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Abstract

In this thesis, we explore hierarchical map representations that improve autonomous
vision-based navigation. Challenged with the task of navigating in an unknown envi-
ronment, an autonomous agent must perceive the environment around it while making
progress towards a goal. While incrementally constructing a map of the world based
on visual sensor measurements is a popular choice, we observe that the choice of repre-
sentation for the map has significant consequences on the performance of navigation.
To improve the efficiency and robustness of visual navigation of a computationally
limited robotic platform, we introduce three key ideas in the form of applying varying
levels of abstraction to the map representation and sensor measurements.

First, we propose to apply multiple levels of abstraction to the map representation
to improve the computational efficiency of on-board pose estimation on a low-cost
micro air vehicle (MAV). Second, we show that multiple levels of abstraction can also
apply to the sensor measurements, thereby creating multiple pseudo-measurements of
lower dimensions, to mitigate the viewpoint dependency of ellipsoid-based object-level
simultaneous localization and mapping (SLAM). Finally, we show that adaptively
changing the level of abstraction in the map representation and sensor measurements
online based on the quality of available measurements improves the accuracy of the
constructed map and results in improved robustness and efficiency of autonomous
vision-based navigation.

Thesis Supervisor: Nicholas Roy
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

In this thesis, we explore hierarchical map representations that improve vision-based

autonomous navigation. Challenged with the task of navigating in an unknown envi-

ronment, an autonomous agent must perceive the environment [126] around it while

making progress towards a goal. An agent can do this by incrementally collecting

sensor measurements of the environment and choosing actions based on the accumu-

lated observations. While directly acting on raw measurements is possible, utilizing

on-board sensor measurements that are noisy, that uncover a small part of the environ-

ment at a time, and are incrementally collected can lead to substantial computation

and mechanical ine�ciencies. In contrast, constructing amodel of the environment

and making decisions based on the model may have strong advantages. First, a model

allows many partial, noisy measurements to be summarized into a more accurate es-

timate of the geometry of the environment based on many measurements. Second,

the complexity of decision making based on a model may not grow over time even

as the number of measurements grows, better dealing with the incremental nature

of sensor collection where intractably many measurements can be accumulated over

time. Similarly, a model allows enforcing a prior over the environment that can be

useful during an early phase of navigation where only a few measurements are avail-

able. A model also allows easy recall of past actions such that an agent can avoid

repeatedly taking the same routes that ultimately do not lead to the goal. Lastly, a

model allows encoding only the most important details in the sensor measurements
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for e�cient decision making. The choice of the representation for a world model that

summarizes many sensor measurements into a compact, spatially and temporally con-

sistent map in a �xed reference frame has large implications on the performance of

visual navigation.

For a fully autonomous vehicle, a map must satisfy the two di�erent objectives

of localization and supporting obstacle avoidance. Both of these uses of the map

impose very di�erent requirements of how the map is constructed. Similar to a

paper map a person might use for navigation, the map must be simple enough for

the agent to quickly retrieve its location without irrelevant details obfuscating the

process. The map must also encode su�cient structure of the environment for the

agent to perceive obstacles in its path and avoid them. While incrementally fusing

visual sensors commonly found on mobile robots into a consistent geometric map is

a challenge in itself, which we will explore in Chapter 2, concurrently requiring that

the map must also support reliable, real-time localization and accurate perception

of obstacles increases the di�culty of the mapping task. We argue that a careful

consideration of the representation of the map is required to construct a suitable

representation that is both su�ciently detailed in geometry and e�cient in utilization

and construction.

Throughout the thesis, we will rely on the process ofabstraction, which is a concept

widely used in computer science [35] to encode only the most important details in a

model to better focus available computation, to guide the search for representations

suitable for visual navigation for a computationally constrained mobile robot. In

particular, we will focus on enabling smaller, inexpensive, aerial platforms such as

micro air vehicles (MAVs) that are highly agile in 3D and can �y at high speeds

both indoors [124, 19] and outdoors [13, 167]. While useful for many applications

[119, 173, 18, 157], one of the main challenges of visual navigation for MAVs is in

enabling real-time computation using limited on-board computing budget. Unlike

self-driving cars, MAVs are limited in terms of their size, weight, and power (SWaP).

Despite any limitations in computing power, the high rate maneuvers and speed of

MAVs would require that the sensor measurements are processed quickly enough to
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localize the vehicles, and further estimate the geometry of the obstacles so that they

can be avoided at high speed. The requirements that mapping be performed at high

speed to support obstacle avoidance as well as localization, while using limited on-

board computation, emphasize the need for e�ectively focusing available computation

and the appropriate abstractions that allow this by encoding only the most signi�cant

details.

All of the techniques we will introduce in this thesis take the form of applying

varying levels of abstraction to world models and sensor measurements for the pur-

pose of e�cient visual navigation of a computationally limited robotic platform. We

will introduce three key ideas that improve the quality of visual navigation: ap-

plying multiple levels of abstraction in the map representation, applying multiple

levels of abstraction in the sensor measurements, and adaptively changing the level

of abstraction in the sensor and map representations by switching between multiple

models organized in a hierarchy. In particular, we will show an instance of applying

multiple levels of abstraction in the map representation to improve the computa-

tional e�ciency of on-board pose estimation. Then, we will show that multiple levels

of abstraction can also apply to the sensor measurements, thereby creating multiple

pseudo-measurements of lower dimensions, to improve the robustness of visual navi-

gation using limited on-board sensors. Finally, we will show that adaptively changing

the abstraction in the map and sensor measurements online can improve the robust-

ness and e�ciency of visual navigation.

1.1 Visual SLAM Formulation

Interested in supporting autonomous navigation of vehicles with SWaP constraints,

we propose a visual Simultaneous Localization and Mapping (vSLAM) [43, 51] ap-

proach to constructing the map representation using a monocular camera as the main

source of information. While a variety of sensing modalities can be used in a SLAM

formulation, we choose a passive camera over LIDARs and RGB-D sensors due to the

advantages of using it on MAVs. First, scanning 3D LIDARs that power many self-
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driving cars [12, 40] can be overly high-SWaP for a MAV, while providing a narrow

vertical �eld-of-view (FOV) and resolution, limiting the vehicle's motion in 3D. For

example, a Velodyne Puck weighs830grams (without cabling and interface box) [2]

and o�ers only a 30 degrees of vertical FOV in16 line scans, while the Pelican quad-

rotor is able to carry only 750 grams of payload [10]. In comparison, a PointGrey

Flea3 camera weighs41 grams [1] and can be equipped with a wide range of lenses,

including �sheye lenses of higher than180 degrees of FOV. A 2D LIDAR such as a

Hokuyo UTM-30LX is lighter-weight at 210grams [3], but perceives a planar slice of

the environment at a time, limiting the vehicles' ability to roll and pitch. Moreover,

active sensors based on structured light or time-of-�ight technology can be di�cult to

operate in sunlight where their limited detection range (typically less than 5 meters)

can be further shortened.

On the other hand, passive cameras are lightweight, low-power, and signi�cantly

lower cost compared to active cameras and LIDARs, while they provide rich informa-

tion of the environment including information such as the presence of objects that we

show how to leverage in Chapters 4 and 5. Using more than one camera is also possi-

ble, where two cameras used in a pair is called astereocamera. The Skydio drone [4]

leveraging 6 passive cameras is able to build dense models of the surrounding environ-

ment on-board the vehicle, while simultaneously performing on-board planning and

motion control using the dense map. However, storing and processing a dense global

map of the environment is challenging, and as a consequence, a dense map is often

maintained only around the local area of the vehicle in a sliding window. In contrast,

the lightweight map representations we propose in this thesis can be maintained over

a large environment as a global map, and can augment a sliding dense global map for

purposes such as loop closures [64].

The visual SLAM problem we leverage in this thesis can be formulated as the

evaluation of the posterior probability P(X ; M jI ; D ) of camera posesX = f x tgT
t=0

and the map representationM given camera imagesI = f I tgT
t=0 and other optional

supplementary sensor dataD from on-board sensors such as an IMU or an altimeter.

Taking a smoothing-based approach [43], we can formulate the vSLAM problem as
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optimizing for the maximum a posteriori (MAP) estimatesX � and M � , i.e.,

X � ; M � = arg max
X ;M

P(X ; M jI ; D ); (1.1)

where the camera posesX are typically represented by the 6 degrees-of-freedom

special Euclidean groupSE(3), i.e., x t 2 SE(3), and camera images are represented

as scalar functions de�ned over the pixel domain
 2 N2, such that I t : 
 ! N.

While directly building a map representation using the raw pixel values of an image

is possible [136, 73], to improve the computational e�ciency of online estimation,

we abstract each image measurement into lower-dimensional pseudo-measurements,

i.e., obtain feature setsZ = f Z tg
T
t=0 , where each set of featuresZ t =

�
z t

k

	 K t

k=0
is

deterministically extracted from individual raw imagesI t . We can then optimize for

the feature-based vSLAM problem

X � ; M � = arg max
X ;M

P(X ; M jZ ; D ): (1.2)

In addition to the large improvements made in constructing and optimizing the

SLAM problem that we will discuss in Chapter 2, within the smoothing-based for-

mulation shown in Equation 1.2, we argue that representational changes in the map

M and the measurementsZ can bring drastic improvements to vision-based navi-

gation. In particular, improving on the conventional visual localization and mapping

approaches that leverage a homogeneous representation of the geometric map and

sensor measurements, we apply multiple levels of abstraction in our map and mea-

surement representations to achieve computational e�ciency and robustness during

vision-based navigation. In the following sections, we describe speci�c forms of rep-

resentational changes in the mapM and the measurementsZ that bring drastic

improvements to vision-based navigation.
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1.2 Multiple Abstractions in the Map

Solving the complete joint posterior in Equation 1.2 in a SLAM process can be com-

putationally demanding, especially as the number of landmarks inM grows large.

If the full joint posterior is naively computed with every sensor measurementZ , it

can be di�cult to achieve real-time vehicle pose estimation, which is crucial on fast

moving vehicles. One way to speed up pose estimation is to decompose the SLAM

process into two parallel processes [101]: a full-rate camera tracking process that

solves the latest vehicle posex in the best available map, and a slower map optimiza-

tion process solving for all the vehicle poses and the global map. This decoupling

requires sharing a single map in memory where the camera pose tracking process

assumes a �xed map, while in parallel, the map optimization process continuously

(if slowly) improves the map. Although proven very successful, this technique still

carries the burden of solving the entire joint posterior over a growing global map,

which can be challenging to compute using the kinds of low-power processors found

in low-cost MAVs that lack support for true parallelism. A possible solution is to

move the costly map optimization to a more capable o�-board processor, so that only

the real-time pose tracking is performed on-board the vehicle. However, constantly

sharing new copies of the growing global map, in addition to the camera images, can

be challenging when communicating over a wireless channel to an untethered MAV.

In Chapter 3, we show that a representational change in the mapM that is used

to track the vehicle pose, i.e., used to solve for the MAP estimate of the posterior

probability P(x t jI t ; M ), can allow the map to be communicated over a bandwidth-

limited wireless channel for constant-time lightweight pose estimation on-board the

vehicle. The key idea in the representational change is that once we reformulate the

tracking and mapping problem so that the two processes are physically decoupled

and no longer share the same copy of the map, the tracking process can use a further

abstracted map representation that is entirely in the image co-ordinate frame for fast
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Figure 1-1: MIST framework of asymmetrically distributing SLAM onto separate
devices by leveraging multiple levels of map abstraction. The MAV occasionally
sends the camera image and its own pose estimate to the ground station for map
building and the ground station sends back a local map in the image space of the
MAV for fast pose estimation.

computation and transmission, i.e., we can instead solve

x �
t = arg max

x t

P(x t jI t ; �M ); (1.3)

where �M is a compact, computation-friendly, local map that is much lower-dimensional

than the global mapM constructed o�-board. The o�-board mapping process can

continue to run, improving the map and providing asynchronous copies of the updated

compact map �M to the MAV, as shown in Figure 1-1, as the communication channel

permits. In our Monocular Image Space Tracking (MIST) approach, we leverage a

sparse point-cloud representation for the global mapM optimized in real-time in an

o�-board SLAM process, and construct an image space representation of the local

map �M by projecting the global map onto the image plane and bounding the size

of the map by both visibility and the history of past detections. In Section 3.1, we

will describe representing landmarks in the image space, compensating for communi-

cation delays by forward projecting map updates from the ground station. We then

show how to e�ciently compute the vehicle poses on-board the vehicle by leveraging
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a special structure in the Jacobians for the abstract image space representation.

1.2.1 Extension to a Known Environment

In the speci�c case of visually navigating in aknown environment, we propose that

the mapping and localization components are not only physically decoupled onto two

separate devices but also temporally decoupled to allow ano�ine construction of the

global map representationM . One of the drawbacks of the MIST approach is that

it uses a sparse point-cloud representation of the global map on the ground station

for e�cient online mapping and a sparser image space representation on the MAV

for e�cient pose estimation, but neither representations allow collision-testing. As

we will explore in Section 2, a sparse representation does not easily support accurate

collision-testing if the sparsi�cation is not based on the underlying geometry of the

environment, such as �tting a single plane representation to a �at surface [94, 207], but

instead based on other criteria such as the existence of texture that can be repeatedly

detected and associated. For example, highly textured areas with simple geometry

may be represented with a higher density of landmarks than poorly textured regions

with complex geometry that could bene�t from having more landmarks to capture

the complexity.

However, in the case of navigating in a known environment, a much denser rep-

resentation of the world model can be computed in advance, leveraging all of the

sensor measurements in an o�ine process where high-power modern GPUs can be

used along with power-hungry sensors, and sparsi�edpost-construction based on the

geometry of the fully reconstructed model. The abstraction that is sparsi�ed based

on the underlying geometry results in a compact yet dense representation that can

support e�cient and accurate pose estimation and collision-testing. In Section 3.4,

we introduce our Simultaneous Tracking and Rendering (STAR) approach, where we

apply the idea of abstracting the map representation for e�cient pose estimation by

�rst constructing a dense 3D voxel-based representation and then converting it into a

much lower-dimensional mesh representation�M o�ine, so that it can be used online

to estimate the vehicle pose in real-time, as illustrated in Figure 1-2. STAR estimates
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Figure 1-2: A synthetic keyframe image (blue) used to track a live monocular image
(red) shown on the image plane of camera wire-frames. We render a synthetic camera
image at the predicted camera location using a dense mesh map that accurately
represents the underlying geometry for collision avoidance. However, unlike previous
work, we do not require rendering synthetic images multiple times per frame, but only
render a new synthetic image after su�cient motion for computational e�ciency.

the vehicle pose by photometrically aligning a mesh representation with a lightweight

RGB camera and a small computer more suitable for a small MAV, while overcoming

the challenges of utilizing a potentially outdated visual map constructed at a di�er-

ent time, under di�erent lighting, and with a di�erent sensor. In addition to pose

tracking, STAR also allows global relocalization of the camera in the mesh.

1.3 Multiple Abstractions in the Measurements

In the previous section, we introduced the idea of applying multiple levels of ab-

straction in the world model to improve the computational e�ciency of vehicle pose

estimation. In this section, we describe how the thesis shows how to apply multiple

levels of abstraction to the sensor measurements to extract a diverse set of pseudo-

measurements for improving the robustness of visual navigation. The point-cloud

representation of the global map described in the previous section for navigating in

an unknown environment employed a sparse representation of the world for com-

putational e�ciency, but the texture-based sparsity of the representation increased

the di�culty of collision-testing. In a known environment, we addressed the prob-
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lem by constructing a mesh-based [138, 158] representation after fully constructing a

dense volumetric model, but the o�ine approach required that the environment was

modelled prior to navigation.

To construct a world modelM in an unknown environment that compactly rep-

resents scene geometry, instead of relying on a sparsi�cation process, we propose to

directly estimate an approximate 3D volumetric map based on the perceived volume

in camera images. For well-bounded entities that can be detected in monocular cam-

era images with a modern object detector [153], the extents of the projections of the

volume can be measured in the form of 2D bounding box abstraction of measurement

Z . By combining multiple 2D bounding box projections from diverse viewpoints, a

3D volumetric representation such as an ellipsoid can be constructed that directly

encodes geometric properties such as the size, shape, position, and orientation of an

entire entity. A key advantage of a volumetric primitive is that it can represent a

large volume of space with a single model, such that collision-testing can be done

exactly once for a large volume of area, unlike popular surface-based representations

such as point-clouds or meshes that model visible surface segments as point-masses

or 2D triangles and combine them to represent an entity. As a result, a volumetric

primitive, such as an ellipsoid, can be higher-dimensional than a simple point-mass

or a 2D triangle, but can enable e�cient inference and collision-testing compared

to representations leveraging a large set of surface-based models gathered around an

entity.

However, given that the object-based volumetric model explains a larger volume

of space, albeit approximately, there can be high uncertainty in the parameters rep-

resenting the area due to self-occlusions that cause many surfaces of the object to be

hidden from any single viewpoint. Unlike the volumetric map construction in STAR

that leveraged an o�ine process using all available measurements, constructing a large

volumetric representation using incremental sensor measurements can face observabil-

ity problems due to a lack of diversity in measurement viewpoints. This observability

problem can be ampli�ed by the fact that common types of vehicle motions such as

straight line motions do not generate diverse viewpoints of objects. One solution is to
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Figure 1-3: In ROSHAN, we combine bounding box detections (green), texture planes
(blue), and prior knowledge of the shape of objects (yellow) to achieve an ellipsoid-
based object SLAM system robust to camera motions that do not explicitly observe
the object from multiple viewpoints.

leverage an active perception system [28, 89] that couples vehicle trajectory planning

with reducing the uncertainty in object models, but the di�erent objectives of avoid-

ing obstacles, reaching the goal e�ciently, and reducing the uncertainty in the map

increase the di�culty and the computational complexity of the planning problem.

