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Abstract

Recent studies have demonstrated that machine learning models are vulnerable to
adversarial perturbations – a small and human-imperceptible input perturbation can
easily change the model output completely. This has created serious security threats
to many real applications, so it becomes important to formally verify the robustness of
machine learning models. This thesis studies the robustness of deep neural networks
as well as tree-based models, and considers the applications of robust machine learning
models in deep reinforcement learning.

We first develop a novel algorithm to learn robust trees. Our method aims
to optimize the performance under the worst case perturbation of input features,
which leads to a max-min saddle point problem when splitting nodes in trees. We
propose efficient tree building algorithms by approximating the inner minimizer in this
saddle point problem, and present efficient implementations for classical information
gain based trees as well as state-of-the-art tree boosting models such as XGBoost.
Experiments show that our method improve the model robustness significantly.

We also propose an efficient method to verify the robustness of tree ensembles.
We cast the tree ensembles verification problem as a max-clique problem on a multi-
partite graph. We develop an efficient multi-level verification algorithm that can give
tight lower bounds on robustness of decision tree ensembles, while allowing iterative
improvement and termination at any-time. On random forest or gradient boosted
decision trees models trained on various datasets, our algorithm is up to hundreds
of times faster than the previous approach that requires solving a mixed integer
linear programming, and is able to give tight robustness verification bounds on large
ensembles with hundreds of deep trees.

For neural networks, we contribute a number of empirical studies on the practicality
and the hardness of adversarial training. We show that even with adversarial defense,
a model’s robustness on a test example has a strong correlation with the distance
between that example and the manifold of training data embedded by the network.
Test examples that are relatively far away from this manifold are more likely to be
vulnerable to adversarial attacks. Consequentially, we demonstrate that an adversarial
training based defense is vulnerable to a new class of attacks, the “blind-spot attack,”
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where the input examples reside in low density regions (“blind-spots”) of the empirical
distribution of training data but are still on the valid ground-truth data manifold.

Finally, we apply neural network robust training methods to deep reinforcement
learning (DRL) to train agents that are robust against perturbations on state observa-
tions. We propose the state-adversarial Markov decision process (SA-MDP) to study
the fundamental properties of this problem, and propose a theoretically principled
regularization which can be applied to different DRL algorithms, including deep Q
networks (DQN) and proximal policy optimization (PPO). We significantly improve
the robustness of agents under strong white box adversarial attacks, including new
attacks of our own.

Thesis Supervisor: Duane S. Boning
Title: Clarence J. LeBel Professor of Electrical Engineering and Computer
Science
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Chapter 1

Introduction

1.1 Adversarial Robustness Problems

In the past ten years, we have seen significant breakthroughs of machine learning in

many applications [60, 64, 80, 106]. For most machine learning models, their core

structure is a function approximator 𝑓 that maps data from an input in space 𝒳 to an

output in space 𝒴 . Both spaces can be either continuous or discrete. Machine learning

algorithms are proposed to obtain 𝑓 from a large amount of training data from 𝒳 ×𝒴

in the training phase. For parametric models, such as deep neural networks (DNNs),

𝑓 can be learned by iteratively changing the value of its parameters until a specific

loss function is minimized. For non-parametric models, such as decision trees and

k-nearest neighbors, 𝑓 has structures which can also be optimized given training data.

Once 𝑓 is obtained, the models are evaluated in the testing phase, where they are

expected to provide output to test examples that are not present in training data.

The effectiveness of machine learning algorithms relies strongly on an assumption

that the training data and test data are sampled from the same distribution, or at

least similar distributions. However, this is not true in many cases, which may lead to

serious consequences in the deployment of the models. The distributions of training

data and test data may be inherently different from each other, for example, when

we collect training data from historical stock prices and try to make predictions on

future prices. Importantly, both training data and test data can be manipulated by
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an adversary; this is a serious concern especially when the models are deployed to

security-sensitive tasks such as autonomous driving, face or voice recognition, and

anomaly detection. Malicious manipulation of data can create mismatch between

training and test data distribution, mislead the models, and significantly damage their

performance. We define this kind of malicious manipulation of data as adversarial

attacks. More specifically, adversarial attacks on training data are called data poison

attacks, and adversarial attacks on test data are termed evasion attacks. In this thesis,

we mainly focus on evasion attacks, and unless otherwise indicated, whenever we refer

to adversarial attacks we mean evasion attacks. In evasion attacks, the models are

assumed to be well-trained and fixed. The adversarial attack is conducted by creating

test examples on which a state-of-the-art machine learning model makes incorrect

predictions. Moreover, these crafted test examples are required to be indistinguishable

from natural examples to humans. The examples satisfying these two requirements

are called adversarial examples [146]. Usually, adversarial examples are created by

perturbing natural examples. This perturbation is not purely random perturbation,

but rather perturbation by adding noise that is generated with computation. Hence

adversarial noise are usually model-specific and example-specific.

For simplicity, we first consider a multi-class classification model 𝑓 : R𝑑 →

{1, . . . , 𝐶} where 𝑑 is the input dimension and 𝐶 is the number of classes. For an

input test example 𝑥0 with ground truth label 𝑦0, assuming that 𝑦0 = 𝑓(𝑥0), the

minimal distance adversarial example is defined by

𝑥* = argmin
𝑥

𝑑(𝑥, 𝑥0) s.t. 𝑓(𝑥) ̸= 𝑦0, (1.1)

where 𝑑(·, ·) is a distance metric. In this thesis, we focus on the ℓ𝑝 norm distance metric,

𝑑(𝑥, 𝑥0) = ‖𝑥0−𝑥‖𝑝, 𝑝 ≥ 0, which is widely used in recent studies [95, 162, 18]. In this

case, the minimal distance adversarial distance 𝑟* has the following definition:

𝑟* = min
𝛿
‖𝛿‖𝑝 s.t. 𝑓(𝑥0 + 𝛿) ̸= 𝑦0. (1.2)

The robustness of a machine learning model can be evaluated by the mean of 𝑟*

24



among all test examples. However, exactly solving (1.1) or (1.2) is usually intractable.

For example, if 𝑓(·) is a neural network with ReLU activations, (1.1) is non-convex

and [76] showed that solving (1.1) is an NP-complete problem in terms of number of

neurons in the network. Therefore, researchers solve upper or lower bounds of 𝑟* in

practice.

Upper bound: adversarial attacks – Solving an upper bound of (1.1) can be

achieved by conducting adversarial attacks. Basically, adversarial attacks search 𝛿

such that

𝑓(𝑥0 + 𝛿) ̸= 𝑓(𝑥0) and ‖𝛿‖𝑝 ≤ 𝜖 (1.3)

for a given a perturbation budget 𝜖 > 0. The condition ‖𝛿‖𝑝 ≤ 𝜖 is designed such

that 𝑥0 + 𝛿 is indistinguishable from 𝑥0 by humans. An attack is successful if a 𝛿

satisfying (1.3) is found. If the attack is targeted to a specific class 𝑡 (i.e., the goal is

to cause the classification of the perturbed input to be class 𝑡), we use 𝑓(𝑥0 + 𝛿) = 𝑡 to

replace 𝑓(𝑥0 + 𝛿) ̸= 𝑓(𝑥0) as a constraint. Adversarial attacks can be roughly divided

into two categories: white-box attacks and black-box attacks. White-box attacks assume

that the model is fully exposed to the attacker, including parameters and structures,

while in black-box attacks, the attackers can query the model but have no direct access

to any internal information inside the model.

Lower bound: robustness verification – Solving a lower bound is typically

achieved by or termed robustness verification. A lower bound 𝑟 is found such that the

model output is guaranteed to remain the same as long as the perturbation ℓ𝑝 norm is

smaller than 𝑟:

𝑓(𝑥0 + 𝛿) = 𝑓(𝑥0) for all ‖𝛿‖𝑝 ≤ 𝑟 . (1.4)

1.2 Background on Adversarial Attacks and Model

Robustness in Deep Neural Networks

The phenomenon of adversarial examples was first discovered in DNN models [146],

and so we first introduce background on adversarial attack and model robustness of
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DNNs in this section. For other machine learning models including decision trees, we

will expand the discussion of adversarial attack and model robustness in Chapters 2

and 3.

1.2.1 Adversarial Attacks

Adversarial attacks are algorithms developed for finding a feasible solution 𝛿 of (1.3),

where ‖𝛿‖𝑝 is an upper bound of 𝑟* if the attack is successful. Many algorithms have

been proposed for attacking DNN models [53, 81, 20, 95, 29, 30, 70, 9, 33, 111, 91, 170].

Most practical attacks cannot guarantee to reach the minimal adversarial perturbation

𝑟* due to the non-convexity of the DNN models, and therefore, attacking algorithms

cannot provide formal guarantees on model robustness [2, 155]. Here we first introduce

several representative white-box adversarial attacks for neural networks.

• Fast Gradient Sign Attack (FGSM) – FGSM [53] is a pioneering attacking

algorithm, and is well-known for its efficiency and easy implementation. However,

it suffers from low attack success rate. This method only needs to compute the

gradient once to generate an adversarial example 𝑥 from the original example

𝑥0:

𝑥← clip[𝑥0 + 𝜖 sgn(∇𝐽(𝑓(𝑥0), 𝑦0))],

where sgn(∇𝐽(𝑥0, 𝑦0)) is the sign of the gradient of the training loss 𝐽 with

respect to 𝑥0, and clip(𝑥) ensures that 𝑥 stays within the range of valid values,

such as pixel range in image data. It is efficient for generating adversarial

examples, as it is just a one-step attack.

• I-FGSM and PGD Attack – To improve FGSM’s attack success rate, authors

in [81] propose an iterative version which greatly improves performance. Iterative

FGSM, or I-FGSM, applies FGSM multiple times within a neighborhood of the

original example, and is able to fool a DNN model with very high success rate.

When one runs I-FGSM for 𝐾 iterations, one sets the per-iteration perturbation

to 𝜖
𝐾

sgn(∇𝐽(𝑥0, 𝑡)). I-FGSM can be viewed as a projected gradient descent

(PGD) method inside an ℓ∞ ball [35, 95].
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• C&W attack – Carlini and Wagner [20] formulate the problem of generating

adversarial examples 𝑥 as the following optimization problem:

min
𝑥

𝜆𝑓(𝑥, 𝑡) + ‖𝑥− 𝑥0‖2
2

s.t. 𝑥 is in a valid range,

where 𝑓(𝑥, 𝑡) is a loss function to measure the distance between the prediction

of 𝑥 and the target label 𝑡. Usually we choose

𝑓(𝑥, 𝑡) = max{max
𝑖 ̸=𝑡

[(Logit(𝑥))𝑖 − (Logit(𝑥))𝑡],−𝜅}

as it was shown to be effective by [20]. Logit(𝑥) denotes the vector representation

of 𝑥 at the logit layer, 𝜅 is a confidence level, and a larger 𝜅 generally improves

transferability of adversarial examples. This attack is so strong that it can

achieve almost 100% attack success rate and has bypassed ten different adversary

detection methods as reported in [20].

• EAD-L1 attack – EAD-L1 attack [29] refers to the Elastic-Net Attacks to

DNNs, which is a more general formulation than C&W attack. It proposes to use

elastic-net regularization, a linear combination of ℓ1 and ℓ2 norms, to penalize

large distortion between the original and adversarial examples. Specifically, it

learns the adversarial example 𝑥 via

min
𝑥

𝜆𝑓(𝑥, 𝑡) + ‖𝑥− 𝑥0‖2
2 + 𝛽‖𝑥− 𝑥0‖1

s.t. 𝑥 is in a valid range,

where 𝑓(𝑥, 𝑡) is the same as used in the C&W attack. Ref. [29] showed that

EAD-L1 attack is highly transferable and can bypass many defenses.

According to [19], PGD attack, C&W attack, and EAD-L1 attacks are by far the

strongest of state-of-the-art attacks that find adversarial examples with the smallest

ℓ1, ℓ2, and ℓ∞ perturbations, respectively. To bypass some defenses with obfuscated

27



gradients, the Backward Pass Differentiable Approximation (BPDA) attack introduced

in [2], is shown to successfully circumvent many defenses.

The aforementioned attacks all rely on explicit gradient information from the

model, and thus are all white-box attacks. The white-box setting is often argued

as being unrealistic in the literature. In contrast, several recent works have studied

ways to fool the model given only model output scores or probabilities. Methods

in [30] and [70] are able to craft adversarial examples by making queries to obtain

the corresponding probability outputs of the model. A stronger and more general

attack has been developed recently by [33], that does not rely on the gradient or the

smoothness of model output. This enables attackers to successfully attack models

that only output hard labels.

1.2.2 Robustness Verification

On the other hand, robustness verification algorithms are designed to find the

exact value or a lower bound of 𝑟*. An exact verifier needs to solve (1.1) to the global

optimum, and so we typically resort to relaxed verifiers that give lower bounds. After a

verification algorithm finds a lower bound 𝑟, it guarantees that no adversarial example

exists within a radius 𝑟 ball around 𝑥. This is important for deploying machine

learning algorithms to safety-critical applications such as autonomous vehicles or

aircraft control systems [76, 73]. For verification, instead of solving (1.1) we can solve

the following decision problem of robustness verification for a given budget 𝜖:

Does there exist an 𝑥′ ∈ Ball(𝑥, 𝜖) such that 𝑓(𝑥′) ̸= 𝑦0? (1.5)

In our setting Ball(𝑥0, 𝜖) := {𝑥 : ‖𝑥 − 𝑥0‖𝑝 ≤ 𝜖}. If we can answer this decision

(“yes”/“no”) problem, a binary search can give us the value of 𝑟*, so the complexity

of (1.5) is in the same order of (1.1). Furthermore, solving (1.1) using an approximation

algorithm (with answer “unknown” allowed) can lead to a lower bound of 𝑟*, which

is useful for verification. The decision version is also widely used in the verification

community since “verified accuracy under 𝜖 perturbation” is an important metric,
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which is defined as the portion of test samples that the answers to (1.5) are “no”.

Verification methods for neural networks have been studied extensively in the past

few years [162, 163, 161, 182, 139, 51, 140].

1.2.3 Adversarial Defense

It is difficult to defend against adversarial examples, especially under strong and

adaptive attacks. Some early methods, including feature squeezing [173] and defensive

distillation [112] have been proven ineffective against stronger attacks like C&W. Many

recently proposed defense methods are based on obfuscated gradients [57, 142, 17, 93,

126] and are already overcome by BPDA attack [3].

Adversarial training, first introduced in [82], is effective on DNNs against various

attacks. In adversarial training, adversarial examples are generated during the training

process and are used as training data to increase model robustness. This technique

has been formally posed as a min-max robust optimization problem in [95] and has

achieved very good performance under adversarial attacks. Several recent work have

tried to improve over the original adversarial training formulation [89, 90, 177]. There

are some other methods in the literature seeking to give provable guarantees on

the robustness performance, such as distributional robust optimization [141], convex

relaxations [162, 163, 158] and semidefinite relaxations [120]. Some of these methods

can be deployed in medium-sized networks and achieve satisfactory robustness.

1.3 Thesis Organization

In this thesis, we study the robustness of machine learning models. Studies of this

topic are generally from three different perspectives, adversarial attack, robustness

verification, and adversarial defense. In this thesis, we focus on robustness verification

and adversarial defense. The overall structure of this thesis is shown in Figure 1-

1. Specifically, we present some pioneering research on the verification and defense

methods for decision tree-based models in Chapters 2 and 3. For DNNs, we demonstrate

empirical studies on the robustness generalization problems in Chapter 4. Finally, we
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use robust machine learning models as building blocks in reinforcement learning and

show how we improve the robustness of reinforcement learning agents in Chapter 5.

Figure 1-1: An overview of thesis organization.

Though adversarial examples and model robustness have been extensively studied

in the context of deep neural networks, research on this issue in tree-based models

is still relatively limited. In Chapter 2, we show that tree based models are also

vulnerable to adversarial examples and introduce a pioneering method to improve the

robustness of tree-based models. Due to the discrete nature of trees, learning robust

tree models are fundamentally different than learning robust neural networks. At its

core, this method aims to optimize the performance under the worst case perturbation

of input data, which leads to a max-min saddle point problem when splitting tree nodes.

Incorporating this saddle point objective into the decision tree building procedure is

non-trivial: a naive approach to find the best split according to will take exponential

time. To make our approach tractable and scalable, we propose efficient tree building

algorithms by approximating the inner minimizer in this saddle point problem, and

present efficient implementations for classical information gain based trees as well as

state-of-the-art large scale tree boosting models such as XGBoost [31]. Experimental

results on real world datasets demonstrate that the proposed algorithms can efficiently

and substantially improve the robustness of tree-based models against adversarial

examples.
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Then in Chapter 3 we introduce an efficient robustness verification method for

tree-based models, including individual decision trees and tree ensembles, such as

random forests (RFs) and gradient boosted decision trees (GBDTs). Exactly verifying

robustness of tree-based models involves finding the exact minimal adversarial per-

turbation or a guaranteed lower bound of it. We show that verifying the robustness

of a single decision has complexity linear to the number of leaves in the model. For

tree-ensembles, however, existing approaches find the minimal adversarial perturbation

by a mixed integer linear programming (MILP) problem [75], which takes exponential

time in theory and is computationally expensive in practice when models are large. We

cast the tree ensembles verification problem as a max-clique problem on a multi-partite

graph. By exploiting the boxicity of the graph, we develop an efficient multi-level

verification algorithm that can give tight lower bounds on robustness of decision tree

ensembles, while allowing iterative improvement and termination at any-time. On

random forest or gradient boosted decision trees models trained on various datasets,

our algorithm is up to hundreds of times faster than a the previous approach that

requires solving MILPs, and is able to give tight robustness verification bounds on

large GBDTs with hundreds of deep trees.

In Chapter 4, we continue on learning robust models but shift the focus and study

the adversarial defense problem for neural networks. Recently, there are many works

on improving robustness of deep neural networks. In this chapter, we demonstrate

some empirical studies on the practicality and the hardness of adversarial training.

We show that the robustness of a model with adversarial defense on a test example

has a strong correlation with the distance between that example and the manifold

of training data embedded by the network. Specifically, test examples that are

relatively far away from this manifold are more likely to be vulnerable to adversarial

attacks. Consequentially, we demonstrate that an adversarial training based defense

is vulnerable to a new class of attacks, the “blind-spot attack”, where the input

images reside in low density regions (“blind-spots”) of the empirical distribution of

training data but is still on the valid ground-truth data manifold. For image datasets

such as MNIST and Fashion-MNIST, we found that these blind-spots can be easily
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found by simply scaling and shifting image pixel values. We conjecture that for large

image datasets with high dimensional and complex data manifolds such as CIFAR-10

and ImageNet, due to the curse of dimensionality and the scarcity of training data,

the existence of blind-spots in adversarial training makes defending on any valid

test examples difficult. We demonstrate that blind-spots exist in both certified and

uncertified adversarial defenses and models’ robustness has a robustness generalization

gap between the training set and the test set.

In Chapter 5 we apply neural network adversarial defense methods to reinforcement

learning to train agents that are robust against perturbations on state observations.

A deep reinforcement learning (DRL) agent takes action based on observation of

its current state, which may contain natural measurement noises or adversarial

perturbations. As shown in prior works, the inconsistency between observations and

true states can mislead the agent into making sub-optimal actions. Existing works

on improving the robustness of deep reinforcement learning with perturbation on

observation have limited success and do not have theoretical foundations. In this

chapter, we empirically show that naively applying existing method on improving

robustness for supervised classification tasks, such as adversarial training, is ineffective

for many reinforcement learning problems. Thus, we propose the state-adversarial

Markov decision process (SA-MDP) to study the fundamental properties of this

problem, and develop a theoretically principled regularization which can be applied to

different deep reinforcement learning algorithms, including deep Q networks (DQN)

and proximal policy optimization (PPO) for both discrete and continuous action

control problems. We significantly improve the robustness of agents under strong

white box adversarial attacks, including new attacks of our own.

Finally, Chapter 6 concludes this thesis and suggests future directions. We sum-

marize the key contributions of the thesis stemming from adversarial verification and

defense for tree-based machine learning models, studies on adversarial defense for

deep neural networks, to applications of robust models to deep reinforcement learning.

This section also includes unsolved challenges in adversarial robustness and points out

future directions based on the insights from adversarial robustness.
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Chapter 2

Adversarial Defense for Tree-Based

Models

2.1 Introduction

The discovery of adversarial examples in various deep learning models [146, 78, 34, 27,

21, 68] has led to extensive studies of deep neural network (DNN) robustness under

such maliciously crafted subtle perturbations. Although deep learning-based model

robustness has been well-studied in the recent literature from both attack and defense

perspectives, studies on the robustness of tree-based models are quite limited [110].

In this chapter, we shed light on the adversarial robustness of an important class

of machine learning models — decision trees. Among machine learning models used

in practice, tree-based methods stand out in many applications, with state-of-the-art

performance. Tree-based methods have achieved widespread success due to their

simplicity, efficiency, interpretability, and scalability on large datasets. They have

been suggested as an advantageous alternative to deep learning in some cases [185]. In

this chapter, we study the robustness of tree-based models under adversarial attacks,

and more importantly, we propose a novel robust training framework for tree-based

models. The materials presented in this chapter are based on [26]. Below we highlight

the major contributions of this chapter:

• We study the robustness of decision tree-based machine learning algorithms through
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the lens of adversarial examples. We study both classical decision trees and state-

of-the-art ensemble boosting methods such as XGBoost. We show that, similar to

neural networks, tree-based models are also vulnerable to adversarial examples.

• We propose a novel robust decision tree training framework to improve robustness

against adversarial examples. This method seeks to optimize the worst case

condition by solving a max-min problem. This framework is quite general and can

be applied to tree-based models with any score function used to choose splitting

thresholds. To the best of our knowledge, this is the first work contributing a

general robust decision tree training framework against adversarial examples.

• We implement our framework in both classical information gain based classification

trees and state-of-the-art large-scale tree boosting systems. To scale up our frame-

work, we make necessary and efficient approximations to handle complex models

and real world data sets. Our experimental results show consistent and substantial

improvements on adversarial robustness.

2.2 Decision Tree and Gradient Boosted Decision

Tree

Decision tree learning methods are widely used in machine learning and data mining.

As considered here, the goal is to create a tree structure with each interior node

corresponding to one of the input features. Each interior node has two children, and

edges to child nodes represent the split condition for that feature. Each leaf provides

a prediction value of the model, given that the input features satisfy the conditions

represented by the path from the root to that leaf. In practice, decision tree learning

algorithms are based on greedy search, which builds a tree starting from its root

by making locally optimal decisions at each node. Classical decision tree training

recursively chooses features, sets thresholds and splits the examples on a node by

maximizing a pre-defined score, such as information gain or Gini impurity.

Decision trees are often used within ensemble methods. A well-known gradient tree
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boosting method has been developed by [47, 48] and [49] to allow optimization of an

arbitrary differentiable loss function. Later scalable tree boosting systems have been

built to handle large datasets. For example, pGBRT [152] parallelizes the training

procedure by data partitioning for faster and distributed training. XGBoost [31]

is a prominent tree boosting software framework; in data mining contests, 17 out

of 29 published winning solutions at Kaggle’s blog in 2015 used XGBoost in their

models. LightGBM [77, 181] is another highly efficient boosting framework that

utilizes histograms on data features to significantly speed up training. mGBDT [45]

learns hierarchical representations by stacking multiple layers of gradient boosted

decision trees (GBDTs). Other variants such as extreme multi-label GBDT [137] and

cost efficient tree boosting approaches [114, 174] have also been proposed recently.

2.3 Adversarial Examples of Decision Tree Based

Models

Recent developments in machine learning have resulted in the deployment of large-scale

tree boosting systems in critical applications such as fraud and malware detection. Un-

like deep neural networks (DNNs), tree based models are non-smooth, non-differentiable

and sometimes interpretable, which might lead to the belief that they are more robust

than DNNs. However, the experiments in this chapter show that similar to DNNs,

tree-based models can also be easily compromised by adversarial examples. In this

chapter, we focus on untargeted attacks, which are considered to be successful as long

as the model misclassifies the adversarial examples.

Unlike DNNs, algorithms for crafting adversarial examples for tree-based models

are poorly studied. The main reason is that tree-based models are discrete and

non-differentiable, thus we cannot use common gradient descent based methods for

white-box attack. An early attack algorithm designed for single decision trees has

been proposed by [110], based on greedy search. To find an adversarial example, this

method searches the neighborhood of the leaf which produces the original prediction,
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and finds another leaf labeled as a different class by considering the path from the

original leaf to the target leaf, and changing the feature values accordingly to result

in misclassification.

A white-box attack against binary classification tree ensembles has been proposed

by [75]. This method finds the exact smallest distortion (measured by some ℓ𝑝 norm)

necessary to mislead the model. However, the algorithm relies on Mixed Integer Linear

Programming (MILP) and thus can be very time-consuming when attacking large

scale tree models as arise in XGBoost. In this chapter, we use the ℓ∞ version of

Kantchelian’s attack as one of our methods to evaluate small and mid-size binary

classification model robustness. Ref. [75] also introduce a faster approximation to

generate adversarial examples using symbolic prediction with ℓ0 norm minimization

and combine this method into an adversarial training approach. Unfortunately, the

demonstrated adversarial training is not very effective; despite increasing model

robustness for ℓ0 norm perturbations, robustness for ℓ1, ℓ2 and ℓ∞ norm perturbations

are noticeably reduced compared to the naturally (non-robustly) trained model.

Original
Adversarial of
natural GBDT

Adversarial of
robust GBDT

(a) prediction=2 (b)
ℓ∞ distance= 0.069
prediction=8

(c)
ℓ∞ distance= 0.344
prediction=8

(d)
prediction=“Ankle Boot”

(e)
ℓ∞ distance= 0.074
prediction=“Shirt”

(f)
ℓ∞ distance= 0.394
prediction=“Bag”

Figure 2-1: MNIST and Fashion-MNIST examples and their adversarial examples found using the untargeted attack
proposed by [33] on 200-tree gradient boosted decision tree (GBDT) models trained using XGBoost with depth=8.
Natural GBDT models (nat.) are fooled by small ℓ∞ perturbations (b, e), while our robust (rob.) GBDT models
require much larger perturbations (c, f) for successful attacks. For both MNIST and Fashion-MNIST robust models,
we use 𝜖 = 0.3 (a robust training hyper-parameter which will be introduced in Section 2.4). More examples are shown
in the appendix.
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In this chapter, in addition to Kantchelian attacks we also use a general attack

method proposed in [33] which does not rely on the gradient nor the smoothness

of output of a machine learning model. Cheng’s attack method has been used to

efficiently evaluate the robustness of complex models on large datasets, even under

black-box settings. To deal with non-smoothness of model output, this method

focuses on the distance between the benign example and the decision boundary, and

reformulates the adversarial attack as a minimization problem of this distance. Despite

the non-smoothness of model prediction, the distance to decision boundary is usually

smooth within a local region, and can be found by binary search on vector length

given a direction vector. To minimize this distance without gradient, [33] used a

zeroth order optimization algorithm with a randomized gradient-free method. In

this chapter, we use the ℓ∞ version of Cheng’s attack. Some adversarial examples

obtained by this method are shown in Figure 2-1, where we display results on both

MNIST and Fashion-MNIST datasets. The models we test are natural GBDT models

trained using XGBoost and our robust GBDT models, each with 200 trees and a

tree depth of 8. Cheng’s attack is able to craft adversarial examples with very small

distortions on natural models; for human eyes, the adversarial distortion added to the

natural model’s adversarial examples appear as imperceptible noise. We also conduct

white-box attacks using the MILP formulation [75], which takes much longer time to

solve but the ℓ∞ distortion found by MILP is comparable to Cheng’s method; see

Section 5.4 for more details. In contrast, for our robust GBDT model, the required

adversarial example distortions are so large that we can even vaguely see a number 8

in subfigure (c). The substantial increase in the ℓ∞ distortion required to misclassify

as well as the increased visual impact of such distortions shows the effectiveness of

our robust decision tree training, which we will introduce in detail next. In the main

text, we use the ℓ∞ version of Kantchelian’s attack; we present results of ℓ1 and ℓ2

Kantchelian attacks in the appendix.
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2.4 Robust Decision Trees

2.4.1 Intuition

As shown in Section 2.3, tree-based models are vulnerable to adversarial examples.

Thus it is necessary to augment the classical natural tree training procedure in order to

obtain reliable models robust against adversarial attacks. Our method formulates the

process of optimally finding best split threshold in decision tree training as a robust

optimization problem. As a conceptual illustration, Figure 2-2 presents a special

case where the traditional greedy optimal splitting may yield non-robust models. A

horizontal split achieving high accuracy or score on original points may be easily

compromised by adversarial perturbations. On the other hand, we are able to select a

better vertical split considering possible perturbations in ℓ∞ balls. At a high level,

the robust splitting feature and threshold take the distances between data points

into account (which is often ignored in most decision tree learning algorithms) and

tries to optimize the worst case performance under adversarial perturbations. Some

recent works in DNNs [71, 151] divided features into two categories, robust features

and non-robust features. In tree-based models, the effect of this dichotomy on the

robustness is straight forward, as seen in the two different splits in Figure 2-2 using

𝑥(1) (a robust feature) and 𝑥(2) (a non-robust feature).

2.4.2 General Robust Decision Tree Framework

In this section we formally introduce our robust decision tree training framework. For

a training set with 𝑁 examples and 𝑑 real valued features 𝒟 = {(x𝑖, 𝑦𝑖)} (1 ≤ 𝑖 ≤ 𝑁 ,

𝑦𝑖 ∈ R, x𝑖 = [𝑥(1)
𝑖 , 𝑥

(2)
𝑖 , . . . , 𝑥

(𝑗)
𝑖 , . . . , 𝑥

(𝑑)
𝑖 ] ∈ R𝑑), we first normalize the feature values

to [0, 1] such that x𝑖 ∈ [0, 1]𝑑 (the best feature value for split will also be scaled

accordingly, but it is irrelevant to model performance). For a general decision tree

based learning model, at a given node, we denote ℐ ⊆ 𝒟 as the set of points at that

node. For a split on the 𝑗-th feature with a threshold 𝜂, the sets that will be mentioned

in Sections 2.4.2, 2.4.3 and 2.4.4 are summarized in Table 2.1.
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Figure 2-2: (Best viewed in color) A simple example illustrating how robust splitting works. Upper: A set of 10
points that can be easily separated with a horizontal split on feature 𝑥(2). The accuracy of this split is 0.8. Middle:
The high accuracy horizontal split cannot separate the ℓ∞ balls around the data points and thus an adversary can
perturb any example x𝑖 within the indicated ℓ∞ ball to mislead the model. The worst case accuracy under adversarial
perturbations is 0 if all points are perturbed within the square boxes (ℓ∞ norm bounded noise). Lower: a more robust
split would be a split on feature 𝑥(1). The accuracy of this split is 0.7 under all possible perturbations within the
same size ℓ∞ norm bounded noise (square boxes).

In classical tree based learning algorithms (which we refer to as “natural” trees in

this chapter), the quality of a split on a node can be gauged by a score function 𝑆(·): a

function of the splits on left and right child nodes (ℐ𝐿 and ℐ𝑅), or equivalently on the

chosen feature 𝑗 to split and a corresponding threshold value 𝜂. Since ℐ𝐿 and ℐ𝑅 are

determined by 𝑗, 𝜂 and ℐ, we abuse the notation and define 𝑆(𝑗, 𝜂, ℐ) := 𝑆(ℐ𝐿, ℐ𝑅).

Traditionally, people consider different scores for choosing the “best” split, such

as information gain used by ID3 [119] and C4.5 [119], or Gini impurity in CART [8].

Modern software packages [31, 77, 39] typically find the best split that minimize a

loss function directly, allowing decision trees to be used in a large class of problems

(i.e., mean square error loss for regression, logistic loss for classification, and ranking

loss for ranking problems). A regular (“natural”) decision tree training process will

either exactly or approximately evaluate the score function, for all possible features

and split thresholds on the leaf to be split, and select the best 𝑗, 𝜂 pair:

𝑗*, 𝜂* = argmax
𝑗, 𝜂

𝑆(ℐ𝐿, ℐ𝑅) = argmax
𝑗, 𝜂

𝑆(𝑗, 𝜂, ℐ). (2.1)

39



Notation Definition
ℐ set of examples on the current node
ℐ0 ℐ ∩ {(x𝑖, 𝑦𝑖)|𝑦𝑖 = 0} (for classification)
ℐ1 ℐ ∩ {(x𝑖, 𝑦𝑖)|𝑦𝑖 = 1} (for classification)
ℐ𝐿 ℐ ∩ {(x𝑖, 𝑦𝑖)|𝑥(𝑗) < 𝜂}
ℐ𝑅 ℐ ∩ {(x𝑖, 𝑦𝑖)|𝑥(𝑗) ≥ 𝜂}
Δℐ ℐ ∩ {(x𝑖, 𝑦𝑖)|𝜂 − 𝜖 ≤ 𝑥(𝑗) ≤ 𝜂 + 𝜖}
Δℐ𝐿 Δℐ ∩ ℐ𝐿

Δℐ𝑅 Δℐ ∩ ℐ𝑅

ℐ𝑜
𝐿 ℐ𝐿 ∖Δℐ
ℐ𝑜

𝑅 ℐ𝑅 ∖Δℐ

Table 2.1: Notations of different sets in Section 2.4. We assume a split is made on the 𝑗-th feature with a threshold
𝜂, and this feature can be perturbed by ±𝜖.

In our setting, we consider the case where features of examples in ℐ𝐿 and ℐ𝑅 can be

perturbed by an adversary. Since a typical decision tree can only split on a single

feature at one time, it is natural to consider adversarial perturbations within an ℓ∞

ball of radius 𝜖 around each example x𝑖:

B∞
𝜖 (x𝑖) := [𝑥(1)

𝑖 − 𝜖, 𝑥
(1)
𝑖 + 𝜖]× · · · × [𝑥(𝑑)

𝑖 − 𝜖, 𝑥
(𝑑)
𝑖 + 𝜖].

Such perturbations enable the adversary to minimize the score obtained by our split.

So instead of finding a split with highest score, an intuitive approach for robust training

is to maximize the minimum score value obtained by all possible perturbations in an

ℓ∞ ball with radius 𝜖,

𝑗*, 𝜂* = argmax
𝑗, 𝜂

𝑅𝑆(𝑗, 𝜂, ℐ), (2.2)

where 𝑅𝑆(·) is a robust score function defined as

𝑅𝑆(𝑗, 𝜂, ℐ) := min
ℐ′={(x′

𝑖, 𝑦𝑖)}
𝑆(𝑗, 𝜂, ℐ ′)

s.t. x′
𝑖 ∈ B∞

𝜖 (x𝑖), for all x′
𝑖 ∈ ℐ ′.

(2.3)

In other words, each x𝑖 ∈ ℐ can be perturbed individually under an ℓ∞ norm bounded

perturbation to form a new set of training examples ℐ ′. We consider the worst case

perturbation, such that the set ℐ ′ triggers the worst case score after split with feature

𝑗 and threshold 𝜂. The training objective (2.2) becomes a max-min optimization
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problem. Note that there is an intrinsic consistency between boundaries of the ℓ∞

balls and the decision boundary of a decision tree. For the split on the 𝑗-th feature,

perturbations along features other than 𝑗 do not affect the split. So we only need

to consider perturbations within ±𝜖 along the 𝑗-th feature. We define Δℐ as the

ambiguity set, containing examples with feature 𝑗 inside the [𝜂 − 𝜖, 𝜂 + 𝜖] region (see

Table 2.1). Only examples in Δℐ may be perturbed from ℐ𝐿 to ℐ𝑅 or from ℐ𝑅 to

ℐ𝐿 to reduce the score. Perturbing points in ℐ ∖ Δℐ will not change the score or

the leaves they are assigned to. We denote ℐ𝑜
𝐿 and ℐ𝑜

𝑅 as the set of examples that

are certainly on the left and right child leaves under perturbations (see Table 2.1

for definitions). Then we introduce 0-1 variables 𝑠𝑖 = {0, 1} denoting an example

in the ambiguity set Δℐ to be assigned to ℐ𝐿 and ℐ𝑅, respectively. Then the 𝑅𝑆

can be formulated as a 0-1 integer optimization problem with |Δℐ| variables, which

is NP-hard in general. Additionally, we need to scan through all 𝑑 features of all

examples and solve 𝑂(|ℐ|𝑑) minimization problems for a single split at a single node.

