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Abstract

Autonomous robots will soon be a commonplace presence in our daily lives in en-
vironments such as homes, factories, and roads. In order to reap the tremendous
benefits that these robots offer to society, we must ensure that they can interact with
humans seamlessly and safely.

In this dissertation, we study intelligent agents that learn how to reason about
human behavior and people’s intentions. These agents predict others’ intentions and
implicitly communicate their own intentions through human-like actions that can be
understood by people. They also anticipate and leverage the effect of their actions on
the actions of others in the environment. When their own interests and the interests
of others are not aligned, the agents quantify people’s willingness to cooperate or
defect and negotiate through social behavior. The agents form beliefs by perceiving
the world and the actions of others. They create plans to actively gather information
about themselves, others, and the environment, while simultaneously avoiding actions
that lead to high uncertainty. They also reason about the beliefs of others, and can
leverage how their actions influence others’ beliefs.

In part (I) of this thesis, we formulate social human-robot interactions between
agents as a best-response game wherein each agent negotiates to maximize their util-
ity, and learn human rewards from data. We measure Social Value Orientation (SVO)
to quantify an agent’s degree of selfishness or altruism to better predict human be-
havior. In part (II) we additionally enable agents to leverage information gain and
reasoning about the beliefs of others in stochastic environments with partial observa-
tions by combining game-theoretic and belief-space planning. In part (III) we present
a multi-agent reinforcement learning algorithm that learns competitive visual control
policies through self-play in imagination. The agent learns from competition by imag-
ining multi-agent interaction sequences in the compact latent space of a learned world
model that combines a joint transition function with opponent viewpoint prediction.
Lastly, in part (IV) we introduce Parallel Autonomy, a Guardian system that uses
uncertain predictions to provide safety in challenging driving scenarios while following
people’s desired actions as close as safely possible.
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Chapter 1

Introduction

1.1 Vision

In the future, robots will be a part of our daily lives, supporting us with physical

tasks in the household and factories, delivering our goods, driving our cars, and

harvesting our crops. Society will receive tremendous benefits from the responsible

use of robot capabilities as tools that enable and support people. Robots will closely

interact with people while reasoning about human intentions. They will need to

be robust to uncertainty from perception and prediction and leverage information

gain and awareness of uncertainty to their advantage. Robots need to reason about

the environment based on a higher-level intuitive understanding of the world that is

learned instead of engineered.

In the following, we describe the progress in robotics in three waves. We clus-

ter waves by increasing capabilities in versatility, sensing, planning, learning, and

human-robot interaction. Other clusterings of progress in robotics and automation

have been suggested. These include progress in mobility and manipulation complex-

ity [219], progress from handcrafted methods to statistical learning and contextual

adaptaion [82], and the transition from manual to autonomous automation [105].
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1.1.1 First Wave of Robotics

The current state-of-the-art in the robotics and automation industry is far from the

vision stated above. In the first wave of robotics, robots have been successful at scale

in simple, structured, and static environments. Applications for this first wave of

automation range from assembly and welding of cars and planes, through forming and

processing of composite materials, to packing and dispensing of electronics. This stage

of automation has been driven by the goal to free people from dangerous, repetitive, or

simply unpleasant jobs; to improve quality and efficiency in manufacturing; and lastly

to cut manufacturing costs [197]. Robots were designed and manually programmed for

a single purpose with simple and repetitive tasks. Due to the lack of complex sensing

capabilities and relying on preprogrammed plans, robots were unable to flexibly adapt

to novel tasks or changes in the environment. Additionally, human workers and robots

were strictly separated, dictated by safety concerns.

1.1.2 Second Wave of Robotics

The second wave of automation and robotics has enabled the use of robots in less

confined environments. Robots have been equipped with multi-purpose sensors and

actuators, and employ machine learning and online planning to adapt to new envi-

ronments. These robots perceive the environment through sensors and estimate their

state and the state of other objects in the environment. They subsequently use this

information to plan actions online following objectives such as moving to a goal lo-

cation and avoiding collisions. Robots in the second wave have been developed for

numerous purposes beyond manufacturing. Picking unknown and unseen objects, fly-

ing drones without colliding, and autonomously vacuuming floors are some example

use cases. Due to online sensing and planning capabilities, robots have gained the

capability to operate in dynamic environments. This has also allowed them to work

in closer proximity to people. Nonetheless, most robots have treated people as generic

obstacles and remained oblivious of people’s intentions. Additionally, people needed

diligent training to interact safely with robots. In cases where human workers and
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robots have worked alongside each other, workers have been aware of the reoccur-

ring robot tasks and could therefore anticipate and understand the artificial actions

a robot executes.

In the manufacturing and factory setting, we are motivated by the realization

that full automation of some tasks remains notoriously hard or expensive. Moreover,

replacing the workforce through automation and robotics is undesirable due to its

negative impact on society [32, 23]. Augmenting human workers through robotic

tools or human-robot collaboration has increased productivity, reduced fatigue, and

allowed robots to execute tasks that are too difficult to complete without assistance.

Examples include robotic surgery, where surgeons direct precise motions of robot

arms in augmented reality, or automotive assembly, where workers route wires and

robots lift heavy parts for easier access.

1.1.3 Third Wave of Robotics

While the use of robotics in the industry is ever-increasing, the third wave of robotics

will take place in the form of consumer products. It will place robots into our daily

lives in the shape of household robots, autonomous cars, delivery drones, robot care-

givers, robot chefs, and many more. The impact these robots will have on us and how

we live our lives will be much more profound than the previous two waves. These

robots have to be able to reason about the world to understand the cluttered, disorga-

nized, and ever-changing environments they operate in. Most importantly, they need

to safely and seamlessly interact with users and other people in our world. While

the first two waves of robotics and automation saw tremendous progress in the ar-

eas of versatility, sensing, planning, and learning, the third wave of robotics will be

characterized by skillful interactions in mixed human-robot environments.

Socially-Compliant Interactions

Because these types of robots will be interacting closely with ordinary people, they

will have to be able to reason about human behavior and intentions. For instance,
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drivers at four-way intersections wait to signal other drivers to proceed or slowly

enter the intersection to ask for permission to pass. Similarly, human drivers initiate

lane-merges in heavy traffic by nudging into the neighbor’s lane to communicate

intent. Drivers only proceed if their counterpart responds by creating enough space

to complete the merge safely. Thus, robots will not only have to predict intentions of

other people but also implicitly communicate their own intentions through human-like

actions that can be understood by people. In contrast to interactions in artificially

constructed environments such as factories, people can not as effortlessly anticipate

the behavior of robots. One reason is that in comparison to professional workers,

regular people lack professional training. People are also unaware of the robot’s

goals, and the executed tasks are not necessarily repetitive such that they cannot

predict robot behavior from experience. Thus, not complying with expected human

social behavior, i.e. social compliance, can result in inefficiencies or in the worst case

compromised safety. Simultaneously to implicit communication, robots will be able

to anticipate and leverage the effect of their actions on the actions of others in the

environment. When a driver’s current lane is ending, it can be necessary to avoid

a collision by forcing other drivers to comply with the merge by cutting into their

lane. While against their will, drivers fall back eventually to increase the gap size

and allow the merge to avoid a collision themselves. Autonomous vehicles will have

to be able to perform a similar set of behaviors and plan on leveraging the influence

of their actions on other drivers when necessary.

Social Behavior

Most interactions between robots and human workers in the second wave of automa-

tion consist of either simple collision avoidance or collaboration towards a known

joint goal. In contrast, in our everyday lives, people’s interests and the interests of

others are not always well aligned. We implicitly negotiate outcomes of these social

dilemmas through social behavior. Furthermore, people do not always act purely in

self-interest but are frequently willing to cooperate. In the long term, cooperation

can yield improved joint outcomes, reduced inequality, and increased efficiency for all.
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Drivers often go out of their way for others during highway merges and slow down to

yield despite not gaining any direct benefit from it. Nonetheless, the overall traffic

flow improves if more drivers engage in similar behavior. Equally nuanced negoti-

ations of their interests and the interests of others occur in many scenarios beyond

navigation. Therefore, beyond goal and intent inference, robots will need to quantify

the degree of altruism or selfishness of others by observing their actions and deduc-

ing whether they will cooperate or defect. Incorporating this information to improve

predictions can then be leveraged during planning.

Reasoning over Beliefs

Robots often do not have ground truth information about the world. They perceive

the world and others influenced by uncertainty from perception, prediction, or the

environment itself. Similarly, inclement weather such as snowstorms, heavy rain,

or fog may impair people’s vision. Humans intuitively adjust to uncertainty in the

surroundings by acting more conservatively, slowing down, increasing distances to

others to maintain safety, or deeming certain activities overall unsafe under certain

conditions. Other sources of uncertainty are occlusions, blind spots, or prevalent

unknowns about the environment. Bicyclists slow down before occluded corners to

avoid collisions with others. Similarly, robots will avoid actions that lead to high

uncertainty in scenarios where this is undesirable such as when minimizing risk.

People also plan to actively gather information about themselves, others, and the

environment. For instance, cliff divers first check the depth of the water before taking

the plunge, and people sweep the floor with a flashlight at night to identify obstacles.

Robots will not only have to reason about their own beliefs (“I think...”) about the

world but also the beliefs of others (“I think that they think...”). Making the theory

of mind [155] available to robots will give them the ability to attribute mental states

to oneself and others. These mental states include beliefs, intents, desires, emotions,

and knowledge, among others. Realizing that others’ beliefs, desires, intentions, and

perspectives are different from one’s own is essential when interacting with people.

On highways, motorcyclists minimize the time in blind spots of trucks to ensure to be
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seen and thus reduce the risk of collisions. Robots will similarly be able to leverage

how one’s actions impact the change in the confidence of others. Opening doors when

someone’s hands are full, offering a seat on the bus to those in need, or guiding people

with visual impairments around obstacles are examples where it is necessary to first

understand the state of mind of the other person before acting accordingly.

Complex Emergent Behavior from Interactions

At an early age, children learn complex skills and behaviors. They quickly learn to

identify and manipulate objects, to communicate, and to move by either crawling

or walking. In contrast, in the first wave of robotics, motions were manually pro-

grammed and engineered. In factory settings, robot arms repetitively move from one

position to another to manipulate, form, weld, or inspect objects. For these types

of problems, the task and problem formulation is straight forward. For more com-

plex tasks such as tying shoelaces, opening a door, or folding clothes, it can be very

challenging to engineer a controller or even mathematically formulate the problem.

Precisely stating a problem for a task is also very demanding if we knew accurate

models of the world and if uncertainty was negligible. Encoding complex behaviors

is even more challenging in mixed human-robot and multi-agent environments. For

instance, in competitive multi-agent racing, we will expect behaviors such as cutting

off other drivers in turns, blocking overtaking maneuvers, or executing a PIT maneu-

ver (turning an opponent’s car abruptly sideways, causing the driver to lose control

and stop). Instead of manually crafting all these necessary behaviors for racing, they

should emerge from a general problem formulation, such as winning the race, and

general-purpose algorithms. Ideally, we will develop robots with algorithms that do

not require detailed manually engineered models of the world, as they can be hard

to obtain, and only rely on minimal prior information. Instead, robots will either

optimize their behavior directly or learn models of the world from past experience of

environment interactions. Additionally, robots will learn from each other to increase

capabilities and improve performance through competition and self-play.
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1.2 Challenges

To progress towards the vision presented in the previous section, a number of con-

ceptual and technical challenges need to be overcome. A large amount of literature

related to this thesis exists. We will discuss this thesis and its related work in the

context of these main challenges.

1.2.1 Modeling Interactions

Similarly to how people interact with each other, a robot’s actions influence the

actions of other people, and people’s actions affect the robot’s actions. Constructing

or learning a model of interactions allows the robot to predict, plan, and leverage

their influence on other people in the environment.

Many approaches learn to imitate human behavior directly from data. A variety of

neural network architectures have been proposed including Long Short-Term Memory

(LSTM) Networks [8], Generatic Adversarial Networks (GAN) [15, 73, 101], attention

mechanisms [207, 161], Graph Neural Networks (GNN) [91], Encoder-Decoders [221],

or Variational Autoencoders (VAE) and Inverse Optimal Control (IOC) [107]. These

purely data-driven approaches predict future trajectories of people based on the cur-

rent state. Nonetheless, the predictions are not conditioned on the robot’s future

actions and thus cannot anticipate how people change their behavior based on the

robots actions. Therefore, they are not directly suitable for planning.

A similar thread in learning interaction models is to employ joint distributions.

Joint distributions essentially model the robot as one of the other agents. Appli-

cations include Gaussian processes [199], joint reward functions [98], corresponding

to distributions according to the principle of maximum entropy, or joint energy po-

tentials [158]. These approaches, leveraging manually engineered features to handle

interactions, optimize both the robot’s future actions as well as all other agents’ pre-

dicted actions by jointly minimizing the sum of all agents’ costs. This formulation

implies that agents’ interests are well aligned, and that agents are willing to sacrifice

their utility for the joint utility. Nonetheless, in practice people’s interests are not
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always well aligned.

Game-theoretic planning successfully solves problems where an agent’s objective is

at odds with the objective of other agents, such as in modeling human behavior [111,

172, 200], and leveraging the effects on humans by autonomous cars [163, 62, 173].

[125] presents a recent review on game theory and control. In game theory, the Nash

equilibrium is a proposed solution of a non-cooperative game involving two or more

players. At the equilibrium point, no player has anything to gain by changing only

their own strategy. Solving for Nash equilibria has been applied to competitive racing

of cars [217, 119], drones [183] and navigating vehicles through traffic [54, 173].

In this thesis we model interactions between agents as a best response game

wherein each agent negotiates to maximize their own utility and calibrate reward

functions to human data through Inverse Reinforcement Learning (IRL). We also en-

sure safety by integrating general constraints. With the game-theoretic formulation,

the autonomous system can leverage the effect of their actions on other people. The

Nash equilibrium pf the game yields predictions for all other agents in the environment

and a control policy for the robot.

1.2.2 Computing Nash Equilibria

We often pose single agent motion-planning as an optimization problem. Solving

for Nash equilibria in multi-agent environments can be thought of as solving an

interdependent optimization problem for each agent and is therefore computation-

ally challenging. Solution methods for Nash equilibria include Iterated Best Re-

sponse (IBR) [217, 183, 49, 65], using discrete payoff matrices [119], or solving the

optimality conditions. We present a tractable reformulation [173] of the necessary op-

timality conditions respecting general constraints and solve for the Nash equilibrium

of the game one order of magnitude faster than state-of-the-art methods such as IBR.

This allows the system to operate in real-time. We also show an alternative method

that achieves linear complexity per iteration over the planning horizon by solving a lo-

cally quadratic game in the backward pass of the Iterative Linear-Quadratic regulator

control (iLQR) [174].
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1.2.3 Human Social Preferences in Robotics

Behavioral and experimental economics shows that people have unique and individual

social preferences, including: interpersonal altruism, fairness, reciprocity, inequity

aversion, and egalitarianism. Self-interested models, like the homo economicus [42],

assume agents maximize only their own reward, which fails to account for nuances

in real human behavior. In contrast, Social Value Orientation (SVO) indicates a

person’s preference of how to allocate rewards between themselves and another person.

SVO can predict cooperative motives, negotiation strategies, and choice behavior

[52, 126, 202, 132, 153, 5]. People observe and estimate SVO from actions and social

cues [178]. While some works attempt to estimate human internal state [162, 191, 189],

this thesis presents a method to estimate peoples’ social preferences in the form

of SVOs from observed trajectories and integrates the estimates into an interactive

prediction and planning framework.

We also enable robots to show behavior corresponding to social preferences. Proso-

cials exhibit more fairness and considerateness compared to individualists [52], and

engage in more volunteering, pro-environment, pro-community, and charitable efforts

[126, 70, 203, 57]. They also tend to minimize differences in outcomes between self

and others (inequality aversion, egalitarianism) [134, 202]. Additional findings sug-

gest reciprocity in SVO and resulting cooperation [133, 4, 130]. Therefore, instilling

prosocial behavior into autonomous agents is desirable and deviation from purely

selfish behavior is necessary.

1.2.4 Socially-Compliant Behavior and Implicit Communica-

tion

Achieving predictable behavior in robots is fundamental for the safety of other people,

since it enables them to understand and appropriately respond to the robot’s actions.

One way to obtain predictable behavior is through behaving according to the social

expectations of the group, i.e. social compliance. To accomplish social-compliance,

the autonomous system must behave as human-like as possible [98, 206, 199, 100],
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which requires an intrinsic understanding of human behavior as well as the social

expectations of the group. Human behavior may be imitated by learning human

policies from data through Imitation Learning [159, 86, 8, 15, 73, 101, 207, 161,

91, 221, 107]. Our autonomous system design enables social compliance by learning

human reward functions through IRL [222]. The utility optimizing policy is human-

imitating [1, 223, 66, 34, 218, 164, 100, 98]. Furthermore, integrating the optimal

control policy into a best response game with learned rewards yields an interactive

human-imitating policy capable of leveraging the effect of actions on the actions of

others. We additionally incorporate SVO to mirror the utility-maximization strategies

of humans with heterogeneous social preferences in social dilemmas [133].

1.2.5 Reasoning about Own and Others’ Beliefs

While game-theoretic planning models the interaction and dependency among agents,

it does not address the uncertainty of the information accumulated by the agent for

decision making. Belief-space planning [94] uses beliefs, which are the distributions

of the robot’s state estimate, to represent the uncertainties in the perception of the

robot. The problem of computing a control policy over the space of belief states

is formally described as a Partially Observable Markov Decision Process (POMDP),

and has been studied extensively. Solving a POMDP to global optimality is NP-

hard: solutions such as point-based algorithms [24, 102, 151, 78] in discrete space as

well as sampling based solvers [40, 143, 156] are bound to the curse of history, i.e.,

that the computational complexity grows exponentially with the planning horizon.

Optimization-based approaches have been developed for planning in continuous be-

lief space [106, 142, 152, 201, 190, 152, 142], by approximating beliefs as Gaussian

distributions and computing a value function valid in local regions of the belief space.

Optimization-based methods scale linearly in the planning horizon while point-based

algorithms only scale exponentially. In this thesis we integrate game-theoretic plan-

ning into Gaussian-belief space planning to reason about the own belief and the belief

of others.
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1.2.6 Complex Emergent Behavior

While coping with interactions and reasoning about beliefs is challenging, as outlined

above, agents also need be capable of complex behaviors and skills which can be

hard to manually engineer. Instead, complex behaviors must be learned from inter-

acting with others and the environment without the need for engineering. Recently,

Reinforcement Learning (RL)-agents have received increased attention sparked by

surpassing human-level performance in many applications. This is especially the case

for single agent environments such as ATARI games [129] or control tasks in sim-

ulation environments [37, 194, 56]. The agents’ ability to learn behaviors scales to

complex tasks [117, 128, 168] including humanoid locomotion. Progress on simpler

but real-world tasks such as object manipulation and grasping [109, 48, 72] is equally

impressive. Stabilizing training and reducing sample complexity enabled much of the

progress through algorithms like DDPG [117], PPO [169], TRPO [167], MPO [3],

SAC [75], or a combination thereof such as Rainbow [85].

More interestingly, Multi-Agent Reinforcement Learning (MARL) approaches also

surpassed human-level performance in many multi-agent environments including com-

plex board games such as GO [180, 182], chess, shogi [181], as well as two-player [131]

and multi-player poker [39]. A MARL approach achieved grandmaster-level perfor-

mance in the real-time strategy game Star Craft II [208, 209]. Nonetheless, agents

need access to privileged ground truth information, e.g. categorized entity lists and

a pre-processed multi-layer map. We are motivated by complex emergent behaviors

from competition such as complex interactions [29] or tool use [25]. While often based

on principled game-theoretic modelling [123, 104, 83, 84], most MARL approaches fo-

cus on domains involving discrete low-dimensional action spaces [38, 185]. Recently,

MARL approaches have also been developed for continuous control tasks in cooper-

ative, competitive, and team competition environments [122, 112, 90], although on

low-dimensional observations. A common thread in all of these approaches is the use

of self-play auto-curricula: Agents gain competitiveness by playing against themselves

and iteratively improve performance. In this thesis we present a MARL algorithm for
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continuous control tasks that learns competitive strategies directly from image ob-

servations without relying on privileged information. Additionally, we reduce sample

complexity by learning a world model in latent space. Agents can then gain com-

petitiveness from imagined self-play game rollouts reducing the number of expensive

real-world interactions needed.

1.2.7 Learning from High-Dimensional Observations

While the previously outlined challenges mostly tackle how agent behavior should

be modeled and learned, another important aspect is dealing with real-world obser-

vations. In most applications we do not have direct access to low-dimensional state

observations, e.g. the state of the vehicle. Instead, robots have to rely on high-

dimensional observations such as camera images or LIDAR. An autonomous vehicle

has to sense the road through camera, LIDAR, or other modalities for a planner to

compute controls to keep the car on the road. To avoid relying on prior knowledge,

in this case the road, we can also learn a generic world transition model in a compact

latent space based on high-dimensional observations. The use of neural networks,

particularly recurrent neural networks, for modeling the evolution of the environ-

ment allowing for "mental imagination" has been proposed as early as 1990 [166]

and recently revisited in [74]. In a similar spirit, variational inference approaches

have been combined with linear-quadratic-regulators for learning to control from raw

images [215, 220]. Another line of recent algorithms combines latent (multi-step)

imagination with video prediction [95, 76] achieving state-of-the-art performance on

several standard benchmarks. We draw inspiration from these ideas and generalize

the concept of multi-step latent imagination to multi-player settings. Imagining the

outcomes of interactions in a latent world model allows us to apply game-theoretic

methods such as self-play to learn complex emergent behaviors.
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1.2.8 Autonomous Guardian Systems

The previously outlined challenges focused on interactions between robots and agents.