In order to better constrain an object-based volumetric SLAM system based on

incremental sensor measurements, we show how to apply di�erent levels of abstraction

to image measurementsI to acquire multiple sources of pseudo-measurementsZ

of di�erent kind, i.e., Z = ( B; � t ; C). As shown in in Figure 1-3, from monocular

images, we extract 2D bounding box detectionsB = f B k 2 
 2gK
k=0 that can constrain

the extents of an object volume. We additionally extract the texture on objects

approximated to be on a plane� t = f � t
d 2 N4gD

d=0 that can infer the distance to

an object, and the knowledge of class of objectsC = f ck 2 NgK
k=0 that can inform

the shape of the object. In Chapter 4, we propose a robust object-based SLAM

approach for high-speed autonomous navigation (ROSHAN), where we show that

these multiple kinds of pseudo-measurements of varying abstraction can be used to

infer the parameters of ellipsoids using fewer viewpoints compared to using a single

source of 2D object detection. In this chapter, we make an improvement to the

state-of-the-art bounding box measurement model [139], introduce a di�erentiable

closed-form measurement model for texture, describe a class-based object shape prior,
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propose a single measurement initialization scheme useful on a fast-moving vehicle.

Contrary to modern o�ine methods [164, 139], our approach does not assume known

data associations or require batch optimization.

1.4 Adaptively Changing the Level of Abstraction

We have described an example of applying multiple levels of abstraction in the map

representation to reduce computational e�ciency, and an example of fusing multiple

abstractions of image measurements to increase data e�ciency, i.e., using a less diverse

set of measurement viewpoints to estimate object geometry during visual navigation.

While both examples demonstrate the bene�ts of using multiple levels of abstraction

to gain e�ciencies during visual navigation, one common drawback of both of the

approaches is that they require prior knowledge of the representation of the models

to be constructed. For example, in MIST, we assume that the best representation for

computational e�ciency would be a sparse point-cloud representation of the global

map on the ground station, and a more compact image image space representation

on the MAV. Similarly, in ROSHAN, we assume that every object can be represented

as a 3D bounding ellipsoid to densely approximate the underlying geometry.

However, despite the robustness gained in ROSHAN in estimating ellipsoid prop-

erties using less diverse viewpoints, a minimum number of viewpoints are still required

to accurately estimate the higher-dimensional volumetric model. In other words, the

additional sources of information in ROSHAN mitigate the problem of viewpoint

diversity, but ROSHAN still cannot predict the properties of an ellipsoid from, for

example, a single perspective. Without having a su�cient number of viewpoints, the

optimization problem for the model construction will still be ill-posed and the esti-

mates of the model properties can be arbitrarily poor. A naive solution would be to

delay the estimation until a certain number of measurements are collected (as done

in ROSHAN), but overly-delayed estimation might not perceive obstacles in time to

avoid them, while under-delayed estimation might poorly estimate the model param-

eters based on insu�cient measurements. Given that the model construction requires
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(a) Object Detection (b) Our Representation

Figure 1-4: Our hierarchical object-based representation allows each object to change
its representation based on the available viewpoints. In this �gure, the keyboard,
monitor, and cup that were detected using YOLO [153] in (a) and observed from
multiple viewpoints are constrained as bounding 3D volumes while previously oc-
cluded objects, such as the book and the teddy bear, are estimated as in�ated point
objects encoding only the position of the objects, shown in (b).

diversity in viewpoints as opposed to the number of viewpoints, setting a minimum

number of measurements would also require the assumption that the vehicle's motion

ensures measurement viewpoint diversity.

One of the key insights in this thesis is that the appropriate object representation

to consider for visual navigation varies over the course of navigation, and should be

informed by how well the properties encoded in each model can be estimated. If only

limited viewpoints are available and a higher �delity model is di�cult to estimate, a

more abstract model should be estimated in place to avoid catastrophic failures of ei-

ther not estimating any models or estimating a model with arbitrarily poor accuracy.

Instead of a static representation of an object, we propose a hierarchical represen-

tation of object models of varying complexity, illustrated in Figure 1-4 adaptively

choosing the level of abstraction in the hierarchy based on the ability to estimate

the model properties. Depending on the quality of available measurements, predicted

with an empirical degeneracy metric, the models in the hierarchy are sequentially

solved, so that a well-estimated model is available at any point, where each model in

the hierarchy can also inform the next higher-�delity model to further increase the

robustness of estimation.
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In Chapter 5, we introduce Hierarchical Object Map Estimation (HOME), which

allows each object model to become more sophisticated over time, improving e�-

ciency and robustness of visual navigation. By estimating only the properties that

can be constrained using available viewpoints, ill-conditioned inference problems are

avoided and conservative estimates based on prior knowledge of object class [113] are

substituted in place. We describe online optimization methods for the object models

in the hierarchy, the model switching criteria for changing the degree of abstraction,

a data association scheme that combines appearance-based cues with geometric in-

formation available in each model, and an e�cient collision-testing method for the

representations in the hierarchy to enable e�cient and robust collision avoidance dur-

ing visual-inertial navigation of a quad-rotor around object-based obstacles.

1.5 Contributions

We have now described the computational challenges of vSLAM on-board SWaP-

constrained high-speed MAVs, and the viewpoint requirement of approximate volu-

metric object-level mapping suitable for vehicle localization and avoiding well-bounded

entities. We introduced three key ideas that improve the computational and data

e�ciency of visual navigation: applying multiple levels of abstraction in the map

representations, applying multiple levels of abstraction in the sensor measurements,

and adaptively changing the level of abstraction in the sensor and map representa-

tions. In the subsequent chapters, we develop speci�c implementations of the ideas

in the context of monocular visual navigation. In each case, we show that applying

multiple levels of abstraction to the world model or the sensor measurements leads

to improved visual navigation of small mobile robots with a limited computational

budget and incremental measurement collection. Toward the goal of enabling visual

navigation of low-cost mobile agents, this thesis makes the following contributions:

ˆ A method of reducing the computational cost of on-board monocular pose es-

timation in unknown environments by using multiple abstractions of the world

model and splitting localization and mapping onto two di�erent devices, such
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that each model uses a representation of di�erent sparsity (Chapter 3).

ˆ A method of reducing the computational cost of on-board pose estimation in

knownenvironments that does not impair the ability to perform collision-testing

by o�ine constructing multiple abstractions of denseworld models, such that

a dense voxel-based representation constructed using power hungry devices can

be further abstracted to a computationally-friendly mesh-based representation

for e�cient online monocular localization in a known environment (Chapter 3).

ˆ A method of constructing an ellipsoid-based, object-level world model using

multiple abstractions of monocular image measurements, such that diverse pseudo-

measurements of lower dimensions can be used to robustly constrain the model

using viewpoint-limited sensor measurements collected on a forward-translating

vehicle (Chapter 4).

ˆ A hierarchical formulation of an object-level map representation that allows

adaptively changing the level of abstraction in the geometric world model as

well as the pseudo-measurements constraining them, based on the quality of

available sensor measurement viewpoints for improved computational e�ciency

and robustness of monocular visual navigation (Chapter 5).

1.6 Publications

The MIST and STAR methods presented in Chapter 3 were originally presented in

[140] and [141]. The ROSHAN method in Chapter 4 was presented in [142], and the

HOME method in Chapter 5 is to appear in [143].
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Chapter 2

Background

In this chapter, we give an overview of optimization methods for SLAM, and common

representations adopted by popular vision-based SLAM systems. Section 2.1 discusses

a probabilistic formulation of the SLAM problem. Section 2.2 discusses a �ltering-

based optimization (Section 2.2.1) of the SLAM problem, a modern smoothing-based

optimization (Section 2.2.2), and the emerging approaches (Section 2.2.3) including

SLAM in�uenced by deep-learning, and optimal SLAM based on convex relaxation.

Section 2.3 then discusses common representations and popular vision-based SLAM

systems that leverage these representations, including sparse representations (Section

2.3.1), dense representations (Section 2.3.2), surface-based representations (Section

2.3.3), learned representations (Section 2.3.4), hierarchical representations (Section

2.3.5), and object-based representations (2.3.6). For each representation, we discuss

the suitability as the choice of world model for vision-based navigation of a MAV.

2.1 SLAM Formulation

Early work in visual SLAM recognized the correlation between the poses of a sensor

and the map constructed from the sensor data while navigating through an unknown

environment. Smith et al. [176] showed that as a robot moves around, acquiring

relative observations of landmarks, the estimates of the landmarks become correlated

with each other due to the common error in estimated vehicle poses [106]. This
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correlation meant that a solution to the joint localization and mapping problem would

require a large joint state composed of all vehicle poses and landmarks. Without a

better understanding of the special structure in the correlations, the large joint state

space was thought to be problematic due to the monotonic growth of the state as the

robot uncovers more of the environment, and the growing computational complexity

if the entire joint state had to be updated with every new sensor measurement.

However, a breakthrough in understanding the problem was the insight that the

SLAM problem can be factored by leveraging reasonable independence assumptions

between the poses and many parts of the map. Assuming that the vehicle motion can

be represented as a �rst-order Markov model where the distribution of any single pose

x t is independent of all past posesx 0:t � 2 given the previous posex t � 1, the vehicle pose

can be modelled with amotion model P(x t j x t � 1; u t � 1) parametrized by the control

input u t � 1. Similarly, assuming that a measurementz t
k of a landmarkm n in the map

M = f m ngN
n=0 is only dependent on the observed landmark and the camera pose

x t at the time of taking the measurement, a measurementz t
k can be modelled with

a measurement modelP(z t
k j x t ; m nk ) that conveniently factors each measurement.

These assumptions allow factoring the posterior distribution in Equation 1.2 as

P(X ; M jZ ; D ) / P(x 0)
TY

t=1

P(x t j x t � 1; u t )
K tY

k=0

P(z t
k j x t ; m nk ); (2.1)

where uniform priors are assumed on all landmarks in the map, and the data-

association of each of theK t landmarks observed in imaget to a matching landmark

m nk is assumed to be solved prior to the optimization, thereby producing the associ-

ation indicesnk . Then, the factored MAP formulation of the SLAM problem can be

written as

X � ; M � = arg max
X ;M

�
P(x 0)

TY

t=1

P(x t j x t � 1; u t )
K tY

k=0

P(z t
k j x t ; m nk )

�
: (2.2)

The sparse dependency structure in the factored SLAM problem can be repre-

sented with a graphical model such as a belief net [134, 127] or a factor graph [43]
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that explicitly encodes the dependency structure as edges or factors between vari-

ables of interest. In addition to revealing the sparse nature of the problem for gaining

new insights into leveraging the sparsity, a graphical interpretation also allows con-

veniently separating the SLAM problem into a modelling problem of constructing

a graph and an inference problem of solving the graph, i.e., obtaining optimal esti-

mates of the sets of unknowns encoded in the graph. We will refer to the modelling

problem as thefrontend process of constructing the SLAM problem and the inference

problem as thebackendprocess of �nding optimal estimates of a constructed SLAM

problem. In the next sections, we will describe popular backend optimization ap-

proaches such as �ltering and smoothing, as well as popular frontend representations,

where the choice of abstraction for the measurementsZ and the map M dictate

the information encoded in the map and the utility of it in supporting vision-based

navigation.

2.2 Backend Optimization

In this section, we will �rst discuss �ltering-based approaches (Section 2.2.1) that

were popular in earlier days of SLAM. We will then describe modern smoothing-based

approaches (Section 2.2.2) that the remaining chapters of this thesis will base on as the

backend in exploring di�erent frontend abstractions. Lastly, we will describe state-of-

the-art optimization methods (Section 2.2.2) such as learning-based and relaxation-

based optimal optimization methods.

2.2.1 Filtering-based Approaches

EKF-SLAM

One of the most popular methods in early work in SLAM is the extended Kalman Fil-

ter SLAM (EKF-SLAM) [30, 130, 176, 154, 107] that recursively estimates a Gaussian

density over the vehicle pose and the map. Explicitly representing the uncertainty in

the estimated spatial relations between the vehicle pose and the map by maintaining
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a jointly Gaussian belief over them, this belief could be updated using an extended

Kalman Filter (EKF) [99]. This �ltering-based perspective of the SLAM problem

applied nonlinear �lters in a series of recursive Bayesian updates, assuming the inde-

pendence assumptions discussed in Section 2.1, and a zero-mean additive-Gaussian

noise process on di�erentiable motion and measurement models, i.e.,

x t = f (x t � 1; u t � 1) + r i ; r i � N (0; R) (2.3)

zk = h(x t ; m nk ) + wi ; wi � N (0; W); (2.4)

where by linearizing the updates, the SLAM problem could be written in closed-form

for recursive updates.

The recursive Bayesian updates can be interpreted as a special case of the full

smoothing problem in Equation 2.1, where the pose history is marginalized out and

the distribution over the latest pose and the map are factored in two, namely a dis-

tribution prior to the measurement updateP(x t ; M jz0:t � 1; D ) and the measurement

likelihood P(z t jx t ; M ), the measurement update can be obtained, i.e.,

P(x t ; M jZ ; D ) =
Z

x 0:t � 1

P(X ; M jZ ; D )dx 0:t � 1 (2.5)

/ P(z t jx t ; M )P(x t ; M jz0:t � 1; D ): (2.6)

Similarly, the prior distribution P(x t ; M jz0:t � 1; D ) can further factor into a distri-

bution prior to a motion update based on a control inputu t , where D = f u tgT
t=0 ,

and a motion update, i.e.,

P(x t ; M jz0:t � 1; D ) =
Z

x t � 1

P(x t jx t � 1; u t )P(x t � 1; M jz0:t � 1; D 0:t � 1)dx t � 1: (2.7)

It was later understood that the aggressive marginalization strategy, which on

the surface deals with the growing number of poses, makes it di�cult to retain the

sparse structure of the SLAM problem [181] or correct for poor assumptions made in

the past [93, 43]. First, the correlations introduced between landmarks as a result of
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marginalizing out the poses meant that both the �lter covariance and the informa-

tion matrix would become fully dense over time [149, 189]. Since dense Kalman �lter

measurement updates haveO(n2) computational cost, EKF-SLAM approaches could

not scale into maps containing more than a few hundred states. Leveraging the sparse

information form of the extended Kalman �lter [189, 196] could mitigate the draw-

back to some extent, but there is a second fundamental drawback of �ltering-based

approaches in that linearization choices could not be not be corrected afterwards. At

every update step, a nonlinear measurement or a nonlinear motion update is fused

using a linearization of the measurement or process model evaluated at the current

state estimate. This means that poor pose estimates could be used to linearize the

nonlinear models around the incorrect location, and the erroneous linearization would

irreversibly a�ect all subsequent estimates, causing the estimates to drift over time.

Particle Filtering

As an alternative to EKF-SLAM, particle �lters [114] were proposed to use a �nite

set of samples to nonparametrically represent the state. The samples, i.e., the parti-

cles, could be propagated through a motion model, and then weighted and resampled

using the measurement model, similar to the prediction and the update step of the

EKF-SLAM. Early work in using particle �lters for navigation [42, 63] assumed lo-

calization in known environments to avoid representing a large state space using a

limited number of particles. Later, an insight into the conditional independence struc-

ture of the SLAM problem allowed solving the full SLAM problem, where if the entire

history of poses is kept to preserve the sparse structure, the SLAM problem could

factor into a large posterior distribution over the history of poses, and the product of

many small posterior distributions for the individual landmarksgiven this path. This

factorization led to the Rao-Blackwellized particle �lter pioneered by FastSLAM of

Montemerlo et al. [127], in which only the estimation over the poses is performed via

sequential Monte Carlo inference, while the independent posterior distributions over

landmarks can be updated with independent extended Kalman �lters [133, 127].

The decoupling between pose estimation and individual landmark estimation al-
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lowed forming independent sub-problems with constant time updates, thereby avoid-

ing the quadratic computational complexity of EKF-SLAM where a large joint en-

vironmental state needs to be updated with each measurement. Consequently, Fast-

SLAM could scale to larger environments than what EKF-SLAM could process. How-

ever, without marginalizing out past poses, the size of the robot state would continue

to grow, while the number of samples required to cover the space would grow expo-

nentially in the dimension of the space. This curse of dimensionality and the �nite

number of particles that could be processed within a computing budget leads to what

is known asparticle depletion that degrade pose estimation for longer trajectories.

Moreover, similar to the irreversible EKF-SLAM linearization choices, particle sets

would be continuously resampled and discarded, leading to irreversible drift accumu-

lated in the sampled set of particles over time.

While the irreversibility of �ltering-based approaches were identi�ed as a funda-

mental problem, advancements made in place recognition, where algorithms such as

FAB-MAP by Cummins and Newman [37] and the lighter-weight binary variant of

Gálvez-López and Tardos [67] could provide additional information to potentially cor-

rect for erroneous choices made in the past by recognizing a place previously visited.

The place recognition could translate into aloop closurerelation between two robot

poses far apart in time, but close in distance. The ability to relate previous visited

places and the further understanding that the sparsity of the SLAM problem can

be better retained and leveraged when keeping the entire history of poses leads to

modern smoothing-based optimization that we will discuss in the following section.