This large number of problems to solve makes this computation intractable. Therefore,

we need to find an approximation for the 𝑅𝑆(𝑗, 𝜂, ℐ). In Sections 2.4.3 and 2.4.4, we

present two different approximations and corresponding implementations of our robust

decision tree framework, first for classical decision trees with information gain score,

and then for modern tree boosting systems which can minimize any loss function. It is

worth mentioning that we normalize features to [0, 1]𝑑 for the sake of simplicity in this

chapter. One can also define 𝜖1, 𝜖2, . . . , 𝜖𝑑 for each feature and then the adversary is

allowed to perturb x𝑖 within [𝑥(1)
𝑖 − 𝜖1, 𝑥

(1)
𝑖 + 𝜖1]× · · · × [𝑥(𝑑)

𝑖 − 𝜖𝑑, 𝑥
(𝑑)
𝑖 + 𝜖𝑑]. In this

case, we would not need to normalize the features. Also, 𝜖 is a hyper-parameter in

our robust model. Models trained with larger 𝜖 are expected to be more robust and

when 𝜖 = 0, the robust model is the same as a natural model.
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2.4.3 Robust Splitting for Decision Trees with Information

Gain Score

Here we consider a decision tree for binary classification, 𝑦𝑖 ∈ {0, 1}, with information

gain as the metric for node splitting. The information gain score is

𝑆(𝑗, 𝜂, ℐ) := 𝐼𝐺(𝑗, 𝜂) = 𝐻(𝑦)−𝐻(𝑦|𝑥(𝑗) < 𝜂),

where 𝐻(·) and 𝐻(·|·) are entropy and conditional entropy on the empirical distribution.

For simplicity, we denote 𝑁0 := |ℐ0|, 𝑁1 := |ℐ1|, 𝑛0 := |ℐ𝐿 ∩ ℐ0| and 𝑛1 := |ℐ𝐿 ∩ ℐ1|.

The following theorem shows adversary’s perturbation direction to minimize the

information gain.

Theorem 1. If 𝑛0
𝑁0

< 𝑛1
𝑁1

and 𝑛0+1
𝑁0
≤ 𝑛1

𝑁1
, perturbing one example in Δℐ𝑅 with label 0

to ℐ𝐿 will decrease the information gain.

Similarly, if 𝑛1
𝑁1

< 𝑛0
𝑁0

and 𝑛1+1
𝑁1
≤ 𝑛0

𝑁0
, perturbing one example in Δℐ𝑅 with label 1

to ℐ𝐿 will decrease the information gain. The proof of this theorem will be presented

in Section A.1 in the appendix. Note that we also have a similar conclusion for Gini

impurity score, which will be shown in Section A.2 in the appendix. Therefore, to

decrease the information gain score, the adversary needs to perturb examples in Δℐ

such that 𝑛0
𝑁0

and 𝑛1
𝑁1

are close to each other (the ideal case 𝑛0
𝑁0

= 𝑛1
𝑁1

may not be

achieved because 𝑛0, 𝑛1, 𝑁0 and 𝑁1 are integers). The robust split finding algorithm

is shown in Algorithm 1. In this algorithm we find a perturbation that minimizes⃒⃒⃒
𝑛0
𝑁0
− 𝑛1

𝑁1

⃒⃒⃒
as an approximation and upper bound to the optimal solution. Algorithm 5

in Section A.1 in the appendix shows an 𝑂(|ℐ|) procedure to find such perturbation

to approximately minimize the information gain. Since the algorithm scans through

{𝑥(𝑗)
1 , . . . , 𝑥

(𝑗)
𝑑 } in the sorted order, the sets Δℐ, ℐ𝑜

𝐿, ℐ𝑜
𝑅 can be maintained in amortized

𝑂(1) time in the inner loop. Therefore, the computational complexity of the robust

training algorithm is 𝑂(𝑑|ℐ|2) per split.

Although it is possible to extend our conclusion to other traditional scores of

classification trees, we will focus on the modern scenario where we use a regression

42



Algorithm 1 Robust Split with Information Gain
Input: Training set {(𝑥𝑖, 𝑦𝑖)}|𝑁𝑖=1, 𝑥𝑖 ∈ [0, 1]𝑑, 𝑦𝑖 ∈ {0, 1}.
Input: The instance set of the current node 𝐼.
Input: 𝜖, the radius of the ℓ∞ ball.
Output: Optimal split of the current node.
ℐ0 ← {(𝑥𝑖, 𝑦𝑖)|𝑦𝑖 = 0}, ℐ1 ← {(𝑥𝑖, 𝑦𝑖)|𝑦𝑖 = 1};
𝑁0 ← |ℐ ∩ ℐ0|, 𝑁1 ← |ℐ ∩ ℐ1|;
for 𝑗 ← 1 to 𝑑 do

for 𝑚 in sorted(ℐ, ascending order by 𝑥𝑗
𝑚) do

𝜂 ← 1
2(𝑥𝑗

𝑚 + 𝑥𝑗
𝑚+1), Δℐ ← ℐ ∩ {(𝑥𝑖, 𝑦𝑖)|𝜂 − 𝜖 ≤ 𝑥(𝑗) ≤ 𝜂 + 𝜖};

ℐ𝑜
𝐿 ← {(𝑥𝑖, 𝑦𝑖)|𝑥(𝑗) < 𝜂 − 𝜖}, ℐ𝑜

𝑅 ← {(𝑥𝑖, 𝑦𝑖)|𝑥(𝑗) > 𝜂 + 𝜖};
𝑛𝑜

0 ← |ℐ𝑜
𝐿 ∩ ℐ0|, 𝑛𝑜

1 ← |ℐ𝑜
𝐿 ∩ ℐ1|;

Find Δ𝑛*
0, Δ𝑛*

1 to minimize |Δ𝑛*
0+𝑛𝑜

0
𝑁0

− Δ𝑛*
1+𝑛𝑜

1
𝑁1
| using Algorithm 5 in Section A.1

in the appendix;
From Δℐ, add Δ𝑛*

0 points with 𝑦 = 0 and Δ𝑛*
1 points with 𝑦 = 1 to ℐ𝑜

𝐿 and
obtain ℐ𝐿;
Add remaining points in Δℐ to ℐ𝑜

𝑅 and obtain ℐ𝑅;
𝑅𝑆(𝑗, 𝜂)← 𝐼𝐺(ℐ𝐿, ℐ𝑅);

end for
end for
𝑗*, 𝜂* ← argmax𝑗, 𝜂 𝑅𝑆(𝑗, 𝜂);
Split on feature 𝑗* with a threshold 𝜂*;

tree to fit any loss function in Section 2.4.4.

2.4.4 Robust Splitting for GBDT models

We now introduce the regression tree training process used in many modern

tree boosting packages including XGBoost [31], LightGBM [77] and CatBoost [39].

Specifically, we focus on the formulation of gradient boosted decision tree (GBDT),

which is one of the most successful ensemble models and has been widely used in

industry. GBDT is an additive tree ensemble model 𝜑(·) combining outputs of 𝐾 trees

𝑦𝑖 = 𝜑𝐾(x𝑖) =
𝐾∑︁

𝑘=1
𝑓𝑘(x𝑖)

where each 𝑓𝑘 is a decision tree and 𝑦𝑖 is the final output for x𝑖. Here we only focus on

regression trees where 𝑦𝑖 ∈ R. Note that even for a classification problem, the modern

treatment in GBDT is to consider the data with logistic loss, and use a regression tree
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Algorithm 2 Robust Split for Boosted Tree
Input: training set {(𝑥𝑖, 𝑦𝑖)}|𝑁𝑖=1, 𝑥𝑖 ∈ [0, 1]𝑑, 𝑦𝑖 ∈ R.
Input: The instance set of the current node 𝐼.
Input: 𝜖, the radius of the ℓ∞ ball.
Output: Optimal split of the current node.
for 𝑗 ← 1 to 𝑑 do

for 𝑚 in sorted(ℐ, ascending order by 𝑥𝑗
𝑚) do

𝜂 ← 1
2(𝑥𝑗

𝑚 + 𝑥𝑗
𝑚+1);

ℐ𝑜
𝐿 ← {(𝑥𝑖, 𝑦𝑖)|𝑥(𝑗) < 𝜂 − 𝜖}, Δℐ𝐿 ← ℐ ∩ {(𝑥𝑖, 𝑦𝑖)|𝜂 − 𝜖 ≤ 𝑥(𝑗) < 𝜂};
ℐ𝑜

𝑅 ← {(𝑥𝑖, 𝑦𝑖)|𝑥(𝑗) > 𝜂 + 𝜖}, Δℐ𝑅 ← ℐ ∩ {(𝑥𝑖, 𝑦𝑖)|𝜂 ≤ 𝑥(𝑗) ≤ 𝜂 + 𝜖};
𝑆1 = 𝑆(ℐ𝐿, ℐ𝑅), 𝑆2 = 𝑆(ℐ𝑜

𝐿, ℐ𝑜
𝑅 ∪ Δℐ), 𝑆3 = 𝑆(ℐ𝑜

𝐿 ∪ Δℐ, ℐ𝑜
𝑅), 𝑆4 = 𝑆(ℐ𝑜

𝐿 ∪
Δℐ𝑅, ℐ𝑜

𝑅 ∪Δℐ𝐿);
𝑅𝑆(𝑗, 𝜂)← min{𝑆1, 𝑆2, 𝑆3, 𝑆4};

end for
end for
𝑗*, 𝜂* ← argmax𝑗, 𝜂 𝑅𝑆(𝑗, 𝜂);
Split on feature 𝑗* with a threshold 𝜂*;

to minimize this loss. During GBDT training, the trees 𝑓𝑘 are generated in an additive

manner: when we consider the tree 𝑓𝐾 , all previous trees 𝑓𝑘, 𝑘 ∈ {1, · · · , 𝐾 − 1} are

kept unchanged. For a general convex loss function 𝑙 (such as MSE or logistic loss),

we desire to minimize the following objective

ℒ(𝜑,𝒟) =
𝑁∑︁

𝑖=1
𝑙(𝑦𝑖, 𝑦𝑖) +

𝐾∑︁
𝑘=1

Ω(𝑓𝑘)

=
𝑁∑︁

𝑖=1
𝑙 (𝑦𝑖, 𝜑𝐾−1(x𝑖) + 𝑓𝐾(x𝑖)) +

𝐾−1∑︁
𝑘=1

Ω(𝑓𝑘) + Ω(𝑓𝐾)

where Ω(𝑓) is a regularization term to penalize complex trees; for example, in XGBoost,

Ω(𝑓) = 𝛾𝑇 + 1
2𝜆‖𝜔‖2, where 𝑇 is the number of leaves, 𝜔 is a vector of all leaf predictions

and 𝜆, 𝛾 ≥ 0 are regularization constants. Importantly, when we consider 𝑓𝐾 , 𝜑𝐾−1

is a constant. The impact of 𝑓𝐾(x𝑖) on 𝑙(𝑦𝑖, 𝑦𝑖) can be approximated using a second

order Taylor expansion:

𝑙(𝑦𝑖, 𝜑𝐾(x𝑖)) ≈ �̂�(𝑦𝑖, 𝜑𝐾(x𝑖))

:= 𝑙(𝑦𝑖, 𝜑𝐾−1(x𝑖)) + 𝑔𝑖𝑓𝐾(x𝑖) + 1
2ℎ𝑖(𝑓𝐾(x𝑖))2

where 𝑔𝑖 = 𝜕𝑙(𝑦𝑖,𝜑𝐾(x𝑖))
𝜕𝑓𝐾(x𝑖) and ℎ𝑖 = 𝜕2𝑙(𝑦𝑖,𝜑𝐾(x𝑖))

𝜕𝑓2
𝐾(x𝑖) are the first and second order derivatives
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on the loss function with respect to the prediction of decision tree 𝑓𝐾 on point x𝑖.

Conceptually, ignoring the regularization terms, the score function can be given as:

𝑆(ℐ𝐿, ℐ𝑅) =
∑︁
𝑖∈ℐ𝐿

�̂�(𝑦𝑖, 𝜑𝐾(x𝑖))|𝜑𝐾(x𝑖)=𝜔𝐿

+
∑︁

𝑖∈ℐ𝑅

�̂�(𝑦𝑖, 𝜑𝐾(x𝑖))|𝜑𝐾(x𝑖)=𝜔𝑅
−

∑︁
𝑖∈ℐ

�̂�(𝑦𝑖, 𝜑𝐾(x𝑖))|𝜑𝐾(x𝑖)=𝜔𝑃

where 𝜔𝐿, 𝜔𝑅 and 𝜔𝑃 are the prediction values of the left, right and parent nodes.

The score represents the improvements on reducing the loss function ℒ for all data

examples in ℐ. The exact form of score used in XGBoost with regularization terms is

given in [31]:

𝑆(𝑗, 𝜂, ℐ) = 𝑆(ℐ𝐿, ℐ𝑅) := 1
2

[︃
(∑︀

𝑖∈ℐ𝐿
𝑔𝑖)2∑︀

𝑖∈ℐ𝐿
ℎ𝑖 + 𝜆

+ (∑︀
𝑖∈ℐ𝑅

𝑔𝑖)2∑︀
𝑖∈ℐ𝑅

ℎ𝑖 + 𝜆
− (∑︀

𝑖∈ℐ 𝑔𝑖)2∑︀
𝑖∈ℐ ℎ𝑖 + 𝜆

]︃
− 𝛾, (2.4)

where 𝛾 is a regularization constant. Again, to minimize the score by perturbing

points in Δℐ, the adversary needs to solve an intractable 0-1 integer optimization at

each possible splitting position. Since GBDT is often deployed in large scale data

mining tasks with a large amount of training data to scan through at each node, and

we need to solve 𝑅𝑆 𝑂(|ℐ|𝑑) times, we cannot afford any expensive computation. For

efficiency, our robust splitting procedure for boosted decision trees, as detailed in

Algorithm 2, approximates the minimization by considering only four representative

cases: (1) no perturbations: 𝑆1 = 𝑆(ℐ𝐿, ℐ𝑅); (2) perturb all points in Δℐ to the right:

𝑆2 = 𝑆(ℐ𝑜
𝐿, ℐ𝑜

𝑅 ∪Δℐ); (3) perturb all points in Δℐ to the left: 𝑆3 = 𝑆(ℐ𝑜
𝐿 ∪Δℐ, ℐ𝑜

𝑅);

(4) swap the points in Δℐ: 𝑆4 = 𝑆(ℐ𝑜
𝐿 ∪ Δℐ𝑅, ℐ𝑜

𝑅 ∪ Δℐ𝐿). We take the minimum

among the four representative cases as an approximation of the 𝑅𝑆:

𝑅𝑆(𝑗, 𝜂, ℐ) ≈ min{𝑆1, 𝑆2, 𝑆3, 𝑆4}. (2.5)

Though this method only takes 𝑂(1) time to give a rough approximation of the 𝑅𝑆

at each possible split position, it is effective empirically as demonstrated next in

Section 2.5.
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2.5 Experiments

2.5.1 Robust Information Gain Decision Trees

We present results on three small datasets with robust information gain based decision

trees using Algorithm 1.1 We focus on untargeted adversarial attacks. For each

dataset we test on 100 examples (or the whole test set), and we only attack correctly

classified images. Attacks proceed until the attack success rate is 100%; the differences

in robustness are reflected in the distortion of the adversarial examples required to

achieve a successful attack. In Table 2.2, we present the average ℓ∞ distortion of the

adversarial examples of both classical natural decision trees and our robust decision

trees trained on different datasets. We use Papernot’s attack as well as ℓ∞ versions of

Cheng’s and Kantchelian’s attacks. The ℓ1 and ℓ2 distortion found by Kantchelian’s ℓ1

and ℓ2 attacks are presented in Table A.1 in Appendix A. The adversarial examples

found by Cheng’s, Papernot’s and Kantchelian’s attacks have much larger ℓ∞ norm

for our robust trees compared to those for the natural trees, demonstrating that our

robust training algorithm improves the decision tree robustness substantially. In some

cases our robust decision trees also have higher test accuracy than the natural trees.

This may be due to the fact that the robust score tends to encourage the tree to split

at thresholds where fewer examples are in the ambiguity set, and thus the split is

also robust against random noise in the training set. Another possible reason is the

implicit regularization in the robust splitting. The robust score is always lower than

the regular score and thus our splitting is more conservative. Also, from results in

Table 2.2 we see that most of the adversarial examples found by Papernot’s attack

have larger ℓ∞ norm than those found by Cheng’s ℓ∞ attack. This suggests that the

straight-forward greedy search attack is not as good as a sophisticated general attack

for attacking decision trees. Cheng’s attack is able to achieve similar ℓ∞ distortion as

Kantchelian’s attack, without solving expensive MILPs. While not scalable to large

datasets, Kantchelian’s attack can find the minimum adversarial examples, reflecting

the true robustness of a tree-based model.
1 Our code is at https://github.com/chenhongge/RobustTrees.
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Dataset training test # of # of robust 𝜖
depth test acc.

avg. ℓ∞ dist.
by Cheng’s ℓ∞ attack

avg. ℓ∞ dist.
by Papernot’s attack

avg. ℓ∞ dist.
by Kantchelian’s ℓ∞ attack

set size set size features classes robust natural robust natural robust natural robust natural robust natural
breast-cancer 546 137 10 2 0.3 5 5 .948 .942 .531 .189 .501 .368 .463 .173

diabetes 614 154 8 2 0.2 5 5 .688 .747 .206 .065 .397 .206 .203 .060
ionosphere 281 70 34 2 0.2 4 4 .986 .929 .388 .109 .408 .113 .358 .096

Table 2.2: Test accuracy and robustness of information gain based single decision tree model. The robustness
is evaluated by the average ℓ∞ distortion of adversarial examples found by Cheng’s, Papernot’s and Kantchelian’s
attacks. Average ℓ∞ distortion of robust decision tree models found by three attack methods are consistently larger
than that of the naturally trained ones.

2.5.2 Robust GBDT Models

In this subsection, we evaluate our algorithm in the tree boosting setting, where

multiple robust decision trees are created in an ensemble to improve model accuracy.

We implement Algorithm 2 by slightly modifying the node splitting procedure in

XGBoost. Our modification is only relevant to computing the scores for selecting the

best split, and is compatible with other existing features of XGBoost. We also use

XGBoost to train natural (undefended) GBDT models. Again, we focus on untargeted

adversarial attacks. We consider nine real world large or medium sized datasets and

two small datasets [25], spanning a variety of data types (including both tabular

and image data). For small datasets we use 100 examples and for large or medium

sized datasets, we use 5000 examples for robustness evaluation, except for MNIST

2 vs. 6, where we use 100 examples. MNIST 2 vs. 6 is a subset of MNIST to only

distinguish between 2 and 6. This is the dataset tested in [75]. We use the same

number of trees, depth and step size shrinkage as in [75] to train our robust and

natural models. Same as in [75], we only test 100 examples for MNIST 2 vs. 6 since

the model is relatively large. In Table 2.3, we present the average ℓ∞ distortion of

adversarial examples found by Cheng’s ℓ∞ attack for both natural GBDT and robust

GBDT models trained on those datasets. For small and medium binary classification

models, we also present results of Kantchelian’s ℓ∞ attack, which finds the minimum

adversarial example in ℓ∞ norm. The ℓ1 and ℓ2 distortion found by Kantchelian’s

ℓ1 and ℓ2 attacks are presented in Table A.2 in Appendix A. Kantchelian’s attack

can only handle binary classification problems and small scale models due to its

time-consuming MILP formulation. Papernot’s attack is inapplicable here because

it is for attacking a single tree only. The natural and robust models have the same
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number of trees for comparison. We only attack correctly classified images and all

examples are successfully attacked. We see that our robust GBDT models consistently

outperform the natural GBDT models in terms of ℓ∞ robustness.

For some datasets, we need to increase tree depth in robust GBDT models in

order to obtain accuracy comparable to the natural GBDT models. The requirement

of larger model capacity is common in the adversarial training literature: in the

state-of-the-art defense for DNNs, [95] argues that increasing the model capacity is

essential for adversarial training to obtain good accuracy.

Dataset training test # of # of # of robust depth test acc.
avg. ℓ∞ dist.

by Cheng’s ℓ∞ attack dist.
avg. ℓ∞ dist.

by Kantchelian’s ℓ∞ attack dist.
set size set size features classes trees 𝜖 robust natural robust natural robust natural improv. robust natural improv.

breast-cancer 546 137 10 2 4 0.3 8 6 .978 .964 .411 .215 1.91X .406 .201 2.02X
covtype 400,000 181,000 54 7 80 0.2 8 8 .847 .877 .081 .061 1.31X not binary not binary —
cod-rna 59,535 271,617 8 2 80 0.2 5 4 .880 .965 .062 .053 1.16X .054 .034 1.59X
diabetes 614 154 8 2 20 0.2 5 5 .786 .773 .139 .060 2.32X .114 .047 2.42X

Fashion-MNIST 60,000 10,000 784 10 200 0.1 8 8 .903 .903 .156 .049 3.18X not binary not binary —
HIGGS 10,500,000 500,000 28 2 300 0.05 8 8 .709 .760 .022 .014 1.57X time out time out —
ijcnn1 49,990 91,701 22 2 60 0.1 8 8 .959 .980 .054 .047 1.15X .037 .031 1.19X

MNIST 60,000 10,000 784 10 200 0.3 8 8 .980 .980 .373 .072 5.18X not binary not binary —
Sensorless 48,509 10,000 48 11 30 0.05 6 6 .987 .997 .035 .023 1.52X not binary not binary —
webspam 300,000 50,000 254 2 100 0.05 8 8 .983 .992 .049 .024 2.04X time out time out —

MNIST 2 vs. 6 11,876 1,990 784 2 1000 0.3 6 4 .997 .998 .406 .168 2.42X .315 .064 4.92X

Table 2.3: The test accuracy and robustness of GBDT models. Average ℓ∞ distortion of our robust GBDT models
are consistently larger than those of the naturally trained models. The robustness is evaluated by the average ℓ∞
distortion of adversarial examples found by Cheng’s and Kantchelian’s attacks. Only small or medium sized binary
classification models can be evaluated by Kantchelian’s attack, but it finds the minimum adversarial example with
smallest possible distortion.

Figure 2-3 and Figure A-2 in Appendix A show the distortion and accuracy of

MNIST and Fashion-MNIST models with different number of trees. The adversarial

examples are found by Cheng’s ℓ∞ attack. Models with 𝑘 trees are the first 𝑘 trees

during a single boosting run of 𝐾 (𝐾 ≥ 𝑘) trees. The ℓ∞ distortion of robust models

are consistently much larger than those of the natural models. For MNIST dataset,

our robust GBDT model loses accuracy slightly when the model has only 20 trees.

This loss is gradually compensated as more trees are added to the model; regardless

of the number of trees in the model, the robustness improvement is consistently

observed, as our robust training is embedded in each tree’s building process and

we create robust trees beginning from the very first step of boosting. Adversarial

training in [75], in contrast, adds adversarial examples with respect to the current

model at each boosting round so adversarial examples produced in the later stages

of boosting are only learned by part of the model. The non-robust trees in the first
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few rounds of boosting still exist in the final model and they may be the weakness

of the ensemble. Similar problems are not present in DNN adversarial training since

the whole model is exposed to new adversarial examples throughout the training

process. This may explain why adversarial training in [75] failed to improve ℓ1, ℓ2,

or ℓ∞ robustness on the MNIST 2 vs. 6 model, while our method achieves significant

robustness improvement with the same training parameters and evaluation metrics,

as shown in Tables 2.3 and A.2. Additionally, we also evaluate the robustness of

natural and robust models with different number of trees on a variety of datasets

using Cheng’s ℓ∞ attack, presented in Table A.4 in Appendix A. We also test our

framework on random forest models and the results are shown in Appendix A.7.
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Figure 2-3: (Best viewed in color) ℓ∞ distortion vs. classification accuracy of GBDT models on MNIST dataset
with different numbers of trees (circle size). The adversarial examples are found by Cheng’s ℓ∞ attack. The robust
training parameter 𝜖 = 0.3 for MNIST. With robust training (purple) the distortion needed to fool a model increases
dramatically with less than 1% accuracy loss.

2.6 Discussion and Remarks

In this chapter, we study the robustness of tree-based machine learning models under

adversarial attacks. Our experiments show that just as in DNNs, tree-based models

are also vulnerable to adversarial attacks. To address this issue, we propose a novel

robust decision tree training framework. We make necessary approximations to ensure

scalability and implement our framework in both classical decision tree and tree

boosting settings. Extensive experiments on a variety of datasets show that our
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method substantially improves model robustness. Our framework can be extended

to other tree-based models such as Gini impurity based classification trees, random

forest, and CART.
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Chapter 3

Robustness Verification of Tree

Based Models

3.1 Introduction

In this chapter, We study the robustness verification problem of tree-based models,

including a single decision tree and tree ensembles such as random forests (RFs)

and gradient boosted decision trees (GBDTs). These models have been widely used

in practice [31, 77, 181] and recent studies have demonstrated that both RFs and

GBDTs are vulnerable to adversarial perturbations [75, 33, 26]. It is thus important to

develop a formal robustness verification algorithm for tree-based models. Robustness

verification requires computing the minimal adversarial perturbation. Ref. [75] showed

that computing minimal adversarial perturbation for tree ensemble is NP-complete

in general, and they proposed a Mixed-Integer Linear Programming (MILP) based

approach to compute the minimal adversarial perturbation. Although exact verification

is NP-hard, in order to have an efficient verification algorithm for real applications we

seek to answer the following questions:

• Do we have polynomial time algorithms for exact verification under some special

circumstances?

• For general tree ensemble models with a large number of trees, can we efficiently

compute meaningful lower bounds on robustness while scaling to large tree ensem-
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bles?

In this chapter, we answer the above-mentioned questions affirmatively by for-

mulating the verification problem of tree ensembles as a graph problem. First, we

show that for a single decision tree, robustness verification can be done exactly in

linear time. Then we show that for an ensemble of 𝐾 trees, the verification problem

is equivalent to finding the maximum cliques in a 𝐾-partite graph, and the graph is

in a special form with boxicity equal to the input feature dimension. Therefore, for

low-dimensional problems, verification can be done in polynomial time with maximum

clique searching algorithms. Finally, for large-scale tree ensembles, we propose a

multiscale verification algorithm by exploiting the boxicity of the graph, which can

give tight lower bounds on robustness. Furthermore, it supports any-time termination:

we can stop the algorithm at any time to obtain a reasonable lower bound given a

computation time constraint. Our proposed algorithm is efficient and is scalable to

large tree ensemble models. For instance, on a large multi-class GBDT with 200

trees robustly trained (using [26]) on the MNIST dataset, we obtained 78% verified

robustness accuracy on test set with maximum ℓ∞ perturbation 𝜖 = 0.2 and the time

used for verifying each test example is 12.6 seconds, whereas the MILP method uses

around 10 min for each test example. The material presented in this chapter are based

on [28].

3.2 Related Works

Unlike neural networks, decision-tree based models are non-continuous step functions,

and thus existing neural network verification techniques cannot be directly applied.

In [5], a single decision tree was verified to evaluate the robustness of reinforcement

learning policies. For tree ensembles, [75] showed that solving (1.1) for general tree

ensemble models is NP-complete, so no polynomial time algorithm can compute 𝑟* for

arbitrary trees unless P=NP. A Mixed Integer Linear Programming (MILP) algorithm

was thus proposed in [75] to compute (1.1) in exponential time. Recently, [41] and

[127] verified the robustness of tree ensembles using an SMT solver, which is also
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NP-complete in its natural formulation. Additionally, an approximate bound for tree

ensembles was proposed recently in [149] by directly combining the bounds of each

tree together, which can be seen as a special case of our proposed method.

On the other hand, robustness can be empirically evaluated through adversarial

attacks [110]. Some hard-label attacking algorithms for neural networks, including

the boundary attack [9] and OPT-attack [33], can be applied to tree based models

since they only require function evaluation of the non-smooth (hard-label) decision

function 𝑓(·). These attacks computes an upper bound of 𝑟*. In contrast, our work

focuses on efficiently computing a tight lower bound of 𝑟* for ensemble trees.

3.3 Proposed Algorithm

In this chapter, we focus on ℓ∞ norm verification. The exact verification problem of

tree ensemble is NP-complete by its nature, and here we propose a series of efficient

verification algorithms for real applications. First, we will introduce a linear time

algorithm for exactly computing the minimal adversarial distortion 𝑟* for verifying a

single decision tree. For an ensemble of trees, we cast the verification problem into a

max-clique searching problem in K-partite graphs. For large-scale tree ensembles, we

then propose an efficient multi-level algorithm for verifying an ensemble of decision

trees.

3.3.1 Exactly Verifying a Single Tree in Linear Time

Although computing 𝑟* for a tree ensemble is NP-complete [75], we show that a

linear time algorithm exists for finding the minimum adversarial perturbation and

computing 𝑟* for a single decision tree. We assume the decision tree has 𝑛 nodes and

the root node is indexed as 0. For a given example 𝑥 = [𝑥1, . . . , 𝑥𝑑] with 𝑑 features,

starting from the root, 𝑥 traverses the decision tree model until reaching a leaf node.

Each internal node, say node 𝑖, has two children and a univariate feature-threshold

pair (𝑡𝑖, 𝜂𝑖) to determine the traversal direction—𝑥 will be passed to the left child if

𝑥𝑡𝑖
≤ 𝜂𝑖 and to the right child otherwise. Each leaf node has a value 𝑣𝑖 corresponding
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to the predicted class label for a classification tree, or a real value for a regression tree.

Conceptually, the main idea of our single tree verification algorithm is to compute

a 𝑑-dimensional box for each leaf node such that any example in this box will fall

into this leaf. Mathematically, the node 𝑖’s box is defined as the Cartesian product

𝐵𝑖 = (𝑙𝑖
1, 𝑟𝑖

1] × · · · × (𝑙𝑖
𝑑, 𝑟𝑖

𝑑] of 𝑑 intervals on the real line. By definition, the root

node has box [−∞,∞] × · · · × [−∞,∞] and given the box of an internal node 𝑖,

its children’s boxes can be obtained by changing only one interval of the box based

on the split condition (𝑡𝑖, 𝜂𝑖). More specifically, if 𝑝, 𝑞 are node 𝑖’s left and right

child node respectively, then we set their boxes 𝐵𝑝 = (𝑙𝑝
1, 𝑟𝑝

1] × · · · × (𝑙𝑝
𝑑, 𝑟𝑝

𝑑] and

𝐵𝑞 = (𝑙𝑞
1, 𝑟𝑞

1]× · · · × (𝑙𝑞
𝑑, 𝑟𝑞

𝑑] by setting

(𝑙𝑝
𝑡 , 𝑟𝑝

𝑡 ] =

⎧⎪⎪⎨⎪⎪⎩
(𝑙𝑖

𝑡, 𝑟𝑖
𝑡] if 𝑡 ̸= 𝑡𝑖

(𝑙𝑖
𝑡, min{𝑟𝑖

𝑡, 𝜂𝑖}] if 𝑡 = 𝑡𝑖

, (𝑙𝑞
𝑡 , 𝑟𝑞

𝑡 ] =

⎧⎪⎪⎨⎪⎪⎩
(𝑙𝑖

𝑡, 𝑟𝑖
𝑡] if 𝑡 ̸= 𝑡𝑖

(max{𝑙𝑖
𝑡, 𝜂𝑖}, 𝑟𝑖

𝑡] if 𝑡 = 𝑡𝑖.

(3.1)

After computing the boxes for internal nodes, we can also obtain the boxes for leaf

nodes using (3.1). Therefore computing the boxes for all the leaf nodes of a decision

tree can be done by a depth-first search traversal of the tree with time complexity

𝑂(𝑛𝑑).

With the boxes computed for each leaf node, the minimum perturbation required

to change 𝑥 to go to a leaf node 𝑖 can be written as a vector 𝜖(𝑥, 𝐵𝑖) ∈ R𝑑 defined as

𝜖(𝑥, 𝐵𝑖)𝑡 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if 𝑥𝑡 ∈ (𝑙𝑖
𝑡, 𝑟𝑖

𝑡]

𝑥𝑡 − 𝑟𝑖
𝑡 if 𝑥𝑡 > 𝑟𝑖

𝑡

𝑙𝑖
𝑡 − 𝑥𝑡 if 𝑥𝑡 ≤ 𝑙𝑖

𝑡.

(3.2)

Then the minimal distortion can be computed as 𝑟* = min𝑖:𝑣𝑖 ̸=𝑦0 ‖𝜖(𝑥, 𝐵𝑖)‖∞, where

𝑦0 is the original label of 𝑥, and 𝑣𝑖 is the label for leaf node 𝑖. To find 𝑟*, we check 𝐵𝑖

for all leaves and choose the smallest perturbation. This is a linear-time algorithm

for exactly verifying the robustness of a single decision tree. In fact, this 𝑂(𝑛𝑑) time

algorithm is used to illustrate the concept of “boxes” that will be used later on for
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the tree ensemble case. If our final goal is to verify a single tree, we can have a more

efficient algorithm by combining the distance computation (4.2) in the tree traversal

procedure, and the resulting algorithm will take only 𝑂(𝑛) time. This algorithm is

presented as Algorithm 6 in Appendix B.

3.3.2 Verifying Tree Ensembles by Max-clique Enumeration

Now we discuss the robustness verification for tree ensembles. Assuming the tree

ensemble has 𝐾 decision trees, we use 𝑆(𝑘) to denote the set of leaf nodes of tree 𝑘 and

𝑚(𝑘)(𝑥) to denote the function that maps the input example 𝑥 to the leaf node of tree

𝑘 according to its traversal rule. Given an input example 𝑥, the tree ensemble will pass

𝑥 to each of these 𝐾 trees independently and 𝑥 reaches 𝐾 leaf nodes 𝑖(𝑘) = 𝑚(𝑘)(𝑥)

for all 𝑘 = 1, . . . , 𝐾. Each leaf node will assign a prediction value 𝑣𝑖(𝑘) . For simplicity

we start with the binary classification case, with 𝑥’s original label being 𝑦0 = −1

and we want to turn it into +1. For binary classification the prediction of the tree

ensemble is computed by sign(∑︀
𝑘 𝑣𝑖(𝑘)), which covers both GBDTs and random forests,

two widely used tree ensemble models. Assume 𝑥 has a label 𝑦0 = −1, which means

sign(∑︀
𝑘 𝑣𝑖(𝑘)) < 0 for 𝑥, and our task is to verify if the sign of the summation can be

flipped within Ball(𝑥, 𝜖).