Another mode of interaction we propose is augmenting agents with robots and au-

tonomous systems. These systems can enable, elevate, and protect people. In this

work, we present a Parallel Autonomy system that acts as a guardian angel to ensure

people’s safety. We apply the concepts to automated driving.

In theory, safety can be guaranteed for deterministic systems by computing the

set of the states for which a vehicle will inevitably have a collision. We can then

ensure that the vehicle never enters that set. The set is referred to as the capture

set [63, 7, 35, 87], inevitable collision states (ICS) [64, 31, 11, 47, 114], the region of

inevitable collision (RIC) [45], the target set [127], or risk level set [146, 149, 88, 147].

However, necessary assumptions limit the approach to simplistic scenarios, since the

set cannot be computed in real time. We follow the idea of [63, 31, 11] and define a

set of probabilistic constraints for collision avoidance, which produce a safe behavior.

The most intuitive way of merging the human input with the output of a safety

system is by linear combination of the two [17, 19] or completely taking over con-

trol [50]. In contrast, in this work we directly incorporate the human inputs into a

minimally invasive optimization framework and add a soft nudging behavior to guide

the driver. Providing feedback to the driver already before scenarios become critical

prevents high intervention later on, while also avoiding to startle the driver. While

other approaches also minimize the deviation from human input [179, 68, 59, 10], they

do not generalize to complex environments with many dynamic obstacles and envi-

ronments requiring advanced vehicle models including slip and normal-load transfer.

1.3 Outline and Contributions

This section outlines the approaches and contributions presented in this thesis. Sec-

tion 1.3.1 describes contributions to model Social Human-Robot Interactions with a

focus on social aspects of human behavior applied to autonomous vehicles and rea-

soning about the own beliefs and the beliefs of others in stochastic dynamic games.
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Section 1.3.3 details contributions for intelligent agents that can leverage Learning

from Competition to obtain complex skills without manual engineering of behaviors.

These agents will learn to race using visual control policies in a learned latent-space

model of the world. Finally, Section 1.3.4 outlines contributions for a Guardian Angel

instantiated in the Parallel Autonomy framework for automated vehicles. It protects

drivers in dynamic traffic scenarios and when road conditions are challenging.

1.3.1 Social Human-Robot Interactions

Social Behavior for Autonomous Vehicles

Deployment of autonomous vehicles on public roads promises increased efficiency and

safety. It requires understanding the intent of human drivers and adapting to their

driving styles. Autonomous vehicles must also behave in safe and predictable ways

without requiring explicit communication. We integrate tools from social psychology

into autonomous vehicle decision-making to quantify and predict the social behavior

of other drivers and to behave in a socially-compliant way. A key component is

Social Value Orientation (SVO), which quantifies the degree of an agent’s selfishness

or altruism, allowing us to better predict how the agent will interact and cooperate

with others. We model interactions between agents as a best-response game wherein

each agent negotiates to maximize their own utility. We solve the dynamic game

by finding the Nash equilibrium, yielding an online method of predicting multi-agent

interactions given their SVOs. This approach allows autonomous vehicles to observe

human drivers, estimate their SVOs, and generate an autonomous control policy in

real time. We demonstrate the capabilities and performance of our algorithm in

challenging traffic scenarios: merging lanes and unprotected left turns. We validate

our results in simulation and on human driving data from the NGSIM dataset. Our

results illustrate how the algorithm’s behavior adapts to social preferences of other

drivers. By incorporating SVO, we improve autonomous performance and reduce

errors in human trajectory predictions by 25%.
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Contributions Our approach proposes a system to measure, quantify, and predict

human behavior to better inform an autonomous system. A game-theoretic formula-

tion models driving as a series of social dilemmas to represent the dynamic interaction

between drivers. We formulate a direct solution of the best response game, allow-

ing for fast, online predictions and planning, while integrating environmental and

planning constraints to ensure safety. The game’s reward functions are dynamic and

dependent on the vehicles’ states and the environment. Since we learn the reward

functions from human driving data, we expect that our approach translates to other

traffic scenarios and broadly, human-robot interactions, where we can derive similar

predictions trained on relevant data. Using SVO, a common metric from psychology,

we quantify human social preferences and their corresponding levels of cooperation.

SVO measures how an individual weights their reward against the rewards of others,

which translates into altruistic, prosocial, egoistic or competitive preferences. We

estimate the human drivers’ SVOs from observed motion, and set the Autonomous

Vehicle (AV)’s SVO based on preference in a given scenario.

The main contributions are:

1. Modeling driving as a dynamic game and computing its Nash Equilibrium

2. Reformulating the Nash Equilibrium through Karush-Kuhn-Tucker (KKT) con-

ditions for a speedup of more than 10x while preserving safety constraints

3. Predicting human actions from expected utility maximization

4. Integrating SVO preferences into the utility-maximizing framework

5. Estimating SVO online from observed driving trajectories

6. Evaluation of emerging socially-compliant autonomous driving behavior

7. Validation on NGSIM driving data

We present the approach, previously published in [173], in Chapter 2 with addi-

tional additional analysis and results.
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1.3.2 Reasoning about own Beliefs and the Beliefs of Others

Stochastic Dynamic Games in Belief Space

Information gathering while interacting with other agents is critical in many emerging

domains, such as self-driving cars, service robots, drone racing, and active surveil-

lance. In these interactions, the interests of agents may be at odds with others,

resulting in a non-cooperative dynamic game.

Since unveiling one’s own strategy to adversaries is undesirable, each agent must

independently predict the other agents’ future actions without communication. In the

face of uncertainty from sensor and actuator noise, agents have to gain information

over their own state, the states of others, and the environment. They must also

consider how their own actions reveal information to others.

We formulate this non-cooperative multi-agent planning problem as a stochastic

dynamic game. Our solution uses local iterative dynamic programming in the belief

space to find a Nash equilibrium of the game. We present three applications: active

surveillance, guiding eyes for a blind agent, and autonomous racing. Agents with

game-theoretic belief space planning win 44% more races compared to a baseline

without game theory and 34% more than without belief space planning.

We describe the work, previously presented in [174], in Chapter 3.

Contributions We present a computationally-tractable solution to multi-agent plan-

ning that combines game-theoretic planning and belief space planning to interact

within a problem formulated as a game, gain information, and leverage the informa-

tion gain to improve the agents’ control policies. The main limiting factor in applying

either game theory or belief space planning, and even more so the combination of both

to robotic control problems lies in the associated computational complexity. To the

best of our knowledge this is the first work to combine general dynamic games and

planning in belief space into an efficient real-time algorithm. The main contributions

of this research thrust are:

1. A method for computing Nash equilibria for dynamic games in belief space in
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real time

2. Solving a quadratic game at each stage of the recursive backward pass of a belief

space variant of iLQG yields linear time-complexity in the planning horizon

3. A linear feedback law, similar to linear-quadratic Gaussian control (LQG) for

the robot resulting from the solution, and also a predicted linear feedback law

for all other agents

4. State and control trajectory based regularization to ensure and improve conver-

gence

5. Evaluation of the proposed method in three stochastic dynamic games: racing

with autonomous vehicles, active surveillance, and guiding eyes for a blind agent

1.3.3 Learning from Competition

Deep Latent Competition: Learning to Race Using Visual Control Policies

in Latent Space

Learning competitive behaviors in multi-agent settings such as racing requires long-

term reasoning about potential adversarial interactions. This research thrust presents

Deep Latent Competition (DLC), a novel reinforcement learning algorithm that learns

competitive visual control policies through self-play in imagination. The DLC agent

imagines multi-agent interaction sequences in the compact latent space based on a

world model that combines a joint transition function with opponent viewpoint pre-

diction. Imagined self-play reduces costly sample generation in the real world, while

the latent representation enables planning to scale gracefully with observation dimen-

sionality. We demonstrate the effectiveness of our algorithm in learning competitive

behaviors on a novel multi-agent racing benchmark that requires planning from image

observations.

Contributions While our method can be applied to a range of problems, we focus

on demonstrating it in the context of two-player racing. Our approach learns a world-

model for imagining competitive behavior in latent-space. This allows for training
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agents via imagined self-play such that they can predict opponent behavior and in-

corporate the expected outcomes of action sequences in their policy selection process.

We further learn to predict the belief of other agents purely based on observations

from the ego agent’s perspective. This methodology is validated in extensive evalua-

tions on a novel multi-agent racing benchmark based on OpenAI Gym that requires

application of continuous visual control policies. Concluding, this work contains the

following contributions:

1. A novel model-based reinforcement learning algorithm for learning competitive

continuous control policies for multi-agent problems from high-dimensional ob-

servations such as images

2. A world-model structure that allows for estimation and imagination of compet-

ing agents’ behavior in a learned latent space

3. Extensive evaluations in a new multi-agent racing benchmark demonstrating

superiority over approaches that do not reason about other agents in imagina-

tion

We present the approach in Chapter 3. The work has been published in [175].

1.3.4 Guardian Angel

Safe Nonlinear Trajectory Generation for Parallel Autonomy With a Dy-

namic Vehicle Model

High-end vehicles are already equipped with safety systems, such as assistive braking

and automatic lane following, enhancing vehicle safety. Yet, these current solutions

can only help in low-complexity driving situations. In this work, we introduce a

Parallel Autonomy, or shared control, framework that computes safe trajectories for

an automated vehicle, based on human inputs. We minimize the deviation from the

human inputs while ensuring safety via a set of collision avoidance constraints. Our

method achieves safe motion even in complex driving scenarios, such as those com-

monly encountered in an urban setting. We introduce a receding horizon planner
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formulated as nonlinear model predictive control (NMPC), which includes the ana-

lytic descriptions of road boundaries and the configuration and future uncertainties

of other road participants. The NMPC operates over both steering and acceleration

simultaneously. We introduce a nonslip model suitable for handling complex environ-

ments with dynamic obstacles, and a nonlinear combined slip vehicle model including

normal load transfer capable of handling static environments. We validate the pro-

posed approach in two complex driving scenarios. First, in an urban environment

that includes a left-turn across traffic and passing on a busy street. And second,

under snow conditions on a race track with sharp turns and under complex dynamic

constraints. We evaluate the performance of the method with various human driving

styles. We consequently observe that the method successfully avoids collisions and

generates motions with minimal intervention for Parallel Autonomy. We note that

the method can also be applied to generate safe motion for fully autonomous vehicles.

Contributions The main contribution of this work are:

1. A formulation of Parallel Autonomy as a shared control approach between peo-

ple and intelligent vehicles, which adheres to the minimal intervention principle

and is able to handle complex driving scenarios

2. The development of a real-time nonlinear Model Predictive Controller (NMPC)

suitable for trajectory generation in intelligent and autonomous vehicles

3. Simulation of complex traffic scenarios, such as left-turns across traffic and

driving on a snowy race track, with real human inputs of different driving styles

We will employ two motion models of different complexity to handle both envi-

ronments subject to slip such as on an icy road, and in difficult driving scenarios with

many other drivers such as in left-turns across traffic. We introduce

∙ A dynamical nonlinear combined slip vehicle model including load transfer for

static environments

∙ A kinematic model for dynamic and complex environments
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We detail the method in Chapter 5, which has previously been published in [170,

171].
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Chapter 2

Social Human-Robot Interactions:

Social Behavior in Autonomous

Driving

2.1 Introduction

Interacting with human drivers is one of the great challenges of autonomous driv-

ing. To operate in the real world, Autonomous Vehicles (AVs) need to cope with

situations requiring complex observations and interactions, such as highway merg-

ing and unprotected left-hand turns, which are challenging even for human drivers.

For example, over 450,000 lane-change/merging accidents and 1.4 million right/left

turn accidents occurred in the United States in 2015 alone [6]. Currently, AVs lack

an understanding of human behavior, thus requiring conservative behavior for safe

operation. Conservative driving creates bottlenecks in traffic flow, especially in inter-

sections. For example, even companies considered leaders in the autonomous driving

industry still struggle with left turns and acting in predictable manners [58]. This

conservative behavior not only leaves AVs vulnerable to aggressive human drivers and

inhibits the interpretability of intentions, but also can result in unexpected reactions

that confuse and endanger others. In a recent analysis of California traffic incidents
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with AVs, in 57% of crashes the AV was rear-ended by human drivers [186], with

many of these crashes occurring because the AV behaved in an unexpected way that

the human driver did not anticipate. For AVs to integrate onto roadways with hu-

man drivers, they must understand the intent of the human drivers and respond in a

predictable and interpretable way.

2.2 Overview

This chapter proposes a system to measure, quantify, and predict human behavior to

better inform an autonomous system. A game-theoretic formulation models driving

as a series of social dilemmas to represent the dynamic interaction between drivers.

We formulate a direct solution of the best response game, allowing for fast, online

predictions and planning, while integrating environmental and planning constraints

to ensure safety. The game’s reward functions are dynamic and dependent on the ve-

hicles’ states and the environment. Since we learn the reward functions from human

driving data, we expect that our approach translates to other traffic scenarios and

broadly, human-robot interactions, where we can derive similar predictions trained

on relevant data. Using Social Value Orientation (SVO), a common metric from

psychology, we quantify human social preferences and their corresponding levels of

cooperation. SVO measures how an individual weights their reward against the re-

wards of others, which translates into altruistic, prosocial, egoistic or competitive

preferences. We estimate the human drivers’ SVOs from observed motion, and set

the AV’s SVO based on the scenario.

2.2.1 Main Assumptions

We assume that a perception system provides state estimates for the ego vehicle

and all other vehicles nearby. We also assume knowledge of lanes and the general

road network. These can be furnished through either prior maps or perceived online.

We assume agents to be rational and to maximize utility. Drivers account for other

drivers either through experience or by explicitly incorporating how future trajecto-
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ries are affected by their own and others’ interests. We motivate this assumption

in Section 2.6.1. Since we present a local solution algorithm for the game, we need

to provide a suitable initialization. While we can compute these through computa-

tionally expensive search-based or sampling-based methods, we present a heuristic

in Section 2.6.1 that works well in practice. To learn human reward functions, we

assume access to a set of human demonstrations. We presume that the distribution

shift between training and deployment is negligible, which is common in inverse rein-

forcement learning. We also assume that the learned reward functions are universal

for all drivers. We do not account for personal differences in reward functions besides

their social preferences in the form of SVO. We discuss SVO preferences as quantities

that are not intrinsic but can change over time based on experiences or the current

situation.

2.2.2 Contributions

The main contributions of this chapter are:

1. modeling driving as a dynamic game and computing its Nash equilibrium;

2. predicting human actions from expected utility maximization;

3. integrating SVO preferences into the utility-maximizing framework;

4. estimating SVO online from observed driving trajectories;

5. simulations of emerging socially-compliant autonomous driving behavior; and

validation on NGSIM [67] driving data.

2.2.3 Driving as a Game

We model driving as a non-cooperative dynamic game [30], where the driving agents

maximize their accumulated reward, or “payout,” over time. At each point in time,

the agent receives a reward, which may be defined by factors like delay, comfort,

distance between cars, progress to goal, and other priorities of the driver. Figure 2-1

illustrates an example of a driving game: an unprotected left turn. Here, the blue
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Figure 2-1: SVO at left turn: The autonomous car (blue) attempts to turn left
across human drivers (black) in traffic. The social preferences of a driver help deter-
mine if they will yield. Here, the blue car observes the other black car and estimates
its SVO. Top: The altruistic human driver yields and the autonomous car can safely
turn. Bottom: If the human driver is egoistic, they will not yield and the autonomous
car must wait to turn.

car must make a left turn across the path of the black car. Depending on how

the interaction is resolved, the agents accrue different rewards for decisions such as

comfortable braking, waiting for others to pass, or safety. In Figure 2-1, if each driver

only maximizes their own reward, then the black vehicle would never brake for the

blue vehicle making the unprotected left turn. However, we know human drivers often

brake for others in an act of altruism or cooperation. Similarly, in highway driving,

we observe human drivers open gaps for merging vehicles. If all agents were to act in

pure selfishness, the result would be increased congestion and therefore a decrease in

the overall group’s reward. We thus conclude that driving poses a sequence of social

dilemmas.

2.2.4 Social Coordination

Social dilemmas involve a conflict between the agent’s short-term self-interest and

the group’s longer-term collective interest. Social dilemmas occur in driving, where

drivers must coordinate their actions for safe and efficient joint maneuvers. Other ex-

amples include: resource depletion, low voter turnout, overpopulation, the prisoner’s

dilemma, or the public goods game. The autonomous control system proposed in this
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chapter builds on social preferences of human drivers to predict outcomes of social

dilemmas: whether individuals cooperate or defect, such as opening or closing a gap

during a traffic merge. It allows us to better predict human behavior, thus offering a

better basis for decision-making. It may also improve the efficiency of the group as a

whole through emerging cooperation, for example by reducing congestion.

2.3 Social Value Orientation

Behavioral and experimental economics shows that people have unique and individual

social preferences, including: interpersonal altruism, fairness, reciprocity, inequity

aversion, and egalitarianism. Self-interested models, like the homo economicus [42],

assume agents maximize only their own reward in a game, which fails to account

for nuances in real human behavior. In contrast, Social Value Orientation (SVO)

indicates a person’s preference of how to allocate rewards between themselves and

another person. SVO can predict cooperative motives, negotiation strategies, and

choice behavior [52, 126, 202, 132, 153, 5]. SVO preferences can be represented with

a slider measure [134], a discrete-form triple dominance measure [204], or as an angle

𝜙 within a ring [115]. We denote SVO in angular notation, shown in Figure 2-2.

Returning to the example of Figure 2-1, SVO helps explain when the black car

yields. Here, the black car considers both its reward and the reward of the blue car,

weighted by SVO. As the angular preference increases from egoistic to prosocial, the

weight of the other agent’s reward increases, making it more likely the black car will

yield. Knowing a vehicle’s SVO helps an AV better predict the actions of that vehicle,

and allows it to complete the turn if cooperation is expected. Without SVO it would

wait conservatively until all cars cleared the intersection.

An AV needs to estimate SVO, since humans cannot communicate this directly.

Instead, humans observe and estimate SVO from actions and social cues [178]. SVO

preference distributions of individuals are largely individualistic (∼ 40%) and proso-

cial (∼ 50%), [27, 69, 43, 61, 134], which emphasizes that a SVO-based model will

be more accurate than a purely selfish model. Figure 2-3 shows how we measure
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Figure 2-2: SVO measurements from driving data: (A) SVO is represented
as an angular preference 𝜙 that relates how individuals weight rewards in a social
dilemma game. Here, we plot the estimated SVOs for drivers merging in the NGSIM
data set. (B) The distribution of mean SVO estimates during interactions. We find
merging drivers (red) to be more competitive than non-merging drivers (blue).

SVO from observed motion of other drivers. We estimate SVOs of other drivers by

determining the SVO that best fits predicted trajectories to the actual driver tra-

jectories. This technique enables the estimation and study of SVO distributions of

agent populations directly from trajectory data, extending beyond driving. We plot

the estimated SVOs for drivers merging in the NGSIM data set in Figure 2-2.

2.4 Socially-Compliant Driving

Using SVO estimates of human drivers, we can design the control policy of the AV.

We define socially-compliant driving as behaving predictably to other human and au-

tonomous agents during the sequence of driving social dilemmas. Achieving socially-

compliant driving in AVs is fundamental for the safety of passengers and surrounding

vehicles, since behaving in a predictable manner enables humans to understand and

appropriately respond to the AV’s actions. To achieve socially-compliant driving, the

autonomous system must behave as human-like as possible, which requires an intrin-

sic understanding of human behavior as well as the social expectations of the group.
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Figure 2-3: Measuring SVO from observations: Knowing a driver’s SVO helps
predict their behavior. Here, the AV (blue) observes the trajectories of the other
human driver (black). We can predict future motion of the black vehicle for candidate
SVOs based on a utility-maximizing decision model. If the human driver is egoistic,
they will not yield and the AV must wait to turn. If the human driver is prosocial,
they will yield and the AV can safely turn. In both cases, the driver is utility-
maximizing, but the utility function varies by SVO. An egoistic driver considers only
its own reward in computing its utility. A prosocial driver weights its reward with the
reward of the other car. The most-likely SVO is the one that best matches a candidate
trajectory to the actual observed trajectory. The AV predicts future motion using
the most-likely SVO estimate.
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Human behavior may be imitated by learning human policies from data through

Imitation Learning [159, 86]. Our autonomous system design enables social com-

pliance by learning human reward functions through Inverse Reinforcement Learning

(IRL) [98, 223, 164]. The imitating policy is the expectation of human behavior based

on past observed actions, capable of predicting and mimicking human trajectories.

Combined with SVO this enables an AV to behave as a human driver is expected

to behave in traffic scenarios, such as acting more competitively during merges, and

mirroring the utility-maximization strategies of humans with heterogeneous social

preferences in social dilemmas [133].

When designing a cooperative AV, it may be desirable to assign the AV a prosocial

SVO. Prosocials exhibit more fairness and considerateness compared to individualists

[52], and engage in more volunteering, pro-environment, pro-community, and chari-

table efforts [126, 70, 203, 57]. They also tend to minimize differences in outcomes

between self and others (inequality aversion, egalitarianism) [134, 202]. Additional

findings suggest reciprocity in SVO and resulting cooperation [133, 4, 130].