2.2.2 Smoothing-based Approaches

Smoothing and Mapping

Extending to larger scale environments, where the rapidly growing complexity of

�ltering-based approaches is intractable, smoothing-based approaches were proposed

as superior alternative. The key insight came from the realization that, contrary to

previous belief, keeping the entire history of poses could still result in computationally
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e�cient pose and map estimation, if the sparse structure of the SLAM problem could

be maintained and better exploited. Dellaert et al. [43] proposed the Square Root

SAM approach of solving the full smoothing and mapping (SAM) problem, where

optimal estimates over the entire trajectory could be computed and improved over

the course of navigation, allowing linearization choices for nonlinear measurement and

process models to change as the estimates improved. In particular, the representation

of the SLAM problem as a factor graph and its relation to sparse matrix factorization

led to the insight that the SLAM problem can be represented as a least squares

problem, when assuming Gaussian distributions over the motion and the measurement

updates similar to Equations 2.3 and 2.4, i.e.,

P(x t jx t � 1; u t ) / exp�
1
2

k f t (x t � 1; u t � 1) � x t k2
R (2.8)

P(z t
k j; x t ; m nk ) / exp�

1
2

k hk(x t ; m nk ) � z t
k k2

W : (2.9)

By reformulating the optimization problem in Equation 1.2 as a minimization over

a negative-log-likelihood, i.e.,

X � ; M � = arg max
X ;M

P(X ; M jZ ; D ) (2.10)

= arg min
X ;M

� logP(X ; M jZ ; D ); (2.11)

(2.12)

we can formulate the SAM problem as the following least-squares problem,

X � ; M � = arg max
X ;M

n TX

t=1

k f t (x t � 1; u t � 1) � x t k2
R +

KX

k=1

k hk(x t ; m nk ) � z t
k k2

W

o

(2.13)

via the factorization in Equation 2.1 and the Gaussian measurement and motion

likelihoods de�ned in Equations 2.8 and 2.9. This nonlinear least squares problem can

be solved with nonlinear optimization methods such as Gauss-Newton iterations or the

Levenberg-Marquardt algorithm that can solve a success of linear approximations in
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order to reach the local minimum. The linearization is similar to that of the extended

Kalman �lter described in Section 2.2.1, but it di�ers in that the optimization can

iterate for multiple times to convergence, while updating the linearization point to

control the trusted region of the linear assumptions.

Linearizing the motion modelf t and the measurement modelhk results in Jacobian

matrices F and H that can be concatenated into a single measurement Jacobian

matrix A . Similarly concatenating acquired sensor measurement errors into a single

vector b, the linearized least-squares problem can be written as

� t
�
n = arg min

� t

kA � t � bk2
� ; (2.14)

where � t is the vectorized form of updates to the pose and map parameters. The

measurement Jacobian matrixA is large but sparse, and can be factorized via matrix

factorization techniques such as Cholesky [31] or QR factorization [121] to avoid the

cubic complexity associated with factorizing a dense matrix [44]. The interpretation

of the SLAM problem as a matrix factorization also led to an important insight that

the ordering of the variables [41] largely in�uence the computational cost of solving

the SLAM problem. These insights gained from sparse linear algebra perspective

eventually led to the development of faster online optimization of the SLAM problem

discussed in the next section.

Finally, the smoothing formulation of the SLAM problem allowed easily encoding

relations between poses that are arbitrarily far apart in time. Instead of relating only

the pose estimates of consecutive sensor measurements, i.e., the process model of

�ltering-based methods, any two pose estimates close in geometric distance could be

related through an explicit detection of a previously visited place, i.e., place recogni-

tion discussed in the previous section. More importantly, if substantial error was not

already accumulated in the pose estimates, any two pose estimates of arbitrary tem-

poral distance could observe the same landmarks, resulting in long-term associations

without an explicit place recognition. The factor graph representation allowed easily

encoding these constraints, continually forming relations between poses to reduce the
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error in pose estimates, thereby improving the robustness of long-term SLAM [21].

Incremental Smoothing

Continuously solving the full SLAM problem in abatch optimization can be costly

and ine�cient, especially if the optimization is performed online for every sensor

measurement to estimate a new vehicle pose associated with the measurement. Kaess

et al. [97] proposed incremental smoothing and mapping (iSAM), which performs fast

incremental updates of the square root information matrix by using matrix update

equations [71, 70] so that previously calculated components of the information matrix

can be reused, as opposed to doing a full re-computation each time. The incremental

optimization of iSAM could allow an online, real-time computation of the map and the

poses, but occasionally required periodic batch optimizations for variable reordering

and relinearization that would arbitrarily delay the online updates.

In order to eliminate the periodic batch optimization of iSAM, iSAM2 [96] was

proposed, where the SLAM problem was represented as a special Bayes tree [95]

structure so that incremental variable reordering and just-in-time relinearization were

possible. The Bayes tree interpretation of the SLAM problem also led to concurrent

�ltering and smoothing [98] that simultaneous enable real-time �ltering and full map

smoothing as di�erent operations applied on a single Bayes tree structure. The idea

of allowing multiple parallel operations is similar to that of parallel tracking and

mapping (PTAM) of Klein et al. [101], where the computational complexity of the

backend batch optimization is instead addressed in the frontend, by constructing both

a lightweight pose estimation problem and a full SLAM problem that would be solved

in parallel. In the next section, we brie�y discuss emerging SLAM formulations that

leverage prior data in a deep learning framework or address the local convergence of

the non-convex formulation presented thus far by leveraging convex relaxations of the

SLAM problem.

39



2.2.3 Emerging Approaches

Learning-based Approaches

Recent advancements in deep learning have transformed many fronts of computer

vision including vision-based SLAM. While we will talk about the impact on the

frontend of SLAM in Section 2.3.4, where we will describe learned abstractions for

measurements and world models that allow better modelling the SLAM problem, in

this section, we discuss the body of work that directly attempt to replace the backend

optimization of the SLAM process with predictions based on deep networks. Instead

of optimizing a SLAM graph that is being simultaneously constructed, learning-based

SLAM systemspredict the map and the poses using a neural network of many pa-

rameters trained based on a large amount of o�ine data. For example, DeMoN of

Ummenhofer et al. [193] trains a convolutional network end-to-end to compute the

depth and camera motion from successive image pairs. By stacking multiple encoder-

decoder networks that predict optical �ow, depth maps, surface normals, and camera

motion, a supervised loss between the predicted metrics and the ground-truth train-

ing data drive iterative optimization of the network parameters. DeepTAM of Zhou

et al. [212] extends the idea by allowing multiple images to re�ne predicted depth

maps and leverage keyframes to avoid translational drift in the pose estimates.

However, despite impressive performance in familiar environments, i.e., environ-

ments that were well represented in the training data, self-supervised approaches

require ground-truth labels that are di�cult to acquire in large quantities. The Mon-

odepth2 method of Godard et al. [72] and the SfMLearner method of Zhou et al.

[212] overcome the data requirement by leveraging a self-supervised training loss such

that a depthmap and a relative camera motion predicted from a series of images can

be used to project an image into nearby views for a training loss based on an image

reconstruction error. Recent work by Tonioni et al. [192, 191] extend the idea of

self-supervision by allowing an online adaptation for improved performance in less

familiar environments and Patil et al. [150] improve depth prediction by using a

recurrent network to exploit spatio-temporal structure over image sequences.
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Di�erentiable SLAM

While the learning-based approaches in the previous section attempt toreplace the

smoothing-based SLAM (described in Section 2.2.2) that leverages nonlinear least

squares optimization, there are approaches [187, 34, 195] that attempt to improve

the optimizer that can solve the nonlinear least squares problem. Clark et al. [34]

propose a di�erentiable neural nonlinear least squares optimization that replaces the

Levenberg-Marquard optimizer with a long short term memory recurrent neural net-

work (LSTM-RNN) [80] that predicts the update steps. Their LS-Net approach can

estimate motion and scene geometry from pairs of images even for under-determined

systems that the classical optimization approaches struggle with, by leveraging implic-

itly learned priors encoded in the parameters of the network. Similarly, the BA-Net

method of Tang et al. [187] leverages an end-to-end di�erentiable network that can

solve the bundle adjustment (BA) problem, i.e., the batch optimization of the SLAM

problem rooted in the structure-from-motion (SfM) [45, 177, 7] community. In their

approach, they learn to predict the damping coe�cient of the Levenberg-Marquardt

optimizer such that optimization reaches a better solution within limited iterations,

along with learning suitable features for the BA problem.

While the aforementioned approaches require training a network to replace the

underlying optimizer, the gradSLAM method of Jatavallabhula et al. [91] leverages

an end-to-end di�erentiable SLAM pipeline that represents SLAM as a di�erentiable

computational graph. Without training additional neural networks, which would

impose limitations on the generalizability, gradSLAM replaces several components

of a typical dense SLAM system that are non-di�erentiable, such as trust-region

optimizers, surface measurement, and raycasting, with a di�erentiable counterpart

so that backpropagation can be possible from 3D maps to 2D pixels. Such fully

di�erentiable SLAM systems could allow leveraging task-based error signals to learn

representations that optimize the process of SLAM, opening up new possibilities in

gradient-based, di�erentiable learning for SLAM.
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Optimal SLAM

While the smoothing formulation described in the Section 2.2.2 is the predominant

approach in visual SLAM, providing fast and scalable inference topractically solve

the SLAM problem, the main drawback of the approach is the issue of reliability and

the lack of guarantee of optimality. Due to the presence of non-Euclidean orientation

estimates in the poses and the use of nonlinear measurement models, e.g., the camera

projection models, the formulation in Equation 2.13 is non-convex. Consequently,

the incremental Gauss-Newton-based optimization can only guarantee convergence

to a local minimum, while the high-dimensional state space of the poses and the map

combined with nonlinear objective often result in complex cost surfaces containing

many sub-optimal local minima; similarly, the learning-based approaches of previous

sections su�er from the same lack of global optimality. Using stochastic gradient

methods [146, 147] or advanced initialization schemes [25, 26] can aid in initiating

the search close to the global minimum, but these heuristic-based approaches do not

gaurantee correctness of the estimates they recover.

The SE-Sync method of Rosen et al. [156] addresses the problem by a semide�nite

relaxation of the SLAM problem onto a low-dimensional Riemannian manifold [16]

where the solution to this reduction can be solved e�ciently. The solution to the

relaxed problem has a linear relation to the original problem, allowing the recovery of

a globally optimal solution by means of convex programming. As a result, the method

is able to obtain certi�ably globally optimal solutions, given that the noise corrupting

the measurements remains under a threshold, opening the door to certi�ably correct

SLAM systems and certi�able robotic systems of the future.

2.3 Common Frontend Representations

We have now discussed the backend optimization approaches for SLAM, concerned

with e�ciently solving a constructed SLAM problem. In this section, we discuss the

frontend modelling problem of constructing the SLAM problem, where the choice of

the world model and the measurement process has large implications on the utility of
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the estimated map. We will explore common map representations that are adopted

by popular vision-based SLAM systems, with a focus on monocular SLAM systems,

that can operate in real world environments. The majority of the SLAM systems

we discuss in this chapter rely on the modern smoothing-based optimization of the

SLAM problem discussed in Section 2.2.2.

2.3.1 Sparse Representations

Many real-time vSLAM systems [101, 61, 131, 152, 24] rely on a sparse point-cloud

representation of the world model. Dating back to the seminal work of Matthies

and Shafer [122], a sparse point-cloud representation is one of the most e�cient ab-

stractions of the world model for tracking the camera motion (and in turn, the robot

poses) due to the sparsity of encoding only a few locations in the scene. Each point,

often called a landmark, represents a position in 3D and is selected based on the

appearance when projected onto a 2D image, where the projection is often called a

feature. Each feature can be interpreted as an abstraction of the image measurement,

such that the immense information in images can be reduced to a low-dimensional

pseudo-measurement of a landmark.

By detecting the features that are distinctive and can be re-detected from dif-

ferent perspectives under scale, rotation, and lighting changes, the features can be

associated across multiple views such that their detections can be compared against

the projections of the observed 3D landmark in each view. The discrepancy between

the detected location of the landmark, i.e., the feature location in the image, and

the expectedprojection of it based on the estimated camera pose and its location in

3D is called thereprojection error. The reprojection error could be modelled as a

constraint between a camera pose and a landmark in graph-based SLAM, or specif-

ically as a factor in a factor graph representation. These factors can be aggregated

in a factor graph to construct the SLAM graph, such that the backend optimization

process discussed in Section 2.2.2 could minimize the total error in the graph, jointly

reducing the reprojection error across many poses and landmarks.

Advancements made in robustly detecting features, tracking and associating them
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across images laid the foundation for high performance feature-based SLAM systems

to come. Early work [128, 77, 174] in detecting feature locations in images relied on

�nding distinctive features by comparing the patch around each candidate location

against patches extracted from nearby locations; a large discrepancy between the ref-

erence patch and its shifted versions meant that the reference patch was distinctive,

i.e., dissimilar from nearby texture, and could be re-identi�ed in subsequent frames.

SIFT [116] extended the idea to scale-invariant features, i.e., features that can be

identi�ed from multiple distances, by creating a scale space based on scaled Gaus-

sian �ltering of an image, and then computing the Di�erence-of-Gaussians (DoG) to

detect feature locations. FAST corners [160, 162] allowed detections that are orders

of magnitude faster by comparing a pixel against a circle of pixels around it, and

de�ning it as a corner if a certain number of a continuous set of pixels in the circle

are all brighter or darker. The variants of feature detection can all be interpreted as

di�erent abstractions of the image measurement.

Given a detected feature set, the Kanade-Lucas-Tomasi (KLT) [117] tracker al-

lowed each feature to be tracked through a local image sequence by minimizing the

sum-of-squared-di�erences (SSD) between the patch around the feature in one im-

age and its projection to subsequent images. In the case of images being spatially

or temporally further apart, where the association bytracking is di�cult, descrip-

tors based on the histogram of gradient orientations around the features, such as

SIFT [116] or HoG [39], allowed each feature location to be uniquely described for

matching without assuming any relation between the images. BRIEF [22] and ORB

[165] descriptors allowed computing more e�cient descriptors by implementing a set

of binary comparisons between pixel locations around a feature, where the resulting

binary classi�cation can act as the unique descriptor for the feature.

In addition to the advancements made in detecting and associating features, a

key insight into the formulation of the feature-based SLAM problem enabled the

development of high performing monocular SLAM systems based on sparse point-

clouds. The Parallel Tracking and Mapping (PTAM) algorithm developed by Klein

et al. [101] modelled the SLAM process as two parallel processes: a slower-rate
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mapping process over a subset of images and a fast-rate tracking process assuming a

known map. Instead of optimizing over the poses of all images, the mapping process

optimized over a subset of frames at distance from each other, calledkeyframes,

for more e�cient computation where the distance between the keyframes could also

ensure a su�cient baseline for triangulating the locations of the landmarks. The

tracking process then assumed the locations of the landmarksm nk in Equation 2.2 to

be �xed, thereby avoiding optimizing over them, such that only the current pose could

be computed relative to the latest keyframe. This approach allowed real-time pose

estimation through an abstraction of the SLAM process, without having to directly

address the growing complexity of the full smoothing problem described in Section

2.2.2.

Adopting the parallel paradigm of SLAM, ORB-SLAM [131, 24] improved the

long-term consistency of feature-based SLAM by adding loop closure constraints (dis-

cussed in Section 2.2.1) that mitigate odometry drift and a set of map management

techniques to eliminate poorly estimated landmarks. ORB-SLAM also adopted a map

management process of removing poorly observed landmarks. Instead of sparsely cre-

ating keyframes and ensuring that only the well-observed landmarks are added to the

graph, ORB-SLAM generated many keyframes such that a large number of landmarks

were available within the view of the current camera for tracking fast camera motion,

and later removed poorly observed landmarks to prevent them from corrupting the

SLAM graph and slowing down the optimization.

While the vast majority of feature-based SLAM approaches leverage the reprojec-

tion error that is the constraint on the geometric consistency of landmark locations

and projections, the Direct Sparse Odometry (DSO) method of Engel et al. [53]

minimizes thephotometric error, the discrepancy between the pixel intensities of dif-

ferent projections of the same landmark location. Due to the lighting changes that

can a�ect the pixel intensities across camera images in a short period of time, their

approach jointly optimizes over the exposure time, lens vignetting, and nonlinear re-

sponse functions. The Semi-Direct Visual Odometry (SVO) method of Forester et

al. [60] also adopts the photometric error, but instead of the joint optimization of
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photometric calibration, both the reprojection error and the photometric error costs

are used together for improved performance.

Despite the computational e�ciency of sparse point-cloud representations that

make them a popular choice for pose estimation, point-cloud maps could only be used

in limited scenarios of vision-based navigation. The �rst problem is that the sparse

point-cloud maps are often constructed using monocular cameras, and are typically

not to metric scale due to the well-known scale unobservability of monocular cameras

[185]. Leutenegger et al. [109] additionally leveraged IMU measurements in the

SLAM graph to observe the metric scale during translational motion, and Forster

et al. [59] and Qin et al. [152] further improved the idea by pre-integrating the

IMU measurements between keyframe poses into a single factor summarizing many

IMU measurements, so that the variables in the SLAM graph were more e�ciently

relinearized. However, leveraging the IMU to observe the scale required constant

translational motion of the camera, while high noise in acceleration measurements

could corrupt the SLAM graph.

A more fundamental problem of the sparse point-cloud representation is that the

features and the landmarks are selected based on how well they can be detected

and associated, as opposed to how well they represent the scene geometry. In other

words, the process of abstraction is not concerned with accurately capturing the scene

geometry, but instead focused on reliably associating the abstracted measurements.

Consequently, autonomous MAVs leveraging sparse feature-based SLAM could not

use the map to collision-test potential vehicle trajectories during motion planning.