We consider the decision problem of robustness verification (1.5). A naive analysis

will need to check all the points in Ball(𝑥, 𝜖) which is uncountably infinite. To

reduce the search space to finite, we start by defining some notation: let C =

{(𝑖(1), . . . , 𝑖(𝐾)) | 𝑖(𝑘) ∈ 𝑆(𝑘), ∀𝑘 = 1, . . . , 𝐿} to be all the possible tuples of leaf

nodes and let 𝒞(𝑥) = [𝑚(1)(𝑥), . . . , 𝑚(𝐾)(𝑥)] be the function that maps 𝑥 to the

corresponding leaf nodes. Therefore, a tuple 𝐶 ∈ C directly determines the model

prediction ∑︀
𝑣𝐶 := ∑︀

𝑘 𝑣𝑖(𝑘) . Now we define a valid tuple for robustness verification:

Definition 1. A tuple 𝐶 = (𝑖(1), . . . , 𝑖(𝐾)) is valid if and only if there exists an

𝑥′ ∈ Ball(𝑥, 𝜖) such that 𝐶 = 𝒞(𝑥′).
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The decision problem of robustness verification (1.5) can then be written as:

Does there exist a valid tuple 𝐶 such that
∑︁

𝑣𝐶 > 0?

Next, we show how to model the set of valid tuples. We have two observations. First,

if a tuple contains any node 𝑖 with inf𝑥′∈𝐵𝑖{‖𝑥 − 𝑥′‖∞} > 𝜖, then it will be invalid.

Second, there exists an 𝑥 such that 𝐶 = 𝒞(𝑥) if and only if 𝐵𝑖(1) ∩ · · · ∩𝐵𝑖(𝐾) ̸= ∅, or

equivalently:

(𝑙𝑖(1)

𝑡 , 𝑟𝑖(1)

𝑡 ] ∩ · · · ∩ (𝑙𝑖(𝐾)

𝑡 , 𝑟𝑖(𝐾)

𝑡 ] ̸= ∅, ∀𝑡 = 1, . . . , 𝑑.

We show that the set of valid tuples can be represented as cliques in a graph 𝐺 = (𝑉, 𝐸),

where 𝑉 := {𝑖|𝐵𝑖 ∩ Ball(𝑥, 𝜖) ̸= ∅} and 𝐸 := {(𝑖, 𝑗)|𝐵𝑖 ∩ 𝐵𝑗 ≠ ∅}. In this graph,

nodes are the leaves of all trees and we remove every leaf that has empty intersection

with Ball(𝑥, 𝜖). There is an edge (𝑖, 𝑗) between node 𝑖 and 𝑗 if and only if their boxes

intersect. The graph will then be a 𝐾-partite graph since there cannot be any edge

between nodes from the same tree, and thus maximum cliques in this graph will have

𝐾 nodes. We define each part of the 𝐾-partite graph as 𝑉𝑘. Here a “part” means a

disjoint and independent set in the 𝐾-partite graph. The following lemma shows that

intersections of boxes have very nice properties:

Lemma 1. For boxes 𝐵1, . . . , 𝐵𝐾, if 𝐵𝑖 ∩ 𝐵𝑗 ̸= ∅ for all 𝑖, 𝑗 ∈ [𝐾], let �̄� = 𝐵1 ∩

𝐵2 ∩ · · · ∩𝐵𝐾 be their intersection. Then �̄� will also be a box and �̄� ̸= ∅.

The proof can be found in the Appendix B. Based on the above lemma, each

𝐾-clique (fully connected subgraph with 𝐾 nodes) in 𝐺 can be viewed as a set of

leaf nodes that has nonempty intersection with each other and also has nonempty

intersection with Ball(𝑥, 𝜖), so the intersection of those 𝐾 boxes and Ball(𝑥, 𝜖) will

be a nonempty box, which implies each 𝐾-clique corresponds to a valid tuple of leaf

nodes:

Lemma 2. A tuple 𝐶 = (𝑖(1), . . . , 𝑖(𝐾)) is valid if and only if nodes 𝑖(1), . . . , 𝑖(𝐾) form

a 𝐾-clique (maximum clique) in graph 𝐺 constructed above.
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Therefore the robustness verification problem can be formulated as

Is there a maximum clique 𝐶 in 𝐺 such that
∑︁

𝑣𝐶 > 0? (3.3)

This reformulation indicates that the tree ensemble verification problem can be solved

by an efficient maximum clique enumeration algorithm. Some standard maximum

clique searching algorithms can be applied here to perform verification:

• Finding 𝐾-cliques in 𝐾-partite graphs: Any algorithm for finding all the

maximum cliques in 𝐺 can be used. The classic B-K backtracking algorithm [11]

takes 𝑂(3𝑚
3 ) time to find all the maximum cliques where 𝑚 is the number of

nodes in 𝐺. Furthermore, since our graph is a 𝐾-partite graph, we can apply

some specialized algorithms designed for finding all the 𝐾-cliques in 𝐾-partite

graphs [102, 115, 130].

• Polynomial time algorithms exist for low-dimensional problems: An-

other important property for graph 𝐺 is that each node in 𝐺 is a 𝑑-dimensional

box and each edge indicates the intersection of two boxes. This implies our graph

𝐺 is with “boxicity 𝑑” (see [24] for detail). Ref. [24] proved that the number of

maximum cliques will only be 𝑂((2𝑚)𝑑) and it is able to find the maximum weight

clique in 𝑂((2𝑚)𝑑) time. Therefore, for problems with a very small 𝑑, the time

complexity for verification is actually polynomial.

Therefore we can exactly solve the tree ensemble verification problem using algo-

rithms for maximum cliques searching in 𝐾-partite graph, and its time complexity is

found to be as follows:

Theorem 2. Exactly verifying the robustness of a 𝐾-tree ensemble with at most 𝑛

leaves per tree and 𝑑 dimensional features takes min{𝑂(𝑛𝐾), 𝑂((2𝐾𝑛)𝑑)} time.

This is a direct consequence of the fact that the number of 𝐾-cliques in a 𝐾-partite

graph with 𝑛 vertices per part is bounded by 𝑂(𝑛𝐾), and number of maximum cliques

in a graph with a total of 𝑚 nodes with boxicity 𝑑 is 𝑂((2𝑚)𝑑).
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Algorithm 3 Enumerating all 𝐾-cliques on a 𝐾-partite graph
input : 𝑉1, 𝑉2, , . . . , 𝑉𝐾 are the 𝐾 independent sets (“parts”) of a 𝐾-partite graph

for 𝑘 ← 1, 2, 3, . . . , 𝐾 do
𝑈𝑘 ← {(𝐴𝑖, 𝐵𝑖(𝑘))|𝑖(𝑘) ∈ 𝑉𝑘, 𝐴𝑖 = {𝑖(𝑘)}}

/* 𝑈 is a set of tuples (𝐴, 𝐵), which stores a set of cliques and their

corresponding boxes. 𝐴 is the set of nodes in one clique and 𝐵 is

the corresponding box of this clique. Initially, each node in 𝑉𝑘

forms a 1-clique itself. */

end

output : CliqueEnumerate(𝑈1, 𝑈2, , . . . , 𝑈𝐾)

Function CliqueEnumerate(𝑈1, 𝑈2, , . . . , 𝑈𝐾)
�̂�old ← 𝑈1

for 𝑘 ← 2, 3, . . . , 𝐾 do
�̂�new ← ∅

for (𝐴, �̂�) ∈ �̂�old do

for (𝐴, 𝐵) ∈ 𝑈𝑘 do

if 𝐵 ∩ �̂� ̸= ∅ then

/* A 𝑘-clique is found; add it as a pseudo node with the

intersection of two boxes. */

�̂�new ← �̂�new ∪ {(𝐴 ∪ 𝐴, 𝐵 ∩ �̂�)}
end

end

�̂�old ← �̂�new

end

return �̂�new

end

For a general graph, since 𝐾 and 𝑑 can be in 𝑂(𝑛) and 𝑂(𝑚) [123], it can still be

exponential. But the theorem gives a more precise characterization for the complex-

ity of the verification problem for tree ensembles. Based on the nice properties of
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maximum cliques searching problem, we propose a simple and elegant algorithm that

enumerates all 𝐾-cliques on a 𝐾-partite graph with a known boxicity 𝑑 in Algorithm 3,

and we can use this algorithm for tree ensemble verification when the number of trees

or the dimension of features is small. For a 𝐾-partite graph 𝐺, we define the set

𝑉 := {𝑉1, 𝑉2, · · · , 𝑉𝐾} which is a set of independent sets (“parts”) in 𝐺.

The algorithm first looks at any first two parts 𝑉1 and 𝑉2 of the graph and

enumerates all 2-cliques in 𝑂(|𝑉1||𝑉2|) time. Then, each 2-clique found is converted

into a “pseudo node” (this is possible due to Lemma 1), and all 2-cliques form a new

part 𝑉 ′
2 of the graph. Then we replace 𝑉1 and 𝑉2 with 𝑉 ′

2 , and continue to enumerate

all 2-cliques between 𝑉 ′
2 and 𝑉3 to form 𝑉 ′

3 . A 2-clique between 𝑉 ′
2 and 𝑉3 represents

a 3-clique in 𝑉1, 𝑉2 and 𝑉3 due to boxicity. Note that enumerating all 3-cliques in a

general 3-partite graph takes 𝑂(|𝑉1||𝑉2||𝑉3|) time; thanks to boxicity, our algorithm

takes 𝑂(|𝑉 ′
2 ||𝑉3|) time which equals to 𝑂(|𝑉1||𝑉2||𝑉3|) only when 𝑉1 and 𝑉2 form a

complete bipartite graph, which is unlikely in common cases. This process continues

recursively until we process all 𝐾 parts and have only 𝑉 ′
𝐾 left, where each vertex in

𝑉 ′
𝐾 represents a 𝐾-clique in the original graph. After obtaining all 𝐾-cliques, we can

verify their prediction values to compute a verification bound.

3.3.3 An Efficient Multi-level Algorithm for Verifying the

Robustness of a Tree Ensemble

Practical tree ensembles usually have tens or hundreds of trees with large feature

dimensions, so Algorithm 3 will take exponential time and will be too slow. We thus

develop an efficient multi-level algorithm for computing verification bounds by further

exploiting the boxicity of the graph.

Figure 3-1 illustrates the graph and how our multilevel algorithm runs. There are

four trees and each tree has four leaf nodes. A node is colored if it has nonempty

intersection with Ball(𝑥, 𝜖); uncolored nodes are discarded. To answer question (3.3),

we need to compute the maximum ∑︀
𝑣𝐶 among all 𝐾-cliques, denoted by 𝑣*. As

mentioned before, for robustness verification we only need to compute an upper bound
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Tree (1)

1 2 3

Tree (2)

5 6 7

Tree (3)

9 10 11

Tree (4)

13 164 8 12 14 15Leaf nodes

3, 6 4, 8 12, 14 12, 15

Merge (1) and (2) Merge (3) and (4)

Merge (1) (2) and (3) (4)

3, 6, 12, 14 4, 8, 12, 15 Final (exact) solution

Run single-level algorithm 
to get level 1 bound

Run single-level algorithm 
to get level 2 bound

Figure 3-1: The proposed multi-level verification algorithm. Lines between leaf node i on tree 𝑡1 and leaf node 𝑗
on 𝑡2 indicate that their ℓ∞ feature boxes intersect (i.e., there exists an input such that tree 1 predicts 𝑣𝑖 and tree 2
predicts 𝑣𝑗).

of 𝑣* in order to get a lower bound of minimal adversarial perturbation. In the

following, we will first discuss algorithms for computing an upper bound at the top

level, and then show how our multi-scale algorithm iteratively refines this bound until

reaching the exact solution 𝑣*.

Bounds for a single level – To compute an upper bound of 𝑣*, a naive approach

is to assume that the graph is fully connected between independent sets (fully connected

𝐾-partite graph) and in this case the maximum sum of node values is the sum of the

maximum value of each independent set:

∑︁|𝑉 |
𝑘=1 max𝑖∈𝑉𝑘

𝑣𝑖 ≥ 𝑣*. (3.4)

Here we abuse the notation 𝑣𝑖 by assuming that each node 𝑖 in 𝑉𝑘 has been assigned a

“pseudo prediction value”, which will be used in the multi-level setting. In the simplest

case, each independent set represents a single tree, 𝑉𝑘 = 𝑆(𝑘) and 𝑣𝑖 is the prediction

of a leaf. One can easily show this is an upper bound of 𝑣* since any 𝐾-clique in

the graph is still considered when we add more edges to the graph, and eventually it

becomes a fully connected 𝐾-partite graph.

Another slightly better approach is to exploit the edge information but only

between tree 𝑡 and 𝑡 + 1. If we search over all the length-𝐾 paths [𝑖(1), . . . , 𝑖(𝐾)]

from the first to the last part and define the value of a path to be ∑︀
𝑘 𝑣𝑖(𝑘) , then the

maximum valued path will be a upper bound of 𝑣*. This can be computed in linear
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time using dynamic programming. We scan nodes from tree 1 to tree 𝐾, and for each

node we store a value 𝑑𝑖 which is the maximum value of paths from tree 1 to this

node. At tree 𝑘 and node 𝑖, the 𝑑𝑖 value can be computed by

𝑑𝑖 = 𝑣𝑖 + max
𝑗:𝑗∈𝑉𝑘−1 and (𝑗,𝑖)∈𝐸

𝑑𝑗. (3.5)

Then we take the max 𝑑 value in the last tree. It produces an upper bound of 𝑣*,

since the maximum valued path found by dynamic programming is not necessarily a

𝐾-clique. Again 𝑉𝑘−1 = 𝑆(𝑘−1) in the first level but it will be generalized below.

Merging 𝑇 independent sets – To refine the relatively loose single-level bound,

we partition the graph into 𝐾/𝑇 subgraphs, each with 𝑇 independent sets. Within

each subgraph, we find all the 𝑇 -cliques and use a new “pseudo node” to represent

each 𝑇 -clique. 𝑇 -cliques in a subgraph can be enumerated efficiently if we choose 𝑇

to be a relatively small number (e.g., two or three in the experiments).

Now we exploit the boxicity property to form a new graph among these 𝑇 -cliques

(illustrated as the second level nodes in Figure 3-1). By Lemma 1, we know that the

intersection of 𝑇 boxes will still be a box, so each 𝑇 -clique is still a box and can be

represented as a pseudo node in the level-2 graph. Also because each pseudo node is

still a box, we can easily form edges between pseudo nodes to indicate the nonempty

overlapping between them and this will be a (𝐾/𝑇 )-partite boxicity graph since no

edge can be formed for the cliques within the same subgraph. Thus we get the level-2

graph. With the level-2 graph, we can again run the single level algorithm to compute

a upper bound on 𝑣* to get a lower bound of 𝑟* in (1.1), but different from the level-1

graph, now we already considered all the within-subgraph edges so the bounds we get

will be tighter.

The overall multi-level framework – We can run the algorithm level by level

until merging all the subgraphs into one, and in the final level the pseudo nodes will

correspond to the 𝐾-cliques in the original graph, and the maximum value will be

exactly 𝑣*. Therefore, our algorithm can be viewed as an anytime algorithm that

refines the upper bound level-by-level until reaching the maximum value. Although
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getting to the final level still requires exponential time, in practice we can stop at any

level (denoted as 𝐿) and get a reasonable bound. In experiments, we will show that by

merging few trees we already get a bound very close to the final solution. Algorithm 4

gives the complete procedure.

Handling multi-class tree ensembles – For a multiclass classification problem,

say a 𝐶-class classification problem, 𝐶 groups of tree ensembles (each with 𝐾 trees)

are built for the classification task; for the 𝑘-th tree in group 𝑐, prediction outcome

is denoted as 𝑖(𝑘,𝑐) = 𝑚(𝑘,𝑐)(𝑥) where 𝑚(𝑘,𝑐)(𝑥) is the function that maps the input

example 𝑥 to a leaf node of tree 𝑘 in group 𝑐. The final prediction is given by

argmax𝑐

∑︀
𝑘 𝑣𝑖(𝑘,𝑐) . Given an input example 𝑥 with ground-truth class 𝑐 and an attack

target class 𝑐′, we extract 2𝐾 trees for class 𝑐 and class 𝑐′, and flip the sign of all

prediction values for trees in group 𝑐′, such that initially ∑︀
𝑡 𝑣𝑖(𝑡,𝑐) + ∑︀

𝑡 𝑣𝑖(𝑡,𝑐′) < 0 for a

correctly classified example. Then, we are back to the binary classification case with

2𝐾 trees, and we can still apply our multi-level framework to obtain a lower bound

𝑟(𝑐,𝑐′) of 𝑟*
(𝑐,𝑐′) for this target attack pair (𝑐, 𝑐′). Robustness of an untargeted attack

can be evaluated by taking 𝑟 = min𝑐′ ̸=𝑐 𝑟(𝑐,𝑐′).

3.3.4 Verification Problems Beyond Ordinary Robustness

The above discussions focus on the decision problem of ℓ∞ robustness verification (1.5).

In fact, our approach works for a more general verification problem for any 𝑑-

dimensional box 𝐵:

Is there any 𝑥′ ∈ 𝐵 such that 𝑓(𝑥′) ̸= 𝑦0? (3.6)

In typical robustness verification settings, 𝐵 is defined to be Ball(𝑥, 𝜖) but in fact

we can allow any boxes in our algorithm. For a general 𝐵, Lemma 1 still holds so all

of our algorithms and analysis can go through. The only change is to compute the

intersection between 𝐵 and each box of leaf node at the first level in Figure 3-1 and

eliminate nodes that have an empty intersection with 𝐵. So robustness verification

is just a special case where we remove all the nodes with empty intersection with
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Ball(𝑥, 𝜖). For example, we can identify a set of unimportant variables, where any

individual feature change in this set cannot alter the prediction for a given sample

𝑥. For each feature 𝑖, we can choose 𝐵 as 𝐵𝑖 = [−∞,∞] (or the the entire input

domain, like [0, 1] for image data) and 𝐵𝑗 ̸=𝑖 = {𝑥𝑗} otherwise. If the model is robust

to such a single-feature perturbation, then this feature is added to the unimportant

set. Similarly, we can get a set of anchor features (similar to [122]) such that once a

set of features are fixed, any perturbation outside the set cannot change the prediction.
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Algorithm 4 Multi-level verification framework
input : The set of leaf nodes of each tree, 𝑆(1), 𝑆(2), , . . . , 𝑆(𝐾); maximum number of

independent sets in a subgraph (denoted as 𝑇 ); maximum number of levels

(denoted as 𝐿), 𝐿 ≤ ⌈log𝑇 (𝐾)⌉

for 𝑘 ← 1, 2, . . . , 𝐾 do

/* 𝑈 is defined the same as in Algorithm 3. At level 0, each 𝑉𝑘 forms

a 1-clique by itself. */

𝑈
(0)
𝑘 ← {(𝐴𝑖, 𝐵𝑖(𝑘))|𝑖(𝑘) ∈ 𝑆(𝑘), 𝐴𝑖 = {𝑖(𝑘)}}

end

for 𝑙← 1, 2, . . . , 𝐿 do

/* Enumerate all cliques in each subgraph at this level. Total ⌈𝐾/𝑇 𝑙⌉

subgraphs. */

for 𝑘 ← 1, 2, . . . , ⌈𝐾/𝑇 𝑙⌉ do
𝑈

(𝑙)
𝑘 ← CliqueEnumerate(𝑈

(𝑙−1)
(𝑘−1)𝑇 +1, 𝑈

(𝑙−1)
(𝑘−1)𝑇 +2, . . . , 𝑈

(𝑙−1)
𝑘𝑇 )

end

end

for 𝑘 ← 1, 2, . . . , ⌈𝐾/𝑇 𝐿⌉ do

/* Define an independent set 𝑉 ′
𝑘 for each 𝑈

(𝐿)
𝑘 . In each 𝑉 ′

𝑘, we create

“pseudo nodes” which combines multiple nodes from lower levels, and

assign “pseudo prediction values” to them. */

𝑉 ′
𝑘 ← {𝐴

⃒⃒⃒
(𝐴, 𝐵) ∈ 𝑈

(𝐿)
𝑘 } ; /* 𝑉 ′

𝑘 is a set of sets; each element in 𝑉 ′
𝑘

represents a clique. */

/* Construct the “pseudo prediction value” for each element in 𝑉 ′
𝑘 by

summing up all prediction values in the corresponding clique. */

For all 𝐴 ∈ 𝑉 ′
𝑘 : 𝑣𝐴 ←

∑︀
𝑖∈𝐴 𝑣𝑖

end

𝑣 ← an upper bound of 𝑣* using (3.4) or (3.5), given 𝑉 = {𝑉 ′
1 , · · · , 𝑉 ′

⌈𝐾/𝑇 𝐿⌉}

/* If ⌈𝐾/𝑇 𝐿⌉ = 1, only one independent set left and each pseudo node

represents a 𝐾-clique; (3.4) or (3.5) will have a trivial solution where

𝑣* is the maximum 𝑣𝐴 in 𝑈
(𝐿)
1 . */
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3.4 Experiments

We evaluate our proposed method for robustness verification of tree ensembles on two

tasks: binary and multiclass classification on 9 public datasets including both small

and large scale datasets.1 We run our experiments on Intel Xeon Platinum 8160 CPUs.

The datasets other than MNIST and Fashion-MNIST are from LIBSVM [25]. The

statistics of the data sets are shown in Appendix B.1. As we defined in Section 3.2, 𝑟*

is the radius of minimum adversarial perturbation that reflects true model robustness,

but is hard to obtain; our method finds 𝑟 that is a lower bound of 𝑟*, which guarantees

that no adversarial example exists within radius 𝑟. A high quality lower bound 𝑟

should be close to 𝑟*. We include the following algorithms in our comparisons:

• Cheng’s attack [33] provides results on adversarial attacks on these models, which

gives an upper bound of the model robustness 𝑟*. We denote it as 𝑟 and 𝑟 ≥ 𝑟*.

• MILP: an MILP (Mixed Integer Linear Programming) based method [75] gives the

exact 𝑟*. It can be very slow when the number of trees or dimension of the features

increases.

• LP relaxation: a Linear Programming (LP) relaxed MILP formulation by directly

changing all binary variables to continuous ones. Since the binary constraints are

removed, solving the minimization of MILP gives a lower bound of robustness, 𝑟𝐿𝑃 ,

serving as a baseline method.

• Our proposed multi-level verification framework in Section 3.3.3 (with pseudo code

as Algorithm 4 in the appendix). We are targeting to compute robustness interval

𝑟𝑜𝑢𝑟 for tree ensemble verification.

In Tables 3.1 and 3.2 we show empirical comparisons on 9 datasets. We consider ℓ∞

robustness, and normalize our datasets to [0, 1] such that perturbations on different

datasets are comparable. We use (3.4) to obtain single layer bounds. Results using

dynamic programming in (3.5) are provided in Appendix B.2. We include both

1 Our code (XGBoost compatible) is available at https://github.com/chenhongge/treeVerification
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standard (naturally trained) GBDT models (Table 3.1) and robust GBDT models [26]

(Table 3.2). The robust GBDTs were trained by considering model performance under

the worst-case perturbation, which leads to a max-min saddle point problem when

finding the optimal split at each node [26]. All GBDTs are trained using the XGBoost

framework [31]. The number of trees in GBDTs and parameters used in training

GBDTs for different datasets are shown in Table B.1 in the appendix. Because we

solve the decision problem of robustness verification, we use a 10-step binary search to

find the largest 𝑟 in all experiments, and the reported time is the total time including

all binary search trials. We present the average of 𝑟 or 𝑟* over 500 examples. The

MILP based method from [75] is an accurate but very slow method; the results marked

with a star (⋆) in the table have very long running time and thus we only evaluate 50

examples instead of 500.

Dataset Cheng’s attack [33] MILP [75] LP relaxation Ours (without DP) Ours vs. MILP
avg. 𝑟 avg. time avg. 𝑟* avg. time avg. 𝑟𝐿𝑃 avg. time 𝑇 𝐿 avg. 𝑟𝑜𝑢𝑟 avg. time 𝑟𝑜𝑢𝑟/𝑟* speedup

breast-cancer .221 2.18s .210 .012s .064 .009s 2 1 .208 .001s .99 12X
covtype .058 4.76s .028⋆ 355⋆s .005⋆ 154⋆s 2 3 .022 3.39s .79 105X
diabetes .064 1.70s .049 .061s .015 .026s 3 2 .042 .018s .86 3.4X

Fashion-MNIST .048 12.2s .014⋆ 1150⋆s .003⋆ 898⋆s 2 1 .012 11.8s .86 97X
HIGGS .015 3.80s .0028⋆ 68⋆min .00035⋆ 50⋆min 4 1 .0022 1.29s .79 3163X
ijcnn1 .047 2.72s .030 4.64s .008 2.67s 2 2 .026 .101s .87 4.6X

MNIST .070 11.1s .011⋆ 367⋆s .003⋆ 332⋆s 2 2 .011 5.14s 1.00 71X
webspam .027 5.83s .00076 47.2s .0002 39.7s 2 1 .0005 .404s .66 117X

MNIST 2 vs. 6 .152 12.0s .057 23.0s .016 11.6s 4 1 .046 .585s .81 39X

Table 3.1: Average ℓ∞ distortion over 500 examples and average verification time per example for three verification
methods. Here we evaluate the bounds for standard (natural) GBDT models. Results marked with a start (“⋆”)
are the averages of 50 examples due to long running time. 𝑇 is the number of independent sets and 𝐿 is the number
of levels in searching cliques used in our algorithm. A bound ratio close to 1 indicates better lower bound quality.
Dynamic programming in (3.5) is not applied. Results using dynamic programming are provided in Appendix B.2.

Dataset Cheng’s attack [33] MILP [75] LP relaxation Ours (without DP) Ours vs. MILP
avg. 𝑟 avg. time avg. 𝑟* avg. time avg. 𝑟𝐿𝑃 avg. time 𝑇 𝐿 avg. 𝑟𝑜𝑢𝑟 avg. time 𝑟𝑜𝑢𝑟/𝑟* speedup

breast-cancer .404 1.96s .400 .009s .078 .008s 2 1 .399 .001s 1.00 9X
covtype .079 .481s .046⋆ 305⋆s .0053⋆ 159⋆s 2 3 .032 4.84s .70 63X
diabetes .137 1.52s .112 .034s .035 .013s 3 2 .109 .006s .97 5.7X

Fashion-MNIST .153 13.9s .091⋆ 41⋆min .009⋆ 34⋆min 2 1 .071 18.0s .78 137X
HIGGS .023 3.58s .0084⋆ 59⋆min .00031⋆ 54⋆min 4 1 .0063 1.41s .75 2511X
ijcnn1 .054 2.63s .036 2.52s .009 1.26s 2 2 .032 0.58s .89 4.3X

MNIST .367 1.41s .264⋆ 615⋆s .019⋆ 515⋆s 2 2 .253 12.6s .96 49X
webspam .048 4.97s .015 83.7s .0024 60.4s 2 1 .011 .345s .73 243X

MNIST 2 vs. 6 .397 17.2s .313 91.5s .039 40.0s 4 1 .308 3.68s .98 25X

Table 3.2: Verification bounds and running time for robustly trained GBDT models introduced in [26]. The
settings for each method are similar to the settings in Table 3.1.

From Tables 3.1 and 3.2 we can see that our method gives a tight lower bound 𝑟
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compared to 𝑟* from MILP, while achieving up to ∼ 3000X speedup on large models.

The running time of the baseline LP relaxation, however, is on the same order of

magnitude as the MILP method, but the results are much worse, with 𝑟𝐿𝑃 ≪ 𝑟*.

Figure 3-2 shows how the tightness of our robustness verification lower bounds changes

with different size of clique per level (𝑇 ) and different number of levels (𝐿). We test

on a 20-tree standard GBDT model on the diabetes dataset. We also show the exact

bound 𝑟* by the MILP method. Our verification bound converges to the MILP bound

as more levels of clique enumerations are used. Also, when we use larger cliques in

each level, the bound becomes tighter.

To show the scalability of our method, we vary the number of trees in GBDTs

and compare per example running time with the MILP method on ijcnn1 dataset

in Figure 3-3. We see that our multi-level method spends much less time on each

example compared to the MILP method and our running time grows slower than

MILP when the number of trees increases.
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Figure 3-2: Robustness bounds obtained with different parameters (𝑇 = {2, 3, 4}, 𝐿 = {1, · · · , 6}) on a 20-tree
standard GBDT model trained on diabetes dataset (left) and a 20-tree robust GBDT model trained on ijcnn1 dataset
(right). The bounds obtained with our method converge to 𝑟* as 𝐿 increases.

In Section 3.3.4, we showed that our algorithm works for more general verification

problems such as identifying unimportant features, where any changes on one of

those features alone cannot alter the prediction. We use MNIST to demonstrate

pixel importance, where we perturb each pixel individually by ±𝜖 while keeping other

pixels unchanged, and obtain the largest 𝜖 such that prediction is unchanged. In
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Figure 3-3: Running time of MILP and our method on robust GBDTs with different number of trees (ijcnn1 dataset).

Figure 3-4, yellow pixels cannot change prediction for any perturbation and a darker

pixel represents a smaller lower bound 𝑟 of perturbation to change the model output

using that pixel. The standard naturally trained model has some very dark pixels

compared to the robust model. Discussion on the connection between this score and

other feature importance scores is in Section B.3 in the appendix.
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Figure 3-4: MNIST pixel importance. For each 3-image group, left: digit image; middle: results on standard DT
model; right: results on robust DT model. Changing one of any yellow pixels to any valid values between 0 and 1
cannot alter model prediction; pixels in darker colors tend to affect model prediction more than pixels in lighter colors.
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Chapter 4

The Limitations of Adversarial

Training for Deep Neural Networks

4.1 Introduction

Since the discovery of adversarial examples in deep neural networks (DNNs) [146],

adversarial training under the robustness optimization framework [95, 141] has become

one of the most effective methods to defend against adversarial examples. A recent

study by [2] showed that adversarial training does not rely on obfuscated gradients

and delivers promising results for defending adversarial examples on small datasets.

Adversarial training approximately solves the following min-max optimization problem:

min
𝜃

E
(𝑥,𝑦)∈𝒳

[︂
max
𝛿∈𝑆

𝐿(𝑥 + 𝛿; 𝑦; 𝜃)
]︂

, (4.1)

where 𝒳 is the set of training data, 𝐿 is the loss function, 𝜃 is the parameter of the

network, and 𝑆 is usually a norm constrained ℓ𝑝 ball centered at 0. [95] propose to use

projected gradient descent (PGD) to approximately solve the maximization problem

within 𝑆 = {𝛿 | ‖𝛿‖∞ ≤ 𝜖}, where 𝜖 = 0.3 for MNIST dataset on a 0-1 pixel scale, and

𝜖 = 8 for CIFAR-10 dataset on a 0-255 pixel scale. This approach achieves impressive

defending results on the MNIST test set: so far the best available white-box attacks by
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[184] can only decrease the test accuracy from approximately 98% to 88%1. However,

on CIFAR-10 dataset, a simple 20-step PGD can decrease the test accuracy from 87%

to less than 50%2.

The effectiveness of adversarial training is measured by the robustness on the test

set. However, the adversarial training process itself is done on the training set. Suppose

we can optimize (4.1) perfectly, then certified robustness may be obtained on those

training data points. However, if the empirical distribution of training dataset differs

from the true data distribution, a test point drawn from the true data distribution

might lie in a low probability region in the empirical distribution of training dataset

and is not “covered” by the adversarial training procedure. For datasets that are

relatively simple and have low intrinsic dimensions (MNIST, Fashion MNIST, etc),

we can obtain enough training examples to make sure adversarial training covers most

part of the data distribution. For high dimensional datasets (CIFAR, ImageNet),

adversarial training have been shown difficult [81, 150] and only limited success was

obtained.

A recent attack proposed by [143] shows that adversarial training can be defeated

when the input image is produced by a generative model (for example, a generative

adversarial network) rather than selected directly from the test examples. The

generated images are well recognized by humans and thus valid images in the ground-

truth data distribution. In our interpretation, this attack effective finds the “blind-

spots” in the input space that the training data do not well cover.

For higher dimensional datasets, we hypothesize that many test images already

fall into these blind-spots of training data and thus adversarial training only obtains a

moderate level of robustness. It is interesting to see that for those test images that

adversarial training fails to defend, if their distances (in some metrics) to the training

dataset are indeed larger. In this chapter, we try to explain the success of robust

optimization based adversarial training and show the limitations of this approach

when the test points are slightly off the empirical distribution of training data. The

materials in this chapter are based on [178]. Our main contributions are:

1 https://github.com/MadryLab/mnist_challenge 2 https://github.com/MadryLab/cifar10_challenge
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• We show that on the original set of test images, the effectiveness of adversarial

training is highly correlated with the distance (in some distance metrics) from the

test image to the manifold of training images. For MNIST and Fashion MNIST

datasets [166], most test images are close to the training data and very good

robustness is observed on these points. For CIFAR, there is a clear trend that the

adversarially trained network gradually loses its robustness property when the test

images are further away from training data.

• We identify a new class of attacks, “blind-spot attacks”, where the input image

resides in a “blind-spot” of the empirical distribution of training data (far enough

from any training examples in some embedding space) but is still in the ground-

truth data distribution (well recognized by humans and correctly classified by the

model). Adversarial training cannot provide good robustness on these blind-spots

and their adversarial examples have small distortions.

• We show that blind-spots can be easily found on a few strong defense models

including [95], [162] and [141]. We propose a few simple transformations (slightly

changing contrast and background), that do not noticeably affect the accuracy

of adversarially trained MNIST and Fashion MNIST models, but these models

become vulnerable to adversarial attacks on these sets of transformed input images.

These transformations effectively move the test images slightly out of the manifold

of training images, which does not affect generalization but poses a challenge for

robust learning.

• Our results imply that current adversarial training procedures cannot scale to

datasets with a large (intrinsic) dimension, where any practical amount of training

data cannot cover all the blind-spots. This explains the limited success for applying

adversarial training on ImageNet dataset, where many test images can be sufficiently

far away from the empirical distribution of training dataset.

71



4.2 Related Works

4.2.1 Defending Against Adversarial Examples

Adversarial examples in DNNs have brought great threats to the deep learning-

based AI applications such as autonomous driving and face recognition. Therefore,

defending against adversarial examples is an urgent task before we can safely deploy

deep learning models to a wider range of applications. Following the emergence of

adversarial examples, various defense methods have been proposed, such as defensive

distillation by [112] and feature squeezing by [173]. Some of these defense methods

have been proven vulnerable or ineffective under strong attack methods such as C&W

in [20]. Another category of recent defense methods is based on gradient masking

or obfuscated gradient [17, 93, 57, 142, 126], but these methods are also successfully

evaded by the stronger BPDA attack [2]. Randomization in DNNs [38, 168, 88]

is also used to reduce the success rate of adversarial attacks, however, it usually

incurs additional computational costs and still cannot fully defend against an adaptive

attacker [2, 3].

An effective defense method is adversarial training, which trains the model with

adversarial examples freshly generated during the entire training process. First

introduced by [53], adversarial training demonstrates the state-of-the-art defending

performance. [95] formulated the adversarial training procedure into a min-max robust

optimization problem and has achieved state-of-the-art defending performance on

MNIST and CIFAR datasets. Several attacks have been proposed to attack the model

release by [95]. On the MNIST testset, so far the best attack by Ref. [184] can only

reduce the test accuracy from 98% to 88%. Analysis by [2] shows that this adversarial

training framework does not rely on obfuscated gradient and truly increases model

robustness; gradient based attacks with random starts can only achieve less than 10%

success rate with given distortion constraints and are unable to penetrate this defense.

On the other hand, attacking adversarial training using generative models have also

been investigated; both [164] and [143] propose to use GANs to produce adversarial

examples in black-box and white-box settings, respectively.
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Finally, a few certified defense methods [120, 141, 162] were proposed, which are

able to provably increase model robustness. Besides adversarial training, in this

chapter we also consider several certified defenses which can achieve relatively good

performance (i.e., test accuracy on natural images does not drop significantly and

training is computationally feasible), and can be applied to medium-sized networks

with multiple layers. Notably, [141] analyzes adversarial training using distributional

robust optimization techniques. [162] and Refs. [163] proposed a robustness certificate

based on the dual of a convex relaxation for ReLU networks, and used it for training to

provably increase robustness. During training, certified defense methods can provably

guarantee that the model is robust on training examples; however, on unseen test

examples a non-vacuous robustness generalization guarantee is hard to obtain.

