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Chapter 1

Asymptotic Normality for Multivariate
Random Forest Estimators

1.1 Introduction

Trees and random forests are non-parametric estimators first introduced by Breiman (2001).
Given a feature space X � Rp and a set of data points f.Xi ; Yi /g � X � R, tree estimators
recursively partition the feature space into axis-aligned non-overlapping hyperrectangles1

by repeatedly splitting X along a given axis. The prediction of the tree estimator at a test
point x 2 X is then an aggregate of the targets Yi ’s that land in hyperrectangle containing
x; when Yi is continuous, the aggregate is the sample mean and the tree is known as a
regression tree. The depth of a tree estimator—defined as the maximal number of splits
taken before reaching a terminal hyperrectangle—characterizes its complexity. There are two
popular methods for controlling complexity: boosting and bagging. The boosting approach
iteratively fits shallow trees to the previous step’s residuals, starting with the target function
for the initial tree. Complexity is reduced by using a shrinkage factor at each step, as well as
by trimming the final tree (i.e., so that predictions aremade at non-terminal hyperrectangles).
The bagging approach instead grows a collection of deep trees on different subsets of the
data, and averages over those trees for the final prediction. The intuition for bagging is that
trees grown on different subsets are not perfectly correlated, so that aggregation reduces
variance and balances the bias-variance tradeoff. Estimators of the latter type are called

I would like to thank my advisors Alberto Abadie and Victor Chernozhukov for reviewing multiple drafts
of this paper. In addition, Sophie (Liyang) Sun, Ben Deaner, participants in the seminar class 14.386 (Spring
2020), and participants of MIT’s Econometrics Lunch seminar provided very useful feedback. I would also like
to thank Professor Stefan Wager for helping me understand mechanics of covariance estimates in random forest
models.

1When the feature space X need not be rectangular, one may always enlarge X to a rectangular set X0 that is
defined to the intersection of all rectangular sets containing X.
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random forests, and they are the focus of this paper.
Since their introduction in the early 2000s, random forests have become an increasingly

important tool in applied data analysis, owing to a multiple of practical advantages over
competing models. First, high-quality random forest libraries are readily available, with
popular implementations that scale to hundreds of distributed workers as in Ke et al. (2017);
Chen and Guestrin (2016). Moreover, the core algorithm behind tree estimators and random
forests are simple enough to allow for rapid prototyping of bespoke implementations, e.g.
Athey, Tibshirani and Wager (2017). Another advantage of tree-based methods is that
they can ingest real-world data without much issue: continuous, discrete, and ordered
categorical features may be freely mixed2 (c.f., Prokhorenkova et al. (2018)), model estimates
are immune to feature outliers (c.f., Biau and Scornet (2015); Maniruzzaman et al. (2018)),
and missing data may be easily incorporated (see Tang and Ishwaran (2017) for a survey).
The construction of trees also naturally aligns with the spatial locality found in most real
world target functions, in which the underlying relationship between Y and X is continuous.
Finally, tree models are interpretable, with well-defined notions of feature importance
(Gregorutti, Michel and Saint-Pierre (2017); Strobl et al. (2008)) that support their use as
model selection tools (Genuer, Poggi and Tuleau-Malot (2010)).

Within economics, random forests may be fruitfully applied to estimate heterogeneous
treatment effects. In the potential outcomes framework of Rubin (1974) (see Imbens and
Rubin (2015) for an overview), an individual i is associated with two potential outcomes
Y .0/ and Y .1/, with one of the outcomes being realized depending on whether i undergoes
treatment. The statistician has access the IID observations f.Xi ; Wi ; Yi / W 1 � i � ng, where
Xi is a vector of observed covariates for individual i , Wi 2 f0; 1g is (an encoding of) her
treatment status, and Yi D Y

.Wi /
i is her realized outcome. One quantity of interest is the

treatment effect at x

�.x/ ´ E.Y .1/
� Y .0/

j Xi D x/:

Since only one of Y
.0/
i and Y

.1/
i is observed, consistent estimation of �.x/ requires further dis-

tributional assumptions. A common assumption is unconfoundedness, i.e., that treatment
status Wi is independent of Y

.1/
i and Y

.0/
i conditional on Xi . Under this assumption,

�.x/ D E
�
Yi

�
Wi

e.x/
�

1 � Wi

1 � e.x/

�
j Xi D x

�
; where e.x/ D P.Wi D 1 j Xi D x/.

Here, thekey function is e.x/, knownas the propensity score: it is the probability of treatment
for the subpopulation with covariates x (see Hirano, Imbens and Ridder (2003) for the
derivation of the preceding formula and its implications). Machine learning methods—
including random forests—may be brought to bear on the problem by estimating e.x/.

2Splits on discrete features partitions that variable into two arbitrary non-empty sets; no changes are needed
for ordered categorical features.
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Alternatively, unconfoundedness also implies

�.x/ D E.Y j W D 1; X D x/ � E.Y j W D 0; X D x/;

so that �.x/ may be estimated by fitting two models, one on the subset of the sample in
which W D 1, and the other on W D 0.

In econometric applications, conducting pointwise inference on the target function
f W X ! R (e.g., to test the null hypothesis H0 W f .x/ D 0) requires knowledge about the
rate of convergence or asymptotic distribution of the underlying estimator Of .x/, where
x specifies a subpopulation. However, functionals of the target function are often also of
interest: for example, the difference in treatments effects (i.e., f D �) for two different
subpopulations is captured by the quantity

f .x/ � f . Nx/;

where x and Nx are covariates describing the two subpopulations. More generally, we might
also be interested in a weighted treatment effect, where a subpopulation x is given an
importance weight modeled by a density �.x/. In this case, the corresponding functional of
f is Z

x2X
f .x/d�; where � is not necessarily the density of x;

and the integral is taken over the domain X.
Inference on functionals of f requires not only the asymptotic distribution of the point

estimate f .x/, but also the correlation between estimates at different points f .x/ and f . Nx/.
As a concrete example, consider the function �.x/ and the simple difference �.x/ � �. Nx/. We
have

�.x/ � �. Nx/ D ŒE.Y j W D 1; X D x/ � E.Y j W D 1; X D Nx/�

� ŒE.Y j W D 0; X D x/ � E.Y j W D 0; X D Nx/�

DW A � B:

Wemay estimate the difference by estimating A and B separately, fitting a random forest
model to the two “halves” of the dataset where Wi D 1 and Wi D 0, as discussed above. The
estimators OA and OB obtained are thus independent, so that Var. OA � OB/ D Var OA C Var OB .
The variances of OA and OB then depend on the covariance of their respective random forest
estimates at x and Nx.

This paper studies the correlation structure of a class of random forest models whose
asymptotic distributionswere first worked out inWager andAthey (2018). We find sufficient
conditionsunderwhich asymptotic covariances of randomforest estimates at different points
vanish relative to their respective variances; moreover, we provide finite sample heuristics
based on our calculations. To the best of our knowledge, this is the first set of results on the
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correlation structure of random forest estimators.
The present paper builds on and extends the results inWager and Athey (2018), which in

turn builds on related work inWager andWalther (2015) on general concentration properties
of trees and random forest estimators. Another related paper is Athey, Tibshirani and Wager
(2019), which extends the random forest model considered here to a broader class of target
functions by incorporating knowledge of moment conditions. Similar stability results estab-
lished in this paper have appeared in Arsov, Pavlovski and Kocarev (2019), which studies
notions of algorithmic stability for random forests and logistic regression and derive gener-
alization error guarantees. Also closely related to our paper are Chernozhukov, Chetverikov
and Kato (2017) and Chen (2018), concerning finite sample Gaussian approximations of
sums and U -statistics in high dimensions, respectively. In this context, our paper provides a
stepping stone towards applying the theory of finite sample U -statistics to random forests,
where bounds on covariance matrices play a central role.

The paper is structured as follows. In Section 2, we introduce the random forest model
and state the assumptions required for our results; Section 3 contains our main theoretical
contributions; Section 4 builds on Sections 3 and discusses heuristics useful in finite sample
settings; Section 5 concludes. All proofs are found in the appendix.

1.2 Model Setup and Assumptions

1.2.1 Overview of Tree Estimators

The goal of this paper is to study asymptotic Gaussian approximations of random forest
estimators. Throughout, we assume that a random sample fZi D .Xi ; Yi / W 1 � i � ng �

X�R is given, where eachXi is a vector of features or covariates belonging to a subsetX � Rp

of p-dimensional Euclidean space, and Yi 2 R is the response or target corresponding to Xi .
We will refer to X as the feature space or the feature domain.

Given the data set fZig
n
iD1, a tree estimator recursively partitions the feature space by

making axis aligned splits. Specifically, an axis-aligned split is a pair .j; t/ where j 2

f1; : : : ; pg is the splitting coordinate and t 2 R is the splitting index; given a subset R � X, a
split .j; t/ divides R into left and right halves

fx 2 R W xj < tg and fx 2 R W xj > tg; (1.1)

where xj denotes the j -th coordinate of the vector x. Starting with the entire feature space
X, the recursive splitting algorithm computes a (axis-aligned) split based on the data fZi W

1 � i � ng; for example, when the target Yi is continuous, a popular choice of determining
optimal splits is the following rule

.j; t/ D argmin
Qj ;Qt

X
i WXi 2L

.Yi � �L/2
C

X
i WXi 2R

.Yi � �R/2; (1.2)

12



where L D L. Qj ; Qt / and R D R. Qj ; Qt / are the two halves of X obtained by the split . Qj ; Qt /, with
�L and �R being the averages of targets Yi whose corresponding feature Xi land in L and R,
respectively.

After the first split, X is split into two halves L and R. The process is then repeated for
L and R separately, in that a split for L is computed by using the subset of the data whose
features Xi belong in L, and likewise for R. Each of the halves is then split again, and so
on, until a stopping criterion is met. The process completes when the stopping criterion
is satisfied for each subset; at this point, the collection of halves forms a partition3 of X,
with each partition—and all the halves that came before it—being the intersection of a
hyperrectangle with X. The sequence of splits corresponds to a tree in a natural way; we
will call the halfspaces that arise during the splitting process as nodes, and elements of the
final partition terminal nodes.

Given the collection N1; : : : ; Nq of terminal nodes (which form a partition of X), the
prediction of the tree at a generic test point x 2 X is the average of the responses that belong
in the same terminal node as x

T .xI �; Z1; : : : ; Zn/ D

qX
j D1

1.x 2 Nj /
1

jNj j

X
i WXi 2Nj

Yj ; (1.3)

where the outer sum runs over observations i for which Xi belongs to the partition Nj , and
jNj j is the number of such observations. The input � is an external source of randomization
to allow for randomized split selection procedures. Thus, T .xI �; Z1; : : : ; Zn/ refers to the
prediction at x for a tree grown using data fZ1; : : : ; Zng with randomization parameter � . As
a function of x, keeping Z1; : : : ; Zn and � fixed, T W X ! R is then a step function, i.e., a
linear combination of indicator functions of rectangular sets.

We note here that equations (1.2) and (1.3) are not the only possible choices; in particular,
the rule used to choose the optimal split may be path dependent (i.e., dependent on previous
splits) as in popular implementations (see Chen and Guestrin (2016), which allows for
random forests but uses gradient boosting after the initial split), and the final prediction rule
(1.3) may instead do a final linear fit or use a weighted average (c.f., Ke et al. (2017); Chen
and Guestrin (2016)). Analysis of tree (and random forest) models may be considerably
more complicated in these cases, so the present paper stipulates that the algorithm uses a
splitting rule that is similar to (1.2) (c.f. Proposition 1.10) anduses (1.3) as the final prediction.
In particular, this implies that the target function estimated by the tree estimator is the
regression function x 7! E.Y j X D x/.

3According to (1.1), we exclude edge cases when Xi lead on an “edge” of a hyperrectangle. This is not an
issue for continuous variables, while for categorical variables, the definition should be slightly changed so that
one of the halves contain xj D t . In this paper, we deal only with continuous features.
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1.2.2 From Trees to Random Forests

Given a specific tree estimator T , i.e., given the splitting rule used to build a tree, we define
the random forest estimator to be the average of tree estimators across all

�
n
s

�
subsamples,

marginalizing over the randomization device �. Specifically, the random forest estimate
RF.x/ at x 2 X, given data fZ1; : : : ; Zng, is defined to be

RF.xI Z1; : : : ; Zn/ D
1�
n
s

� X
i1;:::;is

E� T .xI �; Zi1
; : : : ; Zis

/; (1.4)

where the summation runs over size-s subsets of f1; : : : ; ng, and the inner expectation is
taken with respect to �. Importantly, each tree is grown on a subsample of size s < n. We
followWager and Athey (2018) in assuming that s � nˇ for some ˇ sufficiently close to one;
specifically, we assume throughout that the subsample size is chosen as to satisfy the as-
sumptions of Theorem 3 of Wager and Athey (2018), so that—along with other assumptions
to be introduced presently—the random forest estimator RF is a consistent estimator of the
target function x 7! E.Y j X D x/.

In keeping with the notation of Wager and Athey (2018), we will write T .xI Z1; : : : ; Zs/

to mean the expectation of T .xI �; Z1; : : : ; Zs/ over �. With this notation, the random for-
est estimator (at a given point x) defined by (1.4) is a U -statistic with the size s kernel
.Z1; : : : ; Zs/ 7! T .x; Z1; : : : ; Zs/. We will discuss the U -statistic representation of RF in
greater detail in Section 3.

1.2.3 Discussion of Model Assumptions

As our results will be an extension of the results in Wager and Athey (2018), we will study
the same model of random forests and adopt a similar set of assumptions. The assumptions
regarding tree estimators have appeared before in Wager and Walther (2015), while the
distributional assumptions on the conditional moments of Y are standard (see e.g., Chapters
7 and 9 in Hastie, Tibshirani and Friedman (2009)).

The first—and most bespoke—assumption is that the tree algorithm is honest. Intu-
itively, honesty stipulates that knowledge of the tree structure does not affect the conditional
distribution of tree estimates when the features are fixed.

Assumption 1.1 (Honesty). The target Yi and the tree structure (i.e., the splitting coordinates
and splitting indices) are independent conditional on Xi . Specifically, we require

dist.Yi j Xi ; S/ D dist.Yi j Xi /; (1.5)

for all observations i where Yi participates in the final prediction, where S is set of splits chosen by
the tree algorithm.

There are several ways to satisfy this assumption. The first is to calculate splits based

14



only on the features Xi . This rules out the example splitting rule given in (1.2), so we could
instead use its analog in X,

.j; t/ D argmin
Qj ;Qt

X
i WXi 2L

kXi � �Lk
2
2 C

X
i WXi 2R

kXi � �Rk
2; (1.6)

where here �L and �R denote the average (i.e., center of mass) of the Xi in each halfspace.
In this instance, the choice of splits is essentially a clustering algorithm that finds the best
division of the sample points into two parts. Another way to satisfy the honesty assumption
while still computing splits based on the targets is to use sample splitting. The dataset is
partitioned into two parts I1 and I2; observations in I1 and Xi 2 I2 may be freely used
during the splitting process, while Yi 2 I2 are used for the final predictions. In this case,
equality in (1.5) is required to hold for i 2 I2. Finally, a third method to satisfy honesty
requires the existence of auxiliary data fWig. During the splitting stage (“model fitting”),
splits are computed as if the response variable is Wi ; for example, (1.2) is used with �L and
�R being the averages of fWig. Once the tree is fully grown, predictions (“model inference4”)
are made using Yi ’s as usual. The practice of using such surrogate targets is especially popular
in time-series prediction, where different horizons are used in fitting and inference steps
(c.f., Quaedvlieg (2019)).

In the present paper, for simplicity of notation, we shall assume that the first scheme
is used to satisfy honesty—namely, splitting decisions are based on the feature vectors Xi

only. Our results extend to all three schemes.5

Our next assumption will ensure that each one of the p axes is chosen as the splitting
coordinate with a probability bounded away from zero.

Assumption 1.2 (Randomized Cyclic Splits). When computing the optimal split, the algorithm
flips a probability ı coin that is entirely independent of everything else. The first time the coin
lands heads, the first coordinate is chosen as the splitting coordinate; when the coin lands heads
again, the second coordinate is chosen, and so on, such that on the J -th time the coin lands heads,
the .J mod p/ C 1-th coordinate is chosen6. After the random splitting coordinate is chosen, the
splitting index may still be chosen based on the observations.

This assumption is a modification of the random splitting assumption in Wager and
Athey (2018), in which each of the p axes has a probability ı of being chosen at each split.
The latter assumption could be directly implemented by flipping a pı coin and selecting
one of the p coordinates uniformly at random as the splitting coordinate when the coin
lands heads. Another method to satisfy the corresponding assumption in Wager and Athey

4The terminology ‘inference’ is used to mean computing the predictions of an existing model, which is
unrelated to the typical usage of ‘inference’ in econometrics. The former terminology is standard in applied
settings, used when describing a data pipeline: see the documentation of Google and other contributors (2015);
Pedregosa et al. (2011).

5As in Wager and Athey (2018), constants appearing in our bounds may change in scheme two.
6We adopt the convention that mp mod p D 0, hence notation for adding 1 to .J mod p/.
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(2018), studied in Athey, Tibshirani andWager (2019) and implemented by popular libraries
such as Ke et al. (2017), is randomizing the number of available splitting axes in each round.
Specifically, a Poisson random variable Q with intensity proportional to

p
p is first realized

(Q is realized independently from round to round). Afterwards, min.Q; p/ many features
are uniformly selected as potential candidates7 for splitting in that round. Clearly, this also
yields a positive probability ı > 0 that each coordinate 1 � j � p is chosen, independently
of everything else.

In contrast to our assumption, both methods above involve two separate rounds of
randomization: first, a random variable encoding the decision to split randomly is made
(i.e., the coin or the random variable Q), and second, the splitting axis is then determined.
Intuitively, our cyclic splitting assumption above forgoes the second randomization step:
in doing so, the variance of the number of times that any coordinate is chosen is reduced.
Importantly, the variance will depend only on ı and not on p, which we will exploit in our
proofs.

Assumption 1.3 (The Splitting Algorithm is .˛; k/-Regular). There exists some ˛ 2 .0; 1=2/

such that whenever a split occurs in a node withm sample points, the two resulting hyperrectangles
contain at least ˛m many points each. Moreover, splitting ceases at a node only when it contains
fewer than 2k � 1 points.

This key assumption is carried over from Wager and Athey (2018) and contains two
requirements. The first requires that no split may produce a halfspace containing too few
observations, i.e., that both halfspaces are large when measured by the count of observa-
tions. As shown in Wager and Walther (2015), this implies that with exponentially small
complementary probability, the splitting axis shrinks by a factor between ˛ and 1 � ˛, so
that both halfspaces are also large in Euclidean volume (with high probability).

The second half of the assumption places an upper bound on the number of observations
in terminal nodes. Trees grown under this assumption will necessarily be deeper as the
sample size n (and thus, the subsample size s D nˇ ) increases. In particular, the predictions
at leaf nodes—averages of observations Yi—will be averages of a bounded number of terms.
An important consequence is that the variance of the tree estimator (at any test point x) is
bounded below due to the distributional assumption on Var.Y j X D x/ (see Assumption 5).

Assumption 1.4 (Predetermined Splits). The candidate splits considered at each node do not
depend on the data fZig, so that they are fixed ahead of time. Furthermore, the number of candidate
splits at each node is finite, and every candidate split shrinks the the length of its splitting axis by
at most a factor ˛.

The predetermined splitting assumption is specific to our paper. That candidate splits
considered at each node are data-independent is “almost” without loss of generality since

7Splitting for that node ceases if Q D 0.
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the feature space X is fixed. For example, implementations of random forests typically use
32-bit floating point numbers as their splitting index, so that the assumption is automatically
satisfied. Furthermore, the assumption allows candidate splits to depend on the location of
the hyperrectangle, so that the splitting process is still data-driven insofar as the sequence
of splits leading up to a node depends on the observations.

One interpretation of this assumption is that it aids in data compression. For example,
suppose that all features are continuous and X D Œ0; 1�p, and that all candidate splits have
the form .j; k=2m/ for some integers 1 � j � p and 0 � k < 2m, where m � 1 is a fixed
integer. If a splitting rule such as (1.6) is used, then the optimal split depends only on the
values fb2mXij c W 1 � i � n; 1 � j � pg instead of fXij g. Each member of the former set
is an integer in f0; : : : ; 2m � 1g and thus could be represented using m bits. In particular,
for a grid resolution of 28 D 256—a fine grid even in moderately large dimensions—each
coordinate of the feature vectors Xi may be stored in a single byte. Since modern CPUs and
graphics processors store floating point numbers in four or eight bytes, this is a substantial
reduction, allowing computation power to scale to larger datasets. The process of encoding
features in this way is known as quantizing, which is an option supported by popular software
packages. In this way, though the predetermined split assumption may seem at first glance
restrictive, it aligns our model more closely with practice.

Assumption 1.5 (Distributional Assumptions on the DGP of .X; Y /). The features Xi are
supported on the unit cube X D Œ0; 1�p with a density that is bounded away from zero and infinity.
Furthermore, the functions x 7! E.Y j X D x/, x 7! E.Y 2 j X D x/, and x 7! E.jY j3 j X D x/

are uniformly Lipschitz continuous. Finally, the conditional variance Var.Y j X D x/ is bounded
away from zero, i.e., infx2X Var.Y j X D x/ > 0.

The continuity and variance bound assumptions are standard. Note that a consequence
of continuity and compactness of the hypercube is that the conditional moments up to order
three are bounded. Our results will not explicitly depend on knowledge of the density of X :
however, the density will affect the implicit constants that we carry throughout our proofs
(c.f., Lemma 3.2 and Theorem 3.3 in Wager and Athey (2018)).

1.3 Gaussianity of Multivariate U -Statistics

1.3.1 Test Points and Notational Conventions

We begin investigation of the random forest estimator in this section. As discussed in the
model introduction, the random forest estimator RF.x/ at a test point x is a U -statistic whose
kernel is the tree estimator T .x/ marginalized over external randomizations. This paper
studies the multivariate distribution of RF, specifically the correlation structure between
RF.x/ and RF. Nx/ at distinct points x and Nx 2 X. Towards that end, we shall fix a collection
of q test points x1; : : : ; xq 2 X throughout the remainder of the paper. As these points will
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remain fixed, for notational brevitywewill omit their explicit dependencewhenwriting estima-
tors. Therefore, RF.Z1; : : : ; Zn/ stands for the q-dimensional estimator that is the random
forest evaluated at x1; : : : ; xq , given observations fZi W 1 � i � ng. As a consequence of this
notation, most of our equations are to be understood in Rq, with equality and arithmetic
operations acting coordinate-wise. Finally, when there is no confusion, subscripts (typically
k or `) denote a specific coordinate, i.e., the estimate at the k-th or `-th test point; a notable
exception is T1, which refers to a Hajek projection that we now describe.

1.3.2 Hajek Projections

We start by reviewing properties of the Höeffding Decomposition of U -statistics, also known
as Hajek projections; see Vaart (1998) for a textbook treatment of the univariate case. Let
f .Z1; : : : ; Zm/ 2 Rq be a generic q-dimensional statistic based on m observations. TheHajek
projection of f is defined to be

Vf .Z1; : : : ; Zm/ D

mX
iD1

EŒf .Z1; : : : ; Zm/ j Zi � � .m � 1/Ef .Z1; : : : ; Zm/:

That is, it is the coordinate-wise projection of f to the linear space spanned by functions
of the form fg.Zi / W 1 � i � mg. In particular, when f is symmetric in its arguments and
Z1; : : : ; Zm is an IID sequence, we have

Vf .Z1; : : : ; Zm/ D

mX
iD1

f1.Zi / � .m � 1/Ef; (1.7)

where f1.z/ is the function such that f1.Z1/ D E.f j Z1/, i.e., f1.z/ D E.f j Z1 D z/.
In our setting, applying the Hajek projection to the centered statistic RF��, where � is

the expectation of RF, yields

VRF.Z1; : : : ; Zn/ � � D

nX
iD1

E.RF�� j Zi / D
1�
n
s

� nX
iD1

E
� X

i1;:::;is

E� T .�; Zi1
; : : : ; Zis

/ � � j Zi

�
;

where i1; : : : ; is run through the
�
n
s

�
size-s subsets of f1; : : : ; ng. (Recall that RF, �, and T are

all vectors in Rq , with T .�; Z1; : : : ; Zs/ denoting the vector of tree estimates produced using
data fZig with randomization parameter �.) Since the samples Z1; : : : ; Zn are independent,
E.E� T .�; Zi1

; : : : ; Zis
/ j Zi / D � whenever i … fi1; : : : ; isg. As fi1; : : : ; isg runs over the

size-s subsets of f1; : : : ; ng, there are exactly
�
n�1
s�1

�
many which contain i . For each of of these

subsets,
E.E� T .�; Zi1

; : : : ; Zis
/ � � j Zi / DW T1.Zi / � �;
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where T1.z/ WD E�;Z2;:::;Zs
T .�; z; Z2; : : : ; Zs/. Therefore,

VRF � � D
1�
n
s

� nX
iD1

�
n � 1

s � 1

�
.T1.Zi / � �/ D

s

n

nX
iD1

.T1.Zi / � �/: (1.8)

The sequence of observationsZ1; : : : ; Zn is assumed to IID, and this property is preserved
for the sequence fT1.Zi / W 1 � i � ng of projections. It is easily verified that E. VRF/ D �, and
the point of the previous equation is that it expresses the centered statistic . VRF � �/ as an
average of centered IID terms, scaled by s. This will be our main entry point in establishing
asymptotic joint normality.

1.3.3 Asymptotic Gaussianity via Hajek Projections

The standard technique in deriving the asymptotic distribution of aU -statistic is to establish
a lower bound on the variance of its Hajek projection; this is the approach taken by Wager
and Athey (2018) and we follow the approach here. Let V be the variance of VRF; using (1.8),
we have

V D Var
�

s

n

nX
iD1

.T1.Zi / � �/

�
D

s2

n
Var.T1.Z1// D

s

n
Var

� sX
iD1

T1.Zi /

�
D

s

n
Var VT 2 Rq�q;

(1.9)
where VT is the Hajek projection of the statistic T as in (1.7), where T D E� T .�; Z1; : : : ; Zs/ 2

Rq .
The assumptions that Var.Y j X D x/ is bounded below and that E.jY j3 j X D x/ is

bounded above allow for an easy verification of a multivariate version of the Lyapunov
Central Limit Theorem for triangular arrays (see Appendix for details); the proof will demon-
strate that under these two assumptions, the multivariate analog of the Lyapunov condition
is implied by its univariate version, which was established in Theorem 8 ofWager and Athey
(2018). This is the basis of the following lemma.

Lemma 1.6. Let I be the q � q identity matrix and let 0 denote the zero vector in Rq . If the
assumptions outlined in Section 1.2.3 are all satisfied, then

V �1=2. VRF � �/
dist

HHH) N.0; I /:

Proof. (All proofs may be found in the Appendix.)

Remark. Weused the boundedness of the thirdmoment to verify that the Lyapunov condition
holds with exponent equal to one; in general, this assumption is not necessary, but the
verification of the Lyapunov condition (for a smaller exponent) will be considerably more
complicated. More recently, triangular array CLTs specific to U -statistics were developed in
DiCiccio and Romano (2020), and their conditions are satisfied in our case as well.
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The asymptotic normality of the random forest estimator RF can be related to the asymp-
totic normality of VRF via

V �1=2.RF��/ D V �1=2.RF� VRF/ C V �1=2. VRF � �/:

The second summand on the RHS is asymptotically normal by Lemma 1.6; by Slutsky’s
Theorem, V �1=2.RF��/ is asymptotically normal once we establish the convergence

V �1=2.RF� VRF/
P

�! 0:

The strategy is to show that e D V �1=2.RF� VRF/ converges in squaredmean. Wemay develop
its squared norm via

E.e|e/ D E.RF� VRF/|V �1.RF� VRF/ D E trV �1.RF� VRF/.RF� VRF/|

D trV �1 E.RF� VRF/.RF� VRF/|
D trV �1=2 Var.RF� VRF/V �1=2;

(1.10)

where we used the identity tr.ABC / D tr.BCA/ for conforming matrices A, B, and C .
That the trace on the extreme RHS goes to zero is the natural multivariate generalization

of the familiar condition
Var.f � Vf /

Var Vf
! 0

for univariate U -statistics (see Vaart (1998)). In the univariate setting, this condition is
checked by considering higher order decompositions of the statistic f ; this approach is also
valid in the multivariate setting, which we now show. The following proposition defines
the proper generalization of higher order decompositions for multivariate statistics.

Proposition 1.7 (Höeffding Decomposition for Multivariate U -statistics). Fix a positive def-
inite matrix M . Let f .x1; : : : ; xn/ 2 Rq be a vector-valued function that is symmetric in its
arguments and let X1; : : : ; Xn be a random sample such that f .X1; : : : ; Xn/ has finite variance.
Then there exists functions f1; f2; : : : ; fn such that

f .X1; : : : ; Xn/ D E.f / C

nX
iD1

f1.X1/ C

X
i<j

f2.Xi ; Xj / C � � � C fn.X1; : : : ; Xn/

where fk is a function of k arguments, such that

Efk.X1; : : : ; Xk/ D 0 and EŒfk.X1; : : : ; Xk/|Mf`.X1; : : : ; Xl/� D 0:

By applying Proposition 1.7 to RF��, we may expand RF� VRF according to a Höeffding
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decomposition taken respect to the matrix V �1,

RF� VRF D
1�
n
s

��X
i<j

�
n � 2

s � 2

�
.T .2/.Zi ; Zj /��/C

X
i<j <k

�
n � 3

s � 3

�
.T .3/.Zi ; Zj ; Zk/��/C� � �

�
;

(1.11)
where T .2/, T .3/, etc. are higher order projections of T (corresponding to f2, f3, etc. in the
proposition) which satisfy the normal equations

EŒ.T .k/
� �/|V �1.T .k0/

� �/� D 0; for k ¤ k0.

Of course, the higher order terms T .k/, being projections of T , also satisfy

EŒ.T .k/
� �/|V �1.T .k/

� �/� � EŒ.T � �/|V �1.T � �/�: (1.12)

Next, write
V �1=2 Var.RF� VRF/V �1=2

D Var.V �1=2.RF� VRF//:

The orthogonality conditions in (1.11) show that V �1=2.RF� VRF/ is a sum of .s � 1/ uncorre-
lated terms, one for each of the higher order projections T .2/; : : : ; T .s/. Therefore,

Var.V �1=2.RF� VRF// D

X
i<j

�
n�2
s�2

�2�
n
s

�2
Var.V �1=2T .2/.Zi ; Zj //

C

X
i<j <k

�
n�3
s�3

�2�
n
s

�2
Var.V �1=2T .3/.Zi ; Zj ; Zk//

C : : :

Since the variables Z1; : : : ; Zn are IID, the quantities Var.V �1=2T .2/.Zi ; Zj // do not depend
on i and j ; each is equal toVar.V �1=2T .2//; the same is true for other higher-order projections
as well. Rewriting (1.12) as the inequality trVarV �1=2T .k/ � trVarV �1=2T then proves the
following

E.e|e/ D trVar.V �1=2.RF� VRF// � .trV �1=2 Var.T /V �1=2/ �

sX
kD2

�
n�k
s�k

�2�
n
s

�2

�
s

n
trVar VT �1=2 VarT ;

(1.13)

where the final step uses (1.9) to relate V and Var VT , as well as the fact
Ps

kD2
.n�k

s�k
/

2

.n
s
/

2 �
s2

n2 .

The remainder of this section centers around proving that the boxed quantity in (1.13)
converges to zero. For comparison, a central result of Wager and Athey (2018) (using our
notation) is a bound on the diagonal elements of Var VT and VarT . Specifically, the authors
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obtain
.VarT /kk

.Var VT /kk

� c.log s/p; for each k D 1; : : : ; q; (1.14)

for some constant c. As we will see in the next section, the required bound on the trace
will follow from bounds on the off-diagonal elements of Var VT , i.e., bounds on the covari-
ance between random forest estimates at different test points (see discussion following
Proposition 1.8).

1.3.4 Covariance Bounds

The aim of this section is to establish asymptotic bounds on the off-diagonal elements of
the covariance matrix Var VT . We shall show that when the tree estimator employs splitting
algorithms satisfying suitable stability conditions, we have the asymptotic behavior

.Var VT /k;l D o.s��/ for all 1 � k ¤ l � q and some � > 0: (1.15)

Before proceeding, we first show that this bound, coupled with control on the diagonal
terms, suffices to establish the trace bound in (1.13).

Proposition 1.8. Suppose the assumptions in Section 1.2.3 hold with ı > 1=2, and further assume
that the splitting algorithm is stable (see page 26 for a definition and Proposition 1.10 for a set of
sufficient conditions). The entries of VarT are bounded and its diagonal entries are bounded away
from zero. Furthermore, when Var VT satisfies the condition in (1.15),

s

n
tr.Var VT �1 VarT / ! 0: (1.16)

Remark. The first part of the Proposition, concerning the entries of VarT , is a consequence
of our .˛; k/-regularity assumption and distributional assumptions on fZig. As discussed
in Section 1.2.3, since the number of observations in leaf nodes is bounded above, the
(pointwise) variance of the tree estimator at x is bounded below by Var.Y j X D x/ up to a
constant, andwe assumed that the latter function is bounded away from zero. That entries of
VarT are bounded is a trivial consequence of the fact that the function x 7! E.Y 2 j X D x/

is Lipschitz and thus bounded. The techniques we present to bound Var VT could also be
used to bound VarT ; it is in fact true that .VarT /k;l ! 0 for k ¤ l , though we will not
pursue this further in this paper.