Instead, Achtelik et al. [5] and Weiss et al. [197] leveraging PTAM, and Forster et

al. [60] leveraging SVO all assumed a collision-free environment, where the vehicles

would �y in free space well above collision-likely structure, with the pose estimation

performed using a downward-facing camera. In the next section, we discuss dense

representations that address the problem of sparsity in point-cloud representations.
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2.3.2 Dense Representations

While sparse representations are primarily concerned with localizing the pose of the

vehicle, dense representations attempt to better represent the scene geometry. As a

result, point-clouds are highly abstract representations of the environment contain-

ing a small number of highly-visible landmarks, while dense representations are less

abstract models that are several orders of magnitude larger than sparse representa-

tions. Instead of representing the SLAM problem as an optimization over a graph, as

discussed in Section 2.2.2, dense methods leverage avolumetric representation of the

world, where the optimization process is concerned with estimating the occupancy

of each cell, often called avoxel, of a 3D grid of cells. Consequently, modelling an

environment requires representing both the free and occupied space in a 3D grid, an

abstraction that can be challenging to store in memory for large environments. In

contrast, sparse abstractions only model occupied space, i.e., the landmarks.

For dense mapping using a monocular camera, the Dense Tracking and Mapping

(DTAM) method of Newcombe et al. [136] is the seminal work. In DTAM, a 3D cost

volume is constructed at each keyframe, and stereo matching costs for every pixel in

all subsequent frames are fused into the volume in an optimization process, such that

a smooth, minimum-cost surface can be extracted from the cost volume in the form

of an optimized depth map. The poses of new frames are estimated by whole image

alignment against the dense model, and a new keyframe is created when the overlap

between a new frame and the current keyframe falls below a threshold. Given the

challenges of processing and storing the less abstract volumetric representation of the

world, a small workspace was assumed and a high-power GPU was required, both of

which are undesriable for vision-based navigation of an MAV.

A compromise between the density of the map representation and the compu-

tational e�ciency of optimization is semi-dense methods [56, 54]. The LSD-SLAM

method of Engel et al. [54] estimates keyframe depth maps, without a full volumetric

representation underlying the depth map, by leveraging a per-pixel depth �lter [56]

over high-gradient pixels. Avoiding volumetric fusion and ignoring low-texture image
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regions allows real-time map construction that does not leverage a GPU, but similar

to sparse representations, the choice of measurement abstraction is one that is based

on the presence of texture, ultimately limiting the use for visual navigation in a wide

variety of unknown environments.

While not a monocular SLAM approach, it is worth mentioning RGB-D based

approaches that leverage a high-power GPU for building a truncated signed distance

function (TSDF) representation of the world, due to their popularity. Pioneered by

KinectFusion of Newcombe et al. [135], the map is represented as a truncated signed

distance function (TSDF), stored in a volumetric voxel-based data structure, where

each voxel represents the distance to the closest surface. In KinectFusion, for each

new RGB-D measurement, a new surface measurement is computed in the form of a

vertex map and a normal map pyramid, such that the camera pose can be estimated

with respect to the raycasted surface of the global TSDF via the iterative closest point

(ICP) algorithm using the normal map pyramid. The estimated pose is then used

to transform the new surface measurement into the frame of the global TSDF for an

update via a weighted running average. Similar to DTAM, KinectFusion could not

extend beyond small environments that could completely �t in the memory of a single

GPU. The Kintinuous method of Whelan et al. [198] later extended KinectFusion to

larger environments by sliding the voxel representation across the environment, and

the ElasticFusion method of Whelan et al. [200] further added loop closures based

on warping the voxels.

For constructing a dense representation for visual navigation of an MAV, the

VoxBlox method of Oleynikova et. al. [145] reduced the computational complexity of

building TSDFs by leveraging large voxel sizes and choosing weighting and merging

strategies that prioritize computational e�ciency. While VoxBlox could be computed

on the CPU of a small computer available on an MAV, in their demonstration, the

MAV leveraging VoxBlox had to move at a very slow speed in a small environment.

Ryll et al. [167] later demonstrated constructing a dense voxel grid and converting it

to a K-D tree for online obstacle avoidance on a high-speed MAV, but adopted a slid-

ing window representation of the world due to the di�culty of storing and processing

48



a growing map. A sliding window dense representation of the world is an abstraction

that is suitable for collision avoidance, especially if it could be computed on an MAV,

and could be augmented by the lightweight global object-based representations that

we construct in Chapters 4 and Chapters 5 for maintaining a global knowledge of the

environment for reporting back to a human operator [21] or search-and-rescue [173].

2.3.3 Surface-based Representations

We have now explored sparse point-cloud representations that do not easily allow

collision-testing, and dense representations that are di�cult to store and process.

One way to both densely and e�ciently encode scene geometry is to represent the

environment using surface-based representations such as meshes [138, 158], planes

[94, 207], or surfels [200]. While these abstractions allow building a dense yet com-

pact representation of the environment, the representations often assume a speci�c

type of environment [94, 207], require a GPU di�cult to carry on a MAV [200], or

leverage a measurement abstraction based on texture [138, 158], similar to the sparse

representation discussed in Section 2.3.1, that is di�cult to generalize to many types

of environments.

Assuming known motion of the camera, the FLaME method of Greene and Roy

[138] converted semi-densely sampled points into a mesh by forming a Delaunay graph

over them. Computing the connectivity information between points using 2D Delau-

nay triangulation, 2D piece-wise planar triangular surfaces could be formed between

estimated semi-dense point-cloud to densely represent the scene geometry. Com-

bining e�cient spatial regularization over the potentially noisy estimates of points,

their method allowed CPU-only estimation of a dense map that could be computed

in real-time on a MAV for online obstacle avoidance. The Kimera method of Rosi-

nol et al. [158] adopted the CPU-based mesh generation in a multi-process mod-

ular SLAM framework that could selectively and simultaneously compute multiple

representations: a semantically-labeled dense voxel representation based on stereo

images, visual-inertial odometry (VIO) that could estimate the poses online using

both monocular and stereo images, a per-frame semantically-labelled mesh, and a
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multi-frame mesh over the entire environment.

While the mesh-based representation of these approaches could accurately repre-

sent well-textured and approximately piece-wise planar scenes, similar to the prob-

lem of sparse point-cloud representation, the vertices of the mesh were selected to

be on high gradient regions, as opposed to geometrically complex regions, and could

poorly represented poorly-textured scenes. In addition, Delaunay triangulation was

performed on the 2D vertices for computational e�ciency, leading to potentially con-

necting points close on the image plane but far apart in depth, making it di�cult to

represent complex environments with holes and many depth discontinuities. Given

these di�culties in modelling certain types of environments, it can be challenging to

leverage the online constructed mesh map for collision avoidance in unknown envi-

ronments.

Instead of converting a point-cloud into a mesh, Pop-up SLAM of Yang et al.

[207] represented a poorly-textured indoor environment with a series of large planar

segments. Training a CNN to segment an image into ground and wall planes, the

intersection between the ground and the wall could be estimated such that each wall

and �oor segments could be represented with a single plane representation. Despite

the planar representation of the environment being compact yet e�cient to compute

and collision-test, the approach was limited to strictly planar scenes such as indoor

hallways. Lastly, despite requiring a GPU and an RGB-D sensor, ElasticFusion [200]

is worth mentioning, where the surfel representation of the approach extends a point

presentation by attaching a normal, a color value, and a radius such that the local

surface area around each point can be represented to densify the representation.

However, one drawback of the approach is that it is di�cult to collision-test the

representation, due to the large number of parts and the potential holes between the

surfels.

2.3.4 Learned Models of Environments

Early attempts to adopt deep learning in a classical SLAM framework were concerned

with replacing hand-engineered interest points in feature-based SLAM, described in
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Section 2.3.1. Learned general descriptors such as LIFT [208] and the self-supervised

SuperPoint [47] replaced their hand-engineered counterparts, such as SIFT [116] or

ORB [165], for detecting landmarks in multiple images. Similarly, the CNN-SLAM

method of Tateno et al. [188] trained a CNN using ground-truth poses and depth

images to predict depth images online that could be fused together with depth maps

obtained from direct monocular SLAM. The learned features and the predicted depth

images can be interpreted as learned abstractions of measurements, and were followed

by learning abstractions of map representations.

CodeSLAM of Bloesch et al. [15] learned a model of scene geometry by training

a variational auto-encoder network [100] on depth images, and leveraging the latent

space as the compact representation of a depth map. The key insight into generating

a compact representation that does not sacri�ce reconstruction detail was to condition

the depth map on the intensity data from a single image, such that the depth estimate

for a keyframe would be a function of both the corresponding intensity image and the

compact representation. In a classical structure-from-motion framework, the compact

representations could be jointly optimized with pose variables, in an identical to

classical models described thus far, such that learned representations of overlapping

keyframes attained global consistency.

The DeepFactors method of Czarnowski et al. [38] extended the idea of learned

world models into a classical factor graph formulation, and introduced local and

global loop closures, map maintenance, and relocalization that have proven to be

critical in classical SLAM systems. Extending beyond estimating the scene geometry,

the SceneCode method of Zhi et al. [211] learned compact representations that,

conditioned on color images, could predict both the depth images and semantic labels,

realizing learned dense semantic structure-from-motion. While this method does not

speci�cally represent objects in the scene as individual entities, there is a body of

literature on learning abstractions of objects that we will further discuss in Section

2.3.6.

Lastly, while all methods discussed in this section require a GPU that is di�cult

to carry on-board an MAV, the idea of learning abstractions of world models and the
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impressive reconstruction quality enabled by it present as a promising direction for

future abstractions for vision-based navigation.

2.3.5 Hierarchical Representations

The idea of hierarchy is a well-explored concept in computer vision and vision-based

navigation. As we have seen, image pyramids [20, 6] are formed to extract scale-

invariant features [116, 165] and camera poses are tracked in sequential pyramid

levels [101], from coarse to �ne, to utilize di�erent basins of attraction.

In the context of representing an environment as a hierarchical model, scene graphs

[102] encoding objects, properties, and relations between objects were proposed as a

compact representation of a 2D image for image retrieval [92], scene synthesis [29],

visual question answering [213]. For example, Johnson et al. [92] represented scenes

as hand-constructed graphs of nodes and edges, where objects, attributes, and re-

lationships were the nodes and the edges related objects to attributes and to other

objects by connecting to relationship nodes that could then connect to other object

nodes. Scene graphs could be grounded to 2D images by associating each object

instance of a scene graph to a region in an image. Representing the grounding prob-

lem as a conditional random �eld (CRF) [104] that models the distribution over all

possible groundings, the MAP estimate could be computed to �nd the most likely

grounding relating a scene graph to an image described by it, for image retrieval

based on the scene graphs. Later, Xu et al. [205] addressed the problem of manually

generating scene graphs by training an end-to-end di�erentiable network based on

recurrent neural networks (RNNs) using Visual Genome [102] dataset of 100K images

and annotations such that a scene graph could be predicted from an image.

Extending scene graphs to represent 3D environments consisting of objects and

dynamic agents, Dynamic Scene Graph (DSG) of Rosinol et al. [159] abstracts a

dense 3D model, such as a semantically labeled mesh map, into spatial concepts such

as objects, people, and rooms, and models their spatio-temporal relations, such as the

traversability between places, and motion of dynamic objects. By representing the

map as a layered directed graph where nodes represent the spatial concepts and edges
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represent the spatio-temporal relations, the 3D geometry and semantics of a scene can

be represented at di�erent levels of abstraction in a single hierarchical graph. This

graph can be used to e�ciently extract actionable information that supports complex

planning and decision-making, beyond the naive navigation strategy of treating every

entity and structure as an obstacle. Given the relations between places, a robot could

be given a high-level command such as exploring the closest room. The multiple levels

of abstraction also have the potential to enable multi-resolution planning approaches

[172], where a robot could plan at di�erent levels of abstraction to save computational

resources. While building such a graph online in a real-world environment still remains

a challenge, the hierarchical representation presents as a promising future direction of

map representation for enabling complex tasks beyond a point-to-point navigation.

2.3.6 Object-based Representations

While the representations discussed thus far do not attempt to individually model

objects, models of objects can allow loop closures as demonstrated by Frey et al. [64],

camera re-localization as in the work of Gaudillière et al. [68] and collision-testing

as we will demonstrate in Chapter 4. In addition to the added utility, the global

map of objects itself has value to human operators [21] who can further leverage the

map for applications such as search-and-rescue [173]. In this section, we will describe

point representation of objects and the algorithms that improve the data association

of objects, 3D bounding box representations and ellipsoid representations suitable for

collision-testing, and �nally dense and learned representations for high quality map

construction leveraging a high-end GPU and an RGB-D sensor.

Point Representations

While this thesis focuses on buildingvolumetric object representations that can sup-

port collision-testing during visual navigation, an object can also be represented as a

single point model for leveraging the knowledge of object locations to better estimate

the vehicle poses [8, 9, 17, 50]. Compared to the sparse point-cloud map represen-
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tations discussed in Section 2.3.1 that do not accurately encode the geometry of the

scene but enable e�cient pose estimation, a point representation of objects is similar

in that the resulting map does not encode accurate object geometry but enables ve-

hicle pose estimation based on 2D object detections and estimated object locations

in 3D. However, an important di�erence between a point-cloud map of objects and a

point-cloud map of strong gradient regions is that the map of objects can be much

smaller in size, in the order of tens of objects, while a point-cloud constructed based

on the hundreds of corner features detected in each image can be in the order of

thousands of landmarks. Consequently, the popular approach of decoupling the data

association process from the back-end optimization and relying on RANSAC [58] or

robust error metrics [87, 76] to remove poorly associated landmarks is often not suit-

able for the smaller object-based maps. In this section, we discuss probabilistic data

association schemes that leverage the predicted class of objects as the descriptor for

objects, in place of appearance-based 2D descriptors [116, 22] that are less consistent

under large changes in viewpoints [125]. These approaches address the problem of

noisy object detections and inconsistent predictions of object classes in the context

of data association and can potentially augment our volume estimation methods.

In order to deal with unknown data association, missed detections and false de-

tections that occur during vehicle localization in a prior map of objects, Atanasov

et al. [9] proposed to model object observations as a random �nite set. Similar to

the representation change in the robot state from a vector-based representation to

a set of particles that we discussed in Section 2.2.1, i.e., the evolution from Kalman

�ltering to particle �ltering, a representational change is proposed to the observa-

tion model such that a set of randomly-varying cardinality is used to model object

observation. In order to deal with the computational complexity of set-based meth-

ods that we discussed in Section 2.2.1, the problem of computing the likelihood of

the set-valued observation is reduced to computing a matrix permanent such that a

more e�cient polynomial-time approximation to the set-based Bayes �lter is possible.

While the e�cient joint estimation of data association and the vehicle poses improved

the robustness of object-based vehicle pose estimation, the choice of representation of
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objects that prohibit collision-testing and the requirement of a prior map made the

approach less suitable for vision-based navigation in unknown environments.

In order to remove the requirement of a known map while focusing on the prob-

lem of robust data association, Bowman et al. [17] proposed the idea of combining

the discrete problem of data association and object class inference with continuous

optimization of graph-based SLAM discussed in Section 2.2.2. By formulating the

joint problem as an expectation-maximization (EM) problem and treating data as-

sociations and class labels as latent variables, during the expectation step of EM,

discrete object classes and data association probabilities were estimated. In the fol-

lowing maximization step, the camera poses and point landmarks were optimized in a

graph-based SLAM as described in Section 2.2.2. The iterative expectation and maxi-

mization steps allowed estimating object positions in the presence of noise in semantic

labels and identical objects, e.g., a row of identical doors in a hallway, by allowing the

optimized landmark and robot poses to a�ect the association and class distributions,

which in turn improved the SLAM optimization in inter-weaved steps. However sim-

ilar to the work of Atanasov et al. [9], a point-based representation adopted in the

SLAM optimization resulted in maps that are di�cult to collision-test.

3D Bounding Box Representations

While the approaches in the previous section are primarily concerned with robustly

associating objects over large baselines, there are methods that focus on estimating

approximate object volumes for collision-testing and do not attempt to estimate the

class of objects or use such information for data association. Yang and Scherer [206]

estimated a 3D bounding box representation of objects by detecting objects in monoc-

ular images and associating them by comparing the portions of a corner-based sparse

point-cloud map that project into 2D object detections. Their CubeSLAM approach

combined several sources of information, such as the edges of the 2D bounding box

detections, strong vertical lines within the bounding box detections, and long line

segments in the entire image, to �rst generate 3D cuboid proposals in monocular

images. These 3D proposals could then be fused in a SLAM framework along with
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constraints formed using corner-based point landmarks and the edges of 2D bound-

ing box detections for an estimation based on many images. One drawback of the

approach was that the assumption of vertical lines on objects limited the class of ob-

jects, and the assumption of aligning object orientations with vanishing points of the

scene that are estimated using long line segments limited the types of environments,

e.g., the assumption could best work on cars on roads where the headings of the cars

are aligned with long line segments on building facades and lane marks.

Instead of predicting 3D bounding boxes based on line segments, learning-based

approaches [120, 175, 169] attempted to directly predict 3D volumes in monocular

images using a deep network supervised using 3D bounding box labels. While these

approaches demonstrated predicting 3D bounding boxes of cars, due to the di�culty

of hand-labelling 3D bounding boxes for a supervised training, the approaches could

not extend to other classes of objects where games and photo-realistic simulations

could not provide ground-truth labels of 3D volumes.