4.2.2 Analyzing Adversarial Examples

Along with the attack-defense arms race, some insightful findings have been discovered

to understand the natural of adversarial examples, both theoretically and experimen-

tally. Ref. [129] shows that even for a simple data distribution of two class-conditional

Gaussians, robust generalization requires significantly larger number of samples than

standard generalization. Ref. [36] extends the well-known PAC learning theory to

the case with adversaries, and derives the adversarial VC-dimension which can be

either larger or smaller than the standard VC-dimension. Ref. [16] conjectures that

a robust classifier can be computationally intractable to find, and gives a proof for

the computation hardness under statistical query (SQ) model. Recently, [15] proves

a computational hardness result under a standard cryptographic assumption. Addi-

tionally, finding the safe area approximately is computationally hard according to

[76] and [161]. Ref. [96] explains the prevalence of adversarial examples by making a

connection to the “concentration of measure” phenomenon in metric measure spaces.

Ref. [144] conducted large scale experiments on ImageNet and finds a negative cor-

relation between robustness and accuracy. Ref. [71] discovered that data examples

consist of robust and non-robust features, and adversarial training tends to find robust

features that have strong correlations with the labels.
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Both adversarial training and certified defenses significantly improve robustness on

training data, but it is still unknown if the trained model has good robust generalization

property. Typically, we evaluate the robustness of a model by computing an upper

bound of error on the test set; specifically, given a norm bounded distortion 𝜖, we

verify if each image in test set has a robustness certificate [182, 40, 139]. There might

exist test images that are still within the capability of standard generalization (i.e.,

correctly classified by DNNs with high confidence, and well recognized by humans),

but behaves badly in robust generalization (i.e., adversarial examples can be easily

found with small distortions). This chapter complements those existing findings by

showing the strong correlation between the effectiveness of adversarial defenses (both

adversarial training and some certified defenses) and the distance between training

data and test points. Additionally, we show that a tiny shift in input distribution

(which may or may not be detectable in embedding space) can easily destroy the

robustness property of an robust model.

4.3 Methodology

4.3.1 Measuring the distance between training dataset and

a test data point

To verify the correlation between the effectiveness of adversarial training and how close

a test point is to the manifold of training dataset, we need to propose a reasonable

distance metric between a test example and a set of training examples. However,

defining a meaningful distance metric for high dimensional image data is a challenging

problem. Naively using an Euclidean distance metric in the input space of images works

poorly as it does not reflect the true distance between the images on their ground-truth

manifold. One strategy is to use (kernel-)PCA, t-SNE [94], or UMAP [101] to reduce

the dimension of training data to a low dimensional space, and then define distance in

that space. These methods are sufficient for small and simple datasets like MNIST,

but for more general and complicated dataset like CIFAR, extracting a meaningful
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low-dimensional manifold directly on the input space can be really challenging.

On the other hand, using a DNN to extract features of input images and measuring

the distance in the deep feature embedding space has demonstrated better performance

in many applications [66, 67], since DNN models can capture the manifold of image

data much better than simple methods such as PCA or t-SNE. Although we can form

an empirical distribution using kernel density estimation (KDE) on the deep feature

embedding space and then obtain probability densities for test points, our experience

showed that KDE work poorly in this case because the features extracted by DNNs

are still high dimensional (hundreds or thousands dimensions).

Taking the above considerations into account, we propose a simple and intuitive

distance metric using deep feature embeddings and 𝑘-nearest neighbour. Given a

feature extraction neural network ℎ(𝑥), a set of 𝑛 training data points 𝒳train =

{𝑥1
train, 𝑥2

train, · · · , 𝑥𝑛
train}, and a set of 𝑚 test data points 𝒳test = {𝑥1

test, 𝑥2
test, · · · , 𝑥𝑚

test}

from the true data distribution, for each 𝑗 ∈ [𝑚], we define the following distance

between 𝑥𝑗
test and 𝒳train:

𝐷(𝑥𝑗
test,𝒳train) := 1

𝑘

𝑘∑︁
𝑖=1
‖ℎ(𝑥𝑗

test)− ℎ(𝑥𝜋𝑗(𝑖)
train)‖𝑝 (4.2)

where 𝜋𝑗 : [𝑛] → [𝑛] is a permutation that {𝜋𝑗(1), 𝜋𝑗(2), · · · , 𝜋𝑗(𝑛)} is an ascending

ordering of training data based on the ℓ𝑝 distance between 𝑥𝑗
test and 𝑥𝑖

train in the deep

embedding space, i.e.,

∀𝑖 < 𝑖′, ‖ℎ(𝑥𝑗
test)− ℎ(𝑥𝜋𝑗(𝑖)

train)‖𝑝 ≤ ‖ℎ(𝑥𝑗
test)− ℎ(𝑥𝜋𝑗(𝑖′)

train )‖𝑝

In other words, we average the embedding space distance of 𝑘 nearest neighbors of

𝑥𝑗 in the training dataset. This simple metric is non-parametric and we found that

the results are not sensitive to the selection of 𝑘; also, for naturally trained and

adversarially trained feature extractors, the distance metrics obtained by different

feature extractors reveal very similar correlations with the effectiveness of adversarial

training.
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4.3.2 Measuring the distance between training and test datasets

We are also interested to investigate the “distance” between the training dataset

and the test dataset to gain some insights on how adversarial training performs on

the entire test set. Unlike the setting in Section 4.3.1, this requires to compute a

divergence between two empirical data distributions.

Given 𝑛 training data points 𝒳train = {𝑥1
train, 𝑥2

train, · · · , 𝑥𝑛
train} and 𝑚 test data

points 𝒳test = {𝑥1
test, 𝑥2

test, · · · , 𝑥𝑚
test}, we first apply a neural feature extractor ℎ to

them, which is the same as in Section 4.3.1. Then, we apply a non-linear projection

(in our case, we use t-SNE) to project both ℎ(𝑥𝑖
train) and ℎ(𝑥𝑗

test) to a low dimensional

space, and obtain �̄�𝑖
train = proj(ℎ(𝑥𝑖

train)) and �̄�𝑗
test = proj(ℎ(𝑥𝑗

test)). The dataset after

feature extraction and projection is denoted as 𝒳train and 𝒳test. Because �̄�𝑖
train and �̄�𝑗

test

are low dimensional, we can use kernel density estimation (KDE) to form empirical

distributions 𝑝train and 𝑝test for them.

We use 𝑝train and 𝑝test to denote the true distributions. Then, we approximate the

KL divergence between 𝑝train and 𝑝test via a numerical integration of Eq.(4.3):

𝐷KL(𝑝train||𝑝test) ≈
∫︁

𝑉
𝑝train(𝑥) log 𝑝train(𝑥)

𝑝test(𝑥) d𝑥, (4.3)

where 𝑝train(𝑥) = 1
𝑛

∑︀𝑛
𝑖=1 𝐾(𝑥 − �̄�𝑖

train; 𝐻) and 𝑝test(𝑥) = 1
𝑚

∑︀𝑚
𝑗=1 𝐾(𝑥 − �̄�𝑗

test; 𝐻) are

the KDE density functions. 𝐾 is the kernel function (specifically, we use the Gaussian

kernel) and 𝐻 is the bandwidth parameter automatically selected by Scott’s rule [132].

𝑉 is chosen as a box bounding all training and test data points.

For a multi-class dataset, we compute the aforementioned KDE and KL divergence

for each class separately. We should emphasize that this method only gives us a

rough characterization which might help us understand the limitations of adversarial

training. The true divergence between general training and test distributions in high

dimensional space is not accessible in our setting.
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4.3.3 The Blind-Spot Attack: a new class of adversarial at-

tacks

Inspired by our findings of the negative correlation between the effectiveness of

adversarial training and the distance between a test image and training dataset, we

identify a new class of adversarial attacks called “blind-spot attacks”, where we find

input images that are “far enough” from any existing training examples such that:

• They are still drawn from the ground-truth data distribution (i.e. well recognized by

humans) and classified correctly by the model (within the generalization capability

of the model);

• Adversarial training cannot provide good robustness properties on these images,

and we can easily find their adversarial examples with small distortions using a

simple gradient based attack.

Importantly, blind-spot images are not adversarial images themselves. However,

after performing adversarial attacks, we can find their adversarial examples with small

distortions, despite adversarial training. In other words, we exploit the weakness in a

model’s robust generalization capability.

We find that these blind-spots are prevalent and can be easily found without

resorting to complex generative models like in [143]. For the MNIST dataset which [95],

[162] and [141] demonstrate the strongest defense results so far, we propose a simple

transformation to find the blind-spots in these models. We simply scale and shift each

pixel value. Suppose the input image 𝑥 ∈ [−0.5, 0.5]𝑑, we scale and shift each test

data example 𝑥 element-wise to form a new example 𝑥′:

𝑥′ = 𝛼𝑥 + 𝛽, s.t. 𝑥′ ∈ [−0.5, 0.5]𝑑

where 𝛼 is a constant close to 1 and 𝛽 is a constant close to 0. We make sure that the

selection of 𝛼 and 𝛽 will result in a 𝑥′ that is still in the valid input range [−0.5, 0.5]𝑑.

This transformation effectively adjusts the contrast of the image, and/or adds a gray

background to the image. We then perform Carlini & Wagner’s attacks on these

transformed images 𝑥′ to find their adversarial examples 𝑥′
adv. It is important that
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the blind-spot images 𝑥′ are still undoubtedly valid images; for example, a digit

that is slightly darker than the one in test set is still considered as a valid digit and

can be well recognized by humans. Also, we found that with appropriate 𝛼 and 𝛽

the accuracy of MNIST and Fashion-MNIST models barely decreases; the model

has enough generalization capability for this set of slightly transformed images, yet

their adversarial examples can be easily found. Although the blind-spot attack is

beyond the threat model considered in adversarial training (e.g. ℓ∞ norm constrained

perturbations), our argument is that adversarial training (and some other defense

methods with certifications only on training examples such as [162]) are unlikely to

scale well to datasets that lie in a high dimensional manifold, as the limited training

data only guarantees robustness near these training examples. The blind-spots are

almost inevitable in high dimensional case. For example, in CIFAR-10, about 50%

of test images are already in blind-spots and their adversarial examples with small

distortions can be trivially found despite adversarial training. Using data augmentation

may eliminate some blind-spots, however for high dimensional data it is impossible to

enumerate all possible inputs due to the curse of dimensionality.

4.4 Experiments

In this section we present our experimental results on adversarially trained models

by [95]. Results on certified defense models by [162, 163] and [141] are very similar

and are demonstrated in Section C.4 in the Appendix.

4.4.1 Setup

We conduct experiments on adversarially trained models by [95] on four datasets:

MNIST, Fashion MNIST, and CIFAR-10. For MNIST, we use the “secret” model

release for the MNIST attack challenge.3 For CIFAR-10, we use the public “adver-

sarially trained” model.4 For Fashion MNIST, we train our own model with the

3 https://github.com/MadryLab/mnist_challenge 4 https://github.com/MadryLab/cifar10_challenge
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same model structure and parameters as the robust MNIST model, except that the

iterative adversary is allowed to perturb each pixel by at most 𝜖 = 0.1 as a larger 𝜖

will significantly reduce model accuracy.

We use our presented simple blind-spot attack in Section 4.3.3 to find blind-spot

images, and use Carlini & Wagner’s (C&W’s) ℓ∞ attack [20] to find their adversarial

examples. We found that C&W’s attacks generally find adversarial examples with

smaller perturbations than projected gradient descent (PGD). To avoid gradient

masking, we initial our attacks using two schemes: (1) from the original image plus

a random Gaussian noise with a standard deviation of 0.2; (2) from a blank gray

image where all pixels are initialized as 0. A successful attack is defined as finding an

perturbed example that changes the model’s classification and the ℓ∞ distortion is

less than a given 𝜖 used for robust training. For MNIST, 𝜖 = 0.3; for Fashion-MNIST,

𝜖 = 0.1; and for CIFAR, 𝜖 = 8/255. All input images are normalized to [−0.5, 0.5].

4.4.2 Effectiveness of adversarial training and the distance

to training set

In this set of experiments, we build a connection between attack success rate on

adversarially trained models and the distance between a test example and the whole

training set. We use the metric defined in Section 4.3.1 to measure this distance. For

MNIST and Fashion-MNIST, the outputs of the first fully connected layer (after all

convolutional layers) are used as the neural feature extractor ℎ(𝑥); for CIFAR, we

use the outputs of the last average pooling layer. We consider both naturally and

adversarially trained networks as the neural feature extractor, with 𝑝 = 2 and 𝑘 = 5.

The results are shown in Figures 4-1, 4-2 and 4-3. For each test set, after obtaining

the distance of each test point, we bin the test data points based on their distances to

the training set and show them in the histogram at the bottom half of each figure

(red). The top half of each figure (blue) represents the attack success rates for the

test images in the corresponding bins. Some bars on the right are missing because

there are too few points in the corresponding bins. We only attack correctly classified
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images and only calculate success rate on those images. Note that we should not

compare the distances shown between the left and right columns of Figures 4-1, 4-2

and 4-3 because they are obtained using different embeddings, however the overall

trends are very similar.
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Figure 4-1: Attack success rate and distance distribution of MNIST model in [95]. Upper: C&W ℓ∞ attack success
rates, 𝜖 = 0.3. Lower: The distribution of the average ℓ2 (embedding space) distance between the images in test set
and the top-5 nearest images in training set.
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(a) Using adversarially trained model as ℎ(𝑥)
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(b) Using naturally trained model as ℎ(𝑥)

Figure 4-2: Attack success rate and distance distribution of Fashion MNIST model trained using [95]. Upper: C&W
ℓ∞ attack success rate, 𝜖 = 0.1. Lower: The distribution of the average ℓ2 (embedding space) distance between the
images in test set and the top-5 nearest images in training set.
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(a) Using adversarially trained model as ℎ(𝑥)
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Figure 4-3: Attack success rate and distance distribution of CIFAR model in [95]. Upper: C&W ℓ∞ attack success
rate, 𝜖 = 8/255. Lower: The distribution of the average ℓ2 (embedding space) distance between the images in test set
and the top-5 nearest images in training set.

As we can observe in all three figures, most successful attacks in test sets for

adversarially trained networks concentrate on the right hand side of the distance

distribution, and the success rates tend to grow when the distance is increasing. The
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trend is independent of the feature extractor being used (naturally or adversarially

trained). The strong correlation between attack success rates and the distance from a

test point to the training dataset supports our hypothesis that adversarial training

tends to fail on test points that are far enough from the training data distribution.

4.4.3 KL Divergence between training and test sets vs attack

success rate

To quantify the overall distance between the training and the test set, we approximately

calculate the KL divergence between the KDE distributions of training set and test

set for each class according to Eq. (4.3). Then, for each dataset we take the average

KL divergence across all classes, as shown in Table 4.1. We use both adversarially

trained and naturally trained networks as feature extractors ℎ(𝑥). Additionally, we

also calculate the average normalized distance by calculating the ℓ2 distance between

each test point and the training set as in Section 4.4.2, and taking the average over

all test points. To compare between different datasets, we normalize each element of

the feature representation ℎ(𝑥) to mean 0 and variance 1. We average this distance

among all test points and divide it by
√

𝑑𝑡 to normalize the dimension, where 𝑑𝑡 is

the dimension of the feature representation ℎ(·).

Clearly, Fashion-MNIST is the dataset with the strongest defense as measured

by the attack success rates on test set, and its KL divergence is also the smallest.

For CIFAR, the divergence between training and test sets is significantly larger, and

adversarial training only has limited success. The hardness of training a robust model

for MNIST is in between Fashion-MNIST and CIFAR. Another important observation

is that the effectiveness of adversarial training does not depend on the accuracy; for

Fashion-MNIST, classification is harder as the data is more complicated than MNIST,

but training a robust Fashion-MNIST model is easier as the data distribution is more

concentrated and adversarial training has less “blind-spots”.
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Dataset Avg KL
div. (adv.
trained)

Avg KL
div. (nat.
trained)

Avg. nor-
malized ℓ2
Distance

Attack Suc-
cess Rates
(Test Set)

Test Accu-
racy

Fashion-MNIST 0.046 0.058 0.4233 6.4% 86.1%
MNIST 0.119 0.095 0.3993 9.7% 98.2%
CIFAR 0.571 0.143 0.6715 37.9% 87.0%

Table 4.1: Average KL divergence and normalized ℓ2 distance between training and test sets across all classes. We
use both adversarially trained networks (adv.) and naturally trained networks (nat.) as our feature extractors when
computing KL divergence. Note that we only attack images that are correctly classified and report success rate on
those images.

4.4.4 Blind-Spot Attack on MNIST and Fashion MNIST

In this section we focus on applying the proposed blind-spot attack to MNIST and

Fashion MNIST. As mentioned in Section 4.3.3, for an image 𝑥 from the test set,

the blind-spot image 𝑥′ = 𝛼𝑥 + 𝛽 obtained by scaling and shifting is considered as

a new natural image, and we use the C&W ℓ∞ attack to craft an adversarial image

𝑥′
adv for 𝑥′. The attack distortion is calculated as the ℓ∞ distance between 𝑥′ and

𝑥′
adv. For MNIST, 𝜖 = 0.3 so we set the scaling factor to 𝛼 = {1.0, 0.9, 0.8, 0.7}. For

Fashion-MNIST, 𝜖 = 0.1 so we set the scaling factor to 𝛼 = {1.0, 0.95, 0.9}. We set 𝛽

to either 0 or a small constant. The case 𝛼 = 1.0, 𝛽 = 0.0 represents the original test

set images. We report the model’s accuracy and attack success rates for each choice

of 𝛼 and 𝛽 in Table 4.2 and Table 4.3. Because we scale the image by a factor of 𝛼,

we also set a stricter criterion of success – the ℓ∞ perturbation must be less than 𝛼𝜖

to be counted as a successful attack. For MNIST, 𝜖 = 0.3 and for Fashion-MNIST,

𝜖 = 0.1. We report both success criterion, 𝜖 and 𝛼𝜖 in Tables 4.2 and 4.3.

We first observe that for all pairs of 𝛼 and 𝛽 the transformation does not affect the

models’ test accuracy at all. The adversarially trained model classifies these slightly

scaled and shifted images very well, with test accuracy equivalent to the original test

set. Visual comparisons in Figure 4-4 show that when 𝛼 is close to 1 and 𝛽 is close
𝛼, 𝛽

𝛼 = 1.0 𝛼 = 0.9 𝛼 = 0.8 𝛼 = 0.7
𝛽 = 0 𝛽 = 0 𝛽 = 0.05 𝛽 = 0 𝛽 = 0.1 𝛽 = 0 𝛽 = 0.15

acc 98.2% 98.3% 98.5% 98.4% 98.5% 98.4% 98.1%
th. 0.3 0.3 0.27 0.3 0.27 0.3 0.24 0.3 0.24 0.3 0.21 0.3 0.21

suc.
rate 9.70% 75.20% 15.20% 93.65% 82.50% 94.85% 52.30% 99.55% 95.45% 98.60% 82.45% 99.95% 99.95%

Table 4.2: Attack success rate (suc. rate) and test accuracy (acc) of scaled and shifted MNIST. An attack is
considered successful if its ℓ∞ distortion is less than thresholds (th.) 0.3 or 0.3𝛼.
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𝛼, 𝛽
𝛼 = 1.0 𝛼 = 0.95 𝛼 = 0.9
𝛽 = 0 𝛽 = 0 𝛽 = 0.025 𝛽 = 0 𝛽 = 0.05

acc 86.1% 86.1% 86.4% 86.1% 86.2%
th. 0.1 0.1 0.095 0.1 0.095 0.1 0.09 0.1 0.09

suc. rate 6.40% 11.25% 9.05% 22.55% 18.55% 25.70% 19.15% 62.60% 55.95%

Table 4.3: Attack success rate (suc. rate) and test accuracy (acc) of scaled and shifted Fashion-MNIST. An attack
is considered as successful if its ℓ∞ distortion is less than threshold (th.) 0.1 or 0.1𝛼.

(a)
𝛼 = 1.0
𝛽 = 0.0
dist= 0.218

(b)
𝛼 = 0.9
𝛽 = 0.0
dist= 0.099

(c)
𝛼 = 0.9
𝛽 = 0.05
dist= 0.070

(d)
𝛼 = 1.0
𝛽 = 0.0
dist= 0.338

(e)
𝛼 = 0.8
𝛽 = 0.0
dist= 0.229

(f)
𝛼 = 0.8
𝛽 = 0.1
dist= 0.129

Figure 4-4: Blind-spot attacks on Fashion-MNIST and MNIST data with scaling and shifting on adversarially
trained models [95]. First row contains input images after scaling and shifting and the second row contains the found
adversarial examples. “dist” represents the ℓ∞ distortion of adversarial perturbations. The first rows of figures (a)
and (d) represent the original test set images (𝛼 = 1.0, 𝛽 = 0.0); first rows of figures (b), (c), (e), and (f) illustrate
the images after transformation. Adversarial examples for these transformed images have small distortions.

to 0, it is hard to distinguish the transformed images from the original images. On

the other hand, according to Tables 4.2 and 4.3, the attack success rates for those

transformed test images are significantly higher than the original test images, for both

the original criterion 𝜖 and the stricter criterion 𝛼𝜖. In Figure 4-4, we can see that the

ℓ∞ adversarial perturbation required is much smaller than the original image after

the transformation. Thus, the proposed scale and shift transformations indeed move

test images into blind-spots. More figures are in the Appendix.

One might think that we can generally detect blind-spot attacks by observing
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Figure 4-5: The distribution of the ℓ2 distance between the original and scaled images in test set and the top-5
nearest images (𝑘 = 5) in training set using the distance metric defined in Eq. (4.2).
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their distances to the training dataset, using a metric similar to Eq. (4.2). Thus,

we plot histograms for the distances between tests points and training dataset, for

both original test images and those slightly transformed ones in Figure 4-5. We set

𝛼 = 0.7, 𝛽 = 0 for MNIST and 𝛼 = 0.9, 𝛽 = 0 for Fashion-MNIST. Unfortunately,

the differences in distance histograms for these blind-spot images are so tiny that we

cannot reliably detect the change, yet the robustness property drastically changes on

these transformed images.

4.5 Discussion and Remarks

In this chapter, we observe that the effectiveness of adversarial training is highly

correlated with the characteristics of the dataset, and data points that are far enough

from the distribution of training data are prone to adversarial attacks despite adver-

sarial training. Following this observation, we defined a new class of attacks called

“blind-spot attack” and proposed a simple scale-and-shift scheme for conducting blind-

spot attacks on adversarially trained MNIST and Fashion MNIST datasets with high

success rates. Our findings suggest that adversarial training can be challenging due to

the prevalence of blind-spots in high dimensional datasets.
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Chapter 5

Robust Deep Reinforcement

Learning against Adversarial

Perturbations on Observations

5.1 Introduction

With deep neural networks (DNNs) as powerful function approximators, deep rein-

forcement learning (DRL) has achieved great success on many complex tasks [106,

85, 83, 138, 55] and even on some safety-critical applications (e.g., autonomous driv-

ing [157, 124, 109]). Despite achieving super-human level performance on many tasks,

the existence of adversarial examples [146] in DNNs and many successful attacks to

DRL [68, 6, 86, 113, 165] motivates us to study robust DRL algorithms.

When an RL agent obtains its current state via observations, the observations

may contain uncertainty that naturally originates from unavoidable sensor errors or

equipment inaccuracy. A policy not robust to such uncertainty can lead to catastrophic

failures (Figure 5-1). To ensure safety under the worst case uncertainty, in this

chapter we consider the adversarial setting where the observation is adversarially

perturbed from 𝑠 to 𝜈(𝑠), yet the underlying true environment state 𝑠 where the

agent locates is unchanged. This setting is aligned with many adversarial attacks
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Goal

Start

Goal

Start

location s
(true)

location ν(s)
(observed)

Location observation 
uncertainty B(s)

Crash

Action: left

Figure 5-1: A car observes its location through sensors (e.g., GPS) and plans its route to the goal. Without
considering the uncertainty in observed location (e.g., error of GPS coordinates), an unsafe policy may crash into the
wall because the observed location and true location differ.

on state observations (e.g., [68, 86]). To improve robustness under this setting, a

natural approach is to extend existing adversarial defenses for supervised learning, e.g.,

adversarial training [81, 95, 177], to DRL. Specifically, we can attack the agent and

generate trajectories adversarially during training time, and apply any existing DRL

algorithm to hopefully obtain a robust policy. Unfortunately, we show that for most

environments, naive adversarial training can make training unstable and deteriorate

agent performance (a similar observation is made in [7, 46]), or does not significantly

improve robustness under strong attacks. Since RL and supervised learning are quite

different problems, naively applying techniques from supervised learning to RL without

a proper theoretical justification can be unsuccessful.

Additionally, DRL agents can be brittle even without any adversarial attacks –

an agent may fail occasionally but catastrophically during regular (non-adversarial)

rollouts, and debugging these failure cases can be quite challenging [154]. In practical

applications, such small noise can be naturally prevalent and thus prohibits the use of

DRL in safety critical domains like autonomous driving. As we will show in Section 5.4,

the agents trained using our proposed robust policy optimization objective (SA-MDP)

can obtain significantly better worst case reward with much less variance.

This chapter studies the theory and practice of robust RL against perturbations

on state observations. The material presented in this chapter are based on [180]. We
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summarize our contributions as follows:

• We formulate the perturbation on state observations as a modified Markov decision

process (MDP), which we call state-adversarial MDP (SA-MDP), and study its

fundamental properties. We show that under an optimal adversary, a stationary

and Markovian optimal policy may not exist for SA-MDP.

• Based on our theory of SA-MDP, we propose a theoretically principled robust

policy regularizer that is related to the total variation distance or KL-divergence on

perturbed policies. It can be practically and efficiently applied to a wide range of

RL algorithms, including proximal policy optimization (PPO) and deep Q networks

(DQN).

• We conduct experiments on 11 environments ranging from Atari games with discrete

actions to complex robotic control tasks in continuous action space. Our proposed

method significantly improves robustness under strong white-box attacks on state

observations, including two new attacks we design, the maximal action difference

attack (MAD attack).

5.2 Related Works

Robust Reinforcement Learning – Since each element of reinforcement learning

(observations, actions, transition dynamics and rewards) can contain uncertainty,

robust reinforcement learning has been studied from different perspectives. Robust

Markov decision process (RMDP) [72, 107] considers the worst case perturbation

with respect to transition probabilities, and has been extended to distributional

settings [169] and partially observed MDPs [108]. The agent observes the original true

state from the environment and acts accordingly, but the environment can choose from

a set of transition probabilities that minimizes rewards. Compared to our SA-MDP

where the adversary changes only observations, in RMDP the ground-truth states

are changed, and thus RMDP is more suitable for modeling environment parameter

changes (e.g., changes in physical parameters like mass and length, etc.). RMDP theory

has inspired robust deep Q-learning [136] and policy gradient algorithms [100, 37, 99]
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that are robust against small environment changes.

Additionally, several works [116, 84] consider the adversarial setting of multi-agent

reinforcement learning [147, 13]. In the simplest two-player setting (referred to as

minimax games in [87]), each agent chooses an action at each step, and the environment

transits based on both actions. The regular 𝑄 function 𝑄(𝑠, 𝑎) can be extended to

𝑄(𝑆, 𝑎, 𝑜) where 𝑜 is the opponent’s action and Q-learning is still convergent. This

setting can be extended to deep Q learning and policy gradient algorithms [84, 116].

Authors in [116] show that learning an opponent agent simultaneously can improve

the agent’s performance as well as its robustness against environment turbulence and

test conditions (e.g., change in mass or friction). The authors in [56] carried out

real-world experiments on the two-player adversarial learning game. Additionally, [148]

considered adversarial perturbations on the action space. In contrast, [50] investigated

how to learn a robust reward. All of these settings are different from ours: in our

state-adversarial setting, we manipulate only the observations but do not change the

underlying environment (the true states) or actions directly. Our SA-MDP is more

suitable to model worst case errors in the observation process (e.g., sensor errors and

equipment inaccuracy).

Adversarial Attacks on State Observations in DRL – Ref. [68] evaluated

the robustness of deep reinforcement learning policies through an FGSM based attack

on Atari games with discrete actions. Authors in [79] proposed to use the value function

to guide adversarial perturbation search. Ref. [86] considered a more complicated case

where the adversary is allowed to only attack at a subset of time steps, and used a

generative model to generate attack plans luring the agent to a designated target state.

Ref. [6] studied black-box attacks on DQN with discrete action space via transferability

of adversarial examples. Then [113] further enhanced adversarial attacks to DRL with

multi-step gradient descent and better engineered loss functions, but these require

a critic or 𝑄 function to perform attacks. Typically, the critic learned during agent

training is used. We find that using this critic can be sub-optimal or impractical in

many cases, and propose our two critic-independent attacks in Section 5.3.4. We refer

the reader to recent surveys [165, 69] for a taxonomy and a comprehensive list of
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adversarial attacks in DRL.

Improving Robustness for State Observations in DRL – For discrete action

RL tasks, [79] first presented preliminary results of adversarial training on Pong (one

of the simplest Atari environments) using weak FGSM attacks on pixel space. Ref. [7]

applied adversarial training to several Atari games with DQN, and found it challenging

for the agent to adapt to the attacks during training time – one must attack only a

portion of frames, and even then the agent performance still suffers under test time

attacks. For Pong, adversarial training can improve reward under attack from −21

(lowest) to −5, yet is still far away from the optimal reward (+21). For continuous

action RL tasks (e.g., MuJoCo environments), [97] used a weak FGSM based attack

with policy gradient to adversarially train a few simple RL tasks. The authors in [113]

used stronger multi-step gradient based attacks; however, their evaluation focused

on robustness against environment changes rather than state perturbations. Unlike

our work which first develops principles and then applies those to different DRL

algorithms, these works mostly extend adversarial training in supervised learning to

the DRL setting. We show that adversarial training does not reliably improve test

time performance under strong attacks in Section 5.4.

To obtain better performance than adversarial training, [103, 46] treat the discrete

action outputs of DQN as labels, and apply existing certified defense methods for

classification [104] to robustly predict actions using imitation learning. This approach

outperforms [7], but it is unclear how to apply it to environments with continuous

action spaces. Compared to their approach, our SA-DQN does not use imitation

learning and achieves better performance on most environments. Other related works

include [59], which proposed a meta online learning procedure with a master agent

detecting the presence of the adversary and switching between a few sub-policies, but

did not discuss how to train a single agent robustly. Ref. [32] applied adversarial

training specifically for RL-based path-finding algorithms. Ref. [92] considered the

worst-case scenario during rollouts for an existing DQN agent to ensure safety, but

it relies on an existing policy and does not include a training procedure. Robust

DRL for perturbations on state observations, especially for continuous action space
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tasks, still has many open challenges, and existing approaches lack proper theoretical

justifications.

5.3 Methodology

5.3.1 State-Adversarial Markov Decision Process (SA-MDP)

Notation – A Markov decision process (MDP) is defined as a 5-tuple, (𝒮,𝒜, 𝑅, 𝑝, 𝛾),

where 𝒮 is the state space, 𝒜 is the action space, 𝑅 : 𝒮 ×𝒜× 𝒮 → R is the reward

function, and 𝑝 : 𝒮 ×𝒜 → 𝒫(𝒮) represents the transition probability of environment,

where 𝒫(𝒮) defines the set of all possible probability measures on 𝒮. The transition

probability is 𝑝(𝑠′|𝑠, 𝑎) = Pr(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎), where 𝑡 is the time step. We

denote a stationary policy as 𝜋 : 𝒮 → 𝒫(𝒜), the set of all stochastic and Markovian

policies as ΠMR, the set of all deterministic and Markovian policies as ΠMD, and the

discount factor as 0 < 𝛾 < 1.

s
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r
t

ν(s
t
)
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t
))

Figure 5-2: Reinforcement learning with perturbed state observations. The agent observes a perturbed state 𝜈(𝑠𝑡)
rather than the true environment state 𝑠𝑡.

In state-adversarial MDP (SA-MDP), we introduce an adversary 𝜈(𝑠) : 𝒮 → 𝒮.

The adversary perturbs only the state observations of the agent, such that the action

is taken as 𝜋(𝑎|𝜈(𝑠)); the environment still transits from the true state 𝑠 rather than

𝜈(𝑠) to the next state. Since 𝜈(𝑠) can be different from 𝑠, the agent’s action from

𝜋(𝑎|𝜈(𝑠)) may be sub-optimal, and thus the adversary is able to reduce the reward.
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In real world RL problems, the adversary can be reflected as the worst case noise in

measurement or state estimation uncertainty. Note that this scenario is different from

the two-player Markov game [87] where both players see unperturbed true environment

states and interact with the environment directly; the opponent’s action can change

the true state of the game.

To allow a formal analysis, we first make the assumption for the adversary 𝜈:

Assumption 1 (Stationary, Deterministic and Markovian Adversary). 𝜈(𝑠) is a

deterministic function 𝜈 : 𝒮 → 𝒮 which only depends on the current state 𝑠, and 𝜈

does not change over time.

This assumption holds for many adversarial attacks [68, 86, 79, 113]. These attacks

only depend on the current state input and the policy or Q network so they are

Markovian; the network parameters are frozen at test time, so given the same 𝑠 the

adversary will generate the same (stationary) perturbation. We leave the formal

analysis of non-Markovian, non-stationary adversaries as future work.

If the adversary can perturb a state 𝑠 arbitrarily without bounds, the problem can

become trivial. To fit our analysis to the most realistic settings, we need to restrict

the power of an adversary. We define perturbation set 𝐵(𝑠), to restrict the adversary

to perturb a state 𝑠 only to a predefined set of states:

Definition 2 (Adversary Perturbation Set). We define a set 𝐵(𝑠) which contains all

allowed perturbations of the adversary. Formally, 𝜈(𝑠) ∈ 𝐵(𝑠) where 𝐵(𝑠) is a set of

states and 𝑠 ∈ 𝐵(𝑠).

𝐵(𝑠) is usually a set of task-specific “neighboring” states of 𝑠 (e.g., bounded sensor

measurement errors), which makes the observation still meaningful (yet not accurate)

even with perturbations. After defining 𝐵, an SA-MDP can be represented as a

6-tuple (𝒮,𝒜, 𝐵, 𝑅, 𝑝, 𝛾).

Analysis of SA-MDP – We first derive Bellman Equations and a basic policy

evaluation procedure, then we discuss the possibility of obtaining an optimal policy

for SA-MDP. The adversarial value and action-value functions under 𝜈 in an SA-MDP
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are similar to those of a regular MDP:

𝑉𝜋∘𝜈(𝑠) = E𝜋∘𝜈

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠

]︃
, �̃�𝜋∘𝜈(𝑠, 𝑎) = E𝜋∘𝜈

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

]︃
,

where the reward at step-𝑡 is defined as 𝑟𝑡 and 𝜋∘𝜈 denotes the policy under observation

perturbations: 𝜋(𝑎|𝜈(𝑠)). Based on these two definitions, we first consider the simplest

case with fixed 𝜋 and 𝜈:

Theorem 3 (Bellman equations for fixed 𝜋 and 𝜈). Given 𝜋 : 𝒮 → 𝒫(𝒜) and

𝜈 : 𝒮 → 𝒮, we have

𝑉𝜋∘𝜈(𝑠) =
∑︁
𝑎∈𝒜

𝜋(𝑎|𝜈(𝑠))
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︁
𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋∘𝜈(𝑠′)

]︁

�̃�𝜋∘𝜈(𝑠, 𝑎) =
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
⎡⎣𝑅(𝑠, 𝑎, 𝑠′) + 𝛾

∑︁
𝑎′∈𝒜

𝜋(𝑎′|𝜈(𝑠′))�̃�𝜋∘𝜈(𝑠′, 𝑎′)
⎤⎦ .