Proposition 1.8 establishes VT as the central object of study. Recall that T is the tree
estimator while VT is its Hajek projection; in other words, Var VT is not the covariance ma-
trix of tree estimates. However, our result will demonstrate the asymptotic normality of
V �1.RF��/, where V , the variance of the Hajek projection VRF, is given in terms of Var VT

(c.f., (1.9)). Therefore, (a rescaled version of) Var VT is precisely the object needed to conduct
inference on the random forest. In particular, combining (1.14) and (1.15) yields the fact
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that Var VT—and hence the asymptotic variance of RF—is diagonally dominant (i.e., tending
to a diagonal matrix in the limit).

We may always relabel indices so that the tree is grown on the observations Z1; : : : ; Zs .
To establish the bound (1.16), start with the definition

VT � � D

sX
iD1

E.T j Zi / so that Var VT D s Var.E.T j Z1// due to independence: (1.17)

To develop the term on the RHS, use the orthogonality condition for conditional expectation

Var E.T j Z1/ D VarŒE.T j Z1/ � E.T j X1/� C VarŒE.T j X1/�: (1.18)

Since the tree algorithm is honest, the difference E.T j Z1/ � E.T j X1/ simplifies, so that
for each 1 � k � q,

E.Tk j Z1/ � E.Tk j X1/ D E.Ik j X1/.Y1 � E.Y1 j Ik D 1; X1//;

where Tk is the tree estimate at xk , and Ik is the indicator for whetherX1 and xk belong to the
same terminal node. Therefore, the off-diagonal entry at .k; l/ of VarŒE.T j Z1/ � E.T j X1/�

is equal to

EŒE.Ik j X1/E.Il j X1/.Y1 � E.Y1 j X1; Ik D 1/.Y1 � E.Y1 j X1; Il D 1/�: (1.19)

We may expand the terms in the above integrand as follows

E.Ik j X1/E.Il j X1/.Y1 � E.Y1 j X1; Ik D 1/.Y1 � E.Y1 j X1; Il D 1/

D E.Ik j X1/E.Il j X1/Y 2
1 � E.Ik j X1/E.Il j X1/Y1 E.Y1 j X1; Il D 1/ C : : :

D

4X
tD1

E.Ik j X1/E.Il j X1/ � pt .Y1;E.Y1 j X1; Ik D 1/;E.Y1 j X1; Il D 1//;

for somemultinomials p1; : : : ; p4, eachwith degree atmost two. Since we have assumed that
E.Y j X D x/ and E.Y 2 j X D x/ are continuous and hence bounded, E.pt .: : : / j X1 D x/ is
also bounded. Therefore, using the Law of Iterated Expectations to evaluate (1.19) shows
that it is bounded by a constant times

EŒE.Ik j X1/E.Ij j X1/�:

Remark. Adirect application of theCauchy-Schwarz inequality, using only thatE.Y j X D x/

is bounded (i.e., without assuming E.Y 2 j X D x/ is bounded), would yield the weaker
bound q

EŒE.Ik j X1/2 E.Ij j X1/2� �

q
EŒE.Ik j X1/E.Ij j X1/�;
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up to a multiplicative constant.

Recall that Ik and Il are indicator variables forwhetherX1 belongs to the same hypercube
as xk and xl , respectively. Therefore, E.Ik j X1/ is the probability that the first observation is
used for the prediction at xk , and likewise for E.Il j X1/. Intuitively, this only happens when
X1 is near xk (respectively, near xl ): since xk ¤ xl , X1 cannot be near to both, meaning that
the product E.Ik j X1/E.Il j X1/ is small.

Proposition 1.9. For two points x and Nx 2 X D Œ0; 1�p, define

M.x; Nx/ D EŒE.I j X1/E. NI j X1/�; (1.20)

where I and NI are indicators for X1 belonging to the same terminal node as x and Nx, respectively.
If ı > 1=2 and x ¤ Nx,

M.x; Nx/ D o.s�.1C�// for some � > 0: (1.21)

Remark. It is instructive to consider the bound in the preceding display versus M.x; x/. It
is clear from the definition that M.x; x/ � M.x; Nx/ for all Nx. In addition, M.x; x/ D E.E.I j

X1/2/ � E.E.I j X1// D E.I /. By symmetry, E I D 1=s (up to constant), as the terminal
node at x has a bounded number of observations. Therefore, all that the Proposition ensures
is that when x ¤ Nx, the quantity M.x; Nx/ is smaller than the “trivial” bound 1=s.

This proposition shows that the contribution of VarŒE.T j Z1/ � E.T j X1/� to the
cross covariances of Var E.T j Z1/ is small, in particular smaller than the required bound
.logp

s � s/�1. The requirement that ı > 1=2, while needed for the proof to go through, is
almost certainly not needed in practice. The reason is that our proof uses ı > 1=2 to derive a
uniform bound on the quantity

E.Ik j X1/E.Il j X1/;

while the proposition only demands a bound on its expectation. Indeed, in the extreme case
x D 0 and Nx D .1; : : : ; 1/|, it is easy to see that the expectation meets the required bound
even when ı � 1=2.

Furthermore, our proof is agnostic to the exact splitting rule used by the base tree learner
and uses only “random splits” (c.f., Assumption 2) to derive the required bounds. With a
specific splitting rule (e.g., (1.2)) and a specific data distribution, the expectation M.x; Nx/

will be smaller than that predicted by (1.21). In light of this, an alternative to our cyclic
splitting assumption is to assume the high level condition that the splitting algorithm and
data generating process confer the bound

M.x; Nx/ D o

�
1

logp
s � s

�
:
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Bounding Var E.T j X1/

We turn next to bound the off-diagonal terms in Var E.T j X1/. As in the statement of
Proposition 1.9, it will be convenient to slightly change notations. We fix 1 � k ¤ l � q,
and use the notation x 7! xk , Nx 7! xl , and with x1 denoting the value of X1 (i.e., x1 is no
longer a test point, that role being played by x and Nx). The goal of this section is to establish
the bound

.Var E.T j X1//kl D EŒ.E.Tk j X1 D x1/ � �k/.E.Tl j X1 D x1/ � �l/� D o

�
logp

s

s

�
;

where Tk and Tl are the tree estimates at x and Nx, and �k and �l are their unconditional
expectations.

The quantity E.Tk j X1 D x1/ � �k D E.Tk j X1 D x1/ � E.Tk/ measures the amount of
“information” that the location of a single observation X1 carries for the output of the tree
at x. Intuitively, when X1 D x1 is near x, the effect of X1 on the leaf node containing x is
more pronounced and we expect E.Tk j X1 D x1/ � � � E.Y j X1 D x1/ � �. Conversely,
when X1 D x1 is far from x, then X1’s effect in determining the location of the leaf node
containing x diminishes, and E.T j X1 D x1/ � � � E.T / � � D 0.

The key inmaking the above intuition precise is to keep track of when X1 D x1 leaves the
intermediate partition containing x in the splitting process; here, “intermediate partitions”
are thosenodes createdduring the splitting process that are not necessarily terminal. Towards
this end, fix x and let … denote the terminal node containing x; … is a hyperrectangle
contained in X created by axis aligned splits. By Assumption 4, the set of potential splits
does not depend on the sample (in particular, it does not depend on X1). Moreover, splitting
ceases after no more than s splits, regardless of the subsample X1; : : : ; Xs, as each split
reduces the number of observations in its two child nodes by at least one. Therefore, … takes
on only finitely many possible values, and we may write

E.T / D

X
�

P.… D �/�� and E.T j X1 D x1/ D

X
�

P.… D � j X1 D x/�0
� (1.22)

where �� D E.T j … D �/ and �0
� D E.T j … D �; X1 D x/.

The hyperrectangle … is determined by the recursive splitting the procedure used to grow
the tree, and there is a natural correspondence between (1.22) and a certain “expectation”
taken over a directed acyclic graph (DAG) defined in the following way. Let Œ0; 1�p be the
root of the DAG; for every potential split at Œ0; 1�p, there is a directed edge to a new vertex,
where that vertex is whichever one of the left or right hyperrectangles that contains x. If the
node represented by a vertex is one of the possible values of …, then that vertex is a leaf (a
“sink”) in the DAG and has no outgoing edges; other vertices carry an outgoing edge for
each potential split at that node, with each edge going to another vertex which is again a
hyperrectangle containing x.
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The previous definition determines the DAG recursively: each vertex in the DAG is a
node containing x, with terminal vertices corresponding to terminal nodes. To each terminal
vertex v, we associate the value f .v/ WD �� as in (1.22). In addition, each edge e D .v ! w/

corresponds to a split at a node v producing a halfspace w of v; associate with this edge a
“transition probability”

p.e/ WD P.s is chosen at v j current node is v/ DW P.w j v/:

Given the transition probabilities, the value f may be extended to each vertex v recursively
(from the bottom up) via the formula

f .v/ WD

X
eWv!w

P.w j v/f .w/:

We refer to f as the continuation value at v, and by construction we have

E.T / D f .“root”/ D f .Œ0; 1�p/:

Alternatively, if we had assigned the values f 0.v/ D �0
v to each terminal vertex and used

the transition probabilities

p0.e/ D P.s is chosen at v j current node is v; X1 D x1/ D P0.w j v/;

then we recover E.T j X1 D x1/ D f 0.Œ0; 1�p/ after extending f 0 in the same way as f . In
other words, bounding E.T j X1 D x1/ � E.T / requires bounding the difference between
the two types of continuation values.

As we will show presently, the key in bounding the continuation values will be a bound
on the differences between the transition probabilities; loosely speaking, we will need to
show that p0.e/ � p.e/. Intuitively, that p and p0 are close expresses the property that
conditioning on a single observation will not affect the probability that a particular split is
chosen.

This is a natural property in that the optimal split is computed using all the observations
in a particular node, so that conditioning on a single observation should have relatively little
effect. Of course, whether this property holds will depend on the specifics of the splitting
algorithm used to a construct the tree. For this reason, we shall endow this property with
a name and specify it as a high level condition; a set of low level sufficient conditions are
then given in Proposition 1.10.

Assumption (Splitting Stability). For any node v, the total variation distance between the dis-
tributions fp.e/geWv!w and fp0.e/geWv!w is bounded by a scaled volume of v. Specifically, there

26



exists some � > 0 such that for all v,

TV.p; p0/ �

�
1

sjvj

�1C�

(up to a constant). (1.23)

Here, jvj denotes the volume of the hyperrectangle at v, i.e.,

jvj D

ˇ̌̌̌ pY
j D1

.aj ; bj /

ˇ̌̌̌
D

pY
j D1

jbj � aj j:

Remark. Recall that p and p0 are discrete probability distributions: thus, if p and p0 are
written as vectors of probability masses, then the total variation distance is the L1 norm
between the two vectors.

Since the distribution of X has a density that is bounded above and below, a simple
Höeffding bound shows that the number of sample points in v is bounded above and below
by sjvj, with the constants adjusted so that the failure probability is less than8 1=s2. Since
this is smaller than the required bound .logp

s � s/�1, we may interpret sjvj in (1.23) to be the
number of samples in jvj without loss of generality. Relatedly, Wager and Walther (2015)’s
Lemma 12 (see also the proof of Lemma 2 in Wager and Athey (2018)) extends to this fact to
be uniform across nodes.

The stability assumption places a restriction on procedure used to select optimal splits:
namely, if the decision is made on the basis of m points, then conditioning on any one of
the points changes the optimal split with probability bounded by m�.1C�/. In practice, most
splitting procedures satisfy a stronger bound. A set of sufficient conditions is given in the
following proposition.

Proposition 1.10. Assume that the optimal split at a node v is chosen based on quantities of the
following form

f1.�1; : : : ; �Q/; : : : ; fP .�1; : : : ; �Q/

for some P and Q � 1, where �1; : : : ; �Q are the sample averages of the points being split

�k D
1

nv

X
i WXi 2v

mk.Xi /

for some functions m1, …, mQ, where the sum runs over points in v, and nv denote the number of
these points.

Specifically, suppose the optimal split is decided by which fi achieves the largest value, i.e.,
the value argmaxi fi .�/. If f1; : : : ; fP are Lipschitz, and the functions m1; : : : ; mQ are such that
mk.X/ is 1 sub-exponential, then the splitting stability assumption is satisfied.

8For example, the probability that a binomial randomvariableB.n; p/ deviates from np bymore than
p

n logn

is less than C=s2 for some constant C .
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Remark. Since X are bounded, the requirement that mk.X/ is sub-exponential allows the
use of (1.2) to compute the optimal split.

In general, the conditions in Proposition 1.10 are sufficient to guarantee an exponential
bound instead of a polynomial one as in (1.23). Thus, Proposition 1.10 should be viewed as
simply providing a plausibility argument that stable splitting rules are commonly encoun-
tered in practice.

The next proposition shows that bounds on splitting probabilities automatically imply a
related bound on the continuation values.

Proposition 1.11. Suppose the splitting probabilities satisfy a generic bound �.�/ in that

TV.p; p0/ �
�.sjvj/

log s
at each node v:

For example, �.z/ D z�.1C�/. Then for any node v containing x but not x1,

jf .v/ � f 0.v/j � C�.sjvj/

for some constant C not depending on v.

The splitting stability assumption stipulates that �.z/ D z�.1C�/, where the factor �

allows us to ignore the extra logarithm. In that case, we may put the bounds on TV.p; p0/

and jf � f 0j together and establish required bound on Var E.T j X1/.

Proposition 1.12. Suppose that the splitting rule is stable as in (1.23) and that ı > 1 � ˛. For
x ¤ x1,

jE.T j X1 D x1/ � E.T /j D o

�
1

s1C�

�
for some � > 0. In particular, the off-diagonal entries of Var E.T j X1/ are o.s�.1C�// as at least
one of x and Nx is distinct from x1.

Recall that Proposition 1.9 requires ı > 1=2. Since ˛ < 1=2 by definition, the requirement
that ı > 1 � ˛ in Proposition 1.12 is more restrictive. Just like Proposition 1.9, we argue that
this requirement is plausibly looser in applications. The reason is that it is used to give the
following bound on hyperrectangles v created after L splits

jvj � ˛L:

The RHS appears since potential splits may reduce the volume of a node by at most ˛: but
only an exponentially small (i.e., 2�L) proportion of nodes is the result of taking the smallest
possible split L times! The “average” node at depth L has volume .1=2/L, so that ı > 1=2

may be more appropriate.
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1.3.5 Wrapping Up

Combining Propositions 1.9 and 1.12 with equations (1.17) and (1.18) yields the desired
bound (1.15) on the off-diagonal terms of Var VT discussed at the beginning of this section.
Therefore, Proposition 1.8 applies, and the joint normality of the random forest estimator is
established.

1.4 Heuristics and Simulations

The previous sections focused on deriving the asymptotic normality result

V �1=2.RF��/
dist

HHH) N.0; I /; where V D Var VRF D
s

n
Var VT :

Recall our standing convention that RF 2 Rq is the random forest estimate at x1; : : : ; xq

and � is its expectation. According to (1.3), the target function of the random forest
is actually m.x/ D E.Y j X D x/. The results in Wager and Athey (2018) show that

.RF.x/ � m.x//=
p

V
dist

HHH) N.0; 1/ pointwise for each x 2 X; since we have shown that V

is diagonally dominant in that its off-diagonal terms vanish relative to the diagonal, the

pointwise result carries over to our multivariate setting, and V �1=2.RF�m/
dist

HHH) N.0; I /,

where m D .m.x1/; : : : ; m.xq//.
Moreover, Wager and Athey (2018) proposes a jackknife estimator that can consistently

estimate
p

V in the univariate case. Our diagonal dominance result implies that the random
forest estimates at x and Nx 2 Œ0; 1�p are independent in the limit n ! 1,

Var.RF.x/ C RF. Nx// D Var.RF.x// C Var.RF. Nx// C 2Cov.RF.x/ C RF. Nx//

� Var.RF.x// C Var.RF. Nx//;

so that the jackknife estimator for the scalar case may be fruitfully applied to obtain con-
fidence bands for functionals of the random forest estimates (i.e., expressions involving
estimates at more than one point). We expand on this point in the remainder of this section.

The accuracy of the approximation above depends on how fast the off-diagonal terms
decay. In this section, we provide a “back of the envelope” bound for the covariance term
that may be useful for practitioners. We stress that the following calculations are (mostly)
heuristics: as we have shown in the previous section, the covariance term depends on
quantities such as M.x; Nx/, which is in turn heavily dependent on the exact mechanics of
the underlying splitting algorithm. Since our aim is to produce a “usable” result, we will
now dispense with rigorous analysis.

To begin, the proofs of Propositions 1.9 and 1.12 showed that the asymptotic variance V
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has off-diagonal terms which are upper bounded by9

M.x; Nx/ C log2
s

� 1X
`D0

p`

�� 1X
`D0

Np`

�
D M.x; Nx/ C log2

s E.L/E. NL/;

where p` D P.L � `/ is the probability that x and x1 are not separated after ` splits and
likewise for Np` D P. NL � `/. That is, L is the number of splits before which x and x1 belong
to the same partition. If we denote by I (resp. NI ) the indicator variable that X1 is in the
terminal node of x (resp. Nx), then the events fI D 1g and fL D log2 sg are equal, so that

E.I j X1 D x1/ D P.L D log s/ �
EL

log s
:

Replacing the inequality with an approximation, we have EL � .log s/E.I j X1 D x1/.
Therefore, we have the approximate bound

.log4
s/E.I j X1 D x1/E. NI j X1 D x1/ � .log4

s/M.x; Nx/:

Remark. Taken loosely, this heuristic says that the random forest estimator RF, considered
as a function on the domain X, is asymptotically Gaussian with covariance process .log4

s/ �

M.x; Nx/. We stress that this is not implied by our theoretical results, as there we kept the
number q of test points fixed.

Towards a useful heuristic, we will consider a bound on the correlation instead of the
covariance. In our notation, the result ofWager and Athey (2018) lower bounds M.x; x/ (and
M. Nx; Nx/), while our paper provides an upper bound on M.x; Nx/. Ignoring the logarithmic
terms, we have ˇ̌̌̌

Cov.RF.x/;RF. Nx//p
VarRF.x/ � VarRF. Nx/

ˇ̌̌̌
�

M.x; Nx/p
M.x; x/M. Nx; Nx/

:

Recall that M.x; Nx/ D EŒE.I j X1/E. NI j X1/�, which decays as Nx moves away from x. Using
the previous expression (note that M.x; x/ � M. Nx; Nx/ due to symmetry between x and Nx),
we can bound the correlation from purely geometric considerations. Since the integrand

E.I j X1/E. NI j X1/

decays as X1 moves away from x (and Nx), we may imagine that in the integral

M.x; x/ D

Z
x1

E.I j X1 D x1/2dx1;

points x1 that are near x make the largest contribution, say, those points in a L1-box of
side lengths d with volume dp, i.e., fy 2 Œ0; 1�p W kx � yk1 � d=2g. If we accept this, then

9This is a very crude upper bound as we have dropped the quantity �.˛`s/ from the infinite series.
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the contributions for the integral M.x; Nx/ would come from points that are within d=2 of
both x and Nx, and to a first degree approximation, the volume of these points fy 2 Œ0; 1�p W

kx � yk1 � d=2; k Nx � yk � d=2g is

.d � z1/ : : : .d � zp/ � dp
� .z1 C � � � C zp/dp�1; where zi D jxj � Nxj j;

where the approximation is accurate if jzi j � 1. Dividing through by dp, the proportion of
the volume of the latter set is 1 �

1
d

kx � Nxk1, which leads to the heuristicˇ̌̌̌
Cov.RF.x/;RF. Nx//p
VarRF.x/ � VarRF. Nx/

ˇ̌̌̌
� 1 � ckx � Nxk1; for some constant c:

The RHS has the correct scaling when x D Nx, i.e., the correlation equals one when kx � Nxk1 D

0. To maintain correct scaling at the other extreme with kx � Nxk1 D p, we should take
c D 1=p, so that ˇ̌̌̌

Cov.RF.x/;RF. Nx//p
VarRF.x/ � VarRF. Nx/

ˇ̌̌̌
� 1 �

1

p

pX
iD1

jxi � Nxi j:

Of course, this heuristic is trivially incorrect in that it does not depend on s; our theoret-
ical results show that even for non-diametrically opposed points, the correlation drops to
zero as s ! 1. Therefore, another recommendation is to useˇ̌̌̌

Cov.RF.x/;RF. Nx//p
VarRF.x/ � VarRF. Nx/

ˇ̌̌̌
� min

�
1 �

s�

p

pX
iD1

jxi � Nxi j; 0

�
; (1.24)

for some � > 0, where the decay s� comes from considering the decay of M.x; Nx/ as Nx moves
away from x (c.f. the statement and proof of Proposition 1.9). In any case, our theoretical
results also suggest that the sign of the correlation is positive: non-zero covariances are
driven by the possibility that the two points x and Nx may belong to the same terminal node,
in which case perfect correlation obtains as T .x/ D T . Nx/. This intuition is also supported
by our simulation results below (c.f., Figure 1).

1.4.1 Confidence Intervals of Sums and Differences

One important implication is that omitting cross covarianceswill overestimate the variance of
differences of random forest estimates, while underestimating the variance of sums. Coming
back to the discussion at the beginning of this section, suppose we are interested in the
difference f .x/ � f . Nx/ of our target function f and compute a random forest estimator
RF D .RF.x/;RF. Nx//, along with jackknife estimates of the variances as in Wager and Athey
(2018)

OV .x/ � VarRF.x/ and OV . Nx/ � VarRF. Nx/:
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Since

Var.RF.x/ � RF. Nx// D VarRF.x/ C VarRF. Nx/ � 2�
p
VarRF.x/VarRF. Nx/

where � > 0 is the correlation, OV .x/ C OV . Nx/ overestimates the variance of the difference. In
particular, confidence intervals calculated using the asymptotic Gaussian approximation

with standard deviation
q

OV .x/ C OV . Nx/ would be too conservative.
On the other hand, suppose we are interested in computing an average of target func-

tion f across different points, i.e., a quantity of the form ˛1f .x1/ C � � � C ˛qf .xq/ where
˛1; : : : ; ˛q � 0 and

P
˛k D 1. A similar calculation shows that confidence intervals based

on the standard deviation q
˛2

1
OV .x1/ C � � � C ˛2

q
OV .xq/

are too narrow (i.e., their coverage rates are lower than their nominal coverage rates). In
this way, heuristics such as (1.24) allow us to construct tighter or more accurate confidence
intervals; the second set of the simulation experiments below gauges the effectiveness of
(1.24) in doing so.

1.4.2 Simulations

Correlation Structure

In this section, we conduct numerical experiments on the correlation structure of random
forests; we set p D 2, so that the covariates X are distributed on the unit square. The
distribution of X is chosen to be “four-modal”

X �

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

NN .�1; I2/ with probability 1=4

NN .�2; I2/ with probability 1=4

NN .�3; I2/ with probability 1=4

NN .�4; I2/ with probability 1=4

where

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�1 D .0:3; 0:3/|

�2 D .0:3; 0:7/|

�3 D .0:7; 0:3/|

�4 D .0:7; 0:7/|

I2 D
�

1 0
0 1

�
and NN denotes a truncated multivariate Gaussian distribution on the unit square.10 Thus, X

has a bounded density on the unit square, and has four peaks at �1; : : : ; �4. The distribution
of Y conditional on X D .x1; x2/ is

Y �
x1 C x2

2
C

1

5
N.0; 1/:

The random splitting probability is to ı D 1=2, and the regularity parameters are ˛ D 0:01

and k D 1, so that the tree is grown to the fullest extent (i.e., terminal nodes may contain a

10That is, NN .�; †/ denotes the conditional distribution of x � N.�; †/ on the event x 2 Œ0; 1�2.
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Figure 1-1: Correlation as a function of sample size and L1 norm.

single observation), with each terminal node lying on the 101 � 101 grid of the unit square.
For each sample size n, five thousand trees are grown, and the estimates are aggregated to
compute the correlation.

Figure 1-1 plots the correlation of estimates at x and Nx as a function of the L1 norm kx �

Nxk1. The calculation is performed by first fixing x, then calculating the sample correlation
(across five thousand trees) as Nx ranges over each cell: the correlation is associated with the
L1 norm kx � Nxk1. This process is then repeated by varying the reference point x, and the
correlation at kx � Nxk1 is the average of the correlations observed. The figure demonstrates
that the linear heuristic (1.24) given in the previous section is conservative: it is evident
that correlation decreases super-linearly as x and Nx become separated.

Figure 1-2 plots the correlation on a logarithmic scale, which shows that that correlation
decay is exponential in a neighborhood of unity. In other words, simulations suggest that
the correct heuristic may be of the shapeˇ̌̌̌

Cov.RF.x/;RF. Nx//p
VarRF.x/ � VarRF. Nx/

ˇ̌̌̌
� e��kx� Nxk1 for a suitable �.

Confidence Intervals and Coverage Rates

Our second set of experiments examines the coverage rates of confidence intervals computed
from the asymptotic Gaussian approximation with and without taking into account cross
covariance terms. The simulation setup is the same as in the previous experiment, except
that trees are grown until the number of leaf observations is equal to five instead of one.11

11This is done for ease of computation: if we were to increase the depth by 1 or 2 in order to have size-1 leaves,
the memory requirements would be computationally infeasible. The current set of experiments require a peak
memory usage of up to 150 gigabytes when run in parallel.
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Figure 1-2: Logarithm of correlation as a function of sample size and L1 norm.

Each random forest is the average of five thousand individual trees, and we present results
for sample sizes n 2 f1000; 2500; 5000; 7500; 10000; 15000g with subsample sizes n0:9.

Our goal is to gauge the effect of non-zero covariance terms on the resulting confidence
intervals and to gauge the effectiveness of the heuristic (1.24). We fix test points

x1 D .0:45; 0:5/; x2 D .0:50; 0:5/; x3 D .0:80; 0:5/

and consider the coverage rates of two kinds of confidence intervals based on the asymptotic
Gaussian approximation. The first kind assumes that the cross covariances of the random
forest estimate is zero: this is justified theoretically, as the asymptotic covariance matrix is
diagonal; the second kind uses the heuristic (1.24) to assign a positive correlation between
the estimates, then uses the resulting (adjusted) variance. In both cases, the variances are
calculated using12 the jackknife estimator as in Wager and Athey (2018).

The results are presented Table 1.1, where we report coverage rates for three functionals
(the first column). The first and second functionals are differences of the target function;
the first functional takes the difference between two nearby points (x1 and x2), whereas
the second functional uses points farther away (x1 and x3). The third functional takes
the average between the three points. The third and fourth columns reports the empirical
coverage rates for confidence intervals with a nominal coverage rate of 95% (i.e., a multiplier of
˙1:96 is used). The first row in each section reports the variance used, where OV1, OV2, and OV3

are jackknife estimators for the variances of RF.x1/, RF.x2/, and RF.x3/, respectively. The
numbers �ij are given by13 heuristic in (1.24), specifically

�ij D

�
1 � n0:3

�
jxi1 � xj1j C jxi2 � xj 2j

2

�C

; where �C denotes max.�; 0/.

12Specifically, we use a modified version of the GRF package of Athey, Tibshirani and Wager (2017).
13The heuristic in (1.24) uses s� instead of n�; the two parameterizations are identical because s D nˇ is itself

a fractional power of n.
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For example, the covariance in the fourth column of the third functional is

Var
�
RF.x1/ C RF.x2/ C RF.x3/

3

�
D

X
1�i;j �3

�ij

9
; �ij D

8<:
OVi when i D j

�ij

q
OVi

OVj when i ¤ j
(1.25)

Remark. Specifically, we chose the exponent � D 0:3. As in the discussion following (1.24),
the exponent corresponds to the decay rate � in Proposition 1.9, and it is easy to see that it
should be a small number between 0 and 1. To calibrate the exponent, one method—used in
this experiment—is to compute the sample correlation at a single pair of points across the
trees in the random forest, and then choosing � to match (1.24) with the sample correlation.

The results make intuitive sense. The coverage rates in the third column are fairly close
to the nominal 95% for the second functional: since x1 and x3 are far apart, their correlation
is close to zero even at modest sample sizes, and ignoring the covariance term is a good
approximation. On the other hand, this approximation is not as good for the first and
third functionals, both of which involve correlations that are far from zero: for example,
the sample correlation of RF.x1/ and RF.x2/ is O�12 � 70%. Since the first functional is a
difference, its confidence intervals are too conservative, with coverage rates exceeding 97%
at all sample sizes; the third functional, being a sum, has confidence intervals that are too
short, with a peak coverage rate of 94%. For all three functionals, the coverage rates approach
the nominal coverage rate as the sample size increases, reflecting the fact that covariance
tends to a diagonal matrix.

For the first and third functionals, using an adjusted variance (fourth column) that
incorporates the heuristic improves the coverage rate. For the first functional, the adjustment
narrows the confidence intervals and shrinks the coverage rate towards the nominal 95%,
though the intervals remain conservative. The improvement is more evident for the third
functional, where the coverage rate is now much closer to the nominal rate at all sample
sizes. In addition, the heuristic also maintains good performance for the second functional.
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Table 1.1: Coverage rates of confidence intervals with and without cross covariances.

Functional Sample Size Coverage Rate (I) Coverage Rate (II)

RF.x2/ � RF.x1/ - OV1 C OV2
OV1 C OV2 � 2�12

q
OV1

OV2

1000 99.8% 98.2%
2500 99.4% 96.9%
5000 98.9% 98.9%
7500 98.5% 96.6%

10000 97.4% 96.0%
15000 97.3% 96.6%

RF.x3/ � RF.x1/ - OV1 C OV3
OV1 C OV3 � 2�13

q
OV1

OV3

1000 95.9% 95.9%
2500 95.8% 95.8%
5000 95.6% 95.6%
7500 95.7% 95.7%

10000 95.7% 95.7%
15000 95.2% 95.2%

RF.x1/ C RF.x2/ C RF.x3/

3
-

OV1 C OV2 C OV3

9
(see equation (1.25))

1000 89.4% 93.5%
2500 91.2% 94.6%
5000 92.6% 94.9%
7500 92.9% 94.7%

10000 94.0% 95.3%
15000 93.9% 94.5%

In general, this experiment suggests that the covariance adjustment is worth considering,
at least for modest sample sizes (say, for n � 5000). A possible avenue for future work is the
development of more accurate heuristics.

1.5 Conclusion

Random forests and tree-based methods form an important part of an applied data analysis
toolkit. In this paper, we study the covariance between random forest estimates at multiple
points. We develop a novel construction of a directed acyclic graph that keeps track of the
splitting probabilitieswhen knowledge of one point is known (Propositions 1.11 and 1.12). As
part of the proof, we establish stability properties of a class of splitting rules (see Proposition
1.10). We also identify (Proposition 1.9) M.x; Nx/, which (roughly) captures the likelihood
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of two points belonging to the same terminal node, as a key quantity in controlling the
off-diagonal terms of the covariance matrix of the multivariate random forest.

In this way, this paper provides a theoretical basis for performing inferences on func-
tionals of the underlying target function (e.g., a heterogeneous treatment effect) when the
functional is based on values of the target function at multiple points in the feature space.
Specifically, we show that the covariance vanishes in the limit relative to the variance, and
provide heuristics on the size of the correlation in finite samples.

We close with discussing a couple avenues for future research. The first is extending our
framework to cover categorical or discrete-valued features. Here, new assumptions would be
required in order to maintain the guarantee that node sizes are “not too small.” Second, our
bounds—after potential improvements—on the covariance matrix of the random forest may
be used with the recent results of Chernozhukov, Chetverikov and Kato (2017); Chen (2018)
in order to provide finite sample Gaussian approximations. This would provide a more
sound theoretical underpinning for correlation heuristics, making random forest models
more useful and more user-friendly to practitioners.

1.6 Appendix

Proof of Proposition 1.7. For random vectors in Rq , define the inner product

hX; Y i WD E.X|M Y /: (1.26)

For each subset A � f1; : : : ; ng, let HA be the set of square-integrable random vectors of the
form g.Xi W i 2 A/, where g is a function of jAj arguments, satisfying the condition that

E.g.Xi W i 2 A/ j fXi W i 2 Bg/ D 0

for all subsets B ¨ A. It is easy to see that collection HA are pairwise orthogonal as A ranges
over subsets of f1; : : : ; ng. By induction on r D jAj, the direct sum

L
B�A HB is equal to the

set of all statistics which are functions of fXi W i 2 Ag. In particular,
L

A HA is the set of all
(square-integrable) statistics based on fX1; : : : ; Xng. When the variables fX1; : : : ; Xng are
IID, then HA depends only on jAj in that there exist collections of functions H0; H1; : : : ; Hn,
where Hk is a collection of k-ary functions, such that

HA D fg.Xi W i 2 A/ W g 2 HjAjg:

The proof is completed by letting fk be the projection of f onto Hk according to the inner
product given in (1.26).