To make the unprotected turn in Figure 2-1 and 2-3, the AV first observes the

trajectory of the oncoming car, which can be done with onboard sensors. Using

the reward (payoff) structure learned from data and our utility-maximizing behavior

model, it generates candidate trajectories based on possible SVO values. The most

likely SVO is the one that best matches a candidate trajectory to the actual observed

trajectory. With this estimated SVO, the AV then generates future motion predictions

and plans when to turn safely.

2.5 Estimating Driver Behavior with SVO

Our approach integrates SVO into a non-cooperative dynamic game, and we model

the agents as making utility-maximizing decisions, with the optimization framework

presented in Section 2.6. To integrate SVO into our game-theoretic formulation, we

define a utility function 𝑔(·) that combines the rewards of the ego agent with other
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agents, weighted by the ego agent’s SVO angular preference 𝜙. For a two-agent game,

𝑔1 = cos(𝜙1)𝑟1(·) + sin(𝜙1)𝑟2(·), (2.1)

where 𝑟1 and 𝑟2 are the “reward to self” and “reward to other,” respectively, and 𝜙1

is the ego agent’s SVO. We see that the orientation of 𝜙1 will weight the reward

𝑟1 against 𝑟2 based on the ego agent’s actions. The following definitions of social

preferences [115, 134] are based on these weights:

Altruistic: Altruistic agents maximize the other party’s reward, without considera-

tion of their own outcome, with 𝜙 ≈ 𝜋
2
.

Prosocial: Prosocial agents behave with the intention of benefiting a group as a

whole, with 𝜙 ≈ 𝜋
4
. This is usually defined by maximizing the joint reward.

Individualistic/Egoistic: Individualistic agents maximize their own outcome, with-

out concern of the reward of other agents, with 𝜙 ≈ 0. The term egoistic is also used.

Competitive: Competitive agents maximize their relative gain over others, i.e. 𝜙 ≈

−𝜋
4
.

We limit our definitions to rational social preferences, with more in [134, 115].

While our definitions give specific values of SVO preferences for clarity, we also note

that SVO exists on a continuum. For example, values in the range 0 < 𝜙 < 𝜋
2

all

exhibit a certain degree of altruism. We denote cooperative actions as actions that

improve the outcome for all agents. For example, two egoistic agents may cooperate

if both benefit in the outcome. Prosocials make cooperative choices, as their utility-

maximizing policy also values a positive outcome of others. These cooperative choices

improve the efficiency of the interaction and create collective value.

Given that other drivers maximize utility, we can predict their trajectories from

observations and an estimate of their SVO. The choice of SVO changes the predicted

trajectories. In Figure 2-3 a prosocial SVO generates a braking trajectory prediction,

while an egoistic SVO generates a non-braking trajectory. In Section 2.7.1 we compute

the likelihood of candidate SVOs from evaluating the Gaussian kernel on the distance

between predicted and actual trajectories. We utilize these methods to estimate SVO

51



Table 2.1: Social Behavior in Autonomous Driving: Main Symbols and Notation
𝑚 number of human and autonomous agents
x𝑘𝑖 ,u

𝑘
𝑖 state and control of agent 𝑖 at time 𝑘

𝜙 Social Value Orientation (SVO)
x𝑘+1 = ℱ(x𝑘,u𝑘) state transition function
𝜏 =

∑︀𝑁
𝑘=1 ∆𝑡 time horizon

𝑔𝑖(x,u, 𝜙𝑖) step utility weighted by SVO of agent 𝑖
𝑟𝑖(x,u, 𝜙𝑖) step reward of agent 𝑖
𝐺𝑖(x

0,u, 𝜙𝑖) accumulated utility of agent 𝑖
𝑐𝑖(x,u) ≤ 0 constraints
u*
𝑖 = arg maxu𝑖

𝐺𝑖 (x
0,u𝑖,u¬𝑖, 𝜙𝑖) optimal control of agent 𝑖

𝜆 dual variables
𝑝(𝜙𝑘𝑖 |𝜙𝑘−1

𝑖 ) ∝ℳ(𝜙𝑘𝑖 |𝜙𝑘−1
𝑖 , 𝜎2

SVO) SVO dynamics (von Mises distribution)
b,H gradient and Hessian of utility 𝐺

from human driver trajectories in Section 2.9.

We improve predictions of interactions by estimating SVO of other drivers online.

Incorporating SVO into the model increases social compliance of vehicles in the sys-

tem, by improving predictability and blending in better. For the AVs, SVO adds the

capability of nuanced cooperation with only a single variable. The AV’s SVO can be

specified as user input, or change dynamically according to the driving scenario, such

as becoming more competitive during merging.

2.6 Driving as a Game in Mixed Human-Robot Sys-

tems

To create a socially-compliant autonomous system, our autonomous agents must de-

termine their control strategies based on the decisions of the human and other agents.

This section details how we incorporate a human decision-making model into an op-

timization framework. We formulate the utility-maximizing optimization problem as

a multi-agent dynamic game, then derive the Nash equilibrium to solve for a socially-

compliant control policy.

Consider a system of 𝑚 human drivers and autonomous agents, with states such

as position, heading, and speed, at time 𝑘 denoted x𝑘𝑖 ∈ 𝒳 , where 𝑖 = {1, ...,𝑚} and
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𝒳 ∈ R𝑛 is the set of all possible states. We denote u𝑘𝑖 ∈ 𝒰 as the control input,

such as acceleration and steering angle, of agent 𝑖 and 𝜙𝑖 ∈ Φ as SVO preference,

where 𝒰 ∈ R𝑛 is the set of all possible control inputs and Φ is the set of possible

SVO preferences. For brevity, we write the state of all agents in the system as

x = [xᵀ
1, ...,x

ᵀ
𝑚]ᵀ, all control inputs as u = [uᵀ

1, ...,u
ᵀ
𝑚]ᵀ. The states evolve according to

dynamics ℱ𝑖(x𝑘𝑖 ,u𝑘𝑖 ) subject to constraints 𝑐𝑖(·) ≤ 0 with the discrete-time transition

function

x𝑘+1 = ℱ(x𝑘,u𝑘) =
[︀
ℱ1(x𝑘1,u

𝑘
1)ᵀ, ...,ℱ𝑚(x𝑘𝑚,u

𝑘
𝑚)ᵀ
]︀ᵀ
. (2.2)

The notation x¬𝑖 refers to the set of agents excluding agent 𝑖. For example, we can

write the state vector x = [𝑥ᵀ1 | 𝑥
ᵀ
¬1]

ᵀ, with x¬1 = [xᵀ
2, ...,x

ᵀ
𝑚]ᵀ . The agents calculate

their individual control policies u𝑖 by solving a general discrete-time constrained opti-

mization over 𝑁 time steps and time horizon 𝜏 =
∑︀𝑁

𝑘=1 ∆𝑡. The set of states over the

horizon is denoted as x0:𝑁 , and the set of inputs is u0:𝑁−1. To calculate the control

policy, we formulate a utility function for each agent, then find the utility-maximizing

control actions. The utility function is defined as a combination of reward functions

𝑟𝑖(·), as described in (2.1), and calculated from weighted features of the current state,

controls, the environment, and social preference 𝜙𝑖. We generalize the utility function

from (2.1) to 𝑚 agents as

𝑔𝑖(x,u𝑖,u¬𝑖, 𝜙𝑖) =
1

𝑚− 1

∑︁
𝑗 ̸=𝑖

[cos(𝜙𝑖)𝑟𝑖(x,u𝑖,u𝑗) + sin(𝜙𝑖)𝑟𝑗(x,u𝑗,u𝑖)] , (2.3)

where 𝑟𝑖(·) and 𝑟𝑗(·) are the reward functions of agent 𝑖 and agent 𝑗 respectively. The

generalized utility function essentially weights own rewards 𝑟𝑖 with cos(𝜙𝑖) against the

sum of all other agents rewards 𝑟¬𝑖 scaled by 1/(𝑚− 1) sin(𝜙𝑖). In simpler terms this

describes how the agent 𝑖 weighs own rewards against rewards of the other agents.

At a given time 𝑘, each agent 𝑖’s utility function is given by 𝑔𝑖
(︀
x𝑘,u𝑘, 𝜙𝑖

)︀
, and

the utility 𝑔𝑁𝑖
(︀
x𝑁 , 𝜙𝑖

)︀
at the end of the horizon. The utility over the time horizon 𝜏
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is denoted 𝐺𝑖(·), written

𝐺𝑖(x
0,u, 𝜙𝑖) =

𝑁−1∑︁
𝑘=0

𝑔𝑖
(︀
x𝑘,u𝑘, 𝜙𝑖

)︀
+ 𝑔𝑁𝑖

(︀
x𝑁 , 𝜙𝑖

)︀
. (2.4)

In this work, we learn the reward functions 𝑟𝑖(·) from the NGSIM driving data to

approximate real human behavior, see Section 2.8.2 for more details on this approach.

2.6.1 Human Decision-Making Model

From psychology literature, we find that people are heterogeneous in their evaluation

of joint rewards [202], and we can model preferences for others using utility functions

that weight rewards [21, 4, 130]. Murphy and Ackermann [133] model human decision-

making as expected utility-maximizing under individual social preferences. Based on

these findings from behavioral decision theory, we model human agents in our system

as agents that make utility-maximizing decisions. Other robotics literature [164,

98, 223] supports this case. Translating this decision-making into an optimization

framework for socially-compliant behavior, we write the utility-maximizing policy

u*
𝑖

(︀
x0, 𝜙𝑖

)︀
= arg max

u𝑖

𝐺𝑖

(︀
x0,u𝑖,u¬𝑖, 𝜙𝑖

)︀
. (2.5)

The solution u*
𝑖 to (2.5) also corresponds to the actions maximizing the likelihood

under the maximum entropy model

𝑃 (u𝑖|x0,u¬𝑖, 𝜙𝑖) ∝ exp
(︀
𝐺𝑖(x

0,u𝑖,u¬𝑖, 𝜙𝑖)
)︀
, (2.6)

used to learn our rewards by IRL [222, 110]. Under this model, the probability

of actions u is proportional to the exponential of the utility encountered along the

trajectory. Hence, utility-maximization yields actions most likely imitating human

driver behavior, which is important for social compliance.

Although the human driver does not explicitly calculate u, we assume our model

and formulation of u captures the decision-making process of the human driver based
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on their observations, control actions, and underlying reward function 𝑟𝑖(·) of the

environment. Later, we validate on the NGSIM data set that our learned model

successfully predicts the actual trajectories driven by the human drivers.

2.6.2 Game-Theoretic Autonomous Control Policy with SVO

To design the control policy for the AV, note that (2.5) formulated for all 𝑚 agents

simultaneously defines a dynamic game [30]. Given SVO estimates for all agents and

a set of constraints on the system, we solve for the optimal control policy of a vehicle,

𝑢*𝑖 , assuming the other agents in the system also choose an optimal policy, 𝑢*¬𝑖. For

an intuition on how these dynamic games work, we first start with a Stackelberg

game. An example traffic scenario that can be modeled as a Stackelberg game is cars

arriving at a four-way stop, where they must traverse the intersection based on the

first arrival. In the traditional two-agent Stackelberg game [210], the leader (𝑖 = 1)

makes its choice of policy, u1, and the follower (𝑖 = 2) maximizes their control given

the leader policy, u*
2(u1).

While the Stackelberg game can model some intersections, in many traffic sce-

narios, it is unclear who should be the leader and the follower, thus necessitating a

more symmetric and simultaneous choice game, which is the approach we use in this

work. In the two-agent case, the follower chooses u2(u1), but the leader re-adjusts

based on the follower, or u1(u2). This back-and-forth creates more levels of tacit

negotiation and best response, such that u2(u1(u2(u1(...)))). This strategy removes

the leader-follower dynamics, as well as any asymmetric indirect control, yielding a

simultaneous-choice game.

The iterative process of exchanging and optimizing policies is also called Iterated

Best Response (IBR), a numerical method to compute a Nash equilibrium [30] of the

game defined by (2.5). The generalized procedure for multi-agent IBR is described in

Algorithm 1.
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Algorithm 1 Iterated Best Response
1: Initialize u,uprev

2: while ||u− uprev|| > 𝜖 do
3: for 𝑖← 1 to 𝑚 do
4: u*

𝑖 = arg maxu𝑖
𝐺𝑖(x,u𝑖,u¬𝑖, 𝜙𝑖)

5: end for
6: uprev = u,u = u*

7: end while
8: Return u

2.6.3 Constrained Multi-Agent Nash Equilibrium

A limitation of IBR is its iterative nature such that optimizing may take an unac-

ceptable amount of steps. To make solving for the Nash equilibrium computationally

tractable, we reformulate the 𝑚 interdependent optimization problems as a local

single-level optimization using the Karush-Kuhn-Tucker (KKT) conditions [30, 150].

We solve the locally-equivalent formulation, including all constraints, with state-of-

the-art nonlinear optimizers. This preserves all safety constraints in the optimization,

critical for guaranteeing safe operation and performance.

Recall that (2.5) defines a game and explicitly stating all constraints yields

u*
𝑖 (u¬𝑖) = arg max

u𝑖

𝐺𝑖(x0,u*
¬𝑖(u𝑖),u𝑖, 𝜙𝑖), ∀𝑖 ∈ 𝑚, (2.7)

s.t. x𝑘+1 = ℱ(x𝑘,u𝑘),

𝑐𝑖(x,u𝑖,u*
¬𝑖(u𝑖)) ≤ 0,

which contains 𝑚 interdependent optimizations. Instead of solving for the Nash

equilibrium in the iterative fashion described in Algorithm 1, we can reformulate the
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optimization with KKT conditions to

u* = arg max
u,𝜆

𝑚∑︁
𝑖=1

𝐺𝑖(x0,u, 𝜙𝑖), (2.8)

s.t. x𝑘+1 = ℱ(x𝑘,u𝑘),

𝑐𝑗(x,u) ≤ 0, (2.9)

∇u𝑗
𝐺𝑗(x0,u, 𝜙𝑗) + 𝜆⊤𝑗 ∇u𝑗

𝑐𝑗(x,u) = 0, (2.10)

𝜆⊤𝑗 𝑐𝑗(x,u) = 0 , (2.11)

𝜆𝑗 ≥ 0, ∀𝑗 ∈ 𝑚 (2.12)

where (2.10) defines the stationarity condition, (2.11) the complementary slackness,

(2.12) the dual and (2.9) the primal feasibility constraints, and 𝜆 is the vector of dual

variables. The sum over 𝐺𝑖 in the objective ensures solving for a maximum. We,

therefore, avoid adding an additional constraint to enforce the negative definiteness

of the Hessians to ensure the solver to yield maxima. The reformulation of the

optimization enables solving with state-of-the-art nonlinear optimizers.

The Nash equilibrium yields a control law for the AV u*
𝑖 as well as predicted

actions u*
¬𝑖 for all other 𝑚− 1 agents 𝑁 time steps into the future. Based on learned

reward functions and the maximum entropy model, (2.6), u*
¬𝑖 are also maximum-

likelihood predictions. The Nash equilibrium is the predicted outcome of the driving

social dilemma and mimics the negotiation process between agents.

Algorithm 2 Socially-Compliant Autonomous Driving
1: x0 ← Update state observations of all agents
2: 𝜙𝜙𝜙¬1 ← Update SVO estimation of all agents
3: 𝜙1 ← Choose AV SVO
4: u* ← Plan and predict for all agents (2.5) (Multi-Agent Nash Equilibrium)
5: Execute AV’s optimal control u*

1

Algorithm 2 describes the integration of the Nash equilibrium computation into

the overall pipeline for socially-compliant autonomous driving.
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2.7 Estimating SVO from Driving Observations

In the previous sections, we established how to interactively plan for the ego agent and

predict trajectories for other agents given their SVOs 𝜙. If the autonomous vehicle

does not know the other agents’ SVOs, it will need to estimate this quantity.

We present two probabilistic measurement functions to estimate the likelihood of

an agent’s SVO and integrate both into recursive filters to achieve good estimation

results. The general intuition behind the two measurement likelihood functions are:

1. Given SVOs for all agents, we can predict their trajectories by solving for Nash

equilibria as described in Section 6. Proposed SVOs closer to the true SVOs will

yield trajectories closer matching to the observed trajectories. (Sec-

tion 2.7.1)

2. Using a maximum Entropy model, frequently employed in Inverse Reinforce-

ment Learning (IRL) we can score how close to optimality observed trajec-

tories are for a given SVO. A SVO closer to the true SVO will yield trajectories

closer to optimalty. (Section 2.7.2)

We will now formulate the SVO dynamics and general update equations for both

approaches and then discuss specific details for the prediction-based approach in

Section 2.7.1 and the maximum-entropy-based approach in Section 2.7.2.

To integrate both likelihood functions into a recursive filtering framework we need

to first formulate the SVO dynamics. We define the SVO transition probability as

a Gaussian distribution on a circle, or more precisely, according to the von Mises

distribution

𝑝(𝜙𝑘𝑖 |𝜙𝑘−1
𝑖 ) ∝ℳ(𝜙𝑘𝑖 |𝜙𝑘−1

𝑖 , 𝜎2
SVO). (2.13)

The von Mises distribution is the circular analog to the normal distribution and a

close approximation to the wrapped normal distribution.

We start from the classical filtering problem and formulate the nonlinear filtering

equations over 𝑟 state measurements instead of a single state measurement. Thus, we

are interested in finding the likelihood of the SVO 𝜙𝑘−𝑟 at time 𝑘 − 𝑟 based on the
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experienced state observations x0:𝑘−1 until time k. In the following, we formulate the

predict and update step. To update our predictions about the SVO the prediction

step can be defined as

𝑝(𝜙𝑘−𝑟|x0:𝑘−1) =

∫︁
𝑝(𝜙𝑘−𝑟|𝜙𝑘−𝑟−1)𝑝(𝜙𝑘−𝑟−1|x0:𝑘−1) d𝜙𝑘−𝑟−1. (2.14)

The update equation to obtain the new distribution 𝑝(𝜙𝑘−𝑟|x0:𝑘) by updating

𝑝(𝜙𝑘−𝑟|x0:𝑘−1) based on a new measurement x𝑘 can be constructed as

𝑝(𝜙𝑘−𝑟|x0:𝑘) =
𝑝(x𝑘−𝑟:𝑘|𝜙𝑘−𝑟)𝑝(𝜙𝑘−𝑟|x0:𝑘−1)∫︀ 𝜋

−𝜋 𝑝(x
𝑘−𝑟|𝜙𝑘−𝑟)𝑝(𝜙𝑘−𝑟|x0:𝑘−1)d𝜙𝑘−𝑟

, (2.15)

where the measurement function 𝑝(x𝑘−𝑟:𝑘|𝜙𝑘−𝑟) is evaluated over the last 𝑟 state mea-

surements x𝑘−𝑟:𝑘 instead of a single state measurement x𝑘−𝑟 to generate a likelihood of

the SVO 𝜙𝑘−𝑟. We have found this modification to be necessary to generate accurate

SVO estimates. The measurement function istelf can be approximated as

𝑝(x𝑘−𝑟:𝑘|𝜙𝑘−𝑟) =

∫︁
𝑝(x𝑘−𝑟:𝑘, 𝜙𝑘−𝑟+1:𝑘|𝜙𝑘−𝑟)d𝜙𝑘−𝑟+1:𝑘

=

∫︁
𝑝(x𝑘−𝑟:𝑘|𝜙𝑘−𝑟:𝑘)𝑝(𝜙𝑘−𝑟+1:𝑘|𝜙𝑘−𝑟)d𝜙𝑘−𝑟+1:𝑘

=

∫︁
𝑝(x𝑘−𝑟:𝑘|𝜙𝑘−𝑟:𝑘)

𝑘−1∏︁
𝑗=𝑘−𝑟

𝑝(𝜙𝑗+1|𝜙𝑗)d𝜙𝑘−𝑟+1:𝑘

≈ 𝑝(x𝑘−𝑟:𝑘|𝜙𝑘−𝑟+1:𝑘 = 𝜙𝑘−𝑟, 𝜙𝑘−𝑟)

≈ 𝑝(x𝑘−𝑟:𝑘|𝜙𝑘−𝑟), (2.16)

where, for the sake of computational tractability, we assume only a small change

in SVO over the observed horizon 𝑟, such that 𝜙𝑘−𝑟+1:𝑘 ≈ 𝜙𝑘−𝑟. Note that the

assumption of a static SVO is only made to evaluate the measurement function. In

general, the SVO dynamics are modeled to change over time as 𝑝(𝜙𝑘𝑖 |𝜙𝑘−1
𝑖 ).

Next, we present our prediction-based SVO estimation in Section 2.7.1, then

present our maximum-entropy-based SVO estimation in Section 2.7.2. To differenti-

ate stochastic variables from observations, we will from here on use the notation x̂ to
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denote observations, and x̌ to denote predicted states.