The proof of Theorem 3 is simple, as when 𝜋, 𝜈 are fixed, they can be “merged”

as a single policy, and existing results from MDP can be directly applied. Now we

consider a more complicated case, where we want to find the value functions under

optimal adversary 𝜈*(𝜋), minimizing the total expected reward for a fixed 𝜋. The

optimal adversarial value and action-value functions are defined as:

𝑉𝜋∘𝜈*(𝑠) = min
𝜈

𝑉𝜋∘𝜈(𝑠), �̃�𝜋∘𝜈*(𝑠, 𝑎) = min
𝜈

�̃�𝜋∘𝜈(𝑠, 𝑎).

Theorem 4 (Bellman contraction for optimal adversary). Define Bellman operator

L : R|𝒮| → R|𝒮|,

(L𝑉 )(𝑠) = min
𝑠𝜈∈𝐵(𝑠)

∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠𝜈)
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︁
𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉 (𝑠′)

]︁
. (5.1)

The Bellman equation for optimal adversary 𝜈* can then be written as: 𝑉𝜋∘𝜈* = L𝑉𝜋∘𝜈*.

Additionally, L is a contraction that converges to 𝑉𝜋∘𝜈*.

Theorem 4 says that given a fixed policy 𝜋, we can evaluate its performance (value
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Figure 5-3: A toy environment for SA-MDP.

functions) under the optimal (strongest) adversary, through a Bellman contraction.

It is functionally similar to the “policy evaluation” procedure in regular MDP. The

proof of Theorem 4 is in the same spirit as the proof of Bellman optimality equations

for solving the optimal policy for an MDP; the important difference here is that we

solve the optimal adversary, for a fixed policy 𝜋. Given 𝜋, value functions for MDP

and SA-MDP can be vastly different. Here we show a 3-state toy environment in

Figure 5-3; an optimal MDP policy is to take action 2 in 𝑆1, action 1 in 𝑆2 and 𝑆3.

Under the presence of an adversary 𝜈(𝑆1) = 𝑆2, 𝜈(𝑆2) = 𝑆1, 𝜈(𝑆3) = 𝑆1, this policy

receives zero total reward as the adversary can make the action 𝜋(𝑎|𝜈(𝑠)) totally

wrong regardless of the states. On the other hand, a policy taking random actions on

all three states (which is a non-optimal policy for MDP) is unaffected by the adversary

and obtains non-zero rewards in SA-MDP. Details are given in Appendix D.1.

Finally, we discuss our ultimate quest of finding an optimal policy 𝜋* under the

strongest adversary 𝜈*(𝜋) in the SA-MDP setting (we use the notation 𝜈*(𝜋) to explicit

indicate that 𝜈* is the optimal adversary for a given 𝜋). An optimal policy should be

the best among all policies on every state:

𝑉𝜋*∘𝜈*(𝜋*)(𝑠) ≥ 𝑉𝜋∘𝜈*(𝜋)(𝑠) for ∀𝑠 ∈ 𝒮 and ∀𝜋, (5.2)

where both 𝜋 and 𝜈 are not fixed. The first question is, what policy classes we need

to consider for 𝜋*. In MDPs, deterministic policies are sufficient. We show that this

does not hold anymore in SA-MDP:

93



Theorem 5. There exists an SA-MDP and some stochastic policy 𝜋 ∈ ΠMR such

that we cannot find a better deterministic policy 𝜋′ ∈ ΠMD satisfying 𝑉𝜋′∘𝜈*(𝜋′)(𝑠) ≥

𝑉𝜋∘𝜈*(𝜋)(𝑠) for all 𝑠 ∈ 𝒮.

The proof is done by constructing a counterexample where some stochastic policies

are better than any other deterministic policies in SA-MDP (see Appendix D.1).

Contrarily, in MDP, for any stochastic policy we can find a deterministic policy

that is at least as good as the stochastic one. Unfortunately, even looking for both

deterministic and stochastic policies still cannot always find an optimal one:

Theorem 6. Under the optimal 𝜈*, an optimal policy 𝜋* ∈ ΠMR does not always exist

for SA-MDP.

The proof follows the same counterexample as in Theorem 5. The optimal policy

𝜋* requires to have 𝑉𝜋*∘𝜈*(𝜋*)(𝑠) ≥ 𝑉𝜋∘𝜈*(𝜋)(𝑠) for all 𝑠 and any 𝜋. In an SA-MDP,

sometimes we have to make a trade-off between the value of states and no policy can

maximize the values of all states.

Despite the difficulty of finding an optimal policy under the optimal adversary,

we show that under certain assumptions, the loss in performance due to an optimal

adversary can be bounded:

Theorem 7. Given a policy 𝜋 for a non-adversarial MDP and its value function is

𝑉𝜋(𝑠). Under the optimal adversary 𝜈 in SA-MDP, for all 𝑠 ∈ 𝒮 we have

max
𝑠∈𝒮

{︁
𝑉𝜋(𝑠)− 𝑉𝜋∘𝜈*(𝜋)(𝑠)

}︁
≤ 𝛼 max

𝑠∈𝒮
max

𝑠∈𝐵(𝑠)
DTV(𝜋(·|𝑠), 𝜋(·|𝑠)) (5.3)

where DTV(𝜋(·|𝑠), 𝜋(·|𝑠)) is the total variation distance between 𝜋(·|𝑠) and 𝜋(·|𝑠), and

𝛼 := 2[1 + 𝛾
(1−𝛾)2 ] max(𝑠,𝑎,𝑠′)∈𝒮×𝒜×𝒮 |𝑅(𝑠, 𝑎, 𝑠′)| is a constant that does not depend on

𝜋.

Theorem 7 says that as long as differences between the action distributions under

state perturbations (the term DTV(𝜋(·|𝑠), 𝜋(·|𝑠))) are not too large, the performance

gap between 𝑉𝜋∘𝜈*(𝑠) (state value of SA-MDP) and 𝑉𝜋(𝑠) (state value of regular
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MDP) can be bounded. An important consequence is the motivation of regularizing

DTV(𝜋(·|𝑠), 𝜋(·|𝑠)) during training to obtain a policy robust to strong adversaries. The

proof is based on tools developed in constrained policy optimization [1], which gives

an upper bound on value functions given two policies with bounded divergence. In

our case, we desire that a bounded state perturbation 𝑠 produces bounded divergence

between 𝜋(·|𝑠) and 𝜋(·|𝑠).

We now study a few practical DRL algorithms, including both deep Q-learning

(DQN) for discreteactions and actor-critic based policy gradient methods (PPO) for

continuous actions.

5.3.2 State-Adversarial DRL for Stochastic Policies: A Case

Study on PPO

We start with the most general case where the policy 𝜋(𝑎|𝑠) is stochastic (e.g.,

in PPO [131]). The total variation distance is not easy to compute for most dis-

tributions, so we upper bound it again by KL divergence: DTV(𝜋(𝑎|𝑠), 𝜋(𝑎|𝑠)) ≤√︁
1
2DKL(𝜋(𝑎|𝑠)‖𝜋(𝑎|𝑠)). When Gaussian policies are used, we denote 𝜋(𝑎|𝑠) ∼ 𝒩 (𝜇𝑠, Σ𝑠)

and 𝜋(𝑎|𝑠) ∼ 𝒩 (𝜇𝑠, Σ𝑠). Their KL-divergence can be given as:

DKL(𝜋(𝑎|𝑠)‖𝜋(𝑎|𝑠)) = 1
2

(︁
log |Σ𝑠Σ−1

𝑠 |+ tr(Σ−1
𝑠 Σ𝑠) + (𝜇𝑠 − 𝜇𝑠)⊤Σ−1

𝑠 (𝜇𝑠 − 𝜇𝑠)− |𝒜|
)︁

.

(5.4)

Regularizing KL distance (5.4) for all 𝑠 ∈ 𝐵(𝑠) will lead to a smaller upper bound

in (D.12), which is directly related to agent performance under optimal adversary. In

PPO, the mean terms 𝜇𝑠, 𝜇𝑠 are produced by neural networks: 𝜇𝜃𝜇(𝑠) and 𝜇𝜃𝜇(𝑠), and

Σ is a diagonal matrix independent of state 𝑠 (i.e., Σ𝑠 = Σ𝑠 = Σ), so regularizing the

above KL-divergence over all 𝑠 from sampled trajectories and all 𝑠 ∈ 𝐵(𝑠) leads to

the following robust policy regularizer for PPO, ignoring constant terms:

ℛPPO(𝜃𝜇) = 1
2

∑︁
𝑠

max
𝑠∈𝐵(𝑠)

(︁
𝜇𝜃𝜇(𝑠)− 𝜇𝜃𝜇(𝑠)

)︁⊤
Σ−1

(︁
𝜇𝜃𝜇(𝑠)− 𝜇𝜃𝜇(𝑠)

)︁
:= 1

2
∑︁

𝑠

max
𝑠∈𝐵(𝑠)

ℛ𝑠(𝑠, 𝜃𝜇).

(5.5)
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We replace max𝑠∈𝒮 term in (D.12) with a more practical and optimizer-friendly

summation over all states in sampled trajectory. A similar treatment was used in

TRPO [83] which was also derived as a KL-based regularizer, albeit on 𝜃𝜇 space rather

than on state space. However, minimizing (5.5) is challenging as it is a minimax

objective, and we also have ∇𝑠ℛ(𝑠, 𝜃𝜇)|𝑠=𝑠 = 0 so using gradient descent directly

cannot solve the inner maximization problem to a local maximum. Instead of using

the more expensive second order methods, we propose the following two first order

approaches to solve (5.5). Here we focus on discussing convex relaxation based

method, and we defer Stochastic Gradient Langevin Dynamics (SGLD) based solver

to Section D.3.2.

Convex relaxation of non-linear units in neural networks enables an efficient analysis

of the outer bounds for a neural network [162, 182, 139, 40, 161, 159, 125, 140]. Several

works have used it for certified adversarial defenses [163, 104, 158, 54, 179], but here

we leverage it as a generic optimization tool for solving minimax functions involving

neural networks. Using this technique, we can obtain an upper bound for ℛ𝑠(𝑠, 𝜃𝜇):

ℛ𝑠(𝜃𝜇) ≥ ℛ𝑠(𝑠, 𝜃𝜇) for all 𝑠 ∈ 𝐵(𝑠). ℛ𝑠(𝜃𝜇) is also a function of 𝜃𝜇, and computing

ℛ𝑠(𝜃𝜇) is only a constant factor slower than computingℛ𝑠(𝑠, 𝜃𝜇) (for a fixed 𝑠) when an

efficient relaxation [104, 54, 179] is used. We can then solve the following minimization

problem:

min
𝜃𝜇

1
2

∑︁
𝑠

ℛ𝑠(𝜃𝜇) ≥ min
𝜃𝜇

1
2

∑︁
𝑠

max
𝑠∈𝐵(𝑠)

ℛ𝑠(𝑠, 𝜃𝜇) = min
𝜃𝜇

ℛPPO(𝜃𝜇).

Since we minimize an upper bound of the inner max, the original objective (5.5)

is guaranteed to be minimized. Using convex relaxations can also provide certain

robustness certificates for DRL as a bonus (e.g., we can guarantee an action has

bounded changes under bounded perturbations), discussed in Appendix D.5. We use

auto_LiRPA, a recently developed tool [171], to giveℛ𝑠(𝜃𝜇) efficiently and automatically.

Once the inner maximization problem is solved, we can add ℛPPO as part of the policy

optimization objective, and solve PPO using SGD as usual.

Note that although Eq (5.5) looks similar to smoothness based regularizers in (semi-
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)supervised learning settings to avoid overfitting [105] and improve robustness [177],

our regularizer is based on the foundations of SA-MDP. Our theory justifies the use of

such a regularizer in reinforcement learning setting, while [105, 177] are developed for

quite different settings not related to reinforcement learning.

5.3.3 State-Adversarial DRL for Q Learning: A Case Study

on DQN

The action space for DQN is finite, and the deterministic action is determined by

the max 𝑄 value: 𝜋(𝑎|𝑠) = 1 when 𝑎 = argmax𝑎′ 𝑄(𝑠, 𝑎′) and 0 otherwise. The total

variation distance in this case is

D𝑇 𝑉 (𝜋(·|𝑠), 𝜋(·|𝑠)) =

⎧⎪⎪⎨⎪⎪⎩
0 argmax𝑎 𝜋(𝑎|𝑠) = argmax𝑎 𝜋(𝑎|𝑠)

1 otherwise.

Thus, we want to make the top-1 action stay unchanged after perturbation, and we

can use a hinge-like robust policy regularizer, where 𝑎*(𝑠) = argmax𝑎 𝑄𝜃(𝑠, 𝑎) and 𝑐 is

a small positive constant:

ℛDQN(𝜃) :=
∑︁

𝑠

max{max
𝑠∈𝐵(𝑠)

max
�̸�=𝑎*

𝑄𝜃(𝑠, 𝑎)−𝑄𝜃(𝑠, 𝑎*(𝑠)),−𝑐}. (5.6)

The sum is over all 𝑠 in a sampled batch. Unlike PPO, it is more similar to the

robustness of classification tasks, if we treat 𝑎*(𝑠) as the “correct” label. The maxi-

mization can be solved using projected gradient descent (PGD) or convex relaxation of

neural networks. Due to its similarity to classification, we defer the details on solving

ℛDQN(𝜃) and full SA-DQN algorithm to Appendix D.6.

5.3.4 Robustness Evaluation via Adversarial Attacks under

Assumption 1

In this section and Appendix D.4 we discuss a few strong adversarial attacks under

Assumption 1.
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Attacks for PPO

For policy gradient and actor-critic based RL algorithms, [113] and many follow-on

works use the gradient of 𝑄(𝑠, 𝑎) to provide the direction to update states adversarially

in 𝐾 steps:

𝑠𝑘+1 = 𝑠𝑘 − 𝜂 · proj
[︁
∇𝑠𝑘𝑄(𝑠0, 𝜋(𝑠𝑘))

]︁
, 𝑘 = 0, . . . , 𝐾 − 1, and define 𝑠 := 𝑠𝐾−1.

(5.7)

Here proj[·] is a projection to 𝐵(𝑠), 𝜂 is the learning rate, and 𝑠0 is the state under

attack. It attempts to find a state 𝑠 triggering an action 𝜋(𝑠) minimizing the action-

value at state 𝑠0. The formulation in [113] has a glitch that the gradient is evaluated as

∇𝑠𝑘𝑄(𝑠𝑘, 𝜋(𝑠𝑘)) rather than ∇𝑠𝑘𝑄(𝑠0, 𝜋(𝑠𝑘)). We found that the corrected form (5.7)

is more successful. If 𝑄 is a perfect action-value function, 𝑠 leads to the worst action

that minimizes the value at 𝑠0. However, this attack has a few drawbacks:

• Attack strength strongly depends on critic quality; if 𝑄 is poorly learned, is not

robust against small perturbations or has obfuscated gradients, the attack fails as no

correct update direction is given.

• It relies on the 𝑄 function which is specific to the training process, but not used

during roll-out.

• Not applicable to many actor-critic methods (e.g., TRPO and PPO) using a learned

value function 𝑉 (𝑠) instead of 𝑄(𝑠, 𝑎). Finding 𝑠 ∈ 𝐵(𝑠) minimizing 𝑉 (𝑠) does not

correctly reflect the setting of perturbing observations, as 𝑉 (𝑠) represents the value of

𝑠 rather than the value of taking 𝜋(𝑠) at 𝑠0.

When we evaluate the robustness of a policy, we desire it to be independent of

a specific critic network to avoid these problems. We thus propose a simple yet

very effective attack for PPO, which does not depend on a critic, the Maximal

Action Difference (MAD) attack. Following our Theorem 7, we can find an

adversarial state 𝑠 by maximizing 𝐷KL (𝜋(·|𝑠)‖𝜋(·|𝑠)). For actions parameterized by

Gaussian mean 𝜋𝜃𝜋(𝑠) and covariance matrix Σ (independent of 𝑠), we minimize
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𝐿MAD(𝑠) := −𝐷KL (𝜋(·|𝑠)‖𝜋(·|𝑠)) to find 𝑠:

argmin
𝑠∈𝐵(𝑠)

𝐿MAD(𝑠) = argmax
𝑠∈𝐵(𝑠)

𝐷KL(𝜋(·|𝑠)‖𝜋(·|𝑠))

= argmax
𝑠∈𝐵(𝑠)

(𝜋𝜃𝜋(𝑠)− 𝜋𝜃𝜋(𝑠))⊤ Σ−1 (𝜋𝜃𝜋(𝑠)− 𝜋𝜃𝜋(𝑠))
(5.8)

Attack for DQN

For DQN, we use the regular untargeted Projected Gradient Decent (PGD) attack in

the literature [86, 113, 165]. The untargeted PGD attack with 𝐾 iterations updates

the state 𝐾 times as follows:

𝑠𝑘+1 = 𝑠𝑘 + 𝜂 · proj[∇𝑠𝑘ℋ(𝑄𝜃(𝑠𝑘, ·), 𝑎*)],

𝑠0 = 𝑠, 𝑘 = 0, . . . , 𝐾 − 1
(5.9)

where ℋ(𝑄𝜃(𝑠𝑘, ·), 𝑎*) is the cross-entropy loss between the output logits of 𝑄𝜃(𝑠𝑘, ·)

and the onehot-encoded distribution of 𝑎* := argmax𝑎 𝑄𝜃(𝑠, 𝑎). proj[·] is a projection

operator depending on the norm constraint of 𝐵(𝑠) and 𝜂 is the learning rate. A

successful untargeted PGD attack will then perturb the state to lead the Q network

to output an action other than the optimal action 𝑎* chosen at the original state 𝑠.

To guarantee that the final state obtained by the attack is within an ℓ∞ ball around

𝑠 (𝐵𝜖(𝑠) = {𝑠 : 𝑠− 𝜖 ≤ 𝑠 ≤ 𝑠 + 𝜖}), the projection proj[·] is a sign operator and 𝜂 is

typically set to 𝜂 = 𝜖
𝐾

.

5.4 Experiments

In our experiments, the set of adversarial states 𝐵(𝑠) is defined as an ℓ∞ norm ball

around 𝑠 with a radius 𝜖: 𝐵(𝑠) := {𝑠 : ‖𝑠 − 𝑠‖∞ ≤ 𝜖}. Here 𝜖 is also referred

to as the perturbation budget. In some environments, the ℓ∞ norm is applied on

normalized state representations. The code for SA-PPO and SA-DQN is available

at https://github.com/chenhongge/StateAdvDRL.
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5.4.1 Evaluation of SA-PPO

We use the PPO implementation from [43], which conducted hyperparameter search

and published the optimal hyperparameters for PPO on three Mujoco environments in

OpenAI Gym [10]. We use their optimal hyperparameters for PPO, and the same set

of hyperparameters for SA-PPO without further tuning. We run Walker2d and Hopper

2× 106 steps and Humanoid 1× 107 steps to ensure convergence. Our PPO baselines

achieve similar or better performance than reported in the literature [43, 62, 58].

Detailed hyperparameters are in Appendix D.7.

SA-PPO has one additional regularization parameter, 𝜅PPO, for the regularizer

ℛPPO, which is chosen in {0.01, 0.03, 0.1, 0.3, 1.0}. The perturbation 𝜖 is added into

the normalized state space as ℓ∞ noise. We include three baselines: vanilla PPO, and

adversarially trained PPO [97, 113] with 50% and 100% training steps under critic

attack [113]. The attack has to be conducted on 𝑉 (𝑠) instead of 𝑄(𝑠, 𝑎), as PPO

does not learn a 𝑄 function during learning. We report SA-PPO objective solved

using both SGLD and convex relaxation methods. We use three attacks detailed in

Sec. 5.3.4 and Appendix D.4.

In Table 5.1, we observe that adversarial training deteriorates performance and

does not reliably improve robustness in all three environments. But we can see that

our SA-PPO achieves higher rewards under attacks.

Our MAD attack is very effective in most environments and achieves lower rewards

than critic and random attacks; this shows the importance of evaluation using strong

attacks. SA-PPO, solved either by SGLD or the convex relaxation objective, signif-

icantly improves robustness against strong attacks. Additionally, SA-PPO achieves

natural performance (without attacks) similar to that of vanilla PPO in Walker2d and

Hopper, and significantly improves the reward in Humanoid environment. Humanoid

has high state-space dimension (376) and is usually hard to train [58], and our results

suggest that a robust objective can be helpful even in a non-adversarial setting. We

include the convergence experiments of PPO and SA-PPO in Appendix D.7.
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Table 5.1: Average rewards ± standard deviation over 50 episodes on three baselines and SA-PPO. We report natural
rewards (no attacks) and rewards under thre adversarial attacks. In each row we bold the best (lowest) attack reward
over all three attacks. The gray rows are the most robust agents.

Env. 𝜖 Method Natural
Reward

Attack Reward Best
AttackCritic Random MAD

PPO (vanilla) 3167.6± 541.6 1799.0± 935.2 2915.2±677.7 1505.2± 382.0 1505.2
PPO (adv. 50%) 174± 146 69 ±83 141± 128 42± 46 42
PPO (adv. 100%) 6.1± 2.6 4.4 ±1.8 6.1± 3.2 5.8± 2.7 5.8
SA-PPO (SGLD) 3523.1±329.0 3665.5± 8.2 3080.2± 745.4 2996.6± 786.4 2996.6

Hopper 0.075

SA-PPO (Convex) 3704.1± 2.2 3698.4± 4.4 3708.7± 23.8 3443.1± 466.672 3443.1
PPO (vanilla) 4619.5± 38.2 4589.3± 12.4 4480.0±465.3 4469.1±715.6 4469.1

PPO (adv. 50%) -11 ± 0.9 -10.6 ± 0.86 -10.99 ± 0.95 -10.78 ± 0.89 -10.99
PPO (adv. 100%) -113 ± 4.14 -111.9 ± 4.13 -111 ± 4.27 -112 ± 4.08 -112
SA-PPO (SGLD) 4911.8± 188.9 5019.0± 65.2 4894.8± 139.9 4755.7± 413.1 4755.7

Walker2d 0.05

SA-PPO (Convex) 4486.6± 60.7 4572.0± 52.3 4475.0± 48.7 4343.4± 329.4 4343.4
PPO (vanilla) 5270.6±1074.3 5494.7± 118.7 5648.3± 86.8 1140.3± 534.8 1140.3

PPO (adv. 50%) 234± 28 198 ± 58 240 ± 19.4 148 ± 73 148
PPO (adv. 100%) 141.4 ± 20.6 140.25 ± 16.6 142.13 ± 16 140.23 ± 34.5 140.23
SA-PPO (SGLD) 6624.0± 25.5 6587.0± 23.1 6614.1± 21.4 6586.4± 23.5 6586.4

Humanoid 0.075

SA-PPO (Convex) 6400.6± 156.8 6397.9 ±35.6 6207.9± 783.3 6379.5± 30.5 6207.9

5.4.2 Evaluation of SA-DQN

We implement Double DQN [156] and Prioritized Experience Replay [128] on four

Atari games. We train Atari agents for 6, 000, 000 frames for both vanilla DQN and

SA-DQN. Detailed parameters and training procedures are in Appendix D.6. For

Atari games, we normalize the pixel values to [0, 1] and we add ℓ∞ adversarial noise

with norm 𝜖 = 1/255. We include vanilla DQNs and adversarially trained DQNs

with 50% of frames under attack [7] during training time as baselines, and we report

results of the robust imitation learning based approach as in [46]. We evaluate all

environments under 10-step untargeted PGD attacks, except that results from [46] are

evaluated using a weaker four-step PGD attack. For the most robust Atari models

(SA-DQN convex), we additionally attack them using 50-step PGD attacks, and find

that the rewards do not further reduce compared to the 10-step attacks.

In Table 5.2, we can see that our SA-DQN achieves much higher rewards under

attacks in most environments, and naive adversarial training is mostly ineffective

under strong attacks. We obtain better rewards than [46] in most environments, as

we learn the agent directly rather than using two-step imitation learning.

5.4.3 Robustness certificates

When our robust policy regularizer is trained using convex relaxations, we can obtain

certain robustness certification under observation perturbations. For a simple environ-

101



Table 5.2: Average rewards ± std and action certification rate over 50 episodes on three baselines and SA-DQN. We
report natural rewards (no attacks) and PGD attack rewards (under 10-step PGD). For the most robust Atari models
(SA-DQN convex), we additionally attack them using 50-step PGD attacks. Action Cert. Rate is the proportion of the
actions during rollout that are guaranteed unchanged by any attacks within the given 𝜖. Bold numbers indicate the
most robust model; italic numbers indicate models with poor robustness. Training time is reported in Section D.6.

Environment Pong Freeway BankHeist RoadRunner
ℓ∞ norm perturbation budget 𝜖 1/255

DQN
(vanilla)

Natural Reward 21.0 ± 0.0 34.0 ± 0.2 1308.4 ± 24.1 45534.0 ± 7066.0
PGD Attack Reward (10 steps) -21.0±0.0 0.0±0.0 56.4±21.2 0.0±0.0

Action Cert. Rate 0.0 0.0 0.0 0.0
DQN Adv. Training
(attack 50% frames)
Behzadan et al.[7]

Natural Reward 10.1 ± 6.6 25.4±0.8 1126.0±70.9 22944.0±6532.5
PGD Attack Reward (10 steps) -21.0 ± 0.0 0.0±0.0 9.4±13.6 14.0±34.7

Action Cert. Rate 0.0 0.0 0.0 0.0
Imitation learning
Fisher et al.[46]

Natural Reward 19.73 32.93 238.66 12106.67
PGD Attack Reward (4 steps) 18.13 32.53 190.67 5753.33

SA-DQN
(PGD)

Natural Reward 21.0±0.0 33.9 ± 0.4 1245.2±14.5 34032.0±3845.0
PGD Attack Reward (10 steps) 21.0±0.0 23.7 ± 2.3 1006.0±226.4 20402.0±7551.1

Action Cert. Rate 0.0 0.0 0.0 0.0

SA-DQN
(convex)

Natural Reward 21.0 ± 0.0 30.0±0.0 1235.4±9.8 44638.0±7367.0
PGD Attack Reward (10 steps) 21.0 ± 0.0 30.0±0.0 1232.4±16.2 44732.0±8059.5
PGD Attack Reward (50 steps) 21.0 ± 0.0 30.0±0.0 1234.6±16.6 44678.0±6954.0

Action Cert. Rate 1.000 1.000 0.984 0.475

ment like Pong, we can guarantee that actions do not change for all frames during

rollouts, and thus can guarantee the accumulative rewards under perturbation. Unfor-

tunately, for most RL tasks, due to the complexity of environments, it is impossible

to obtain a “certified reward” as the certified test error in supervised learning settings.

We leave further discussion to Section D.3.1 in the Appendix.

5.5 Discussion and Remarks

In this chapter, we develop State-Adversarial Markov Decision Process (SA-MDP) as a

model for studying reinforcement learning problems under adversarial perturbations on

state observations. Then, we apply our theoretically principled robustness regularizer

to a few practical deep reinforcement learning algorithms, including PPO and DQN.

Reinforcement learning has the great potential to be applied into many mission-critical

tasks such as autonomous driving [134, 124, 175], if its robustness can be established.

The robustness considered in this chapter is important for many realistic settings

such as sensor noise, measurement errors, and man-in-the-middle (MITM) attacks for

a DRL system. This chapter presents the first work that studies this problem in a

fundamental and systematic manner, and derives principles that are widely applicable

to existing RL algorithms.
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Chapter 6

Conclusion and Future Works

This chapter discusses the contributions of this thesis, and possibilities for future work

in this research area.

6.1 Thesis Contributions

In this thesis, we study the problem of machine learning model robustness against

adversarial examples, which is vital to deploying machine learning models to security

sensitive applications. Specifically, this thesis proposes pioneering methods for robust-

ness verification and defense methods for decision tree-based machine learning models,

as these topics for decision trees have been little studied in the literature. This thesis

also empirically studies deep neural network robustness when test examples lie in low

density regions of the training data empirical distribution. Finally, we apply robust

deep neural networks in reinforcement learning and develop training method for robust

agents against perturbation on observations. The major technical contributions of

this thesis are summarized as below:

• A novel robustness verification method for tree ensemble classification model

is developed. This method gives a bound such that the model classification

output is guaranteed unchanged as long as the added perturbation has an ℓ∞

norm less than this bound. This method is developed by casting the problem

as a max-clique problem on a multi-partite graph. It is an efficient algorithm
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that iteratively improves the bound and can be terminated at anytime during

running. On large scale random forest or gradient boosted decision tree models,

this method’s output is shown to be very tight compared to the exact bound

and is up to hundreds of times faster than a previous approach solving the exact

bound.

• A novel training algorithm to improve the robustness of decision tree-based

classification models is proposed. The perturbation needed to change the

output label of robust models are much larger than those for natural models

trained with regular tree learning algorithms. This new method takes possible

perturbations on feature values into consideration and optimizes the model

performance under the worst case perturbation of input data. Max-min saddle

point optimization problems are solved during node splitting when building trees,

and necessary approximations are made to drastically reduce the training time

while the robustness improvement is preserved. This method is implemented

both in simple information gain-based decision trees and in large scale gradient

boosting models. Experimental results show that it can significantly enhance

the robustness of models with hundreds of deep trees. Tree-based machine

learning models are widely used in security sensitive industries such as finance

and manufacturing. We believe our verification and robust training methods

are directly applicable in global efforts to improve the efficiency and security of

these industries.

• We empirically observe that the effectiveness of robust training methods in the

literature for neural networks is highly correlated with the characteristics of

the test data distribution. Even with the state-of-the-art robust training, test

data examples that are far enough from the distribution of training data tend

to be more vulnerable to adversarial attacks. Following this observation, a new

class of attack called the “blind-spot attack” is proposed. A simple pixel value

scale-and-shift scheme for conducting blind-spot attacks is able to drastically

reduce the effectiveness of adversarial training on MNIST and Fashion MNIST
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datasets. This phenomenon supports the existence of a robustness generalization

gap, and argues that robust training can be challenging due to the prevalence of

blind-spots in high dimensional datasets.

• Based on robust training methods developed for deep neural network classifica-

tion models, we develop a novel algorithm to train robust reinforcement learning

agents that can achieve high performance even when adversarial noise is present

in the observations. We formulate these kinds of reinforcement learning prob-

lems under adversarial perturbations on state observations as State-Adversarial

Markov Decision Processes (SA-MDP). Then we leverage robust training meth-

ods for deep neural networks to learn policies that are not sensitive to input

perturbations. Specifically, a robustness regularizer is added to the training

loss; the regularizer can be solved with either a gradient-based approach or

convex relaxation on neural networks. Experimental results show that our

method can train robust agents which are able to achieve high reward even

under strong adversarial perturbations on observations. Applications of robust

reinforcement learning methodologies are effectively endless in a variety of areas

such as autonomous driving, predictive maintenance, and robot control, where

measurement noise and security are major concerns.

6.2 Future Works

Future works in this area could involve further fundamental studies on why training

robust machine learning models is difficult, and on how robust machine learning model

can help us understand what is inside the black-box of machine learning models. In fact,

adversarial examples being an annoying but intriguing property of current machine

learning models is a valuable reminder that our understanding of this “alchemy” is

still limited, and blindly using a powerful tool which we do not completely understand

can be risky. This phenomenon also suggests that the way deep neural networks (or

other function approximators) “see” the world may be fundamentally different than

our eyes.
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It is unclear how far we are from the next level of intelligence. It is possible that

the mind-blowing progress of deep learning we have seen in the past several years is

largely due to a dramatic growth of computation power and that we are still developing

a very low level of “intelligence,” by remembering a large amount of training data.

Perhaps when researchers decades from now look back to the development of artificial

intelligence in the early twenty first century, they will categorize all our current models

— tree ensembles, neural networks or transformers, etc. — as “brute force.” It is also

possible that we are actually on a right track, but our datasets are still too small,

and our computation power is still too limited. The recent GPT-3 model [12] with

175 billion parameters sheds some light on how powerful a gigantic machine learning

model can be, even if its basic building blocks are still transformers. Finally and most

likely, we may be at a preliminary stage of both methodology and computation power

development, which means that we still have a very long way to go.

6.2.1 Challenges of Learning Robust Models

Theoretical Foundations – One of the most important questions in this area is

that, is it really possible to learn large scale robust machine learning models? Existing

robust training methods face two main drawbacks that prevent them from being

successfully deployed in real-world applications. The first problem is that robust

training methods require more training time, and the second is that when applied to

large datasets, model performances drop significantly. Though many recent works try

to make robust training more efficient and scalable [133, 176], robust model accuracy

and training time are still far from that of regular training. Chapter 4 and some recent

theoretical works suggest that learning robust models requires more computation

power or more training data [16, 129].

Evaluation Metrics and Ground Truth – Another challenge in the research

community is how to define a realistic metric for model robustness evaluation. Cur-

rently, ℓ𝑝 norm distance is the most popular metric for image data due to its simplicity.

The original definition of adversarial examples requires the noise to be “imperceptible”

to human eyes [146], but in practice, it is very difficult and time-consuming to manually
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examine a large dataset, and ℓ𝑝 norm (usually ℓ1, ℓ2, and ℓ∞) has become popular for

automatic evaluation. However, many researchers have expressed their concerns on

the suitability of ℓ𝑝 norm, and even a small ℓ𝑝 distance may also change the semantic

meaning of an image; while even under large ℓ𝑝 norm noise, some image meanings

are still preserved [135, 42]. For other data types such as language data, ℓ𝑝 norm

may not be applicable. Also, we have many other data types that are inherently not

human-interpretable, such as graph, time series, or unstructured data. The distance

norms to formally define “imperceptible” for these datasets are not well-studied, either.

To identify the errors made by machine learning models, we need a ground truth.

For interpretable data such as images and languages, this can be collected from human

answers. But for uninterpretable data, the ground truth may require conducting

simulations or real experiments, which can be expensive, time-consuming or even

impossible. There are recent works using unlabeled data combined with a few labeled

examples to train robust models [22, 153], which use a similar intuition as training

robust reinforcement learning agents in Chapter 5. However, it is still unclear how

supervision or ground truth play roles in model robustness. In fact, some recent

works suggest that a discrepancy exists between the notion of model robustness from

human’s perspective and based on the geometry of the data [71].

6.2.2 Valuable Insights and Future Directions

Though machine learning model robustness is a largely unsolved open question with

the number of research papers growing exponentially in the past seven years, we still

see numerous valuable insights from this unique point of view. These new insights

pave the way to many future research directions.

Connections between Robustness and Interpretability – Many recent

works in this area, especially on deep learning models for image data, have iden-

tified an interesting connection between robustness and interpretability. For example,

researchers in [151] discovered that robust model loss gradients with respect to input

pixels have an intriguing alignment with the original image. This connection between

the saliency map interpretability and adversarial robustness has been widely studied
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in many follow-up works [44, 98, 23]. The reasons why this happens in robust models

instead of in naturally trained models are still not fully understood from a theoretical

point of view. It is well-known that deep neural network training loss is nonconvex

and have numerous local minimum, but the reason why robust training can converge

to such interesting local minima is also unclear.

Adversarial Example and Robust Training May Improve Model Perfor-

mance – Recent studies also indicate that adversarial example and robust training

may also improve the model performance on natural, unperturbed examples [167].

We also observe similar phenomena for the Humanoid experiment in Figure D-5

in Appendix D.7. Many robust training techniques have some connection to data

augmentation and regularization, and such connections may create yet to be explored

“side” effects on model performance.
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Appendix A

Appendix of Chapter 2

A.1 Proof of Theorem 1

Here we prove Theorem 1 for information gain score.