The proof of Lemma 1.6 will make use the following multivariate formulation of Lya-
punov’s CLT for triangular arrays, adapted from Billingsley (2008).
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Multivariate Central Limit Theorem for Triangular Arrays. Let fXni W 1 � i � mn; n � 1g be
a triangular array of random vectors satisfying the following conditions:
(a) mn ! 1 as n ! 1;
(b) for each n � 1, the vectors fXni W 1 � i � mng are jointly independent; and
(c) there exists some � > 0 such that E kXnik

2C� < 1 for all n � 1 and 1 � i � mn,
Let �ni denote the (d -dimensional) mean of Xni , and define

s2
n D

mnX
iD1

E.kXni � �nik
2/; �n D

mnX
iD1

E.kXni � �nik
2C�/; �n D

�n

s
2C�
n

:

If �n ! 0 as n ! 1 (the Lyapunov condition) and Vn WD Var
Pmn

iD1.Xni � �ni / is positive
definite, then

V �1=2
n

mnX
iD1

.Xni � �ni /
dist

HHH) N.0; I /:

Proof of Lemma 1.6. We proceed by verifying the hypotheses of the CLT stated above. In
our setting, mn D n and Xni D

s
n

T1.Zi / for 1 � i � n, so that conditions (a) and (b) are
automatically satisfied (recall that fZi W 1 � i � ng are IID). Since E.jY j3 j X D x/ is
bounded and T1 is bounded by supE.jY j j X D x/, condition (c) is satisfied as well with

� D 1:

Furthermore, Vn is positive-definite as there are no linear dependence relations among the
tree estimates at distinct points.

Therefore, we only need to verify the Lyapunov condition. In other words, we need to
show that Pn

iD1 E kT1.Zi / � �k2C�Pn
iD1.E kT1.Zi / � �k2/

2C�
2

! 0; for � D 1. (1.27)

We may develop the integrand in the numerator as follows

kT1.Zi / � �k
3

D

� qX
kD1

jT1k.Zi / � �kj
2

� 3
2

�

� qX
kD1

jT1k.Zi / � �kj

�3

;

where the last step uses the subadditivity of the square root. Expanding the sum on the
extreme RHS yields

kT1.Zi / � �k
3

�

X
k

jT1k � �kj
3

C 2
X
k¤l

jT1k � �kj
2
jT1l � �l j

C

X
k;l;m

jT1k � �kjjT1l � �jjT1m � �mj;

(1.28)
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where the second summand runs through indices 1 � k ¤ l � q and the third summand
runs through indices f1 � k; l; m � qg with k, l , and m being pairwise distinct.

We will now bound the second and the third summands in terms of the first summand.
For tidiness, fix pairwise distinct indices 1 � k; l; m � q and set

A D jT1k � �kj; B D jT1l � �l j; C D jT1m � �mj:

Using Hölder’s inequality, we have E.A2B/ � E.A3/2=3 E.B3/1=3. Since Var.Y j X D x/ is
bounded below, there is a lower bound on E.A3/ that is uniform over the location of xk . To
see this, note that Jensen’s inequality implies

E.A2/ � E.A3/2=3;

where the LHS is bounded below (i.e., it is the variance of the tree estimate at the point xk)
over points in X. Together with the fact that the third conditional moment is bounded
above, this implies that there is some constant K—not depending on k, l , and m—for which

E.B3/ � K E.A3/:

Applying this to the bound from Hölder’s inequality above, we have E.A2B/ � E.A3/ up to
a constant. A similar calculation shows that E.ABC / � E.A3/ as well.

Substituting the bounds into (1.28) allows us to bound each summand, which yields

E
nX

iD1

kT1.Zi / � �k
2C�

�

qX
kD1

nX
iD1

E jT1k.Zi / � �kj
2C�; up to a multiplicative constant.

The univariate version of the Lyapunov condition, namely, thatPn
iD1 E jT1k.Zi / � �kj2C�Pn

iD1.E jT1k.Zi / � �kj2/
2C�

2

! 0

was established in Theorem 8 of Wager and Athey (2018). The two previous displays now
imply the multivariate analog (1.27), which finishes the proof.

Proof of Proposition 1.8. We will prove the slightly more general statement that if An and Bn

are two sequences of square matrices with bounded entries such that

Bi i > ı for some ı for all n and Ai i �
Bi i

logn

and Aij D o.1= logn/, then tr.A�1B/ ! 0. To prove this, start with the determinant formula
detA D

P
�.�1/sgn�

Qq
iD1 ai�i

, where the sum runs over permutations � of f1; : : : ; ng and
sgn� is the sign of the permutation. Since the off-diagonal entries of Aij are assumed
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to vanish relative to Ai i , we have jdetAj �
Q

Ai i , where the notation a � b stands for
cjbj � jaj � c0jbj for constants c and c0 not depending on n. Next, recall Cramer’s Rule

.A�1/i i D detA�i=detA;

where A�i is the matrix A with its i-th row and i-th column removed. A similar argument
shows that jdetA�i j �

Q
j ¤i Ajj , whence

.A�1/i i �
1

Ai i
:

In particular, the i-th diagonal entry of the matrix A�1B is given by

.A�1B/i i D .A�1/i iBi i C

X
j ¤i

.A�1/ij Bj i �
Bi i

Ai i
� logn;

where the final relation is due to the fact that .A�1/ij is itself a polynomial in the entries of
A (viz., the cofactor matrix of A) divided by the determinant. Therefore, the trace of A�1B is
on the order of logn, since the dimension q � q of each matrix is fixed. Using the subsample
size s D nˇ , so that s=n D n�.1�ˇ/ completes the proof.

Proof of Proposition 1.9. Recall that the splitting algorithm has a probability ı chance of
splitting on the j -th axis. Since each terminal node contains a bounded number of points,
the number of terminal nodes is equal (up to constant) to the subsample size s. Therefore, the
number of splits required to reach a terminal node is bounded (by a constant) by log2 s=K D

log s=K, where K D 2k � 1 is the the maximum size of a leaf.
Since x ¤ Nx, we have

0 < kx � Nxk1 � kx � x1k1 C k Nx � x1k1

for all x1 2 X. In particular, given any x1 there exists some j 2 f1; : : : ; pg and a constant ˇ

for which either jxj � x1j j > ˇ or j Nxj � x1j j > ˇ. Without loss of generality, we may assume
that the former case holds. Certainly, a necessary condition for X1 D x1 to belong to the
same leaf node as x (i.e., a necessary condition for fI D 1g) is for the length of the first axis
of that leaf node to be larger than ˇ.

Let cj .x/ denote the number of splits in coordinate j along the sequence of splits leading
to the terminal node containing x. By our randomization assumption, each split has at least
an independent chance ı of being chosen, and since we cycle through each coordinate (c.f.,
Assumption 2),

cj .x/ �
1

p
B

�
log

s

K
; ı

�
where � stands for stochastic dominance:
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Per Assumption 4, that each split along the j -th axis decreases its length by a factor of at
least .1 � ˛/. Since splitting begins in the unit hypercube,

.1 � ˛/c1.x/
� ˇ H) c1.x/ �

logˇ

log.1 � ˛/
DW �:

Since fI D 1g requires that the length of the first axis to exceed ˇ (a constant), this proves

E.I j X1 D x1/ � P
�
B

�
log

s

K
; ı

�
� p�

�
:

Since p� is a constant, we may conclude

P
�
B

�
log

s

K
; ı

�
� p�

�
� .1 � ı C o.1//log s=K

D

�
1

s

�log 1
1�ıCo.1/

:

Finally, recall base of the logarithm is two since the tree is binary. Therefore, if we choose
ı > 1=2, the exponent exceeds 1 and the proof is complete.

Proof of Proposition 1.10. The easiest case is the splitting decision in the root node Œ0; 1�p, so
we start here. We prove the result by introducing a coupling between the splitting decisions
with and without conditioning on X1 D x1

S D argmax
i

fi

�
1

s

sX
iD1

m1.Xi /; : : : ;
1

s

sX
iD1

mQ.Xi /

�
DW fi

S 0
D argmax

i

fi

�
1

s

�
m1.x1/ C

sX
iD2

m1.Xi /

�
; : : : ;

1

s

�
mQ.x1/ C

sX
iD2

mQ.Xi /

��
DW f 0

i :

(1.29)

Here, S is the split made on the sample X1; : : : ; Xs and S 0 is the split made on the sample
conditional on X1 D x1. Note that we may assume without loss of generality that the splits
are not randomly chosen, since on that event the splitting probabilities are trivially equal.
Clearly, a necessary condition for S ¤ S 0 is the existence of a pair 1 � i ¤ j � P for which

fi > fj but f 0
j > f 0

i :

Since f is Lipschitz and its arguments are sub-exponential by assumption, the quantities fi

andfj concentrate around their respective limitsfi .Em1; : : : ;EmQ/ andfj .Em1; : : : ;EmQ/;
hence, whenever fi .Em1; : : : ;EmQ/ > fj .Em1; : : : ;EmQ/ we will have

fi � fj >
1

s
with probability at least 1 � O.e�cs/ for some constant c.

However, the difference of the arguments of fi in (1.29) differ by at most 1=s, i.e., the
difference coming from jm1.x1/ � m1.X1/j=s. By Lipschitz continuity, a change of 1=s in the
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arguments changes the function values by a proportional amount, which renders f 0
j > fi

impossible when fi � fj > 1=s. It follows that .fi > fj ; f 0
j > f 0

i / occurs with probability at
most O.e�cs/, and we finish by taking a union over the

�
P
2

�
pairs .i; j /. This result for Œ0; 1�p

will be referred to as the base case.
Note that the above actually proves something stronger, namely that for every split � ,

P.S ¤ s j S 0
D �/ < e�cs and P.S 0

¤ s j S D �/ < e�cs:

It follows that for any � , the total variation distance between .X2; : : : ; Xs j S D �/ and
.X2; : : : ; Xs j S 0 D �/ is at most e�cs . To see this, note that S and S 0 are functions of Xi only,
so that the densities of the two conditional distributions are

p.x/ D 1.S.x/ D �/
p.x/

P.S D �/
and p0.x/ D 1.S 0.x/ D �/

p.x/

P.S 0 D �/
;

respectively. We may assume without loss of generality that P.S 0 D �/ � P.S D �/ so that
the total variation isZ

jp.x/ � p0.x/j D

Z
SD�

p.x/ � p0.x/ C

Z
S¤�;S 0D�

p0.x/

D 1 �
P.S 0 D �; S D �/

P.S 0 D �/
C

P.S 0 D �; S ¤ �/

P.S 0 D �/
D 2 P.S ¤ � j S 0

D �/ < e�cs:

The upshot is that when considering the splitting probability in the next node, we can
ignore the difference in the distribution of X2; : : : ; Xs when conditioning on S D � versus
conditioning on S 0 D � and pay a cost O.e�cs/.

Now consider bounding the difference of the splitting probabilities at the next split

P.S2 D s j S1 D �/ � P.S2 D s j S1 D �; X1 D x1/:

Again, the strategy is to find a coupling .S2; S 0
2/ such that

S2 � .S2 j S1 D �/ and S 0
2 � .S2 j S1 D �; X1 D x1/

with TV.S2; S 0
2/ � e�sjvj, where v is the hyperrectangle corresponding to one of the halfs-

paces produced by � . Since the distribution of X1; : : : ; Xs conditional on S1 D � differs from
its unconditional distribution by an amount e�cs in the total variation distance, we could
use the following coupling

S2 D argmax fi

�
1

nv

X
Xi 2v

m1.Xi /; : : : ;
1

sjvj

X
Xi 2v

mQ.Xi /

�

S 0
2 D argmax fi

�
1

nv

X
X 0

i
2v

m1.X 0
i /; : : : ;

1

sjvj

X
Xi 2v

mQ.X 0
i /

�
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where Xi follows the distribution of .X1; : : : ; Xs/ conditional on S1 D � and X 0
i follows the

distribution conditional on S1 D � and X1 D x1. By conditioning on S1 D � instead of
S 0

1 D � , we increase the total variation by an amount e�cs via the triangle inequality.
Now the rest of the proof is the same as in the base case, noting that with high probability,

the number nv of points in v is equal to sjvj up to an multiplicative constant .1 � �/ with
probability e�s�2

. The previous bounds are applied recursively at each depth l of the DAG. At
depth l , we incur an “approximation cost” from the total variation distance that is bounded
by e�jvjs . Since sjvj � ˛l , it follows that l � O.log sjvj/, whence the cumulative cost at
depth l is O.log sjvj � e�cjvjs/. Putting everything together, we have proven that

TV.p; p0/ � O.log.jvjs/ � e�cjvjs/ � o

�
1

sjvj

�1C�

for some � > 0:

Proof of Proposition 1.11. The claim is trivially true (by choosing an appropriate constant) if
v is a terminal node. Thus, fix a non-terminal node v such that x1 … v and let

X D Xv D fXi W Xi 2 vg

denote the set of points landing in v, so that k WD jXj 2 f1; : : : ; n � 1g.
Recall that f D f .v/ and f D f 0.v/ are the respective expectations of the tree estimator

at x when the sequence of splits is such that v is the current subset of X containing x, with
f 0 being calculated conditional on X1 D x1. It follows that f and f 0 are functions of the
distribution of its “input vector” X. In a slight abuse of notation, let … and …0 denote
sequence of splits distributed according to the probabilities p and p0. We will show that, for
each k 2 f1; : : : ; n � 1g, the total variation distance of

.X j jXj D k; … D v/ and .X j jXj D k; …0
D v; X1 D x1/ (1.30)

is bounded by .log s/ ��.sjvj/. This will suffice to bound jf �f 0j by the variational definition
of total variation distance

TV.p; p0/ D sup
jgj�1

jEA�p g.A/ � EA�p0 g.A/j:

Since x1 … v, X1 is not an element of X, so that X and X1 are independent. Since the split …0

is distributed according to splitting probabilities when X1 D x1, we have,

dist.X j jXj D k; …0
D v; X1 D x1/ D dist.X j jXj D k; …0

D v/: (1.31)

The depth of v is at most log2 s, so that P.… D …0/ � 1 � .log2 s/�.sjvj/ by applying
the splitting stability assumption log2 s many times using a union bound. By (1.31) the
total variation distance of the distributions in (1.30) differs by P.… ¤ …0/, and the result
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follows.

Poor of Proposition 1.12. The idea is to recursively expand the formulas ET and E.T j X1/ in
terms of the directed acyclic graph. We start with

jET � E.T j X1 D x1/j D

ˇ̌̌̌X
v

p.e/f .e/ �

X
v

p0.e/f 0.e/

ˇ̌̌̌
�

X
v

jp.e/ � p0.e/jf 0.e/ C

ˇ̌̌̌X
v

p0.e/.f .e/ � f 0.e//

ˇ̌̌̌
;

where the sum runs over nodes v after the first split, i.e., Œ0; 1�p ! v. The second summand
may be split into two terms, one over x1 2 v and the other x1 … v. Due to splitting stability,
Proposition 1.11 allows us to bound the second term, so that

jET � E.T j X1 D x1/j �

X
v

jp.e/ � p0.e/jf 0.e/ C

ˇ̌̌̌X
v

p0.e/.f .e/ � f 0.e//

ˇ̌̌̌
� �.˛s/ C .log s/�.˛s/ C

X
x12v

p0.e/jf .e/ � f 0.e/j;

where we used the fact that jvj � ˛ for each v in the summand, and � is the function �.z/ D

z�.1C�/. Now, each of the terms jf .e/ � f 0.e/j may be bounded by �.˛2s/ C log.s/�.˛2s/ CP
x12w.� � � /. Continuing in this way, we have

jET � E.T j X1 D x1/j � log.s/.�.s/ C p1�.˛s/ C p2�.˛2s/ C : : : / D log s

1X
`D0

p`�.˛`s/;

where p` is the probability that x and x` belong to the same node after ` splits. In other
words, if we let L be the number of splits after which x and x1 are separated, then

p` D P.L � `/:

Since x ¤ x1, we may assume without loss of generality that kx � x1k > ˇ for some fixed
ˇ (c.f. the proof of Proposition 1.9). In particular,

p` � .1 � ı C o.1//`

for sufficiently large `. Moreover, �.˛`s/ D
1

s1C� . 1
˛1C� /`, whence ı > 1 � ˛1Cı is enough to

ensure that infinite series is less than 1
s1C� . In particular, as s ! 0, we may take � ! 0, so

that the restriction is satisfied (after suitable constants) by ı > 1 � ˛. This completes the
proof.
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Chapter 2

Dynamic R&D Contracting

Joint with Ali Kakhbod

2.1 Introduction

Research and development (R&D) play an increasingly large role in the allocation of capital.
In contrast to traditional kinds of output studied in principal-agent models, the success of
a R&D venture is observed—if at all—only when the venture succeeds. Due to the binary
nature of success in R&D (i.e., the “lumpy nature” of the project), the researcher has two
sources of compensation: flow payments during the R&D phase, and a lump-sum reward
(bonus) upon successful completion of the project.

We embed the R&D process in a continuous-time principal-agent model and study the
shape of the flow payment and lump-sum reward in the optimal incentive structure. To
make progress on the research project, the agent chooses a level of effort at each moment
in time. Agent’s effort is costly, modeled by a convex function. The principal rewards the
effort with a two-dimensional incentive-pay contract: a flow compensation over the course of
R&D plus a lump-sum reward (a “bonus”) if the R&D is successful. Importantly, we allow
the agent’s utilities from the immediate flow compensation and the lump-sum reward to
modeled by potentially different functions.

We show thatwhen the agent’s effort is observable to the principal, the optimal contract—
suggested actions, the flow compensations, and the lump-sum bonus— are constant, as we
might intuitively expect. However, when the principal does not observe the effort and
instead observes a signal in the form of a diffusion whose drift is proportional to the effort,

We are grateful to Daron Acemoglu, Ricardo Caballero, Drew Fudenberg, Daniel Garrett, Andrey Malenko,
Yuily Sannikov for their help, comments and great suggestions. We also thank seminar participants at Mas-
sachusetts Institute of Technology (MIT), Harvard University, and Princeton University for helpful comments.
This work was supported by the Hand Foundation Fellowship.
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the optimal contract will depend on the agent’s continuation value and is therefore non-
constant.

We characterize the entire space of incentive compatible contracts; using this result, we
explicitly characterize the optimal contract by a solution of an ordinary differential equation
(ODE). Our main result shows that the solution to the ODE (i.e., the optimal contract) exists
and it is unique.

The duration of the employment is specified by an endogenous threshold vmax 2 RC

such that the principal retires the agent when the agent’s continuation exceeds vmax. One
interesting property of this threshold is that the principal’s continuation value may in fact
be negative in a neighborhood of vmax. The interpretation is that the principal commits to be
sufficiently patient such that he continues with the project even while carrying a negative
continuation value.

We also show that during employment, the agent always exerts a positive effort whose
magnitude evolves over time. There is, however, a unique threshold such that when the
agent’s continuation value falls below than the threshold, the principal reduces the flow
compensation to zero and only provides incentive by a positive lump-sum rewards upon
successful completion of the project. Above the threshold, the agent’s flow compensation is
positive and increasing with the continuation value.

In numerical simulations, we find that the optimal contract features a minuscule level of
flow payments, where most of the agent’s benefit come from the lump-sum reward when the
project is successful. This theoretical feature of our model agrees with empirical evidence
that long-term CEO compensation is tied to the success of R&D processes (e.g., Lerner and
Wulf (2007)).

Finally, we empirically link our model’s theoretical implications with executive compen-
sation data from ExecuComp. We first show that executive compensation is two (or multi)
dimensional, consisting of heavy tails in both the salary (flow compensation) and bonuses
(lump-sum bonuses), in line with the basic premise of our model. Regression executive
bonus pay on company stock growth—a proxy for the successful completion of projects—
reveals a statistically significant coefficient, which is consistent with the theoretical optimal
contract.

2.1.1 Related Literature

This paper belongs to a fast-growing literature on continuous-time dynamic contract theory.
Important works such as Radner (1985), Spear and Srivastava (1987), Fudenberg, Holmstrom
and P. (1990), Abreu, Pearce and Stacchetti (1990) and Phelan and Townsend (1991) provide
foundations for the analysis of repeated principal agent interactions.1 Our paper runs parallel

1Albuquerque and Hopenhayn (2004), Albuquerque and Hopenhayn (2006) and DeMarzo and Fishman
(2007b,a) apply these theories to dynamic financing. Similar to these papers, we use the continuation utility of
the agent as a state variable in characterizing the optimal contract.
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to another branchof the dynamicmechanismdesign literature inwhich the optimal sequence
of decisions depends on the evolution of the agent’s hidden type. So-called “local incentive
compatibility conditions” for this brand of models were developed by Pavan, Segal and
Toikka (2014), while Garrett, Pavan and Toikka (2018) focuses on developing properties of
the optimal solution that bypasses direct examination of local IC conditions. In contrast, our
model considers a situation in which the both the agent and the principal face uncertainly
over the underlying state evolution. Note that there is no hidden type in our model: utilities
and costs are common knowledge, as is the status of project completion.

In these settings, the optimal contract can be presented in a recursive form because the
agent’s effort affects the probability distribution of the signal currently observed by the
principal. As a consequence, the agent’s continuation value completely summarizes the
incentives provided to him by the contract.

Using the recursive structure, Sannikov (2008) in his seminal paper provides a contin-
uous time model of repeated agency, in which it is possible to explicitly characterize the
optimal contract using an ordinary differential equation. This approach is applied to several
frameworks. For example, security design (DeMarzo and Sannikov (2007), Biais et al. (2007),
Piskorski and Tchistyi (2010), Sannikov (2012)), learning (DeMarzo and Sannikov (2017),
He et al. (2017)), dynamic compensation (He (2009, 2011, 2012)), risk taking (DeMarzo,
Livdan and Tchistyi (2014), Biais et al. (2010)), q-theory and investment (DeMarzo et al.
(2012)), dynamic capital budgeting with communication (Malenko (2018)). In this paper we
focus on optimal dynamic contracting for R&D projects with two-dimensional incentive-pay:
a flow of compensations and a lump-sum reward upon successful completion of the project.

A few researchers have investigated the topic of R&D contracting. Manso (2011) studied
a two-period model in which a principal provides incentives for an agent not only to work
rather than shirk but also to work on exploration of an uncertain technology rather than
exploitation of a known technology. Hörner and Samuelson (2013) and Bergemann and
Hege (2005) studied contracting problems with dynamic moral hazard and private learning
about the quality of the innovation project. Halac, Kartik and Liu (2016) introduced adverse
selection about the agent’s ability into the problem. In contrast to these importantworks, this
paper is not concerned with experimentation and our focus differs from these in many ways,
particularly, general concave payoffs, convex cost of exerting effort, random termination of
the job that depends on the agent’s effort and the optimal design of bonus for successfully
finishing the job.

The rest of the paper is structured as follows. Section 2 sets up the model; section 3
presents our main results, beginning with a characterization of the incentive compatibility
constraint in terms of the agent’s valuation; section 4 discusses our numerical experiment;
section 5 presents our empirical findings; and section 6 concludes.
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2.2 The Model

Our model considers a principal who contracts with an outside firm or researcher (“the
agent”) tofinish a research project. Thenature of the research project is that such that success
is binary: the project is either incomplete or finished. Moreover, contracting ends when (if
ever) the project is successful. Thus, our model is most applicable for analyzing “one-off”
long-term research or development ventures that have no intermediate quantifiable output
and whose success is uncertain. One example would be the successful negotiation of a
merger and acquisition—the principal is the board and the agent is the CEO; the deal either
goes through or not, and intermediate negotiations bring no benefit to either party.

We work in a continuous time setting, and project success depends on the effort fat �

0 W t � 0g exerted by the agent. Each fixed schedule of effort induces an inhomogenous
Poisson process with intensity at , and the project is successful at the first arrival time. More
prosaically, the project succeeds in the time interval Œt; t C dt/ with independent probability
atdt , and the time interval dt ! 0.

While working, the agent incurs a (flow) cost of action of g.a/dt and is compensated
by an amount u.c/dt . If he is successful, he receives an additional lump sum R, valued
according to a utility ƒ.R/. On the other hand, the principal is risk neutral and his only
source of benefit is a benefit � � 0 when (if ever) the project is successful. Everybody
discounts at a common rate �.

In general, the two-dimensional—flow payments and a lump sum bonus payment—is
an importance piece of our model: the optimal contract will identify how best to incentivize
research oriented projects. A contract featuring relatively large flow payments corresponds
to paying researchers a high salary but low bonus; conversely, a contract with large lump
sum reward corresponds to a bonus-heavy compensation structure.

We will assume that the function g is strictly convex and differentiable with boundary
conditions

g.0/ D 0 and lim
a!1

g0.a/ D 1: (2.1)

The utility functions u and ƒ are allowed to be different; we will assume both functions are
strictly increasing and strictly concave, with u.0/ D ƒ.0/ D 0 and limu0.c/ ! 1. The main
assumption2 relating u and ƒ is that

�ƒ.R/ � u.�R/: (2.2)

The point of this assumption is the following: in order to retire the agent with a constant
utility ƒ.R/, the principal could either fire the agent with a lump-sum payment R, or retire
the project and pay aflowutilityu�1.�ƒ.R// forever after. By assumption, u�1.�ƒ.R// � �R,
so that the principal weakly prefers the latter.

2See the Appendix for other standard assumptions on u and ƒ.
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This assumption implicitly carries with it a couple of modeling assumptions. First, note
that to give the agent a utility of ƒ.R/ (when the project is successful, say), the principal
could either

• Pay a lump sum R to the agent; or

• pay him a flow utility of u�1.�ƒ.R// forever after.

The former costs the principal R while the latter costs u�1.�ƒ.R//
�

. The assumption above
implies that it is (weakly) preferred by the principal to use a constant flow utility instead of
a lump-sum bonus. Therefore, an additional assumption of the model is that the contract
must terminate (i.e., no further payments) after the project is successful. We contend that
imposing this assumption makes our model more closely aligned with real-world R&D
contracts.

Another consequence of ƒ.R/ � u.�R/=� is that the agent values her lump-sum bonus
R weakly less than the constant consumption stream financed by R at interest rate � (i.e.,
with R, the agent could enjoy a flow consumption of �R in perpetuity). That is, this is
imposes a restriction on the agent’s preferences over consumption streams. There are a
couple interpretations: the first is that the agent does not have access to a sufficiently long-
lived risk-free money market in which she could invest. The second is that the agent is
sufficiently risk-averse over fluctuations in long-term interest rates such that she (weakly)
prefers a constant rate coupon with infinite maturity over what she could obtain with a
lump-sum.

While the principal knowswhether andwhen the project is successful, she cannot directly
monitor the agent, i.e., the action at is not directly observed. Instead, the principal observes
a noisy signal yt whose law is governed by

dyt D atdt C �dBt (2.3)

where � is a known constant and Bt is the standard Brownian motion.
The principal offers a contract .a; c; R/—the action schedule a, the flow compensation

schedule c, and lump-sum bonus schedule R. Each of these three quantities are allowed to
be functions of past observed history; the history includes whether the project is successful
(a binary event) and on the noisy signal of the action taken

dyt D a0
tdt C �dBt ; where a0

t is the effort exerted

and Bt is a standard Brownian motion, � a known constant.
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2.2.1 Stopping Time Process

The stopping time of success, denoted � , plays a central role in our analysis. Here, we
explicitly write down its distribution. For a given schedule of effort fatg

1
tD0, we have

P.� D 1/ D exp
�

�

Z 1

0

azdz

�
: (2.4)

Therefore, the CDF of the stopping time conditional on success is

P.� < t j � < 1/ D
1 � exp.�

R t
0 azdz/

1 � exp.�
R 1

0 azdz/
; (2.5)

with corresponding PDF

fa.t/ WD
d

dt
P.� < t j � < 1/ D

at exp.�
R t

0 azdz/

1 � exp.�
R 1

0 azdz/
: (2.6)

2.3 Contracting with the Agent

The contract is a tuple .a; c; R/ of suggested actions, compensations, and rewards. The
feasible sets of the action a, the compensation c, and the lump sum reward R is bounded.

For a fixed contract .a; c; R/, the agent’s value at time zero is given by

v0 D � E
�
P.� < 1/

Z 1

0

�Z �

0

e��t .u.ct / � g.at //dt C e���ƒ.R� /

�
fa.�/d�

C P.� D 1/

Z 1

0

e��t .u.ct / � g.at //dt

�
: (2.7)

The integral of e��t .u.ct /�g.at // against the stopping time of success � (with density fa.�/)
captures the flow utility while working, while the term e��tƒ.R� / is the lump sum reward.3

Similarly, the principal’s value function at time zero is

�
p
0 D � E

�
P.� < 1/

Z 1

0

�Z �

0

e��t .�ct /dt C e��� .� � R� /

�
fa.�/d�

C P.� D 1/

Z 1

0

e��t .�ct /dt

�
: (2.8)

Here, the principal pays ct while the agent is working and receives � less the lump sum
reward when the project succeeds.

We look for the optimal incentive compatible contract with commitment.4

3We assume the principal and the agent both have the same discount factor �. See Farhi and Werning (2006)
and DeMarzo and Sannikov (2007) for examples where they have different discount rates.

4We note that there is no private saving in our model. For examples with private saving see important works
by Werning (2002), Williams (2009) and Di Tella and Sannikov (2016).
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2.3.1 Structure of the Optimal Contract

Before proceeding, we give a brief guide for our analytical results and provide some intuition.
To start, note that the signal available the principal,

dyt D atdt C �dBt

depends only the present time effort at and not its past history. Coupled with the fact that
the probability of success is independent from one moment to the next, this implies that our
model is stationary. Therefore, one way the principal could design the contract is to base
the flow compensation ct on the noisy signal dyt , and as an additional incentive, provide a
lump sum bonus R—constant over time—if the project succeeds. In this case, the contract
takes the form

ct D c.dyt /; Rt D R

for some scalar R 2 R and compensation schedule c W R ! R (in this section, we will speak
loosely and imagine that dt is small but finite, so that dyt is normally distributed with mean
at � dt .) Since at is specified in the contract5 and thus known (i.e., the revelation principle),
the compensation schedule c may be taken to be a function of the noise only, so that without
loss of generality,

ct D f

�
dyt � atdt

�

�
D f .dBt /;

where f .z/ D c.adt C �z/.
Fixing a and R, the payment schedule c is constrained by the incentive compatibility

condition. By exerting effort a0
t D a C ��, the agent receives a flow compensation equal

(in distribution) to f .dBt C �/, earns the lump-sum bonus Rt (less his continuation value)
with additional probability ��dt , while increasing his disutility of effort by approximately
��g0.a/dt . In particular, taking � ! 0, we find that

Ef 0.dBt / C �.ƒ0.R/ � vt=�/dt D �g0.a/dt;

where vt=� is the (scaled) continuation value of the contract. Using Ef 0.dBt / D � E c0.dyt /,
we may cancel � and recover the following necessary condition that c must satisfy for
incentive compatibility

E c0.dyt / D g0.a/dt � .ƒ0.R/ �
vt

�
/dt:

The quantity on the LHS involving the derivative of the compensation schedule c is a
measure of the sensitivity of the contract to observation noise. A benefit of working in
continuous time is that the sensitivity also characterizes the contract insofar as determining

5In the present case, clearly at should also be constant.
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the continuation value of the agent. Ourfirst set of propositions show the previous derivation
is necessary and sufficient: any contract .a; c; R/ induces a continuation value vt of the agent
that is a diffusion (Lemma 2.1 and Proposition 2.2), and IC holds whenever the diffusion
coefficient satisfies an equality involving a and R (Theorem 2.3).

One implication from the above discussion is that when the principal pays the agent
according to the stationary contract ct D f .dyt / and Rt D R, he pays a sensitivity cost to
ensure the IC constraint. Indeed, when R decreases, the IC constraint forces an increase in
E c0.dyt /; using Stein’s Identity,

E c0.dyt / � EŒ�dBt � c.dyt /� � Cov.dBt ; ct /:

where � means up to constant. This relationship has an intuitive interpretation: the lower
the lump-sum bonus, the higher the correlation of compensation with noise. In this way,
the principal incurs a “sensitivity cost” if he implements a stationary contract where the
agent is incentivized in each period.

Instead, it may be more efficient to aggregate signals and adjust the flow compensation
and lump sumbonus based on the entire history yt instead of its innovation dyt ; for example,
the statistic yt=t � N.a; �2=t/ has lower variance for detecting deviations than dyt=dt �

N.a; �2=dt/. This suggests that the optimal contract should depend on non-trivially on the
past history and is therefore non-stationary. However, in the degenerate cases � D 0 and
� D 1 where that yt carries no useful information, the optimal contract is indeed stationary.

In general, the optimal contract is difficult to describe directly as the history fys W s < tg

expands with time. Our first main result (Theorem 2.3) shows that the evolution of the
continuation value vt suffices to characterize the IC condition, while our secondmain result
(Theorem 2.5) establishes that vt is a valid state variable in that the optimal contract a, c,
and R can be written as functions of vt .

Obviously, the continuation value needs to be non-negative for incentive compatibility:
the agent guarantees zero by simply not working. Intuitively, the continuation value cannot
be too high either: a low continuation value means the the principal could drive project
completion more cheaply as per the IC condition above. The flow compensation and bonus
payment c and R act in tandem to constrain the continuation value of the agent: Proposi-
tion 2.8 characterizes regimes (stated in terms of the continuation value of the agent) that
determine which of c and R is the main driving force of the contract.

Having described the intuitive ideas behind our proof, we now describe our solution to
the optimal contracting problem.

2.3.2 Agent’s Valuation as a Diffusion

We first rewrite, using integration by parts, the valuations (2.7) and (2.8) as to remove the
explicit separation between the events f� < 1g and f� D 1g and to “smooth out” the
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timing of the lump sum reward. After, we will realize the agent’s valuation as a diffusion.