2.7.1 Prediction-Based SVO Estimation

The general idea is to observe the states x𝑘−𝑟:𝑘 for 𝑟 time steps in the past as mea-

surements x̂𝑘−𝑟:𝑘, to find SVO estimates 𝜙𝜙𝜙 = [𝜙1, . . . , 𝜙𝑚] for all cars that can best

explain the observations. We define the measurement function as the Gaussian

𝑝(x𝑘−𝑟:𝑘|𝜙𝜙𝜙𝑘−𝑟) ∝ 𝑝(x𝑘−𝑟:𝑘|x̌𝑘−𝑟:𝑘(𝜙𝜙𝜙𝑘−𝑟))) (2.17)

∝ 𝒩 (x𝑘−𝑟:𝑘|x̌𝑘−𝑟:𝑘(𝜙𝜙𝜙𝑘−𝑟),Σtrj) (2.18)

with variance Σtrj as the measurement uncertainty. We predict trajectories x̌𝑘−𝑟:𝑘(𝜙𝜙𝜙𝑘−𝑟),

following from SVOs 𝜙𝜙𝜙𝑘−𝑟 based on solving the multi-agent game-theoretic problem

formulated in (2.8). Starting from an initial state x𝑘−𝑟 and SVOs 𝜙𝜙𝜙𝑘−𝑟, solving the

multi-agent game-theoretic problem yields predicted control trajectories ǔ𝑘−𝑟:𝑘+𝑞(𝜙𝜙𝜙𝑘)

which we roll out to arrive at the predicted state trajectories x̌𝑘−𝑟:𝑘+𝑞(ǔ𝑘−𝑟:𝑘+𝑞(𝜙𝜙𝜙𝑘−𝑟))

from time 𝑘− 𝑟 until 𝑘+ 𝑞. The process is detailed in Algorithm 3. Inserting the pre-

dicted states from time 𝑘−𝑟 to 𝑘 of x̌𝑘−𝑟:𝑘+𝑞(ǔ𝑘−𝑟:𝑘+𝑞(𝜙𝜙𝜙𝑘−𝑟)), i.e. x̌𝑘−𝑟:𝑘(ǔ𝑘−𝑟:𝑘(𝜙𝜙𝜙𝑘−𝑟)),

into (2.17) yields

𝑝(x𝑘−𝑟:𝑘|𝜙𝜙𝜙𝑘−𝑟) ∝ 𝒩 (x𝑘−𝑟:𝑘|x̌𝑘−𝑟:𝑘(ǔ𝑘−𝑟:𝑘(𝜙𝜙𝜙𝑘−𝑟)),Σtrj). (2.19)

Note that the state x𝑘−𝑟 of the system 𝑟 time steps in the past from the current

time 𝑘 indicates the initial state of the optimization (2.8); ǔ𝑘−𝑟:𝑘+𝑞 therefore denotes

the control trajectory propagated 𝑟 + 𝑞 steps forward from this initial state. We

predict trajectories 𝑞 steps into the future beyond the current time 𝑘. This reflects

the idea that human drivers plan ahead and take future accumulated reward into

account. Naturally, future plans already impact the actions and states we observe in

the short term.

We can now integrate the formulated measurement function into a recursive filter

to estimate SVOs of drivers over time. We chose a particle filter, as described in
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Algorithm 3 Prediction-Based SVO Measurement
1: Input: Observed states x̂𝑘−𝑟:𝑘, proposed SVO 𝜙̌𝜙𝜙𝑘−𝑟

2: Output: 𝑝(x𝑘−𝑟:𝑘 = x̂𝑘−𝑟:𝑘|𝜙̌𝜙𝜙𝑘−𝑟)
3: ǔ𝑘−𝑟:𝑘+𝑞 ← Predict input based on 𝜙̌𝜙𝜙𝑘−𝑟 and x̂𝑘−𝑟, (2.8)
4: x̌𝑘−𝑟:𝑘 ← Forward propagate ǔ𝑘−𝑟:𝑘 from initial state x̂𝑘−𝑟 based on dynamics
5: 𝑝(x𝑘−𝑟:𝑘 = x̂𝑘−𝑟:𝑘|𝜙̌𝜙𝜙𝑘−𝑟) Evaluate likelihood (2.19)

Algorithm 4, to make the least assumptions about the posterior distribution. We

expect the posterior to be multimodal, since actions may not always be interpreted

unambiguously. Note that the prediction-based measurement function evaluates the

likelihood for all SVOs of all drivers at once, such that a histogram filter would be too

high-dimensional and cannot be applied. Future work may explore other, potentially

more efficient filtering methods of estimating the SVO of other drivers.

Algorithm 4 SVO Particle Filter Update
1: Input: 𝑚 particles 𝜙̌𝜙𝜙𝑘−𝑟−1, corresponding weights 𝑤𝑘−𝑟−1,

and observations x̂𝑘−𝑟:𝑘

2: Output: 𝜇𝜙, 𝜎2
SVO, 𝜙̌𝜙𝜙

𝑘−𝑟, 𝑤𝑘−𝑟

3: for all m particles do

4: Sample 𝜙̌𝜙𝜙𝑘−𝑟[𝑖] ←ℳ(𝜙̌𝜙𝜙𝑘−𝑟[𝑖] |𝜙̌𝜙𝜙
𝑘−𝑟−1
[𝑖] , 𝜎2

SVO)

5: Update 𝑤𝑘−𝑟[𝑖] ← 𝑤𝑘−𝑟−1
[𝑖] × 𝑝(x̂𝑘−𝑟:𝑘[𝑖] |𝜙̌𝜙𝜙𝑘−𝑟[𝑖] ), (2.19)

6: end for

7: Normalize 𝑤𝑘−𝑟 ← 𝑤𝑘−𝑟/
∑︀𝑁

𝑖=1𝑤
𝑘−𝑟
[𝑖]

8: if 1/
∑︀𝑁

𝑖=1(𝑤
𝑘−𝑟
[𝑖] )2 < 0.5𝑁 (Sample impoverishment) then

9: Resample(𝜙̌𝜙𝜙𝑘−𝑟, 𝑤𝑘−𝑟)

10: end if

11: Compute 𝜇𝜙 ←
∑︀𝑁

𝑖=1𝑤
𝑘−𝑟
[𝑖] 𝜙̌𝜙𝜙

𝑘−𝑟
[𝑖]

12: Compute 𝜎2
𝜙 ←

∑︀𝑁
𝑖=1𝑤

𝑘−𝑟
[𝑖] (𝜙̌𝜙𝜙𝑘−𝑟[𝑖] − 𝜇𝜙)2

We first initialize the particles 𝜙̌𝜙𝜙0 with random weights 𝑤0. During the parti-

cle filter update step at time 𝑘, the particles are then perturbed in Step 3 accord-

ing to the dynamics ℳ(𝜙𝑘|𝜙𝑘−1, 𝜎2
SVO) and scored with the measurement function

𝑝(x𝑘−𝑟:𝑘|𝜙𝜙𝜙𝑘−𝑟) detailed above. Step 6 triggers resampling if the effective number of
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particles 1/
∑︀𝑁

𝑖=1(𝑤
𝑘
[𝑖])

2 is lower than half of the total number of particles, to avoid

sample degeneracy and impoverishment, a common problem in particle filters. Subse-

quently, we compute the particle filter statistics as the weighted mean 𝜇𝜙 and weighted

standard deviation 𝜎2
𝜙 of the posterior distribution in Steps 8 and 9 respectively.

2.7.2 Maximum-Entropy-Based SVO Estimation

Inspired by the maximum entropy model popular in the inverse reinforcement learning

literature described in Section 2.8.2, we can treat the SVO as a parameter to be

estimated and pose the measurement likelihood function as

𝑝(x𝑘−𝑟:𝑘|𝜙𝑘−𝑟𝑖 ) ∝ 𝑝(u𝑘−𝑟:𝑘(x𝑘−𝑟:𝑘)|𝜙𝑘−𝑟𝑖 )

∝ exp
(︀
𝐺𝑖(u𝑘−𝑟:𝑘, 𝜙𝑘−𝑟𝑖 )

)︀ [︂∫︁
exp

(︀
𝐺𝑖(ũ𝑖, 𝜙

𝑘−𝑟
𝑖 )

)︀
dũ𝑖

]︂−1

∝ exp

(︂
1

2
b⊤
𝑖 H

−1
𝑖 b𝑖

)︂
| −H𝑖|

1
2 (2𝜋)−

dim(u𝑖)

2 . (2.20)

Recall that 𝐺𝑖 is agent 𝑖’s utility function. We denote the Hessian as H𝑖 and the

gradient as b𝑖, both with respect to u𝑖. Since the observed controls û𝑘−𝑟:𝑘, consisting

of steering and acceleration inputs are not directly observable for other cars they have

to be inferred from the state trajectory x̂𝑘−𝑟:𝑘 and the dynamics through nonlinear

optimization. The inverse of the Hessian can be computed in linear time [110] with

respect to the length of the time horizon 𝑟. Nonetheless, care needs to be taken since

the second order Taylor expansion, employed to make the evaluation of the partition

function of the likelihood tractable, is only valid close to the true value.

In this framework, SVO likelihoods can be evaluated independently from other

agents’ SVOs as the trajectories in the past are fixed and no predictions into the

future based on SVO candidates have to be made. Thus, we can rely on a histogram

filter to fully capture multiple hypothesis over the full SVO ring without the risk of

sample impoverishment of the particle filter. The filtering update process is outlined

in Algorithm 5. To simplify notation, we have dropped the agent’s index 𝑖. In the
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prediction step, Line 3 propagates the dynamics forward, distributing probability

mass from each of the 𝑁 histogram bins to all other histogram bins according to the

dynamics 𝑝(𝜙𝑘|𝜙𝑘−1, 𝜎2
SVO). In the update step, line 4 distributes probability mass

from each histogram bin to all other bins according to the measurement function

(2.20). Finally, we summarize the posterior statistics in the mean 𝜇𝜙 and variance 𝜎𝜙

Algorithm 5 SVO Histogram Filter Update
1: Input: 𝑁 discretizations 𝜙𝑘−𝑟−1, corresponding weights 𝑤𝑘−𝑟−1,

and observed states x̂𝑘−𝑟:𝑘

2: Output: 𝜇𝜙, 𝜎2
𝜙, 𝜙

𝑘−𝑟, 𝑤𝑘−𝑟

3: Predict
4: Dynamics update 𝑤𝑘−𝑟 ← 𝑤𝑘−𝑟−1 × 𝑝(𝜙𝑘−𝑟|𝜙𝑘−𝑟−1, 𝜎2), (2.13)
5: Update
6: Measurement update 𝑤𝑘−𝑟 ← 𝑤𝑘−𝑟 × 𝑝(x̂𝑘−𝑟:𝑘|𝜙𝑘−𝑟), (2.20)
7: Normalize 𝑤𝑘−𝑟 ← 𝑤𝑘−𝑟/

∑︀𝑁
𝑗=1𝑤

𝑘−𝑟
𝑗

8: Compute 𝜇𝜙 ←
∑︀𝑁

𝑗=1𝑤
𝑘−𝑟
𝑗 𝜙𝑘−𝑟𝑗

9: Compute 𝜎2
𝜙 ←

∑︀𝑁
𝑗=1𝑤

𝑘−𝑟
𝑗 (𝜙𝑘−𝑟𝑗 − 𝜇𝜙)2

2.7.3 Discussion of SVO Likelihoods

The prediction-based method takes into account both past and future trajectories.

The motivation is intuitive: Human drivers simultaneously plan their actions into the

future and predict the actions of other agents. Therefore, they decide how to allocate

resources among themselves and others beyond the current time into the future. It

is reasonable to assume that it is necessary to consider the effect of imagined future

plans and predictions when estimating a driver’s SVO. The advantage comes at the

cost of an increased computational burden since each prediction-based likelihood eval-

uation requires solving the game-theoretic optimization outlined in Section 3.3.5. The

maximum-entropy likelihood function on the other hand is computationally efficient

since no optimization is necessary. Additionally, SVO likelihoods can be evaluated

independently from other vehicles, therefore scaling linearly with the number of vehi-

cles. In the prediction-based approach, likelihoods can only be evaluated jointly over

all agents’ SVOs. Solving the game-theoretic formulation to predict driver trajectories

scales worse than linear in the number of agents.
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2.8 Learning Reward Functions for Human Behavior

and Decision Making

In Section 2.6, we introduced our model of human drivers’ decision making using a

utility-maximizing policy. Here, we elaborate in more detail on the specifics of our

model. To compute the utility function, we need an underlying reward function 𝑟𝑖

for the human driver. In general, one can find 𝑟𝑖 through Inverse Reinforcement

Learning (IRL) [2, 110, 137, 222] by learning from human demonstrations. We briefly

describe our approach of learning the reward and utility function in Section 2.8.2.

While we define the reward functions as linear combinations of weighted features in

our application, the concept of SVO is general enough to utilize reward functions of

any form.

2.8.1 Reward Function Features in Human Driving

The agents define their utility function based on a reward function. Consistent with

reinforcement learning literature [110], we define the reward functions 𝑟𝑖(·) as linear

combinations of weighted features of the environment,

𝑟𝑖(x,u) = 𝜃⊤𝜓(x,u), (2.21)

the weights 𝜃 scale the features 𝜓𝑖(·). We employ features that allow us to quantify

∙ road progress, found by projecting the driven velocity onto the road’s tangent;

∙ comfort, defined by quadratically penalizing high steering and acceleration

controls;

∙ desired velocities within speed limits;

∙ penalizing tailgating of other vehicles, in the form of orientation aligned

Gaussians;

∙ collision avoidance, as in avoiding close lateral and longitudinal distances to

other vehicles;
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∙ centered positions within the lanes; and

∙ road departures for leaving the drivable space.

Figure 2-4 visualizes the cost function encoding, i.e. negative reward, of the road in

the six-lane NGSIM merge scenario. The merge lane angles into the adjacent lane.

This costmap has lowest values within the lanes, with higher values indicating features

to avoid.

2.8.2 Maximum Entropy Inverse Reinforcement Learning

Inverse Reinforcement Learning, also referred to as inverse optimal control, is the

problem of recovering an unknown reward or utility function from a Markov decision

process. As discussed in Section 2.6.1, human decision-makers are reasonably modeled

as utility maximizing agents. Following this direction, the maximum entropy inverse

reinforcement learning model [222] models the probability of actions or controls u to

be proportional to the exponential of the rewards encountered along the trajectory:

𝑃 (u𝑖|x0,u¬𝑖, 𝜙𝑖, 𝜃) =
1

𝑍
exp

(︀
𝐺𝑖(x

0,u, 𝜙𝑖)
)︀
, (2.22)

Therefore, less rewarding actions are exponentially less likely. Here, Z is the normal-

ization function which can be evaluated by dynamic programming [222] which poses

a practical challenge due to high computational complexity. This is particularly true

for long time horizons and high dimensional systems with continuous control inputs.

2.8.3 Learning Human Reward Functions from Driving Data

The following outlines how we learn the human reward function from the utility

function. We use the notation 𝐺(u) to refer to the sum of utilities 𝑔𝑖 along the

trajectory defined by (x0,u). For the purpose of this section, we use 𝐺 instead of 𝐺𝑖,

as the process is general to all agents. Consider

𝑃 (u|x0) = exp (𝐺(u))

[︂∫︁
exp (𝐺(ũ)) 𝑑ũ

]︂−1

. (2.23)
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Figure 2-4: Cost map: An illustration of the cost map encoding the reward function
(2.21) for a six-lane highway and an adjacent merge lane from the NGSIM data set.
Less-desirable states incur a higher cost. Top: Illustration of the cost map without
vehicles. Lanes are naturally encoded with a lower cost, which rewards lane-keeping.
The boundaries of the highway have a significantly higher cost. The merge lane is
wider and therefore the cost basin is wider as well. Bottom: Cost map illustrated
with vehicles and obstacles. For an autonomous ego vehicle in congestion, it will
avoid collisions with other vehicles by keeping to low-cost areas of the map.
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To approximate the intractable normalizer, the authors in [110] apply the Laplace

transform, which corresponds to assuming that the demonstration performs a local

optimization when choosing the actions u. A local approximation of the utility func-

tion as a second order Taylor expansion of 𝐺(u) around u yields

𝐺(ũ) = 𝐺(u) + (ũ− u)⊤
𝜕𝐺

𝜕u
+

1

2
(ũ− u)⊤

𝜕2𝐺

𝜕u2
(ũ− u). (2.24)

We refer to the gradient 𝜕𝐺
𝜕u

as b and the Hessian 𝜕2𝐺
𝜕u2 as H. Inserting the approxi-

mation in (2.24) into the exponent in (2.23) allows us to evaluate the integral of the

normalization factor in closed form. This yields a tractable way of evaluating the

likelihood including the normalization factor,

𝑃 (u|x0) = exp(𝐺(u))

[︂∫︁
exp (𝐺(ũ)) dũ

]︂−1

≈ exp(𝐺(u))

[︂∫︁
exp

(︂
𝐺(u) + (ũ− u)⊤b +

1

2
(ũ− u)⊤H(ũ− u)

)︂
dũ

]︂−1

= exp

(︂
1

2
b⊤H−1b

)︂
| −H|

1
2 (2𝜋)−

dim(u)
2 . (2.25)

The assumption of local optimality is strictly less restrictive than the assumption

of global optimality. In contrast to global methods, the local method described in

[110] scales well with task dimensionality and long time horizons. Furthermore, by

only updating the utility function locally, only locally optimal demonstrations are

sufficient. The log-likelihood of (2.25) is

ℒ =
1

2
b⊤H−1b +

1

2
log | −H| − dim(u)

2
log 2𝜋. (2.26)

The learning process consists of maximizing the likelihood (2.25) for parameters 𝜃 in

𝐺 and therefore ℒ(𝜃),

𝜃* = arg max
𝜃

ℒ(𝜃). (2.27)

This can be done with standard gradient and non-gradient-based optimization tech-
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niques. The resulting 𝜃* are the maximum entropy fit parameters best explaining

the observed trajectories in the given dataset. Employing the learned parameters

allows not only to observe the utility best explaining the observed behavior but also

to predict and replicate human driver trajectories by optimizing their utility over

their future actions. The result is a learned utility-maximizing prediction of human

behavior.

In practice, additional regularization schemes to ensure convergence and invert-

ibility of the Hessian H are needed. A method of solving for the computationally

challenging Hessian inversion in linear-time under the restriction of linearized dy-

namics is described in [110].

Lastly, we need to learn the reward parameters, as described above, and iteratively

estimate SVO. This is needed as SVO estimation is dependent on the rewards, and

the reward learning is dependent on the SVO weighted utility. In practice, we train

the rewards with fixed egoistic SVO until convergence and then continue by iterating

between the two mechanisms.

2.9 Methods and Results

We implement our socially-compliant driving algorithm in two ways: first to predict

human driver behavior in highway merges, then in simulations of autonomous merging

and turning scenarios. We evaluate human driver predictions on the NGSIM data

set and examine highway on-ramp merges into congestion. We analyze a total of 92

unique merges from the data set and discuss key results on a representative example.

Incorporating SVO reduces errors in trajectory predictions of human drivers by up to

25%. For the AV simulations, we replicate this merging scenario, and also present an

unprotected left turn. Our simulations demonstrate how utilizing SVO preferences

assists the AV in choosing safe actions, adding nuanced behavior and cooperation

with a single parameter.
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2.9.1 NGSIM Data-Set Analysis and Validation

To validate our model with human driving data, we used the Next Generation Sim-

ulation (NGSIM) data set, provided by the US Department of Transportation and

Federal Highway Administration1. The NGSIM data set comprises four highway and

city traffic scenarios from California and Atlanta.

Our results are computed on the Interstate 80 Freeway Dataset2, which captures

the eastbound traffic in April 2005 during rush hour. Vehicle tracker data is provided

for 500 meters of the freeway. The freeway has six traffic lanes, with the leftmost lane

being a high-occupancy vehicle (HOV), and an on-ramp for merging traffic. In total,

there is approximately 45 minutes of trajectory data, with a resolution of 10 frames

per second. We focus on this sample due to the number of interactions that occur

during highway driving and merging.

Due to errors and noise in the data set, we pre-processed the vehicle trajectories

before performing the estimations and predictions detailed in this chapter. For each

vehicle, we filter for noise in local frames, smoothing the trajectories. We check for

errors in the data set that arise from tracking errors, or in some cases, mis-attribution

of vehicle id that results in duplicate or deleted cars.

The heading of each vehicle is not included in the raw data, and is instead extrapo-

lated from the filtered trajectories. We also recalculate all velocities and accelerations

from the filtered quantities. In comparisons between the “predicted” and “actual” tra-

jectory, the actual trajectory is this processed data, not the raw data provided in the

data set. Quantities such as vehicle class and size are taken directly from the data

set.

To generate our trajectory predictions, the ego car computes a reward function

that includes as a component the road network geometry. Lane geometry is not explic-

itly given in the raw data, thus we have reconstructed the lanes based on trajectories.

When generating the reward function for our trajectory predictions, we re-generate

lanes matched to the road network of the data set. An exemplary cost map is shown

1Available online at: https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
2https://www.fhwa.dot.gov/publications/research/operations/06137/index.cfm
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in Figure 2-4.

2.9.2 Vehicle Model

We use a simplified car model for the vehicle dynamics, with state x𝑖 = [𝑥𝑖, 𝑦𝑖, 𝜑𝑖, 𝛿𝑖, 𝑣𝑖]
𝑇

consisting of position 𝑥𝑖 and 𝑦𝑖, orientation 𝜑𝑖, steering angle 𝛿𝑖 and speed 𝑣𝑖. The con-

trol inputs are acceleration 𝑢𝑖,acc and steering angle velocity 𝑢𝑖,steer. The continuous-

time dynamics are given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥̇𝑖

𝑦̇𝑖

𝜑̇𝑖

𝛿̇𝑖

𝑣̇𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

ẋ𝑖

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣𝑖 cos(𝜑𝑖)

𝑣𝑖 sin(𝜑𝑖)

𝑣𝑖
𝐿𝑖

tan(𝛿𝑖)

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣ 𝑢𝑖,steer
𝑢𝑖,acc

⎤⎦
⏟  ⏞  

u𝑖

, (2.28)

and define a discrete time model by integration x𝑘+1 = x𝑘 +
∫︀ 𝑘+Δ𝑡𝑘
𝑘

ẋ d𝑡 = ℱ(x𝑘,u𝑘).

