatology
subsamples, this includes “cardiology” and “dermatology” respectively. We further narrow these
claims down to physicians whose specialty in the Carrier file matches the specialty of interest (i.e.,
we require both that the claims be “PCP”, “cardiology”, or “dermatology” claims based on the
performing physician and that the performing physician be a “PCP”, “cardiologist”, or “dermatol-
ogist” based on her claims in the Carrier file). We define a physician’s Carrier file specialty in a
two-step procedure. First, we determine whether the physician is a PCP or a non-PCP based on
whether the majority of her submitted claims as performing physician list one of the three PCP
specialties (“general practice”, “family medicine”, or “internal medicine”). If the physician is not
a PCP, we define her specialty as the specialty that has the plurality of the physician’s submitted
claims as a performing physician in a given year. For the PCP subsample, we further drop any
claims whose place of service is a hospital’s inpatient department or the ER .

C.2 Econometric Appendix
Mover Identification of the Poisson Model

This appendix shows how the Poisson fixed effects model of Hausman et al. (1984) identifies causal
effects under a “common growth rates” assumption, similar to the common trends assumption

64In defining the PCP sample, we draw inspiration from Fadlon and Parys (2019).
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identifying effects in linear regression models. Suppose

yit ∼ Poisson(λit) (35)

where lnλit = x′itβ . The log-likelihood first-order condition for this model is

0 = ∑
i

ci ∑
t

xit

(
yit

ci
− exp(x′itβ

∗)

∑s exp(x′isβ ∗)

)
(36)

for ci = ∑t yit . Suppose t ∈ {0,1} and x′itβ = αi+τTit + γDit , for binary Dit and where Tit = 1{t =
1}. Then we can rewrite (36) as
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where Nc = |{ci : ci = c}| is the number of individuals with ∑t yit = c, Nc, j→k is the same for
individuals who switch from Di0 = j to Di1 = k, and

St
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(38)

is the average yit/∑t yit among such individuals.
Suppose, as in a canonical difference-in-difference setting, that there are two types of individ-

uals i: those who remain untreated in both periods (Di0 = Di1 = 1) and those who switch into
treatment (Di0 = 0, Di1 = 1). Then (37) becomes
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the solution to which can be written

τ
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β
∗ = ln

((
∑i:0→1 yi1

∑i:0→1 yi0

)
/

(
∑i:0→0 yi1

∑i:0→0 yi0

))
. (41)
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The Poisson treatment coefficient thus thus asymptotically sets

β = ln
(

E[yi1 | Di1 = 1]
E[yi0 | Di1 = 1]

)
− ln

(
E[yi1 | Di1 = 0]
E[yi0 | Di1 = 0]

)
,

the difference in log growth rates among those treated and untreated in period 1.
Letting yit(0) and yit(1) denote untreated and treated potential outcomes of individual i in time

t, we have under an assumption of common log growth rates,
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that
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)
. (43)

This shows that in the simple difference-in-difference setting the Poisson fixed effect regression
identifies the log percentage effect of treatment on the treated.

A similar result holds for the simplest mover design, in which individuals either switch out of
or into treatment in t ∈ {0,1}. Specifically, it can be shown that the Poisson treatment coefficient
asymptotically sets
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Thus, under the same common log growth rate assumption
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the average log percentage treatment-on-the-treated effect across the two time periods.

Event Study Decomposition

This appendix shows how the estimates from our encounter utilization model (22) can be repre-
sented graphically in an event study framework. Following the logic in Section 3.4.1, note that we
can rewrite the patient-level utilization model (28) for patient movers as

yit = α̃i + τt +(1[r(i, t)> 0]Si)∆i + x′itβ + lnNit +δ it +σit +νit , (46)