Lemma 2.1. For a fixed contract .a; c; R/, the principal and the agent’s continuations values,
conditional on the information available at time t are given by, respectively,

�
p
t .a; c; R/ D � Ea

t

�Z 1

t

e��.s�t/
˚
e�

R s
t azdz.�cs/ds C e�

R s
t azdzas.� � Rs/

	
ds

�
(2.9)

and

vt .a; c; R/ D � Ea
t

�Z 1

t

e��.s�t/
˚
e�

R s
t azdz.u.cs/ � g.as/ C asƒ.Rs//

	
ds

�
: (2.10)

Here, Ea
t is the expectation induced by the agent’s action a conditional on the information available

at time t .

(All proofs appear in the appendix.)
The lemma is easiest to interpret if we set t D 0. After integrating by parts, the (uncon-

ditional) density P.� < 1/fa.�/ and the probability P.� D 1/ combine in such a way as
make e�

R s
0 azdz the correct time density. More precisely, � disappears from the expressions

above, being carried implicitly by e
R s

0 azdz . Relatedly, the flow quantity cs and the lump sum
quantities � and Rs are now on equal footing, after the latter are multiplied by as .

Lemma 2.2. lemma For any given contract .a; c; R/ there exists a progressivelymeasurable process
't with EaŒ

R t
0 '2

s ds� < 1 such that the agent’s continuation value may be written as

��1dvt .a; c; R/ D

�
vt .a; c; R/

�
1 C

at

�

�
C g.at / � u.ct / � atƒ.Rt /

�
dt

C 't .dyt � atdt/:

(2.11)

The intuition behind the proof is the following. Let Vt denote the expected value of the
agent conditional on information available at time t , taking the contract .a; c; R/ as given.
Then Vt is a Pa-martingale, and the martingale representation theorem furnishes the process
't . Recall that the process dyt � atdt follows a (scaled) Brownian motion, from (2.3) that

1

�
.dyt � atdt/ D dBt DW dBa

t : (2.12)

In this way, 't measures the sensitivity of the agent to the observational noise.
We will see next that the diffusion vt is actually the correct state variable for the contract,

as opposed to the signals yt . In particular, the signal yt only matters in so much as the role
of 't in the diffusion.
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2.3.3 Constant Contract as the First Best

Before moving to examine the incentive constraints for the agent and the associated problem
for the principal, we first consider the first-best solution. In particular, let us consider
maximizing the sumof the principal and the agent’s value functions, as defined in Lemma2.1.
Denoting the sum by W0, and fixing an arbitrary contract .a; c; R/, we have

W0 WD �
p
0 Cv0 D � Ea

t

�Z 1

0

e��te�
R t

0 azdz
�
u.ct /�ct Cat

�
�Cƒ.Rt /�Rt

�
�g.at /

�
dt

�
(2.13)

where we focus on t D 0 without loss. Since the effort at is non-negative, it is clear from
maximizing W0 pointwise that the optimal contract features a constant compensation and
lump-sum reward. Specifically, denoting the optimal first-best contract by .a�

t ; c�
t ; R�

t /, we
have

c�
t D c� and R�

t D R� for some constants c�; R�
2 R (2.14)

where c� maximizes u.c/ � c and R� maximizes ƒ.R/ � R over feasible compensations c

and rewards R, respectively.
The only remaining variable to optimize is the effort at . Substituting c� and R� into

(2.13), the optimal choice of at is the solution to the problem

QW0 WD max
fat gt�02A

Z 1

0

e��te�
R t

0 azdzH.at /dt (2.15)

where H.a/ � u.c�/ � c� C a.� C ƒ.R�/ � R�/ � g.a/.
Since the choice set A is compact and H is continuous it follows that an optimal solution

exists. Moreover, the discounting factor e�
R t

0 azdz implies that the optimal at is decreasing.
Together with the stationary feature6 of (2.15), we conclude the optimal a is in fact constant,
and is the solution to

a�
t D a�

2 R; where a� maximizes
H.a/

� C a
. (2.16)

Therefore, we have shown that the optimal first best contract is constant.

6It is clear that if t 7! at is optimal, then for any t0 > 0, the function defined by

t 7!

(
at if t � t0

at�t0 if t > t0

is also optimal.
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2.3.4 Incentive Compatibility Condition

Theorem 2.3. Let 't be the process defined in Lemma 2.1. The prescribed action at for the agent is
optimal if and only if for all feasible actions a,

at 2 argmax
a0

a0

�
't C ƒ.Rt / �

vt .a; c; R/

�

�
� g.a0/ DW Z.a0/ (2.17)

for all 0 � t < 1. Here, the max is taken over all feasible actions a0.
Moreover, when g.�/ is differentiable, the prescribed action at is optimal if and only if the

sensitivity of his continuation value of the observation noise—that is, 't—equals the marginal
cost of his effort minus the net gain from success, i.e.,

't D g0.at / �

�
ƒ.Rt / �

vt

�

�
: (2.18)

Theonly if part of the claim follows fromconsidering the alternative strategywherewhere
the action path fa0

zg is used until t , and using fazg afterwards. The difference Z.at / � Z.a0
t /

captures the tradeoff between the additional gain of working today and the decrease in the
continuation value implied by (2.11). If g is differentiable, then the “Moreover…” part of
the claim follows immediately by differentiating.

We stipulate that g is indeed differentiable so that (2.18) applies. If we substitute into the
diffusion equation (2.11), we see that for incentive compatible contracts, the evolution of vt

depends only on the terms of the contract (and known constants). More precisely, incentive
compatibility is satisfied if and only if

��1dvt D

�
vt

�
1 C

at

�

�
C g.at / � u.ct / � atƒ.Rt /

�
dt C �

�
g0.at / �

vt

�
� ƒ.Rt /

�
dBa

t (2.19)

where Ba
t is the Wiener process induced by the action a (refer to the proof for more details).

The previous expression is straightforward to interpret in terms of the original contract
.a; c; R/. Clearly, every contract .a; c; R/ introduces a (discounted) continuation value vt

that that evolves as histories fdytg are realized over time.
At each instant t , the agent gains Œu.ct / � g.at /�dt , and succeeds with instantaneous

probability atdt , enjoying payoff ƒ.R/ less the continuation payoff vt=�. Therefore, an
amount u.ct / � g.at / C atƒ.R/ � vt=� is subtracted from the continuation value, and
exponential discounting explains the rest. The form of the diffusion term is familiar, c.f.,
discussion at the beginning of this section.

The upshot is that this decouples the principal’s optimization problem. In searching for
an optimal incentive compatible contract, the correct state variable for a, c, and R is actually
vt instead of yt .
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2.3.5 The Principal’s Problem

Having examined the agent’s side of the problem, we turn now to the principal. Recall that
the principal seeks to maximize

F1 D max
a;c;R

� E
�Z 1

0

e��t

�
e�

R t
0 asds.�ct /dt C e�

R t
0 asdsat .� � R/dt

��
(2.20)

such that .a; c; R/ is incentive compatible.
As before, let vt denote the expected continuation payoff of the agent under the contract.

To solve the principal’s problem, we replace the above incentive compatibility constraint
with the results of Lemma 2.2 and Theorem 2.3.

Corollary. Let F2 be the maximum value of the quantity

� E
�Z 1

0

e��t

�
e�

R t
0 a.vz/dz

�
� c.vt /

�
dt C e�

R t
0 a.vz/dza.vt /

�
� � R.vt /

�
dt

��
(2.21)

over functions a, c, and R of the agent’s valuation fvtg, subject to (2.19). Then F1 D F2.

2.3.6 Retirement as an Upper Bound

The first step in the analysis of the principal’s problem is to derive an intuitive upper bound
from the consideration of the retirement policy.

Suppose the agent’s continuation value is v. To retire the agent, the principal could
either pay him a reward R so that �ƒ.R/ D v or compensate him with c such that u.c/ D v.
Let �r.�/ denote the principal’s payoff after retiring the agent. Since the agent exerts no effort
after retirement, we have

�r.v/ D max
�
�u�1.v/; ��ƒ�1

�
v

�

��
; v � 0: (2.22)

Since �ƒ.R/ D v D u.c/ � u.�R/ by assumption (A1), c � �R. Therefore,

�r.v/ D �u�1.v/: (2.23)

We could now upper-bound the principal’s payoff.

Proposition 2.4. Let Nc denote the maximum feasible compensation, and denote Nv D u. Nc/. Then
under any contract .a; c; R/ with v0 � Nv, the principal’s payoff is at most �r.v0/. That is,

m.v0/ D � E
�Z 1

0

e��t

�
e�

R t
0 azdz.�ct /dt C e�

R t
0 azdzat .� � Rt /dt

��
� �r.v0/: (2.24)

Therefore, whenever the agent’s continuation value exceeds the maximum possible flow
utility, the principal retires the agent to obtain �r. Nv/.
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Remark. The desired inequality follows from relating the agent’s lump sum reward ƒ.Rt /

with u0.u�1.v0// using (A1), then bounding the relevant quantity by � using (A3).

2.3.7 The HJB Equation and associated Boundary Conditions

The main goal of this section is to show that the principal’s value function m is defined by
the following HJB equation

m.v/ D max
a�0;c�0;R�0

�
�c C a

�
� � R �

m.v/

�

�
C m0.v/

�
v � u.c/ C g.a/ � a

�
ƒ.R/ �

v

�

��
C

��2

2
m00.v/

�
g0.a/ � ƒ.R/ C

v

�

�2�
:

(2.25)

Moreover, the maximizers a, c, and R to this equation constitute the optimal contract.
According to Proposition 2.4, we only need to consider v in the interval v 2 Œ0; Nv�.

Actually, more is true: it turns out that there is some vmax < Nv such that the “correct”
boundary equations are

m.0/ D 0 and m.vmax/ D �r.vmax/; (2.26)

together with the smooth pasting condition

m0.vmax/ D �0
r.vmax/: (2.27)

Intuitively, vmax is the point above which the agent is retired, under the optimal contract.
As suggested by the smooth pasting condition, for v > vmax, the value function m decreases
faster than the retirement value �r ; since m.vmax/ D �r.vmax/ from (2.26), this implies
m.v/ < �r.v/, making retirement optimal at v. More prosaically, past vmax, it becomes too
expensive for the principal to continue the contract.

2.3.8 Analysis of the HJB Equation

In this section, we state themain result of the paper; namely, the next three theorems together
establish that the HJB equation completely characterizes the solution of the problem.

The first step is to show that the HJB equation (2.25) has a unique solution. It is more
convenient to work with another form of the HJB, as stated below.

Theorem 2.5. Consider a transformed version of the HJB

m00.v/ D min
a;c;R

ˆa;c;R

�
v; m.v/; m0.v/

�
(2.28)
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where

ˆa;c;R

�
v; m; m0

�
D

m C c � a.� �
m
�

� R/ � m0.v � u.c/ C g.a/ � a.ƒ.R/ �
v
�
//

1
2
��2.g0.a/ C v=� � ƒ.R//2

: (2.29)

Here, the minimum is taken over the feasible set.
Then there exists a unique function m.�/ solving (2.28)with the property that for some vmax 2

.0; Nv/, the following holds

(i) For every v 2 Œ0; vmax�, we have the lower bound �r.v/ � m.v/.

(ii) The boundary conditions m.0/ D 0, m.vmax/ D �r.vmax/, and m0.vmax/ D �0
r.vmax/.

The main idea of the theorem and its proof rests on showing that the initial conditions
are consistent in that there is some vmax < Nv such that, given the boundary conditions, the
solution to m is unique. Along the way we will actually establish that m is strictly concave
on its domain Œ0; vmax�.

Having demonstrated a unique solution to the HJB equation, the next theorem shows
that the maximizers a, c, and R induce the optimal contract.

Theorem 2.6. Letm.�/ be the unique solution to (2.28) satisfying the boundary conditions for some
vmax 2 Œ0; Nv�. Let a D a.v/, c D c.v/, and R D R.v/ be the corresponding minimizers. For any
v0 2 Œ0; vmax�, the diffusion

��1dvt D

�
vt

�
1 C

a.vt /

�

�
C g

�
a.vt /

�
� u

�
c.vt /

�
� a.vt /ƒ

�
R.vt /

��
dt

C �

�
g0

�
a.vt /

�
C

vt

�
� ƒ

�
R.vt /

��
dBa

t (2.30)

has a unique solution (in the weak probability sense) when t 2 Œ0; �/, where � is the (random)
retirement time.

Furthermore, the contract .a; c; R/ defined by

at D a.vt /1t<� ; ct D c.vt /1t<� � �r.v� /1t�� ; Rt D R.vt /1t<� (2.31)

is incentive compatible for the agent. Moreover, it gives payoffs v0 to the agent and m.v0/ to the
principal.

In terms of the underlying contract, the previous results sets up the lower bound 0 and
the upper bound vmax such that the contract is active when the continuation value v lies
in Œ0; vmax�. Recall that the agent’s continuation value changes over time as a diffusion as
the innovations dBt are realized. The agent becomes increasingly expensive to incentivize
as his continuation value increases: working harder and thus finishing the project earlier
with higher probability is unattractive because the the agent who would rather collect her
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promised continuation value. The threshold vmax is the limit beyondwhich the continuation
value is so high that it is not possible to incentivize even a positive amount of effort: thus
the agent is retired with a constant payoff via a constant flow compensation.

When retirement obtains, the principal has a negative continuation payoff: he must pay
the agent without getting anything in return. That retirement (i.e., contract termination)
occurs at a value vmax at which the principal’s continuation payoff is strictly negative is
an interesting feature of our solution. It implies that there is a neighborhood of vmax for
which contracting with the agent continues while the principal’s value is negative. The
interpretation is that it is optimal for the principal to be patient, and commit to continue
the contract, in order to maximally incentivize the agent. (Note that when v is in this
neighborhood, it is possible for the continuation value to drop down to a level where the
principal again enjoys positive continuation value.)

That the solution to the diffusion exists is a standard result from stochastic differential
equations; that v0 is indeed from the contract .a; c; R/ follows from comparing the diffusion
to that in Lemma 2.1. Thus, the substantive part of the theorem is the claim verifying that
m.v0/ is indeed the valuation of the principal. For this, we verify that

Ft D �

Z t

0

e��s
�
e�

R s
0 azdz.�cs/ C e�

R s
0 azdzas.� � Rs/

�
ds C e��te�

R t
0 azdzm.vt / (2.32)

is a martingale, as its drift is set to zero by the optimality condition of the HJB. In fact, for
any incentive compatible contract, the process Ft is a super-martingale. That is the basis of
the proof of the next theorem, which establishes that the solution to the HJB equation is
exactly the principal’s valuation.

Theorem 2.7. Letm.�/ be the solution to the HJB equation (2.28). Then the payoff to the principal
for any incentive compatible contract .a; c; R/ starting at v0 is at most m

�
v0.a; c; R/

�
.

In particular, this allows for the choice of the optimal starting value v0 to initialize the
agent’s continuation. That is, the principal chooses

v�
D argmax

v2Œ0;vmax�

m.v/ (2.33)

and sets v0 D v� to achieve the maximal payoff with the contract characterized by the HJB
equation.

2.3.9 Compensation Cutoff and Positive Action Before Retirement

Given the characterization of the contract above, we can also establish some properties of the
contract during employment time. The next proposition shows that in the optimal contract
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.a; c; R/, the agent always works, i.e.,

a.v/ > 0 for all v 2 .0; vmax/. (2.34)

Moreover, when the agent’s continuation value is less than the threshold v� D argmaxm.v/,
the agent’s compensation is zero and the only incentive is through the lump-sum reward
R.v/.

Proposition 2.8. The following properties hold for the optimal contract .a; c; R/.

(i) The agent always works in that a.v/ > 0 for v 2 .0; vmax/.

(ii) The agent’s compensation is zerowhen the continuation value is below the cutoff, i.e., c.v/ D

0 for v 2 Œ0; v��, where v� D argmaxm.v/.

(iii) The agent’s compensation increases monotonically after v�, i.e., c is increasing on .v�; vmax/.

Each of these properties are easy consequences of the structure of the HJB equation. The
first property is intuitive given that the agent’s flow utility has infinite growth near zero
(it is clear that flow compensation drops to zero if the agent exerts no effort). The last two
parts of the proposition reflect that compensation is effective (over lump-sum payments)
only when the agent has a high enough valuation.

2.4 Illustrations and Simulations

If the utility and cost functions are specified, we may use an ODE solver to compute the
principal’s value function and the associated optimal contract. For this section, we set

u.c/ D
p

c; ƒ.R/ D
p

R; and g.a/ D
1

2
a2

C 2a; (2.35)

with the parameters � D 0:1, � D 1, and � D 1:6. In particular, the first best contract is

a�
D c�

D
1

4
R�

D
1

4
: (2.36)

The principal’s value function is shown in Figure 2-1, and the associated optimal contract is
shown in Figures 2-2 and 2-3 on page 62.

Recall that the retirement value vmax is endogenously determined by the smooth pasting
condition (2.27). The value function is increasing for v < v� and decreasing for v > v�.
This reflects the fact that for small v, growth in the agent’s value function is driven by the
increase in the probability of R&D success, so that m.v/ increases. For larger values of v,
the increase is dominated by the increase in compensation (c.f., Figure 2-2 and 2-3), which
lowers the principal’s value.
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Figure 2-1: The principal’s value function m.v/ against the retirement value �r.v/. The value
vmax is determined when the slopes coincide: m0.vmax/ D �0

r.v/. For this parameterization,
we have vmax � 0:13, as shown. The dotted vertical line shows the maximizer of m, denoted
v�.

Also interesting is the fact that the magnitude of the flow payment is dwarfed by the
lump-sum reward. In words, this means that (for this choice of parameters), the agent
is incentivized only by the successful completion of the project. As mentioned in the
introduction, this agrees with empirical evidence on long-term CEO compensation.

Finally, we plot themean trajectory of the value functions vt , at , ct , andRt . More precisely,
we performed following simulation. Let B D 106 and �t D 10�4. For b D 1; : : : ; B, we
generate a sample path of vt given by (2.19) where the Brownian motion is approximated
with step size �t .

The diffusion is stopped when vt falls below zero or vt exceeds vmax (recall that vmax �

0:13 for our specific choices of parameters). If the diffusion is stopped because vt � 0, then
we generate a new sample path vt , and so on; thus all sample paths of vt are stopped due to
it exceeding vmax.

For each of these B sample paths, we record the paths a.vt /, c.vt /, and R.vt /. It is the
mean of these quantities that are shown below. To maintain stability, we only consider
paths for which the diffusion stops after 700 steps. The result of this simulation is shown in
Figure 2-4.

The simulations reveal the fact that conditional on the R&D project being unsuccessful,
the lump-sum reward decreases over time. In other words, there is greater incentive to finish
the R&D project early (on average). Moreover, the agent puts in less effort if the project fails
to succeed before a given time (namely, the time for which a is maximized).
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Figure 2-2: The effort a.v/ in the optimal contract.

Figure 2-3: The optimal compensation and lump-sum reward.
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Figure 2-4: Mean trajectories of the agent’s value, the optimal action, the optimal compen-
sation, and the optimal reward during the employment time, (the x-axis is the employment
time. Ninety-five percent confidence bands plotted in maroon color.
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2.5 Empirical Findings

We demonstrate the relevance of our two dimensional incentive pay model with a couple
empirical exercises. The basic setup is as follows: we map variables of executive pay found
in the in the ExecuComp database with our model’s compensation plans (the endogenous
variable of interest) and map the second finite difference of stock returns to the successful
completion of a long term project.

Specifically, the ExecuComp dataset on executive pay decomposes executive compensa-
tion into the following categories: salary, bonus, stock awards, option awards, non-equity
incentives, pension changes, and all other categories. The salary and non-equity incentives
most cleanly map to our model’s c and R, respectively; the bonus component is also plausi-
bly mapped to R, though it contributes very little to overall compensation in our dataset
that its effects is washed out.

The first point we would like to make is that executive compensation is two-dimensional
(or multi-dimensional) in that salary, option and stock rewards, and non-equity incentives
each all make up a sizable proportion of the executive’s total compensation. For each of
the components of executive pay described above, we plot its proportion to overall pay (i.e.,
a number in Œ0; 1�) in Figure 2-5. We map our model’s “flow compensation” to the salary
component, and map the “lump-sum compensation” to the sum of the stock awards, option
awards, and non-equity incentives. Both groups contribute significantly, with the latter
group taking on heavy tails, as shown in Figure 2-6.

To further motivate our model, we gauge the degree to which executive incentive pay
is linked to the completion of successful projects. We link the latter with the second finite
difference of monthly percentage returns rm on the stock price,

Qam D .rm � rm�1/ � .rm�1 � rm�2/ (2.37)

which we will call acceleration. The basic idea behind linking acceleration with the comple-
tion of projects is that the success of the latter may result in a new product or profit center
which increases the month-over-month growth rm � rm�1. In our dataset, Qam is observed
monthly (i.e., m is indexed by months) while executive compensation variables are observed
yearly. Therefore, we resample the monthly returns to annual returns by averaging,

at D
1

12

X
m

Qam; where the sum is taken over the months in year t : (2.38)

To test our model’s hypothesis, we regress non-incentive pay, expressed as a proportion of
total compensation, on at and other controls. In symbols, the estimation equation is

yit D ˇait C 
|xit C �it (2.39)
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Figure 2-5: The seven components of executive compensation in the ExecuComp dataset.
Each histogram plots the proportion of the corresponding component as part of total com-
pensation. Note that sum of stock, option, and non-equity incentives peak around ten
percent, far exceeding the salary component, which tops out at around three percent.
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Figure 2-6: Comparison of salary versus bonuses. In general, both distributions exhibit heavy
tails, indicating the presence of compensation packages for which the salary component
(resp. the bonus component) dominate total compensation. Also note that the distribution
of bonuses stochastically dominate that of the salary at every fixed level: for example, there
are significantly many more executives whose bonus pay exceeds 70% of total compensation
than those whose salary exceeds 70% of total compensation.
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Figure 2-7: Distribution of regression coefficients across each executive; specification (1) is
used.

where the indices .i; t/ runs over executive-year pairs present in the dataset after implau-
sible outliers are removed. Here, yit 2 Œ0; 1� is proportion of non-equity incentive to total
compensation, and xit is a vector of controls depending on the specification. The results of
this linear regression is found in Table 2.1; we see that the coefficient of interest ˇ is statisti-
cally significant across each specification, consistent with the hypothesis and equilibrium
outcome of our model. Recall that acceleration is measured as the change in the increase
of returns from one year to the next, a coefficient of 0.16% implies that a acceleration of
monthly stock returns by 1% induces a 16% increase in the proportion of non-equity incentive
pay in total compensation. (Our specifications focuses on the effect of non-equity incentives
since since our measure of project completion (return acceleration) is itself a measure of a
stock price.)

Finally, we run the same regression as (2.39) separately for each executive, namely, for
each i , we collect the vectors yt D fyitg and at D fxitg and run the regression using data
points in yt and xt , producing a coefficient ˇ D ˇi for each executive. The empirical
distribution of ˇi of specification (1) is shown in Figure 2-7. These regressions roughly
correspond to a panel data setup with executive fixed effects; as expected, the distribution
of slopes have a positive bias. This is inline with the regressions in Table 2.1.
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Table 2.1: Effect of growth acceleration on non-equity incentives.

Dependent variable:

noneq

(1) (2)

acceleration 0.158��� 0.165���

(0.025) (0.022)

salary �0.137��� �0.427���

(0.002) (0.003)

stock �0.384���

(0.002)

option �0.400���

(0.003)

Constant 0.206��� 0.449���

(0.001) (0.001)

Observations 115,958 115,958
R2 0.031 0.251
Adjusted R2 0.031 0.251
Residual Std. Error 0.146 0.128

Note. Specification (1) includes salary component as a control, and specification (2) adds
stock and option rewards. Here, acceleration is measured as the percentage increase of the
change in returns from one year to the next.

67



2.6 Conclusion

In this paper, we develop a model of contracting a research and development (R&D) project
in continuous-time where the agent’s efforts are only indirectly observed via a noisy signal.
The agent’s effort is costly and modeled by a convex function. The principal rewards the
effort with a two-dimensional incentive-pay contract: a flow compensation over the course
of R&D plus a lump-sum reward if the R&D is successful. When agent’s action is fully
observable, the optimal (first-best) contract is stationary (i.e., constant). However, when the
agency conflict is binding (second-best), the optimal dynamic contract is time varying.

Our first result expresses the agent’s continuation value as diffusion where the drift is
related to the path of effort levels and the diffusion related to the sensitivity of the agent to
the noisy signal. Using this result, we characterize the entire space of incentive compatible
contracts in terms of the sensitivity. And, as a consequence, we derive an HJB equation
explicitly characterizing the optimal contract. Our main result shows that the solution to
the HJB equation (i.e., the optimal contract) exists and it is unique. Time of hiring and firing
the agent are both endogenous. Particularly, the nature of the HJB equation furnishes a key
quantity vmax, the retirement (firing) value of the agent. Before the agent’s valuation exceeds
vmax, the principal retains the agent even if his ownvaluemay be negative. The interpretation
is that the optimal contract features a patient principal who commits to continue the project
when it is close enough to completion. Hiring time is also uniquely pinned down in terms
of the agent’s valuation, maximizing the principal valuation.

As a consequence of the HJB equation, we also derive some qualitative properties of
the optimal contract. Particularly, there is a unique threshold on the agent’s valuation so
that agent’s optimal compensation is zero below the threshold, and increases in the agent’s
valuation above the threshold. Thus, when agent’s value is small enough, the principal
provides incentive-pay by only a positive lump-sum bonus upon successful completion of
the project. Our key results are valid for a large set of possible utility and cost functions.
In particular, the only condition we require outside of the usual concavity and convexity
conditions is a lower bound on the slope of the cost function, viz. (A3).

To gauge the practice relevance of our theoretical results, we use executive compensation
data from ExecuComp to demonstrate the multi-dimensional nature of compensation. We
also show that the bonus component of compensation, in particular the non-equity incen-
tives, is correlated with the acceleration of the growth of the company’s stock performance,
which we use as a proxy for the completion of long-term projects. This agrees with the
qualitative characteristics of the optimal contract discussed above.
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2.7 Appendix

2.7.1 Assumptions

We will maintain the following assumptions throughout.
(A1) The utility functions satisfy �ƒ.R/ � u.�R/.
(A2) If NR is the maximum reward possible, and g0.0/ > ƒ. NR/.
(A3) The upper bound on c, denoted Nc, has the property that g.a/

a
� u0. Nc/�. For tidiness,

we will write u0. Nc/ D �0.

2.7.2 Omitted Proofs

Proof of Lemma 2.1. We start with deriving the principal’s value function. We consider �P
0

(extension to �P
t is straightforward). It will be convenient to set

X� D

Z �

0

e��t .�ct /dt C e��� .� � R� /:

With this notation, recall that the principal’s value function at time 0 is

�P
0 D � E

�
Pr.� < 1/

Z 1

0

X�fa.�/d� � Pr.� D 1/

Z 1

0

e��tctdt

�
:

Thus, plugging fa.�/ D
a� e�

R �
0 azdz

1�e�
R 1
0 azdz

and rearranging implies

��1�P
0 D E

�Z 1

0

X�e�
R �

0 azdza�d� C e�
R 1

0 azdz

Z 1

0

e��t .�ct /dt

�
:

Using Fubini’s theorem and change in the order of integrals gives

��1�P
0 D E

�Z 1

0

Z 1

t

e��t .�ct /e
�

R �
0 azdza�d�dt C e�

R 1

0 azdz

Z 1

0

e��t .�ct /dt

�
C E

�Z 1

0

e��� .� � R� /e�
R �

0 azdza�d�

�
:

Next, we note that
R 1

t e�
R �

0 azdza�d� D e�
R t

0 azdz � e�
R 1

0 azdz (which follows by differenti-
ating), as a result we have

��1�P
0 D E

�Z 1

0

e��t .�ct /Œe
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R t
0 azdz

� e�
R 1

0 azdz�dt C e�
R 1
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0 azdza�d�

�
D E

�Z 1
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e��t .e�
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R t

0 azdzat .� � Rt /dt/

�
:
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Similar steps follows to simplify the agent’s value function. Her valuation at time zero is

v0 D � E
�
Prf� < 1g

Z 1

0

�Z �

0

e��t .u.ct / � g.at //dt C e���ƒ.R� /

�
fa.�/d�

C Prf� D 1g

Z 1

0

e��t .u.ct / � g.at //dt

�
:

Thus, plugging in fa.�/ D
a� e�

R �
0 azdz

1�e�
R 1
0 azdz

and rearranging implies that ��1v0 is equal to

E
�Z 1

0

Y�e�
R �

0 azdza�d� C e�
R 1

0 azdz

Z 1

0

e��t .u.ct / � g.at //dt

�
;

where
Y� D

Z �

0

e��t .u.ct / � g.at //dt C e���ƒ.R� /:

Upon rearranging, this is equal to the sum of the expectations of the quantitiesZ 1

0

�Z �

0

e��t .u.ct / � g.at //dt

�
e�

R �
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Z 1
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e���ƒ.R� /e�
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e�

R 1

0 azdz

Z 1

0

e��t .u.ct / � g.at //dt:

Next, change in the order of integrals gives
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:

Finally, since
R 1

t e�
R �

0 azdza�d� D e�
R t

0 azdz � e�
R 1

0 azdz , we have

��1v0 D E
�Z 1

0

e��t .e�
R t

0 azdz.u.ct / � g.at //dt C e�
R t

0 azdzatƒ.Rt /dt/

�
;

finishing the proof.

Proof of Lemma 2.2. Fix the contract .a; c; R/. Define Vt to be the expected lifetime utility
evaluated conditional on time t information,

Vt D �

Z t

0

e��s.e�
R s

0 azdz.u.cs/ � g.as// C e�
R s

0 azdzasƒ.Rs//ds (2.40)

e��te�
R t

0 azdzvt .a; c; R/:
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Clearly, Vt is a (Doob) martingale under Pa; applying Martingale Representation Theorem,

Vt D V0 C

Z t

0

��e��se�
R s

0 azdz'sdBa
s ; (2.41)

where Ba
t D

1
�

.yt �
R t

0 azdz/ is a Wiener process under Pa and 't is Ft -measurable and
EaŒ

R t
0 '2

s ds� < 1. Recall that

Vt D �

Z t

0

e��se�
R s

0 azdz
�
u.cs/ � g.as/ C asƒ.Rs/

�
ds C e��te�

R t
0 azdzvt .a; c; R/;

thus differentiating the expression with respect to Vt (using Ito’s lemma) gives:

dVt D �e��te�
R t

0 azdz
�
u.ct / � g.at / C atƒ.Rt /

�
dt C d

�
e��te�

R t
0 azdzvt .a; c; R/

�
D �e��te�

R t
0 azdz

�
u.ct / � g.at / C atƒ.Rt /

�
dt C e��te�

R t
0 azdzdvt .a; c; R/

� .� C at /e
��te�

R t
0 azdzvt .a; c; R/dt: (2.42)

Also from (2.41) we have
dVt D ��e��te�

R t
0 azdz'tdBa

t : (2.43)

Plugging (2.43) into (2.41) and rearranging gives

��1dvt .a; c; R/ D �tdt C 't .dyt � atdt/ D �tdt C 't�dBa
t ; (2.44)

where
�t D vt .a; c; R/

�
1 C

at

�

�
C g.at / � u.ct / � atƒ.Rt /; (2.45)

finishing the proof.

Proof of Theorem 2.3. We prove the if and only if parts separately as follows.

If Part. Let us assume that

a0

�
't C ƒ.Rt / �

vt .a; c; R/

�

�
� g.a0/ � at

�
't C ƒ.Rt / �

vt .a; c; R/

�

�
� g.at /;

(the IC constraint) holds. Now, consider an alternative strategy Qa. Due to (2.40), we have

QVt D �

Z t

0

e��s
�
e�

R s
0 Qazdz.u.cs/ � g. Qas// C e�

R s
0 Qazdz

Qasƒ.Rs/
�
ds C e��te�

R t
0 Qazdzvt .a; c; R/:
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Then, QVt is a PQa-supermartingale for each alternative strategy Qa. Also, QVt is uniformly
integrable. Hence

QV1 � lim
t!1

QVt D �

Z 1

0

e��s
�
e�

R s
0 Qazdz.u.cs/ � g. Qas// C e�

R s
0 Qazdz

Qasƒ.Rs/
�
ds;

that follows by the Doob’s convergence theorem Karatzas and Shreve (1991). As a result, the
alternative strategy Qa does not outperform strategy a because:

v0. Qa; c; R/ D EQa
�

QV1

�
D EQa

�
�

Z 1

0

e��s
�
e�

R s
0 Qazdz.u.cs/ � g. Qas// C e�

R s
0 Qazdz

Qasƒ.Rs/
�
ds

�
� QV0 D v0.a; c; R/:

Only If Part. Let us consider Qa (an alternative strategy). The expected (average) lifetime
utility evaluated conditional time t information if agent uses Qa for all time t 0 up to time t

(including t) and then follows a after time t , is given by

QVt D �

Z t

0

e��s
�
e�

R s
0 Qazdz.u.cs/ � g. Qas// C e�

R s
0 Qazdz

Qasƒ.Rs/
�
ds C e��te�

R t
0 Qazdzvt .a; c; R/:

Using Ito’s lemma, under probability measure PQa, we have

d QVt D �e��t
�
e�

R t
0 Qazdz.u.ct / � g. Qat // C e�

R t
0 Qazdz

Qatƒ.Rt /
�
dt

C d.e��te�
R t

0 Qazdzvt .a; c; R//:

(2.46)

Applying Ito’s lemma implies

d.e��te�
R t

0 Qazdzvt .a; c; R// D e��te�
R t

0 Qazdzdvt .a; c; R/�.�C Qat /e
��te�

R t
0 Qazdzvt .a; c; R/dt:

Hence, above equality and substituting dvt .a; c; R/ (from (2.44)) and rearranging give

e�te
R t

0 Qazdzd QVt D�
�
u.ct / � g. Qat / C Qatƒ.Rt /

�
dt � Qatvt .a; c; R/dt

C atvt .a; c; R/dt � �
�
u.ct / � g.at / C atƒ.Rt /

�
dt

C �'t�dBa
t : (2.47)

Using Girsanov’s Change ofMeasure Theorem (Revuz and Yor (2004)), theWiener processes
under probability measures Pa and PQa can be linked so that

�.dBa
t � dB Qa

t / D . Qat � at /dt:
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Hence, substituting �dBa
t D . Qat � at /dt C �dB Qa

t into (2.47) and rearranging terms,

��1e�te
R t

0 Qazdzd QVt D Q�tdt C 't�dB Qa
t ; (2.48)

where

Q�t D g.at / � at

�
't C ƒ.Rt / �

vt .a; c; R/

�

�
� g. Qat / C Qat

�
't C ƒ.Rt / �

vt .a; c; R/

�

�
:

Now, for the sake of contradiction with the IC constraint, suppose that Qat outperforms at on
a set of positive measure, so that Q�t > 0. Therefore, under the probability measure PQa, the
drift of d QVt (see (2.48)) is non-negative almost surely with positive expectation. It follows
that there is some t for which EQaŒ QVt � > QV0 D v0.a; c; R/, which is a contradiction with the
optimality of strategy a. To see this, note that the agent receives EQaŒ QVt � by following Qa up to
time t and then following a afterwards.