Ellipsoid Representations

Instead of representing an approximate bounding volume over an object as a 3D

bounding box and estimating the position, size, and orientation based on heuristics or

learning, smooth ellipsoid representations could be constrained in a SLAM framework,

leveraging di�erentiable measurements models over the smooth surface model. Details

of the smoothing-based optimization is described in Appendix B as Chapters 4 and

5 primarily leverage the ellipsoid representation for object-level SLAM and mapping.

The idea of using ellipsoids as an approximate object representation was �rst

proposed by Cross and Zisserman [36], where edges of 2D bounding box detections

were interpreted as 3D planes passing through the camera center and tangent to

the object. A collection of associated 2D bounding boxes from multiple viewpoints

allowed carving out a 3D volume and representing it as an ellipsoid. Rubino et al. [69]

and Nicholson et al. [139] adopted the ellipsoid representation in a batch structure-

from-motion framework that could estimate the properties of an ellipsoid given a

set of 2D bounding box detections, withknown associations, in multiple calibrated
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views. Hosseinzadeh et al. [84] further extended the idea by combining ellipsoid

models with plane models, where plane hypotheses were generated using a CNN, and a

point-cloud model of objects, also predicted from a CNN, in a single SLAM framework

where constraints were formed between di�erent models, e.g., plane-ellipsoid tangency

constraint. While using a mixture of models to represent di�erent parts of the scene

allowed a more complete model of the world, 3D CAD models of objects were required

to train the CNNs, reducing the generalizability of the approach.

Recent work of Liao et al. [111] proposed assuming symmetry in objects, while

leveraging depth images from an RGB-D camera as point-constraints on the primal-

form of ellipsoids, in addition to the bounding box detections that constrain the

dual-form, such that the combined constraints improve ellipsoid estimation. However,

similar to Nicholson et al. [139], the approach assumed known data association. The

EAO-SLAM method of Wu et al. [203] proposed combining semi-dense SLAM [79]

with ellipsoid-based object-level SLAM in a joint framework, such that the semi-

dense point-cloud within 2D bounding box detections could be used to associate the

bounding boxes. In addition, texture on the objects were used to better constrain

the orientation of the objects. However, their orientation estimator required strong

line segments on the object surfaces, limiting their applicability to a smaller set of

objects such as books, monitors, and keyboards.

Volumetric Representations

Fusion++ by McCormac et al. [123] proposed using an RGB-D camera and TSDF

reconstructions, as done in dense methods described in Section 2.3.2, but instead

of having a single TSDF over the entire environment, initialized compact per-object

TSDF reconstructions by leveraging Mask-RCNN [78] to segment individual objects.

Reconstructed objects were then stored in apose graph, where the reference frames

attached to each of per-object TSDF voxel grids were related to pose estimates of

cameras in a graph similar to the SLAM graph in Section 2.2.2, such that upon loop

closure detections, only the relative pose estimates of object volumes could be updated

without warping the TSDFs to prevent distorting object reconstructions. The idea
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of decoupling the volumetric object reconstruction from the pose graph optimization

of reference frames of known object models is an extension of the SLAM++ method

of Salas-Moreno et al. [170], which required constructing TSDF models of objects

in a separate process prior to navigating in the environment. Similar to the dense

methods described in Section 2.3.2, the computational complexity of the object-based

dense methods makes them less suitable for vision-based navigation of an MAV.

Learned Object Representations

State-of-the-art object mapping approaches [132, 110, 183, 166], concerned with pre-

dicting accurate models of objects, represent objects as a learned shape encoding.

The NodeSLAM method of Sucar et al. [183] models objects as a learned represen-

tation that can be jointly optimized with camera poses in a SLAM framework. By

�rst training a Variational Auto Encoder (VAE) to reconstruct a small voxel grid

representation of objects based on CAD models, the decoder, together with a di�er-

entiable function that projects a voxel grid into a depth image, can be considered

a di�erential rendering engine, generating a depth map from a learned shape code.

Initializing an object shape code with the mean of the object class inferred based on

the color image, the residual between rendered depth images and depth images from

an RGB-D camera is used to update the shape code and object pose iteratively with

the Levenberg-Marquardt algorithm. While the training procedure requires 3D CAD

models of objects and do not generalize to objects in unknown environments, the

decoded object models of trained classes are highly detailed and suitable for grasping

and manipulation of the objects.

The FroDO method by Runz et al. [166] models objects as a learned code, but in-

stead of using RGB-D images, leverages a series of RGB images and 2D bounding box

detections taken from multiple perspectives of an object. By training an encoder that

projects an RGB image into a low-dimensional latent space, together with a decoder

that predicts both a point-cloud and a signed distance function (SDF), FroDO allows

switching between a sparse point-cloud representation and a dense SDF reconstruction

of an object. Leveraging the ellipsoid representation, in addition to the point-cloud
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representation and the dense SDF, models are estimated in the coarse-to-�ne order.

By �rst estimating an ellipsoid using 2D bounding box detections, images from a

diverse viewpoints around the ellipsoid are selected, while accounting for occlusions.

The images are then projected into the latent space, and the codes predicted from

these images are fused into a single shape code. The shape code is then incrementally

re�ned by minimizing energy terms based on geometric and multi-view photometric

consistency, �rst based on the point-cloud representation and later re�ned based on

the SDF. The hierarchical estimation of object models is similar to that of Chapter

5, but di�ers in that an appropriate object representation is not chosen based on the

quality of available measurements.

2.4 Summary

In this chapter, we explored backend optimization methods for SLAM, visiting both

classical �ltering-based approaches and the modern smoothing-based approaches the

rest of the chapters in this thesis depend on, and emerging approaches in learning-

based and relaxation-based optimal SLAM. We also explored popular representations

of world models leveraged in a SLAM formulation, where we �rst discussed sparse

representations suitable for pose estimation but insu�cient for collision-testing. We

discussed dense representations that are more suitable for collision-testing but require

a local representation of the environment or a power hungry GPU di�cult to carry

on-board an MAV. We discussed surface-based representations that are compact yet

dense, potentially suitable for both fast pose estimation and e�cient collision-testing,

and highlighted their limitations of assuming certain types of environments or the

strong presence of texture. We also discussed learned map representations that are

able to construct high-quality maps using a GPU. Despite the di�culty of leveraging

a high power GPU on an MAV, we observed learned representations as future map

representations for vision-based navigation. We also explored hierarchical represen-

tations of maps that organize the world model into di�erent levels of abstraction, for

the purposes of complex task planning and human-robot interactions. Finally, we dis-
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cussed object-level representations and the variants that are suitable for loop closures

and collision-testing that we will show in Chapter 5. While no single abstraction of

world model seemed suitable for vision-based navigation, we observed that simulta-

neously building a local dense map and a global object-based map might be the best

representation for vision-based navigation.
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Chapter 3

Multiple Levels of Abstraction in

Map Representation

In this chapter, we show that a representational change in the world model used

to track the vehicle pose can improve the computational e�ciency of pose estima-

tion. In Chapter 1, we described the problem of online map construction to support

real-time localization, mapping and collision-testing required during visual naviga-

tion of an autonomous robotic vehicle. Out of the three real-time tasks, we discussed

the importance of real-time pose estimation for low-cost MAVs. In this chapter, we

show that we can improve the computational e�ciency of pose estimation on low-cost

MAVs by further abstracting the reconstructed global map of environment geometry

into a lower-dimensional local map that enables computationally e�cient pose esti-

mation. The key idea in leveraging multiple levels of map abstraction is that if we

reformulate the localization and mapping problem so that they no longer share the

same copy of the map, the two processes can be physically decoupled in unknown

environments and further temporally decoupled in known environments for fast on-

board pose estimation using limited computation. For navigating in an unknown

environment, we introduce Monocular Image Space Tracking (MIST) that constructs

an image space representation based on sparse point-clouds for computationally ef-

�cient online mapping. Then, we extend the idea to known environments where we

introduce Simultaneous Tracking and Rendering (STAR) that leverages a denser mesh
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representation constructed o�ine for a better representation of the scene geometry

without degrading the computational e�ciency of pose estimation.

3.1 Pose Estimation in Unknown Environments

For the purpose of supporting monocular vision-based, inexpensive, and potentially

disposable MAVs that can be deployed in a large volume, e.g., a team of MAVs

exploring a post-disaster site on a search and rescue mission, an easy solution to

reducing the cost of on-board computation is to move the entire pose computation to

an o�-board processor at a ground station. Some previous results [144, 57, 186] stream

images or feature-descriptor sets from the MAV to a more capable ground station

so that a pose estimate could be received in return after o�-board computation.

However, such strategy requires aggressive image compression and reduced frame

rates, leading to overall poor image quality. Computing the pose of the MAV on

a ground station, and streaming it back to the MAV would also introduce a large

transmission delay in the pose updates needed by the on-board controllers. There are

techniques for mitigating the controller errors that can result from a delay in the state

estimate [57], but these solutions ultimately are not as robust as high-rate on-board

state estimation. In addition, the wireless communication channel to an untethered

MAV will typically su�er from packet drops, limited bandwidth and large transmission

delays that make time-critical dependence on the communication channel unreliable;

a complete o�-board scheme that includes an unreliable communication channel in

its control loop may not be suitable for a MAV.

To overcome the communication limits while still reducing the cost of on-board

computation, only the costly mapping process can be moved to an o�-board processor.

A trivial solution is to send the entire map back and forth between the MAV and

ground station, keeping di�erent copies of the same information. However, once the

on-board process is restricted to tracking, this process can be reformulated in the

image space, leading to an even greater reduction in computation. The mapping

process can continue to run o�-board, and provide asynchronous copies to the MAV
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of the updated map as the communication channel permits, where the updated map is

projected into image space and bounded by visibility in the current frame, speci�cally

for the purposes of fast, on-board pose estimation.

One of the main contributions of this section is to show that if we reformulate the

tracking and mapping problem so that the two processes are physically decoupled and

no longer share the same copy of the map, as shown in Fig. 1-1, the tracking process

can be entirely in the image co-ordinate frame for fast computation. We introduce

MIST and discuss a further abstracted map representation in the image space, data

association using such landmarks, fast pose optimization using precomputed image

space Jacobians to update the landmarks frame-to-frame, and forward projection for

compensating for the delay in asynchronous updates from the ground station. Our

novel approach of asymmetrically distributing SLAM onto separate devices results

in fully scalable robust pose estimation on a computationally and bandwidth limited

MAV, while the globally consistent map of arbitrary size can still be inferred on the

ground. We demonstrate the improvements achieved with MIST using a monocular

camera mounted on an Ascending Technologies Pelican quad-rotor.

3.1.1 MIST Formulation

We divide the full SLAM problem of computingP(X ; M jI ) into two processes: fast

pose-tracking on the MAV and keyframe-based smoothing and mapping on the ground

station. On the MAV, we compute only the latest posex t 2 SE(3) given the current

imageI t : 
 2 N2 ! N, where
 is the image pixel domain, and the transmitted local

map �L =
� �L j 2 R3

	 J

j =0
of landmarks represented as a point-cloud projected onto the

image space. Using the more abstract image space representation of the local map,

we optimize for the maximum-likelihood estimates (MLE) of the latest camera pose,

i.e., we compute

x �
t = argmax

x t

P(x t jI t ; �L ): (3.1)

Conversely, on the ground station, we take the smoothing and mapping (SAM) ap-

proach of solving the SLAM problem, described in Section 2.2.2. Instead of computing
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P(X ; L jI ) over all camera posesX = f x tg
T
t=0 and imagesI = f I tg

T
t=0 , we optimize

over a selected subset of camera poses�X , i.e., keyframe poses that are far apart

from each other, and computeP( �X ; L j �I ). We do this by occasionally receiving a

subset of camera images�I � I from the MAV, where �I =
� �I s

	 S

s=0
with S < T , and

optimizing for the maximum a posteriori (MAP) estimates �X � and L � , i.e.,

�X � ; L � = argmax
�X ;L

P( �X ; L j �I ): (3.2)

Leveraging two di�erent abstractions on-board and o�-board the vehicle, this

tracking and mapping approach is re-formulated into a monocular image space tracker,

illustrated in Figure 3-1, and a keyframe-based SAM. We begin by describing the

on-board computations of observing landmarks in the image space, updating them

frame-to-frame, rapidly calculating the vehicle pose by leveraging a special structure

in the Jacobians, and �nally forward projecting asynchronous landmark updates from

the ground station to compensate for its own motion during the delay induced by �rst

computing the new map and then communicating it to the MAV.

3.1.2 On-board Feature Extraction and Data Association

We adopt a feature-based approach, where we extract a set of feature locationsZ t =
�

z t
k

	 P

k=0
in the 2D image space given the current imageI t , i.e., Z t = f feat (I t ) where

f feat is a corner detector [163] that selects a set of highly re-observable locations. At

the feature locations, we extract an 8 by 8 patch as the descriptordt
k 2 [0; 255]64

for each featurez t
k . We do not use any special descriptors [165, 23] to minimize the

computation on the MAV. The descriptors are used to match the landmarks in the

local map �L to a feature, forming associationsJ t =
�

j t
k

	 M

k=0
where j t

k 2 [0; P] is the

index of the landmark correlation to a featurezk subject to availability, i.e., M � P.

Using these features, the tracking problem on the MAV can be written as

P(x t jI t ; �L ) = P(x t jZ t ; J t ; �L ): (3.3)
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Figure 3-1: Flow diagram of operations done on the MAV. The on-board frame-
work involves representing landmarks in the image space for computational e�ciency,
compensating for communication delays by forward projecting map updates from the
ground station, and e�ciently computing the vehicle poses by leveraging a special
structure in the Jacobians.
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To do the feature-landmark association, we normally have to project all of the

known landmarksL onto the current imageI t , according to the camera model at a

predicted pose~x t ; the predicted pose can be obtained using a simple motion model

[101], predicting based on the control input as described in Section 2.2.1, or lever-

aging additional sensors such as an IMU or an odometer. However, if we represent

the landmarks directly on the image plane, i.e., we parametrize the landmarks by

(uj ; vj ; Qj )t where(uj ; vj )t is the projectionpt
j into image co-ordinates, andQj is the

inverse distance1, at frame t, we have the local map�L t � 1, and do not need to perform

any projections of the entire global map for future measurement updates. Instead, we

are able to save computation by having the ground station do the initial projection

of the whole global map for the MAV and creating the small local map�L � L within

the frustum of the current camera for pose tracking over the next few frames.

Now, for every landmarkL j we have a predicted projectionpt
j on the current

image I t and a descriptordt
j , such that we can form a feature associationj t

j with a

new feature detectionz t
k in the current image based on matching the descriptor. To

evaluate a descriptor match, we warp the 8 by 8 patch descriptor to the current view

using a pose~x t predicted with a simple motion model [101] and select the feature

whose descriptor has the smallest sum of square di�erences (SSD) and exists within

a maximum distance, i.e.,kpt
j � z t

kk < maxdist. In our implementation, we perform

FAST [161, 163] corner extraction at 4 pyramid levels and store the features in a grid

at each level. We use the grids to reduce the number of potential matches before

comparing the actual descriptors or enforcing the maximum feature distance.

3.1.3 On-board Forward Projection

By the time the MAV receives the local map �L , it most likely will have received

a few additional frames. The MAV can linearly project the received map into its

current view by composing the kinematic chain it estimated while using the previous

1In our image space tracking, we do not need to update the inverse distanceQj as the inverse
distance does not change signi�cantly over a few frames. The inverse depth would change more
substantially from frame to frame, and so we choose the inverse distance representation.
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local map. This forward projection frees the MAV from critically depending on the

updates from the ground station and reduces the risk of crashing due to temporary

losses in the communication channel. We also do this forward projection prior to

every measurement update to represent the local map in the latest frame, i.e., we

update the projectionpt � 1
j to pt

j .

Let the current frame of the MAV be at the time stept and �t(� t � 1) be the time

step where the initial projections were done for the local map�L �t from the ground

station. If we let the landmark predictions being used for the current frame be the

estimates made in the previous iteration, to bring the local map�L �t into a map �L t � 1

we have to project it through the kinematic chain� �t+1 : : : � t � 1, where each� i 2 R6 is

the motion between the frame at timet = i � 1 and t = i .

We can linearly do this forward projection, using the projection JacobianH j =
@hp (x t ;L j )

@x t
jx t = x t � 1 ,

hp(x �t ; L j ) t hp(~x �t � 1; L j ) + H j (� �t+1 : : : � t � 1); (3.4)

wherehp is the measurement function for a single point in a point-cloud map represen-

tation, x t the state at t, L j the landmark position. Since our landmarks are directly

represented in the image space, i.e.,�L j = ( p j ; Qj ), we do not require a measurement

function:

p j t p �t � 1
j + H j (� �t+1 : : : � t � 1): (3.5)

This projection is fast due to a direct look-up of the Jacobian as discussed in a later

section. In addition, if more computation is available, Runge-Kutta 4 can be used in

a similar fashion to Eq. 3.5 with the fast Jacobian look-up.

3.1.4 On-board Measurement Update

Given the deterministic data associationJ that maps each featurez t
k to the observed

landmark L j k , we can compute the MLE of the posex t , formulated in Equation 3.1,

by applying the feature-based formulation in Equation 3.3, i.e., obtain the posex t
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that maximizes the posterior probability

P(x t jZ ; J ; �L ) / P(x t jI t � 1; �L )
Y

k

P(z t
k jx t ; L j k ); (3.6)

where the right hand side is the result of Bayes' rule and the independence of the

feature detections, given knowledge of the pose and the landmarks. As discussed in

Section 2.2.2, assuming a Gaussian prior on the posex t and Gaussian measurement

noise, whereR is the covariance matrix, �nding the maximum of Equation 3.6 is

equivalent to minimizing the negative log-likelihood given by

arg min
x t

k x t � ~x t k2
� +

KX

j =1

k z t
k � hp(x t ; L j k ) k2

R ; (3.7)

wherehp(x t ; L j k ) is the measurement function, andz t
k is the feature measurement.