A fourth order Runge-Kutta scheme ensures integration between timesteps 𝑘 to suf-

ficient accuracy.

2.9.3 Predicting Human Driving Behavior

To validate our algorithm, we test its ability to predict human trajectories on highway

on-ramp merges in the NGSIM data set against several baselines. We implement a

non-interactive baseline algorithm, where each agent computes their optimal policy

while modeling other agents as lane-keeping dynamic obstacles. This baseline algo-

rithm is analogous to current approaches in modeling multi-agent behavior without

game-theoretic interactions. Using the dataset and trajectory history, we compare

the baseline prediction’s performance to the multi-agent game-theoretic models with

(i) static egoistic SVO, equal to neglecting the SVO model, (ii) best static SVO, and

(iii) estimated dynamic SVOs. The best static SVO corresponds to the best SVO

estimate when holding the SVO constant throughout the interaction. For different
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interactions, this may yield a different static SVOs for different scenarios. The esti-

mated SVO uses our proposed online algorithm, and a key difference from the static

SVO is that the cars’ SVO preference is allowed to change throughout the interaction.

From the NGSIM data set, we examined 92 merge scenarios and compared the per-

formance across all scenarios. Here, we predict the trajectories of the cars throughout

the merge and compute the mean squared error (MSE) along the 3s prediction hori-

zon. Table 2.3 examines the relative position error between the true vehicle trajectory

and our predictions. Table 2.2 details absolute errors. We find that incorporating

the multi-agent game-theoretic framework, but remaining egoistic, alone improves

performance by 5%. Highlighting the importance of SVO, we see an 18% improve-

ment over the baseline with static SVO and 25% with estimated dynamic SVO with

prediction-based measurement function. The maximum-entropy-based measurement

function achieves an error reduction of 20% over the baseline. We observe that the

prediction-based measurement performs 5% better than the maximum-entropy-based

measurement which supports our argument that people’s future plans and predic-

tions influence their current actions. We can conclude that while the multi-agent

game-theoretic approach improves prediction results, the combination of multi-agent

game-theoretic and dynamically estimated SVO results yields the largest improve-

ment. The fact that the static best SVO is nearly 13% better than the egoistic SVO

highlights the general impact of SVO preferences in human decision-making.
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Prediction baseline multi-agent game-theoretic

SVO - egoistic static best estimated

meas. likelihood - - - prediction max-entropy

MSE position 1.0 0.947 0.821 0.753 0.793

Table 2.3: Relative position MSE between predicted and actual trajectories, compared
to a single-agent baseline. Our multi-agent game-theoretic model reduces error, and
the dynamic, estimated SVO performs best.

Prediction baseline multi-agent game-theoretic

SVO - egoistic static best estimated

meas. likelihood - - - prediction max-entropy

MSE position [𝑚2] 1.559 1.476 1.279 1.174 1.236

MSE longitudinal [𝑚2] 1.451 1.370 1.170 1.074 1.135

MSE angle [𝑟𝑎𝑑2] 0.149 0.139 0.139 0.136 0.138

MSE speed [(𝑚/𝑠)2] 0.988 0.943 0.827 0.803 0.813

Table 2.2: Absolute mean squared error (MSE) over the prediction horizon during 92

interactive merges on the NGSIM dataset.

To visually illustrate the accuracy of the trajectory predictions, Figure 2-5 com-

pares ground truth trajectories (blue) with the predicted trajectories using our dy-

namically estimated SVO (red dashed). We estimate the SVOs with the prediction-

based measurement function. We also show predicted trajectories for varying static

SVOs (black dotted) over several merges. Each subfigure in these figures represents a

single merge example taken from the data set. The estimated SVO trajectory closely

follows the ground truth trajectory. By only changing the SVO, a single parameter,

we can account for a wide variety of trajectories and behaviors. For example, in the

first row predictions flare out to the left and right side, depending on the SVO value.

In contrast, the predictions based on a dynamically estimated SVO, displayed in red,

follow the ground truth trajectories very accurately.

Figure 2-6 shows a two-agent merge with car 1 (purple) merging into the lane with
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Figure 2-5: Predicted and ground truth trajectories during lane-merging:
Displayed are ground truth trajectories (blue), the predicted trajectories using our
estimated SVO (red dashed) with the prediction-based measurement function, and
the predicted trajectories with varying static SVOs (black dotted) for a number of
merge scenarios. Deviation of ground truth and varying static SVO predictions are
largest during lateral motion of the merge, i.e. when the actual merge is executed.
The predictions based on the estimated SVO are able to follow the ground truth
trajectories very closely.
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car 2 (green). We model the other cars in the data set as obstacles for the planner.

For a dynamic SVO prediction, we estimate SVO online from observed trajectories

of the vehicles with the prediction, then leverage SVO in predicting the trajectory.

Figure 2-6 shows SVO predictions and confidence bounds for both cars through the

merge for both prediction and maximum-entropy-based measurement functions. Our

SVO estimates help explain the interactions occurring: At 𝑡 = 2, the first car’s SVO

is egoistic while attempting to merge, but the second car is also egoistic and does not

provide a sufficient gap to merge. At 𝑡 = 5, the second car drops back and increases

the gap for merging, corresponding to a more prosocial estimated SVO. Once the first

car has merged, the second car closes the gap, returning to an egoistic SVO.

2.9.4 Altruistic Driving Scenario

Unfortunately it is not possible to obtain ground truth labels for the SVO preferences

of human drivers. The reason is that SVO preferences in traffic significantly change

over time and even when consistent are hard to interpret by the eye. In Figure 2-7

we illustrate the trajectory predictions of a merging vehicle overlaid onto the actual

vehicle trajectory for a single merge in which the yielding vehicle behaves altruistic.

They decelerate and open a gap for the ego vehicle. We compare the baseline, and

multi-agent game-theoretic prediction results with different static SVOs with the esti-

mated SVO approach. As expected, the multi-agent game-theoretic approaches track

the actually executed trajectory closer than the baseline approach. The altruistic

and estimated SVO trajectory predictions perform the best by closely following the

ground truth trajectory.

2.9.5 Merging Drivers are More Competitive

The capability of estimating SVOs of humans by observing their motions allows us to

investigate how SVO distributions in natural populations differ. Separating merging

and non-merging vehicles in the dataset, we find that merging cars are more likely

to be competitive than non-merging cars, shown in the histogram in Figure 2-8 and
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Figure 2-6: Online SVO estimation during on-ramp merge: Top: Snapshot
of NGSIM dataset with 𝑛 = 2 active cars (purple and green), and 𝑛 = 50 obstacle
cars (grey). Here, car 1 (purple) is attempting a merge, and must interact with car
2 (green). The solid lines indicate the predicted trajectory from our algorithm. For
SVO estimates at each frame, the blue represents the distribution, while the red line
indicates our estimate. Bottom: The solid lines display SVO estimates over time,
with the shaded region representing the confidence bounds. Initially, car 2 does not
cooperate with car 1, and does not allow it to merge. After a few seconds, car 2
becomes more prosocial, which corresponds to it “dropping back” and allowing the
first car to merge.
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Figure 2-7: Trajectory predictions with varying SVOs: Trajectory predictions
of a merging vehicle. The vehicle leaves a highway merge lane and moves into the
left adjacent lane where another vehicle yields to allow the lane change to succeed.
The merging vehicle’s actual trajectory is displayed in blue, whereas the predicted
trajectories over time are overlaid as dotted lines. In the leftmost plot all other
vehicles are predicted with constant velocity while the merging car is predicted by a
single car optimization, i.e. the baseline algorithm. All other plots to the right rely
on the multi-agent game-theoretic Nash equilibrium formulation. The labels egoistic,
prosocial, and altruistic refer to the SVO of the car that allows the predicted car to
merge into its lane, whereas all other cars are assumed to be egoistic. Of these, the
best fit is achieved if the yielding vehicle’s SVO is estimated as altruistic. On the
right, all SVOs of all vehicles are estimated dynamically with the prediction-based
model resulting in an even closer fit. The combination of game-theoretic formulation
and estimating the SVOs of other vehicles allows the vehicle to merge. Otherwise the
vehicle would have acted too conservatively and avoided the merge, which we see in
the “single” figure where the estimated trajectories point straight ahead when the car
is actually moving laterally to the elft to merge.
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the SVO ring in Figure 2-8. We employed the prediction-based measurement func-

tion during this analysis. This observation also withstands hypothesis testing with

statistical significance (𝑝 < 0.002).

Figure 2-8 illustrates the distribution of all estimated SVO values for all measure-

ments at each time step in all merges. Figure 2-9 plots the mean SVO estimates for

each merge onto the SVO ring, with merging and non-merging vehicles indicated in

red and blue, respectively. The radius of each observation shows the consistency of

each mean SVO estimate during a merge, computed from the variance of SVO mea-

surements during the respective merge. We find from these distributions that merging

vehicles show more competitive behavior than the non-merging vehicles, which exhibit

more cooperative and prosocial SVO preferences.

We can test for the statistical significance of this observation under the null-

hypothesis that the mean SVO of merging cars is higher than that of non-merging

cars. The one-sided paired t-test rejects the null-hypothesis with 𝑝 = 6.5932𝑒 −

04. Dropping the t-test’s assumption that the variables in question are normally

distributed in the two groups, the non-parametric Wilcoxon signed-rank test can be

applied. The non-parametric Wilcoxon signed-rank test as an alternative to the t-

test also rejects the null-hypothesis with 𝑝 = 0.0018. Since all 𝑝 values are below

the significance threshold 𝑝 < 0.005 the null hypothesis can be rejected with high

confidence and the alternative hypothesis holds. We conclude that merging drivers

exhibit a lower SVO than non-merging drivers. Therefore, merging drivers are more

competitive than non-merging drivers. While this statement is intuitive for day-to-

day drivers, we can ground the intuition in objective observations of the SVO metric.

2.9.6 Autonomous Merging with SVO

Employing the estimation techniques described in Section 2.7, we can measure the

SVO preferences of another agent in a simulated highway merging scenario. Figure 2-

10 shows the AV’s (red) SVO estimates of another vehicle (blue) over time. At

first, the vehicles have little interaction, and the observations of the driver’s SVO

remain ambiguous, such that the estimate is inaccurate with high variance. As the
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Figure 2-8: SVO histogram in NGSIM merges: The distribution of estimated
mean SVO values for all evaluated merges. We take the mean over all measurements
captured during the full length of each merge interaction. Merging vehicles show more
competitive behavior, while the non-merging vehicles exhibit more prosocial or even
cooperative behavior. The histogram of merging vehicles is displayed in red. The
histogram of non-merging vehicles is shown in blue. We show both with 50% opacity
such that the overlap appears in purple.
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Figure 2-9: SVO distribution on the ring in NGSIM merges: Mean SVO
estimates for each scenario shown on the SVO circle. Merging (red) and non-merging
(blue) data points are shown separately. The radius of each measurement corresponds
to the consistency of the SVO measurements during the respective merge. We observe
that merging drivers show more competitive behavior.
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Figure 2-10: Estimating SVO in simulation: Left: Estimated distribution of
SVO preference of blue car shown as polar histograms in SVO circles for pre, and
during merge. Right: The mean estimate is shown as red, the ground truth (80∘,
altruistic) in black. SVO estimates with 1-𝜎 uncertainty bounds shown on the right.
Area of strong interaction corresponds to gray area on both sides.
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AV approaches the end of its lane, both vehicles begin to interact, indicated in gray

in the figure. During this time, the SVO estimate quickly converges to the true

value, with high confidence. After the merge, the vehicles no longer interact, and

the variance of the SVO estimate increases and the estimate drifts away from the

true value. Note that estimating the characteristics of an interaction (e.g. SVO) is

only possible if the interaction between agents is impactful; see Section 2.9.10 for a

Hessian-based analysis.

2.9.7 Unprotected Left Turns

In this scenario, the AV must make an unprotected left turn against numerous cars

traveling in the oncoming direction. If the AV were in light traffic, it could be feasible

for it to wait for all other oncoming cars to pass. However, in congested traffic, the

intersection might never fully clear. Instead, the AV must predict when an oncoming

car will yield, allowing the vehicle to safely make the turn. Figure 2-11 shows our

simulation, where the AV (red, 𝑖 = 1) attempts to turn across traffic. Two egoistic cars

(blue, 𝑖 = 2, 3) approach the intersection and do not yield for the AV, as predicted.

An altruistic third car (magenta, 𝑖 = 4) yields for the AV by slowing down, such that

the gap between itself and the other blue car increases. With this increased gap, the

AV is able to safely make the turn, and the magenta car continues forward.

2.9.8 Multi-Vehicle Highway Merging

While we have showcased scenarios for interactive predictions with two cars before,

in the following experiments we provide examples of highway merging scenarios with

interactive predictions for four vehicles. Here, an autonomous vehicle must merge into

the adjacent lane of traffic before their lane ends. Figures 2-12 and 2-13 illustrate the

difference between egoistic and prosocial behavior, respectively. For each scenario,

the autonomous vehicle is car (𝑖 = 1), shown in red, and must attempt to merge onto

the highway around three other vehicles. In Figure 2-12, the magenta car (𝑖 = 4) is

an egoistic agent and we thus do not expect them to accommodate the autonomous
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Figure 2-11: Unprotected left turn across traffic with varying SVO: Unpro-
tected left turn of an AV (red, 𝑖 = 1) with oncoming traffic. As the AV approaches
the intersection, two egoistic cars (blue, 𝑖 = 2, 3) continue and do not yield. A third
altruistic car (magenta, 𝑖 = 4) yields by slowing down, allowing the AV to complete
the turn in the gap.
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Figure 2-12: Multi-vehicle merge among egoistic drivers: Simulation of au-
tonomous ego vehicle (red, 𝑖 = 1) merging onto highway with three egoistic vehicles.
The other cars do not allow the red vehicle to merge, and it must brake and wait
for the other cars to pass to make the merge. In contrast, Figure 2-13, illustrates a
prosocial merge.

vehicle. The egoistic agent does not make room for the autonomous vehicle, and the

autonomous vehicle must slow down in order to merge after the cars have passed.

Figure 2-14(a) shows the velocity profiles of the cars over time. We notice that the

red vehicle must stop, whereas the egoistic vehicle actually accelerates slightly to

prevent the autonomous vehicle from merging.

Conversely, Figure 2-13 illustrates the case with three other prosocial cars. In this

scenario, we see the red autonomous car merge into a gap between the green (𝑖 = 3)

and magenta (𝑖 = 4) cars. Examining the velocity profiles in Figure 2-14, we see that

for this cooperative merge the magenta vehicle slows down. Additionally, the green

vehicle also speeds up in order to increase the gap allowing the red car to merge.

2.9.9 Nash Equilibrium Solver Performance

Computation Times in Experiments

We solve the optimization problem of (2.7) in a receding horizon fashion, i.e., at any

timestep 𝑘 we find the optimal control policy for the autonomous vehicle incorporating
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Figure 2-13: Multi-vehicle merge among prosocial drivers: Simulation of au-
tonomous vehicle (red, 𝑖 = 1) merging onto highway with three other prosocial vehi-
cles. To allow the red vehicle to merge, the green vehicle (𝑖 = 3) accelerates and the
magenta vehicle (𝑖 = 4) decelerates, increasing the gap. Here, each agent’s individ-
ual reward function has penalties for acceleration and braking. Unlike Figure 2-12,
because the agents are prosocial, they will slightly modify their actions in order to
reduce the braking effort merging car 1.

(a) Egoistic (b) Prosocial

Figure 2-14: Multi-vehicle merge speed profiles: Comparison of the velocity
profiles for the (a) egoistic merge in Figure 2-12 and (b) prosocial merge in Figure 2-
13. In (a), the autonomous vehicle (red) must brake and wait for the other cars to
pass. In (b), the cars cooperatively increase the gap, allowing the red car to merge
between them. The decelerations in (b) are smaller than the decelerations in (a),
showing the flow of traffic is more smooth with the prosocial group.
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the expected and observed controls of the other vehicles. The vehicle then executes

the control action u𝑘,*. We set up the optimization problem with CasADi [20], a soft-

ware framework for nonlinear optimization and optimal control including automatic

differentiation. We employed IPOPT [211], a widely used interior point solver, to

solve the resulting nonlinear optimization problem. All experiments were conducted

on a single core of an AMD Ryzen 7 1700X @3.4Ghz.

For experiments in simulation (left-turn across traffic and 3- to 2-lane highway

merge), the interior point solver was capable of solving the optimization problem in

less than 100𝑚𝑠. The planning horizon consists of 20 steps of ∆𝑡 = 0.2𝑠, for a to-

tal horizon time of 4𝑠. In our experiments on congested highway driving based on

the NGSIM dataset the interior point solver was capable of solving the optimization

problem in less than 100𝑚𝑠 for up to 4 controlled vehicles and up to 10 dynamic

obstacles. A sensitivity analysis on total number of vehicles versus ego vehicle solver

improvement showed that adding more cars did not have a major influence on the

controlled ego vehicles. Thus, we account for the closest neighboring vehicles to the

ego vehicle, which are the vehicles involved in the interaction. Furthermore, adding

additional vehicles will increase the solution computation time, and may compromise

real-time solutions without contributing a performance increase. We can quantify the

level of interaction between vehicles by observing the norms of the Hessian blocks

corresponding to the pairs of cars in the experiment. Details of this Hessian-based

analysis are presented in Section 2.9.10. We observe that the norms of the Hes-

sian blocks corresponding to cars very far away from the ego vehicle are very small,

such that their level of interaction is low and they can be approximately treated as

independent, which supports our argument.

KKT vs Iterative Best Response Performance Comparison

To compare the performance of the KKT-based approach (see Section 2.6.3) to the

Iterated Best Response (IBR) approach to compute the multi-agent Nash equilibrium,

we created a series of benchmark problems. An exemplary problem is shown in

Figure 2-17. A variable number of vehicles start from randomized initial conditions
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(position, heading, speed) with the goal to reach randomized goal positions. The

cost function consists of control costs, collision avoidance, and distance to the goal

position at the final time. These examples are used to illustrate the performance

variations between our two methods of solving for the optimal control policies.

Both approaches were started with an initial guess computed based on indepen-

dently optimized trajectories where all other agents’ inputs were set to zero, which

results in constant velocity. The computation time for the initial guess was included

in the reported total solve time. Both approaches were run until stationarity con-

ditions were met sufficiently (i.e., the magnitude of the gradients of the agents’ cost

functions were below a given threshold). Solutions of both solvers were checked for

consistency and yielded the same trajectories up to some tolerance if initialized in

the region of attraction of the same homotopy class. This verifies the correctness of

our KKT-based solution approach. All experiments were repeated 500 times.

The KKT-based approach was consistently faster than the iterative approach.

While the solution time for the KKT-based approach was more than one order of

magnitude faster on average, the difference was more prominent for shorter time

horizons (10-20 times for 𝑁 < 30) and lower for longer time horizons (𝑁 > 40), where

𝑁 is the number of steps in the horizon. Figure 2-15 shows the relative speedup of

the KKT-based approach for 𝑚 = 2 and 𝑚 = 6 agents, respectively. Figure 2-16

shows the solver times in seconds for both approaches across varying time horizons

and number of agents.

While the IBR method approaches the Nash equilibrium without the guidance

of any gradients, the KKT-based method is able to use gradients to move towards

the Nash equilibrium faster. We find that as the number of interactions increases

in a scenario, the greater is the performance advantage of the KKT-based approach.

An explanation is that if all agents’ solution trajectories are independent, then our

method of computing an initial guess already yields the Nash equilibrium solution.

Thus, both approaches terminate immediately, the overall solution time is dominated

by computing the initial guess, and both methods are equally fast. The amount of

interaction of agents can be quantified by observing the norm of the non-diagonal
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Figure 2-15: Nash equilibrium solver speedup: Solver performance speedup of
the KKT approach over the IBR approach to solving the multi-agent Nash equilibrium
problem. TOP: Performance speedup for 𝑚 = 2 agents, with speedup indicated as
an 𝑋−times factor for the KKT approach over the IBR approach across varying time
horizons of 𝑁 stages. BOTTOM: Performance speedups for 𝑚 = 6 agents.

blocks of every agents’ Hessian, described in further detail in Section 2.9.10.

2.9.10 Quantifying Interactions Between Agents

Here, we present a method of quantifying interactions between vehicles by computing

and observing the properties of an agent’s Hessian. The amount of interaction between

agents may vary from scenario to scenario. In traffic situations, vehicles are more likely

to interact when they are closer together, but a heuristic on distance alone doesn’t

explain all interactions. Two vehicles driving in parallel in adjacent lanes with similar

speeds are close in proximity but don’t necessarily need to interact if they choose to

stay in their respective lanes. However, as soon as the cars need to change lanes or

merge into a common lane, the interaction between the vehicles becomes much more

significant.

We have presented a game-theoretic model of interactions wherein we model each

agent as maximizing a utility function 𝐺𝑖. Here, we show that by observing an agent’s

Hessian, H(𝐺𝑖), we can quickly assess which agents are interacting. The Hessian is

computed as 𝜕2𝐺𝑖/𝜕u𝑖𝜕u𝑗, which naturally encodes how one agent’s utility gradient

𝜕𝐺𝑖/𝜕u𝑖 (with respect to its own controls u𝑖) depends on the inputs u𝑗 of another
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Figure 2-16: Nash equilibrium solver performance: Solver runtimes for both
the KKT and IBR approaches for varying 𝑁 -stage time horizon and 𝑚 = {2, .., 6}
agents. Each approach is plotted with its median solver time and edges of the error
bars indicating the 25th and 75th percentiles over the 500 trials. The KKT approach
for solving the multi-agent Nash equilibrium problem is significantly faster than using
an IBR solver.

agent 𝑗. Agent 𝑖’s Hessian is written

H(𝐺𝑖) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜕2𝐺𝑖

𝜕𝑢21

𝜕2𝐺𝑖

𝜕𝑢1𝜕𝑢2
. . . 𝜕2𝐺𝑖

𝜕𝑢1𝜕𝑢𝑚

𝜕2𝐺𝑖

𝜕𝑢2𝜕𝑢1

𝜕2𝐺𝑖

𝜕𝑢22
. . . 𝜕2𝐺𝑖

𝜕𝑢2𝜕𝑢𝑚
...