Proof of Proposition 2.4. Suppose v0 > Qv D u. Nc/ and u.c1/ D v0. Recall that u0. Nc/ D �0.
Therefore, because u.�/ is concave and increasing thus v0 > Qv implies c1 > Nc and u0.c1/ � �0.
Our objective is to show that m.v0/ � �c1 D �u�1.v0/ D �r.v0/: Using Proposition 2.1 we
have v0 D � E

hR 1

0 e��t .e�
R t

0 azdz
�
u.ct / � g.at /

�
dt C e�

R t
0 azdzatƒ.Rt /dt/

i
. Recall that (by

assumption) ƒ.R/� � u.�R/ therefore

T1 WD v0 � � E
�Z 1

0

e��t .e�
R t

0 azdz
�
u.ct / � g.at /

�
dt C e�

R t
0 azdz at

�
u.�Rt /dt/

�
Note that u.�/ is concave and differentiable. Thus, Taylor expansion of u.�/ around c1 shows
that T1 is at most

� E
�Z 1

0

e��t .e�
R t

0 azdz
�
u.c1/ C u0.c1/.ct � c1/ � g.at /

�
C e�

R t
0 azdz at

�
.u.c1/ C u0.c1/.�Rt � c1///dt

�
(2.49)

which (by rearranging) is equal to

T2 ´ � E
�Z 1

0

e��t .e�
R t

0 azdz.u0.c1/ct � g.at // C e�
R t

0 azdzatu
0.c1/Rt /dt

�
C .u.c1/ � c1u0.c1//

�Z 1

0

e��t .e�
R t

0 azdz� C e�
R t

0 azdzat /dt

�
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Next, note that u0.c1/
�0

� 1 therefore �g.at / � �g.at /
u0.c1/

�0
. Hence

T2 � �u0.c1/E
�Z 1

0

e��t .e�
R t

0 azdz.ct �
g.at /

�0
/ C e�

R t
0 azdzatRt /dt

�
C .u.c1/ � c1u0.c1//

�Z 1

0

e��t .e�
R t

0 azdz� C e�
R t

0 azdzat /dt

�
DW T3

Notice that (by assumption) �
g.at /

�0
� ��at . Thus replacing �

g.at /
�0

with ��at in T3 and

noting that
R 1

0 e��t .e�
R t

0 azdz� C e�
R t

0 azdzat /dt � 1 we have

T3 � �u0.c1/E
�Z 1

0

e��t .e�
R t

0 azdzct C e�
R t

0 azdzat .Rt � �//dt

�
C .u.c1/ � c1u0.c1//:

Define T4 to be the RHS; so far we have shown that v0 � T1 � T2 � T3 � T4. To finish the
proof, consider v0 � T4. Note that u.c1/ D v0. Hence, rearranging gives

0 � �u0.c1/

�
c1 C � E

�Z 1

0

e��t .e�
R t

0 azdz.�ct / C e�
R t

0 azdzat .� � Rt //dt

��
D �u0.c1/.c1 C m.v0//

thus m.v0/ � �c1 D �u�1.v0/ D �r.v0/, as desired, finishing the proof.

Proof of Theorem 2.5. The proof follows by proving the following claims.

To begin, the next claim shows that the solution (2.28) is unique.

Claim 1. The solution to the HJB (2.28) is unique.

Proof of Claim 1. The claim immediately follows because the HJB is uniformly elliptic, (see
Section IV.5 in Fleming and Soner (2007)).

The following claim is about the concavity of the HJB solution, namely that if the
solution is concave at one point, then it is concave everywhere.

Claim 2. If there exists Nv such that m00. Nv/ < 0 then m00.v/ < 0 for all v > 0.

Proof of Claim 2. To prove it we use the uniqueness result established in Claim 1. Let us
assume m00. Nv/ < 0. Rearranging the HJB equation gives

0 D c � a.� � R/

� m00.v/
��2

2

�
g0.a/ C

v

�
� ƒ.R/

�2

� m0.v/

�
�u.c/ C g.a/ � aƒ.R/ C v

�
1 C

a

�

��
C m.v/

�
1 C

a

�

�
:
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Next we show that there is no v such that m00.v/ D 0. For the sake of contradiction, suppose
that there is a v for which m00.v/ D 0. Then the linear function m. Qv/ D m.v/ C m0.v/. Qv � v/

solves the HJB and also m00.v/ D 0. However, according to Claim 1 the solution to the HJB
is unique, meaning that the linear function must be the only solution of the HJB equation.
However, this contradicts the concavity at the point Nv, contradiction.

Claim 3. The value function m.�/ satisfying the HJB in (2.28) is concave.

Proof of Claim 3. Consider the HJB in (2.28). We have m.0/ D �r.0/ and for some vmax > 0

with m.vmax/ D �r.vmax/. Suppose m0.0/ > �0
r.0/. Since m.0/ D �r.0/, m0.0/ > �0

r.0/, and
m.vmax/ D �r.vmax/, there exists 0 < v < vmax) for which m0.v/ < �0

r.v/. Moreover, since
�r.�/ is concave �0

r.v/ < �0
r.0/. All of this shows that,

m0.v/ < �0
r.v/ < �0

r.0/ < m0.0/;

implying that there exists 0 < v00 < v for which m00.v00/ < 0. This in turn implies that there
is a point v00 in which m00.v00/ < 0. Using the result in Claim 2, the function m.�/ is concave
(strictly) every where in Œ0; vmax�.

Finally, the last claim establishes that v0 is bounded by Qv (recall that u. Nc/ D Qv and
Proposition 2.4).

Claim 4. The endogenous retirement value vmax does not explode with escaping to infinity,
precisely, vmax � Qv.

Proof of Claim 4. We prove the claim by contradiction. Suppose that vmax > Qv. We also have
m0.0/ > �0

r.0/. By concavity of �r.�/, we then have

m0.vmax/ < �0
r.vmax/ � �0

r. Qv/: (2.50)

The relation in (2.50) implies that m0.v00/ D �0
r. Qv/ for some v00 < vmax, so that

m0.v00/ D �0
r. Qv/ D �

1

u0.u�1. Qv//
D �

1

u0. Nc/
D ���1

0 :

where the last equality follows by Assumption (A3). Moreover, the concavity of m.�/ implies

m.v00/ � v00m0.v00/ > m. Qv/ � Qvm0.v00/ > �r. Qv/ � Qvm0.v00/:

Finally, to finish the proof, we show that m00.v00/ > 0 which in contradiction with Claim 2
(concavity of m.�/). To do so, we will show that (c.f., (2.28))

m00.v00/ D min
a2Œ0; Na�;c2Œ0; Nc�;R2Œ0; NR�

ˆa;c;R.v00; m.v00/; m0.v00// > 0:
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By fixing the action a (which is arbitrary from Œ0; Na�), it will suffice to show that

min
c;R

m.v00/ C c � a

�
� �

m.v00/

�
� R

�
� m0.v/

�
v00

� u.c/ C g.a/ � a

�
ƒ.R/ �

v

�

��
> 0: (2.51)

Transposing terms of the quantity in the previous display yields

T1 WD m.v00/ � m0.v00/

�
v00.1 C

a

�
/ C g.a/

�
� a

�
� �

m.v00/

�

�
C amin

R
fR C m0.v00/ƒ.R/g C min

c
fc C m0.v00/u.c/g:

Since �ƒ.R/ � u.�R/ (by Assumption 1), thus replacing ƒ.R/ with u.�R/ gives

T1 � m.v00/ � m0.v00/

�
v00.1 C

a

�
/ C g.a/

�
� a

�
� �

m.v00/

�

�
C amin

R

�
R C m0.v00/

u.�R/

�

�
C min

c

�
c C m0.v00/u.c/

�
WD T2

Substituting m0.v00/ D �
1

u0. Nc/
and rearranging gives

T2 �

�
1 C

a

�

�
.fm.v00/ � m0.v00/v00

g C f Nc C m0.v00/u. Nc/g/ � a� � m0.v00/g.a/

> �a� � m0.v00/g.a/ D
g.a/

u0. Nc/
� a� D

g.a/

�0
� a� � 0;

where the last equality follows by Assumption (A3). Putting together, 0 < T2 � T1 thus
m00.v00/ > 0, contradiction with Claim 2. Hence, there must be that vmax � Qv. Since m0.0/ >

�0
r.0/ the solution will meet �r.�/ at vmax and for all 0 � v � vmax we then have �r.v/ � m.v/,

finishing the proof.

Proof of Theorem 2.6. Since the drift and the volatility are bounded in (2.19), the regular
Lipchitz conditions are satisfied (c.f., Karatzas and Shreve (1991)), and as a result the solution
to (2.19) exists and is unique (in the distributional sense). Next, we show vt is equal to
vt .a; c; R/, where vt .a; c; R/ is the agent’s continuation value from the contract .a; c; R/.
Using (2.10) from Proposition 2.1 we have

vtCz.a; c; R/ � vtCz D e�ze
R tCz

t a.vs/ds

�
vt .a; c; R/ � vt C ��

Z tCz

t

's � '.vs/

e
R s

t �dxe
R s

t a.vx/dx
dBa

s

�
:

Since a.vs/ � 0, this shows that8̂̂<̂
:̂
Et .vtCz.a; c; R/ � vtCz/ � e�z.vt .a; c; R/ � vt / if vtCz.a; c; R/ � vtCz > 0

Et .vtCz.a; c; R/ � vtCz/ � e�z.vt .a; c; R/ � vt / if vtCz.a; c; R/ � vtCz < 0

Et .vtCz.a; c; R/ � vtCz/ D 0 if vtCz.a; c; R/ � vtCz D 0:
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Since v and v.a; c; R/ are bounded, we must have vt D vt .a; c; R/ for all t � 0. Therefore,
the agent receives v0 D v0.a; c; R/ from the contract. Next, we show that the principal also
gets m.v0/, which will follow once we establish that

Ft D

Z t

0

�e��s

�
e�

R s
0 azdz.�cs/ C e�

R s
0 azdzas.� � Rs/

�
ds C e��te�

R t
0 azdzm.vt / (2.52)

is a bounded martingale.
Using Ito’s lemma we have

dFt D e��t�

�
e�

R t
0 azdz.�ct / C e�

R t
0 azdzat .� � Rt /

�
dt C d.e��te�

R t
0 azdzm.vt //:

Applying Ito’s lemma one more time to the last term gives

d.e��te�
R t

0 azdzm.vt // D �.� C at /e
��te�

R t
0 azdzm.vt /dt C e��te�

R t
0 azdzd.m.vt //

Next, applying Ito’s lemma to d.m.vt // and using (2.11) from Proposition 2.2 to substitute
for dvt yield

dFt D ‡tdt C

�
e��te�

R t
0 azdzm0.vt /��'t

�
dBa

t

with drift ‡t D �e��te�
R t

0 azdzMt , where

Mt D m00.vt /
��2

2

�
g0.a/ � ƒ.R/ C

v

�

�2

C m0.vt /
�
g.at / � u.ct / � atƒ.Rt / C vt .1 C

at

�
/
�

� m.vt /.1 C
at

�
/ � ct C at .� � Rt /

Note that the optimality condition of HJB equation (2.25) will imply that ‡t D 0. As a
consequence, Ft is a martingale up to the retirement/termination time (i.e., the stopping
time �). Therefore, the principal’s value of the .a; c; R/ contract is

EF� D E
�Z �

0

�e��s
�
e�

R s
0 azdz.�cs/ C e�

R s
0 azdzas.� � Rs/

�
ds C e���e�

R �
0 azdz�r.v� /

�
D F0

D m.v0/;

where the last equality follows by the result that Ft is a bounded martingale. To finish the
proof, recall that m.v� / D �r.v� /.

Proof of Theorem 2.7. In the proof we show that any incentive compatible .a; c; R/ contract
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implies, at most, m.v0.a; c; R// payoff for the principal. To show it, we establish that for any
incentive compatible contract .a; c; R/, the principal continuation value Ft is a bounded
super-martingale.

Let vt D v.a; c; R/ be the agent’s payoff (where vt is the diffusion in (2.11)). The princi-
pal’s payoff up to time t is given by

Ft D

Z t

0

�e��s.e�
R s

0 azdz.�cs/ C e�
R s

0 azdzas.� � Rs//ds C e��te�
R t

0 azdzm.vt /

Using Ito’s lemma, dFt D ‡tdt C .e��te�
R t

0 azdzm0.vt /��'t /dBa
t as in the proof of Proposi-

tion 2.6; the goal is to show ‡t � 0. When at D 0, the quantity �e��te�
R t

0 azdz.‡t

ˇ̌
at D0

/ is
equal to

m00.vt /
��2

2

�
g0.0/ � ƒ.R/ C

v

�

�2

C m0.vt /.�u.ct / C vt / � m.vt / � ct

� .m0.vt /.�u.ct / C vt / � m.vt / � ct /

D .m0.vt /.�u.ct / C vt / � m.vt / C �r.u.ct /// DW T1

(2.53)

where the first inequality follows from concavity of m.�/, i.e., m00.vt / � 0, and the last
equality is due to the definition �r.x/ D �u�1.x/. Moreover, by Proposition 2.5, part .i/,
�r.v/ � m.v/, thus,

T1 � �e��te�
R t

0 azdz
fm0.vt /.�u.ct / C vt / � m.vt / C m.u.ct //g � 0 (2.54)

where the last inequality follows because m.�/ is concave. Therefore, (2.53) and (2.54) shows
that ‡t � 0 at at D 0. For at > 0, it is also true that ‡t � 0. This is due to Proposition 2.2
(see (2.17)) and the HJB equation (2.25) along with the concavity of m.�/ (i.e., m00.v/ � 0).

As consequence, Ft is a bounded supermartingale for any incentive compatible contract
.a; c; R/. This means that the principal’s payoff from the .a; c; R/ contract

Ea F� � F0 D m.v0/;

as desired.

Proof of Proposition 2.8. The proof follows from the HJB equation (2.25). To prove (i), set
a.v/ D 0 in (2.25). Since the principal payoff is concave, i.e., m00.v/ � 0, rearranging gives

0 � min
c2Œ0; Nc�

m.v/ C c � m0.v/.v � u.c// (2.55)

For brevity, denote W D u.c/. Then

c D u�1.W / D ��r.W / (2.56)
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where the last equality follows by the definition of �r.�/. Also note that during the employ-
ment (before retirement), i.e., for any W 2 .0; vmax/, we must have

�r.W / < m.V /: (2.57)

Now, (2.57) and (2.56) in (2.55) together imply

0 � min
c2Œ0; Nc�

m.v/ � �r.W / � m0.v/.v � W / > min
c2Œ0; Nc�

m.v/ � m.W / � m0.v/.v � W / � 0;

where the last inequality is due to the concavity m.�/.
This is a contradiction for optimality in the HJB equation (2.25). Therefore, a.v/ > 0 for

all v 2 .0; vmax/. The rest of the proof follows immediately from the HJB equation (2.25) as
well. The first order optimality condition with respect to c gives

1 C u0.c/m0.v/ D 0:

Since m.�/ is concave over .0; vmax/ (i.e., during employment), c.v/ > 0 when m0.v/ < 0,
which obtains when v > v� (note that v� D argmaxv2Œ0;vmax� m.v/). Hence,

u0.c.v// D �
1

m0.v/
:

Finally, since u.�/ and m.�/ are both concave, c0.v/ > 0 for all v 2 .v�; vmax/.
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Chapter 3

Speed Competition and Segmentation
in Illiquid Markets

Joint with Oğuzhan Çelebi and Ali Kakhbod

3.1 Introduction

In the last decade, there has been significant fragmentation and heterogeneity across trading
venues, due to investments in trading infrastructure. These investments reduced latencies
in order execution and communication for many different instruments.1 Investors with
different preferences regarding the speed and cost of trading an asset choose venues that serve
their needs, while venues compete to attract these investors. The preferences of investors
are inherently dynamic and depend on many factors such as their liquidity demand, need
for portfolio rebalancing or hedging. How does an investor choose the appropriate venue
for her preferences? How does this choice depend on dynamic nature of preferences? How
do venues compete in order to attract the investors? What is the effect of differentiation in
trading speeds on transaction fees charged by the venues, the trading volume and welfare?

To investigate these issues, we consider a dynamicmodelwhere traderswith unit demand
buy or sell a single security. Traders experience random shocks to their utility of holding the
asset and engage in trade in one of the trading venues. They decide which venue to execute
their trade depending on their valuation of the asset, transaction costs, and the trading speed
of the two venues. In Theorem 3.3, we characterize the equilibriummarket structure and
show under what conditions there is zero (no-trade), one (no-segmentation) or two (market
segmentation) active venues.

We are extremely grateful to Daron Acemoglu, Ricardo Caballero, Drew Fudenberg, Leonid Kogan, Andrey
Malenko and Stephen Morris for their great comments and suggestions.

1See Pagnotta and Philippon (2018) for a detailed account of these evolutions and recent examples.
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Given the structure of the trading equilibrium, we turn our attention to the trading
volumes in the venues and show how they depend on the tax and the fees and speeds of
the venues (Proposition 3.4). Then, to gain analytical tractability, we restrict attention to
the case where the traders’ values are distributed uniformly and analyze how venues with
different trading speeds compete in fees (Proposition 3.8) and how their equilibrium trading
fees depend on their speeds (Proposition 3.9). In particular, we show how differentiation
affects competition: when the differentiation between two venues decreases (i.e. slower
venue becomes faster or faster venue becomes slower), the trading fees in both venues
decrease, whereas when the differentiation between two venues increases (i.e. slower venue
becomes slower or faster venue becomes faster), the trading fees in both venues increase.

We then focus on the effect of transaction speed on the trading volume. First, a change
in transaction speed of a venue affects the instantaneous trading volume in a venue directly.
Second, it affects the fees charged by the venues in equilibrium, thus the market structure
itself. We show that both affects are positive for the speed of the slower venue and the total
trading volume is increasing in the speed of the slower venue (Proposition 3.10). Next, we
show that the effect of an increase in the speed of the fast venue is ambiguous. However, we
consider the special case of full competition, where the speed difference between the venues
is arbitrarily small and show that whenever the rate of preference shock is greater than the
trading speed, differentiation increases trading volume (Proposition 3.11). Moreover, if the
trading speed is greater than the rate of preference shock, the effect of differentiation on
trading volume depends on the discount factor of the traders. We characterize a threshold
such that whenever the discount rate of the traders is below that threshold (i.e. the traders
are sufficiently patient), differentiation increases trading volume. These result show how
the effect of trading speed on trading volume depends on the characteristics of the traders in
a market.

Next, we endogenize the entry of a new firm. To this end, we consider an entry model in
which a new venue owner makes an entry decision and (conditional on entry) sets a new
speed. In the linear cost case, we show that the new firm decides to enter whenever the
cost is sufficiently low and the speed of the new venue is decreasing in the operating cost
(Proposition 3.12). Then, we characterize a lower bound for the degree of differentiation
between the venues (Proposition 3.16) and show that the speed of the newvenue is decreasing
in the transaction tax.

Fixing the speed of the slow venue, the rest of the paper discusses the entry game from
a welfare perspective. We consider different notions of welfare: surplus from trade (Sec-
tion 3.4.1), trading volume (Section 3.4.2), and trading revenue (Section 3.5). In each of these
cases, we consider the optimal regulator’s choice for taxing traders, and the resulting optimal
choice of speed for the entrant. Specifically, we investigate when the profit maximizing
speed is lower than the welfare maximizing speed. We conclude with a short extension of
the entry game.
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3.1.1 Literature Review

The competition feature of our trading model contributes to the literature on market design.
The recent literature has a variety of focuses: optimal design of contests (e.g., Bimpikis,
Ehsani and Mostagir (2015)), design of crowdfunding campaigns (e.g., Alaei, Malekian and
Mostagir (2016)), inspection and information disclosure (e.g., Papanastasiou, Bimpikis and
Savva (2018)), information diffusion in networks (e.g., Acemoglu, Ozdaglar and Paran-
dehGheibi (2010), Ajorlou, Jadbabaie and Kakhbod (2018), Candogan and Drakopoulos
(2019)), among others. In contrast to these important works, our paper particularly focuses
on how competition design between multiple venue owners (dealers), affect the trading
dynamics, trading volume, welfare, liquidity and speed segmentation in illiquid markets.

This work also contributes to the literature on liquidity in market microstructure. There
is an earlier literature that analyses the liquidity demand side (e.g., Glosten and Milgrom
(1985), Easley and O’Hara (1987), Admati and Pfleiderer (1988)).2 In contrast to these
works we consider how competition between dealers in illiquid markets affect endogenous
transaction speeds and liquidity.

The trading framework of this paper is also related to the literature of the market effi-
ciency in strategic informed trading, which dates back to Kyle (1985a,b)’s seminal articles.
Wang (1993, 1994) consider an infinite-horizon model where competitive insiders receive
information on a firm’s dividends over time in steady-state. They show that risk-neutral
competitive insiders will reveal their private information instantly whereas risk-aversion
can reduce their trading aggressiveness, leading to a slower information revelation. Back
and Pedersen (1998) consider a finite-horizon model with a monopolistic informed insider
and show that the insider reveals her information gradually. Chau and Vayanos (2008)
consider the market efficiency in an infinite-horizon model with a monopolistic insider
trading with competitive dealers and noisy traders as well. They discover that the insider
chooses to reveal her information quickly, as the market approaches continuous trading.
Similar to these works we also present a fully dynamic trading model, however, in sharp
contrast to these important papers, instead of asymmetric information, we focus on impacts
of competition between market-makers (dealers, venue owners) on trading volume, tax,
transaction costs and welfare.

This paper also contributes to the growing literature on dynamic trading in OTCmarkets.
Duffie (2012) has an excellent review of studies about OTCmarkets. Recent literature has
a variety of focuses. For example, Guerrieri and Shimer (2014) study adverse selection

2Most notably, Glosten and Milgrom (1985) analyze transaction prices arising from quotes of competing risk-
neutral dealers who are making a market in a single security and facing both privately informed and uninformed
traders. They show that, in the zero dealer profit equilibrium, private information induces a positive spread
between bid and offer. Easley and O’Hara (1987) theorize that uninformed traders may refrain from trading
when they perceive the presence of an informed trader, leading to diminished trading volume. Admati and
Pfleiderer (1988) show that if liquidity traders (hedgers) can choose the timing of their transactions strategically,
then in equilibrium their trading is relatively more concentrated in periods closer to the realization of their
demands.
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with search frictions and discrete trading opportunities, Babus and Parlatore (2017) study
welfare effects of decentralized trading; Duffie, Gârleanu and Pedersen (2005) and Lagos and
Rocheteau (2009) look at random search and matching in large markets with a continuum
of traders, Kakhbod and Song (2020) consider how sequential trading with a large informed
trader affects price discovery dynamics, Zhu (2014) shows how adding a dark pool improves
market price discovery.3 In contrast to these important papers we consider equilibrium asset
prices and trading volumes in multiple OTC venues where speed choices are endogenous
(and heterogeneous), and derive necessary and sufficient conditions ensuring segmentation
in OTCmarkets. Finally, the speed competition feature of our model relates to the important
work by Pagnotta and Philippon (2018). However, our model distinctly differs from theirs
because in our paper, a trader’s position between venues is not fixed anddynamically changes
over time based on the extent of the trader’s preference shocks. This keymodeling difference
directly affects our analysis for competition between multiple venues (dealers), endogenous
market segmentation, transaction speeds and fees, trading volume, optimal regulator’s
choice for taxing traders and welfare in illiquid asset markets.

3.2 Model

We consider a continuous time model with a unit measure of traders with time-discount
factor � > 0 and a long-lived indivisible asset with supply Z 2 .0; 1/. Traders have unit
demand; a trader who owns the asset is called holder and a trader who does not is called
non-holder. Each trader has a personalized/intrinsic value � 2 Œ�l ; �h� for holding the asset,
which changes over time.

The instantaneous utility of a holder with value � is u.�/ while a non-holder gets zero
instantaneous utility value (regardless of her intrinsic value). The value � changes, inde-
pendently across the traders, with a Poisson shock with rate 
 . Conditional on arrival of a
shock, the new valuation is chosen from Œ�l ; �h� according to the CDF F.�/ and the PDF f .�/.

There are multiple trading venues, with different trading speeds and transaction fees (i.e.,
costs). At any given time, a holder decides to sell or hold the asset and a non-holder decides
to buy the asset or do nothing. If a trader decides to sell or buy the asset, she then decides
which venue to use.

3This paper also contributes to the growing literature on dealer-based OTCmarkets. Prior literature focuses
on the dealers’ ability to contract with customers (Grossman and Miller (1988)), discriminate based on order
size (Seppi (1990)), welfare effects of decentralized trading (e.g. Malamud and Rostek (2017)), price movements
in OTCmarkets when block orders are large (e.g. Grossman (1992)), searching for good price in OTCmarkets
with multiple dealers (Zhu (2012)), random search and matching in large markets among a continuum of traders
(Duffie, Gârleanu and Pedersen (2005); Vayanos and Weill (2008); Duffie, Malamud and Manso (2009); Lagos
and Rocheteau (2009)) and adverse selection with search frictions and discrete trading opportunities (Guerrieri,
Shimer and Wright (2010), Guerrieri and Shimer (2014)). In sharp contrast to these works our focus here is on
the effect of competition between dealers on setting transaction fees and speeds and their consequences on
trading volume, welfare and optimal taxes. See also the literature on how illiquiditymay bemarket destabilizing,
e.g., Bebchuk and Goldstein (2011); Goldstein (2012); Gorton and Ordonez (2014); Ahnert and Kakhbod (2017).
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The venue �, � 2 fs; f g, is characterized by its transaction speed �� and transaction fee
c� . We assume venue f is faster, i.e., �f � �s and cf > cs . 4 In addition to the transaction
costs, traders additionally pay an amount � � 0 per trade. The difference between � and the
transaction fees cs and cf arises since venues compete based on speed and costs: there, cs

and cf are strategically chosen while � is fixed (c.f. Section 3.3.3 and 3.3.4). We will consider
different interpretations of � in later sections: for example, � is a tax charged by a regulatory
body. In our model, � is additive instead of multiplicative, a choice we make for a couple
reasons. The first is realism: external agencies (i.e., parties who sets fees that are are not cs

and cf ) lack the means and resources to keep track of the prices of any one security during a
trading day, especially in illiquid and segmented markets that we consider. As a result, both
retail and professional brokers (e.g., Fidelity, Bloomberg IB) charge a per-transaction cost
that constant across all securities in an asset class. Moreover, multiplicative taxes arbitrarily
disincentivizes trading large stocks such as Amazon over smaller stocks such as Exxon
Mobil, two companies with comparable liquidity with drastically different prices per share
(Amazon is approximately one hundred times more expensive). The second reason is that
our model studies a single asset, so that �—along with other quantities—could all depend
on the security. In this sense, it is simpler and almost without loss to consider additive taxes.

In Section 3.3.1, we analyze the decision of the traders for a given market structure
(the trading speed and transaction fees) and characterize the trading equilibrium with two
venues; Section 3.3.2 characterizes the trading volume under this trading equilibrium. In
Section 3.3.3, we analyze how multiple venues compete in transaction fees in order to
maximize their profit for given trading speeds. In Section 3.3.4, we endogenize entry and
the trading speed in the new venue. In particular, we assume that there is an existing venue,
which we refer as the old venue, with fixed trading speed. We then analyze the entry and
speed choice of a second firm. In Section 3.4, we use our characterization of the market
structure to analyze the profit maximizing speed choice of the new firm and compare it to
welfare maximizing and trading volume maximizing alternatives. Finally, in Section 3.5, we
consider a counter-party who sets the transaction tax to maximize its revenue analyze how
the revenue maximizing tax rate depends on the primitives of the market.

3.3 Analysis

3.3.1 Optimal Trader Decisions

We first characterize the behavior of the traders as a function of speed and transaction fees of
the venues. Let m 2 f0; 1g be a trader’s position, where m D 0 denotes non-holder and m D 1

denotes a holder. At each time t , a holdermay Sell (S) or Hold (H ) and a non-holdermay Buy

4Note that �f � �s is without loss of generality. If cf > cs does not hold, then in equilibrium, there is no
demand in slower venue. When we endogenize the transaction fees, the slower venue always chooses a lower
transaction fee in order to make positive revenue.
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(B) or do Nothing (N ). The action set of a trader is .H; B� ; S� ; N / where the superscripts
denote the venue choices of traders.

We focus on the stationary equilibrium. Let p� denote the equilibrium asset price in
venue � 2 fs; f g. Let Vm;� denote a trader’s expected payoff whose current trading position
and value are respectively m 2 f0; 1g and � 2 Œ�l ; �h�. To derive the Hamilton-Jacobi-Bellman
(HJB) equations, depending on traders’ actions, we define the following value functions

�VH .�/ D u.�/„ƒ‚…
flow gain of holding the asset

C
 .E�0 ŒV1;�0 � � VH .�//„ ƒ‚ …
net gain of the pref. shock

(3.1)

�V s
S .�/ D u.�/ C 
.E�0 ŒV1;�0 � � V s

S .�// C �s .V0;� C ps � cs � � � V s
S .�//„ ƒ‚ …

net gain of selling in the slow venue

(3.2)

�V
f

S .�/ D u.�/ C 
.E�0 ŒV1;�0 � � V
f

S .�// C �f .V0;� C pf � cf � � � V
f

S .�//„ ƒ‚ …
net gain of selling in the fast venue

: (3.3)

For a trader who currently owns the asset, VH .�/ denotes his value if he decides to hold it,
and V �

S .�/; � 2 fs; f g denotes his value if he decides to sell the asset in venue �.5 In a similar
fashion, we define:

�VN .�/ D 
 .E�0 ŒV0;�0 � � VN .�//„ ƒ‚ …
net gain of the pref. shock

; (3.4)

�V s
B.�/ D 
.E�0 ŒV0;�0 � � V s

B.�// C �s .V1;� � ps � cs � � � V s
B.�//„ ƒ‚ …

net gain of buying in the slow venue

; (3.5)

�V
f

B .�/ D 
.E�0 ŒV0;�0 � � V
f

B .�// C �f .V1;� � pf � cf � � � V
f

B .�//„ ƒ‚ …
net gain of buying in the fast venue

: (3.6)

For a trader who currently does not own the asset, VN .�/ denotes his value if he decides to
do nothing, V �

S .�/; � 2 fs; f g denotes his value if he decides to buy the asset in venue �.6

Next, to derive the optimal action of a trader, we note that she has three options: if she is
a holder, she chooses between holding the asset, selling it in the slower venue, or selling it in
the faster venue. If she is a non-holder, she decides between doing nothing, buying the asset
in the slow venue, or buying the asset in the fast venue. Recall that V0;� and V1;� denote
the continuation values (i.e., the expected payoff) for a trader as function of her current

5Rearranging (3.1) shows that VH .�/ D
u.�/C
 E�0 ŒV1;�0 �


C� , V s
S

.�/ D
u.�/C�s.V0;�Cps�cs��/C
 E�0 ŒV1;�0 �

�sC
C� , and

V
f
S

.�/ D
u.�/C�f .V0;�Cpf �cf ��/C
 E�0 ŒV1;�0 �

�f C
C� .
6Similarly, (3.1) also shows that VN .�/ D


 E�0 ŒV0;��


C� , V s
B

.�/ D
�s.V1;��ps�cs��/C
 E�0 ŒV0;�0 �

�sC
C� , and V
f

B
.�/ D

�f .V1;��pf �cf ��/C
 E�0 ŒV0;�0 �

�f C
C� .
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position m and her value �. Given (3.1) and (3.4), we obtain

V0;� D maxfVN .�/; V s
B.�/; V

f
B .�/g

V1;� D maxfVH .�/; V s
S .�/; V

f
S .�/g:

In order to specify the stationary equilibrium, we need to characterize stationary dis-
tribution of values � of holders and non-holders, whose densities we denote as fh.�/ and
fnh.�/. We now formally define the stationary equilibrium.