We parametrize the current posex t as an incremental change with respect to~x t � 1,

de�ned by x t = exp(�̂ ) � ~x t � 1 [88] where� denotes pose composition inSE(3), �̂ 2 g

represents the Lie algebra element corresponding to the vector� 2 R6, and the exp

operator, exp: se(3) ! SE(3) maps an incremental twist�̂ in the Lie algebrase(3)

to its corresponding pose in the Lie groupSE(3). Hence, with linear approximation,

the observation model becomes

hp(x t ; L j ) = hp(exp(�̂ ) � ~x t � 1; L j ) t hp(~x t � 1; L j ) + H j � ; (3.8)

whereH j is the 2 � 6 Jacobian matrix de�ned by

H j =
@hp(x t ; L j )

@x t
jx t = x t � 1 =

@hp(exp(�̂ ) � ~x t � 1; L j )
@�

j � =0 : (3.9)

In the MIST framework, we represent the landmarks in image space, i.e.,�L j =

(p j ; Qj ) for constant Qj , so that we do not require the nonlinear projection-based

measurement functionh. Therefore, our tracking problem can be approximated with-
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out a nonlinear measurement model, i.e.,

x �
t = arg min

�
k x t � ~x t k2

� +
KX

j =1

k (zk � p j � H j � ) k2
R : (3.10)

Since there is no perfect data association in practice, we iterate the computation

a few times by re-weightingR based on the residuals. This iteratively re-weighted

least squares (IRLS) framework [81] serves two purposes: 1) it reduces the e�ect of

outliers and 2) the �nal weights can be used to evaluate the quality of pose tracking.

If a signi�cant number of landmarks are weighted down, indicating a high error in the

measurements that is likely caused by incorrect associations, or if only a small subset

of the local map is matched with the features from the new camera image, indicating

less overlap between the local map and the latest image measurement, then a new

image is sent to the ground station to compute a new local map.

3.1.5 On-board Jacobian Image

The Jacobian matrix H j used in the measurement update has a special structure,

where it can be modi�ed to be a function of only the pixel location(u; v), such that

the matrix can be pre-computed for all pixels of an image of a known size. Given

H j =
�

@S
@p

�
2

6
4

Q 0 � QU � UV 1 + U2 � V

0 Q � QV � 1 � V 2 UV U

3

7
5 ; (3.11)

the �rst term @S
@p =

2

6
4

@u
@U

@u
@V

@v
@U

@v
@V

3

7
5 depends only on the calibration model [48] of the

camera, whereS = ( u; v) is in pixel coordinates andp = ( U; V) is in normalized

camera coordinates. If we divide the �rst 3 columns ofH j by Q, the result only

depends on the pixel location (whereU; V are functions ofu; v) so that we can pre-

compute this matrix at every pixel location and store them in an image of2 � 6

matrices that can be accessed at run-time. Consequently, the look up requires only

the pixel coordinate pt
j , which also does not require additional computation in the
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image space representation, and the retrieved matrix can be converted back to the

full Jacobian matrix by multiplying the �rst 3 columns of the matrix byQt
j , where we

store the constant inverse distance for each image space landmark for this purpose.

3.2 O�-board Computation on a Ground Station

A computationally powerful ground station is used to build and maintain a global map

while occasionally providing a local map to the MAV for the short-term tracking. The

ground station computes a global map of landmarksL and keyframe camera poses

�X , given visual measurements by recovering the MAP estimate

�X � ; L � = argmax
�X ;L

P( �X ; L jZ )

= argmax
�X ;L

Y

i

P(x t )
Y

k;j

P(zk
j j x t ; L j k ): (3.12)

This formulation of the mapping problem is often called the bundle adjustment

(BA) problem or the structure-from-motion (SfM) problem from the computer vision

community, where it is analogous to the smoothing-based mapping approach described

in Section 2.2.2, but does not leverage a motion model. Instead, as done in PTAM

method of Klein et al. [101] described in Section 2.3.1, decoupled pose estimation is

performed in a parallel process assuming a known map, as formulated in Equation 3.6,

and the retrieved pose estimate is used as a prior in the BA process. The decoupling

allows real-time pose estimation without having to compute the global map in real-

time, which in turn allows fast local map projection and communication to the MAV.

3.2.1 Projection to View

For each landmark in the global map, the ground station can select a subset of

visible andpre-associatedlandmarks by applying the MAV's camera model to obtain

projected pixel locationsp j in the MAV's image space, matching against features

extracted on the ground station, and communicating only the successful matched
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Figure 3-2: Framework showing the ground's operations in relation to the MAV's.
The ground station is builds and maintains a global map while occasionally providing
a local map to the MAV for the e�cient short-term tracking.
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landmarks as represented in the image space. First, using the latest image from the

MAV, we estimate the orientation ~R
c
w and the position ~t

c
w of the MAV at the time

of taking the image, and project the landmarksL into the calibrated coordinates

(Ui ; Vi ), where

(Ui ; Vi ) = K [R c
w jt c

w ]L w
i : (3.13)

We then apply the radial-distortion lens modelf dist [48] to project into the pixel co-

ordinates, i.e., (ui ; vi ) = f dist (Ui ; Vi ), where the radial-distortion model is appropriate

for wide �eld-of-view (FOV) lenses we leverage, as well as �sheye lenses. Furthermore,

at any given time step, the MAV only needs to know about the landmarks that it is

likely to observe, and so the ground station only needs to transmit a map of these

landmarks. So, we repeat the extraction and matching of corner features described

in Section 3.1.2, and transmit only the matches features within the image boundaries

as the local map for the MAV. One thing to note is that the MAV and the ground

station can use di�erent corner features and feature descriptors since the pose track-

ing on the MAV is repeated on the ground station. Accurate but computationally

expensive methods such as SIFT [116] can be used on the ground station in place of

the lightweight algorithms on the MAV to better identify strong feature locations.

3.2.2 Keyframe Construction

The two initial frames are created in a separate initialization process using homog-

raphy with a locally planar assumption as done by Klein et al. [101]. During the

initialization stage, all of the frames are transmitted from the MAV so that a trail of

features can be tracked using KLT [117] tracker described in Section 2.3.1, such that

enough baseline is accumulated between the two frames before estimating the metric

location of the features. After initialization, the ground station waits for the MAV

to send a new frame, while optimizing the global map in parallel. Once a new frame

is received, the ground station prepares a new local map in the image plane of the

frame, as described in the previous section, and sends it back to the MAV. Then the

distance from the new frame to all existing keyframes in the global map is calculated
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to judge whether it is far enough from other keyframes to qualify as a new keyframe.

The ground station then searches through all of the known keyframes to make data

associations with the new frame. This dense association stage is critical to building

a globally salient map and allows estimating new landmarks accurately such that an

accurate local map can be quickly created when requested by the MAV.

3.3 Experiments in Unknown Environments

We autonomously �ew an Ascending Technologies Pelican quad-rotor, shown in Fig.

3-3, in an unknown indoor environment using a 30 fps PointGrey Chameleon cam-

era (640x480 images), a Microstrain IMU, a Hokuyo laser scanner, and a Gigabyte

dual-core i72 to evaluate MIST as a visual pose estimation module on a MAV. We

then analyzed the accuracy of our pose estimates by comparing them to the pose

estimates generated using PTAM. We also compared the time to pose estimates for

MIST, PTAM running on-board, PTAM running on-board with the mapping process

turned o�, and PTAM running o�-board with image streaming. The data-set used

for this benchmarking was collected by carrying the quad-rotor around an indoor

environment, and saving camera images and other sensor data using LCM [86]. We

also show performance from �ight data using the heading to control the vehicle. The

saved data was played back at the original intervals on the quad-rotor, to simulate

the MAV �ying while providing the exact same input to di�erent algorithms used in

comparison. For the ground-station, we used a quad-core i7 laptop.

3.3.1 Autonomous Flight using MIST

During the autonomous �ight, we ran a laser-scan matching algorithm [10] in parallel.

The pose estimates and the occupancy grid from the laser scan-matcher were treated

as ground truth; we obtained metric pseudo-scale input from the pose estimates, and

used the occupancy grid to plan a collision-free trajectory as shown in Fig. 3-4a.

2Not a low-cost PC but allowed us to benchmark to the heavier load of PTAM, and support laser
scan-matching in parallel during experiments.
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(a) Pelican quad-rotor (b) Camera frame and tracked features

Figure 3-3: The vehicle and the camera used for the �ight experiment are shown.
The MAV uses the monocular camera and tracks landmarks in the image space to
estimate its pose.

The use of the laser-scanner was for these purposes only, and our algorithm does not

require the laser-scanner to estimate its pose.

We formed the �ight trajectory by selecting way-points and using a polynomial

trajectory generator [155] to smoothly connect them within the laser-built occupancy

grid. We controlled the quad-rotor using a nonlinear controller [105] and increased the

frequency of the pose estimation by relying on an EKF to fuse our MIST estimates

with a 100 Hz IMU. In order to align the laser-based poses with our MIST pose

estimates, we set the origin of MIST pose estimates as the pose of the scan-matching

algorithm at the time of taking the �rst image. Then to set the scale of the MIST

poses as the scale of the laser-built map for planning purposes, MIST poses and the

laser-based poses were collected between two consecutive local map updates and the

di�erence in translation was used as a pseudo-scale input to scale the MIST poses.

As shown in Fig. 3-4a and 3-4b, while the MAV could reliably follow a trajec-

tory resembling the planned trajectory, errors accumulated in MIST pose estimates

resulted in the trajectory slowly drifting away from the laser-estimated trajectory

over time. One source of systematic error between the vision-based estimates and the

laser-based estimates is the approximate calibration between the camera and the laser

frame, caused by an approximate hand-alignment of the camera, the IMU, and the

laser on the quad-rotor. Another source of approximation error is the linear interpo-
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(a) Laser Scan-Matching (b) Comparison to PTAM

Figure 3-4: We test our system on two trajectories where way-points were manually
selected to generate the trajectory. MIST was used as the primary pose estimator
while laser scan-matching was performed in parallel to provide a ground-truth tra-
jectory and a pseudo-scale input for alignment in the map for planning purposes. In
(a), the occupancy grid built with the laser scan-matching is displayed in light blue
and overlaid with the building �oor plan. During the total distance of approximately
50 meters, our vision-based trajectory drifts away from the laser estimates as shown
in (b). However, our method is approximately as accurate as PTAM despite using a
more abstract representation on-board the vehicle.

lation performed on the laser pose estimates when synchronizing laser measurements

with camera measurements. A �nal source of error is the heavy dependence on the

pseudo-scale inputs, which would corrupt the translation if estimated poorly.

3.3.2 MIST Tracking Accuracy

To evaluate the accuracy of MIST in the presence of external systematic errors, we

collected camera images and sensor data and played them back as an identical input

to PTAM and MIST. To demonstrated the ability to come back to a known location

and update the global map, we selected a 50 meter trajectory with loops as shown

in Fig. 3-4b. Our pose estimates were approximately as good as the trajectory

estimated using PTAM. We compared the error in rotation and translation of frame-

to-frame updates in the robot body frame for PTAM and MIST, with the laser scan-
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(a) Dual-core Setup (b) Single-core Setup

Figure 3-5: Comparing the time to pose estimate for MIST, PTAM running on-board,
PTAM with streamed images. Shown in (a), it can be observed that it was infeasible to
track using raw streaming method, while the JPEG-compressed images still take more
than a full frame to arrive at the MAV. Shown in (b), a single-core computationally
limited system was emulated to better highlight the di�erence between PTAM running
on-board, PTAM tracker running on-board, and MIST. It can be observed that the
computation time for MIST remained constant, while PTAM gradually took longer
due to the mapping process. Comparing against only the tracking process in PTAM,
MIST was nearly twice as fast.

matching as the ground-truth. It can be seen in Table 3.1 that our system performed

similar to PTAM at an average absolute rotation error of 0.34 degrees and an average

absolute translation error of 2.97 cm. In rotation, PTAM performed similarly while

in translation the error for PTAM was slightly higher at 4.51 cm.

3.3.3 Timing Comparisons

We compare the time to pose estimates between MIST, PTAM running on-board,

PTAM with raw streamed images, and PTAM with JPEG-compressed streamed im-

ages. Pre-recorded data were played back on the MAV to simulate the vehicle �ying

while providing identical sensor data to di�erent methods. We did not perform this

analysis in �ight since the loss of a pose estimate due to network latency would cause

a loss of control. In the case of streaming methods, the time to pose estimate includes

the round-trip transmission time over Wi-Fi as well as the pose computation time on

the ground station. For MIST and PTAM running on-board, this time is only the

computation time taken since the camera image was available.

As shown in Fig. 3-5a, sending uncompressed images took 191.17 ms on average,
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Approach Time to pose estimate (ms)
3*Single-core, 4x speed MIST 4.3858

PTAM On-board (Tracker) 7.6195
PTAM On-board 12.7133

2*Dual-core, 1x speed PTAM Stream (JPEG) 62.9230
PTAM Stream (Uncomp.) 191.1747

Roll (deg) Pitch (deg) Yaw (deg) Translation (m)
MIST 0.2979 0.3266 0.3896 0.0297
PTAM 0.3037 0.3209 0.3896 0.0451

Table 3.1: Computation time and mean absolute error in incremental updates for
MIST and PTAM-based methods.

causing the pose estimates to arrive 8 frames later. On the other hand, streaming

JPEG images was relative fast, with the estimates lagging only two frames behind.

While the transmission delay may seem manageable on slow moving vehicles, the

potential danger of network instability and prolonged period of packet drops could

increase the risk of crashing the vehicle without any map representation on-board

the vehicle. On the other hand, in the case of adopting MIST, if a network failure is

detected, the vehicle can choose to stabilize in place based on the last received map.

It can be observed that the time taken for PTAM and MIST was not very di�erent.

The reason is that on the dual-core i7, the computation done by PTAM's mapping

process was parallel to the tracking thread, and did not add to the computation time

to pose estimate. While this shows the strength of the parallel design, we emulated a

more computationally limited platform typically found on low-cost MAVs by enabling

only a single core. We also quadrupled the playback speed of the sensor data and

produced camera images at 120 Hz, and IMU outputs at 400 Hz.

As shown in Figure 3-5b, on an emulated single-core machine, MIST still retained

a constant time to pose estimates. However, for PTAM running on-board, as the

processor jumped from the tracking process to the mapping process, the time to pose

estimate grew with the growing map, due to increasing di�culty in bundle adjustment.

We also disabled the entire mapping process of PTAM, and ran only its tracker to

compare against MIST. The average computation time for MIST was 4.39 ms, capable
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of estimating the pose at over 200 Hz, while the average for PTAM tracker was 12.71

ms. It can be seen that the computation time for PTAM tracker also grew slowly

since it had to project the growing map into its measurement space. A summary of

the computation time and the average error in frame-to-frame pose updates for the

algorithms are shown in Table 3.1.

3.4 Pose Estimation in Known Environments

In a known environment, where there is no burden of having to incrementally con-

struct a map by continuously gathering partial measurements, we propose to estimate

only the vehicle poses by tracking camera images against a pre-constructed map of

the environment. The temporal decoupling of the construction of the map from the

utilization of the map allows an opportunity to leverage di�erent levels of abstraction

in the map representations, such that e�cient pose estimation occurs online using a

lightweight representation, while the o�ine construction creates a dense representa-

tion of the environment using power hungry sensors and compute, as well as longer

computation time not subject to real-time constraints. Contrary to the online ab-

straction of the MIST approach, i.e., the creation of local image space maps each time

the MAV requires it, the abstraction of the map can also occur o�ine, following a full

construction of a complete world model, such that the underlying geometry is better

represented in the lightweight abstraction for collision-testing. However, a tempo-

ral decoupling of the map construction and vehicle pose tracking introduces a new

challenge of having to visually align a prior map against camera images taken under

illumination conditions that were never encountered during the map construction.

We propose Simultaneous Tracking and Rendering (STAR), an e�cient localiza-

tion algorithm that tracks camera motion in a compact yet dense mesh representation

while correcting for discrepancies in global illuminations and local �aws in the mesh.

The mesh is created from converting a voxel-based dense representation of the world

constructed using a high-power GPU and an RGB-D sensor. We choose arendering-

basedapproach where we leverage inexpensive, low-power, integrated GPUs typically
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Figure 3-6: A synthetic keyframe image (blue) used to track a live monocular image
(red) shown on the image plane of camera wire-frames. We render a synthetic camera
image at the predicted camera location using a dense mesh map that accurately
represents the underlying geometry for collision avoidance. However, unlike previous
work, we do not require rendering synthetic images multiple times per frame, but only
render a new synthetic image after su�cient motion for computational e�ciency.

found on more capable MAVs to render a synthetic camera image observing the mesh

at a predicted camera location. Given a rendered keyframe, we track camera images

against it using a robust semi-direct image alignment technique. This real-to-virtual

image tracking is similar to the trackers in RGB-D SLAM systems [135] that align

RGB images with the projection of an incrementally updated 3D representation of

the environment. The main di�erence in STAR is that an RGB-D sensor and a

state-of-the-art GPU is only required for the o�ine map building, allowing the online

tracking to be performed with a single camera and less computation than a typical

voxel-based RGB-D SLAM system [199]. Additionally, by building a map from a tem-

porally coherent sequence of images, solving a full SLAM problem minimizes the need

to align images with dramatically di�erent brightness or the need to align partially

incomplete depth maps, problems that only occur at loop closures, if they ever occur.