where α̃i = αi + γo(i) and here Si = (γd(i)− γo(i))/∆i denotes the share of the observed difference
in utilization between a mover’s destination and origin HRRs due to the place effects γ j. This
Si differs from the share defined in Section 3.4.1 by isolating the other (non-physician) regional
supply-side drivers of utilization. We do not assume that the physician component εit = lnNit +
δ it +σit +νit is additively separable in place and patient effects, as in Section 3.4.1.
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Equation (46) suggests an enriched event study decomposition of the different drivers of ge-
ographic variation in healthcare utilization. Note that lnNit is directly observed and that δ it and
σit may be estimated by first-step estimates of the physician-level parameters δd and θ and an as-
sumption on the distribution of residual utilization variation εidt (for example, that εidt is iid given
(x,w, j). Then, by subtracting estimates of lnNit + δ it +σit from observed utilization yit , we ob-
tain a model like Equation (32). This suggests that a patient-level event study using this adjusted
ỹit ≡ yit−(lnNit +δ it +σit) as an outcome may capture a weighted average of non-physician place
effect shares Si, by taking into account the predicted change in physician availability, sorting, and
encounter quantity in εit . The difference between this adjusted event study of ỹit and the motivating
patient-level event study in Figure 3.3 can furthermore be evaluated by performing event studies
on each of the subtracted components lnNit , δ it , and σit . These auxiliary event studies replace yit
in Equation (32) with each of these components, with the sum of event study coefficients θr across
specifications equaling, by construction, the difference between the adjusted and original event
study jumps. A large event study jump in a regression of δ it would, for example, suggest that a
sizable proportion of the aggregate place effect in Figure 3.3 is due to differences in the availability
of physicians with different utilization effects across different HRRs. Similarly, event study jumps
in lnNit or σit would suggest that some of the aggregate place effect in Figure 3.3 arises from
systematic differences in the number of encounters or matching of patients to physicians across
HRRs.

We use the parameters from our encounter-level estimation to perform this decomposition.
We first form simulation-based estimates of average physician utilization and selection terms δ it
and σit .65 We then use these estimates as components in estimating the enriched event study
decomposition (46).66

The results from this event study decomposition are presented in Appendix Figure C2. In Panel
A, we reproduce the patient-level event study using adjusted annual spending yit − (lnNit + δ it +
σit) as the outcome. As discussed above, the height of the resulting event study jump estimates
a weighted average of the share of place effects in average log utilization differences, net of any
potential contribution of physicians to geographic spending differences. The figure shows that
netting out the contribution of physicians to annual spending differences alters the event study
substantially. While the unadjusted event study from regression (32) shows that the place share in-
cluding physician utilization differences is around 50%, subtracting those differences decreases the
estimated place share to around 10%. The figure indicates that non-physician factors account for
around 20% of total supply-side effects of places on patient spending, or 10% of overall differences
in geographic variation.

Panels B-C of Appendix Figure C2 decompose the difference between the simple patient-level
event study in Figure 3.3 and the enriched analysis in Panel A of Appendix Figure C2. Around half
of the remaining overall “place effect” is due to an effect on the increased number of physicians
seen (Panel B), with half due to increased practice intensity of the available physician stock (Panel
C). The event study on the residual selection term σit is flat, suggesting none of the variation
in utilization across HRRs is due to the differential sorting of patients to physicians with different

65Specifically, for each patient and year, we take a random draw of physicians from her HRR with the number of
physicians equalling her actual number of encounters for this patient and year. We use these simulated encounters
averaged over 100 random draws to form estimates of δ it and σit .

66For the 6% of patient-years that have no utilization, we set δ it and σit equal to 0 since there is no actual patient-
physician encounter.
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demand and practice styles. Overall, this analysis suggests around 20% of the geographic variation
in utilization is due to differences in physician practice style, around 20% is due to differences in
the number of physicians seen, and around 10% is due to differences in residual supply-side factors.
The remaining 50% appears due to differences in patient demand, as first found by Finkelstein et al.
(2016).

It is also worth emphasizing how our enriched analytic framework can reconcile the earlier
patient- and physician-level event studies. While Panel A of Figure 3.3 indicates that the share of
places in geographic utilization is important, a superficial read of Panel B may cause one to believe
that physician practice styles, which account for only 20% of geographic utilization differences for
physicians, may not be an important driver of the place share for patients. As discussed above, there
are many reasons why drawing such a conclusion may be unwarranted, and Panel A of Figure C2
shows precisely and strikingly that such a conclusion is in fact misleading.