Definition 3.1. A stationary equilibrium consists of sets N; Bs; Bf ; H; Ss; Sf and prices ps and
pf such that:

• fh.�/ C fnh.�/ D f .�/;

• Traders behave optimally:

N D f� 2 Œ�l ; �h� W VN .�/ D maxfV s
B.�/; V

f
B .�/; VN .�/gg

Bs D f� 2 Œ�l ; �h� W V s
B.�/ D maxfV s

B.�/; V
f

B .�/; VN .�/gg

Bf D f� 2 Œ�l ; �h� W V
f

B .�/ D maxfV s
B.�/; V

f
B .�/; VN .�/gg

H D f� 2 Œ�l ; �h� W VH .�/ D maxfV s
S .�/; V

f
S .�/; VH .�/gg

Ss D f� 2 Œ�l ; �h� W V s
S .�/ D maxfV s

S .�/; V
f

S .�/; VH .�/gg

Sf D f� 2 Œ�l ; �h� W V
f

S .�/ D maxfV s
S .�/; V

f
S .�/; VH .�/ggI

• asset market clears Z �h

�l

fh.�/d� D ZI (3.7)

• fast venue clears; Z
Bf

fnh.�/d� D

Z
Sf

fh.�/d�I (3.8)

• slow venue clears Z
Bs

fnh.�/d� D

Z
Ss

fh.�/d�I (3.9)

For the rest of the paper, we make following normalization:

Assumption 3.2. �l D 0 and u.0/ D 0.

We can now characterize the equilibrium. There are 3 main cases: No trade where no
trader buys or sells the asset, Market segmentation where both venues are active, and No
segmentationwhere only the slow venue is active. Intuitively, the first case obtains when
the transaction fees and tax is prohibitively high so that trading is never profitable, and the
third case obtains when the speed advantage of fast venue is small relative to the difference
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in transaction fees. In Theorem 3.3, we derive conditions which which each of these three
cases occur and characterize the resulting equilibrium.

Theorem 3.3. There are three possible regimes.

(a) No Trade. If u.�h/ � 2.cs C �/.
 C �/, then there is no equilibriumwhere positive measure
of traders trade.

(b) Market Segmentation. If

u.�h/ > max 2
�f .�s C 
 C �/.cf C �/ � �s.�f C 
 C �/.cs C �/

�f � �s
(3.10)

then a positive measure of traders trade in both venues. In particular, the traders’ actions
(depending on their value �) are uniquely characterized by the following intervals

N D Œ�l ; �1�; Bs D Œ�1; �2�; Bf D Œ�2; �h�;

Sf D Œ�l ; �3�; Ss D Œ�3; �4�; H D Œ�4; �h�;

where the equilibrium cutoffs �1; �2; �3 and �4 satisfy

�l < �3 < �4 < �1 < �2 < �h

and are uniquely pinned down by the following equations

.1 � Z/F.�1/ C ZF.�4/ D 1 � Z (3.11)

.1 � Z/F.�2/ C ZF.�3/ D 1 � Z (3.12)

and

u.�1/ � u.�4/


 C �
D 2.cs C �/ (3.13)

u.�2/ � u.�3/


 C �
D 2

�f .cf C �/.�s C 
 C �/ � �s.cs C �/.�f C 
 C �/

.�f � �s/.
 C �/
: (3.14)

(c) No Segmentation. If u.�h/ > 2.cs C �/.
 C �/ and

u.�h/ � 2
�f .�s C 
 C �/.cf C �/ � �s.�f C 
 C �/.cs C �/

�f � �s
;

then there is no segmentation and traders only trade in the slow venue. The equilibrium is
characterized by cut-offs �l D �3 < �4 < �1 < �2 D �h where

N D Œ�l ; �1�; Bs D Œ�1; �h�; Ss D Œ�l ; �4�; H D Œ�4; �h�;
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Figure 3-1: Threshold values �1, …, �4 appearing in Theorem 3.3. The symbols Sf and Ss

denote types who will sell in the fast and slow venue respectively; Bf and Bs are those will
buy in the fast and slow venue, respectively. Types in N will not buy and types in H will
hold (i.e., not sell).

and the cut-offs �1 and �4 are uniquely pinned down by

.1 � Z/F.�1/ C ZF.�4/ D 1 � Z (3.15)

u.�1/ � u.�4/


 C �
D 2.cs C �/: (3.16)

The theorem characterizes the cutoffs in terms of u.�h/; see Figure 3-1 for an illustration
when market is segmented.

Theorem 3.3 is the building block for our analysis. Before we proceed with the analysis,
we discuss the conditions that give rise to the three main cases. Note that

u.�h/ D .VH .�h/ � VH .0// � .
 C �/ (3.17)

This quantity corresponds to the value of a transaction between traders with values �h and
0. Thus, u.�h/ is a measure of the maximum value of a transaction, obtained by a trader
with the highest possible valuation �h buys from a trader with the lowest possible valuation
�l D 0. Intuitively, if the slow venue is too costly for traders with types �h and �l to trade,
that is the case for all other traders and there is no trade in any equilibrium. In particular,
whenever 2.
 C �/.cs C �/ � u.�h/, the fee of trading is very high compared to the flow
payoff of the asset and no trader is willing to trade. It is instructive to express the above
condition as:

2.cs C �/ > VH .�h/ � VH .0/ (3.18)

In this form, the equation simply says that total transaction cost (fees and tax) is higher
than the value of the most profitable transaction, so there does not exists a price that makes
a positive measure of traders in both sides of the market willing to trade.

Another observation is that whenever there is trade, the slow venue is always active. The
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reason behind this observation is simple: whenever a trader is indifferent between trading
fast and holding (or doing nothing), he breaks even when the trade happens. However,
as slow venue is cheaper than the fast venue, if that trader trades in the slow venue, he
pays a lower transaction fee, thus strictly prefers that outcome to trading in the fast venue
or holding/doing nothing. Recall that there is positive trade in the fast venue whenever
following condition holds

VH .�h/ � VH .0/ >
�f .�s C 
 C �/.cf C �/ � �s.�f C 
 C �/.cs C �/

.�f � �s/.
 C �/
(3.19)

As cf > cs , the numerator is always positive andbounded away fromzero, while denominator
goes to zero as the speed difference between the venues vanishes. Thus, the existence of
trading in the fast venue depends on the speed advantage of the fast venue and the difference
in transaction fees.

Equation 3.13 shows the tradeoff between trading on the slow venue versus no trading.
Rewriting that equation, we obtain VH .�1/ � VH .�4/ D 2.cs C �/, which relates that the
value of a transaction between the cutoff types of the slow venue. Intuitively, the value
of a transaction between these two types must be equal to the total transaction cost in
equilibrium.

Theorem 3.3 characterizes �i in terms of �f �s, cf , and cs . We suppress the dependence
of �i .�f ; �s; cf ; cs/ to these parameters to simplify the notation.

Illustration of the Market Structure

In this section we discuss how the equilibrium market structure changes as a function
of the model parameters; here, the term ‘market structure’ refers to the state of market
segmentation (i.e., which of the three cases obtains) and the corresponding cutoff thresholds
as defined in Theorem 3.3. For simplicity (and to alignwith the assumptions for later results),
we assume that � � UnifŒ�l ; �h� D UnifŒ0; 1� is uniformly distributed and the utility function
u.�/ D � is linear. These assumptions allow us to derive analytic solutions to the thresholds
�1; : : : ; �4.

For a generic set of parameters, the thresholds behave as in Figure 3-2, where we plot
the four thresholds as a function of a single varying parameter (� in this case). Recall that
0 � �3 < �4 < �1 < �2 � 1: thus, the bottom series is �3, the middle two series are �4 and
�1, and the top series is �2. The thresholds associated with the fast venue—�3 and �2—are
plotted in blue and the thresholds associated with the slow venue are red.

With �l D 0 and �h D 1, the types � 2 Œ0; �3� [ Œ�2; 1� engage in the fast venue. In other
words, when �3 > 0 and �2 < 1, the market is segmented. This is the case in Figure 3-2 when
the tax � is less than 1 (approximately). Once the tax is sufficiently high, the market is no
longer segmented: all traders engage only the slow venue. Therefore, a “corner solution”
for the thresholds obtains: �3 D 0 and �2 D 1, and the fast venue disappears. When the tax
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Figure 3-2: Type thresholds �1; : : : ; �4 as in Theorem 3.3 as a function of the tax parameter
� . The other parameters are Z D

1
2
; � D 
 D 0:1; cs D 0:1 and �s D 1; and cf D 0:3 and

�f D 10.

91



0.1 0.2 0.3 0.4 0.5 0.6 0.7
Slow Venue Cost (cs)

0

0.25

0.5

0.75

1
Ty

pe
 T

hr
es

ho
ld

0.3 0.35 0.4 0.45 0.5 0.55 0.6
Fast Venue Cost (cf)

0.4 0.6 0.8 1 1.2 1.4
Slow Venue Speed ( s)

0

0.25

0.5

0.75

1

Ty
pe

 T
hr

es
ho

ld

1.5 2 2.5 3
Fast Venue Speed ( f)

Thresholds
Slow Venue ( 4 and 1)
No Segmentation (Slow Venue Only)

Fast Venue ( 3 and 2)

Figure 3-3: Comparative statics for Theorem 3.3. The type thresholds (y-axis) are plotted as
a function of changing one single parameter at a time (x-axis); the parameters of interest are
the transaction fees and speed offered by the slow and fast venues. An analogous figure for �

is shown in Figure 3-2. As usual, the thresholds are ordered: �3 < �4 < �1 < �2; thresholds
pertaining to the the fast venue are in blue and thresholds pertaining to the slow venue are
in red.

is even higher the no trade condition in Theorem 3-2 obtains and no traders engage in any
trading. In the figure, we see that even the slow venue thresholds hit their corner solutions.
Thus, the figure showcases each of the three cases in Theorem 3.3.

Comparative Statics of Market Structure

In the previous figure, we illustrated the change in market structure as � (the external “tax”)
increases. In general, the relevant exogenous parameters in Theorem 3.3 are (in addition to
�) the transaction fees cs and cf ; and the speeds �s and �f . Figure 3-3 illustrates the type
thresholds as a function of these parameters.

The behavior of the market structure with respect to each of the parameters is intuitive.
Take for example the slow venue transaction fee cs; as it increases (and holding all other
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parameters constant), it makes the slow venue less attractive and the fast venue more attrac-
tive. For low enough cs, there is no segmentation as the fast venue is simply too expensive.
Note that this is true even when the speed offered by the fast venue is overwhelmingly large;
according to Theorem 3.3 segmentation only occurs when

u.�h/ D u.1/ D 1 > 2
�f .�s C 
 C �/.cf C �/ � �s.�f C 
 C �/.cs C �/

�f � �s
: (3.20)

Holding all parameters constant (say, with �s D 1) and taking �f ! 1, the expression on
the right hand side approaches cf � cs . The upshot is market segmentation does not obtain
if cf � cs is large, no matter how large the speed advantage. This is what we see in the top
left panel of Figure 3-3, where �f D 10 is ten times larger than �s D 1. As cs increases, we
see that an increasingly smaller set of types trade in the slow venue, as is expected. Once cs

is large enough, the fast venue is competitive enough that the “extreme types” (i.e., holders
whose types � are close to zero or non-holders whose types are close to one) leave the slow
venue and begin trading in the fast venue. As cs increases past this threshold, more and
more types engage in trading in the fast venue, and at the limit cs D cf the slow venue
disappears and all trading occur in the fast venue. In terms of the thresholds, this corner
case corresponds to �3 D �4 and �1 D �2, as depicted in the right edge of the top-left panel
in Figure 3-3.

The behavior of the thresholds as the fast venue transaction fee cf changes is also
intuitive; as cf increases, fewer types engage in the fast venue (i.e., �3 decreases and �2

increases). When the fee is sufficiently high, all traders use the slow venue and the market
no longer exhibits segmentation. In contrast to changing cs, changing cf does not affect
the cutoffs for types of traders who engage in the slow venue. Intuitively, the reason is that
traders who are on the cutoff are actually indifferent between trading in the slow venue
versus not trading at all: the alternative option of trading on the fast venue is not being
considered since transaction fee concerns dominate speed concerns. Therefore, these traders
remain marginal even as conditions in the fast venue change. On the other hand, there are
no marginal traders who are not affected by a change in the slow venue transaction fee: if
cs increases, the scale is tipped in favor of the fast venue for marginal traders between fast
and slow venues; similarly, the scale is tipped in favor of not trading for marginal traders
between trading slowly and not trading.

Finally, increasing the slow venue speed has a similar effect as increasing the fast venue
transaction fee in that the fast venue becomes less attractive. Interestingly, the thresholds
for marginal marginal traders using the slow venue does not change: intuitively, they care
only about the cost of trading, as explained above. Increasing the speed of fast venue has
the opposite effect, though we see that it exhibits “diminishing returns” in that even an
infinite speed advantage will not allow the fast venue to capture certain types of traders; see
the discussion after equation (3.20) above.
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3.3.2 Trading Volume

In this section, we characterize the trading volume for a given market structure. Let fh

and fnh denote the equilibrium densities of the holders of the asset and non-holders of the
asset.7 The measure of traders in each venue is given by the following equations:

mf .�s; �f ; cs; cf ; �/ D

Z �3

�l

fh.�/d� C

Z �h

�2

fnh.�/d�

D F.�3/

Z


 C �f

C .1 � F.�2//

.1 � Z/


 C �f

and

ms.�s; �f ; cs; cf ; �/ D

Z �4

�3

fh.�/d� C

Z �2

�1

fnh.�/d�

D .F.�4/ � F.�3//

Z


 C �s
C .F.�2/ � F.�1//


.1 � Z/


 C �s

The trading volume in slow and fast venues are given by TVs D �sms and TVf D �f mf ,
respectively. We define the total trading volume as TV D TVs CTVf . Following proposition
shows how trading volume in venues depends on prices and speeds :8

Proposition 3.4. The trading volume in the fast venue is increasing in cs; �f and decreasing in
cf ; �s; � . The trading volume in the slow venue is increasing in cf ; �s, decreasing in cs; �f . The
total trading volume is decreasing in � .

As expected, the trading volume in a venue is increasing in the trading speed of that
venue and transaction fee of the other venue, while it is decreasing in the trading speed of
the other venue and transaction fee in that venue. Increasing the transaction fee reduces the
trading volume while increases the fee charged per transaction, which is the main trade-off
for the firms when they compete in fees. In the next section, we allow firms to compete by
setting cs and cf to maximize their revenues and analyze the effect of competition has on
trading volume.

Illustrations

We illustrate the results of Proposition 3.4 in the following figures; as before, the functional
parameters are set to � � UnifŒ0; 1� and u.�/ D �. Figure 3-4 plots the trading volumes in
the two venues as the transaction fees in the two venues change and confirms part of the
statement in the proposition. The figure also reveals that (at least for this set of functional
parameters), the total trading volume decreases in the slow venue fee cs; in other words, the

7The closed form expressions for fh and fnh and the derivation of the measure of traders are provided in the
appendix.

8Full set of comparative statics of cut-offs and measure of traders are provided in the appendix.
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Figure 3-4: Trading volume in the two venues as a function of transaction fees cs and cf .
The gray region indicates cost regimes in which only the slow venue is active. In particular,
whether the fees exceed the threshold values needed for segmentation is the primary driver
of the trading volume in either venue.

increase in trading volume in the fast venue does not compensate for the loss in the slow
trading venue.

This is in some sense surprising: if it were the case that traders simply migrated from
the slow to the fast venue as fees goes up, then total trading volume would increase due
to the net increase in speed (i.e., recall that trading volume is speed times the measure of
traders). We know, however, that this is not the case—c.f. the top left panel Figure 3-3, where
increasing cs will induce some traders to stop trading. Figure 3-4 shows that the effect carries
over even after trading speed is taken into account: total trading volume is decreased.

The behavior when changing the fast venue fee is similar; note however, that after
trading in the fast venue ceases, increasing cf has no more effect on the market structure, so
that @TV =@cf D 0 for sufficiently large cf .

Next, consider the effect of increasing the tax � as show in Figure 3-5; as predicted, it is
decreasing. In the case of linear functional parameters F.�/ and u.�/, more could be shown.
When � is low enough such that both venues are active (c.f. Theorem 3.3), increasing � will
only decrease trading volume in the fast venue while keeping the slow venue trading volume
constant. Note that the set of types engaging in either venue decreases per Figure 3-2; the
interpretation is that the inflow of traders from the fast to the slow venue exactly balances
out the flow out of the slow venue (flow being measured by speed times measure of traders).
Only when the tax is high enough and trading ceases in the fast venue does the trading
volume in the slow venue begin to decrease, as there is no inflow to make up for the outflow
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Figure 3-5: Trading volume as a function of the tax � . The gray region indicates the threshold
above which only the slow venue is active. For our linear model, increasing � has a “layered”
effect: as � increases, traders from the fast venue switch to the slow venue until the fast
venue is inactive. From that point, further increases drive traders away from the slow venue
to become non-traders.

of traders.
The final set of figures show the effect of increasing venue speed (�s and �f ). It agrees

with the proposition that, e.g., @TVs =@�s > 0, and likewise for the other partial derivatives.
Note however, that total trading volume is always increasing in the venue speed.9 Intuitively,
better “technology” (i.e., faster speeds) induces more trading; the results in the next section
characterize this behavior in greater detail.

3.3.3 Fee Competition

Having characterized trading volume, we turn next to analyzing the competition between
the two venues, starting with transaction fees. The revenues of fast and slow venues for
given transaction fees are given by the following expressions.

Rf .�f ; cf ; �s; cs/ D �f mf .�s; �f ; cs; cf /cf (3.21)

Rs.�f ; cf ; �s; cs/ D �sms.�s; �f ; cs; cf /cs (3.22)

9If �f is sufficiently small , then increasing �f by a small enough amount will not affect the market structure,
in which case @TVs =@�f D @TVf =@�f D 0.
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Figure 3-6: Trading volume as a function of venue speeds. The gray region indicates the
thresholds beyond which only the slow venue is active.

For the rest of the paper, we keep the following assumption, which guarantees that the
tax imposed by government (or external party) is not so high as to prohibit trade a priori

Assumption 3.5. 1 > 2�.
 C �/

An equilibrium is a set of fees cs; cf such that cs 2 argmaxRs.�f ; cf ; �s; cs/ cf 2

argmaxRf .�f ; cf ; �s; cs/. For the rest of this section, we keep following assumptions that
make the analysis tractable:

Assumption 3.6. F is uniform over Œ0; 1�

Assumption 3.7. u.�/ D �

Following proposition characterizes the equilibrium prices of two competing venues.

Proposition 3.8. Under assumptions 3.6 and 3.7, there is a unique equilibrium. The fees in the
fast and slow markets are denoted by:

c�
f .�f ; �s/ D .1 � 2�.
 C �//

�f � �s


.4�f � �s/ C �.4�f � �s/ C 3�f �s
(3.23)

c�
s .�f ; �s/ D

c�
f

2
(3.24)

Consequently,
lim

�s!�f

c�
s .�f ; �s/ D lim

�s!�f

c�
f .�f ; �s/ D 0:
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Figure 3-7: Optimal transaction fees (cost) as a function of venue speeds.

Proposition 3.8 characterizes how the venues compete to attract traders. The slower
venue always undercuts the fast venue, as otherwise no trader will choose it and the venue
would make zero revenue. The slow venue attracts speed-insensitive traders, while the fast
venue sets a higher transaction fee and attracts speed sensitive traders. More precisely, for
any fixed set of exogenous parameters Z, 
 , �, � , the fees c�

s and c�
f

induced by any pair
of speeds 0 < �s < �f will lead to a segmented market. In other words, the segmentation
condition in Theorem 3.3 is satisfied a posteriori when the costs are optimally chosen given
the other parameters. This captures the “obvious” fact when costs are endogenous, the
venues would never set noncompetitive speeds—hence, both venues are active.

Corollary. Fix parameters Z 2 .0; 1/, 
 > 0, � > 0, and � � 0. For any pairs of venue speeds
satisfying 0 < �s < �f , the segmentation condition

1 D u.�h/ D u.1/ >
�f .�s C 
 C �/.c�

f
C �/ � �s.�f C 
 C �/.c�

s C �/

�f � �s
(3.25)

is satisfied, where c�
s and c�

f
are given by Proposition 3.8.

The following proposition shows how the competition is affected by the speed in each
venue.

Proposition 3.9. Transaction fees cs and cf are increasing in �f and decreasing in �s .

This result shows the importance of differentiation. When the fast venue becomes faster,
the level of differentiation between the venues increases and the effect of competition de-
creases. This results in higher fees across venues. Conversely, when the slow venue becomes
faster, the differentiation between the venues decreases and the effect of competition in-
creases, which result in lower fees. As �s ! �f , i.e. the venues become similar, the effect of
Bertrand competition drives down the transaction fees, hence the revenues goes to zero.

The results above are illustrated in Figure 3-7, where c�
s and c�

f
are plotted as functions

of �s and �f ; the left panel uses �s D 1 and moves �f to a very large value to visualize the
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Figure 3-8: Trading volumes in both venues increase as �s increases.

behavior when �f ! 1. As in Proposition 3.8, the transaction fees are driven to zero as �s

approaches �f . Moreover, the function c�
f
(and hence c�

s ) is concave in �f : increasing �f

has diminishing effects on the optimal fee. The intuitive explanation is that that �f itself
has “diminishing effects” on the market structure as �f ! 1, and we have

lim
�f !1

c�
f .�f ; �s D 1/ D

1 � 2�.
 C �/

4.
 C �/ C 3
: (3.26)

For the same reason, fees are convex (decreasing) in the slow venue speed �s .
Another interesting implication is that traders with different valuations are affected

differently from the changes in speeds. For example, an increase in �s reduces the transaction
fees, so makes everyone better off. On the other hand, an increase in �f increases the
transaction fees and makes everyone but the traders with most extreme valuations worse off.

Lastly, we analyze the effect of the speed on trading volume. Next proposition shows the
effect of the speed of the slow venue

Proposition 3.10. The trading volume in both venues are increasing in �s .

Increasing �s has two effects: first, for given choices of traders, it increases the trading
speed in slow venue, which increases the trading volume. Second, it makes slow venuemore
competitive. Competition lowers the trading fees, which also increases the trading volume.
Thus, a speed improvement in slow venue causes an increase in trading volume.

Figure 3-8 plots the trading volumes in either venue as a function of �s . Note that (in
addition to being increasing) trading volume is a concave function of �s , so that increasing
�s has a diminishing effect.

In fact, the two components of the competition channel driving up the trading volume
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Figure 3-9: Increasing �s has diminishing impact on type thresholds.

exhibit diminishing returns. We have already seen in the right panel of Figure 3-7 shows
that increasing ��

s as diminishing effects on lowering costs. Moreover, Figure 3-9 shows
that the impact of competition—namely, inducing former non-traders to trade on the slow
venue and former slow venue traders to trade on the fast venue—is also diminishing. The
diminishing effect is captured by the thresholds �1, …, �4 being concave; �3 and �4 are
decreasing, while �1 and �2 are increasing. Recall that exogenously, �s has no effect on slow
venue thresholds �1 and �4 (c.f., Figure 3-3); it is through the effect of �s on cs and cf that
induces the change in market structure.

The effect of speed in the fast venue is more complicated. On the one hand it increases
the transaction rate in the fast venue, which increases the trading volume. However, it also
increases differentiation, thus increases the transaction fees charged in equilibrium. This
reduces the incentives of the traders to trade and pay the fee, which reduces the trading
volume. In general, the effect of �f is ambiguous. We consider an instructive special case,
�s ! �f , which we refer as full competition benchmark. Following proposition characterizes
the effect of an increase in �f when two venues start from the same speed level.

Proposition 3.11. Let �s ! �f D � . Then:

• If 
 > � , then @T V
@�f

> 0

• If 
 < � , then @T V
@�f

> 0 if and only if � < 
2C
�
��


The proposition shows that, first, if � < 
 , i.e. the trading speed is slow relative to the
frequency of preference shock, a speed increase in the fast venue causes an increase in trading
volume. This shows that the effect of higher transaction speed dominates the effect of higher
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fees. Second, if 
 < � , i.e. the trading speed is fast relative to the frequency of preference
shock, then the discount factor of the traders become important. In particular, the trading
volume is increasing if they are patient relative to the frequency of the preference shock. The
reason is that, when the traders are patient and preference shock is not very frequent, the
gains from buying the asset quickly is high, so the increased trading speed is more important
for the traders compared to the increased transaction costs due to differentiation.

If the traders are impatient, then they are discouraged from trading due to rising transac-
tion fees. In that case, the benefit from buying the asset faster is dominated by the increased
prices due to differentiation and trading volume declines. This shows the importance of
competition when there are multiple venues: the fast venue becomes faster, but the trading
volume decreases due to decreased competition and higher fees.

Following corollary shows how these forces interact if the trading speed is fast:

Corollary. If � ! 1, then @T V
@�f

> 0 if and only if � < 


If the transaction speed is very fast, then the trade-off depends on the comparison
between � and 
 . If � > 
 , then there is more benefit from faster transaction as the traders
will obtain a higher utility from owning the asset before a preference shock comes. This
makes them continue trading under higher fees and increase trading volume. On the other
hand, if � < 
 , then effect of increased transaction fees dominate faster trading speed and
trading volume decreases.

3.3.4 Entry and Speed Choice

Until now, we have abstracted away frompotential costs associatedwith running themarkets
and the speed choice of the venues. In this section, we analyze the entry decision of a new
venue when there is an old venue with fixed trading speed and the entry decision and speed
choice of the entrant.

Let �o denote the trading speed of the old venue. A new firmmay enter and open a new
venue. The entrant can choose her speed from the set Œ0; 1�. There is a cost of operating
the new market, which denoted by ˛K.�/, where K.0/ D 0, lim�!1 K.�/ D 1. After entry,
both old and new firms compete by announcing their prices, hence the timing of the game
is:

1. Entrant decides whether to enter or not.

2. If enters, he decides the speed �n at cost ˛K.�n/. We stipulate that the cost of the
entrant must exceed that of the incumbent: that is, �n is chosen from Œ�o; 1�.

3. Both firms choose co and cn simultaneously.

Our characterization ofmarket cut-offs and trading volume allows us to express the profit
of the firm in both cases. The revenue (and profit) of the old venue is Ro.�o; �n; co; cn/ D
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�o.�o; �n; co; cn/ while the profit of the new venue is �n.�o; �n; co; cn/ D Rn.�o; �n; co; cn/ �

˛K.�n/

Let �� denote the equilibrium speed choice of the entrant. Following proposition shows
how the market structure depends on the technology:

Proposition 3.12. In the SPE:

• There is a threshold ˛�
n such that the firm enters whenever ˛ < ˛�

n .

• Conditional on entry, the speed choice of the entrant, ��
n .˛/, is strictly decreasing in ˛.

The proposition shows that the entrant enters if the cost of opening the new venue
is low enough, and the equilibrium speed of the entrant is increases as the cost of speed
decreases. This shows that, as expected, entry is easier if the cost of running the market is
lower. Moreover, as this costs decreases, the entrant chooses a faster trading speed.

Assumption 3.13. Going forward, we will assume that K.�/ is linear: ˛K.�/ D ˛� .

Remark. This assumption is not strictly necessary for the results to follow. However, assum-
ing a particular functional form will greatly simplify the proof. In addition, our numerical
calculation section will also rely on K.�/ D � .

One striking property of the entry game is that even though we allow the entrant to
choose �n 2 .�o; 1� freely, i.e., any improvement over the incumbent is allowed, competition
will induce the entrant to choose a substantially higher speed. This is a consequence of
the following sequence of propositions. Throughout, we will let �.�/ D �n.�o; �n; c�

o ; c�
n/

denote the profit of the entrant if he enters with � D �n, and co and cn are chosen optimally
according to Proposition 3.8. For notational tidiness, we will also let � denote the fixed
parameter �o. We begin with straightforward calculation.

Lemma 3.14. In the notation above, the profit of the entrant after entering with speed � isR.�/ �

˛� , where the revenue is given by the formula

R.�/ D 4Z.1 � Z/
.1 � 2�.
 C �//2.
 C � C �/„ ƒ‚ …
constant not depending on �

�2.� � �/

.
 C �/Œ.4� � �/.
 C �/ C 3���2

DW C
�2.� � �/

.
 C �/Œ.4� � �/.
 C �/ C 3���2
;

(3.27)

where C stands for the constant in the first line.

Lemma 3.15. The rational function R.�/ is strictly concave on the domain Œ�; 1/. In particular,
the profit function � 7! R.�/ � ˛� is strictly concave (on the same domain) for all ˛ � 0.

Remark. This lemma guarantees the entrant a unique optimal � conditional on entry.
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Corollary. If ˛ D 0, then the optimal choice for the entrant to enter with �f D 1. Conversely, if
it is optimal for the entrant to enter with �f D 1, then ˛ D 0.

Proposition 3.16. Fix ˛ > 0, as well as other parameters Z 2 .0; 1/, 
 > 0, � > 0 and � � 0,
and let �.�/ WD R.�/ � ˛� . Finally, set � D

7
4

D 1 C
3
4
. For any �f WD � 2 Œ�; ��/, one of the

following conditions hold

(a) The profit at � is negative: �.�/ < 0.

(b) The speed � is not optimal; �f D �� is guaranteed to be strictly better:

�.��/ > �.�/ and �.��/ > 0: (3.28)

Combining the two facts above, we see that for any set of parameters that induces the
entrant to enter, the entrant chooses ��

n �
7
4
�o. That is, the speed of the entrant is at least

.1 C
3
4
/ times that of the incumbent, conditional on entry, regardless of other parameters.

Therefore, the entrant is substantially differentiated from her competitor. The intuition is
the following: offering a faster speed differentiates the entrant from the incumbent, thus
attracting a larger fraction of traders and increasing revenue. Then, if it is profitable to enter
at all, then it will be optimal to be maximally differentiable, subject to cost. This leads to
the multiplicative gap between the incumbent and the entrant.10

Remark. The “growth factor” � D 1 C
3
4
works but is not optimal; however, it can be shown

that the optimal � is less than 2.

3.3.5 Effect of the Entry Game on Observed Quantities

In this section, we examine the effect of the entry game on the market structure, trading
volume, and profits. Specifically, we set parameters Z D

1
2
, 
 D � D

1
10

, normalize
�s D �o D 1 while letting ��

f
be chosen optimally as ˛ and � vary; the costs c�

s and c�
f
will

be chosen according Proposition 3.8 when the entrant enters, otherwise, c�
s be set according

to the next lemma.

Lemma 3.17. If the entrant does not enter, then the optimal cost c�
s is given by

c�
s D

1

4

�
1


 C �
� 2�

�
: (3.29)

10If we interpret the model (and the proposition) liberally, the behavior as described places a hard cap on the
number of entrants, in the following sense. The incumbent has speed �1 D � D 1, say, and the entrant chooses a
speed �2 � ��1 D �. The second entrant after the first faces a similar scenario: she needs to compete with at
least the first entrant and therefore chooses a speed �3 � ��2 � �2�1, if she enters at all. Continuing in this way,
the n-th entrant chooses a speed at least �n. If we modify the model as to only allow � to lie in a bounded region,
i.e., � is limited by available technology such as the speed of fiber optic cable, then the number of entrants can
only be grow logarithmically in the upper bound.
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Figure 3-10: The optimal choice ��
f
; for large enough � or ˛, it is optimal for the entrant not

to enter, in which case ��
f

is undefined.

Optimal Entrant Choice

As proven in the corollary in the previous section, we know that ��
f

D 1 at ˛ D 0 but is
finite for any ˛ > 0. It is also true that ��

f
decreases in � ; this follows from the profit function

being supermodular. Likewise, ��
f

is also decreasing with ˛.

Proposition 3.18. Suppose � 0 > � � 0 are such that the fast entrant finds it optimal to enter with
speeds ��

f
and .��

f
/0, respectively. Then ��

f
> .��

f
/0.

Figure 3-10 shows the optimal �f as a function of � , for different values of ˛. The shaded
regions show the denote values of � for which the entrant does not enter (the darker regions
corresponding to smaller ˛). As we know from the previous propositions, the optimal �f

decreases with both � and ˛; the effect is linear in � but non-linear (concave) in ˛. The
scaling factor in Proposition 3.16 is also shown here, since the optimal speed upon entry is
at least ��n � �, for some � � 2. The figure also reveals that

@

@˛

�
@��

@�

�
< 0 (3.30)

which means that larger entry costs ˛ makes the effect of trading tax on venue speed more
pronounced.

Endogenous Market Structure

We study the effect of market entry on the market structure, i.e., on the thresholds �1; : : : ; �4.
Recall from Figure 3-2 that the thresholds vary linearly with � when all parameters are fixed,
and both the set of types who trade in the fast venue and the set of traders overall decreases.
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Figure 3-11: Type thresholds as a function of tax in the entry game; the shaded area denotes
the region where the entrant does not enter.

As per Figure 3-11, the behavior when when �f D ��
f
, cs D c�

s , and cf D c�
f
are chosen

endogenously chosen is the same. Surprisingly, however, the effect of � on the thresholds
remains linear, at least in the region where the entrant enters. Since an exogenous shock
to �f moves �2 and �4 nonlinearly, this means the costs being chosen optimally exactly
counteracts the nonlinear behavior.