... . . . ...
𝜕2𝐺𝑖

𝜕𝑢𝑚𝜕𝑢1

𝜕2𝐺𝑖

𝜕𝑢𝑚𝜕𝑢2
. . . 𝜕2𝐺𝑖

𝜕𝑢2𝑚
,

⎤⎥⎥⎥⎥⎥⎥⎦ (2.29)

for a multi-agent game comprising𝑚 agents. Consider the multi-agent example shown

in Figure 2-17, where agents move from initial locations (circles), to goal locations

(crosses). Their cost function consists of control costs, collision avoidance costs, and

a cost of the distance from the goal at the final time step. Figure 2-18 displays the

Hessian (top) and its block-norms (bottom) for this scenario, with the color intensity

encoding the magnitude of the norm. The larger the norm of the corresponding

blocks, the stronger the interaction. Investigating agent 1’s Hessian, we can see that

the norm of 𝜕2𝐺1

𝜕u1𝜕u3
is large (white) and 𝜕2𝐺1

𝜕u1𝜕u2
is somewhat noticeable (gray). Since

the Hessian is symmetric, their symmetric counterparts show the same values. We

can deduce that agent 1 strongly interacts with agent 3, slightly with agent 2, and
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Figure 2-17: Nash equilibrium visualization: 5 vehicles start from their start
positions and initial headings. We indicate start positions as circles and the respective
goal locations as crosses. Visualized are the planned trajectories over the planning
horizon. The objective function consists of control costs (acceleration and steering),
collision avoidance, and distance-to-goal at the end of the planning horizon. The
agents may not always reach the goal location at the end of the planning horizon due
to the trade-off of control costs and distance to a goal location, as well as dynamic
constraints on maximum steering angles and acceleration. We compare the influence
of changing the SVO of all vehicles from egoistic (𝜙 = 0) to prosocial (𝜙 = 𝜋

4
). We find

that prosocial agents execute cooperative trajectories where some agents modify their
actions to allow others to improve their performance. The overall reward increases by
24%. Interestingly, all agents improve, especially 1 and 2 since they switch sides. All
other agents receive cascading improvements: 3 can move directly to its goal location
and does not have to wait until 1 and 2 have passed. 4 can take a more direct path
since 1 and 3 are already out of its way. Agent 5 is only very weakly influenced by
the interaction and does not change its trajectory and reward.
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not to a significant amount with any other agents. We can verify this observation

by seeing that agent 1 and 3 are on a collision path, compare Figure 2-17, and agent

1 closely follows agent 2. If agent 1 would change its actions, agent 2 and 3 would

also change their actions. Note that there is a difference between occurring costs

because of their proximity and interactions (in the sense of influencing each others’

actions): Although agent 1 and 4’s paths are very close in the beginning, they are not

actively choosing to interact. They start with an initial velocity and heading, which

can not be changed too quickly, such that they do not affect each others’ actions,

although both agents are subject to high collision avoidance costs. Conversely, we

find that agents 2 and 4 have strong interactions, as they have similar goal locations.

The interaction between this pair agrees with our expectation when observing Figure

2-17. We also see that agent 5 remains independent of the other agents, which moves

in the opposite direction of the other agents.

We can also re-run the scenario in Figure 2-17, except imposing that all agents

exhibit a prosocial SVO value. Figure 2-19 shows the resulting Hessian and norms for

this scenario. Here, we notice that there are more significant interactions across the

group, indicated by the increase in brightness values across the images. Therefore,

moving from a purely selfish utility model to more prosocial preferences may increase

coordination among the group.

In analyzing our traffic data from the NGSIM data set, we make similar obser-

vations to the ones in this case study. Two cars driving in close proximity do not

necessarily yield a strong interaction. An example of this are two cars in adjacent

lanes. Only if their actions influence each other, such as if one car chooses to merge

into the lane of the other car, do the interactions become apparent.

2.10 Discussion

We propose the use of Social Value Orientation to measure, quantify, and predict the

behavior of human drivers. We model the interactions between drivers as a dynamic

game and present a computationally-tractable way of finding its Nash equilibrium.
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Figure 2-18: Hessians in egoisitic scenario: Greyscale representation of the Hes-
sian of scenario of Figure 2-17 at the top row, and norm of block-Hessians at the
bottom. Here, each pixel block corresponds to the values of the Hessian in (2.29),
with brighter values indicating a higher value. Here, all agents have egoistic SVO
preferences.
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Figure 2-19: Hessians in egoisitic scenario: Greyscale representations of the Hes-
sians and norm of block-Hessians of the same scenario as in Figure 2-17, but all agents
exhibit prosocial SVO preferences. The prosocial SVO makes all agents’ utility func-
tions equal and the Hessians become the same.
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Using SVO as our key factor in predicting human behavior, we present two likelihood

functions to estimate SVO of other drivers from observed trajectories. We validate

our findings in simulation and on the NGSIM data set incorporating the human

behavior into the AV planner, resulting in intelligent, socially-aware maneuvers. We

find that the multi-agent Nash equilibrium, SVO, as well as its estimation improve

predictions and prove essential assets for interactive driving. Our unified algorithm

improves on human driver trajectory prediction by 25% over baseline models. For

highway merges in the NGSIM data, we also find that the human drivers merging into

traffic are consistently more competitive than the drivers yielding to the merging car.

These insights can better inform AVs that currently struggle to make these maneuvers.

The ability to estimate SVO distributions directly from observed motion instead of

in laboratory conditions will prove impactful beyond autonomous driving. Overall,

robotic and AI applications where an autonomous system acts among humans will

benefit from integrating SVO in their prediction and decision-making algorithms [41,

148].

Social preferences in the form of SVO, in combination with game-theoretic plan-

ning, allow us to instantaneously estimate driver personalities and open opportunities

for autonomous cars that can understand human behavior and act predictably. To

increase the level of reasoning about another agent’s state of mind we next look at

how we can incorporate uncertainty-aware and information-seeking behavior through

game-theoretic belief-space planning.
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Chapter 3

Reasoning over Beliefs: Stochastic

Dynamic Games in Belief Space

3.1 Introduction

We aim to develop planners for multi-agent systems that are robust under uncertainty

and combine information-seeking behavior with game-theoretic reasoning. While

game theory can model the interaction and dependency among agents, it does not

address the quality of information available to the agent for decision making. Agents

must plan and act within a game, remain robust to uncertainy, gain information,

and leverage the information gain to improve their control policies. We propose an

approach that combines game-theoretic planning with belief-space planning, leverag-

ing the interaction models from game theory while incorporating uncertainties in the

modeled dynamics and perception. In multi-agent systems, we find that agents gather

information to reduce uncertainty while maintaining decision-making strategies that

support complex interactions. Applications include assistive robotics, surveillance,

pursuer-evader games, and racing.

While each agent operates independently and does not reveal plans or intentions

through communication, agents have approximate models of the other agents. Mod-

els of the dynamics allow to infer the ability of other agents to move in the envi-

ronment, approximate cost models encode the agents’ objectives, and models of how
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Figure 3-1: Autonomous racing under uncertainty: One application we present
is dynamic racing. Here, the blue agent starts with a disadvantage, but is equipped
with better acceleration and capable of moving faster through corners than the red
agent. Our approach allows the blue agent to overtake and win the race. Planned
trajectories and chance constraints are shown in dashed lines and ellipses. The traces
correspond to the true state (solid) and the noisy EKF-estimate (dashed) available
to each agent during the race. The red areas are zones with low noise observations
and reduce uncertainty.
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other agents perceive the world from observations allows estimating what other agents

know and with what certainty. Our work is related to model predictive receding hori-

zon planners: Agents start from an initial belief about themselves, others, and the

environment and imagine how the future will evolve if they and other agents were

to execute certain actions. These models can be prescribed, observed, sensed, or

communicated. As plans are not shared among agents, we propose a game-theoretic

framework that predicts the interactive policies of other agents while optimizing for

our own policy.

Within the game-theoretic framework, agents take actions that increase their infor-

mation gain, which in turn results in the ability to improve their control policies with

reduced uncertainty. For example, an assistive robot tasked with guiding a human

may explore the environment to reduce uncertainty and better navigate. Conversely,

a game-theoretic setting can model adversarial agents. Here, agents may choose to

“hide” to prevent others from gathering information about themselves, which is rel-

evant to surveillance applications. In the context of racing, agents may force others

to increase their uncertainty, such as by pressuring them to drive too fast in a corner

which increases uncertainty in their state, or by simply pushing them into the dark.

It is therefore not only important to reason about a robot’s own uncertainty but

also the uncertainty of other agents in the environment, and even more so how one’s

actions impact the change in uncertainty of others.

Game-theoretic models have not only proven useful to model interactions between

autonomous systems, but also in integrating interactive human predictions into au-

tonomous decision-making and planning. We can model the actions of humans as

expected cost-minimizing and estimate human cost functions from past observed tra-

jectories with Inverse Reinforcement Learning (IRL) [222]. Consequently, computing

expected cost-minimizing actions based on the learned cost functions generates hu-

man predictions. The expected cost-minimizing behavior can also be interpreted as

a best response to an autonomous agent’s actions. This best response setting allows

us to estimate how the autonomous system’s actions influence human actions. The

autonomous system can therefore implicitly control the human’s actions to a certain
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degree. This technique has been applied to predict interactive human behavior for

autonomous vehicles [163, 99, 173], and to predict pedestrians [98]. The combination

of game-theoretic modeling of human behavior and information seeking planning are

therefore even more promising.

For instance, home service robots can provide assistance and support to humans,

particularly the elderly population. These robots need to work in close proximity

of humans, gauge the human’s intent, and understand the state of mind of others

to better perform tasks. They have to avoid confusion and misunderstandings and

will need to seek information about both their environment and surrounding humans.

Additionally, these autonomous systems need to also reason about the amount of

information and understanding the human has about the robot. The robot can aid

the human’s understanding through explicit communication, as well as implicitly

through behavior, such as moving to visible locations or clearly indicating intent by

unambiguously moving in a desired direction.

We propose a solution that combines multi-agent game-theoretic decision-making

under uncertainty and belief-space planning (BSP). Our approach supports robust

solutions to a wide range of multi-robot applications where dealing with uncertainty,

the need to gather information, and game-theoretic decision-making are fundamen-

tal. We build on important advancements in two areas: game-theoretic planning and

belief-space planning. Game-theoretic planning successfully solves problems where

an agent’s objective is at odds with the objective of other agents, such as in model-

ing human behavior in traffic [111, 173, 172], and leveraging the effects on humans

by autonomous cars [163]. [125] gives a recent review on game theory and control.

In game theory, the Nash equilibrium is a proposed solution of a non-cooperative

game involving two or more players. Each player is assumed to know the equilib-

rium strategies of the other players, and no player has anything to gain by changing

only their own strategy. Solving for Nash equilibria has been applied to competi-

tive racing [217, 119, 184] and guiding vehicles through intersections [54]. Solution

methods in racing include Iterated Best Response [217, 184, 213, 214], using discrete

payoff matrices [119], or solving the necessary conditions. We will solve the necessary
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condition of a static quadratic game at each stage in the backward-pass of Iterative

Linear-Quadratic Gaussian control (iLQG) to solve for the Nash equilibrium of the

dynamic game.

While game-theoretic planning models the interaction and dependency among

agents, it does not address the quality of information available to the agent for decision

making. Belief-space planning [94] uses beliefs, which are the distribution of the

robot’s state estimate, to represent the uncertainties in the perception of the robot.

The problem of computing a control policy over the space of belief states is formally

described as a Partially Observable Markov Decision Process (POMDP), and has

been studied extensively. Solutions to POMDPs are known to be very complex.

Solving a POMDP to global optimality is NP-hard: solutions such as point-based

algorithms [24, 102, 151, 78] in discrete space are bound to the curse of history, as

well as sampling based solvers [40, 143, 156]. Optimization-based approaches have

been developed for planning in continuous belief space [106, 142, 152, 201, 190, 157],

by approximating beliefs as Gaussian distributions and computing a value function

valid in local regions of the belief space. Similarly to [201, 190], we avoid the common

maximum-likelihood observation assumption [152, 142]. In comparison to point-based

algorithms which scale exponentially in the planning horizon 𝑙, optimization-based

methods scale linearly, 𝒪(𝑙).

3.1.1 Main Assumptions

To generate reasonable predictions about other agents, they build on approximate

prior information. Consider the analogy of a race car driver. A driver knows that

other race cars will have comparable driving characteristics, while different classes

of vehicles, like trucks, will have different handling dynamics. They also know that

the other racing drivers desire to go as fast as possible around the track to win the

race, without crashing into other vehicles sliding off the road, similar to a cost model.

Lastly, they have experience in how other drivers observe the track and know for

example that the quality of perception decreases in the dark. For our autonomous

systems, Assumption 1 describes that we assume common knowledge of models about
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the world.

Assumption 1 (Common Knowledge). Agents have models for cost, dynamics, and

observations of other agents.

Related game-theoretic works, with applications ranging from pedestrian-robot

interactions to autonomous racing, make similar assumptions by either prescribing

dynamics and cost models [111, 217, 119, 184, 183] or learning cost models through

IRL [163, 98, 173]. Assumption 1 allows agents to imagine how the future will evolve:

If the robot and other agents were to execute given policies, how would model based

predictions of motions and observations in the world impact the beliefs over time. We

do not assume any form of direct communication between agents and therefore do

not have access to the policies of other agents. Instead, we predict interactive policies

of other agents through game-theory and employ the models of costs, dynamics, and

observations. The robot, as part of the game, can then leverage the influence of its

actions on the predicted actions of other agents to their advantage. We will show in

a competitive racing example that Assumption 1 can be relaxed in practice, and that

approximate models of other agents prove sufficient to improve performance.

We refer to beliefs as distributions over states, and draw inspiration over how

we design our system from the cognitive theory of mind. The cognitive theory of

mind [165] defines the ability to attribute mental states, such as beliefs, intents, or

desires to oneself and to others. It is integral to understanding that others have beliefs

that are different from one’s own. Single agent planning in belief space, reasoning

about the uncertainty of only the own state, is limited to zero order beliefs (e.g. I

think...). In contrast, we will also reason about the uncertainty of other agents. The

theory of mind refers to this as first-order belief spaces (e.g., I think they think...).

Higher order beliefs such as second-order belief spaces (e.g., I think they think that

I think...) are beyond the scope of this work as they quickly become computation-

ally intractable by essentially defining beliefs over beliefs. We find that parametrizing

belief spaces efficiently is crucial to generating real-time capable algorithms. Assump-

tion 2 keeps computation complexity at a reasonable level and avoids an explosion in
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parameters in the recursive beliefs over beliefs.

Assumption 2 (First-Order Beliefs). Planning and prediction are limited to first-

order beliefs: any robot 𝑖’s belief over another agent 𝑗 is the same as that agent 𝑗’s

belief about themselves.

In Section 3.4 we evaluate cases, such as competitive racing, where this assumption

is a simplification of the true system dynamics. In the racing scenario, all agents

execute separate instances of our algorithm, and therefore maintain separate beliefs.

Thus, an agent’s belief about themselves does not necessarily match the beliefs that

others have about them. However, while these belief mismatches may occur, we

see performance improvements over a game-theoretic baseline without belief-space

planning, see Sec. 3.4.3, which highlights the importance of accounting for uncertainty

and information gain in competitive racing and other applications.

The purpose of Assumptions 1 and 2 is to enable interactive predictions of other

agents in belief space while maintaining computational tractability. Since our ap-

proach is executed continuously in a receding horizon fashion, and we compute poli-

cies that are reactive to deviations from the predicted beliefs, the proposed method

can adapt if the observed behavior differs from the predicted ones. Our approach con-

tinues to successfully control the agent under reasonable violations of the presented

assumptions, such as if the dynamics, observation, or cost models are inaccurate, if

their own beliefs do not exactly match the beliefs of others, or if the other agent’s

optimization is sub-optimal.

3.1.2 Contributions

We present a computationally-tractable solution to multi-agent planning that com-

bines game-theoretic planning and belief-space planning to interact within a problem

formulated as a game, gain information, and leverage the information gain to improve

the agents’ control policies. The main limiting factor in applying either game theory

or belief-space planning, and even more so the combination of both to robotic control

problems lies in the associated computational complexity. To the best of our knowl-
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edge this is the first work to combine general dynamic games and planning in belief

space into an efficient real-time algorithm. The main contributions of this chapter

are:

1. A method for computing Nash equilibria for dynamic games in belief space;

2. A linear feedback policy, similar to linear-quadratic Gaussian control (LQG),

for the robot resulting from the solution, and also a predicted linear feedback

policy for all other agents;

3. State and control trajectory based regularization to ensure convergence;

4. Evaluation of the proposed method in three stochastic dynamic games: racing

with autonomous vehicles, active surveillance, and guiding eyes for a blind agent.

We organize the remainder of the chapter as follows: Section 3.2 introduces dy-

namic games in belief space, including a general definition of best response POMDPs

and a Nash equilibrium formulation of the non-cooperative dynamic game. We give

the resulting problem definition in Section 3.2.1, and assuming beliefs can be repre-

sented in the form of Gaussian distributions, approximate the belief dynamics based

on an Extended Kalman Filter (EKF) detailed in Section 3.3.1. Our method com-

putes a locally-optimal solution to the best response POMDP problem with contin-

uous state and action spaces and non-linear dynamics and observation models by

iteratively solving for a local Nash equilibrium, outlined in Section 3.3. We utilize a

belief-space variant of iLQG to compute the Nash equilibrium, Section 3.3.3, by solv-

ing for a local Nash equilibrium at each stage of the backward pass, see Section 3.3.2.

At every iteration, each agent’s value function is approximated based on a quadrati-

zation around a nominal trajectory, and the belief dynamics are approximated with

an extended Kalman filter. We describe regularization techniques in Section 3.3.4 to

ensure that the algorithm converges regardless of initial conditions. Based on these

findings, we introduce Algorithm 6 in Section 3.3.5 describing the full belief-space

Nash equilibrium computation.

We show the potential of our approach in Section 3.4 by presenting three multi-

agent problems that combine the information-seeking behavior with our game-theoretic
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Table 3.1: Stochastic Dynamic Games in Belief Space: Main Symbols and Notation
x,u, z State, control input, and measurement
b, s = [b⊤,u⊤]⊤ Belief, short for belief and controls
𝑄𝑖, 𝑉 𝑖 Action-value and value function of agent 𝑖
𝜋𝑖 Optimal control policy of agent 𝑖
𝑗𝑘, 𝐾𝑘 Feedforward and feedback gains at time 𝑘
𝑐𝑖𝑘(b𝑘,u𝑘), 𝑐𝑖𝑙(b𝑙) Cost of agent 𝑖 at time 𝑘, and terminal cost
x𝑘+1 = 𝑓(x𝑘,u𝑘,m𝑘) State transition with process noise m𝑘

z𝑘 = ℎ(x𝑘,n𝑘) Measurement function with meas. noise n𝑘
b𝑘+1 = 𝛽(b𝑘,u𝑘, z𝑘+1) Belief transition
b = b̄ + 𝛿b Nominal + perturbation, similar for u, s
𝑐𝑖s,𝑘, 𝑐𝑖ss,𝑘 Gradiant and Hessian of 𝑐𝑖 evaluated at s̄𝑘
𝑔s,𝑘, 𝑊s,𝑘 Jacobians of 𝑔 and 𝑊 evaluated at s̄𝑘
𝑉b,𝑘, 𝑉bb,𝑘 Gradient and Hessian of value at time 𝑘
𝑄s,𝑘, 𝑄ss,𝑘 Gradient and Hessian of action-value at 𝑘
𝑙,𝑁 planning horizon, number of agents

formulation: active surveillance, guiding blind agents, and racing with autonomous

vehicles.

3.2 Dynamic Games in Belief Space

We first define POMDPs in their most general form (following notation of [196, 201]),

then formulate the resulting game and derive the Nash Equilibrium to be solved for.

We write the belief-space planning problem as a stochastic optimal control prob-

lem. Consider a system of 𝑁 agents 𝑖 ∈ {1, ..., 𝑁}, with agent 𝑖’s state at time 𝑘

denoted x𝑖𝑘 ∈ R𝑛x𝑖 , measurement as z𝑖𝑘 ∈ R𝑛z𝑖 , and control input u𝑖𝑘 ∈ R𝑛u𝑖 . Here,

𝑛x𝑖 , 𝑛z𝑖 , 𝑛u𝑖 define the dimensionality of agent 𝑖’s state, measurement, and control.