In contrast, localization may require dealing with images taken under illumination

conditions that were never encountered during map construction, atevery stepof

the process, while the visual challenges are further increased by the use of a di�erent

sensor during map construction. In STAR, we overcome such challenges by correcting
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for a global illumination di�erence and re-weighting local �aws caused by rendering

with an incomplete mesh.

The strength of our approach compared to previous mesh-based monocular vision-

based localization approaches [148, 27] is that the number of images the vehicle must

render to track its pose as it moves through space is drastically reduced. Previous

approaches track the camera pose by searching for the virtual camera, guided by

a di�erentiable image-space similarity metric, that renders the most similar virtual

image. The search process requires repeatedly re-rendering virtual images for each

camera image until the most similar image is found. As a result, the state-of-the-art

mesh-based algorithm [148] tracks at 2 Hz using a high-performance GPU di�cult

to carry on a MAV. However, we do not require rendering synthetic images multiple

times per frame, but in fact, only render a new synthetic image after su�cient motion.

This reduction comes from further decoupling camera tracking from synthetic image

rendering where instead of rendering the most similar image, we render any image

that overlaps with the current view and use it as akeyframe to track future camera

images with. This decoupling, similar to the decoupling of tracking and mapping

in MIST, allows constructing a local keyframe map similar to an image space map

that is limited to areas within the camera frustum for computational e�ciency during

pose estimation. In addition, the notion of keyframe-based localization also allows

relocalization, i.e., recovering a good initial vehicle pose estimate for the frame-to-

frame alignment, by searching for a candidate keyframe in proximity. This kind

of relocalization has not been previously demonstrated in a mesh-based localization

framework despite the need for a good initial estimate on each of the vehicle poses

during frame-to-frame tracking.

The main contributions of our STAR algorithm are: 1) achieving an order of mag-

nitude faster tracking rate than the current state-of-the-art monocular mesh-based

localization, 2) removing the need for a high-end GPU di�cult to carry on a MAV,

3) being able to recover from localization failure in a mesh map. We demonstrate

STAR in indoor environments, such as the room shown in Figure 3-11. In the follow-

ing sections, we describe STAR in more detail and provide experimental results on
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tracking fast-moving cameras in indoor environments.

3.4.1 STAR Formulation

Given an undistorted monocular camera imageI t : 
 2 N2 ! N at each time step

t, we are interested in �nding the current camera posex W
t 2 SE(3) with respect to

the world frame of referenceW. We leverage a geometrically accurate prior mesh

representation M of the environment and occasionally render a synthetic camera

imageI s and a corresponding depth mapI d at a desired keyframe posex W
k . We can

interpret the synthetic images as a keyframe map�L in MIST, and optimize for the

maximum-likelihood estimates (MLE) of the latest camera pose using a local mapin

view, as formulated in Equation 3.1 of MIST tracker. In other words, we can decouple

the camera tracking problem to two parallel processes: the �rst process solving for a

MLE estimate of the camera posex k
t

� with respect to the keyframe camera, i.e.,

x k
t

�
= argmax

x k
t

P(x k
t jI t ; I s; I d); (3.14)

and the second process simultaneously rendering synthetic keyframe images given a

prior map and a candidate keyframe pose, that is, performing a deterministic GPU-

based rendering operationf rend

I s; I d = f rend (M ; x W
k ); (3.15)

whereM = ( V ; E; C) is a mesh consisting of verticesV =
�

v i 2 R3
	 V

i =0
, color of the

vertices C =
�

ci 2 [0; 255]3
	 V

i =0
, and edgesE �

�
f vm ; vngjf vm ; vng 2 V and vm 6=

vn
	

connecting the vertices, such that the vertices can be projected into an image

and 2D triangles formed by edges between the vertices can be colored by an average

of the color of the vertices.

The �rst image alignment process runs at full camera-rate while the second keyframe

rendering process only generates new synthetic images as the overlap between the cur-

rent camera and the previous reference frame is reduced. Thus, in each iteration we
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update the camera posex W
t , via a pose compositionx W

t = x W
k x k

t
� , and only change

the keyframe camera as needed. In this section, we discuss the details of the two par-

allel processes and describe how we choose the keyframe posex W
k to realize a robust

localization system.

3.4.2 Semi-Dense Tracking

Given our ability to easily re-generate nearby keyframes, we choose to adopt semi-

dense direct alignment in our tracker for its speed and robustness in tracking with a

small baseline between images. Our semi-dense tracker directly aligns a camera image

I t with a synthetically rendered keyframe imageI s by minimizing the photometric

error between the two. Using the geometry imposed by the depth imageI d of the

keyframe camera, we can back-project each pixelp 2 
 in the keyframe image to a

3D point L k 2 R3 in the keyframe coordinate frame byL k = � � 1(p; d) = dK � 1 �p

whereK 2 R3 � 3 is a pre-calibrated pinhole camera matrix,d = I d(p) 2 R is the

depth of the pixel, and �p is a homogeneous vector,�p = ( p; 1).

To compute the photometric error, each of the 3D points must be transformed

to the current camera coordinate frame by the relative transformationx k
c , i.e., L c =

(x k
c)� 1L k , then uncalibrated and projected into the camera imageI t by pc = � (KL c)

where the projection function � (L ) = ( x=z; y=z) also includes dehomogenization.

Then, the per-pixel photometric errorei between the current image and the keyframe

image is

ei (x c
k ; p i ; I t ; I s; I d) = ( I t (p i ) � I s(� (Kx c

k � � 1(p i ; I d(p i ))))
2: (3.16)

We parametrize an update tox c
k 2 SE(3) as � 2 R6 in the Lie Algebra se(3). We

use the exp operator, exp: se(3) ! SE(3) to map an incremental twist � in se(3) to

its corresponding pose in the Lie groupSE(3). We minimize the sum of the per-pixel

error function

E(� ) =
X

i

(I t (p i ) � I s(� (K exp(� )� � 1(p i ; I d(p i ))))
2 (3.17)
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(a) Rendered Image (b) Rendered Depth (c) Camera Frame (d) Residual Image

Figure 3-7: Synthetic grayscale image (a) and depth image (b) rendered at the esti-
mated camera pose are shown. Comparing to the input camera image (c), the images
are visually aligned indicating successful tracking. Despite the large di�erence in the
appearance of the images, our semi-dense alignment can correct for a global illumi-
nation and weigh down noisy regions shown as dark pixels in the residual image (d).

with Gauss-Newton iterations. We start with an initial estimate of � 0 and incre-

mentally update with � � t by � t+1 = � � t � � t , where the � operator denotes pose

composition in se(3). The incremental update is then

� � t = � (H T H )� 1H T e(� ) (3.18)

whereH is the JacobianH = @e(� )
@� j � =0 and e(� ) is the error vectore = ( e1; e2; :::; et )T .

The derivation of this Jacobian is well-known, and more details can be found in Baker

and Matthews [11].

While Eq. 3.17 is valid for images taken by the same camera under the brightness

constancy assumption, synthetic images and real camera images are generated by

di�erent hardware under di�erent lighting conditions. Moreover, rendered images

have unmapped regions with no information, e.g., the ceiling, that are displayed with

white pixels as shown in Fig. 3-7. Due to such di�erences, the appearance between

rendered images and synthetic images vary both globally and locally.

To correct for the di�erence in the images, we apply the illumination adjustment

technique introduced in Gonçalves et al. [74] and re�ne the photometric error function

as

E(� ) =
X

i

(� (ei (� )) � � )2 (3.19)

where � is a robust error metric that de�nes the weight for the contribution of each
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pixel and � is the global illumination factor approximated as the median of per-pixel

error e. The � term can help down weight locally inconsistent regions while the�

term can subtract out the global illumination di�erence between the two images. We

use the Huber robust error metric to re-compute the� term each iteration and modify

the update Eq. 3.18 to also include the weight term.

Finally, to speed up the tracking process we selectively track only the pixels that

have strong gradients as done by Engel et al. [55] and also utilize a Gaussian image

pyramid to track from the coarsest level to the �nest level for better convergence.

3.4.3 Keyframe Rendering and Selection

We use OpenGL to generate synthetic keyframe imageI s and associated depth image

I d using a colored triangle mesh. We do not require a high-performance GPU but

can render images using a software-only implementation of OpenGL, such as MESA

Gallium llvmpipe, or with an embedded graphics unit such as Intel HD 4400 available

on compact PCs used on modern MAVs [140, 66]. We render a keyframe grayscale

imageI s by projecting the mesh of the environment into a desired keyframe camera

posex W
k to generate a color image, and convert it to a grayscale image by averaging

the color values into an intensity value. While individually projecting each of the

vertices and coloring 2D triangles based on the average color value of the vertices is

possible, we leverage heavily optimized OpenGL functions for e�ciently generating

the synthetic images on the low-cost GPU hardware. Discussion of OpenGL objects

and simulating virtual pinhole camera in OpenGL is included in Appendix A.

We render a new keyframe image as needed, i.e., when viewpoints are di�erent, the

tracking quality degrades, or a �xed interval has passed as discussed in Section 3.5.

While image alignment can work with partially overlapping regions, we would like the

new keyframe image to have a signi�cant overlap with upcoming camera images for

reliable convergence. While we could render a keyframe at an expected future pose

x W
t+ m , we conservatively choose the current pose estimatex W

t as a new keyframe pose.

When choosing the current pose estimatex W
t as a keyframe pose, the accuracy of the

estimate does not a�ect future tracking performance or accumulate error over time.

84



An image and a depth map is equivalent to a known dense 3D point-cloud and the

role of the keyframe pose is to segment out a small part of the mesh, bounded by the

keyframe frustum, to use for tracking. Therefore, errors in the pose estimate when

initializing a new keyframe only result in suboptimal keyframe location selection and

do not largely a�ect the accuracy of future estimates. However, in the case of tracking

failure, our estimate x W
t is likely to be signi�cantly di�erent from the true camera

position so that a keyframe generated at the estimated pose is not likely to have

any overlap with incoming camera images. In this case, we initiate a relocalization

procedure to choose a di�erent keyframe pose, described in the next section.

3.4.4 Relocalization

To recover from tracking failure, where tracking failure is de�ned as poor performance

in photometric alignment or a large jump in camera motion as discussed in Section

3.5, we need to �nd a keyframe camera capable of producing a synthetic image that

overlaps with the current camera image. We adopt the approach of SLAM systems

[101, 55] that save and compare past keyframes to the latest camera image for recovery.

While relocalization in such SLAM systems is only possible if the camera is near a

saved keyframe, in the case of relocalizing in a known map, we need to recover from

anywhere in the map at its full scale.

To improve the scalability of relocalization, we must bound the number of keyframe

locations, bound the online search region, and compress the information in each

keyframe image. First, we can bound the number of potential keyframe locations

by uniformly placing virtual cameras in the map, as shown in Figure 3-11a, and lim-

iting relocalization attempts to the discrete set. Then to reduce the search region,

we de�ne a conservative search radius using the latest velocity estimate and the time

since last failure. Lastly, to compress the information in each keyframe image, we

downscale the keyframe image to a small patch of size 80 by 64 and extract a single

ORB [165] descriptor that covers the whole image. This technique, similar to the

GIST-BRIEF loop-closure method [184], compresses a single keyframe down to 256

bits, signi�cantly reducing the memory requirement and making online recovery ex-
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tremely fast; we extract an ORB descriptor once, and test each keyframe for overlap

by computing the hamming distance of two 256 bit vectors. The high scalability of

our similarity metric makes it more suitable for the large-scale relocalization problem

compared to other image-space similarity metrics, such as mutual information or nor-

malized information distance (NID), that require the whole image for each keyframe

as well as substantial online computation, e.g., joint entropy calculation, that cannot

be pre-computed o�ine.

3.5 Experimental Results

We tested the STAR algorithm both o�ine on the publicly available TUM RGB-D

dataset [182] and online in GPS-denied indoor environments. We used a laptop with

2.7 GHz i7 processor and an Intel HD 4400 embedded GPU to process the data. While

we could use a software-only implementation of OpenGL for slower sequences, we

utilized the low-cost embedded GPU available on modern MAVs for higher e�ciency.

For the monocular camera, we used a PointGrey Flea3 camera at 640x512 resolution

running at 50 FPS. Given the computing budget of the hardware, we experimentally

set the criteria for keyframe generation such that a new keyframe is generated when

the percent of well-tracked high-gradient pixels falls under15%, the camera moves

by 0:5 meters, or more than50 images are tracked without generating a keyframe.

The wellness of a tracked pixel is determined by a heuristic based on the residual in

the photometric alignment of the pixel as suggested by Engel et al. [55]. We use this

wellness condition to de�ne tracking failure, where the percent of well-tracked high-

gradient pixels falls under an experimentally determined threshold of4% indicates

failed tracking. We also put a limit on the maximum camera displacement as a1:0

meter displacement between two consecutive camera frames captured at 50 FPS.

3.5.1 Meshing

We generated a mesh of each test environment using a Kinect RGB-D sensor. We

used the open-source FastFusion algorithm [179] for the public RGB-D dataset and
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Table 3.2: Quantitative analysis of STAR

Experiment
Distance

Travelled (m)
Position

Error (cm)
Rotation

Error (deg)
TUM O�ce 21.57 2.13� 1.29 0.81� 0.36
Single Loop 15.44 14.13� 8.44 2.92� 2.37
Aggressive 1 19.73 13.79� 16.79 3.92� 3.98
Triple Loop 36.38 13.09� 6.77 3.32� 1.48
Aggressive 2 13.98 13.66� 8.60 3.73� 2.05

Kintinuous [199] for other environments to generate the initial dense volumetric repre-

sentation, and applied marching cubes [115, 137] to further abstract into a mesh-based

representation. The drift in the odometry during mesh building often caused the mesh

to be deformed, or created �aws in the texture when closing the loop. While STAR

could track camera poses using a deformed mesh map, for quantitative analysis, we

used poses from an external motion capture system to isolate tracking errors from

errors in the map.

3.5.2 TUM RGB-D Benchmark

We tested STAR on a TUM RGB-D sequence [182] captured in an o�ce environment.

We �rst generated a mesh map of the environment using both the RGB and depth

sequences, then tracked the trajectory using only the RGB images as the input to

our algorithm. Note that tracking the same images used to build the mesh simpli�es

the tracking problem since there are no photometric di�erences between the rendered

images and the camera images. However, unmapped areas in the mesh still create

large artifacts in the rendered images.

The simpli�ed tracking problem demonstrates STAR algorithm under ideal condi-

tions with �xed illumination, identical sensors, and similar viewpoints. These condi-

tions are possible in a real environment when tracking in a closed room with controlled

lighting and tracking with the same camera used to build the mesh.

Localization results are shown in Table 3.2, where the mean translational error

is 2.13 cm, and the mean rotational error is 0.81 degrees. While these results are

di�cult to achieve in a more realistic scenario, they demonstrate the ability of STAR

87



Figure 3-8: The Aggressive 1 sequence, where the �rst row shows the camera images
and the second row shows rendered images at the estimated poses. Despite the
imperfections in the mesh, shown as white holes in the rendered views, renderings at
our pose estimates accurately match the camera images, indicating successful camera
tracking. Refer to https://groups.csail.mit.edu/rrg/star for the full sequence.

to accurately localize the camera in an ideal environment.

3.5.3 Experiment in a Motion Capture Room

We evaluated STAR in a room equipped with an external motion capture system,

where we provide camera images captured in the room in Figure 3-8. Using a mesh

built with ground-truth odometry, we tracked a slow camera sequence (Single Loop)

and a faster sequence with rapid rotations (Aggressive 1). After altering the appear-

ance of the room, we re-mapped and tested two other sequences (Triple Loop and

Aggressive 2). The localization error of STAR on the sequences is shown in Table 3.2,

where the mean translational error across the di�erent datasets was approximately

14 cm, and the rotational error was between 3 to 4 degrees. The translational error

was greater along the z-axis (shown in Figure 3-9), for example, being 9.43 cm for

the Triple Loop sequence, while the error along the xy-axes were 4.05 cm and 4.09

cm. A similar pattern was observed for the pitch angle where the error was approxi-

mately double of the other axes. Higher errors along the z-axis and in the pitch angle

are suspected to be the result of a lack of horizontal edges in the test environment,
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(a) TUM O�ce (b) Aggressive 1 (c) Triple Loop (d) Aggressive 2

(e) Translation (f) Translation (g) Translation (h) Translation

(i) Rotation (j) Rotation (k) Rotation (l) Rotation

Figure 3-9: The trajectory estimated by STAR (blue) and the ground-truth (red) are
shown for various sequences.

observable in Figure 3-8.

The average time taken to estimate the camera pose for all the sequences was

under 20 ms, which allowed tracking the 50 FPS camera in real-time. Shown in

Figure 3-10, the average time for tracking a frame in the Aggressive 1 sequence was

14.42 ms, and the Single Loop sequence was 18.17 ms. The variations in the tracking

time were dependent on the amount of texture in the sequences, e.g., Aggressive 1 had

fewer strong gradient pixels to track on, where the camera was often looking at scenes

that were not completely mapped in the mesh. The average rendering time for the

Aggressive 1 sequence was 21.55 ms using the embedded GPU, while the rendering

time for the Single Loop sequence was 190.36 ms using the MESA Gallium llvmpipe

software renderer.
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(a) HD 4400 GPU (b) Software-only Gallium llvmpipe

Figure 3-10: Timing results for Aggressive 1 using an embedded GPU (a) and Single
Loop using Gallium llvmpipe software renderer (b). Software rendering is su�cient
for slow moving sequences, but has di�culties dealing with fast rotations. It can
be observed that some areas in the Aggressive 1 sequence contains more keyframe
generation due to fast rotations.