Once � is sufficiently large, the set of traders who trade exhibit a discontinuous jump:
the costs c�

s increases discontinuously (c.f. the next section) and a fraction of traders—those
with moderate types �—could no longer afford to trade on the “slow venue.” In fact, c�

s

increases enough that post price increase, the set of traders is even smaller than the set who
traded in the fast venue before the increase.

Venue Costs, Trading Volume, and Profits

We plot the effect of � on (endogenous) venue costs c�
s and c�

f
; the trading volumes TVs,

TVf , and TV; and profits c�
f
TVf �˛K.��

f
/ and c�

s TVs in Figure 3-12. The discontinuous
‘jump’ of these quantities, occurring when themarket structure switches from segmentation
(i.e., both venues are active) to non-segmentation (i.e., only the slow venue active), is quite
pronounced. The slow venue (i.e., the incumbent) increases its fees more than six-fold when
the entrant chooses not to enter. Its trading volume also increases—and so the incumbent
enjoys much higher profits in the absence of competition—but the increase in fees bring
down total trading volume.
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3.4 Welfare

In this section, we analyze themodel fromawelfare perspective. Tomake themodel tractable,
we assume �f ! 1, i.e. the trading happens instantaneously in the fast venue. We can
motivate this exercise as the analysis of the equilibrium when the cost of speed in the new
venue is very small, as equilibrium speed of fast venue goes to infinity as the cost parameter
˛ goes to 0.

The following equation gives the Welfare (W), as a function of steady state asset owner-
ship and speed of the second market (in case of entry):

W D

Z 1

0

�fh.�/d� � K.�/ (3.31)

We plot the welfare as a function of � in Figure 3-13, which reveals two important
properties: that welfare is decreasing in � , and there is a discontinuous decrease when � is
high enough to prohibit entry. This is intuitive: higher taxes has a direct negative effect
on trading volume via its effect on the thresholds �; the effect is then compounded in
the entry game because it dampens competition (i.e., ��

f
decreases). Therefore, when the

regulator picks � in order to maximize welfare, she chooses � D 0 in the absence of other
considerations. As we saw in previous figures, zero remains the optimal choice if the goal is
to maximize trading volume (i.e., maximize liquidity).

Another quantity of interest is the tax revenue � � TV, depicted in the right panel. The
interpretation of this quantity is that it is either collected by a central regulatory authority,
or that the venues’ operations are licensed from a central data center, in which case � � TV
is the profit of the data center operator.11 As discussed above, the welfare-maximizing � is

11For example, theNewYork Stock Exchange (NYSE) operate frommultiple data centers to conduct its business.
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Figure 3-13: Welfare and tax revenue as a function of � . Shaded regions indicate the entrant
does not enter.

zero. However, the optimal � for tax revenue will always be interior (since tax revenue is a
priori zero if � D 0). Even though tax revenue will always have a discontinuous decrease at
the pivotal � , it is possible for the optimal tax revenue � to induce a monopoly in the general
case.

3.4.1 Policy Maximizing Welfare

In this section we consider central authority who wishes to maximize welfare by choosing
both � and �f , in contrast to only choosing � . As discussed in the introduction, we con-
strain the central authority to a per-trade additive tax in order to align with similar taxes
in financial markets. In general, central authorities lack the information and resources to
process transactions at a sufficiently granular level in order to implement tax schemes which
depend on transaction-specific characteristics. In particular, not being able to keep track of
prices or dollar volumes rules out multiplicative taxes.

Throughout, we assume that ˛ > 0. We first show that, for fixed � , the welfare maxi-
mizing �f is larger than the profit-maximizing �f ; in particular, competition alone is not
sufficient to achieve efficiency.

Instead of taking place on a particular trade floor, electronic trades are received by a data center and then routed
to the relevant exchange. For example, the largest data center in the U.S. operate in Secaucus, New Jersey, which
serves a majority of stock trades in the U.S.

107



Fa
st

 V
en

ue
 P

ro
fit

1.2 1.3 1.4 1.5
Entrant Sigma ( f)

W
el

fa
re

Welfare and Fast Venue Profit

0 0.5 1 1.5 2 2.5
Tax ( )

0

1

2

3

4

Fa
st

 V
en

ue
 S

pe
ed

 (
f)

Optimal Fast Venue Speed

Welfare W Fast Venue Profit f
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First Best Problem. The welfare maximizing �—denoted �w
f
—is the solution to

argmax
��0

�2Œ�s ;1/[fNoEntryg

W D argmax
��0

�2Œ�s ;1/[fNoEntryg

Z 1

0

fh.�/�d� � 1.� 2 R/˛K.�/ (3.32)

subject to the IR condition of the entrant

� D NoEntry or � 2 R; R.�/ � ˛K.�/ � 0 (3.33)

R.�/ D c�
f
TVf .�f / being the revenue function of the entrant as discussed in Lemma 3.14.

The notation used for �f means that it could either be a real number in the interval12 Œ�s; 1/,
signifying that the entrant enters; or �f D NoEntry, signifying that the entrant stays out
(and relevant quantities are to be calculated for the monopoly case).

Define �w
f

.�/ to be the solution of the maximization problem with � fixed, and as before
let ��

f
.�/ to be the profit-optimal choice of entrant; in general both quantities belong in

Œ�s; 1/ [ fNoEntryg. The ordering of these two quantities depends on the parameter values,
and both cases �w

f
.�/ 7 ��

f
.�/ are possible. We will refer to these two quantities as the

first-best welfare optimal speed and the profit optimal or competition speed, respectively.
The left panel of Figure 3-14 plots thewelfare and profit (of the fast venue) as a function of

�f ; for the chosen set of parameters, thewelfare-optimal speed is higher than the competition

12Strictly speaking, our setup allows �f D 1, but since ˛ > 0 we may assume without loss that � must be
finite.
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speed13. The figure also shows that the revenue and welfare functions are concave.
The right panel plots functions �w

f
.�/ and ��

f
.�/ for � 2 Œ0; 1

2.
C�/
� for a different set of

parameter values. For these set of parameters, we see that �w
f

> ��
f

whenever the entrant
enters (i.e., whenever the latter is a real number).

As discussed previously, ��
f

.�/ D NoEntry for sufficiently large � ; which is indicated by
the gray region. For these values of � , there exists no �f 2 Œ�s; 1/ that achieves a positive
profit: therefore, the IR constraint also forces �w

f
.�/ D NoEntry. However, ignoring the

IR constraint, the welfare optimal �f is never NoEntry for these set of parameter values.
For example, when � close to its upper limit, welfare maximization leads to the boundary
solution �

f
w D �s D 1. In this case, two venues engage in Bertrand competition and set their

fees to zero (c�
f

D c�
s D 0); the market structure has only one venue active with14 �4 D �1,

�3 D 0, and �2 D 1.
In general, the (IR-less) welfare optimal choice involves entry over the entire range of

� whenever the integral
R 1

0 fh.�/�d� at � D �s exceeds the cost ˛K.�s/. Otherwise, if ˛ is
sufficiently high, we will have �w

f
.�/ D NoEntry for � in a neighborhood of 1

2.
C�/
.

The intuition for which one of the two speeds is faster is the following. For fixed values
of other parameters (including �), increasing � drives up costs c�

f
and c�

s (c.f. Figure 3-
7). This is a tradeoff for the traders: they pay higher fees but are compensated by faster
speeds (i.e., higher liquidity), where the benefit is captured by the increase in

R
fh.�/�d�.

Profit optimization maximizes the (negative of the) first term, while welfare optimization
maximizes the latter; in symbols

R.�/ D c�
f TVf .�/ and W0.�/ D

Z 1

0

�fh.�/d�: (3.34)

The formula for R.�/ is given in Lemma 3.14, and it is easy to see that W0 is also a rational
function of � . The optimal points are given by setting the derivatives of these two functions
equal to ˛K 0.�/, so the determination of �w

f
7 ��

f
depends on

R0.�/ 7 W 0
0.�/: (3.35)

In words, R0.�/ > W 0
0.�/ for all � means that the entrant fails to fully internalize the

externality of his entry on the traders. In this case, the regulator prefers a faster speed,
�w

f
> ��

f
. On the other hand, if R0.�/ < W 0

0.�/, the entrant sets his speed high enough that
larger costs outweigh the liquidity benefits (in aggregate), so the regulator prefers a slower
speed.

13Though axis labels are suppressed for tidiness, the IR constraint of the entrant is satisfied at the welfare-
optimal speed

14By solving the equations in Theorem 3.3, we see that �4 D �1 D Z.
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Figure 3-15: Difference between the welfare maximizing venue speed and the profit maxi-
mizing venue speed.

3.4.2 Maximizing Trading Volume

Instead of maximizing societal welfare, the central regulatory authority may instead want to
maximize total trading volume as defined in section 3.3.2, subject to the IR constraint (3.33).

Figure 3-12 illustrates that trading volume is maximized at � D 0 when the choice of �f

is left to the entrant (i.e., when �f is the induced competition speed). The figures in the next
section illustrate that this remains true when � and �f are jointly chosen subject to the IR
condition. Both of these facts are extensions of the result in Proposition 3.4; the proposition
states that total trading volume is decreasing in � when other parameters of fixed. The
figures shows that when the other parameters—namely, �f , cs, and cf —are endogenously
chosen, trading volume remains decreasing in � .

3.4.3 Illustrations

In this section, we compute the solutions to the first best problem and illustrate the possible
orderings given in . Throughout, �s D 1 and Z D

1
2
, so that freely varying parameters are 
 ,

�, � , and ˛. For our figures, it will be convenient to reparameterize our model as follows,

x WD 
 C �; � WD




 C �
; (3.36)

with the new parameters being x 2 .0; 1/, � 2 .0; 1/, and ˛ 2 .0; 1/.
Figure 3-15 compares the profit-optimal andwelfare-optimal venue speeds. The left panel

features a relatively low technology cost ˛; the right panel features a substantially higher ˛.
White regions correspond to combination of parameter values such that ��

f
D NoEntry, in
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Figure 3-16: The optimal �—denoted �v—that solves the problem of maximizing total
trading volume subject to the IR constraint. As shown, �v is identically zero whenever the
problem is feasible.

which case �w
f

D NoEntry is forced by the IR condition. In both the low and high cost case,
the speed difference �w

f
� ��

f
is usually positive, i.e., the welfare-optimal speed is higher

than the profit-optimal speed. However, the qualitative behavior of the difference depends
on the size of ˛.

When ˛ is small, it is easier for the the entrant to achieve a positive profit, all else being
equal. Therefore, the left panel depicts a larger region of ��

f
and �w

f
in which the entrant

chooses to enter. Moreover, the speed difference could be quite large, with a maximum value
of approximately 30 depicted in the figure. Recall that ��

f
! 1 and �w

f
! 1 as the cost

˛ ! 0. The comparison in the figures yields the additional comparison that �w
f

! 1 at a
faster rate than ��

f
.

In addition, when ˛ is small there exists regions for which ��
f

> �w
f
. The reason is that

a low ˛ allows for regions with 
 C � � 0 where the entrant’s IR condition could still be
satisfied. As ˛ grows, the IR-feasible region shrinks in such a way that �w

f
> ��

f
everywhere.

The right panel depicts such ˛ where it is slightly too high to allow for ��
f

> �w
f
, i.e., near

the boundary of the feasible region, the difference is almost zero.
The next twofigures plots the same quantities, but for the problemofmaximizing trading

volume (subject to the IR condition). Figure 3-16 shows that wherever the IR constraint
is feasible, the optimal choice of � is equal to zero. This agrees with the intuition that
taxes—being a source of friction—decreases total trading volume (c.f., Proposition 3.4).
Figure 3-17 shows that when 
 C � and 
 are sufficiently large or when ˛ is sufficiently
large, the trading volume optimal speed �v

f
is higher than the competitive speed ��

f
. When

the fast venue speed is high, the costs c�
f
will be high as well, driving trading volume from
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Figure 3-17: Difference between the trading volume maximizing venue speed and the profit
maximizing venue speed.

the fast venue to the slow venue. The competitive speed takes this into account, where as
maximizing total trading volume is not affected by the increase in cost.

3.5 Trading Revenue Maximization

Another interpretation of the model has � under the control of another profit-maximizing
firm instead of a welfare maximizing entity. In this interpretation, traders are retails traders
who trade through brokers, who match them with a counterparty with whom the broker has
a professional relationship. The counterparties are usually large market makers for highly
liquid instruments, or trading desks at investment banks for less liquid instruments.

Since brokers offers different technologies and have access to different sets of counter-
parties, trading and execution speed differ among potential brokers. Thus, the brokers serve
the role of “venues”: they compete on services offered (i.e., fees and trading speed), while
retail traders chooses a broker to balance fees and speed. Thus, c�

s and c�
f
are brokerage fees.

On the other hand, since trading is ultimately routed to a market maker or trading
desk, retail traders often need to cross a bid-ask spread for market orders or obtain a less-
than-optimal price for limit orders. In other words, every trade incurs an inherent haircut,
and profits of these haircuts go to the counterparty. The bid-ask spreads are set by the
counterparty, and corresponds to an effective tax, i.e., our model’s � .

Since � is set by the counterparty, it is chosen to maximize trading revenue � �TV instead
of the welfare. In order to engage brokers, the counterparty must not set � too high; in
other words, the problem faced by the counterparty is to maximize � � TV subject to the IR
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Figure 3-18: Optimal � set by the counterparty to maximize trading revenue.

constraint (3.33). In contrast to welfare maximization in the previous section, the optimal
�—denoted �r—is always nonzero. This is illustrated in Figure 3-18. In general, �r increases
in � D 
=.
 C�/, but decreases in 
 C�. Moreover, �r decreases with the cost ˛; the intuition
is that when ˛ increases, the entrant’s speed �f decreases, which decreases the utility of
trading for traders. Therefore, the trading volume is more sensitive to the haircut fee � ,
driving the optimal choice lower.

Let �r
f
denote the optimal speed under trading revenuemaximization. Figure 3-19 depicts

the difference �r
f

� ��
f

for the same parameters as Figure 3-15. The behavior of the difference
varies drastically between the low and high values of ˛. For small ˛, the difference is
increasing in 
=.
 C �/; for larger ˛, the opposite is true. Comparing the range of values
in the left panels of Figures 3-15 and 3-19, there is no general ordering between the three
quantities ��

f
, �w

f
, and �r

f
when ˛ is small; however, when ˛ is sufficiently, we have

�r
f � ��

f � �w
f (3.37)

whenever the entrant enters.

3.6 Extension Section

3.6.1 Simultaneous Speed Choice and Segmentation

In this section, we drop the assumption of sequential entry, i.e. there is no old or new venue.
We denote the firms by 1 and 2. First, both firms choose to whether to enter or not. After
the entry decisions, the firms choose their speeds. If both firms enter, then they compete in
prices by choosing their fees c1 and c2 simultaneously. Given speeds and fees, the market
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Figure 3-19: Difference between the trading revenue maximizing venue speed and the profit
maximizing venue speed.

structure is characterized by Theorem 3.3 and given market structure, fee competition is
characterized by section 3.3.3.

In order to make the model tractable, we assume two different speeds, �l > �h are
available to the entrants. The cost of operating (or setting up) the new venues is denoted by
˛K.�/, which is increasing in � . We focus on the pure strategy SPE.

Proposition 3.19. There are two cut-offs ˛ and ˛ such that in the pure strategy SPE,

• If ˛ < ˛, both firms enter and choose different speeds.

• If ˛ 2 Œ˛; ˛�, then only one firm enters.

• If ˛ > ˛, both firms stay out.

Proposition 3.19 echoes our results under sequential entry and shows that segmentation
may arise even under simultaneous entry. If the cost of operating the venues ˛ is low
enough, then both firms enter and choose different speeds and obtain positive profits due to
differentiation. If the cost is high, then neither can operate as even a monopolist cannot
make positive profits. In the intermediate range, one of the venues incurs a loss thus there
is no differentiation.

3.7 Conclusion

We have presented a general equilibriummodel of traders participating in multiple venues.
Due to preference shocks, traders continually switch between the two venues, which offer
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different trading speeds and transaction fees in equilibrium. Our main contribution is to
analyze how competition affects endogenous market segmentation, transaction speeds and
fees, trading volume, optimal regulator’s choice for taxing traders, and welfare in illiquid
asset markets. We find that liquidity increases with fragmentation in asset markets, while
decreasingwith higher regulatory taxes. Importantly, depending on the regulator’s objective,
the optimal trading tax choice can be zero or strictly positive.

We further analyze how competition between venues (dealers) affect trading fees and
speeds. Under competition, the optimal choice of transaction fees are increasing (resp.
decreasing) in the speed of the faster (resp. slower) venue. Moreover, with sequential entry,
the entrant’s optimal speed increases with lowering entry costs and trading taxes.

Finally, we consider different notions of welfare: surplus from trade, trading volume,
and trading revenue. Importantly, in each of these cases, we consider the regulator’s optimal
choice for taxing traders, and the resulting optimal choice of speed for a new entrant. Inter-
estingly, we show that not only does competition lower welfare, but also the speed choice
of the entrant can be smaller than the welfare maximizing speed. Furthermore, our results
show that lower entry costs reduce these effects and is thus welfare improving.

3.8 Appendix

Proof of Theorem 3.3

The proof will proceed as follows: First, we show in Lemma 3.20 in any equilibrium with
positive trade, selling in slow venue leaves the seller with higher revenue than selling the
fast venue and buying in the slow venue is cheaper for the buyer compared to buying in the
fast venue. Using these facts, Lemmas 3.21 and 3.22 characterize actions of traders after a
trade and show that buyers hold the asset after buying and sellers do nothing after selling.
Given these actions, Lemma 3.23 characterizes the value functions after any decision (selling,
holding, buying or doing nothing) by a trader. Lemmas 3.24, 3.25 and 3.26 characterize
the structure of traders’ venue choices using a simple cut-off structure. Lemma 3.27 gives
the sufficient (which we later show to be necessary) condition for no trade in both venues,
proving part (i) of Theorem 3.3. This condition requires the present value of the gains from
most profitable trade (between a trader with valuation �h and a trader with valuation 0) to
be larger than total fees and taxes paid by the traders for the trade. Lemma 3.28 gives an
analogous condition for existence of trade in the fast venue, which simply requires the value
of most profitable (thus most speed sensitive) trade to be larger than some measure of differ-
entiation among the venues. Lemma 3.29 characterizes the equilibrium type distributions of
asset holders and non-holders using inflow and outflow equations. Using the distributions
characterized in Lemma 3.29 and the venue clearing conditions, in Lemma 3.30 we arrive at
two of the four main conditions in part (ii) of Theorem 3.3. Assuming both venues are active
(i.e. the condition given in Lemma 3.28 holds), Lemma 3.31 finishes the the characterization
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of cut-offs structure when the market is segmented. Lemma 3.32 then finishes the proof of
part (ii) of Theorem 3.3 by showing the existence and uniqueness of prices. Lastly, we prove
part (iii) by using Lemmas 3.29 and 3.30 and showing the existence of prices where there is
only demand for the slow venue whenever the condition in Lemma 3.28 does not hold.

Lemma 3.20. In any equilibrium with positive trading, the following are satisfied:

1. ps � cs � pf � cf ; and

2. ps C cs � pf C cf

Proof. Assume for a contradiction that ps � cs � pf � cf is not satisfied. Then we have
ps � cs < pf � cf . For a contradiction, assume that there exists � such that V s

S .�/ � VH .�/

and V s
S .�/ � V

f
S .�/. The former implies that V0;� C ps � cs � � � V s

S .�/ > 0. Note that the
values for V s

S .�/ and V
f

S .�/ are given by following equations:

�V s
S .�/ D u.�/ C 
.E�0 ŒV1;�0 � � V s

S .�// C �s.V0;� C ps � cs � � � V s
S .�// (3.38)

�V
f

S .�/ D u.�/ C 
.E�0 ŒV1;�0 � � V
f

S .�// C �f .V0;� C pf � cf � � � V
f

S .�// (3.39)

Looking at each term, asV s
S .�/ � V

f
S .�/, wehave 
.E�0 ŒV1;�0 ��V

f
S .�// � 
.E�0 ŒV1;�0 ��V s

S .�//.
Moreover, V s

S .�/ � V
f

S .�/, �f > �s, V0;� C ps � cs � � � V s
S .�/ > 0 together with ps � cs <

pf � cf implies that

�f .V0;� C pf � cf � � � V
f

S .�// > �s.V0;� C ps � cs � � � V s
S .�//:

Thus, we have V s
S .�/ < V

f
S .�/, which is a contradiction. As a result, There is no � such

that V s
S .�/ � VH .�/ and V s

S .�/ � V
f

S .�/. This means that there is measure 0 of traders
who prefer to sell slow. As we assumed there is positive trade, then there must be non-zero
measure of traders who prefer to sell fast.

Next, we will show that under ps � cs < pf � cf , there positive demand in selling slow,
which is a contradiction as slow venue clearing condition cannot hold in that case. Note
that ps � cs < pf � cf and cs < cf implies ps C cs < pf C cf .

In any equilibriumwith positive trade, there is a type � that prefers buying fast or slow to
doing nothing. If type � prefers buying slow, i.e., V S

B .�/ > maxfV s
S .�/; VN .�/g, the continuity

of VN , V s
S and V

f
S in � implies that there is a positive measure of types around � that prefer

to buy slow.15 However, this will be a contradiction to the slow venue clearing condition

15The continuity of VN and VH in � follows directly from continuity of u.�/. The continuity of V s
S
, V f

S
, V s

B
and

V
f

B
follows from continuity of u.�/, V1;� and V0;� . To show the continuity of V1;� and V0;� in any equilibrium,

let � and �0 D � C � with � > 0 denote two different types. First, note that the equilibrium strategy of � is
available to �0 and u.�0/ > u.�/, thus �0 can guarantee herself a payoff of at least V1;� when she owns the asset
and V0;� when she does not by playing the same strategy. Thus we have V1;�0 � V1;� and V0;�0 > V0;� . Next, if �

plays the equilibrium strategy of �0, then V1;�0 � V1;� and V0;�0 � V0;� is bounded above by the expected utility
derived from owning the asset until the preference shock strikes. As u is continuous, this bound converges to 0

as � goes to 0, yielding the desired continuity.
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and cannot happen under any equilibrium.
Next, assume for a contradiction there are no types that prefer to buy slow. Then each type

either prefers doing nothing or buying fast. Let �� denote the type that is indifferent between
buying fast and doing nothing, i.e., VN .��/ D V

f

b
.��/. This means that V1;�� �pf �cf �� �

V
f

B .��/ D 0. But as ps Ccs < pf Ccf and V s
B � V

f
s we have V1;�� �ps �cs �� �V

f

b
.��/ > 0.

This implies that V s
B.��/ > V

f
B .��/. But then, there is a positive measure of traders that

prefer to buy slowly. As we have showed there are no traders that prefer to sell slowly, slow
venue clearing condition cannot hold and this is a contradiction to the assertion that that
we have an equilibrium.

The proof of second part is analogous. Assume for a contradiction that ps C cs �

pf C cf is not satisfied. Then we have ps C cs > pf C cf . For a contradiction, assume
that there exists � such that V s

B.�/ � VN .�/ and V s
B.�/ � V

f
B .�/. The former implies that

V1;� � ps � cs � � � V s
B.�/ > 0. Note that the values for V s

B.�/ and V
f

B .�/ are given by
following equations

�V s
B.�/ D 
.E�0 ŒV0;�0 � � V s

B.�// C �s.V1;� � ps � cs � � � V s
B.�// (3.40)

�V
f

B .�/ D 
.E�0 ŒV0;�0 � � V
f

B .�// C �f .V1;� � pf � cf � � � V
f

B .�//: (3.41)

Since V s
B.�/ � V

f
B .�/, we have 
.E�0 ŒV0;�0 � � V

f
B .�// � 
.E�0 ŒV0;�0 � � V s

B.�//. Moreover,
V s

B.�/ � V
f

B .�/, �f > �s, V1;� � ps � cs � � � V s
B.�/ > 0 together with ps C cs > pf C cf

implies that

�f .V1;� � pf � cf � � � V
f

B .�// > �s.V1;� � ps � cs � � � V s
B.�//

Thus, we have V s
B.�/ < V

f
B .�/, which is a contradiction. As a result, There is no � such

that V s
B.�/ � VN .�/ and V s

B.�/ � V
f

B .�/. This means that there is measure 0 of traders who
prefer to buy slow. As we assumed there is positive trade, then there must be non-zero
measure of traders who prefer to buy fast.

Next, we will show that under ps C cs > pf C cf , there positive demand in buying slow,
which is a contradiction as slow venue clearing condition cannot hold in that case. Note
that ps C cs > pf C cf and cs < cf implies ps � cs > pf � cf .

In any equilibrium with positive trade, there is a type � that prefers selling fast or slow
to holding. If type � prefers selling slow, i.e., V S

B .�/ > maxfV s
S .�/; VN .�/g, the continuity of

VN , V s
S and V

f
S in � implies that there is a positive measure of types around � that prefer to

buy slow. However, this will be a contradiction to the slow venue clearing condition and
cannot happen under any equilibrium.

Next, assume for a contradiction there are no types that prefer to sell slow. Then each type
either prefers holding or selling fast. Let �� denote the type that is indifferent between selling
fast and holding, i.e. VH .��/ D V

f
S .��/. This means that V0;�� C pf � cf � � � V

f
B .��/ D 0.

But as ps � cs > pf � cf and V s
S � V

f
S we have V0;�� C ps � cs � � � V

f

b
.��/ > 0. This
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implies that V s
S .��/ > V

f
S .��/. But then, there is a positive measure of traders that prefer to

sell slowly. As we have showed there are no traders that prefer to buy slowly, slow venue
clearing condition cannot hold and this is a contradiction to the assertion that that we have
an equilibrium.

Lemma 3.21. (a) Ss � N [ Bf

(b) Sf � N [ Bs

(c) Bs � H [ Sf

(d) Bf � H [ Ss .

Proof. To prove (i) and (iii), assume for a contradiction there exist � 2 Ss \ Bs . Then we
have V1;� D V s

S .�/ and V0;� D V s
B.�/. Then by substituting for RHS and transposing terms,

.
 C �/.V1;� C V0;�/ D u.�/ C 
.E�0 ŒV1;�0 � C E�0 ŒV0;�0 �// � 2�s.cs C �/: (3.42)

From the optimality of selling in the slow venue,

.�s C
 C�/.
 C�/ŒV s
S .�/�VH � D ��s.u.�/C
 E�0 ŒV1;��/C�s.
 C�/.V0;� Cps �cs ��/ � 0:

Rearranging:
.
 C �/V0;� � u.�/ C 
 E�0.V1;�0/ � .
 C �/.ps � cs � �/ (3.43)

From the optimality of buying in the slow venue, using V s
B.�/ � VN .�/ > 0 we obtain:

.
 C �/V1;� � 
 E�0.V0;�0/ C .
 C �/.ps C cs C �/ (3.44)

Summing equations 3.43 and 3.44, we obtain

.
 C �/.V0;� C V1;�/ � u.�/ C 
 E�0.V1;�0/ C 
 E�0.V0;�0/ C 2.
 C �/.cs C �/;

which contradicts equation 3.42. Replacing s with f in above proof proves (ii) and (iv).

The next Lemma shows that fast sellers does nothing after selling and slow buyers hold
after buying.

Lemma 3.22. The following sets do not intersect

Sf \ Bs D ; Ss \ Bf D ;: (3.45)

Proof. To prove (i), assume for a contradiction � 2 Sf \ Bs . Then as � 2 Bs, we have: the
followingquantities are all positive: V s

B.�/�VN .�/, .
C�/�s.V1;��ps�cs��/��s
 E�0.V0;�0/,
and .
 C �/�s.V1;� � ps � cs � �/ C .
 C �/
 E�0.V0;�0/ � 
.�s C 
 C �/E�0.V0;�0/:
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This implies that

.�s C 
 C �/.V1;� � ps � cs � �/ > �s.V1;� � ps � cs � �/ C 
 E�0.V0;�0/

V1;� � ps � cs � � > V s
B.�/ D V0;�

V1;� > V0;� C ps C cs C � (3.46)

This is intuitive as the individual prefers the continuation value while holding the asset and
paying ps to the value of not holding the asset. From � 2 Sf , we have:

V
f

S .�/ � VH .�/ > 0

Similar calculations as above yield:

V1;� < V0;� C pf � cf � � (3.47)

Equations 3.46 and 3.47 imply pf � cf > ps C cs C 2� . Subtracting 2cs � 2� from LHS, we
obtain pf � cf > ps � cs which is a contradiction. Switching s with f in the above proof
proves (ii).

Lemma 3.23. The value functions are given by the formulas

V
f

S .�/ D
u.�/ C �f .VN C pf � cf � �/ C 
 E�0.V1;�0/

.�f C 
 C �/

V s
S .�/ D

u.�/ C �s.VN C ps � cs � �/ C 
 E�0.V1;�0/

.�s C 
 C �/

V
f

B .�/ D
�f .VH .�/ � pf � cf � �/ C 
 E�0.V0;�0/

.�f C 
 C �/

V s
B.�/ D

�s.VH .�/ � ps � cs � �/ C 
 E�0.V0;�0/

.�s C 
 C �/
:

Furthermore, the following lemma helps us prove the structure of the speed choices.

Lemma 3.24. @V1;�

@�
> 0 and @V0;�

@�
� 0.

Proof. As u.�/ is strictly increasing, we have following:

@VN .�/

@�
D 0

@VH .�/

@�
> 0

Next, assume � 2 Bs . Take any �0 > �. We have:

V0;� � V s
B.�0/ > V s

B.�/ D V0;�;
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where first inequality follows from the optimality of V0;�, second follows from the fact u.�/

is strictly increasing and third equality follows from � 2 Bs .
Similarly, assume � 2 Bf . Take any �0 > �. With the exactly same reasoning, we obtain

V0;�p � V
f

B .�0/ > V
f

B .�/ D V0;�:

Hence @V0;�

@�
� 0, which proves the second claim. Given this, it is immediate to conclude

VH .�/; V s
S .�/ and V

f
S .�/ are all strictly increasing in � as u.�/ is strictly increasing. Thus

V1;�, which is their maximum, is strictly increasing:

@V1;�

@�
> 0:

This proves the first claim and finishes the proof.

Lemma 3.25. There exists cut-offs �1 and �2 such that N D Œ�l ; �1�, Bs D Œ�1; �2� and Bf D

Œ�2; �h�

Proof. Let �1 D supf� 2 N g and �2 D inff� 2 Bf g. Notice that given Lemma 3.24, the
differences: V

f
B .�/ � V s

B.�/, V s
B.�/ � VN .�/ and V

f
B .�/ � VN .�/ are all strictly increasing in �.

Then if � 2 Bf , we have V
f

B .�/ > V s
B.�/ and V

f
B .�/ > VN .�/. Then as above differences

are increasing in �, �0 > � implies V
f

B .�0/ > V s
B.�0/ and V

f
B .�0/ > VN .�0/. Hence �0 2 Bf ,

which proves that Bf D Œ�2; �h�.
Similarly, if � 2 N , then VN .�/ > V s

B.�/ and VN .�/ > V
f

B .�/. Then as above differences
are increasing in �, �0 < � implies VN .�0/ > V s

B.�0/ and VN .�0/ > V
f

B .�0/. Hence �0 2 N ,
which proves that N D Œ�l ; �1�. The fact that Bs D Œ�1; �2� follows immediately.

Lemma 3.26. There exists cut-offs �3 and �4 such that Sf D Œ�l ; �3�, Ss D Œ�3; �4� and H D

Œ�4; �h�

Proof. Let �3 D supf� 2 Sf g and �4 D inff� 2 H g. Notice that the differences VH .�/�V s
S .�/,

VH .�/ � V
f

S .�/, V s
S .�/ � V

f
S .�/ are all strictly increasing in �.

Then if � 2 H , we have VH .�/ > V s
S .�/ and VH .�/ > V

f
S .�/. Then as above differences

are increasing in �, �0 > � implies VH .�0/ > V s
S .�0/ and VH .�0/ > V

f
S .�/. Hence �0 2 H ,

which proves that H D Œ�4; �h�

Similarly, if � 2 S
f
s , then V

f
S .�/ > VH .�/ and V

f
S .�/ > V s

S .�/. Then as above differences
are increasing in �, �0 < � implies V

f
S .�0/ > VH .�0/ and V

f
S .�0/ > V s

S .�0/. Hence �0 2 Sf ,
which proves that Sf D Œ�l ; �3�. The fact that Ss D Œ�3; �4� then follows.

The structure follows from Lemmas 3.25 and 3.26. The fact that �1 < �4 follows from
Sf \ Bs D ; and Ss \ Bs D ;. The next lemma proves part (i) of the proposition

Lemma 3.27. If u.�h/ > 2.cs C �/.
 C �/, then there is no trade.
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Proof. Note that following two conditions is necessary for any trader to prefer trade in any
equilibrium:

V s
B.�h/ > VN (3.48)

V s
S .0/ > VH .0/ (3.49)

The first of these implies

�s.V1;�h
� ps � cs � �/ C 
 E�0.V0;�0/

.�s C 
 C �/
>


 E�0.V0;�0/

.
 C �/
;

which is equivalent to

.
 C �/�s.V1;�h
� ps � cs � �/ > �s
 E�0.V0;�0/:

Therefore,
.
 C �/.VH .�h/ � ps � cs � �/ > .
 C �/VN (3.50)

From 3.49 and using u.0/ D 0:

�s.V0;0 C ps � cs � �/ C 
 E�0.V1;�0/

.�s C 
 C �/
>


 E�0.V1;�0/

.
 C �/

Therefore,
.
 C �/.VN C ps � cs � �/ > .
 C �/VH .0/ (3.51)

Summing 3.50 and 3.51:

VH .�h/ C VN � 2.cs C �/ > VN C VH .0/

VH .�h/ � VH .0/ > 2.cs C �/

u.�h/ > 2.cs C �/.
 C �/

This is what we wanted to show.