Proof. 𝐻(𝑦) and 𝐻(𝑦|𝑥(𝑗) < 𝜂) are defined as

𝐻(𝑦) = −|ℐ0|
|ℐ|

log( |ℐ0|
|ℐ|

)− |ℐ1|
|ℐ|

log( |ℐ1|
|ℐ|

),

and

𝐻(𝑦|𝑥(𝑗) < 𝜂) =

− |ℐ𝐿|
|ℐ|

[︃
|ℐ𝐿 ∩ ℐ0|
|ℐ𝐿|

log( |ℐ𝐿 ∩ ℐ0|
|ℐ𝐿|

) + |ℐ𝐿 ∩ ℐ1|
|ℐ𝐿|

log( |ℐ𝐿 ∩ ℐ1|
|ℐ𝐿|

)
]︃

− |ℐ𝑅|
|ℐ|

[︃
|ℐ𝑅 ∩ ℐ0|
|ℐ𝑅|

log( |ℐ𝑅 ∩ ℐ0|
|ℐ𝑅|

) + |ℐ𝑅 ∩ ℐ1|
|ℐ𝑅|

log( |ℐ𝑅 ∩ ℐ1|
|ℐ𝑅|

)
]︃
.

For simplicity, we denote 𝑁0 := |ℐ0|, 𝑁1 := |ℐ1|, 𝑛0 := |ℐ𝐿 ∩ ℐ0| and 𝑛1 := |ℐ𝐿 ∩ ℐ1|.

The information gain of this split can be written as a function of 𝑛0 and 𝑛1:

𝐼𝐺 = 𝐶1[𝑛0 log( 𝑛0

𝑁0(𝑛1 + 𝑛0)
) + 𝑛1 log( 𝑛1

𝑁1(𝑛1 + 𝑛0)
)

+ (𝑁0 − 𝑛0) log( 𝑁0 − 𝑛0

𝑁0(𝑁1 + 𝑁0 − 𝑛1 − 𝑛0)
)

+ (𝑁1 − 𝑛1) log( 𝑁1 − 𝑛1

𝑁1(𝑁1 + 𝑁0 − 𝑛1 − 𝑛0)
)] + 𝐶2,

(A.1)
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Algorithm 5 Finding Δ𝑛*
0 and Δ𝑛*

1 to Minimize Information Gain or Gini Impurity
Input: 𝑁0 and 𝑁1, number of instances with label 0 and 1. 𝑛𝑜

0 and 𝑛𝑜
1, number of

instances with label 0 and 1 that are certainly on the left.
Input: |Δℐ ∩ ℐ0| and |Δℐ ∩ ℐ1|, number of instances with label 0 and 1 that can
be perturbed.
Output: Δ𝑛*

0, Δ𝑛*
1, optimal number of points with label 0 and 1 in Δℐ to be place

on the left.
Δ𝑛*

0 ← 0, Δ𝑛*
1 ← 0, min_diff← | 𝑛

𝑜
0

𝑁0
− 𝑛𝑜

1
𝑁1
|;

for Δ𝑛0 ← 0 to |Δℐ ∩ ℐ0| do
ceil← ⌈𝑁1(𝑛𝑜

0+Δ𝑛0)
𝑁0

⌉ − 𝑛𝑜
1;

floor← ⌊𝑁1(𝑛𝑜
0+Δ𝑛0)
𝑁0

⌋ − 𝑛𝑜
1;

for Δ𝑛′
1 in {ceil, floor} do

Δ𝑛1 ← max{min{Δ𝑛′
1, |Δℐ ∩ ℐ1|}, 0};

if min_diff > |Δ𝑛0+𝑛0
0

𝑁0
− Δ𝑛1+𝑛0

1
𝑁1
| then

Δ𝑛*
0 ← Δ𝑛0, Δ𝑛*

1 ← Δ𝑛1, min_diff← |Δ𝑛0+𝑛0
0

𝑁0
− Δ𝑛1+𝑛0

1
𝑁1
|;

end if
end for

end for
Return Δ𝑛*

0 and Δ𝑛*
1;

where 𝐶1 > 0 and 𝐶2 are constants with respect to 𝑛0. Taking 𝑛0 as a continuous

variable, we have
𝜕𝐼𝐺

𝜕𝑛0
= 𝐶1 · log(1 + 𝑛0𝑁1 −𝑁0𝑛1

(𝑁0 − 𝑛0)(𝑛1 + 𝑛0)
) (A.2)

When 𝜕𝐼𝐺
𝜕𝑛0

< 0, perturbing one example in Δℐ𝑅 with label 0 to ℐ𝐿 will increase 𝑛0 and

decrease the information gain. It is easy to see that 𝜕𝐼𝐺
𝜕𝑛0

< 0 if and only if 𝑛0
𝑁0

< 𝑛1
𝑁1

.

This indicates that when 𝑛0
𝑁0

< 𝑛1
𝑁1

and 𝑛0+1
𝑁0
≤ 𝑛1

𝑁1
, perturbing one example with label

0 to ℐ𝐿 will always decrease the information gain.

Similarly, if 𝑛1
𝑁1

< 𝑛0
𝑁0

and 𝑛1+1
𝑁1
≤ 𝑛0

𝑁0
, perturbing one example in Δℐ𝑅 with label 1

to ℐ𝐿 will decrease the information gain. As mentioned in the main text, to decrease

the information gain score in Algorithm 1, the adversary needs to perturb examples

in Δℐ such that 𝑛0
𝑁0

and 𝑛1
𝑁1

are close to each other. Algorithm 5 gives an 𝑂(|Δℐ|)

method to find Δ𝑛*
0 and Δ𝑛*

1, the optimal number of points in Δℐ with label 0 and 1

to be added to the left.
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A.2 Gini Impurity Score

We also have a theorem for Gini impurity score similar to Theorem 1.

Theorem 8. If 𝑛0
𝑁0

< 𝑛1
𝑁1

and 𝑛0+1
𝑁0
≤ 𝑛1

𝑁1
, perturbing one example in Δℐ𝑅 with label 0

to ℐ𝐿 will decrease the Gini impurity.

Proof. The Gini impurity score of a split with threshold 𝜂 on feature 𝑗 is

𝐺𝑖𝑛𝑖 = (1− |ℐ0|2

|ℐ|2
− |ℐ1|2

|ℐ|2
)

− |ℐ𝐿|
|ℐ|

(1− |ℐ0 ∩ ℐ𝐿|2

|ℐ𝐿|2
− |ℐ1 ∩ ℐ𝐿|2

|ℐ𝐿|2
)

− |ℐ𝑅|
|ℐ|

(1− |ℐ0 ∩ ℐ𝑅|2

|ℐ𝑅|2
− |ℐ1 ∩ ℐ𝑅|2

|ℐ𝑅|2
)

= 𝐶3[
𝑛2

0 + 𝑛2
1

𝑛1 + 𝑛0
+ (𝑁0 − 𝑛0)2 + (𝑁1 − 𝑛1)2

(𝑁0 + 𝑁1 − 𝑛0 − 𝑛1)
] + 𝐶4,

(A.3)

where we use the same notation as in (A.1). 𝐶3 > 0 and 𝐶4 are constants with respect

to 𝑛0. Taking 𝑛0 as a continuous variable, we have

𝜕 𝐺𝑖𝑛𝑖

𝜕𝑛0
= 2𝐶3

𝑚1𝑚0(𝑛0𝑚1 + 𝑛1𝑚0 + 2𝑛1𝑚1)
(𝑛0 + 𝑛1)2(𝑚0 + 𝑚1)2 ( 𝑛0

𝑚0
− 𝑛1

𝑚1
), (A.4)

where 𝑚0 := 𝑁0 − 𝑛0 and 𝑚1 := 𝑁1 − 𝑛1. Then 𝜕 𝐺𝑖𝑛𝑖
𝜕𝑛0

< 0 holds if 𝑛0
𝑚0

< 𝑛1
𝑚1

, which is

equivalent to 𝑛0
𝑁0

< 𝑛1
𝑁1

.

Since the conditions of Theorem 1 and Theorem 8 are the same, Algorithm 1 and

Algorithm 5 also work for tree-based models using Gini impurity score.

A.3 Decision Boundaries of Robust and Natural

Models

Figure A-1 shows the decision boundaries and test accuracy of natural trees as well

as robust trees with different 𝜖 values on two dimensional synthetic datasets. All

trees have depth 5 and we plot training examples in the figure. The results show
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that the decision boundaries of our robust decision trees are simpler than the decision

boundaries in natural decision trees, agreeing with the regularization argument in the

main text.

training data

test acc:0.84

Decision Tree

test acc:0.84

Robust Tree =0.05

test acc:0.82

Robust Tree =0.1

training data

test acc:0.77

Decision Tree

test acc:0.76

Robust Tree =0.05

test acc:0.63

Robust Tree =0.1

training data

test acc:0.93

Decision Tree

test acc:0.96

Robust Tree =0.05

test acc:0.94

Robust Tree =0.1

Figure A-1: (Best viewed in color) The decision boundaries and test accuracy of natural decision trees and robust
decision trees with depth 5 on synthetic datasets with two features.

A.4 Omitted Results on ℓ1 and ℓ2 distortion

In Tables A.1 and A.2 we present the ℓ1 and ℓ2 distortions of vanilla (information gain

based) decision trees and GBDT models obtained by Kantchelian’s ℓ1 and ℓ2 attacks.

Again, only small or medium sized binary classification models can be evaluated by

Kantchelian’s attack. From the results we can see that although our robust decision

tree training algorithm is designed for ℓ∞ perturbations, it can also improve models ℓ1

and ℓ2 robustness significantly.
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A.5 Omitted Results on Models with Different Num-

ber of Trees

Figure A-2 shows the ℓ∞ distortion and accuracy of Fashion-MNIST GBDT models

with different number of trees. In Table A.4 we present the test accuracy and ℓ∞

distortion of models with different number of trees obtained by Cheng’s ℓ∞ attack.

For each dataset, models are generated during a single boosting run. We can see that

the robustness of robustly trained models consistently outperforms that of natural

models with the same number of trees. Another interesting finding is that for MNIST

and Fashion-MNIST datasets in Figures 2-3 (in the main text) and A-2, models with

more trees are generally more robust. This may not be true in other datasets; for

example, results from Table A.4 in the Appendix shows that on some other datasets,

the natural GBDT models lose robustness when more trees are added.
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Figure A-2: (Best viewed in color) ℓ∞ distortion vs. classification accuracy of GBDT models on Fashion-MNIST
datasets with different numbers of trees (circle size). The adversarial examples are found by Cheng’s ℓ∞ attack. The
robust training parameter 𝜖 = 0.1 for Fashion-MNIST. With robust training (purple) the distortion needed to fool a
model increases dramatically with less than 1% accuracy loss.
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A.6 Reducing Depth Does Not Improve Robust-

ness

One might hope that one can simply reduce the depth of trees to improve robustness

since shallower trees provide stronger regularization effects. Unfortunately, this is

not true. As demonstrated in Figure A-3, the robustness of naturally trained GBDT

models are much worse when compared to robust models, no matter how shallow

they are or how many trees are in the ensemble. Also, when the number of trees in

the ensemble model is limited, reducing tree depth will significantly lower the model

accuracy.

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98
Top-1 Accuracy

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

 D
ist

or
tio

n

natural, depth=4, 200 trees
natural, depth=4, 140 trees
natural, depth=4, 80 trees
natural, depth=4, 20 trees
natural,  depth=5, 200 trees
natural,  depth=5, 140 trees
natural,  depth=5, 80 trees
natural,  depth=5, 20 trees
natural, depth=6, 200 trees
natural, depth=6, 140 trees
natural, depth=6, 80 trees
natural, depth=6, 20 trees
natural, depth=7, 200 trees
natural, depth=7, 140 trees
natural, depth=7, 80 trees
natural, depth=7, 20 trees
natural, depth=8, 200 trees
natural, depth=8, 140 trees
natural, depth=8, 80 trees
natural, depth=8, 20 trees
robust, depth=8, 200 trees
robust, depth=8, 140 trees
robust, depth=8, 80 trees
robust, depth=8, 20 trees

Number of trees
20
80
140
200

Figure A-3: (Best viewed in color) Robustness vs. classification accuracy plot of GBDT models on MNIST dataset
with different depth and different numbers of trees. The adversarial examples are found by Cheng’s ℓ∞ attack. The
robust training parameter 𝜖 = 0.3. Reducing the model depth cannot improve robustness effectively compared to our
proposed robust training procedure.

A.7 Random Forest Model Results

We test our robust training framework on random forest (RF) models and our results

are in Table A.3. In these experiments we build random forest models with 0.5 data

sampling rate and 0.5 feature sampling rate. We test the robust and natural random

forest model on three datasets and in each dataset, we tested 100 points using Cheng’s
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and Kantchelian’s ℓ∞ attacks. From the results we can see that our robust decision

tree training framework can also significantly improve random forest model robustness.

A.8 More MNIST and Fashion-MNIST Adversar-

ial Examples

In Figure A-4 we present more adversarial examples for MNIST and Fashion-MNIST

datasets using GBDT models.

Dataset training test # of # of robust 𝜖
depth test acc.

avg. ℓ1 dist.
by Kantchelian’s ℓ1 attack

avg. ℓ2 dist.
by Kantchelian’s ℓ2 attack

set size set size features classes robust natural robust natural robust natural robust natural
breast-cancer 546 137 10 2 0.3 5 5 .948 .942 .534 .270 .504 .209

diabetes 614 154 8 2 0.2 5 5 .688 .747 .204 .075 .204 .065
ionosphere 281 70 34 2 0.2 4 4 .986 .929 .358 .127 .358 .106

Table A.1: The test accuracy and robustness of information gain based single decision tree models. The robustness
is evaluated by the average ℓ1 and ℓ2 distortions of adversarial examples found by Kantchelian’s ℓ1 and ℓ2 attacks.
Average ℓ∞ distortions of robust decision tree models found by the two attack methods are consistently larger than
those of the naturally trained ones.

Dataset training test # of # of # of robust depth test acc.
avg. ℓ1 dist.

by Kantchelian’s ℓ1 attack dist.
avg. ℓ2 dist.

by Kantchelian’s ℓ2 attack dist.
set size set size features classes trees 𝜖 robust natural robust natural robust natural improv. robust natural improv.

breast-cancer 546 137 10 2 4 0.3 8 6 .978 .964 .488 .328 1.49X .431 .251 1.72X
cod-rna 59,535 271,617 8 2 80 0.2 5 4 .880 .965 .065 .059 1.10X .062 .047 1.32X
diabetes 614 154 8 2 20 0.2 5 5 .786 .773 .150 .081 1.85X .135 .059 2.29X
ijcnn1 49,990 91,701 22 2 60 0.1 8 8 .959 .980 .057 .051 1.12X .048 .042 1.14X

MNIST 2 vs. 6 11,876 1,990 784 2 1000 0.3 6 4 .997 .998 1.843 .721 2.56X .781 .182 4.29X

Table A.2: The test accuracy and robustness of GBDT models. Average ℓ1 and ℓ2 distortions of robust GBDT
models are consistently larger than those of the naturally trained models. The robustness is evaluated by the average
ℓ1 and ℓ2 distortions of adversarial examples found by Kantchelian’s ℓ1 and ℓ2 attacks.

Dataset training test # of # of # of robust depth test acc.
avg. ℓ∞ distance

by Cheng’s ℓ∞ attack dist.
avg. ℓ∞ distance

by Kantchelian’s ℓ∞ attack dist.
set size set size features classes trees 𝜖 robust natural robust natural robust natural improv. robust natural improv.

breast-cancer 546 137 10 2 60 0.3 8 6 .993 .993 .406 .297 1.37X .396 .244 1.62X
diabetes 614 154 8 2 60 0.2 5 5 .753 .760 .185 .093 1.99X .154 .072 2.14X

MNIST 2 vs. 6 11,876 1,990 784 2 1000 0.3 6 4 .986 .983 .445 .180 2.47X .341 .121 2.82X

Table A.3: The test accuracy and robustness of random forest models. Average ℓ∞ distortion of our robust random
forest models are consistently larger than those of the naturally trained models. The robustness is evaluated by the
average ℓ∞ distortion of adversarial examples found by Cheng’s and Kantchelian’s attacks.

131



breast-cancer (2)
𝜖 = 0.3

depth𝑟 = 8, depth𝑛 = 6

train test feat. # of trees 1 2 3 4 5 6 7 8 9 10
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

546 137 10 tst. acc. .985 .942 .971 .964 .978 .956 .978 .964 .985 .964 .985 .964 .985 .971 .993 .971 .993 .971 1.00 .971
ℓ∞ dist. .383 .215 .396 .229 .411 .216 .411 .215 .406 .226 .407 .229 .406 .248 .439 .234 .439 .238 .437 .241

covtype (7)
𝜖 = 0.2

depth𝑟 = depth𝑛 = 8

train test feat. # of trees 20 40 60 80 100 120 140 160 180 200
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

400,000 181,000 54 tst. acc. .775 .828 .809 .850 .832 .865 .847 .877 .858 .891 .867 .902 .875 .912 .882 .921 .889 .926 .894 .930
ℓ∞ dist. .125 .066 .103 .064 .087 .062 .081 .061 .079 .060 .077 .059 .077 .058 .075 .056 .075 .056 .073 .055

cod-rna (2)
𝜖 = 0.2

depth𝑟 = 5, depth𝑛 = 4

train test feat. # of trees 20 40 60 80 100 120 140 160 180 200
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

59,535 271,617 8 tst. acc. .810 .947 .861 .959 .874 .963 .880 .965 .892 .966 .900 .967 .903 .967 .915 .967 .922 .967 .925 .968
ℓ∞ dist. .077 .057 .066 .055 .063 .054 .062 .053 .059 .053 .057 .052 .056 .052 .056 .052 .056 .052 .058 .052

diabetes (2)
𝜖 = 0.2

depth𝑟 = depth𝑛 = 5

train test feat. # of trees 2 4 6 8 10 12 14 16 18 20
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

614 154 8 tst. acc. .760 .753 .760 .753 .766 .753 .773 .753 .773 .734 .779 .727 .779 .747 .779 .760 .779 .773 .786 .773
ℓ∞ dist. .163 .066 .163 .065 .154 .071 .151 .071 .152 .073 .148 .072 .146 .067 .144 .062 .138 .062 .139 .060

Fashion-MNIST (10)
𝜖 = 0.1

depth𝑟 = depth𝑛 = 8

train test feat. # of trees 20 40 60 80 100 120 140 160 180 200
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

60,000 10,000 784 tst. acc. .877 .876 .889 .889 .894 .892 .898 .896 .899 .899 .900 .901 .902 .902 .902 .901 .902 .903 .903 .903
ℓ∞ dist. .131 .029 .135 .035 .139 .041 .144 .043 .147 .045 .149 .047 .151 .048 .153 .048 .154 .049 .156 .049

HIGGS (2)
𝜖 = 0.05

depth𝑟 = depth𝑛 = 8

train test feat. # of trees 50 100 150 200 250 300 350 400 450 500
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

10,500,000 500,000 28 tst. acc. .676 .747 .688 .753 .700 .755 .702 .758 .705 .759 .709 .760 .711 .762 .712 .764 .716 .763 .718 .764
ℓ∞ dist. .023 .013 .023 .014 .022 .014 .022 .014 .022 .014 .022 .014 .021 .015 .021 .015 .021 .015 .021 .015

ijcnn1 (2)
𝜖 = 0.1

depth𝑟 = depth𝑛 = 8

train test feat. # of trees 10 20 30 40 50 60 70 80 90 100
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

49,990 91,701 22 tst. acc. .933 .973 .942 .977 .947 .977 .952 .979 .958 .980 .959 .980 .962 .980 .964 .980 .967 .980 .968 .980
ℓ∞ dist. .065 .048 .061 .047 .058 .048 .057 .047 .054 .048 .054 .047 .054 .047 .053 .047 .052 .047 .052 .047

MNIST (10)
𝜖 = 0.3

depth𝑟 = depth𝑛 = 8

train test feat. # of trees 20 40 60 80 100 120 140 160 180 200
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

60, 000 10, 000 784 tst. acc. .964 .966 .973 .975 .977 .977 .978 .978 .978 .978 .979 .979 .979 .979 .980 .979 .980 .979 .980 .980
ℓ∞ dist. .330 .033 .343 .049 .352 .057 .359 .062 .363 .065 .367 .067 .369 .069 .370 .071 .371 .072 .373 .072

Sensorless (11)
𝜖 = 0.05

depth𝑟 = depth𝑛 = 6

train test feat. # of trees 3 6 9 12 15 18 21 24 27 30
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

48,509 10,000 48 tst. acc. .834 .977 .867 .983 .902 .987 .923 .991 .945 .992 .958 .994 .966 .996 .971 .996 .974 .997 .978 .997
ℓ∞ dist. .037 .022 .036 .022 .035 .023 .035 .023 .035 .023 .035 .023 .035 .023 .035 .023 .035 .023 .035 .023

webspam (2)
𝜖 = 0.05

depth𝑟 = depth𝑛 = 8

train test feat. # of trees 10 20 30 40 50 60 70 80 90 100
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

300, 000 50, 000 254 tst. acc. .950 .976 .964 .983 .970 .986 .973 .989 .976 .990 .978 .990 .980 .991 .981 .991 .982 .992 .983 .992
ℓ∞ dist. .049 .010 .048 .015 .049 .019 .049 .021 .049 .023 .049 .024 .049 .024 .049 .024 .048 .024 .049 .024

Table A.4: The test accuracy and robustness of GBDT models. Here depth𝑛 is the depth of natural trees and depth𝑟
is the depth of robust trees. Robustness is evaluated by the average ℓ∞ distortion of adversarial examples found by
Cheng’s attack [33]. The number in the parentheses after each dataset name is the number of classes. Models are
generated during a single boosting run. We can see that the robustness of our robust models consistently outperforms
that of natural models with the same number of trees.
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Original
Adversarial of
natural GBDT

Adversarial of
robust GBDT Original

Adversarial of
natural GBDT

Adversarial of
robust GBDT

(a)
prediction=7

(b)
ℓ∞ distance= 0.002
prediction=9

(c)
ℓ∞ distance= 0.305
prediction=9

(d)
prediction=0

(e)
ℓ∞ distance= 0.018
prediction=8

(f)
ℓ∞ distance= 0.327
prediction=5

(g)
prediction=9

(h)
ℓ∞ distance= 0.025
prediction=4

(i)
ℓ∞ distance= 0.402
prediction=4

(j)
prediction=6

(k)
ℓ∞ distance= 0.014
prediction=8

(l)
ℓ∞ distance= 0.329
prediction=8

(m)
prediction=“Sneaker”

(n)
ℓ∞ distance= 0.025
prediction=“Bag”

(o)
ℓ∞ distance= 0.482
prediction=“Sandal”

(p)
prediction=“Dress”

(q)
ℓ∞ distance= 0.024
prediction=“T-shirt/top”

(r)
ℓ∞ distance= 0.340
prediction=“Trouser”

(s)
prediction=“Pullover”

(t)
ℓ∞ distance= 0.017
prediction=“Bag”

(u)
ℓ∞ distance= 0.347
prediction=“Coat”

(v)
prediction=“Bag”

(w)
ℓ∞ distance= 0.033
prediction=“Shirt”

(x)
ℓ∞ distance= 0.441
prediction=“Coat”

Figure A-4: MNIST and Fashion-MNIST examples and their adversarial examples found using the untargeted
Cheng’s ℓ∞ attack [33] on 200-tree gradient boosted decision tree (GBDT) models trained using XGBoost with
depth=8. For both MNIST and Fashion-MNIST robust models, we use 𝜖 = 0.3.
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Appendix B

Appendix of Chapter 3

B.1 Data Statistics and Model Parameters in Ta-

bles 3.1 and 3.2

Table B.1 presents data statistics and parameters for the models in Tables 3.1 and 3.2

in the main text. The standard test accuracy is the model accuracy on natural,

unmodified test sets.

Dataset training test # of # of # of robust depth standard test acc.
set size set size features classes trees 𝜖 robust natural robust natural

breast-cancer 546 137 10 2 4 0.3 8 6 .978 .964
covtype 400,000 181,000 54 7 80 0.2 8 8 .847 .877
diabetes 614 154 8 2 20 0.2 5 5 .786 .773

Fashion-MNIST 60,000 10,000 784 10 200 0.1 8 8 .903 .903
HIGGS 10,500,000 500,000 28 2 300 0.05 8 8 .709 .760
ijcnn1 49,990 91,701 22 2 60 0.1 8 8 .959 .980

MNIST 60,000 10,000 784 10 200 0.3 8 8 .980 .980
webspam 300,000 50,000 254 2 100 0.05 8 8 .983 .992

MNIST 2 vs. 6 11,876 1,990 784 2 1000 0.3 6 4 .997 .998

Table B.1: The data statistics and parameters for the models presented in Tables 3.1 and 3.2.
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B.2 Results for Solving Single Layer Bounds with

Dynamic Programming

In this section we provide results of our algorithm by using Eq. (3.5) for solving the

last single layer bounds. Since using dynamic programming to find the maximum

valued path in a graph can take significantly longer time than using (3.4), we found

that the solving time increases noticeably if using the same 𝑇 and 𝐿 values. For some

models, we reduce the values of 𝑇 or 𝐿 in order to speed up our method with dynamic

programming. But even with smaller 𝑇 or 𝐿 values, the lower bounds 𝑟 can also be

improved with dynamic programming.

Dataset MILP [75] Ours (with DP) Ours vs. MILP
avg. 𝑟* avg. time 𝑇 𝐿 avg. 𝑟𝑜𝑢𝑟 avg. time 𝑟𝑜𝑢𝑟/𝑟* speedup

breast-cancer .210 .012s 2 1 .209 .001s 1.00 12X
covtype .028⋆ 355⋆s 2 3 .024 5.70s .86 62X
diabetes .049 .061s 2 2 .044 .013s .90 4.7X

Fashion-MNIST .014⋆ 1150⋆s 2 1 .012 22.8s .86 50X
HIGGS .0028⋆ 68⋆min 4 1 .0023 22.1s .82 185X
ijcnn1 .030 4.64s 2 1 .027 .053s .90 88X

MNIST .011⋆ 367⋆s 2 1 .011 5.10s 1.00 72X
webspam .00076 47.2s 2 1 .00051 3.29s .67 14X

MNIST 2 vs. 6 .057 23.0s 4 1 .050 2.41s .88 9.5X

Table B.2: Average ℓ∞ distortion over 500 examples and average verification time per example for three verification
methods. Here we evaluate the bounds for standard (natural) GBDT models. Results marked with a star (“⋆”)
are the averages of 50 examples due to long running time. 𝑇 is the number of independent sets and 𝐿 is the number
of levels in searching cliques used in our algorithm. A ratio 𝑟𝑜𝑢𝑟/𝑟* close to 1 indicates better lower bound quality.

Dataset MILP [75] Ours (with DP) Ours vs. MILP
avg. 𝑟* avg. time 𝑇 𝐿 avg. 𝑟𝑜𝑢𝑟 avg. time 𝑟𝑜𝑢𝑟/𝑟* speedup

breast-cancer .400 .009s 2 1 .399 .001s 1.00 9.0X
covtype .046⋆ 305⋆s 2 2 .035 3.69s .76 83X
diabetes .112 .034s 2 2 .111 .005s .98 7.1X

Fashion-MNIST .091⋆ 41⋆min 2 1 .071 19.9s .78 124X
HIGGS .0084⋆ 59⋆min 4 1 .0069 4.25s .82 783X
ijcnn1 .036 2.52s 2 2 .035 .655s .97 3.8X

MNIST .264⋆ 615⋆s 2 1 .264 7.74s 1.00 63X
webspam .015 83.7s 2 1 .011 1.26s .73 66X

MNIST 2 vs. 6 .313 91.5s 2 1 .309 5.91s .99 15.5X

Table B.3: Verification bounds and running time for robustly trained GBDT models introduced in [26]. The
settings for each method are similar to the settings in Table B.2.
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B.3 Connection between the Score in Figure 3-4

and Other Feature Importance Scores

We note that our perturbation-sensitivity notion of feature importance is complemen-

tary to the conventional tree/forest feature importance, with several critical differences.

In Figure B-1 below we show the feature importance map of the same standard and

robust models used in Figure 3-4 in the main text. A feature’s importance is mea-

sured by the average gain across all the splits it is used in. Pixels with darker color

have larger importance and yellow pixels have zero importance. Our single-feature

robustness bounds shown in Figure 4 are different from importance scores (Figure B-1)

in the following ways:

• The conventional feature importance score only depends on the model itself,

and is test data independent. Conversely, our single-feature robustness bound

depends on both the model and the test data point; for different data points,

the model may be sensitive to different features.

• The conventional feature importance is a heuristic score. Our robustness bound

can give a formal guarantee that the model output would not change if this

single feature is perturbed within a given range.

• The conventional feature importance score assigns non-zero importance to more

pixels than our method does in general.

Standard DT Robust DT

0

2000

4000

Figure B-1: Feature importance of the same models as in Figure 4 in the main text. Left: standard DT model;
Right: robust DT model. Yellow pixels have zero feature importance while darker pixels have larger importance. A
feature’s importance is measured by the average gain across all the splits it is used in.
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B.4 An 𝑂(𝑛) time algorithm for verifying a deci-

sion tree

The robustness of a single tree can be easily verified by the following 𝑂(𝑛) algorithm,

which traverse the whole tree and computes the bounding boxes for each node in a

depth-first search fashion.

Algorithm 6 A linear time ℓ∞ untargeted attack for single decision trees.
Initial 𝑝* = 0, ℓ𝑡 = −∞, 𝑟𝑡 =∞, ∀𝑡 = 1, . . . 𝑑

output : ComputeRecursive(0, 0)

Function ComputeRecursive(𝑖, 𝑝)

if 𝑖 is leaf node then

if 𝑣𝑖 ̸= 𝑦0 then
𝑝* ← min(𝑝*, 𝑝)

else

/* Checking conditions for the left child */

𝑠← 𝑟𝑡𝑖
, 𝑟𝑡𝑖
← min(𝑟𝑡𝑖

, I𝑡𝑖
)

if 𝑙𝑡𝑖
≤ 𝑟𝑡𝑖

then

if 𝑟𝑡𝑖
< 𝑥𝑡𝑖

then
ComputeRecursive(𝑖.left_child, max(𝑝, |𝑥𝑡𝑖

− 𝑟𝑡𝑖
|))

else
ComputeRecursive(𝑖.left_child, 𝑝)

𝑟𝑡𝑖 ← 𝑠

/* Checking conditions for the right child */

𝑠← 𝑙𝑡𝑖
, 𝑙𝑡𝑖
← max(𝑙𝑡𝑖

, I𝑡𝑖
)

if 𝑙𝑡𝑖
≤ 𝑟𝑡𝑖

then

if 𝑙𝑡𝑖
> 𝑥𝑡𝑖

then
ComputeRecursive(𝑖.right_child, max(𝑝, |𝑥𝑡𝑖

− 𝑙𝑡𝑖
|))

else
ComputeRecursive(𝑖.right_child, 𝑝)

end
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B.5 Proof of Lemma 1

Lemma 1. For boxes 𝐵1, . . . , 𝐵𝐾 , if 𝐵𝑖 ∩ 𝐵𝑗 ̸= ∅ for all 𝑖, 𝑗 ∈ [𝐾], let �̄� =

𝐵1 ∩𝐵2 ∩ · · · ∩𝐵𝐾 be their intersection. Then �̄� will also be a box and �̄� ̸= ∅.

Proof. If we have 𝐾 one dimensional intervals 𝐼1 = (𝑙1, 𝑟1], 𝐼2 = (𝑙2, 𝑟2], . . . , 𝐼𝑇 =

(𝑙𝐾 , 𝑟𝐾 ], we want to prove if every pair of them have nonempty overlap 𝐼1 ∩ · · · ∩ 𝐼𝐾 ̸=

∅. This can be proved by the following. Without loss of generality we assume

𝑙1 ≤ 𝑙2 ≤ · · · ≤ 𝑙𝐾 . For each 𝑘 < 𝐾, 𝐼𝑘 ∩ 𝐼𝐾 ̸= ∅ implies 𝑙𝐾 < 𝑟𝑘. Therefore,

(𝑙𝑇 , min(𝑟1, 𝑟2, . . . , 𝑟𝐾)] will be a nonempty set that is contained in 𝐼1, 𝐼2, . . . , 𝐼𝐾 .

Therefore 𝐼1 ∩ 𝐼2 ∩ · · · ∩ 𝐼𝐾 ̸= ∅ and it is another interval.

This can be generalized to 𝑑-dimensional boxes. Assume we have boxes 𝐵1, . . . , 𝐵𝐾

such that 𝐵𝑖 ∩ 𝐵𝑗 ≠ ∅ for any 𝑖 and 𝑗. Then for each dimension we can apply the

above proof, which implies that 𝐵1 ∩𝐵2 ∩ · · · ∩𝐵𝐾 ̸= ∅ and the intersection will be

another box.
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Appendix C

Appendix of Chapter 4

C.1 Distance distributions under different nearest

neighbour parameters 𝑘

As discussed in Section 4.3.1, we use 𝑘-nearest neighbour in embedding space to

measure the distance between a test example and the training set. In Section 4.4.2 we

use 𝑘 = 5. In this section we show that the choice of 𝑘 does not have much influence

on our results. We use the adversarially trained model on the CIFAR dataset as an

example. In Figures C-1, C-2 and C-3 we choose 𝑘 = 10, 100, 1000, respectively. The

results are similar to those we have shown in Figure 4-3: a strong correlation between

attack success rates and the distance from a test point to the training dataset.
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(a) Using adversarially trained model as ℎ(𝑥)
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(b) Using naturally trained model as ℎ(𝑥)

Figure C-1: Attack success rates and distance distribution of the adversarially trained CIFAR model by [95]. Upper:
C&W ℓ∞ attack success rate, 𝜖 = 8/255. Lower: distribution of the average ℓ2 (embedding space) distance between
the images in test set and the top-10 (𝑘 = 10) nearest images in training set.
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(a) Using adversarially trained model as ℎ(𝑥)
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(b) Using naturally trained model as ℎ(𝑥)

Figure C-2: Attack success rates and distance distribution of the adversarially trained CIFAR model by [95]. Upper:
C&W ℓ∞ attack success rate, 𝜖 = 8/255. Lower: distribution of the average ℓ2 (embedding space) distance between
the images in test set and the top-100 (𝑘 = 100) nearest images in training set.
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(a) Using adversarially trained model as ℎ(𝑥)
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(b) Using naturally trained model as ℎ(𝑥)

Figure C-3: Attack success rates and distance distribution of the adversarially trained CIFAR model by [95]. Upper:
C&W ℓ∞ attack success rate, 𝜖 = 8/255. Lower: distribution of the average ℓ2 (embedding space) distance between
the images in test set and the top-1000 (𝑘 = 1000) nearest images in training set.

C.2 More visualization results

We demonstrate more MNIST and Fashion-MNIST visualizations in Figure C-4.