3.5.4 Comparison to the state-of-the-art

Despite using an incomplete and imperfect mesh, STAR accurately estimated camera

trajectories, with similar performance to the state-of-the-art localization methods

[112, 148, 118]. In this section, we discuss how a direct comparison to these methods

is di�cult due to di�erences in the datasets and the validation method.

Lynen et. al [118] combined sparse features with an IMU [118], achieving a mean

translational error of 17 cm and a mean rotational error of 0.32 degree in a large scale

environment. While the rotational error is much smaller than the error of STAR,

it is di�cult to directly compare the results as the dataset used by Lynen et al.

was restricted to roads, e.g. captured on a bicycle or along the sidewalk, without

exercising the full range of 6 degrees of freedom (DoF) motion. The data used to

evaluate the algorithms were also deliberately within moderate view-point changes of

the original dataset used to build the map.

The feature-based localization of Lim et. al [112] achieved varying results on

di�erent datasets, with 10:8 cm translational error and 1:6 degree rotational error

being the run with the highest success rate of95%. While Lim et. al exercised the

full range of all 6 DoF, a direct comparison to STAR is di�cult due to error metrics

based on only the successful attempts. In our STAR implementation, no estimates

were rejected, with the worst translation error being 53.19 cm. This design choice,

which increased the mean error, was to later do the rejection (reduction) in a �ltering

framework fusing in an IMU.
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(a) Candidate Generation (b) Relocalization Results

Figure 3-11: Shown in (a), keyframe cameras (red) are uniformly placed in the mesh,
varying in 6 DoF (only translation shown in this �gure). For each keyframe location,
a synthetic image is generated (shown inside the blue camera wireframe) and com-
pressed down to a single ORB descriptor. The descriptors generated in this o�ine
pre-processing stage are later compared online for relocalization. In (b), we show
keyframes returned by our relocalizer are shown in orange, where each keyframe is
connected to the query camera frame shown in green. For all of the queries, a per-
ceptually similar keyframe was successfully found.

Lastly, the most recent mesh-based localization work [148] reported a RMS trans-

lational error of 3:73 to 7:42 cm, and a RMS rotational error of0:35 to 0:91 degrees

with a 93% success rate. Comparing to this method is also di�cult due to the

dataset being captured on a ground-based vehicle (3 DoF only), the trajectory for

map-building being the same trajectory for tracking, and the dataset being processed

frame by frame o�ine 3.

In terms of timing, STAR performed over 25 times faster than the 2 Hz track-

ing rate reported by the state-of-the-art mesh-based localization method [148], and

performed similar to the 23 to 37 ms [112] and 24.5 ms [118] of feature-based methods.

3.5.5 Relocalization Experiment

We tested our relocalizer on the Aggressive 1 sequence, where 100 di�erent locations

were queried for the closest match within a �xed search window of 2 meters. Some

representative matches are shown in Figure 3-11b where the relocalizer accurately

retrieved a keyframe with an average distance of 45 cm to the query frame. However,

3discussed in personal communication

91



Figure 3-12: RRG O�ce sequence shown for qualitative analysis. Due to changing
illumination from the windows, there is a signi�cant di�erence between the camera
images and the rendered keyframes. Furthermore, there's a person in the sequence
dynamically a�ecting the environment. Our algorithm is able to reject these areas
for robust tracking.

due to perspective di�erences in the recovered keyframe and the camera image, recov-

ering the pose with direct alignment was successful 73% of the time. When successful,

recovery took a nearly constant 0.21 ms average time for checking approximately 700

nearby keyframes. This extremely cost-e�cient keyframe query allowed us to broaden

the search region when required. However, in the case of failure, recovery took an

arbitrarily long amount of time, until the camera left the regions where the relocalizer

deterministically failed to �nd a keyframe with a signi�cantly similar viewpoint. We

also experimented with NID as the similarity metric: it took on average 2440 ms, and

the average distance was 147 cm. Using a single ORB descriptor in the relocalizer

was several orders of magnitude faster, and returned a closer keyframe.

3.5.6 O�ce Experiment

In addition to the motion capture studio, we tested STAR in a larger indoor envi-

ronment with changes in illumination. Due to the varying illumination from nearby

windows, there was a signi�cant di�erence between the camera images and rendered

keyframes. Moreover, small objects in the scene created occlusions, reducing the

coverage of the mesh. While we do not have a ground-truth trajectory for this se-
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quence, the similarity between the camera images and renderings at the pose esti-

mates indicate successful tracking. Representative frames are shown in Figure 3-12

for qualitative assessment.

3.6 Summary

In this chapter, we presented the idea of applying multiple levels of abstraction to the

map representation for computationally e�cient pose estimation. For pose estima-

tion in an unknown environment, we presented the Monocular Image Space Tracking

(MIST) method, where the full SLAM problem is divided into a fast tracker on

the MAV based on an abstract local map representation in the image space, and

a keyframe-based smoothing and mapping on the ground station based on a sparse

point-cloud representation of the global map. Using our e�cient image space repre-

sentation, we are able to compute the pose estimates on an MAV in constant time at

4.39 ms while building the growing global map on the ground station. The quality of

this global map is as accurate as PTAM when compared to the pose estimated from

laser scan-matching.

For pose estimation in a known environment, we presented the Simultaneous

Tracking and Rendering (STAR) method where we construct a dense voxel-based

map o�ine and abstract it into a compact yet dense mesh representation suitable for

collision-testing. Using the mesh map, we achieved similar speed and accuracy to the

state-of-the-art feature-based localization methods based on a sparse point-cloud rep-

resentation incapable of supporting collision-testing, with a mean translational error

of 14 cm and a mean rotational error less than 4 degrees. We improved the speed

of mesh-based localization by more than 25 times compared to the state-of-the-art,

where we achieved real-time tracking on a low-SWaP computer with a low-power

GPU. Constructing multiple map representations of di�erent abstraction allowed fast

pose estimation in both known and unknown environments using low-SWaP sensing

and compute typicpally available on a MAV.

93



94



Chapter 4

Multiple Levels of Abstraction in the

Sensor Measurements

Extending the idea of applying multiple levels of abstraction in the world model

discussed in the previous chapter, in this chapter, we explore the idea of applying

multiple levels of abstraction to the sensor measurements for improving the robustness

of vision-based SLAM. In Chapter 2, we explored popular representations for vision-

based SLAM and discussed their limitations in supporting real-time path planning

and collision avoidance. We argued that sparse [131, 60], semi-sparse [54, 53, 75], and

mesh-based [138, 158] methods employing a texture-based sparse representation of

the world for computational e�ciency often do not sparsify based on the underlying

scene geometry for accurate collision-testing. On the other hand, we observed that

dense methods [136, 198] that address the problem of sparsity by using a volumetric

representation often have a high computational burden.

Instead of building high-�delity dense representations or relying on texture-based

sparsity, for well-bounded entities, we propose to directly estimate an approximate

3D volumetric model that is suitable for collision-testing based on the perceived vol-

ume in camera images. Some object-based mapping approaches [164, 139] do this

kind of volumetric inference o�ine by incrementally �tting bounding box measure-

ments to a parametric model of primitive shapes such as ellipsoids or cuboids. Given

that modern object detectors [85, 153] can infer bounding box approximations of ob-
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Figure 4-1: In ROSHAN, we combine bounding box detections (green), texture planes
(blue), and prior knowledge of the shape of objects (yellow) to achieve an ellipsoid-
based object SLAM system robust to camera motions that do not explicitly observe
the object from multiple viewpoints.

jects in real-time, an online version of this approach seems suitable for autonomous

navigation. However, given that the object-based volumetric model explains a large

volume of space, as opposed to a single surface, there can be high uncertainty in the

parameters representing the volume due to self-occlusions that cause many surfaces

of the object to be hidden from any single viewpoint. Unlike the volumetric map con-

struction in STAR, described in Section 3.4, that leveraged an o�ine process using

all available measurements from diverse viewpoints, constructing a large volumet-

ric representation using incremental sensor measurements can face an observability

problem without measurements that can bound the volume from di�erent viewpoints.

This observability problem can be ampli�ed by the fact that common types of vehicle

motions such as straight line motions do not generate diverse viewpoints of objects

without adding the complexity of leveraging an an active perception system [28, 89].

In order to better constrain an object-based SLAM system that lacks diversity in

viewpoints, we show how to apply multiple levels of abstraction to camera images,

in addition to the bounding box abstraction, to extract two additional sources of

information: texture on objects that can be used to infer the distance to the objects

and prior knowledge of shapes of objects that can mitigate the scale unobservabil-

ity problem in monocular cameras [62]. We propose robust object-based SLAM for

high-speed autonomous navigation (ROSHAN), illustrated in Figure 4-1, where we

represent objects that can be detected with a modern object detector [153]volu-

96



metrically as ellipsoids, and infer the parameters of the ellipsoids online using three

sources of information: bounding box detections, texture, and prior shape information

based on the object class. We make an improvement to the state-of-the-art bounding

box measurement model [139], introduce a di�erentiable closed-form measurement

model for texture, describe an object-based shape prior, and propose a single mea-

surement initialization scheme useful on a fast-moving vehicle. Contrary to modern

o�ine methods [164, 139], our technique does not assume known data associations

or batch optimization. We demonstrate the advantages of ROSHAN in simulation

using 50 randomly generated maps of ellipsoids, where we outperform the baseline,

reducing the median error on the shape estimates by83% and the median error on

the position estimates by72% when compared to the baseline in a forward-moving

camera sequence. Finally, we present promising results running ROSHAN real-time

on simulated and real autonomous high-speed �ight sequences.

4.1 Ellipsoids as Object Representation

We choose the ellipsoid representation, a speci�c form of quadric representation [36]

as the low-dimensional parametric form of our objects. Similar to Rubino et al. [164],

we minimally parametrize the ellipsoid with 9 independent parameters that represent

the orientation R 2 SO(3), position t 2 R3, and shaped 2 R3 of the ellipsoid. While

there are two forms of ellipsoids,E and the dual-form E (dual ) = adjoint( E ), we are

interested in the dual-form E (dual ) 2 E4� 4, where E4� 4 represents the subset of all

4 � 4 symmetric matrices de�ned by

E (dual ) =

2

6
4

RDR T � tt T � t

� t T � 1

3

7
5 ; (4.1)

whereD 2 R3� 3 is a positive diagonal shape matrix with the diagonal entries formed

with regularized squared shape parameters, i.e.,D i;i = d2
i +  , where  2 R is a

regularization constant enforcing a minimum shape.
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While an ellipsoid is only a rough approximation of an object in 3D, a strong

advantage of the ellipsoid representation is that its entire parametrization can be

constrained using bounding box measurements from camera images. This property of

ellipsoids comes from the dual-form where all homogeneous planes� k 2 R4 tangent

to the dual-form of an ellipsoidE �
j must obey

� T
k E �

j � k = 0: (4.2)

This system of equations, when solved as a function of the vehicle posex tk 2 SE(3)

and the observed ellipsoidE �
j k

as illustrated in section 4.2.2, forms a closed-form

di�erentiable bounding box measurement model

B̂ k = ( E �
j k

; x tk ; K ); (4.3)

whereK 2 R3� 3 in the camera intrinsic matrix and B̂ k 2 R4 is the predicted bound-

ing box measurement. While the family of quadrics all share the same smooth mea-

surement model, we speci�cally limit our landmarks to ellipsoids that can be trivially

converted to 3D bounding boxes that are commonly used for e�cient collision-testing

in the computer graphics community. Coupled with computationally inexpensive ob-

ject detectors [153, 85], the above closed-form measurement model allows for the use

of readily available bounding box detections as the main source of measurements to

constrain vehicle poses and approximate object volumes. We describe the details of

optimizing ellipsoids in a SLAM process using only bounding boxes in Appendix B.

4.2 ROSHAN

In ROSHAN, we combine bounding box measurements, texture plane measurements,

and class-based object shape priors in an online optimization framework to realize

an object-level SLAM system that is robust under undesirable vehicle motions. In

the next section, we present the SLAM formulation of ellipsoid-based object-level

mapping based on the three abstractions of measurements.
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4.2.1 SLAM Formulation

We would like to solve for all ellipsoidal approximations of objectsE = f E �
j gJ

j =0 with

J objects of interest, andT poses of the vehicleX = f x tgT
t=0 , where x t 2 SE(3).

We are givenT imagesI = f I tgT
t=0 with I t : 
 2 N2 ! N, where 
 is the image

pixel domain. Using an object detector, we extractK bounding box measurements of

objectsB = f B k 2 
 2gK
k=0 along with the object class labelsC = f ck 2 NgK

k=0 , where

each bounding box is parametrized by two pixel locations representing the opposite

corners of the bounding box. We extract high-gradient features [165] from the texture

of the objects in images, and �t a homogeneous plane� t
d 2 R4 to the triangulated

locations of the features of each object; theseD planes� t = f � t
dgD

d=0 that we call

texture planes, e.g. the blue plane in Fig. 1-3, represent measurements of the distance

between the cameras and the camera-facing sides of objects. Assuming a uniform prior

on the measurements and independence assumptions between all measurements, we

write our object-level SLAM problem as

P(X ; EjB; � t ; I ; C) /
KY

k=0

P(B k jE (dual )
j k

; x tk )

| {z }
Bounding Box (4.2.3)

DY

d=0

P(� t
djE (dual )

j d
; x td )

| {z }
Texture (4.2.4)

JY

j =0

P(E (dual )
j ; cj )

| {z }
Class-based Prior (4.2.5)

TY

t=0

P(x t jI 0:t )

| {z }
Pose Prior

;

(4.4)

where we assume that the data-association problem has been pre-solved (imple-

mentation details discussed in section 4.4.1), i.e., that the associated indicesj k and

j d for objects andtk and td for poses are known for each of the measurementsB k and

� t
d, and that the class labelscj for ellipsoids are deduced from labelsck of bounding

boxes.

We can then obtain optimal estimates of vehicle posesX � and objects E� by

maximizing the posterior probability

X � ; E� = arg max
X ;E

P(X ; EjB; � t ; I ; C): (4.5)

In the following sections, we discuss the details of the bounding box measurement
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model (4.2.3), texture plane measurement model (4.2.4) and the class-based prior

on the ellipsoids (4.2.5) to demonstrate how multiple sources of information can be

combined to constrain ellipsoidal approximations of objects. However, in this work,

we assume an external vision-based1 localization systemf pose [131, 180] that produces

pose estimatesx t = f pose(I 0:t ) to be loosely-coupled with our system and incorporate

the MAP estimates along with a heuristic covariance as priors on our vehicle poses.

In the next section, we �rst describe a limitation in the state-of-the-art bounding

box measurement model [139], and suggest an improved bounding box measurement

model.

4.2.2 Geometric Bounding Box Measurement Model

The projection of a dual-form of a quadric on a camera plane is called a dual-conic

G � 2 R3� 3, and has the property that all tangent lines must obey

l T
h G � l h = 0; (4.6)

where l h 2 R3 is a homogeneous form of a line. Since a dual-form of a quadric can

be projected to a dual-conic [139] by

G � = K [R t jt t ]E �
j [R t jt t ]T K T ; (4.7)

where K 2 R3� 3 is the camera intrinsic matrix, R t 2 SO(3) is the rotation, and

t t 2 R3 is the translational portion of the posex t 2 SE(3), we can solve Eq. 4.6 in

closed-form for the bounding box edgesl u = [1; 0; � u] and l v = [0; 1; � v], i.e.,

ûmin ; ûmax = G �
1;3 �

q
G �

1;3
2 � G �

1;1G �
3;3;

v̂min ; v̂max = G �
2;3 �

q
G �

2;3
2 � G �

2;2G �
3;3;

(4.8)

1Note that some vSLAM systems require additional sensors such as an IMU that could be added
to our loosely-coupled formulation.
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to form the closed-form measurement model in Eq. 4.3, where the predicted bounding

box is a collection of these edge locations, i.e.,̂B k = [ ûmin ; ûmax ; v̂min ; v̂max ]k .

4.2.3 ROSHAN Bounding Box Measurement Model

The assumption that each bounding box edge measurementl h projects to a plane

� h tangent to the object of interest is broken in the case of partial, occluded, or

truncated detections. A naive approach to using bounding boxes as measurements

might simply keep all measurements, and hope that enough additional measurements

will be made to mitigate the erroneous measurements. Nicholson et al. [139] present

a truncated measurement model that ignores the portion of the measurement error

that is outside of the image boundaries. When an object is well estimated, the

truncated geometric model does reduce false measurement errors on edges that do

not constrain the object by recognizing that the measured bounding box edge is the

best observation the object detector can make. However, the truncated measurement

model underestimates error in cases where the instantaneous bounding box estimate

of the object position in the image plane is poor and a measured bounding box edge

is in fact a constraining edge. For example, if the true object projects entirely into

the image, but the instantaneous estimate of that object in the image plane is an

overestimate that extends o� the image, the truncated model will underestimate the

error.

In ROSHAN, we �rst classify a bounding box edge as constraining (tangent to

the object) or non-constraining (not tangent to the object) based on the proximity to

the closest image boundary, before adding the edge as a constraint on the detected

object. As shown in Fig. 4-2, we observe that a non-constraining edge can be formed

not only near the image boundaries but also the occlusion boundaries between ob-

jects. However, as is the case of the truncated measurement model [139], we focus

on identifying only the non-constraining edges near the image boundaries and leave

potential ways to identify occlusions between objects, such as using relative depth

from optical �ow [151] or learning [72], as future work. Once a bounding box edge

is classi�ed as non-constraining based on the distance to the closest image boundary,
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