Finally, we note that the shape of the pre- and post-trends in all of the figures are consistent
with our identifying assumptions and our interpretation of the driving forces behind the observed
effects. Our model suggests that utilization should be flat before and after a move and that it should
jump discontinuously upon a move. It is clear that in both Figure 3.3 and Figure C2, this is indeed
the case. The flat pre-trends everywhere are consistent with our assumption of the exogeneity of
moves with respect to unobserved determinants of spending. Additionally, as in Finkelstein et al.
(2016), the flat post-trends and the symmetry between positive and negative moves of the same
size documented in Figure C1 speak against patient habit-formation as the source of some of the
cross-regional differences we observe (Becker and Murphy, 1988).67

Spending Variation Counterfactuals

This appendix formally defines our counterfactual analysis of how differences in average log an-
nual patient utilization in each HRR, as represented in equation (29), change as we equalize the
various underlying sources of spending differences. This analysis proceeds in five incremental
steps: first by shutting down patient-physician selection and then exploring sequentially the effect
of eliminating variation due to physicians, patients, and places.

Our first counterfactual sets σ j = 0:

ȳ(1)j = p j(ᾱ j + γ j +N j + δ̄ j) (47)

The regional distribution of this quantity captures how the geographic distribution of healthcare
utilization would change if there were no systematic differences in the allocation of patient en-
counters to physicians with different practice styles, holding fixed the number of physicians each
patient sees and the set of patients and physicians in each region. We then remove regional varia-
tion in average physician intensity by setting δ̄ j to its average value across HRRs δ̄ :

ȳ(2)j = p j(ᾱ j + γ j +N j + δ̄ ) (48)

67First, Figure C1 shows that for any given |δ̂i|, the change in log utilization looks symmetric for moves up and
down, which would be inconsistent with a story where aggressive treatments started aggressive areas continue after
a move since this would introduce an asymmetry between high- and low-utilization areas. Second, habit formation
would predict a gradual convergence to the region average after a move. In our setting, the change in utilization after a
move is sharp and discontinuous and utilization remains relatively flat for many years after the move was completed.
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The regional distribution of this quantity captures how the geographic distribution of healthcare
utilization would change if there were no systematic differences in the average practice styles of
physicians across regions.

The next two counterfactuals eliminate regional variation due to patients:

ȳ(3)j = p j(ᾱ + γ j +N j + δ̄ ) (49)

ȳ(4)j = p̃ j(ᾱ + γ j + Ñ j + δ̄ ). (50)

Here ȳ(3) sets ᾱ j to its average ᾱ , thus eliminating regional variation due to patient effects on
utilization per encounter. ȳ(4)j leverages the encounter quantity model (23) to eliminate regional
variation coming from patient effects on the number of encounters. Specifically we define, in
contrast to p j,

p̃ j = 1−E[exp(−α
n
i − γ

n
j − x′itβ

n)], (51)

the share of individuals with any healthcare utilization in region j, given a random geographic
reallocation of patients. This is a known function of the extensive margin model parameters αn

i ,
γn

j , and β n. We similarly define Ñ j as the average log number of physicians seen in region j, when
non-zero, under random patient reallocation.

Following these four counterfactuals, the only regional variation left is that due to place effects
on utilization per encounter and number of encounters. We separate these two factors through our
final counterfactual which sets γ j to its regional average γ̄:

ȳ(5)j = p̃ j(ᾱ + γ̄ + Ñ j + δ̄ )

The only regional variation in ȳ(5)j is due to place effects on the number of physicians seen, p̃ j and

Ñ j. Taken together, Yj and Y (1)
j −Y (5)

j thus provide a full accounting of the partial equilibrium role
that each of the primary factors of interest (physicians, places, and patients) play in the geographic
variation in utilization.
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C.3 Appendix Figures and Tables