The following lemma characterizes the condition under which fast venue is active in
any equilibrium.

Lemma 3.28. There is positive trade in fast venue only if

u.�h/ > 2
�f .�s C 
 C �/.cf C �/ � �s.�f C 
 C �/.cs C �/

�f � �s
:

Proof. Given the structure of cut-offs, one necessary condition for positive trade in the fast
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venue is V s
S .0/ < V

f
S .0/. As u.0/ D 0, this is equivalent to

�s.VN C ps � cs � �/ C 
 E�0.V1;�0/

.�s C 
 C �/
<

�f .VN C pf � cf � �/ C 
 E�0.V1;�0/

.�f C 
 C �/

After some algebra, we obtain:

VN � VH .0/ > �
�f .�s C 
 C �/.pf � cf � �/ � �s.�f C 
 C �/.ps � cs � �/

.�f � �s/.
 C �/
(3.52)

Another necessary condition is V s
B.�h/ < V

f
B .�h/. Doing similar algebra as above, we

obtain

VH .�h/ � VN >
�f .�s C 
 C �/.pf C cf C �/ � �s.�f C 
 C �/.ps C cs C �/

.�f � �s/.
 C �/
(3.53)

Summing equations 3.52 and 3.53 finishes the proof

u.�h/ > 2
�f .�s C 
 C �/.cf C �/ � �s.�f C 
 C �/.cs C �/

�f � �s
:

The next lemma calculates the densities fh and fnh.

Lemma 3.29.

fnh.�/ D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

f .�/
�f C.1�Z/


�f C

if � 2 Œ�l ; �3�

f .�/�sC.1�Z/

�sC


if � 2 Œ�3; �4�

f .�/.1 � Z/ if � 2 Œ�4; �1�

f .�/ .1�Z/

�sC


if � 2 Œ�1; �2�

f .�/ .1�Z/

�f C


if � 2 Œ�2; �h�

; fh.�/ D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

f .�/ Z

�f C


if � 2 Œ�l ; �3�

f .�/ Z

�sC


if � 2 Œ�3; �4�

f .�/Z if � 2 Œ�4; �1�

f .�/
ZC�s

�sC

if � 2 Œ�1; �2�

f .�/

ZC�f

�f C

if � 2 Œ�2; �h�

Proof. Let � 2 Œ�l ; �3�. The outflow of asset holders with valuation � is 
fh.�/ C �f fh.�/,
while the inflow is 
Zf .�/, hence we have:


fh.�/ C �f fh.�/ D 
Zf .�/ H) fh.�/ D

Z

�f C 

f .�/

As fh.�/ C fnh.�/ D f .�/, we have:

fnh.�/ D
�f C .1 � Z/


�f C 

f .�/

Let � 2 Œ�3; �4�. Inflow-outflow balance requires:


fh.�/ C �sfh.�/ D 
Zf .�/ H) fh.�/ D

Z

�s C 

f .�/
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As fh.�/ C fnh.�/ D f .�/, we have:

fnh.�/ D
�s C .1 � Z/


�s C 

f .�/

Let � 2 Œ�4; �1�. Inflow outflow balance for holders with valuation � requires:


fh.�/ D 
Zf .�/ H) fh.�/ D Zf .�/

Hence fnh.�/ D .1 � Z/f .�/.
Let � 2 Œ�1; �2�. Inflow-outflow balance requires:


fnh.�/ C �sfnh.�/ D .1 � Z/
f .�/ H) fnh.�/ D f .�/
.1 � Z/



 C �s

As fh.�/ C fnh.�/ D f .�/, we have:

fh.�/ D f .�/

Z C �s


 C �s

Let � 2 Œ�2; �h�. Inflow-outflow balance requires:


fnh.�/ C �f fnh.�/ D .1 � Z/
f .�/ H) fnh.�/ D f .�/
.1 � Z/



 C �f

As fh.�/ C fnh.�/ D f .�/, we have:

fh.�/ D f .�/

Z C �f


 C �f

:

Lemma 3.30. In any equilibrium, asset market clearing conditions imply:

.1 � Z/F.�1/ C ZF.�4/ D 1 � Z (3.54)

.1 � Z/F.�2/ C ZF.�3/ D 1 � Z (3.55)

Proof. We have two market clearing conditions: one for the slow venue and one for the fast
venue. Fast venue clearing condition:Z �h

�2

fnh.�/d� D

Z �3

�l

fh.�/d� (3.56)

.1 � F.�2//

.1 � Z/

�f C 

D F.�3/


Z

�f C 

(3.57)

1 � Z

Z
D

F.�3/

1 � F.�2/
(3.58)

ZF.�3/ C .1 � Z/F.�2/ D .1 � Z/: (3.59)
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From slow market clearing condition:Z �2

�1

fnh.�/d� D

Z �4

�3

fh.�/d� (3.60)

.F.�2/ � F.�1//

.1 � Z/

�s C 

D .F.�4/ � F.�3//


Z

�s C 

(3.61)

1 � Z

Z
D

F.�4/ � F.�3/

F.�2/ � F.�1/
(3.62)

.1 � Z/F.�1/ C ZF.�4/ D .1 � Z/; (3.63)

where the last line is obtained by plugging in fast market clearing equality.

Lemma 3.31. If u.�h/ > 2
�f .�sC
C�/.cf C�/��s.�f C
C�/.csC�/

�f ��s
, then in any equilibrium there is

positive trade in both venues. The equilibrium cut-offs are given by:

u.�1/ � u.�4/


 C �
D 2.cs C �/ (3.64)

u.�2/ � u.�3/


 C �
D 2

�f .cf C �/.�s C 
 C �/ � �s.cs C �/.�f C 
 C �/

.�f � �s/.
 C �/
: (3.65)

Proof. Start with the equations

V s
B.�1/ D

�s.VH .�1/ � ps � cs � �/ C 
 E�0.V0;�0/

.�s C 
 C �/

D
�s.VH .�1/ � ps � cs � �/ C .
 C �/VN

.�s C 
 C �/

D
�s.VH .�1/ � VN � ps � cs � �/

.�s C 
 C �/
C VN

In addition as �1 is the cut-off type for buying slowly and doing nothing, we have
V s

B.�1/ D VN
16. Combining these:

VH .�1/ D VN C ps C cs C � (3.66)

Similarly, as �4 is the cut-off type for selling slowly and holding the asset, we have VH .�4/ D

V s
S .�4/. Hence

VH .�4/ D
u.�4/ C �s.VN C ps � cs � �/ C 
 E�0.V1;�0/

.�s C 
 C �/

D
u.�4/ C 
 E�0.V1;�0/

.�s C 
 C �/
C

�s.VN C ps � cs � �/

.�s C 
 C �/

D
.
 C �/VH .�4/

.�s C 
 C �/
C

�s.VN C ps � cs � �/

.�s C 
 C �/
:

16Notice that VN .�/ D VN for any �
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The final equality implies
VH .�4/ D VN C ps � cs � �: (3.67)

Using equations 3.66 and 3.67, we get VH .�1/ � VH .�4/ D 2.cs C �/. Therefore

VH .�1/ � VH .�4/ D
u.�1/ � u.�4/


 C �
D 2.cs C �/:

Now, the equality V s
S .�3/ D V

f
S .�3/ implies

u.�3/ C �s.VN C ps � cs � �/ C 
 E�0.V1;�0/

.�s C 
 C �/
D

u.�3/ C �f .VN C pf � cf � �/ C 
 E�0.V1;�0/

.�f C 
 C �/
: (3.68)

Upon rearranging terms,

.�f � �s/.u.�3/ C 
 E�0.V1;�0// D .�f � �s/.
 C �/VN

C �f .�s C 
 C �/.pf � cf � �/ (3.69)

� �s.�f C 
 C �/.ps � cs � �/: (3.70)

Dividing by .�f � �s/.
 C �/:

VN D
u.�3/


 C �
C


 E�0.V1;�0/


 C �
�

�f .�s C 
 C �/.pf � cf � �/ � �s.�f C 
 C �/.ps � cs � �/

.�f � �s/.
 C �/

D VH .�3/ �
�f .�s C 
 C �/.pf � cf � �/ � �s.�f C 
 C �/.ps � cs � �/

.�f � �s/.
 C �/
(3.71)

Similarly, using V
f

B .�2/ D V s
B.�2/ yields

�f .VH .�2/ � pf � cf � �/ C 
 E�0.V0;�0/

.�f C 
 C �/
D

�s.VH .�2/ � ps � cs � �/ C 
 E�0.V0;�0/

.�s C 
 C �/

Rearranging and dividing by .�f � �s/.
 C �/:

VH .�2/ �
�f .�s C 
 C �/.pf C cf C �/ � �s.�f C 
 C �/.ps C cs C �/

.�f � �s/.
 C �/
D VN (3.72)

Solving 3.71 and 3.72 gives:

u.�2/ � u.�3/


 C �
D 2

�f .cf C �/.�s C 
 C �/ � �s.cs C �/.�f C 
 C �/

.�f � �s/.
 C �/

Note that if u.�h/ > 2
�f .�sC
C�/.cf C�/��s.�f C
C�/.csC�/

�f ��s
, then there exists �2 < �h and

�3 > 0 such that equation above holds. Moreover, any type � < �3 and � > �2 strictly prefers
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fast venue to slow venue and there is positive trade in the fast venue.

Next, note that u.�h/ > 2
�f .�sC
C�/.cf C�/��s.�f C
C�/.csC�/

�f ��s
implies u.�h/ > 2.cs C

�/.
 C �/ whenever cf > cs, which is assumed. Thus, whenever the former inequality
holds, �1; �2; �3 and �4 that solves equations 3.54, 3.55, 3.64 and 3.65 constitutes equi-
librium cut-offs where both venues are active. To finish the proof of part (ii) of theorem
3.3 we characterize the equilibrium prices in case (ii). From equation 3.67, we obtain the
characterization of ps:

ps D Vh.�4/ � VN C cs C �

D
u.�4/ C 
 E�0.V1;�0/


 C �
C cs C � �


 E�0.V0;�0/


 C �

D
u.�4/


 C �
C cs C � C





 C �
.E�0.V1;�0/ � E�0.V0;�0// (3.73)

From equation (3.71):

�f .�s C 
 C �/.pf � cf � �/ � �s.�f C 
 C �/.ps � cs � �/

.�f � �s/.
 C �/
D

u.�3/


 C �
C





 C �
.E�0.V1;�0/ � E�0.V0;�0// (3.74)

Lemma 3.32. Equations (3.73) and (3.74) characterize a unique price vector.

Proof. We only need to show that (3.73) and (3.74) lead to unique solutions for ps and pf .
In particular, we will show that the quantity E�0 ŒV1;�0 � � E�0 ŒV0;�0 � does not depend on either
ps nor pf ; once this is done, ps is directly pinned down by (3.73), and after substituting into
(3.74), pf is also uniquely determined. To finish up, we will need to show that the numbers
ps and pf recovered this way are positive: this is done in the last step of the proof.

To begin, in the following two steps we establish that E�0 ŒV1;�0 � � E�0 ŒV0;�0 � only depends
on the endogenous thresholds �1; �2; �3 and �4. First recall that

V
f

S .�/ D
u.�/ C �f .VN C pf � cf � �/ C 
 E�0 ŒV1;�0 �

�f C � C 


V s
S .�/ D

u.�/ C �s.VN C ps � cs � �/ C 
 E�0 ŒV1;�0 �

�s C � C 


V
f

B .�/ D
�f .VH .�/ � pf � cf � �/ C 
 E�0 ŒV0;�0 �

�f C � C 


V s
B.�/ D

�s.VH .�/ � ps � cs � �/ C 
 E�0 ŒV0;�0 �

�s C � C 


VH .�/ D
u.�/ C 
 E�0 ŒV1;�0 �


 C �
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and
VN D


 E�0 ŒV0;�0 �


 C �
: (3.75)

Next we derive E�0 ŒV0;�0 � and E�0 ŒV1;�0 � in closed form. First, we will compute E�0 ŒV0;�0 �;
using the previous displayed equations, we have

dV0;�

d�
D 1f�2Œ�1;�2�g

�su0.�/

.�s C � C 
/.� C 
/
C 1f�2Œ�2;�h�g

�f u0.�/

.�f C � C 
/.� C 
/
: (3.76)

Integrating (3.76),

V0;� D 1f�2Œ�l ;�1�gVN C 1f�2Œ�1;�2�g

�
VN C

Z �

�1

�su0.�/

.�s C � C 
/.� C 
/
d�

�
C 1f�2Œ�2;�h�g

�
VN C

Z �2

�1

�su0.�/

.�s C � C 
/.� C 
/
d� C

Z �

�2

�f u0.�/

.�f C � C 
/.� C 
/
d�

�
:

(3.77)

Finally, taking an expectation from (3.77) gives

E�0 ŒV0;�0 � D VN C

Z �2

�1

.

Z Q�

�1

�su0.�/

.�s C � C 
/.� C 
/
d�/dF. Q�/

C .

Z �2

�1

�su0.�/

.�s C � C 
/.� C 
/
d�/.1 � F.�2//

C

Z �h

�2

.

Z Q�

�2

�f u0.�/

.�f C � C 
/.� C 
/
d�/dF. Q�/: (3.78)

Thus, (3.78) shows that E�0 ŒV0;�0 � only depends on the endogenous thresholds �1 and �2.
Next we will compute E�0 ŒV1;�0 � using (3.75). Start with

dV1;�

d�
D 1f�2Œ�l ;�3�g

u0.�/

�f C � C 

C 1f�2Œ�3;�4�g

u0.�/

�s C � C 

C 1f�2Œ�4;�h�g

u0.�/

� C 

: (3.79)

Integrating this formula,

V1;� D 1f�2Œ�l ;�3�g

Z �

�l

u0.�/

�f C � C 

d�

C 1f�2Œ�3;�4�g.

Z �3

�l

u0.�/

�f C � C 

d� C

Z �

�3

u0.�/

�s C � C 

d�/

C 1f�2Œ�4;�h�g.

Z �3

�l

u0.�/

�f C � C 

d� C

Z �4

�3

u0.�/

�s C � C 

d� C

Z �

�4

u0.�/


 C �
d�/: (3.80)
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Therefore, taking an expectation from (3.80) gives

E�0 ŒV1;�0 � D

Z �3

�l

�Z Q�

�l

u0.�/

�f C � C 

d�

�
dF. Q�/ C

�Z �3

�l

u0.�/

�f C � C 

d�

�
.1 � F.�3//

C

Z �4

�3

.

Z Q�

�3

u0.�/

�s C � C 

d�/dF. Q�/ C .1 � F.�4//.

Z �4

�3

u0.�/

�s C � C 

d�/

C

Z �h

�4

.

Z Q�

�4

u0.�/


 C �
d�/dF. Q�/

Thus, (3.81) shows that E�0 ŒV1;�0 � only depends on the endogenous thresholds �3 and �4.
Together, (3.78) and (3.81) finish the proof that the difference E�0 ŒV1;�0 � � E�0 ŒV0;�0 � does not
depend on ps nor pf .

To finish the proof of the lemma, note that equations (3.73) and (3.74) yield unique
solutions for ps and pf . Since E�0 ŒV1;�0 � � E�0 ŒV0;�0 � > 0, all terms in (3.73) are positive, and
hence ps > 0. Since we have assumed that u.�/ � 0, it follows that pf is also positive, which
finishes the lemma.

To prove part (iii), assume u.�h/ > 2.cs C �/.
 C �/ and

u.�h/ < 2
�f .�s C 
 C �/.cf C �/ � �s.�f C 
 C �/.cs C �/

�f � �s
:

From Lemma 3.28, we know that there cannot be any trade in the fast venue, i.e. �3 D 0 and
�2 D �h. Lemmas 3.29 and 3.30 still hold, and given u.�h/ > 2.cs C �/.
 C �/, following the
same steps in lemma 3.31, we see that the cut-offs �1 and �4 are uniquely pinned down by:

.1 � Z/F.�4/ C ZF.�1/ D 1 � Z (3.81)

u.�1/ � u.�4/


 C �
D 2.cs C �/ (3.82)

As in earlier case, the equilibrium price in the slow venue is given by:

ps D
u.�4/


 C �
C cs C � C





 C �
.E�0.V1;�0/ � E�0.V0;�0//;

To show that this is indeed an equilibrium, we need to find a price pf such that there
is no demand for trade in the fast venue (otherwise, fast venue clearing condition cannot
hold.). To see that, there is no demand for selling in the fast venue if V s

S .0/ � V
f

S .0/ � 0.
This corresponds to:

.VH .0/ � VN /.�f � �s/.
 C �/ C �s.�f C 
 C �/.ps � cs � �/

� .pf � cf � �/�f .�s C 
 C �/ � 0
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Which is equivalent to:

L D .VH .0/ � VN /.�f � �s/.
 C �/ C �s.�f C 
 C �/.ps � cs � �/

C .cf C �/�f .�s C 
 C �/

� pf .�f .�s C 
 C �//

(3.83)

Similarly, there is no demand for buying in the fast venue if V s
B.�h/ � V

f
B .�h/ � 0. This is

equivalent to:

U D .VH .�h/ � VN /.�f � �s/.
 C �/ C �s.�f C 
 C �/.ps C cs C �/

� .cf C �/�f .�s C 
 C �/

� pf .�f .�s C 
 C �//

(3.84)

Note that there exists a pf such that there is no demand in selling or buying fast if L > U .
The following condition condition is sufficient to have L > U

u.�h/ < 2
�f .�s C 
 C �/.cf C �/ � �s.�f C 
 C �/.cs C �/

�f � �s
:

This condition holds under the assumptions of (iii), thus L > U . Hence, under any pf 2

.U; L/, there is no demand for fast venue and pf fast venue clearing condition is satisfied,
finishing the characterization of the equilibrium and Theorem 3.3.

Proof of Proposition 3.4

First, we proof a short lemma:

Lemma 3.33. Let x be a variable. Then if

@.u.�2/ � u.�3//

@x
> .</0

Then @�2

@x
> .</0 and @�3

@x
< .>/0.

Similarly, if
@.u.�1/ � u.�4//

@x
> .</0;

then @�1

@x
> .</0 and @�4

@x
< .>/0.

Proof. We prove this for the first case, rest is similar. From equation 3.12, we see that if
@.u.�2/�u.�3//

@x
> 0, this is only possible under @u.�2/

@x
> 0 and @u.�3/

@x
< 0.17 Then @�2

@x
> 0 and

@�3

@x
< 0 follows from the fact that u is strictly increasing.

17It is clear that one of these must hold. To see why both are necessary, see that equation 3.12 requires cut-offs
to move in opposite direction.
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Lemma 3.34. We have following comparative statics:

1. @�1

@�s
D

@�4

@�s
D 0, @�2

@�s
> 0, @�3

@�s
< 0

2. @�4

@�f
D 0, @�1

@�f
D 0, @�2

@�f
< 0, @�3

@�f
> 0

3. @�1

@

> 0, @�4

@

< 0, @�2

@

> 0, @�3

@

< 0

4. @�1

@�
> 0, @�4

@�
< 0, @�2

@�
> 0, @�3

@�
< 0

5. @�1

@cs
< 0, @�4

@cs
> 0, @�2

@cs
< 0, @�3

@cs
> 0

6. @�1

@cf
D 0, @�4

@cf
D 0, @�2

@cf
> 0, @�3

@cf
< 0

7. @�1

@�
< 0, @�4

@�
> 0, @�2

@�
> 0, @�3

@�
< 0

Proof. Part 1. First two equations are trivial as �s does not appear in equations that determine
�1 and �4. For the last two:

@.u.�2/ � u.�3//

@�s
D 2

.cf � cs/�f .�f C 
 C �/

.�f � �s/2
> 0

The result follows from lemma 3.33.
Part 2 First two equations are trivial as �s does not appear in equations that determine �1

and �4. We have:

@.u.�2/ � u.�3//

@�f

D �2
.cf � cs/�f .�f C 
 C �/

.�f � �s/2
< 0

The result follows from lemma 3.33.
Parts 3 and 4

@.u.�2/ � u.�3//

@

D 2

cf �f � cs�s

�f � �s
> 0

@.u.�1/ � u.�4//

@

D 2cs > 0

The result follows from lemma 3.33 and the proof for � is exactly same.
Part 5

@.u.�2/ � u.�3//

@cs
D �2

�s.�f C 
 C �/

.�f � �s/.
 C �/
< 0

@.u.�1/ � u.�4//

@cs
D 2.
 C �/ > 0

The result follows from lemma 3.33.

130



Part 6

@.u.�2/ � u.�3//

@cf

D
�f .�s C 
 C �/

.�f � �s/.
 C �/
> 0

@.u.�1/ � u.�4//

@cf

D 0

The result follows from lemma 3.33.
Part 7

@.u.�2/ � u.�3//

@�
D 2 > 0

@.u.�1/ � u.�4//

@�
D 2 > 0

Note that @�2

@cs
< 0 and @�3

@cs
> 0 implies mf is increasing in cs . Then T Vf is increasing in cs .

The proof for �f is exactly same. Likewise, @�2

@cf
> 0 and @�3

@cf
< 0 imply that mf is decreasing

in cf . Then T Vf is decreasing in cf . The proof for �s and � is exactly same. Similarly, @�1

@cf
< 0

and @�4

@cf
> 0 imply that ms is increasing in cf . Then T Vs is increasing in cf . The proof for

�s is exactly same. Finally, @�1

@cs
> 0 and @�4

@cs
< 0 imply ms is decreasing in cs . Then T Vs is

decreasing in cs . The proof for �f is exactly same.
Part 7 of above the lemma implies that increasing � results in some types switching from

fast venue to slow venue and some types switching from slow venue to no trade. Thus,
trading volume is decreasing in � .

Proof of Proposition 3.8

Derivatives of the revenue in fast and slow venues are

@Rs

@cs
D

4
�f �s.�s C 
 C �/.1 � Z/Z

.
 C �f /.�f � �s/
.cf � 2cs/ (3.85)

@Rf

@cf

D
numerator

denominator
(3.86)

where

numerator D 2
�f Z.1 � Z/.��s C 2�s.
 C �/.cs C �/�

�f .4cf .�s C 
 C �/ C 2.
 C �/� � 1 � 2cs�S //

and the denominator is .
 C �/.�f � �s/.

Next note that @2Rs

@c2
s

< 0 and @2Rf

@c2
f

< 0, so the fee competition game has unique interior
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optimum. Moreover, the derivative of Rf evaluated at cs D 0 is equal to

@Rf

@cf

jcsD0 / .�f � �s/.1 � 2.
 C �/�/ � �f .4cf .�s C 
 C �//:

The first term is positive, thus @Rf

@cf
jcsD0 > 0 at cf D 0. Thus whenever cs D 0, cf > 0. But

@Rs

@cs
> 0 at cs D 0 and cf > 0, so there cannot be any equilibrium where cs D 0. Thus cs

must be interior in any equilibrium. Rearranging 3.85 and suppressing the dependence on
primitives,

c�
s .cf / D

cf

2
: (3.87)

Thus in any equilibrium, cs > 0 and cf > 0. Solving (3.86) and (3.87) together

c�
f .�f ; �s/ D .1 � 2�.
 C �//

�f � �s


.4�f � �s/ C �.4�f � �s/ C 3�f �s

As the revenues converge to zero when prices are high, the unique equilibrium is given by
c�

s and c�
f
.

Proof of Proposition 3.9

Taking the derivative of equilibrium fee with respect to �f :

@c�
f

@�f

D �
3�s.�s C 
 C �/.�1 C 2.
 C �/�/

..
 C � � 3�f /�s � 4.
 C �/�f /2
> 0

The inequality is due to Assumption 3.5, which guarantees .�1 C 2.
 C �/�/ < 0. This also
shows that @c�

s

@�f
> 0 as c�

s D
c�
f

2
. To prove the second part:

@c�
f

@�s
D

3�f .�f C 
 C �/.�1 C 2.
 C �/�/

..
 C � � 3�f /�s � 4.
 C �/�f /2
< 0;

where the inequality holds for the same reason. Similarly, @c�
s

@�s
< 0 as c�

s D
c�
f

2
.

Proof of Proposition 3.10

@T Vs

@�s
D A

2.1 � Z/Z.1 � 2.
 C �/�/
�f

.�s C 
/2.�3�f �s C 
.�4�f C �s/ � 4�f � C �s�/2

where
A D 4
3�f C �s�.�f C �/ C 8
2�f .�s C �/ C 
.�s� C 4�f .�s C �/2/:
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Assumption 3.5 guarantees .1 � 2.
 C �/�/ > 0, so second factor is positive. Of course, A is
also positive, which shows @T Vs

@�s
> 0. Likewise, the same assumption also shows

@T Vf

@�s
D

4
�2
f

.
 C �/.�f C 
 C �/.1 � 2.
 C �/�/.1 � Z/Z

.
 C �f /..
 C � � 3�f /�s � 4.
 C �/�f /2
> 0:

Proof of Proposition 3.11

@T V

@�f

D �A
2
.�s C 
 C �/.1 � 2.
 C �/�/.1 � Z/Z

.
 C �f /2.
 C �s/.�3�s�f C 
.�s � 4�f / � 4�f � C �s�/2

where

A D 
3.�8�2
f C 4�f �s C �2

s / C 3�2
f �2

s � C 
2.6�f �s.�2�f C �s/

C .�8�2
f C 4�f �s C �2

s /�/ � 3
�f �s.�2�s� C �f .�s C 2�//:

The termmultiplying against A is negative, so the sign of @TV =@�f is the sign of �A. Let
�f D � and �s D � � �. After some algebra:

sign.
@T V

@�f

/ D sign.
2
C 
.� C �/ � �� C O.�//

Letting � ! 0 and rearranging,

sign.
@T V

@�f

/ D sign.�.
 � �/ C 
.
 C �///:

If 
 > � , then clearly @T V
@�f

> 0. Conversely, if 
 < � , then

@T V

@�f

> 0 ” � <

2 C 
�

� � 

:

This finishes the proof.

Proof of Proposition 3.12

Note that conditional on the speed choice of the entrant, the outcomeof fee competition stage
(equilibrium fees and revenues) is characterized in Section 3.3.3. LetR.�/ denote the revenue
of the entrant when she chooses � . Let ….�; ˛/ D R.�/ � ˛K.�/ and …�.˛/ D max� ….�/.
The firm enters whenever …�.˛/ > 0. For ˛ D 0, entry is cost-less thus is always optimal and
….�; ˛/ < 0 for high ˛. Moreover, …�.˛/ is decreasing in ˛.18 Thus first part of the result
follows.

We first show that the speed is weakly increasing in technological improvements. Let

18To see that, notice that if ˛1 > ˛2, then ….�; ˛1/ < ….�; ˛2/ for all � .
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R.�n.˛/; ˛/ denote the equilibrium revenue of the new firmwhere �n.˛/ denotes the optimal
speed choice of the firm. �.�n.˛/; ˛/ denotes the equilibrium profit of the new firm. We will
show that, if ˛ > ˛0 then �.˛0/ > �.˛/. To see that, let � 2 .0; �n.˛//. Then,

�.�n.˛/; ˛0/ � �.�; ˛0/ D R.�n.˛/; ˛0/ � R.�; ˛0/ � ˛.K.�n.˛// � K.�//

D R.�n.˛/; ˛/ � R.�; ˛/ � ˛.K.�n.˛// � K.�//

> R.�n.˛/; ˛/ � R.�; ˛/ � ˛0.K.�n.˛// � K.�//

D �.�n.˛/; ˛/ � �.�; ˛/ > 0:

This shows that, under ˛0, �n.˛/ gives a higher profit than any � 2 .0; �n.˛//, thus
�n.˛0/ � �n.˛/

To see why the inequality is strict, notice that at the optimum following FOCmust be
satisfied:

@R.�n.˛/; ˛/

@�
� ˛

@K.�n.˛//

@�
D 0:

As ˛0 < ˛, we have
@R.�n.˛/; ˛0/

@�
� ˛0 @K.�n.˛//

@�
¤ 0:

Thus �n.˛/ ¤ �n.˛/. As we have already showed �n.˛0/ � �n.˛/, the result follows.

Proof of Lemma 3.14

Solve the linear system of equations for �1; : : : ; �4 and substitute into the expression for
R.�/ D c�

f
.�; �/ � TVf .�f /.

Proof of Lemma 3.15

Lemma 3.14 shows that R.�/ is a rational function of � ; thus it is smooth. It also follows that
all of its derivatives are rational functions, so thatR00.�/ D p.�/=q.�/where the polynomials
p and q are easily computed. A direct calculation shows q > 0 and p.�/ < 0 for all � � � .19

This finishes the proof.

Proof of Lemma 3.3.4

The first part is straightforward: when ˛ D 0, if the entrant enters at all, she would choose
�f D 1 as there is no downside to doing so and larger �f allows for higher costs and
therefore higher profits. Thus, the only thing to check is that �f D 1 leads to a positive
profit (i.e., it is better than not entering at all): this is ensured by Theorem 3.3 (see also the
corollary following Proposition 3.8).

19The calculation for q is immediate; for p, write � D �� and note that p.��/ < 0 for all � � 1.
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To prove the second part of the corollary, note that the formula in 3.14 implies that R.�/

tends to finite limit as � ! 1, whence any positive ˛ induces a finite �f .

Proof of Proposition 3.16

Suppose (a) does not hold, so that �.�/ � 0; the goal is to show that condition (b) holds.
Since �.�/ < 0 and � is concave (c.f., Lemma 3.15), the optimum �� is the unique solution
to

� 0.��/ D 0 H) R0.��/ D ˛:

Therefore, concavity of � implies that if R0.��/ � ˛, then � is strictly increasing on Œ�; ���,
so that �.��/ > �.�/ � 0 and condition (b) is satisfied.

The remaining case to examine is R0.��/ < ˛, which we will rule out by way of contra-
diction. Towards that goal, suppose there exist parameter values for which R0.��/ < ˛ and
put A WD 
 and B D 
 C � for tidiness (0 < A < B). By Lemma 3.14, we have

R0.��/ D 112C �
49�2 C 7.7A C 6B/� C 48AB

9.4A C 7�/2.8B C 7�/3
; (3.88)

Now, by assumption � � � > 0, whence

0 � �.�/ D R.�/ � ˛� < R.�/ � R0.��/�:

The function � 7! R.�/ � R0.��/� is strictly concave by Lemma 3.15 and is maximized by
setting its derivative to zero, i.e., at � D �� . Therefore, 0 < R.�/ � R0.��/� < R.��/ �

R0.��/�� ; upon transposing terms and using Lemma 3.14,

28C

3.4A C 7�/.8B C 7�/2
D

R.��/

��
> R0.��/:

Comparing with the expression in (3.88) and cancelling relevant like terms in the de-
nominator, this is equivalent to

3.4A C 7�/.8B C 7�/ > 4.49�2
C 7.7A C 6B/� C 48AB/:

which is impossible as it is equivalent to 49�2 C 112A� C 96AB < 0. This is the desired
contradiction.

Proof of Proposition 3.18

The profit �.�/ D TVf c�
f

.�; �o/ � ˛� is supermodular in .��; �/.
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Proof of Proposition 3.19

First, note that if both firms enter, they choose different speeds in any pure strategy SPE: If
firms choose same speed, then both firms obtain 0 revenue. To see why, let c1 and c2 be the
fees chose by the firms in equilibrium. If c1 > c2, there is no demand in venue 1, as venue
2 has same speed and lower fee. Thus the revenue of venue 1 is 0. However a deviation to
c0

1 D c2 � � gives a positive market share and revenue to venue 1, thus this cannot be an
equilibrium. The case for c2 > c1 is exactly same. If c1 D c2 > 0, then at least one of the
firms, say firm i , can choose ci D c1 � � to strictly increase its revenue, thus that cannot be
an equilibrium. Hence, unique equilibrium in the fee competition stage is c1 D c2 D 0. The
entry is costly (˛ > 0), so this cannot be an equilibrium of the game as firms will decide not
to enter.

If they choose different speeds, then the fees and revenues are characterized in Section
3.3.3. Let cl and ch denote the equilibrium fees selected by slower and faster venues in
equilibrium. Let Rl D R.�l ; �h; cl ; ch/ denote the revenue of the slower firm and Rh D

Rf .�l ; �h; cl ; ch/ denote the revenue of the faster firm. Note that Rl > 0 and Rh > 0. As
˛K.�/ ! 0 as ˛ ! 0, there exists an ˛ such that minfRl � ˛K.�l/; Rh � ˛K.�h/g D 0. Thus
whenever ˛ < ˛, both firms obtain positive revenue after entry in any equilibrium, thus
both firms enter in all such equilibria.

Whenever ˛ > ˛ at least one of the firms who enter will incur a loss, thus at most one
firm can enter. The revenue of the single venue is given by …�.˛/ D maxfRl � ˛K.�l/; Rh �

˛K.�h/g D 0, which is clearly continuous and decreasing in ˛. Thus, there exists an ˛ such
that …�.˛/ D 0. As …�.˛/ is decreasing in ˛, whenever ˛ > ˛ entry is not profitable for the
firms and in equilibrium no firm enters.
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