For brevity we refer to x𝑘 = [x1,⊤
𝑘 , . . . ,x𝑁,⊤𝑘 ]⊤ ∈ R𝑛x as the joint state, z𝑘 =

[z1,⊤𝑘 , . . . , z𝑁,⊤𝑘 ]⊤ ∈ R𝑛z as the joint measurement, and u𝑘 = [u1,⊤
𝑘 , . . . ,u𝑁,⊤𝑘 ]⊤ ∈ R𝑛u

as the joint control, consisting of all agents. We refer to the joint dimensions as

𝑛x =
∑︀

𝑖 𝑛x𝑖 , 𝑛z =
∑︀

𝑖 𝑛z𝑖 , and 𝑛u =
∑︀

𝑖 𝑛u𝑖 . The notation ¬𝑖 indicates all agents

except 𝑖, e.g. u¬𝑖
𝑘 relates to the controls of all other agents except 𝑖.

We will refer to u = [u0,u1, . . . ,u𝑙−1] as the control trajectory until time 𝑙. The

joint belief b(x𝑘) is defined as the distribution of the state x𝑘 given all past control
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inputs and sensor measurements, and consists of individual beliefs b𝑖. For brevity,

we define s = [b⊤,u⊤]⊤.

Following [196, 201], we compute the belief by

b(x𝑘) = 𝑝(x𝑘|u0, . . . ,u𝑘−1, z1, . . . , z𝑘), (3.1)

from all past control inputs and sensor measurements. The stochastic dynamics and

observation model, here formulated in probabilistic notation as

x𝑘+1 ∼ 𝑝(x𝑘+1|x𝑘,u𝑘), z𝑘 ∼ 𝑝(z𝑘|x𝑘), (3.2)

allow to forward propagate the belief given a control input u𝑘 and a measurement

z𝑘+1 through Bayesian filtering:

b(x𝑘+1) = 𝜂𝑝(z𝑘+1|x𝑘+1)

∫︁
𝑝(x𝑘+1|x𝑘,u𝑘)b(x𝑘)dx𝑘. (3.3)

In (3.3), 𝜂 is a normalizer independent of x𝑘+1 and b(x𝑘+1) and contains the uncer-

tainty originating from the stochastic dynamics, the uncertain measurement and the

uncertainty in the belief at the previous time step. We employ the shorthand b𝑘 to

refer to b(x𝑘). The stochastic belief dynamics are defined by (3.3) and are written as

b𝑘+1 = 𝛽(b𝑘,u𝑘, z𝑘+1). (3.4)

The expected return of each individual agent 𝑖 under a control trajectory of all

agents u, including its own control trajectory u𝑖, subject to uncertainty on the ob-

served measurements z over the horizon 𝑙 is determined by the action-value function

𝑄𝑖(b0,u) = E
z

[︃
𝑐𝑖𝑙(b𝑙) +

𝑙−1∑︁
𝑘=0

𝑐𝑖𝑘(b𝑘,u𝑘)

]︃
. (3.5)

Here 𝑐𝑖𝑘(·) denotes the cost at time 𝑘 and 𝑐𝑖𝑙(·) denotes the terminal cost of agent

𝑖. Since there exists an action-value function for each agent, there are 𝑁 distinct
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action-value functions 𝑄𝑖 for 𝑖 ∈ {1, ..., 𝑁}.

We will first formulate the two problems of (1) solving the general POMDP best

response game, and then (2) finding the Nash equilibrium of this game.

Problem 1. POMDP Best Response Game: Given an initial belief b0, for agents

𝑖 ∈ {1, ..., 𝑁}, we need to solve the stochastic optimal control problem

𝜋𝑖 = arg min
u𝑖

𝑄𝑖(b0,u) ∀𝑖 ∈ {1, ..., 𝑁} (3.6)

𝑠.𝑡. b𝑘+1 = 𝛽(b𝑘,u𝑘, z𝑘+1), (3.7)

for each agent by minimizing each agent’s expected cost with respect to their own

controls u𝑖, where 𝑄𝑖(b0,u) is the action-value function of agent 𝑖.

Note that all agents’ optimal policies 𝜋𝑖 depend on the actions of all other agents

because each agent 𝑖 minimizes their own action-value function 𝑄𝑖(b0,u). The result

is a non-cooperative game [30] in which all agents’ policies depend on the optimal

policies of all other agents 𝜋𝑖(𝜋¬𝑖). Since all policies are optimized jointly and sever-

ally, the dependence of agent 𝑖’s policy 𝜋𝑖 on other agents’ controls u¬𝑖 is resolved by

inserting their optimal policy 𝜋¬𝑖. We therefore denote 𝜋𝑖 instead of 𝜋𝑖(u¬𝑖).

A general solution to (3.6) can be defined recursively by the Bellman equation:

𝑉 𝑖
𝑙 (b𝑙) = 𝑐𝑙(b𝑙), (3.8)

𝑄𝑖
𝑘(b𝑘,u𝑘) = 𝑐𝑖𝑘(b𝑘,u𝑘) + E

z𝑘+1

[︀
𝑉 𝑖
𝑘+1(𝛽(b𝑘,u𝑘, z𝑘+1))

]︀
,

𝑉 𝑖
𝑘 (b𝑘) = min

u𝑖
𝑘

𝑄𝑖
𝑘(b𝑘,u𝑘),

𝜋𝑖𝑘(b𝑘) = arg min
u𝑖
𝑘

𝑄𝑖
𝑘(b𝑘,u𝑘),

where 𝑉 𝑖
𝑘 (b𝑘) is the value function and 𝜋𝑖𝑘(b𝑘) the optimal policy at time 𝑘. Note

that in (3.8) the cost 𝑐𝑖𝑘(b𝑘,u𝑘), the reached value function 𝑉 𝑖
𝑘+1(𝛽(b𝑘,u𝑘, z𝑘+1)), and

therefore the action-value function 𝑄𝑖
𝑘(b𝑘,u𝑘) of agent 𝑖 depends not only on its own

action but also on all other players’ actions. This interdependence is analogous to

(3.6) but formulated recursively over time.
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To better capture how an agent’s action-value function depends on the controls

of all other actions, we can equivalently write 𝑄𝑖(b0,u) = 𝑄𝑖(b0,u
𝑖,u¬𝑖). More

precisely, the interdependence of all players optimal policies is captured in the Nash

equilibrium of Problem 1, defined in Problem 2. Problem 2 formulates a sufficient

condition for Nash equilibria [30, 141] in belief space.

Problem 2. Nash Equilibrium: Find the optimal control policy 𝜋 = [𝜋1,⊤, . . . , 𝜋𝑁,⊤]⊤

that yields a local Nash equilibrium of the POMDP Best Response Game in Problem 1,

such that it satisfies

𝑄𝑖(b0,u
𝑖, 𝜋¬𝑖) ≥ 𝑄𝑖(b0, 𝜋

𝑖, 𝜋¬𝑖),∀𝑖 ∈ {1, 2, . . . , 𝑁}, (3.9)

for all u𝑖 in the neighborhood of 𝜋𝑖.

More intuitively, in the Nash equilibrium no player has anything to gain by chang-

ing only their own strategy. Based on the necessary condition of Problem 2, we will

derive a local necessary condition for each sub-problem in the backward pass of our

game-theoretic variant of belief iLQG.

3.2.1 Problem Formulation

The difficulty in solving POMDPs stems from the infinite-dimensional space of all

beliefs, and that in general the value function cannot be expressed in parametric

form. To overcome these challenges we describe beliefs by Gaussian distributions,

approximating the belief dynamics using an EKF, and make a quadratic approxima-

tion of the value function about a nominal trajectory through the belief space. We

iteratively compute a local Nash equilibrium over all agents in the proximity of the

nominal trajectory by solving the necessary condition (3.9) of Problem 2 at each

timestep during a belief-space variant of iLQG to perform the Bellman backward re-

cursion in (3.8). Due to its similarity to iLQG we benefit from linear scaling 𝒪(𝑙)

in the planning horizon 𝑙, in contrast to point-based POMDP algorithms which scale

exponentially.
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We are given non-linear stochastic dynamics and observation models in state-

transition notation:

x𝑘+1 = 𝑓(x𝑘,u𝑘,m𝑘), m𝑘 ∼ 𝒩 (0, 𝐼), (3.10)

z𝑘 = ℎ(x𝑘,n𝑘) n𝑘 ∼ 𝒩 (0, 𝐼), (3.11)

where m𝑘 and n𝑘 are the motion and measurement noise, respectively. Without loss

of generality, we draw both the motion and measurement noise from independent

Gaussian distributions with zero mean and unit variance since the noise can be ar-

bitrarily transformed inside these functions. Depending on the system, motion and

sensing noise may be state and control dependent.

Note that formulating the general dynamics and measurement functions jointly

of all agents includes, but is not limited to, the special case of independent functions

for each agent 𝑖 as in

𝑓(x𝑘,u𝑘,m𝑘) = [𝑓 1(x1
𝑘,u

1
𝑘,m

1
𝑘)

⊤, . . . , 𝑓𝑁(x𝑁𝑘 ,u
𝑁
𝑘 ,m

𝑁
𝑘 )⊤]⊤, (3.12)

ℎ(x𝑘,n𝑘) = [ℎ1(x1
𝑘,n

1
𝑘)

⊤, . . . , ℎ𝑁(x𝑁𝑘 ,n
𝑁
𝑘 )⊤]⊤. (3.13)

We define the Gaussian belief as b𝑘 = (x̂⊤
𝑘 ,Σ𝑘), by the mean state x̂𝑘 and the

variance Σ𝑘 of the Normal distribution describing the stochastic state x𝑘 ∼ 𝒩 (x̂𝑘,Σ𝑘).

3.3 Technical Approach

Before detailing the value iteration method for the Nash equilibrium solution based

on a game-theoretic belief-space variant of iLQG in Section 3.3.3, we need to derive

two important components. First, we describe the approximation of the general

Bayesian filter update (3.4) by an EKF in Section 3.3.1 to formulate the Gaussian

belief dynamics. This allows us to forward propagate Gaussian beliefs given an initial

belief and a control trajectory which we utilitze in the game-theoretic variant of

belief-space iLQG. Second, we show that the necessary condition of Problem 2, the
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Nash equilibrium, is equivalent to a local necessary condition at each timestep in the

Bellman recursion in Section 3.3.2. The full algorithm is detailed in Section 3.3.5.

3.3.1 Bayesian Filter and Belief Dynamics

The Bayesian filter in (3.4) defines the general belief dynamics of a current belief b𝑘

and measurement z𝑘+1. To make the belief propagation tractable we follow [201] and

approximate the Bayesian filter by an EKF, suitable for non-linear Gaussian beliefs

as well as non-linear dynamics and measurement models. For well-defined transition

models, the EKF is the standard for nonlinear state estimation [212, 93]. The EKF

makes a first-order approximation of 𝑓 with respect to the stochastic variable x, such

that for a given belief b𝑘 = (x̂𝑘,Σ𝑘) we have the standard EKF update equations

[201, 196]

x̂𝑘+1 = 𝑓(x̂𝑘,u𝑘, 0) +𝐾𝑘(z𝑘+1 − ℎ(𝑓(x̂𝑘,u𝑘, 0), 0)),

Σ𝑘+1 = Γ𝑘+1 −𝐾𝑘𝐻𝑘Γ𝑘+1, (3.14)

with corresponding matrices defined by

Γ𝑘+1 = 𝐴𝑘Σ𝑘𝐴
𝑇
𝑘 +𝑀𝑘𝑀

𝑇
𝑘 , (3.15)

𝐾𝑘 = Γ𝑘+1𝐻
⊤
𝑘 (𝐻𝑘Γ𝑘+1𝐻

⊤
𝑘 +𝑁𝑘𝑁

⊤
𝑘 )−1,

𝐴𝑘 =
𝜕𝑓

𝜕x
(x̂𝑘,u𝑘, 0), 𝑀𝑘 =

𝜕𝑓

𝜕m
(x̂𝑘,u𝑘, 0),

𝐻𝑘 =
𝜕ℎ

𝜕x
(𝑓(x̂𝑘,u𝑘, 0), 0), 𝑁𝑘 =

𝜕ℎ

𝜕n
(𝑓(x̂𝑘,u𝑘, 0), 0).

The noisy measurement z𝑘 in the belief update makes the belief dynamics stochas-

tic. We define b𝑘 = [x̂⊤
𝑘 , vec(Σ𝑘)

⊤]⊤, where vec(Σ𝑘) is the matrix Σ𝑘 reshaped into

vector form and formulate the stochastic belief dynamics

b𝑘+1 = 𝑔(b𝑘,u𝑘) +𝑊 (b𝑘,u𝑘)𝜉𝑘, 𝜉𝑘 ∼ 𝒩 (0, 𝐼), (3.16)

106



with

𝑔𝑘(b𝑘,u𝑘) =

⎡⎣ 𝑓(x̂𝑘,u𝑘, 0)

vec(Γ𝑘+1 −𝐾𝑘𝐻𝑘Γ𝑘+1)

⎤⎦ , (3.17)

𝑊𝑘(b𝑘,u𝑘) =

⎡⎣√𝐾𝑘𝐻𝑘Γ𝑘+1

0

⎤⎦ . (3.18)

Here, 𝜉𝑘 is a Gaussian with dimension 𝑛x that is applied to the stochastic part of

b𝑘, i.e. the stochastic state variable x𝑘. In this form 𝜉𝑘 represents both measurement

noise n𝑘 and motion noise m𝑘 mapped onto the belief transition. The stochastic

Gaussian belief dynamics allow us to propagate beliefs efficiently during the forward

pass of the game-theoretic variant of belief-space iLQG.

3.3.2 Nash Equilibrium Necessary Condition

While formulating how to propagate uncertainty for the continous POMDP, we also

need to define a tractable procedure to solve for Nash equilibria. One common method

to solve for Nash equilibria is Iterated Best Response [217, 184, 183], where control

policies are exchanged after each agent’s separate and independent optimization iter-

ation. In contrast, we directly integrate the necessary condition of the Nash equilib-

rium into the backward pass of a belief-space variant of iLQG. Specifically, we solve

a quadratic game at each stage of the backward pass with a unique solution. First,

we formulate the necessary condition of Problem 2 as

𝜕𝑄𝑖(b0,u)

𝜕u𝑖
= 0, ∀𝑖 ∈ {1, 2, . . . , 𝑁}, (3.19)

which allows us to compute local Nash equilibria by solving (3.19). Theorem 1 states

an equivalent condition for 𝑄𝑖
𝑘(b𝑘,u𝑘), the value function from time 𝑘 to 𝑙, defined

in the Bellman recursion (3.8).

Theorem 1. The necessary condition of the local Nash equilibrium (3.19) is equiva-
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lent to
𝜕𝑄𝑖

𝑘(b𝑘,u𝑘)

𝜕u𝑖𝑘
= 0, (3.20)

for all 𝑖 ∈ {1, 2, . . . , 𝑁}, and 𝑘 ∈ {0, 1, . . . , 𝑙 − 1}.

Proof. Recall that the conventional POMDP formulation (3.6) in Problem 1 is equiv-

alent to the recursive Bellman equation (3.8). Maximizing 𝑄𝑖
𝑘(b𝑘,u𝑘) with respect

to u𝑖𝑘 in (3.8) yields the corresponding necessary optimality condition 𝜕𝑄𝑖
𝑘(b𝑘,u𝑘)

𝜕u𝑖
𝑘

= 0,

the same as (3.20). Therefore, the necessary optimality condition (3.19) of Prob-

lem 1 is equivalent to the recursive Bellman necessary optimality condition (3.20) in

Theorem 1.

Alternatively, we can split the action-value from time 0 into the action-value from

𝑘 and the cost accumulated until 𝑘,

𝑄𝑖(b0,u) = 𝑄𝑖
𝑘(b𝑘,u𝑘) + E

z

[︃
𝑘−1∑︁
𝑡=0

𝑐𝑖𝑡(b𝑡,u𝑡)

]︃
. (3.21)

Taking the derivative of both sides with respect to u𝑖𝑘 directly implies that 𝜕𝑄𝑖
𝑘(b𝑘,u𝑘)

𝜕u𝑖
𝑘

=

𝜕𝑄𝑖(b0,u)

𝜕u𝑖
𝑘

, since the cost accumulated until 𝑘, the second term on the right hand side,

does not depend on u𝑖𝑘. Intuitively, current actions cannot affect costs accumulated

in the past.

Concluding, if each agent 𝑖 finds an optimizing policy 𝜋𝑖𝑘 to the Bellman recursion,

all 𝜕𝑄𝑖
𝑘(b𝑘,u𝑘)

𝜕u𝑖
𝑘

= 0 necessary conditions are fulfilled at time 𝑘. Note that each agents’

policy 𝜋𝑖(u¬𝑖) depends on the other agents’ inputs u¬𝑖, where ¬𝑖 indicates all other

agents. Therefore, solving the Bellman recursion simultaneously for all agents defines

a static game [30], but more importantly a game at each stage 𝑘 of the backward-pass.

In the next section, we describe our solution for integrating the Nash equilibrium

necessary condition at every time 𝑘 into the backward pass of a belief-space variant

of iLQG.
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3.3.3 Iterative Dynamic Programming

In this section we describe our belief-space variant of iLQG for computing local Nash

equilibria by solving the Bellman recursion defined in (3.8). We denote the nominal

belief as b̄ = b − 𝛿b, the nominal controls ū = u − 𝛿u, and s̄ = s − 𝛿s, with

s̄ = [b̄⊤, ū⊤]⊤ and local perturbations 𝛿u, 𝛿b, 𝛿s. At each iteration, the algorithm

performs a backward pass and a forward pass on the current estimate of the belief

b̄ = [b̄0, b̄1, . . . , b̄𝑙] and control trajectory ū = [ū0, ū1, . . . , ū𝑙−1], i.e. the nominal

trajectories. In the backward pass, the algorithm approximates the value functions

for each agent as a quadratic function

𝑉 𝑖
𝑘 (b̄𝑘 + 𝛿b𝑘) ≈ 𝑉 𝑖

𝑘 + 𝑉 𝑖,⊤
b,𝑘 𝛿b𝑘 +

1

2
𝛿b⊤

𝑘+1𝑉
𝑖
bb,𝑘𝛿b𝑘, (3.22)

along the nominal trajectory, and computes a linear feedback policy 𝜋1 for the robot

and predicted linear feedback policies 𝜋¬1 for all other agents. The value function

is propagated backwards in time. In the forward pass we produce a new nominal

trajectory based on the value function computed in the backward pass and apply

the associated feedback policy. This iterative process continues towards a locally

optimal solution to the Nash equilibrium in belief space. The key idea is to maintain

a quadratic approximation of 𝑄𝑖
𝑘(b𝑘,u𝑘) and the value functions 𝑉 𝑖

𝑘 (b𝑘).

We first derive the quadratic form of 𝑄𝑖
𝑘(b𝑘,u𝑘) in Theorem 2 by a Taylor ex-

pansion of the dynamics and costs, then find the minimizing control policy 𝜋𝑘 =

[𝜋1,⊤
𝑘 , . . . , 𝜋𝑁,⊤𝑘 ]⊤ by solving the static game and computing the Nash equilibrium

over all agents. From this result we compute the value functions 𝑉 𝑖
𝑘 (b𝑘) = 𝑄𝑖

𝑘(b𝑘, 𝜋𝑘)

and derive an update law for 𝑉 backwards in time.

Theorem 2. By linear expansion of the belief dynamics and quadratic expansion of

the cost and value function, 𝑄𝑖
𝑘(s𝑘) is a quadratic of the form

𝑄𝑖
𝑘(s̄𝑘 + 𝛿s𝑘) ≈ 𝑄𝑖

𝑘 +𝑄𝑖,⊤
s,𝑘 𝛿s𝑘 +

1

2
𝛿s⊤𝑘𝑄

𝑖
ss,𝑘𝛿s𝑘, (3.23)
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where

𝑄𝑖
𝑘 = 𝑐𝑖𝑘 + 𝑉 𝑖

𝑘+1 +
1

2

𝑛𝑥∑︁
𝑗=1

𝑊
(𝑗),⊤
𝑘 𝑉 𝑖

bb,𝑘+1𝑊
(𝑗)
𝑘 , (3.24)

𝑄𝑖
s,𝑘 = 𝑐𝑖s,𝑘 + 𝑔⊤s,𝑘𝑉

𝑖
b,𝑘+1 +

𝑛𝑥∑︁
𝑗=1

𝑊
(𝑗),⊤
s,𝑘 𝑉 𝑖

bb,𝑘+1𝑊
(𝑗)
𝑘 , (3.25)

𝑄𝑖
ss,𝑘 = 𝑐𝑖ss,𝑘 + 𝑔⊤s,𝑘𝑉

𝑖
bb,𝑘+1𝑔s,𝑘 +

𝑛𝑥∑︁
𝑗=1

𝑊
(𝑗),⊤
s,𝑘 𝑉 𝑖

bb,𝑘+1𝑊
(𝑗)
s,𝑘 . (3.26)

Similar derivations in iLQG [198], and belief-space iLQG [201] showed an agent’s

action-value function 𝑄 to be quadratic with respect to the agent’s controls and

state or belief. In contrast, we show that agent 𝑖’s action-value function 𝑄𝑖 is also a

quadratic with respect to the joint state and controls which is critical to formulate

the static quadratic game in the backward pass.