Figure C1: Change in Log Utilization by Size of Move

A. Patients

B. Physicians

Notes: This figure shows the change in log utilization before and after move for patient (Panel A) and physician
(Panel B) movers. For each mover, we calculate the difference in average log utilization between their origin and
destination HRRs, then group these differences into ventiles. The x-axis displays the mean of difference for movers
in each ventile. The y-axis shows, for each ventile, average log utilization two to five years post-move minus average
log utilization two to five years pre-move. The line of best fit is obtained from simple OLS regression using the 20
data points corresponding to movers, and its slope is reported on the graph. The sample is all mover years between
two and five years pre-move and between two and five years post-move (N = 2,704,487 patient-years in Panel A and
N = 479,057 physician-years in Panel B). For comparison, we also compute the average change in log utilization for
a sample of matched non-movers, which we show with the “x” marker on each graph. Specifically, for each patient
or physician mover in our data in each calendar year, we randomly draw a non-mover in the same year in the mover’s
origin HRR (for patients, we also require that the non-mover share the mover’s gender, race, and five-year age bin; for
physicians, we draw a random non-mover physician in the mover’s origin HRR); the union of the selected non-mover
patient-years (Panel A) or physician-years (Panel B) forms the matched sample.
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Figure C2: Mover Event Study Decomposition

A. Adjusted average per-encounter log utilization

B. Log number of physicians seen

C. Average physician intensity

D. Physician selection

Notes: This figure shows the coefficients θr estimated from equation (46) for patient movers. The coefficient for relative year -1 is normalized to 0. The dependent
variable is adjusted annual spending yit− (lnNit +δ it +σit) in Panel A, number of physicians seen lognit in Panel B, average physician intensity δ̄it in Panel C, and
average physician-patient selection σit in Panel D; xit consists of indicator variables for five-year age bins (Panel A) and relative-year effects (Panel A and Panel
B). The dashed lines are upper and lower bounds of the 95 percent confidence interval. The sample is all patient-years ( N = 23,678,685 patient-years).
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Figure C3: Distribution of Physician Fixed Effects Across HRRs

Notes: The map shows the distribution of average physician fixed effects by HRR, in quintiles defined in the legend.
Physician effects are estimated from our encounter-level model. The sample is the baseline sample of all encounters
(N = 144 million encounters).
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Figure C4: Mover Event Study (PCPs)

A. Patients

B. Doctors

Notes: This figure shows the estimated θr coefficients in Equation (32) for patient movers (Panel A) and in Equation
(33) for physician movers (Panel B). The coefficient for relative year -1 is normalized to 0. The dependent variable
in Panel A is normalized log annual patient spending and the control vector includes indicator variables for five-year
age bins and relative-year effects for movers. The dependent variable in Panel B is normalized log annual physician
spending and the control vector includes relative-year effects for movers. Dashed lines indicate upper and lower
bounds of the 95 percent confidence interval for each θr estimate. The sample is the PCP specialty subsample.
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Figure C5: Mover Event Study (Cardiologists)

A. Patients

B. Doctors

Notes: This figure shows the estimated θr coefficients in Equation (32) for patient movers (Panel A) and in Equation
(33) for physician movers (Panel B). The coefficient for relative year -1 is normalized to 0. The dependent variable
in Panel A is normalized log annual patient spending and the control vector includes indicator variables for five-year
age bins and relative-year effects for movers. The dependent variable in Panel B is normalized log annual physician
spending and the control vector includes relative-year effects for movers. Dashed lines indicate upper and lower
bounds of the 95 percent confidence interval for each θr estimate. The sample is the cardiology specialty subsample.
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Figure C6: Mover Event Study (Dermatologists)

A. Patients

B. Doctors

Notes: This figure shows the estimated θr coefficients in Equation (32) for patient movers (Panel A) and in Equation
(33) for physician movers (Panel B). The coefficient for relative year -1 is normalized to 0. The dependent variable
in Panel A is normalized log annual patient spending and the control vector includes indicator variables for five-year
age bins and relative-year effects for movers. The dependent variable in Panel B is normalized log annual physician
spending and the control vector includes relative-year effects for movers. Dashed lines indicate upper and lower
bounds of the 95 percent confidence interval for each θr estimate. The sample is the dermatology specialty subsample.
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