C.3 German traffic sign (GTS) dataset

We also studied the German Traffic Sign (GTS) [65] dataset. For GTS, we train our

own model with the same model structure and parameters as the adversarially trained

CIFAR model [95]. We set 𝜖 = 8/255 for adversarial training with PGD, and also use

the same 𝜖 as the threshold of success. The results are shown in Figure C-5. The GTS

model behaves similarly to the CIFAR model: attack success rates are much higher

when the distances between the test example and the training dataset are larger.
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(a)
𝛼 = 1.0
𝛽 = 0.0
dist= 0.363

(b)
𝛼 = 0.9
𝛽 = 0.0
dist= 0.097

(c)
𝛼 = 0.9
𝛽 = 0.05
dist= 0.053

(d)
𝛼 = 1.0
𝛽 = 0.0
dist= 0.342

(e)
𝛼 = 0.8
𝛽 = 0.0
dist= 0.227

(f)
𝛼 = 0.8
𝛽 = 0.1
dist= 0.123

(g)
𝛼 = 1.0
𝛽 = 0.0
dist= 0.409

(h)
𝛼 = 0.9
𝛽 = 0.0
dist= 0.093

(i)
𝛼 = 0.9
𝛽 = 0.041
dist= 0.053

(j)
𝛼 = 1.0
𝛽 = 0.0
dist= 0.327

(k)
𝛼 = 0.8
𝛽 = 0.0
dist= 0.220

(l)
𝛼 = 0.8
𝛽 = 0.1
dist= 0.140

Figure C-4: Blind-spot attacks on Fashion-MNIST and MNIST data with scaling and shifting in [95]. First row
contains input images after scaling and shifting and the second row contains the found adversarial examples. “dist”
represents the ℓ∞ distortion of adversarial perturbations. The first rows of figures (a), (d), (g) and (j) represent the
original test set images (𝛼 = 1.0, 𝛽 = 0.0); first rows of figures (b), (c), (e), (f), (h), (i), (k) and (l) illustrate the
images after transformation. Adversarial examples for these transformed images can be found with small distortions.
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(a) Using adversarially trained model as ℎ(𝑥)

2 4 6 8 10 12
0.00

0.25

0.50

0.75

1.00

su
cc

es
s r

at
e

2 4 6 8 10 12
distance

0

5

10

15

20

25

pe
rc

en
ta

ge

(b) Using naturally trained model as ℎ(𝑥)

Figure C-5: Attack success rate and distance distribution of GTS in [95]. Upper: C&W ℓ∞ attack success rate,
𝜖 = 8/255. Lower: distribution of the average ℓ2 (embedding space) distance between the images in test set and the
top-5 nearest images in training set.

C.4 Results on other robust training methods

In this section we demonstrate our experimental results on two other state-of-the-art

certified defense methods, including convex adversarial polytope by [163] and [162], and

distributional robust optimization based adversarial training by [141]. Different from

the adversarial training by [95], these two methods can provide a formal certification on

the robustness of the model and provably improve robustness on the training dataset.
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However, they cannot practically guarantee non-trivial robustness on test data. We did

not include other certified defenses like [120] and [61] because they are not applicable

to multi-layer networks. For all defenses, we use their official implementations and

pretrained models (if available). Figure C-6 shows the results on CIFAR using the

small CIFAR model in [163]. Tables C.1 and C.2 show the blind-spot attack results

on MNIST and Fashion-MNIST for robust models in [162] and [141], respectively.

Figure C-7 shows the blind-spot attack examples on [95], [162] and [141].
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(a) Using adversarially trained model as ℎ(𝑥)
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(b) Using naturally trained model as ℎ(𝑥)

Figure C-6: Attack success rates and distance distribution of the small CIFAR-10 model in [163]. Lower: the
histogram of the average ℓ2 (in embedding space) distance between the images in test set and the top-5 nearest
images in training set. Upper: the C&W ℓ∞ attack success rate with success criterion 𝜖 = 8/255.

MNIST

𝛼, 𝛽
𝛼 = 1.0 𝛼 = 0.95 𝛼 = 0.9
𝛽 = 0 𝛽 = 0 𝛽 = 0.025 𝛽 = 0 𝛽 = 0.05

Accuracy 97.5% 97.5% 97.5% 97.5% 97.4%
Success criterion (ℓ∞ norm) 0.1 0.1 0.095 0.1 0.095 0.1 0.09 0.1 0.09

Success rates 2.15% 5.55% 4.35% 28.5% 17.55% 30.1% 15.4% 86.35% 80.7%

Fashion-MNIST

𝛼, 𝛽
𝛼 = 1.0 𝛼 = 0.95 𝛼 = 0.9
𝛽 = 0 𝛽 = 0 𝛽 = 0.025 𝛽 = 0 𝛽 = 0.05

Accuracy 79.1% 79.1% 79.4% 79.2% 79.2%
Success criterion (ℓ∞ norm) 0.1 0.1 0.095 0.1 0.095 0.1 0.09 0.1 0.09

Success rates 6.85% 15.45% 9.3% 39.75% 29.35% 34.25% 24.65% 69.95% 65.2%

Table C.1: Blind-spot attack on MNIST and Fashion-MNIST for robust models by [162]

MNIST

𝛼, 𝛽
𝛼 = 1.0 𝛼 = 0.95 𝛼 = 0.9
𝛽 = 0 𝛽 = 0 𝛽 = 0.025 𝛽 = 0 𝛽 = 0.05

Accuracy 98.7% 98.5% 98.6% 98.7% 98.4%
Success criterion (ℓ2 norm) 2 2 1.9 2 1.9 2 1.8 2 1.8

Success rates 12.2% 27.05% 22.95% 36.15% 30.9% 45.25% 31.55% 58.9% 45.6%

Fashion-MNIST

𝛼, 𝛽
𝛼 = 1.0 𝛼 = 0.95 𝛼 = 0.9
𝛽 = 0 𝛽 = 0 𝛽 = 0.025 𝛽 = 0 𝛽 = 0.05

Accuracy 88.5% 88.3% 88.2% 88.1% 87.8%
Success criterion (ℓ2 norm) 2 2 1.9 2 1.9 2 1.8 2 1.8

Success rates 31.4% 46.3% 41.1% 58 % 53.3% 61.2% 51.8% 69.1% 62.85%

Table C.2: Blind-spot attack on MNIST and Fashion-MNIST for robust models by [141]. Note that we use ℓ2
distortion for this model as it is the threat model under study in their work.
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Madry et al. [95] Sinha et al. [141] Wong & Kolter [162]
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𝑑 = 0.218
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Figure C-7: Blind-spot attacks on Fashion-MNIST and MNIST datasets with scaling and shifting. For each group,
the first row contains input images transformed with different scaling and shifting parameter 𝛼, 𝛽 (𝛼 = 1.0, 𝛽 = 0.0
is the original image) and the second row contains the found adversarial examples. 𝑑 represents the distortion of
adversarial perturbations. For models from [95] and [162] we use ℓ∞ norm and for models from [141] we use ℓ2 norm.
Adversarial examples for these transformed images can be found with small distortions 𝑑.
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Appendix D

Appendix of Chapter 5

D.1 An example of SA-MDP

We first show a simple environment and solve it under different settings of MDP

and SA-MDP. The environment have three states 𝒮 = {𝑆1, 𝑆2, 𝑆3} and 2 actions

𝒜 = {𝐴1, 𝐴2}. The transition probabilities and rewards are defined as (unmentioned

probabilities and rewards are 0):

Pr(𝑠′ = 𝑆1|𝑠 = 𝑆1, 𝑎 = 𝐴1) = 1.0

Pr(𝑠′ = 𝑆2|𝑠 = 𝑆1, 𝑎 = 𝐴2) = 1.0

Pr(𝑠′ = 𝑆2|𝑠 = 𝑆2, 𝑎 = 𝐴2) = 1.0

Pr(𝑠′ = 𝑆3|𝑠 = 𝑆2, 𝑎 = 𝐴1) = 1.0

Pr(𝑠′ = 𝑆1|𝑠 = 𝑆3, 𝑎 = 𝐴2) = 1.0

Pr(𝑠′ = 𝑆2|𝑠 = 𝑆3, 𝑎 = 𝐴1) = 1.0

𝑅(𝑠 = 𝑆1, 𝑎 = 𝐴2, 𝑠′ = 𝑆2) = 1.0

𝑅(𝑠 = 𝑆2, 𝑎 = 𝐴1, 𝑠′ = 𝑆2) = 1.0

𝑅(𝑠 = 𝑆3, 𝑎 = 𝐴1, 𝑠′ = 𝑆3) = 1.0

The environment is illustrated in Figure D-1. For the power of adversary, we allow 𝜈
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Action 1
Reward 0

Action 2
Reward 1

Action 1
Reward 1

Action 2
Reward 0

Action 1
Reward 1

Action 2
Reward 0

Figure D-1: A simple 3-state environment.

to perturb one state to any other two neighbouring states:

𝐵𝜈(𝑆1) = 𝐵𝜈(𝑆2) = 𝐵𝜈(𝑆3) = {𝑆1, 𝑆2, 𝑆3}

Now we evaluate various policies for MDP and SA-MDP for this environment. We

use 𝛾 = 0.99 as the discount factor. A stationary and Markovian policy in this

environment can be described by 3 parameters 𝑝11, 𝑝21, 𝑝31 where 𝑝𝑖𝑗 ∈ [0, 1] denotes

the probability Pr(𝑎 = 𝐴𝑗|𝑠 = 𝑆𝑖). We denote the value function as 𝑉 for MDP and

𝑉 for SA-MDP.

• Optimal Policy for MDP. For a regular MDP, the optimal solution is 𝑝11 = 0,

𝑝21 = 1, 𝑝31 = 1. We take 𝐴2 to receive reward and leave 𝑆1, and then keep doing

𝐴1 in 𝑆2 and 𝑆3. The values for each state are 𝑉 (𝑆1) = 𝑉 (𝑆2) = 𝑉 (𝑆3) = 1
1−𝛾

=

100, which is optimal. However, this policy obtains 𝑉 (𝑆1) = 𝑉 (𝑆2) = 𝑉 (𝑆3) = 0

for SA-MDP, because we can set 𝜈(𝑆1) = 𝑆2, 𝜈(𝑆2) = 𝑆1, 𝜈(𝑆3) = 𝑆1 and

consequentially we always take the wrong action receiving 0 reward.

• A Stochastic Policy for MDP and SA-MDP. We consider a stochastic

policy where 𝑝11 = 𝑝21 = 𝑝31 = 0.5. Under this policy, we randomly stay or
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move in each state, and has a 50% probability of receiving a reward. The

adversary 𝜈 has no power because 𝜋 is the same for all states. In this situation,

𝑉 (𝑆1) = 𝑉 (𝑆1) = 𝑉 (𝑆2) = 𝑉 (𝑆2) = 𝑉 (𝑆3) = 𝑉 (𝑆3) = 0.5
1−0.99 = 50 for both

MDP and SA-MDP.

• Deterministic Policies for SA-MDP. Now we consider all 23 = 8 possible

deterministic policies for SA-MDP. Note that if for any state 𝑆𝑖 we have 𝑝𝑖1 = 0

and another state 𝑆𝑗 we have 𝑝𝑗1 = 1, we always have 𝑉 (𝑆1) = 𝑉 (𝑆2) = 𝑉 (𝑆3) =

0. This is because we can set 𝜈(𝑆1) = 𝑆𝑗 , 𝜈(𝑆2) = 𝑆𝑖 and 𝜈(𝑆3) = 𝑆𝑖 and always

receive a 0 reward. Thus the only two possible other policies are 𝑝11 = 𝑝21 =

𝑝31 = 0 and 𝑝11 = 𝑝21 = 𝑝31 = 1, respectively. For 𝑝11 = 𝑝21 = 𝑝31 = 1 we

have 𝑉 (𝑆1) = 0, 𝑉 (𝑆2) = 𝑉 (𝑆3) = 100 as we always take 𝐴1 and never transit

to other states; for 𝑝11 = 𝑝21 = 𝑝31 = 0, we circulate through all three states

and only receive a reward when we leave 𝐴1. We have 𝑉 (𝑆1) = 1
1−𝛾3 ≈ 33.67,

𝑉 (𝑆2) = 𝛾2

1−𝛾3 ≈ 33.00 and 𝑉 (𝑆3) = 𝛾
1−𝛾3 ≈ 33.33.

Figures D-2, D-3, D-4 give the graph of 𝑉 (𝑆1), 𝑉 (𝑆2) and 𝑉 (𝑆3) under three different

settings of 𝑝11. The figures are generated using Algorithm 7.
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Figure D-2: Value functions for SA-MDP when 𝑝11 = 0, with 𝑝21 ∈ [0, 1], 𝑝31 ∈ [0, 1]
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Figure D-3: Value functions for SA-MDP when 𝑝11 = 0.5, with different 𝑝21 ∈ [0, 1], 𝑝31 ∈ [0, 1]
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Figure D-4: Value functions for SA-MDP when 𝑝11 = 1.0, with different 𝑝21 ∈ [0, 1], 𝑝31 ∈ [0, 1]

D.2 Proofs for State-Adversarial Markov Decision

Process

Theorem 3 (Bellman equations for fixed 𝜋 and 𝜈). Given 𝜋 : 𝒮 → 𝒫(𝒜) and

𝜈 : 𝒮 → 𝒮, we have

𝑉𝜋∘𝜈(𝑠) =
∑︁
𝑎∈𝒜

𝜋(𝑎|𝜈(𝑠))
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︁
𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋∘𝜈(𝑠′)

]︁

�̃�𝜋∘𝜈(𝑠, 𝑎) =
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
⎡⎣𝑅(𝑠, 𝑎, 𝑠′) + 𝛾

∑︁
𝑎′∈𝒜

𝜋(𝑎′|𝜈(𝑠′))�̃�𝜋∘𝜈(𝑠′, 𝑎′)
⎤⎦ .

Proof. Based on the definition of 𝑉𝜋∘𝜈(𝑠):

𝑉𝜋∘𝜈(𝑠) = E𝜋∘𝜈

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠

]︃

= E𝜋∘𝜈

[︃
𝑟𝑡+1 + 𝛾

∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡 = 𝑠

]︃

=
∑︁
𝑎∈𝒜

𝜋(𝑎|𝜈(𝑠))
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︃
𝑟𝑡+1 + 𝛾E𝜋∘𝜈

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡+1 = 𝑠′
]︃]︃

=
∑︁
𝑎∈𝒜

𝜋(𝑎|𝜈(𝑠))
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︁
𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋∘𝜈(𝑠′)

]︁
(D.1)

The recursion for �̃�𝜋∘𝜈(𝑠, 𝑎) can be derived similarly. Additionally, we note the

following useful relationship between 𝑉𝜋∘𝜈(𝑠) and �̃�𝜋∘𝜈(𝑠, 𝑎):

𝑉𝜋∘𝜈(𝑠) =
∑︁
𝑎∈𝒜

𝜋(𝑎|𝜈(𝑠))�̃�𝜋∘𝜈(𝑠, 𝑎) (D.2)
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Before starting to prove Theorem 4, first we show that finding the optimal adversary

𝜈* given a fixed 𝜋 for a SA-MDP can be cast into the problem of finding an optimal

policy in a regular MDP.

Lemma 3 (Equivalence of finding optimal adversary in SA-MDP and finding optimal

policy in MDP). Given an SA-MDP 𝑀 = (𝒮,𝒜, 𝐵, 𝑅, 𝑝, 𝛾) and a fixed policy 𝜋, there

exists a MDP �̂� = (𝒮,𝒜, �̂�, 𝑝, 𝛾) such that the optimal policy of �̂� is the optimal

adversary 𝜈 for SA-MDP given the fixed 𝜋.

Proof. For an SA-MDP 𝑀 = (𝒮,𝒜, 𝐵, 𝑅, 𝑝, 𝛾) and a fixed policy 𝜋, we define a regular

MDP �̂� = (𝒮,𝒜, �̂�, 𝑝, 𝛾) such that 𝒜 = 𝒮, and 𝜈 is the policy for �̂� . At each state

𝑠, our policy 𝜈 gives a probability distribution 𝜈(·|𝑠) ∈ 𝒫(𝒜) = 𝒫(𝒮) indicating that

we perturb a state 𝑠 to 𝑠 with probability 𝜈(𝑠|𝑠) in the SA-MDP 𝑀 .

For �̂� , the reward function is defined as:

�̂�(𝑠, �̂�, 𝑠′) =

⎧⎪⎪⎨⎪⎪⎩
−

∑︀
𝑎∈𝒜 𝜋(𝑎|�̂�)𝑝(𝑠′|𝑠,𝑎)𝑅(𝑠,𝑎,𝑠′)∑︀

𝑎∈𝒜 𝜋(𝑎|�̂�)𝑝(𝑠′|𝑠,𝑎) for 𝑠, 𝑠′ ∈ 𝒮 and �̂� ∈ 𝐵(𝑠) ⊂ 𝒜 = 𝒮,

𝐶 for 𝑠, 𝑠′ ∈ 𝒮 and �̂� /∈ 𝐵(𝑠).
(D.3)

The transition probability 𝑝 is defined as

𝑝(𝑠′|𝑠, �̂�) =
∑︁
𝑎∈𝒜

𝜋(𝑎|�̂�)𝑝(𝑠′|𝑠, 𝑎) for 𝑠, 𝑠′ ∈ 𝒮 and �̂� ∈ 𝒜 = 𝒮.

For the case of �̂� ∈ 𝐵(𝑠), the above reward function definition is based on the intuition

that when the agent receives a reward 𝑟 at a time step given 𝑠, 𝑎, 𝑠′, the adversary’s

reward is 𝑟 = −𝑟. Note that we consider 𝑟 as a random variable given 𝑠, 𝑎, 𝑠′. To

give the distribution of rewards for adversary 𝑝(𝑟|𝑠, �̂�, 𝑠′), we follow the conditional
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probability which marginalizes 𝜋:

𝑝(𝑟|𝑠, �̂�, 𝑠′) = 𝑝(𝑟, 𝑠′|𝑠, �̂�)
𝑝(𝑠′|𝑠, �̂�)

=
∑︀

𝑎 𝑝(𝑟, 𝑠′|𝑎, 𝑠, �̂�)𝜋(𝑎|𝑠, �̂�)∑︀
𝑎 𝑝(𝑠′|𝑎, 𝑠, �̂�)𝜋(𝑎|𝑠, �̂�)

=
∑︀

𝑎 𝑝(𝑟, 𝑠′|𝑎, 𝑠)𝜋(𝑎|�̂�)∑︀
𝑎 𝑝(𝑠′|𝑎, 𝑠)𝜋(𝑎|�̂�)

=
∑︀

𝑎 𝑝(𝑟|𝑠′, 𝑎, 𝑠)𝑝(𝑠′|𝑎, 𝑠)𝜋(𝑎|�̂�)∑︀
𝑎 𝑝(𝑠′|𝑎, 𝑠)𝜋(𝑎|�̂�) (D.4)

Considering that 𝑅(𝑠, 𝑎, 𝑠′) := E[𝑟|𝑠′, 𝑎, 𝑠] = −E[𝑟|𝑠′, 𝑎, 𝑠], and taking an expectation

in Eq. (D.4) over 𝑟 yield the first case in (D.3):

�̂�(𝑠, �̂�, 𝑠′) := E[𝑟|𝑠, �̂�, 𝑠′]

=
∑︁

𝑟

𝑟

∑︀
𝑎 𝑝(𝑟|𝑠′, 𝑎, 𝑠)𝑝(𝑠′|𝑎, 𝑠)𝜋(𝑎|�̂�)∑︀

𝑎 𝑝(𝑠′|𝑎, 𝑠)𝜋(𝑎|�̂�)

=
∑︀

𝑎 [∑︀𝑟 𝑟𝑝(𝑟|𝑠′, 𝑎, 𝑠)] 𝑝(𝑠′|𝑎, 𝑠)𝜋(𝑎|�̂�)∑︀
𝑎 𝑝(𝑠′|𝑎, 𝑠)𝜋(𝑎|�̂�)

=
∑︀

𝑎 E[𝑟|𝑠′, 𝑎, 𝑠]𝑝(𝑠′|𝑎, 𝑠)𝜋(𝑎|�̂�)∑︀
𝑎 𝑝(𝑠′|𝑎, 𝑠)𝜋(𝑎|�̂�)

= −
∑︀

𝑎 𝑅(𝑠, 𝑎, 𝑠′)𝑝(𝑠′|𝑎, 𝑠)𝜋(𝑎|�̂�)∑︀
𝑎 𝑝(𝑠′|𝑎, 𝑠)𝜋(𝑎|�̂�) (D.5)

The reward for adversary’s actions outside 𝐵(𝑠) is a constant 𝐶 such that

𝐶 < min
{︁
−𝑀,

𝛾

(1− 𝛾)𝑀 − 1
(1− 𝛾)𝑀

}︁
,

where 𝑀 := min𝑠,𝑎,𝑠′ 𝑅(𝑠, 𝑎, 𝑠′) and 𝑀 := max𝑠,𝑎,𝑠′ 𝑅(𝑠, 𝑎, 𝑠′). We have for ∀(𝑠, �̂�, 𝑠′),

𝐶 < �̂�(𝑠, �̂�, 𝑠′) ≤ −𝑀,

and for ∀�̂� ∈ 𝐵(𝑠), according to Eq. (D.5),

−𝑀 ≤ �̂�(𝑠, �̂�, 𝑠′) ≤ −𝑀.
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According basic properties of MDP [118, 145], we know that the �̂� has an optimal

policy 𝜈*, which satisfies 𝑉𝜋∘𝜈*(𝑠) ≥ 𝑉𝜋∘𝜈(𝑠) for ∀𝑠, ∀𝜈. We also know that this 𝜈* is

deterministic and assigns a unit mass probability for the optimal action for each 𝑠.

We define N := {𝜈 : ∀𝑠, ∃�̂� ∈ 𝐵(𝑠), 𝜈(�̂�|𝑠) = 1} which restricts the adversary

from taking an action not in 𝐵(𝑠), and claim that 𝜈* ∈ N. If this is not true for a

state 𝑠0, we have

𝑉𝜋∘𝜈*(𝑠0) = E𝑝,𝜈*

[︂ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠0
]︂

= 𝐶 + E𝑝,𝜈*

[︃ ∞∑︁
𝑘=1

𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠0
]︃

≤ 𝐶 − 𝛾

1− 𝛾
𝑀

< − 1
1− 𝛾

𝑀

≤ E𝑝,𝜈′

[︂ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠0
]︂

= 𝑉𝜋∘𝜈′(𝑠0),

where the second equality holds because 𝜈* is deterministic, and the last inequality

holds for any 𝜈 ′ ∈ N. This contradicts the assumption that 𝜈* is optimal. So from

now on in this proof we only study policies in N.

For any policy 𝜈 ∈ N :

𝑉𝜋∘𝜈(𝑠) = E𝑝,𝜈

[︂ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠
]︂

= E𝑝,𝜈

[︃
𝑟𝑡+1 + 𝛾

∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡 = 𝑠

]︃

=
∑︁
�̂�∈𝒮

𝜈(�̂�|𝑠)
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, �̂�)
[︃
�̂�(𝑠, �̂�, 𝑠′) + 𝛾E𝑝,𝜈

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡+1 = 𝑠′
]︃]︃

=
∑︁
�̂�∈𝒮

𝜈(�̂�|𝑠)
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, �̂�)
[︁
�̂�(𝑠, �̂�, 𝑠′) + 𝛾𝑉𝜋∘𝜈(𝑠′)

]︁
(D.6)

Note that all policies in N are deterministic and this class of policies consists 𝜈*.

Also, N is consistent with the class of policies studied in Theorem 3. We denote the
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deterministic action �̂� chosen by a 𝜈 ∈ N at 𝑠 as 𝜈(𝑠). Then for ∀𝜈 ∈ N, we have

𝑉𝜋∘𝜈(𝑠) =
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝜈(𝑠))
[︁
�̂�(𝑠, �̂�, 𝑠′) + 𝛾𝑉𝜋∘𝜈(𝑠′)

]︁

=
∑︁
𝑠′∈𝒮

∑︁
𝑎∈𝒜

𝜋(𝑎|�̂�)𝑝(𝑠′|𝑠, 𝑎)
[︃
−

∑︀
𝑎∈𝒜 𝜋(𝑎|�̂�)𝑝(𝑠′|𝑠, 𝑎)𝑅(𝑠, 𝑎, 𝑠′)∑︀

𝑎∈𝒜 𝜋(𝑎|�̂�)𝑝(𝑠′|𝑠, 𝑎) + 𝛾𝑉𝜋∘𝜈(𝑠′)
]︃

=
∑︁
𝑎∈𝒜

𝜋(𝑎|𝜈(𝑠))
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︁
−𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋∘𝜈(𝑠′)

]︁
, (D.7)

or

−𝑉𝜋∘𝜈(𝑠) =
∑︁
𝑎∈𝒜

𝜋(𝑎|𝜈(𝑠))
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︁
𝑅(𝑠, 𝑎, 𝑠′) + 𝛾(−𝑉𝜋∘𝜈(𝑠′))

]︁
. (D.8)

Comparing (D.8) and (D.1), we know that −𝑉𝜋∘𝜈 = 𝑉𝜋∘𝜈 for any 𝜈 ∈ N. The optimal

value function 𝑉𝜋∘𝜈* satisfies:

𝑉𝜋∘𝜈*(𝑠) = max
�̂�∈𝐵(𝑠)

∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, �̂�)
[︁
�̂�(𝑠, �̂�, 𝑠′) + 𝛾𝑉𝜋∘𝜈(𝑠′)

]︁
= max

𝑠𝜈∈𝐵(𝑠)

∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠𝜈)
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︁
−𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋∘𝜈*(𝑠′)

]︁
, (D.9)

where we denote the action �̂� taken at 𝑠 as 𝑠𝜈 . So for 𝜈*, since −𝑉𝜋∘𝜈* = 𝑉𝜋∘𝜈* , we

have

𝑉𝜋∘𝜈*(𝑠) = min
�̂�∈𝐵(𝑠)

∑︁
𝑎∈𝒜

𝜋(𝑎|�̂�)
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︁
𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋∘𝜈*(𝑠′)

]︁
, (D.10)

and 𝑉𝜋∘𝜈*(𝑠) ≤ 𝑉𝜋∘𝜈(𝑠) for ∀𝑠, ∀𝜈 ∈ N. Hence 𝜈* is also the optimal 𝜈 for 𝑉𝜋∘𝜈 .

Lemma 3 gives many good properties for the optimal adversary. First, an optimal

adversary always exists under the regularity conditions where an optimal policy exists

for a MDP. Second, we do not need to consider stochastic adversaries as there always

exists an optimal deterministic adversary. Additionally, showing Bellman contraction

for finding the optimal adversary can be done similarly as in obtaining the optimal

policy in a regular MDP, as shown in the proof of Theorem 4.
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Theorem 4 (Bellman contraction for optimal adversary). Define Bellman operator

L : R|𝒮| → R|𝒮|,

(L𝑉 )(𝑠) = min
𝑠𝜈∈𝐵(𝑠)

∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠𝜈)
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︁
𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉 (𝑠′)

]︁
. (D.11)

The Bellman equation for optimal adversary 𝜈* can then be written as: 𝑉𝜋∘𝜈* = L𝑉𝜋∘𝜈*.

Additionally, L is a contraction that converges to 𝑉𝜋∘𝜈*.

Proof. Based on Lemma 3, this proof is technically similar to the proof of “optimal

Bellman equation” in regular MDPs, where max over 𝜋 is replaced by min over 𝜈. By

the definition of 𝑉𝜋∘𝜈*(𝑠),

𝑉𝜋∘𝜈*(𝑠) = min
𝜈

𝑉𝜋∘𝜈(𝑠) = min
𝜈

E𝜋∘𝜈

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠

]︃

= min
𝜈

E𝜋∘𝜈

[︃
𝑟𝑡+1 + 𝛾

∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡 = 𝑠

]︃

= min
𝜈

∑︁
𝑎∈𝒜

𝜋(𝑎|𝜈(𝑠))
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︃
𝑟𝑡+1 + 𝛾E𝜋∘𝜈

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡+1 = 𝑠′
]︃]︃

= min
𝑠𝜈∈𝐵𝜈(𝑠)

∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠𝜈)
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︃
𝑟𝑡+1 + 𝛾 min

𝜈
E𝜋∘𝜈

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡+1 = 𝑠′
]︃]︃

= min
𝑠𝜈∈𝐵𝜈(𝑠)

∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠𝜈)
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︁
𝑟𝑡+1 + 𝛾𝑉𝜋∘𝜈*(𝑠′)

]︁

This is the Bellman equation for the optimal adversary 𝜈*; 𝜈* is a fixed point of the

Bellman operator L . Now we show the Bellman operator is a contraction. We have,

if L 𝑉𝜋∘𝜈1(𝑠) ≥ L 𝑉𝜋∘𝜈2(𝑠),

L 𝑉𝜋∘𝜈1(𝑠)−L 𝑉𝜋∘𝜈2(𝑠) ≤ max
𝑠𝜈∈𝐵𝜈(𝑠)

{︂ ∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠𝜈)
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︁
𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋∘𝜈1(𝑠′)

]︁
−

∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠𝜈)
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)
[︁
𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋∘𝜈2(𝑠′)

]︁ }︂

= 𝛾 max
𝑠𝜈∈𝐵𝜈(𝑠)

∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠𝜈)
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)[𝑉𝜋∘𝜈1(𝑠′)− 𝑉𝜋∘𝜈2(𝑠′)]

≤ 𝛾 max
𝑠𝜈∈𝐵𝜈(𝑠)

∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠𝜈)
∑︁
𝑠′∈𝒮

𝑝(𝑠′|𝑠, 𝑎)‖𝑉𝜋∘𝜈1 − 𝑉𝜋∘𝜈2‖∞

= 𝛾‖𝑉𝜋∘𝜈1 − 𝑉𝜋∘𝜈2‖∞
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The first inequality comes from the fact that

min
𝑥1

𝑓(𝑥1)−min
𝑥2

𝑔(𝑥2) ≤ 𝑓(𝑥*
2)− 𝑔(𝑥*

2) ≤ max
𝑥

(𝑓(𝑥)− 𝑔(𝑥)),

where 𝑥*
2 = argmin𝑥2 𝑔(𝑥2). Similarly, we can prove L 𝑉𝜋∘𝜈2(𝑠)−L 𝑉𝜋∘𝜈1(𝑠) ≤ ‖𝑉𝜋∘𝜈1−

𝑉𝜋∘𝜈2‖∞ if L 𝑉𝜋∘𝜈2(𝑠) > L 𝑉𝜋∘𝜈1(𝑠). Hence

‖L 𝑉𝜋∘𝜈1(𝑠)−L 𝑉𝜋∘𝜈2(𝑠)‖∞ = max
𝑠
|L 𝑉𝜋∘𝜈1(𝑠)−L 𝑉𝜋∘𝜈2(𝑠)| ≤ 𝛾‖𝑉𝜋∘𝜈1 − 𝑉𝜋∘𝜈2‖∞.

Then according to the Banach fixed-point theorem, since 0 < 𝛾 < 1, 𝑉𝜋∘𝜈 converges to

a unique fixed point, and this fixed point is 𝑉𝜋∘𝜈* .

Algorithm 7 Policy Evaluation for an SA-MDP (𝒮,𝒜, 𝐵, 𝑅, 𝑝, 𝛾)
Input: Policy 𝜋, convergence threshold 𝜀
Output: Values for policy 𝜋, detnoted as 𝑉𝜋∘𝜈*(𝑠)

Initialize array 𝑉 (𝑠)← 0 for all 𝑠 ∈ 𝒮
repeat

Δ← 0
for all 𝑠 ∈ 𝒮 do

𝑣 ←∞, 𝑣0 ← 𝑉 (𝑠)
for all 𝑠𝜈 ∈ 𝐵(𝑠) do

𝑣′ ← ∑︀
𝑎∈𝒜 𝜋(𝑎|𝑠𝜈) ∑︀

𝑠′∈𝒮 𝑝(𝑠′|𝑠, 𝑎) · [𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉 (𝑠′)]
𝑣 ← min(𝑣, 𝑣′)

end for
𝑉 (𝑠)← 𝑣
Δ← max(Δ, |𝑣0 − 𝑉 (𝑠)|)

end for
until Δ < 𝜀
𝑉𝜋∘𝜈*(𝑠)← 𝑉 (𝑠)

A direct consequence of Theorem 4 is the policy evaluation algorithm (Algorithm 7)

for SA-MDP, which obtains the values for each state under optimal adversary for a

fixed policy 𝜋. For both Lemma 3 and Theorem 4, we only consider a fixed policy

𝜋, and in this setting finding an optimal adversary is not difficult. However, finding

an optimal 𝜋 under the optimal adversary is more challenging, as we can see in
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Section D.1, given the white-box attack setting where the adversary knows 𝜋 and can

choose optimal perturbations accordingly, an optimal policy for MDP can only receive

zero rewards under optimal adversary. We now show two intriguing properties for

optimal policies in SA-MDP:

Theorem 5. There exists an SA-MDP and some stochastic policy 𝜋 ∈ ΠMR such

that we cannot find a better deterministic policy 𝜋′ ∈ ΠMD satisfying 𝑉𝜋′∘𝜈*(𝜋′)(𝑠) ≥

𝑉𝜋∘𝜈*(𝜋)(𝑠) for all 𝑠 ∈ 𝒮.

Proof. Proof by giving a counter example that no deterministic policy can be better

than a random policy. The SA-MDP example in section D.1 provided such a counter

example: all 8 possible deterministic policies are no better than the stochastic policy

𝑝11 = 𝑝21 = 𝑝31 = 0.5.

Theorem 6. Under the optimal 𝜈*, an optimal policy 𝜋* ∈ ΠMR does not always exist

for SA-MDP.

Proof. We will show that the SA-MDP example in section D.1 does not have an

optimal policy. First, for 𝜋1 where 𝑝11 = 𝑝21 = 𝑝31 = 1 we have 𝑉𝜋1∘𝜈*(𝜋1)(𝑆1) =

0, 𝑉𝜋1∘𝜈*(𝜋1)(𝑆2) = 𝑉𝜋1∘𝜈*(𝜋1)(𝑆3) = 100. This policy is not an optimal policy since we

have 𝜋2 where 𝑝11 = 𝑝21 = 𝑝31 = 0.5 that can achieve 𝑉𝜋2∘𝜈*(𝜋2)(𝑆1) = 𝑉𝜋2∘𝜈*(𝜋2)(𝑆2) =

𝑉𝜋2∘𝜈*(𝜋2)(𝑆3) = 50 and 𝑉𝜋2∘𝜈*(𝜋2)(𝑆1) > 𝑉𝜋1∘𝜈*(𝜋1)(𝑆1).

An optimal policy 𝜋, if exists, must be better than 𝜋1 and have 𝑉𝜋∘𝜈*(𝜋)(𝑆1) >

0, 𝑉𝜋∘𝜈*(𝜋)(𝑆2) = 𝑉𝜋∘𝜈*(𝜋)(𝑆3) = 100. In order to achieve 𝑉𝜋∘𝜈*(𝜋)(𝑆2) = 𝑉𝜋∘𝜈*(𝜋)(𝑆3) =

100, we must set 𝑝21 = 𝑝31 = 1 since it is the only possible way to start from 𝑆2 and

𝑆3 and receive +1 reward for every step. We can still change 𝑝11 to probabilities

other than 1, however if 𝑝11 < 1 the adversary can set 𝜈(𝑆2) = 𝜈(𝑆3) = 𝑆1 and reduce

𝑉𝜋∘𝜈*(𝜋)(𝑆2) and 𝑉𝜋∘𝜈*(𝜋)(𝑆3). Thus, no policy better than 𝜋1 exists, and since 𝜋1 is

not an optimal policy, no optimal policy exists.

Theorem 5 and Theorem 6 show that the classic definition of optimality is probably

not suitable for SA-MDP. Further works can study how to obtain optimal policies for

SA-MDP under some alternative definition of optimality, or using a more complex

policy class (e.g., history dependent policies).
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Theorem 7. Given a policy 𝜋 for a non-adversarial MDP and its value function is

𝑉𝜋(𝑠). Under the optimal adversary 𝜈 in SA-MDP, for all 𝑠 ∈ 𝒮 we have

max
𝑠∈𝒮

{︁
𝑉𝜋(𝑠)− 𝑉𝜋∘𝜈*(𝜋)(𝑠)

}︁
≤ 𝛼 max

𝑠∈𝒮
max

𝑠∈𝐵(𝑠)
DTV(𝜋(·|𝑠), 𝜋(·|𝑠)) (D.12)

where DTV(𝜋(·|𝑠), 𝜋(·|𝑠)) is the total variation distance between 𝜋(·|𝑠) and 𝜋(·|𝑠).

On the RHS,

𝛼 := 2[1 + 𝛾

(1− 𝛾)2 ] max
(𝑠,𝑎,𝑠′)∈𝒮×𝒜×𝒮

|𝑅(𝑠, 𝑎, 𝑠′)|

is a constant that does not depend on 𝜋.

Proof. Our proof of Theorem 7 is based on Theorem 1 proposed in [1]. In fact,

many existing works in the literature have proved similar results under different

assumptions [74, 117].

For an arbitrary starting state 𝑠0 and two arbitrary policies 𝜋 and 𝜋′, Theorem 1

in [1] gives an upper bound of 𝑉𝜋(𝑠0)− 𝑉𝜋′(𝑠0). The bound is given by

𝑉𝜋(𝑠0)− 𝑉𝜋′(𝑠0) ≤ −E 𝑠∼𝑑𝜋
𝑠0

𝑎∼𝜋(·|𝑠)
𝑠′∼𝑝(·|𝑎,𝑠)

[︂(︁𝜋′(𝑎|𝑠)
𝜋(𝑎|𝑠) − 1

)︁
𝑅(𝑠, 𝑎, 𝑠′)

]︂

+ 2𝛾

(1− 𝛾)2 max
𝑠

{︂
E 𝑎∼𝜋′(·|𝑠)

𝑠′∼𝑝(·|𝑎,𝑠)

[︁
𝑅(𝑠, 𝑎, 𝑠′)

]︁}︂
E𝑠∼𝑑𝜋

𝑠0

[︁
D𝑇 𝑉 (𝜋(·|𝑠), 𝜋′(·|𝑠))

]︁
,

(D.13)

where 𝑑𝜋
𝑠0 is the discounted future state distribution from 𝑠0, defined as

𝑑𝜋
𝑠0(𝑠) := (1− 𝛾)

∞∑︁
𝑡=0

𝛾𝑡Pr(𝑠𝑡 = 𝑠|𝜋, 𝑠0). (D.14)

Note that in Theorem 1 of [1], the author proved a general form with an arbitrary

function 𝑓 and we assume 𝑓 ≡ 0 in our proof. We also assume the starting state is

deterministic, so 𝐽𝜋 in [1] is replaced by 𝑉 𝜋(𝑠0).

Then we simply need to bound both terms on the right hand side of (D.13). For
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the first term we know that

−E 𝑠∼𝑑𝜋
𝑠0

𝑎∼𝜋(·|𝑠)
𝑠′∼𝑝(·|𝑎,𝑠)

[︂(︁𝜋′(𝑎|𝑠)
𝜋(𝑎|𝑠) − 1

)︁
𝑅(𝑠, 𝑎, 𝑠′)

]︂
=

∑︁
𝑠

𝑑𝜋
𝑠0(𝑠)

∑︁
𝑎

[︁
𝜋(𝑎|𝑠)− 𝜋′(𝑎|𝑠)

]︁ ∑︁
𝑠′

𝑝(𝑠′|𝑠, 𝑎)𝑅(𝑠, 𝑎, 𝑠′)

≤
∑︁

𝑠

𝑑𝜋
𝑠0(𝑠)

∑︁
𝑎

⃒⃒⃒
𝜋(𝑎|𝑠)− 𝜋′(𝑎|𝑠)

⃒⃒⃒⃒⃒⃒ ∑︁
𝑠′

𝑝(𝑠′|𝑠, 𝑎)𝑅(𝑠, 𝑎, 𝑠′)
⃒⃒⃒

≤ max
𝑠,𝑎,𝑠′
|𝑅(𝑠, 𝑎, 𝑠′)|max

𝑠

{︁ ∑︁
𝑎

⃒⃒⃒
𝜋(𝑎|𝑠)− 𝜋′(𝑎|𝑠)

⃒⃒⃒}︁
= 2 max

𝑠,𝑎,𝑠′
|𝑅(𝑠, 𝑎, 𝑠′)|max

𝑠
D𝑇 𝑉 (𝜋(·|𝑠), 𝜋′(·|𝑠))

(D.15)

The second term is bounded by

2𝛾

(1− 𝛾)2 max
𝑠

{︂
E 𝑎∼𝜋′(·|𝑠)

𝑠′∼𝑝(·|𝑎,𝑠)

[︁
𝑅(𝑠, 𝑎, 𝑠′)

]︁}︂
E𝑠∼𝑑𝜋

𝑠0

[︁
D𝑇 𝑉 (𝜋(·|𝑠), 𝜋′(·|𝑠))

]︁
≤ 2𝛾

(1− 𝛾)2 max
𝑠,𝑎,𝑠′
|𝑅(𝑠, 𝑎, 𝑠′)|max

𝑠
D𝑇 𝑉 (𝜋(·|𝑠), 𝜋′(·|𝑠))

(D.16)

Therefore, the RHS of (D.13) is bounded by 𝛼 max𝑠 D𝑇 𝑉 (𝜋(·|𝑠), 𝜋′(·|𝑠)), where

𝛼 = 2[1 + 𝛾

(1− 𝛾)2 ] max
𝑠,𝑎,𝑠′
|𝑅(𝑠, 𝑎, 𝑠′)| (D.17)

Finally, we simply let 𝜋′(·|𝑠) := 𝜋(·|𝜈*(𝑠)) and the proof is complete.

D.3 Optimization Techniques

D.3.1 More Backgrounds for Convex Relaxation of Neural

Networks

In this work, we frequently need to solve a minimax problem:

min
𝜃

max
𝜑∈𝒮

𝑔(𝜃, 𝜑) (D.18)

One approach we discussed above is to first solve the inner maximization problem

(approximately) using an optimizer like SGLD. However, due to the non-convexity of
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𝜋𝜃, we cannot solve the inner maximization to global maxima, and the gap between

local maxima and global maxima can be large. Using convex relaxations of neural

networks, we can instead find an upper bound of max𝜑∈𝒮 𝑔(𝜃, 𝜑):

𝑔(𝜃) ≥ max
𝜑∈𝒮

𝑔(𝜃, 𝜑)

Thus we can minimize an upper bound instead, which can guarantee the original

objective (D.18) is minimized.

As an illustration on how to find 𝑔(𝜃) using convex relaxations, following [125] we

consider a simple 𝐿-layer MLP network 𝑓(𝜃, 𝑥) with parameters 𝜃 = {(𝑊 (𝑖), 𝑏(𝑖)), 𝑖 ∈

{1, · · · , 𝐿}} and activation function 𝜎. We denote 𝑥(0) = 𝑥 as the input, 𝑥(𝑖) as

the post-activation value for layer 𝑖, 𝑧(𝑖) as the pre-activateion value for layer 𝑖.

𝑖 ∈ {1, · · · , 𝐿}. The output of the network 𝑓(𝜃, 𝑥) is 𝑧(𝐿). Then, we consider the

following optimization problem:

max
𝑥∈𝒮

𝑓(𝜃, 𝑥), where 𝒮 is the set of perturbations

which is equivalent to the following optimization problem:

max 𝑧(𝐿)

s.t. 𝑧(𝑙) = 𝑊 (𝑙)𝑥(𝑙−1) + 𝑏(𝑙), 𝑙 ∈ [𝐿],

𝑥(𝑙) = 𝜎(𝑧(𝑙)), 𝑙 ∈ [𝐿− 1],

𝑥(0) ∈ 𝒮

(D.19)

In this constrained optimization problem (D.19), assuming 𝒮 is a convex set, the

constraint on 𝑧(𝑙) is convex (linear) and the only non-convex constraints are those for

𝑥(𝑙), where a non-linear activation function is involved. Note that activation function

𝜎(𝑧) itself can be a convex function, but when used as an equality constraint, the

feasible solution is constrained to the graph of 𝜎(𝑧), which is non-convex.

Previous works [162, 182, 125] propose to use convex relaxations of non-linear

units to relax the non-convex constraint 𝑥(𝑙) = 𝜎(𝑧(𝑙)) with a convex one, 𝑥(𝑙) =
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convex(𝜎(𝑧(𝑙))), such that (D.19) can be solved efficiently. We can then obtain an

upper bound of 𝑓(𝜃, 𝑥) since the constraints are relaxed. Several concrete examples

(e.g., ReLU, tanh, sigmoid) on how these relaxations are formed were given in [182].

In the special case where linear relaxations are used, (D.19) can be solved efficiently

and automatically (without manual derivation and implementation) for general com-

putational graphs [171]. Generally, using the framework from [171] we can access an

oracle function ConvexRelaxUB defined as below:

Definition 3. Given a neural network function 𝑓(X) where X is any input for

this function, and X ∈ S where S is the set of perturbations, the oracle function

ConvexRelaxUB provided by an automatic neural network convex relaxation tool

returns an upper bound 𝑓 , which satisfies:

𝑓 ≥ max
X∈S

𝑓(X)

Note that in the above definition, X can by any input for this computation (e.g.,

X can be 𝑠, 𝑎, or 𝜃 for a 𝑄𝜃(𝑠, 𝑎) function). In the special case of this work, for

simplicity we define the notation ConvexRelaxUB(𝑓, 𝜃, 𝑠 ∈ 𝐵(𝑠)) which returns an

upper bound function 𝑓(𝜃) for max𝑠∈𝐵(𝑠) 𝑓(𝜃, 𝑠). Many kinds of convex relaxation

based methods exist [125], where the expensive ones (which gives a tighter upper

bound) can be a few magnitudes slower than regular training. The cheapest method

is interval bound propagation (IBP), which only incurs twice more costs as forward

propagation; however, IBP base training has been reported unstable and hard to

reproduce as its bounds are very loose [179, 4]. To avoid potential issues with IBP, in all

our environments, we use the IBP+Backward relaxation scheme following [179, 171],

which produces considerably tighter bounds, while being only a few times slower

than forward propagation (e.g., 3 times slower than forward propagation when loss

fusion [171] is implemented). In fact, [171] can use the same relaxation for training

downscaled ImageNet dataset on very large vision models. For DRL the policy neural

networks are typically small and can be handled well. In this work, we use convex

relaxation as a blackbox tool (provided by the auto_LiRPA library [171]), and any new
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development for improving its efficiency can benefit us.

D.3.2 Solving the Robust Policy Regularizer using SGLD

Stochastic gradient Langevin dynamics (SGLD) [52] can escape saddle points and

shallow local optima in non-convex optimization problems [121, 183, 14, 172], and can

be used to solve the inner maximization with zero gradient at 𝑠 = 𝑠. SGLD uses the

following update rule to find 𝑠𝐾 to maximize ℛ𝑠(𝑠, 𝜃𝜇):

𝑠𝑘+1 ← proj
(︂

𝑠𝑘 − 𝜂𝑘∇𝑠𝑘ℛ𝑠(𝑠𝑘, 𝜃𝜇) +
√︁

2𝜂𝑘/𝛽𝑘𝜉
)︂

, 𝑠1 = 𝑠, 𝑘 = 1, · · · , 𝐾

where 𝜂𝑘 is step size, 𝜉 is an i.i.d. standard Gaussian random variable in R|𝒮|, 𝛽𝑘 is

an inverse temperature hyperparameter, and proj(·) projects the update back into

𝐵(𝑠). We find that SGLD is sufficient to escape the stationary point at 𝑠 = 𝑠.

However, due to the non-convexity of 𝜇𝜃𝜇(𝑠, 𝜃𝜇), this approach only provides a lower

bound ℛ𝑠(𝑠𝐾 , 𝜃𝜇) of max𝑠∈𝐵(𝑠)ℛ𝑠(𝑠, 𝜃𝜇). Unlike the convex relaxation based approach,

minimizing this lower bound does not guarantee to minimize (5.5), as the gap between

max𝑠∈𝐵(𝑠)ℛ𝑠(𝑠, 𝜃𝜇) and ℛ𝑠(𝑠𝐾 , 𝜃𝜇) can be large. In SGLD, we first need to solve the

inner maximization problem (such as Eq. (5.5)). The additional time cost depends on

the number of SGLD steps. In our experiments for PPO, we find that using 10 steps

are sufficient. However, the total training cost does not grow by 10 times, as in many

environments the majority of time was spent on environment simulation steps, rather

than optimizing a small policy network.

D.4 Additional details for adversarial attacks on

state observations

D.4.1 More details on the Critic based attack

In Section 5.3.4 we discuss critic based attack [113] as a baseline. This attack requires

a 𝑄 function 𝑄(𝑠, 𝑎) to find the best perturbed state. In Algorithm 8 we present our
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“corrected” critic based attack based on [113]:

Algorithm 8 Critic based attack [113]
Input: A policy function 𝜋 under attack, a corresponding 𝑄(𝑠, 𝑎) network, and a

initial state 𝑠0, 𝑇 is the number of attack steps, 𝜂 is the step size, 𝑠 and 𝑠 are valid
lower and upper range of 𝑠.
for 𝑡 = 1 to 𝑇 do

𝑔𝑡 = ∇𝑄𝑠𝑡−1(𝑠0, 𝜋(𝑠𝑡−1)) = 𝜕𝑄
𝜕𝜋

𝜕𝜋
𝜕𝑠𝑡−1

𝑔𝑡 ← proj(𝑔𝑡) ◁project 𝑔𝑡 according to norm constraint of 𝑠; for ℓ∞ norm simply
take the sign
𝑠𝑡 ← 𝑠𝑡−1 − 𝜂𝑔𝑡

𝑠𝑡 ← min(max(𝑠𝑡, 𝑠), 𝑠)
end for

Output: An adversarial state 𝑠 := 𝑠𝑇

Note that in Algorithm 4 of [113], they use the gradient ∇𝑄𝑠(𝑠, 𝜋(𝑠)) = 𝜕𝑄
𝜕𝑠

+ 𝜕𝑄
𝜕𝜋

𝜕𝜋
𝜕𝑠

which essentially attempts to minimize 𝑄(𝑠, 𝜋(𝑠)), but they then sample randomly

along this gradient direction to find the best 𝑠 that minimizes 𝑄(𝑠0, 𝜋(𝑠)). Our

corrected formulation directly minimizes 𝑄(𝑠0, 𝜋(𝑠)) using this gradient instead

∇𝑄𝑠(𝑠0, 𝜋(𝑠)) = 𝜕𝑄
𝜕𝜋

𝜕𝜋
𝜕𝑠

.

For PPO, since there is no 𝑄(𝑠, 𝑎) available during training, we extend [113] to

perform attack relying on 𝑉 (𝑠): we find a state 𝑠 that minimizes 𝑉 (𝑠). Unfortunately,

it does not match our setting of perturbing state observations; it looks for a state

𝑠 that has the worst value (i.e., taking action 𝜋(𝑠) in state 𝑠 is bad), but taking

the action 𝜋(𝑠) at state 𝑠0 does not necessarily trigger a low reward action, because

𝑉 (𝑠) = max𝑎 𝑄(𝑠, 𝑎) ̸= max𝑎 𝑄(𝑠0, 𝑎). Thus, in Table 5.1 we can observe that critic

based attack typically does not work very well for PPO agents.

D.4.2 More details on the Maximal Action Difference (MAD)

attack

We present the full algorithm of MAD in Algorithm 9. It is a relatively simple attack

by directly maximizing a KL-divergence using SGLD, yet it usually outperforms

random attack and critic attack on some environments (e.g., see Table 5.1).
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Algorithm 9 Maximal Action Difference (MAD) Attack (a critic-independent attack)
Input: A policy function 𝜋 under attack, and a initial state 𝑠0, 𝑇 is the number of

attack steps, 𝜂 is the step size, 𝛽 is the (inverse) temperature parameter for SGLD,
𝑠 and 𝑠 are valid lower and upper range of 𝑠.
Define loss function 𝐿MAD(𝑠) = −𝐷KL(𝜋(·|𝑠0)‖𝜋(·|𝑠))
for 𝑡 = 1 to 𝑇 do

Sample 𝜉 ∼ 𝒩 (0, 1)
𝑔𝑡 = ∇𝐿MAD(𝑠𝑡−1) +

√︁
2

𝛽𝜂
𝜉

𝑔𝑡 ← proj(𝑔𝑡) ◁project 𝑔𝑡 according to norm constraint of 𝑠; for ℓ∞ norm simply
take the sign
𝑠𝑡 ← 𝑠𝑡−1 − 𝜂𝑔𝑡

𝑠𝑡 ← min(max(𝑠𝑡, 𝑠), 𝑠)
end for

Output: An adversarial state 𝑠 := 𝑠𝑇

D.5 Robustness Certificates for Deep Reinforce-

ment Learning

If we use the convex relaxation in Section D.3.1 to train our networks, it can produce

robustness certificates for our task. However in some RL tasks the certificates have

interpretations different from classification tasks, as discussed in detail below.

Robustness Certificates for DQN. In DQN, the action space is finite, so we

have a robustness certificate on the actions taken at each state. More specifically, at

each state 𝑠, policy 𝜋’s action is certified if its corresponding Q function satisfies

argmax
𝑎

𝑄𝜃(𝑠, 𝑎) = argmax
𝑎

𝑄𝜃(𝑠, 𝑎) = 𝑎*, for all 𝑠 ∈ 𝐵(𝑠). (D.20)

As mentioned in Section 5.3.3 if 𝑢𝑄𝜃,𝑎*,𝑎 ≤ 0 holds for all 𝑠 ∈ 𝐵(𝑠), we have

𝑄−
𝜃 (𝑠, 𝑎, 𝑎*) := 𝑄𝜃(𝑠, 𝑎)−𝑄𝜃(𝑠, 𝑎*) ≤ 0 (D.21)

is guaranteed for all 𝑎 ∈ 𝒜, which means that the agent’s action will not change

when the state observation is in 𝐵(𝑠). When the agent’s action is not changed under

adversarial perturbation, its reward and transition at current step will not change in

the DQN setting, either.
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In some settings, we find that 100% of the actions are guaranteed to be unchanged

(e.g., the Pong environment in Table 5.2). In that case, we can in fact also certify

the accumulated reward is not changed given the specific initial conditions for testing.

However, it can still be challenging to certify that the agent is robust under any starting

condition. Similarly, in classification problems many existing certified defenses [163,

104, 54, 179] can only practically guarantee robustness on a specific test set (by

computing a “verified test error”), rather than on any input image.

Robustness Certificates for PPO. In PPO, the action space is continuous,

hence it is not possible to certify that actions do not change under adversary. We

instead seek for a different type of guarantee, where we can upper bound the change

in action given a norm bounded input perturbation:

𝑈𝑠 ≥ max
𝑠∈𝐵(𝑠)

‖𝜋𝜃𝜋(𝑠)− 𝜋𝜃𝜋(𝑠)‖ (D.22)

Given a state 𝑠, we can use convex relaxations to compute an upper bound 𝑈𝑠.

Generally speaking, if 𝐵(𝑠) is small, a robust policy desires to have a small 𝑈𝑠,

otherwise it can be possible to find an adversarial state perturbation that greatly

changes 𝜋𝜃𝜋(𝑠) and causes the agent to misbehave. However, giving certificates on

accumulative rewards is still challenging, as it requires to bound reward 𝑟(𝑠, 𝑎) given

a fixed state 𝑠, and a perturbed and bounded action 𝑎 (bounded via (D.22)). Since

the environment dynamics can be quite complex in practice (except for the simplest

environment like InvertedPendulum), it is hard to bound reward changes given a

bounded action. We leave this part as a future direction for exploration and we believe

the robustness certificates (D.22) can be useful for future works.

D.6 Additional Details for SA-DQN

Algorithm We present the SA-DQN training algorithm in Algorithm 10. The main

difference between SA-DQN and DQN is the additional state-adversarial regularizer

ℛDQN(𝜃), which encourages the network not to change its output under perturbations
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on the state observation. We highlighted these changes in Algorithm 10. Note that

the use of hinge loss is not required; other loss functions (e.g., cross-entropy loss) may

also be used.

Algorithm 10 State-Adversarial Deep Q-Learning (SA-DQN)
1: Initialize current Q network 𝑄(𝑠, 𝑎) with parameters 𝜃.
2: Initialize target Q network 𝑄′(𝑠, 𝑎) with parameters 𝜃′ ← 𝜃.
3: Initial replay buffer ℬ
4: for 𝑡 = 1 to 𝑇 do
5: With probability 𝜖𝑡 select a random action at 𝑎𝑡, otherwise select 𝑎𝑡 =

argmax𝑎 𝑄𝜃(𝑠𝑡, 𝑎; 𝜃)
6: Execute action 𝑎𝑡 in environment and observe reward 𝑟𝑡 and state 𝑠𝑡+1
7: Store transition {𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1} in ℬ.
8: Randomly sample a minibatch of 𝑁 samples {𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′

𝑖} from ℬ.
9: For all 𝑠𝑖, compute 𝑎*

𝑖 = argmax𝑎 𝑄𝜃(𝑠𝑖, 𝑎; 𝜃).
10: Set 𝑦𝑖 = 𝑟𝑖 + 𝛾 max𝑎′ 𝑄′

𝜃′(𝑠′
𝑖, 𝑎′; 𝜃) for non-terminal 𝑠𝑖, and 𝑦𝑖 = 𝑟𝑖 for terminal

𝑠𝑖.
11: Compute TD-loss for each transition: TD-𝐿(𝑠𝑖, 𝑎𝑖, 𝑠′

𝑖; 𝜃) = Huber(𝑦𝑖 −
𝑄𝜃(𝑠𝑖, 𝑎𝑖; 𝜃))

12: Define ℛDQN(𝜃) := ∑︀
𝑖 max

{︁
max𝑠𝑖∈𝐵(𝑠) max�̸�=𝑎*

𝑖
𝑄𝜃(𝑠𝑖, 𝑎; 𝜃)−𝑄𝜃(𝑠𝑖, 𝑎*

𝑖 ; 𝜃),−𝑐
}︁

.

13: Option 1: Use projected gradient descent (PGD) to solve ℛDQN(𝜃).
14: Run PGD to solve: 𝑠𝑖 = argmax𝑠𝑖∈𝐵(𝑠𝑖) max�̸�=𝑎*

𝑖
𝑄𝜃(𝑠𝑖, 𝑎; 𝜃)−𝑄𝜃(𝑠𝑖, 𝑎*

𝑖 ; 𝜃).
15: Compute the sum of hinge loss of each 𝑠𝑖:

ℛDQN(𝜃) = ∑︀
𝑖 max{max�̸�=𝑎*

𝑖
𝑄𝜃(𝑠𝑖, 𝑎; 𝜃)−𝑄𝜃(𝑠𝑖, 𝑎*

𝑖 ),−𝑐}.
16: Option 2: Use convex relaxations of neural networks to solve a surrogate loss of

ℛDQN(𝜃).
17: For all 𝑠𝑖 and all 𝑎 ̸= 𝑎*

𝑖 , obtain upper bounds on 𝑄𝜃(𝑠, 𝑎; 𝜃)−𝑄𝜃(𝑠, 𝑎*
𝑖 ; 𝜃):

𝑢𝑎*
𝑖 ,𝑎(𝑠𝑖; 𝜃) = ConvexRelaxUB(𝑄𝜃(𝑠, 𝑎; 𝜃)−𝑄𝜃(𝑠, 𝑎*

𝑖 ; 𝜃), 𝜃, 𝑠 ∈ 𝐵(𝑠𝑖))
18: Compute a surrogate loss for the hinge loss:

ℛDQN(𝜃) = ∑︀
𝑖 max

{︁
max�̸�=𝑎*

𝑖
{𝑢𝑎*

𝑖 ,𝑎(𝑠𝑖)},−𝑐
}︁

19: Perform a gradient descent step to minimize 1
𝑁

[∑︀𝑖 TD-𝐿(𝑠𝑖, 𝑎𝑖, 𝑠′
𝑖; 𝜃) +

𝜅DQNℛDQN(𝜃)].
20: Update Target Network every 𝑀 steps: 𝜃′ ← 𝜃.
21: end for

Hyperparameters for Vanilla DQN training. For Atari games, the deep Q

networks have 3 CNN layers followed by 2 fully connected layers (following [160]).

The first CNN layer has 32 channels, a kernel size of 8, and stride 4. The second CNN

layer has 64 channels, a kernel size of 4, and stride 2. The third CNN layer has 64
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channels, a kernel size of 3, and stride 1. The fully connected layers have 512 hidden

neurons for both value and advantage heads. We run each environment for 6× 106

steps without framestack. We set learning rate as 6.25 × 10−5 (following [63]) for

Pong, Freeway and RoadRunner; for BankHeist our implementation cannot reliably

converge within 6 million steps, so we reduce learning rate to 1× 10−5. For all Atari

environments, we clip reward to −1, +1 (following [106]) and use a replay buffer with

a capacity of 2× 105.

We set discount factor set to 0.99. Prioritized replay buffer sampling is used with

𝛼 = 0.5 and 𝛽 increased from 0.4 to 1 linearly through the end of training. A batch

size of 32 is used in training. Same as in [106], we choose Huber loss as the TD-loss.

We update the target network every 2k steps for all environments.

Hyperparameters for SA-DQN training. SA-DQN uses the same network struc-

ture and hyperparameters as in DQN training. The total number of SA-DQN training

steps in all environments are the same as those in DQN (6 million). We update the

target network every 2k steps for all environments except that the target network is

updated every 32k steps for RoadRunner’s SA-DQN, which improves convergence for

our short training schedule of 6 million frames. For the additional state-adversarial

regularization parameter 𝜅 for robustness, we choose 𝜅 ∈ {0.005, 0.01, 0.02}. For all

4 Atari environments, we train the Q network without regularization for the first

1.5× 106 steps, then increase 𝜖 from 0 to the target value in 4× 106 steps, and then

keep training at the target 𝜖 for the rest 5× 105 steps.

Training Time As Atari training is expensive, we train DQN and SA-DQN only

6 million frames; the rewards reported in most DQN paper (e.g., [106, 160, 63]) are

obtained by training 20 million frames. Thus, the rewards (without attacks) reported

maybe lower than some baselines. The training time for vanilla DQN, SA-DQN

(SGLD) and SA-DQN (convex) are roughly 15 hours, 40 hours and 50 hours on a

single 1080 Ti GPU, respectively. The training time of each environment varies but is

very close.
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Note that the training time for convex relaxation based method can be further

reduced when using an more efficient relaxation. The fastest relaxation is interval

bound propagation (IBP), however it is too inaccurate and can make training unstable

and hard to tune [179]. We use the tighter IBP+Backward relaxation, and its

complexity can be further improved to the same level as IBP with the recently

developed loss fusion technique [171], while providing a much better relaxation than

IBP. Our work simply uses convex relaxations as a blackbox tool and we leave further

improvements on convex relaxation based methods as a future work.

D.7 Additional details for SA-PPO

Algorithm We present the full SA-PPO algorithm in Algorithm 11. Compared to

vanilla PPO, we add a robust state-adversarial regularizer which constrains the KL

divergence on state perturbations. We highlighted these changes in Algorithm 11.

The regularizer ℛPPO(𝜃𝜋) can be solved using SGLD or convex relaxations of neural

networks. We define the perturbation set 𝐵(𝑠) to be an ℓ𝑝 norm ball around state

𝑠 with radius 𝜖: 𝐵𝑝(𝑠, 𝜖) := {𝑠′|‖𝑠′ − 𝑠‖𝑝 ≤ 𝜖}. We use a 𝜖-schedule during training,

where the perturbation budget is slowly increasing dduring each epoch 𝑡 as 𝜖𝑡 until

reaching 𝜖.

Hyperparameters for Regular PPO Training We use the optimal hyperpa-

rameters in [43] which were found using a grid search for vanilla PPO. However, we

found that their parameters are not optimal for Humanoid and achieves a cumulative

reward of only about 2000 after 1× 107 steps. Thus we redo hyperparameter search on

Humanoid and change learning rate for actor to 5× 10−5 and critic to 1× 10−5. This

new set of hyperemeters allows us to obtain Humanoid reward about 5000 for vanilla

PPO. Note that even under the original, non-optimal set of hyperemeters by [43], our

SA-PPO variants still achieve high rewards similarly to those reported in our paper.

Our hyperparameter change only significantly improves the performance of vanilla

PPO baseline.
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Algorithm 11 State-Adversarial Proximal Policy Optimization (SA-PPO)
Input: Number of iterations 𝑇 , a 𝜖 schedule 𝜖𝑡

1: Initialize actor network 𝜋(𝑎|𝑠) and critic network 𝑉 (𝑠) with parameter 𝜃𝜋 and 𝜃𝑉 ,
2: for 𝑡 = 1 to 𝑇 do
3: Run 𝜋𝜃𝜋 to collect a set of trajectories 𝒟 = {𝜏𝑘} containing |𝒟| episodes, each

𝜏𝑘 is a trajectory contain |𝜏𝑘| samples, 𝜏𝑘 := {(𝑠𝑘,𝑖, 𝑎𝑘,𝑖, 𝑟𝑘,𝑖, 𝑠𝑘,𝑖+1)}, 𝑖 ∈ [|𝜏𝑘|]
4: Compute cumulative reward �̂�𝑘,𝑖 for each step 𝑖 in every episode 𝑘 using the

trajectories and discount factor 𝛾
5: Update Value function by minimizing the mean-square error:

𝜃𝑉 ← argmin
𝜃𝑉

1∑︀
𝑘 |𝜏𝑘|

∑︁
𝜏𝑘∈𝐷

|𝜏𝑘|∑︁
𝑖=0

(︁
𝑉 (𝑠𝑘,𝑖)− �̂�𝑘,𝑖

)︁2

6: Estimate advantage 𝐴𝑘,𝑖 for each step 𝑖 in every episode 𝑘 using generalized
advantage estimation (GAE) and value function 𝑉𝜃𝑉

(𝑠)
7: Define the state-adversarial policy regularier:

ℛPPO(𝜃𝜋) :=
∑︁

𝜏𝑘∈𝐷

|𝜏𝑘|∑︁
𝑖=0

max
𝑠𝑘,𝑖∈𝐵𝑝(𝑠𝑘,𝑖,𝜖𝑡)

DKL (𝜋(𝑎|𝑠𝑘,𝑖)‖𝜋(𝑎|𝑠𝑘,𝑖))

8: Option 1: Solve ℛPPO(𝜃𝜋) using SGLD:
9: find 𝑠𝑘,𝑖 = argmax𝑠𝑘,𝑖∈𝐵𝑝(𝑠𝑘,𝑖,𝜖𝑡) DKL(𝜋(𝑎|𝑠𝑘,𝑖)‖𝜋(𝑎|𝑠𝑘,𝑖)) using SGLD opti-

mization for all 𝑘, 𝑖 (the objective can be solved in a batch)
10: set ℛPPO(𝜃𝜋) := ∑︀

𝜏𝑘∈𝐷

∑︀|𝜏𝑘|
𝑖=0 DKL(𝜋(𝑎|𝑠𝑘,𝑖)‖𝜋(𝑎|𝑠𝑘,𝑖))

11: Option 2: Solve ℛPPO(𝜃𝜋) using convex relaxations:
12: ℛPPO(𝜃𝜋) := ConvexRelaxUB(ℛPPO, 𝜃𝜋, 𝑠𝑘,𝑖 ∈ 𝐵𝑝(𝑠𝑘,𝑖, 𝜖𝑡))
13: Update the policy by minimizing the SA-PPO objective (the minimization is

solved using ADAM):

𝜃𝜋 ← argmin
𝜃′

𝜋

1∑︀
𝑘 |𝜏𝑘|

⎡⎣ ∑︁
𝜏𝑘∈𝐷

|𝜏𝑘|∑︁
𝑖=0

min
(︁
𝑟𝜃′

𝜋
(𝑎𝑘,𝑖|𝑠𝑘,𝑖)𝐴𝑘,𝑖, 𝑔(𝑟𝜃′

𝜋
(𝑎𝑘,𝑖|𝑠𝑘,𝑖))𝐴𝑘,𝑖

)︁
+ 𝜅PPOℛPPO(𝜃′

𝜋)
⎤⎦

where 𝑟𝜃′
𝜋
(𝑎𝑘,𝑖|𝑠𝑘,𝑖) := 𝜋𝜃′

𝜋
(𝑎𝑘,𝑖|𝑠𝑘,𝑖)

𝜋𝜃𝜋 (𝑎𝑘,𝑖|𝑠𝑘,𝑖)
, 𝑔(𝑟) := clip(𝑟𝜃′

𝜋
(𝑎𝑘,𝑖|𝑠𝑘,𝑖), 1− 𝜖clip, 1 + 𝜖clip)

14: end for
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We run 2048 simulation steps per iteration, and run policy optimization of 10

epochs with a minibatch size of 64 using Adam optimizer with learning rate 3× 10−4,

4 × 10−4 and 5 × 10−5 for Walker, Hopper and Humanoid, respectively. The value

network is also trained in 10 epochs per iteration with a minibatch size of 64, using

Adam optimizer with learning rate 0.00025, 3× 10−4, and 1× 10−5 for Walker, Hopper

and Humanoid environments, respectively (the same as in [43] without further tuning,

except for Humanoid as discussed above). Both networks are 3-layer MLPs with

[64, 64] hidden neurons. The clipping value 𝜖 for PPO is 0.2. We clip rewards to

[−10, 10] and states to [−10, 10]. The discount factor 𝛾 for reward is 0.99 and the

discount factor used in generalized advantage estimation (GAE) is 0.95. We found

that in [43] the agent rewards are still improving when training finishes, thus in our

experiments we run the agents longer for better convergence: we run Walker2d and

Hopper 2× 106 steps (976 iterations) and Humanoid 1× 107 steps (4882 iterations) to

ensure convergence.

Hyperparameter for SA-PPO Training For SA-PPO, we use the same set of

hyperparameters as in PPO. Note that the hyperparameters are tuned for PPO but

not specifically for SA-PPO. The additional regularization parameter 𝜅PPO for the

regularizer ℛPPO is chosen in {0.003, 0.01, 0.03, 0.1, 0.3, 1.0}. We linearly increase 𝜖𝑡,

the norm of ℓ∞ perturbation on normalized states, from 0 to the target value (𝜖 for

evaluation, reported in Table 5.1) during the first 3/4 iterations, and keep 𝜖𝑡 = 𝜖 for

the reset iterations. The same 𝜖 schedule is used for both SGLD and convex relaxation

training. For SGLD, we run 10 iterations with step size 𝜖𝑡

10 and set the temperature

parameter 𝛽 = 1× 10−5. For convex relaxations, we use the efficient IBP+Backward

scheme [171], and we use a training schedule similar to [179] by mixing the IBP bounds

and backward mode perturbation analysis bounds.

Convergence of PPO and SA-PPO agents Especially, we want to confirm that

our significantly better performing Humanoid model is not just by chance. We train

each environment using SA-PPO and PPO at least 30 times, and collect rewards
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during training. We plot the median, 25% and 75% percentile of all these runs in

Figure D-5 and here we report the moving average value of 10 consecutive episodes.

We can see that our SA-PPO models’ natural reward during training significantly

and consistently outperforms PPO models in Humanoid. Since we also present the

25% and 75% percentile of the rewards among 30 models, we believe this improvement

is not because of cherry-picking. For Hopper and Walker environments, SA-PPO

achieves slightly lower but still quite competitive rewards; SA-PPO agents obtain

significantly more robustness.
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Figure D-5: The median, 25% and 75% percentile episode reward of 30 PPO and 30 SA-PPO models during training.
We report the moving average value of 10 consecutive episodes. The region of the shaded colors (light blue: SA-PPO
solved with SGLD; light green: SA-PPO solved with convex relaxations; light red: vanilla PPO) represent the interval
between 25% and 75% percentile rewards over the 30 different training runs, and the solid line is the median rewards
over 30 runs.
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