Proof. We start by expanding the terms of the action-value function of the Bellman

recursion, cf. (3.8),

𝑄𝑖
𝑘(b𝑘,u𝑘) = 𝑐𝑖𝑘(b𝑘,u𝑘) + E

𝜉𝑘

[︀
𝑉 𝑖
𝑘+1(𝑔𝑘(b𝑘,u𝑘) +𝑊𝑘(b𝑘,u𝑘)𝜉𝑘)

]︀
, (3.27)

to second order around the nominal control and belief s̄𝑘 = [b̄⊤
𝑘 , ū

⊤
𝑘 ]⊤. The term

𝑐𝑖𝑘(b𝑘,u𝑘) becomes

𝑐𝑖𝑘(s̄𝑘 + 𝛿s𝑘) ≈ 𝑐𝑖𝑘 + 𝑐𝑖,⊤s,𝑘 𝛿s𝑘 +
1

2
𝛿s⊤𝑘 𝑐

𝑖
ss,𝑘𝛿s𝑘, (3.28)

with 𝑐𝑖𝑘 = 𝑐𝑖𝑘(s̄), where 𝑐𝑖s,𝑘 and 𝑐𝑖ss,𝑘 are the Jacobian and Hessian of 𝑐𝑖𝑘 evaluated at

s̄𝑘. To expand the second term on the right hands side of (3.27) we first expand the

stochastic joint belief dynamics to

𝑔𝑘(s̄𝑘 + 𝛿s𝑘) ≈ 𝑔𝑘 + 𝑔s,𝑘𝛿s𝑘, (3.29)

𝑊
(𝑗)
𝑘 (s̄𝑘 + 𝛿s𝑘) ≈ 𝑊

(𝑗)
𝑘 +𝑊

(𝑗)
s,𝑘 𝛿s𝑘, (3.30)

with terms 𝑔𝑘 = 𝑔𝑘(s̄𝑘), 𝑊
(𝑗)
𝑘 = 𝑊

(𝑗)
𝑘 (s̄𝑘), and 𝑔s,𝑘, 𝑊

(𝑗)
s,𝑘 the respective Jacobians
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evaluated at s̄𝑘. 𝑊
(𝑗)
𝑘 denotes the 𝑗-th column of matrix 𝑊𝑘.

We now formulate the second term of (3.27). We define the value function as a

quadratic around b̄𝑘+1

𝑉 𝑖
𝑘+1(b̄𝑘+1 + 𝛿b𝑘+1) (3.31)

≈ 𝑉 𝑖
𝑘+1 + 𝑉 𝑖,⊤

b,𝑘+1𝛿b𝑘+1 +
1

2
𝛿b⊤

𝑘+1𝑉
𝑖
bb,𝑘+1𝛿b𝑘+1

= 𝑉 𝑖
𝑘+1 + 𝑉 𝑖,⊤

b,𝑘+1(b𝑘+1 − b̄𝑘+1) (3.32)

+
1

2
(b𝑘+1 − b̄𝑘+1)

⊤𝑉 𝑖
bb,𝑘+1(b𝑘+1 − b̄𝑘+1),

with 𝛿b𝑘+1 = b𝑘+1 − b̄𝑘+1 for convenience. Inserting the expanded dynamics (3.29),

(3.30) into the second term of (3.27), i.e. (3.32), and evaluating the expectation over

𝜉𝑘 yields

E
𝜉𝑘

[︀
𝑉 𝑖
𝑘+1(𝑔𝑘(s𝑘) +𝑊𝑘(s𝑘)𝜉𝑘)

]︀
(3.33)

≈ E
𝜉𝑘

[︂
𝑉 𝑖
𝑘+1 + 𝑉 𝑖,⊤

b,𝑘+1

(︀
𝑔𝑘(s𝑘) +𝑊𝑘(s𝑘)𝜉𝑘 − b̄𝑘+1

)︀
(3.34)

+
1

2

(︀
𝑔𝑘(s𝑘) +𝑊𝑘(s𝑘)𝜉𝑘 − b̄𝑘+1

)︀⊤
𝑉 𝑖
bb,𝑘+1

(︀
𝑔𝑘(s𝑘) +𝑊𝑘(s𝑘)𝜉𝑘 − b̄𝑘+1

)︀]︂
= 𝑉 𝑖

𝑘+1 + 𝑉 𝑖,⊤
b,𝑘+1

(︀
𝑔𝑘(s𝑘)− b̄𝑘+1

)︀
(3.35)

+
1

2

(︀
𝑔𝑘(s𝑘)− b̄𝑘+1

)︀⊤
𝑉 𝑖
bb,𝑘+1

(︀
𝑔𝑘(s𝑘)− b̄𝑘+1

)︀
+

1

2
tr
(︀
𝑊𝑘(s𝑘)

⊤𝑉 𝑖
bb,𝑘+1𝑊𝑘(s𝑘)

)︀
= 𝑉 𝑖

𝑘+1 + 𝑉 𝑖,⊤
b,𝑘+1𝑔s,𝑘𝛿s𝑘 +

1

2
𝛿s⊤𝑘 𝑔

⊤
s,𝑘𝑉

𝑖
bb,𝑘+1𝑔s,𝑘𝛿s𝑘 (3.36)

+
1

2

𝑛𝑥∑︁
𝑗=1

(𝑊
(𝑗)
𝑘 +𝑊

(𝑗)
s,𝑘 𝛿s𝑘)

⊤𝑉 𝑖
bb,𝑘+1(𝑊

(𝑗)
𝑘 +𝑊

(𝑗)
s,𝑘 𝛿s𝑘)

⊤.

Here we use the value function expansion (3.32) in (3.34), and the fact that b̄𝑘+1 =

𝑔𝑘(s̄𝑘) in (3.35) in the form of

𝑔𝑘(s𝑘)− b̄𝑘+1 = 𝑔𝑘(s𝑘)− 𝑔𝑘(s̄𝑘) ≈ 𝑔s,𝑘𝛿s𝑘. (3.37)
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Collecting and grouping all first and second order terms of (3.36) and (3.28) we

have that the resulting 𝑄𝑖
𝑘(s̄𝑘 + 𝛿s𝑘) is a quadratic with coefficients given by (3.24 -

3.26).

For notational convenience we will drop the time index 𝑘 for the 𝑄 matrices. We

can also recover other partial derivatives of 𝑄𝑖 from (3.24 - 3.26):

𝑄𝑖
s =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑄𝑖

b

𝑄𝑖
u1

...

𝑄𝑖
u𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑄
𝑖
ss =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑄𝑖

bb 𝑄𝑖
bu1 · · · 𝑄𝑖

bu𝑁

𝑄𝑖
u1b 𝑄𝑖

u1u1 · · · 𝑄𝑖
u1u𝑁

...
... . . . ...

𝑄𝑖
u𝑁b 𝑄𝑖

u𝑁u1 · · · 𝑄𝑖
u𝑁u𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.38)

With 𝑄𝑖
𝑘(s̄𝑘 + 𝛿s𝑘) in quadratic form from Theorem 2, at stage 𝑘 each agent 𝑖 solves

the quadratic problem

𝛿u𝑖,*𝑘 = arg min
𝛿u𝑖

𝑘

𝑄𝑖,⊤
s,𝑘 𝛿s𝑘 +

1

2
𝛿s⊤𝑘𝑄

𝑖
ss,𝑘𝛿s𝑘, (3.39)

yielding a quadratic game in the variables u𝑘. Note that each agent’s optimal 𝛿u𝑖,*𝑘
depends on all other agents’ 𝛿u¬𝑖

𝑘 as they are contained in 𝛿s𝑘. In comparison to other

related methods such as Iterative Linear-Quadratic regulator control (iLQR) [113],

iLQG [198], or Differential Dynamic Programming (DDP) [92] that solve a single

quadratic optimization in the backward pass, we have to solve 𝑁 interdependent

quadratic optimizations. Nonetheless, we obtain a unique and simple to compute

solution to the quadratic game [30] by stacking the 𝑁 optimality conditions of each

interdependent optimization. Solving the resulting system of equations amounts to

solving all interdependent quadratic optimizations at once. Theorem 3 presents this

result.

Theorem 3. The solution to the quadratic game (3.39) is

𝛿u*
𝑘 = −𝑄̂−1

uu

(︁
𝑄̂u + 𝑄̂ub𝛿b𝑘

)︁
, (3.40)
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where 𝑄̂uu, 𝑄̂ub, 𝑄̂u, are populated from (3.38), and defined

𝑄̂uu =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑄1

u1u

𝑄2
u2u

...

𝑄𝑁
u𝑁u

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑄̂ub =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑄1

u1b

𝑄2
u2b

...

𝑄𝑁
u𝑁b

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑄̂u =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑄1

u1

𝑄2
u2

...

𝑄𝑁
u𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.41)

Proof. By taking the derivative of the objective of (3.39) and equating it to zero, the

stationarity condition of (3.39) yields

[︁
𝑄𝑖

u𝑖u𝑖 𝑄𝑖
u𝑖u¬𝑖

]︁⎡⎣ 𝛿u𝑖𝑘
𝛿u¬𝑖

𝑘

⎤⎦+𝑄𝑖
u𝑖b𝛿b𝑘 +𝑄𝑖

u𝑖 = 0. (3.42)

Stacking the stationarity conditions of all 𝑁 agents into a single system of equations

we find the joint stationarity condition for all interdependent quadratic optimizations

𝑄̂uu𝛿u𝑘 + 𝑄̂ub𝛿b𝑘 + 𝑄̂u = 0, (3.43)

where (3.40) is the solution to this system of equations.

The local necessary condition of Problem 2, derived in Section 3.3.2 holds as shown

below.

Corollary 1. The solution (3.40) fulfills the necessary condition of the local Nash

equilibrium (3.19) at time 𝑘.

Proof. From (3.42), we see that 𝜕𝑄𝑖
𝑘(b𝑘,u𝑘)

𝜕u𝑖
𝑘

= 0.

We can immediately derive the linear feedback policy for all agents at planning

time 𝑘 of the form

𝜋𝑘 = ū𝑘 + 𝑗𝑘 +𝐾𝑘𝛿b𝑘, (3.44)

with 𝑗𝑘 = −𝑄̂−1
uu𝑄̂u the feed forward term and 𝐾𝑘 = −𝑄̂−1

uu𝑄̂ub the feedback term.

Note that 𝜋𝑘 contains the optimal policy of the robot 𝜋1
𝑘 and also the predicted policies

for all other (N-1) agents 𝜋¬1
𝑘 . The interdependence has been resolved by solving
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(3.43). The predicted linear policies 𝜋¬1
𝑘 depend on the change in joint belief 𝛿b𝑘.

The predicted actions will adapt if the robot, the other agents, or the environment

behave differently as expected, causing the estimated belief b𝑘 at future times 𝑘 to

diverge from the predicted nominal belief b̄𝑘. Similarly, the robot’s linear policy 𝜋1
𝑘

will allow it to adapt if other agents deviate from predicted behavior. In contrast,

this flexibility would be impossible with a static optimal control trajectory instead of

a policy.

We now formulate the backward equations to propagate the value functions 𝑉 𝑖

backwards, hence defining the backward pass.

Corollary 2. The discrete backward differential equations of the value functions 𝑉 𝑖

are

𝑉 𝑖
𝑘 = 𝑄𝑖 +𝑄𝑖,⊤

u 𝑗𝑘 +
1

2
𝑗⊤𝑘 𝑄

𝑖
uu𝑗𝑘, (3.45)

𝑉 𝑖
b,𝑘 = 𝑄𝑖

b +𝐾⊤
𝑘 𝑄

𝑖
uu𝑗𝑘 +𝐾⊤

𝑘 𝑄
𝑖
u +𝑄𝑖,⊤

ub 𝑗𝑘, (3.46)

𝑉 𝑖
bb,𝑘 = 𝑄𝑖

bb +𝐾⊤
𝑘 𝑄

𝑖
uu𝐾𝑘 +𝐾⊤

𝑘 𝑄
𝑖
ub +𝑄𝑖,⊤

ub𝐾𝑘, (3.47)

with terminal constraints

𝑉 𝑖
𝑙 = 𝑐𝑖𝑙(b̄𝑙), 𝑉

𝑖
b,𝑙 =

𝜕𝑐𝑖𝑙(b)

𝜕b

⃒⃒⃒⃒
b=b̄𝑙

, 𝑉 𝑖
bb,𝑙 =

𝜕2𝑐𝑖𝑙(b)

𝜕b2

⃒⃒⃒⃒
b=b̄𝑙

. (3.48)

Proof. Substituting the solution (3.40) and (3.44) back into the quadratic (3.23) yields

the value function 𝑉 𝑖
𝑘 (b̄𝑘 + 𝛿b𝑘).

𝑉 𝑖
𝑘 (b̄𝑘 + 𝛿b𝑘) = 𝑄𝑖

𝑘(b̄𝑘 + 𝛿b𝑘, 𝜋𝑘)

= 𝑄𝑖 +𝑄𝑖,⊤
u (𝑗𝑘 +𝐾𝑘𝛿b𝑘) +𝑄𝑖,⊤

b 𝛿b𝑘 (3.49)

+
1

2
(𝑗𝑘 +𝐾𝑘𝛿b𝑘)

⊤𝑄𝑖
uu(𝑗𝑘 +𝐾𝑘𝛿b𝑘) +

1

2
𝛿b⊤

𝑘𝑄
𝑖
bb𝛿b𝑘

+
1

2
(𝑗𝑘 +𝐾𝑘𝛿b𝑘)

⊤𝑄𝑖
ub𝛿b𝑘 +

1

2
𝛿b⊤

𝑘𝑄
𝑖
bu(𝑗𝑘 +𝐾𝑘𝛿b𝑘).

Collecting first and second order terms in 𝛿b𝑘 gives the Equations (3.45-3.47) in the

form of (3.32). The terminal constraints (3.48) result from a tailor expansion of the
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final cost 𝑐𝑖𝑙 around the final nominal belief b̄𝑙.

Based on results of Theorem 3 and Corollary 2 we can propagate the quadratic

value functions backwards in time starting from the terminal constraints at time 𝑙.

3.3.4 Regularization

With any Newton-like method, care must be taken when the Hessian 𝑄̂uu is not

positive-definite or when the minimum is not close and the quadratic model inac-

curate. To ensure that the algorithm converges regardless of initial conditions, we

implement a Levenberg-Marquardt style regularization [108].

Control Regularization

The control regularization is achieved by adding a diagonal term of magnitude 𝜇u to

the diagonal of 𝑄̂uu, yielding

𝑄̃𝑖
uu = 𝑄̂𝑖

uu + 𝜇u𝐼. (3.50)

This simple Levenberg-Marquardt style modification results in adding a quadratic

cost around the current control sequence, which forces the new optimal control inputs

computed by the backward pass to stay closer to the previous iteration.

Belief Regularization

The drawback of the control based regularization scheme is that even small control

perturbations can cause large deviations in the state trajectory potentially inhibiting

convergence. To ensure that the updated belief trajectory does not deviate too far

from the previous iteration, we introduce a scheme that penalizes deviations from

beliefs rather than controls with parameter 𝜇b:

𝑄̃𝑖
ss,𝑘 = 𝑐𝑖ss,𝑘 + 𝑔𝑇s,𝑘

(︀
𝑉 𝑖
bb,𝑘+1 + 𝜇b𝐼

)︀
𝑔s,𝑘 +

𝑛∑︁
𝑖=1

𝑊
(𝑗),𝑇
s,𝑘

(︀
𝑉 𝑖
bb,𝑘+1 + 𝜇b𝐼

)︀
𝑊

(𝑗)
s,𝑘 . (3.51)
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The outcome of the belief-based regularization is placing a quadratic belief-cost

around the previous belief trajectory, similar to [195] where a state based regular-

ization was employed. In contrast to the standard control-based regularization, the

feedback gains 𝐾𝑘 do not go to zero as 𝜇b →∞, but rather force the new trajectory

closer to the old one. In practice, we find this improves the robustness of convergence.

3.3.5 Algorithm for Dynamic-Game Belief-Space Planning

We summarize our findings of solving for Nash equilibria of dynamic games in belief

space in Algorithm 6. Theorem 2 lays the foundation for the quadratic game solved in

the backward pass of Algorithm 6. The solution to the quadratic game presented in

Theorem 3 yields a linear feedback policy 𝜋𝑘 for all agents. We propagate the value

function in the backward pass according to Corollary 2 starting with the terminal

conditions from the terminal cost.

Algorithm 6 starts from the current belief estimate b0, in our experiments pro-

vided from an EKF, and an initial control trajectory guess. We found initializing

controls to all zeros to work well in practice. We update the nominal control and

belief trajectories in the forward pass based on rolling out the belief dynamics model

and applying the updated feedback policy 𝜋𝑘. If all agents’ action-value functions

improved, we accept the updated nominal belief and control trajectories and reduce

regularization. Otherwise, we reject the trajectories and increase regularization. The

iteration of backward and forward pass continues until each agents’ action value func-

tion 𝑄𝑖 has converged and changes less than a specified threshold 𝜖.
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Algorithm 6 Nash Equilibrium of Dynamic Game in Belief Space
Input: Initial belief b0, control ū, models 𝑐𝑖𝑘, 𝑐𝑖𝑙, 𝑓 , ℎ

Output: Predicted trajectories b̄, ū, feedback law 𝜋

1: b̄ ← Propagate b0 with 𝑔 and ū

2: while |𝑄𝑖(b̄new, ūnew)−𝑄𝑖(b̄, ū)| > 𝜖 do

3: Backward pass:

4: 𝑉 𝑖
b,𝑙, 𝑉 𝑖

bb,𝑙 ← From terminal boundary conditions (3.48)

5: for 𝑘 ← 𝑙 − 1 to 0 do

6: 𝜋𝑖𝑘, 𝑗𝑖𝑘, 𝐾𝑖
𝑘 ← Solve quadratic game (3.44)

7: 𝑉 𝑖
b,𝑘,𝑉 𝑖

bb,𝑘 ← Propagate value function (3.46, 3.47)

8: end for

9: Forward pass:

10: b̄new, ūnew ← Propagate b0 with 𝑔 and 𝜋

11: if 𝑄𝑖(b̄new, ūnew) ≤ 𝑄𝑖(b̄, ū) then

12: b̄, ū← b̄new, ūnew,

13: lower regularization (3.50, 3.51)

14: else increase regularization

15: end if

16: end while

The algorithm yields a linear feedback policy 𝜋1 and a predicted belief trajec-

tory b1 of the robot, as well as predicted feedback policies 𝜋¬1 and predicted belief

trajectories b¬1 for all other agents over the full time horizon.

3.3.6 Runtime Analysis

The dominant runtime complexity in a single backward step is 𝒪(𝑁7𝑛𝑖,6x ). A full it-

eration of Algorithm 6 solves 𝑙 quadratic games leading the final runtime complexity

to 𝒪(𝑙𝑁7𝑛𝑖,6x ). Scaling linearly in the planning horizon 𝑙 enables real-time deploy-

ment whereas other POMDP algorithms scale exponentially, even without taking any

game dynamics into account. The following provides a brief summary of our runtime
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analysis.

We analyze the runtime by first recalling the dimension of the joint state is 𝒪(𝑛x),

and assume for the sake of analysis that the agents’ state dimensions are equal such

that 𝒪(𝑛x) = 𝒪(𝑁𝑛𝑖x). To simplify the analysis, we also assume the joint input (𝑛u)

and the joint measurement dimensions (𝑛z) to be 𝒪(𝑛x). The covariance matrix of

the joint state contains 𝑛2
x/2 unique elements. Since the joint belief b contains the

covariance of the state additionally to the state, it entails 𝒪(𝑛2
x) elements.

Now consider the matrix multiplicative terms in the iterative dynamic program-

ming procedure. A computational bottleneck occurs when updating the action-value

function 𝑄𝑖
ss in (3.26). Evaluating the product 𝑔⊤s 𝑉 𝑖

bb𝑔s requires the multiplication of

matrices with dimensions 𝒪(𝑛2
x)×𝒪(𝑛2

x), resulting in 𝒪(𝑛6
x) = 𝒪(𝑁6𝑛𝑖,6x ) complexity.

This operation has to be completed for each of the 𝑁 agents such that the complex-

ity increases to 𝒪(𝑁7𝑛𝑖,6x ). The term 𝑊
(𝑗),⊤
s 𝑉 𝑖

bb𝑊
(𝑗)
s in (3.26) must be computed 𝑛x

times, but can be evaluated in 𝒪(𝑛5
x), since 𝑊 only contains 𝑛x non-zero elements.

See (3.18) for the definition of 𝑊 . We solve the quadratic game at each stage by

finding the inverse of the 𝑛u×𝑛u matrix 𝑄̂uu in (3.41), which has complexity 𝒪(𝑛3
x).

Therefore, 𝒪(𝑁7𝑛𝑖,6x ) remains the dominant runtime complexity.

Next, we investigate the complexity of evaluating derivatives, Hessians, and Jaco-

bians. The cost Hessian 𝑐𝑖ss only contains 𝒪(𝑛4
x) elements. Automatic differentiation

through source code transformation yields 𝒪(1) complexity for each element, such

that the cost Hessian term has no significant impact on the overall runtime complex-

ity. The EKF belief dynamics can be evaluated in 𝒪(𝑛3
x), such that linearizing the

belief dynamics to obtain 𝑊s and 𝑔s, both with 𝒪(𝑛2
x) entries, results in 𝒪(𝑛5

x).

Thus, we find the dominant runtime complexity in a single backward step is

𝒪(𝑁7𝑛𝑖,6x ), and a final runtime complexity of 𝒪(𝑙𝑁7𝑛𝑖,6x ) in a full iteration of Al-

gorithm 6.

118



3.4 Case Studies

We demonstrate the performance and flexibility of our algorithm in three case studies

that combine the information-seeking behavior with our game-theoretic formulation.

These case studies examine how the agents interact in the game, gain information, and

use the information gain to improve their control policies. We choose these illustrative

examples due to their variations in agent interactions and demonstration of broader

capabilities. Each of the case studies employs a different dynamics and observation

model as well as distinct objectives for the agents. We find the Nash equilibrium to

each of these games through Algorithm 6.

3.4.1 Active Surveillance

In this case study, Agents 1 and 2 are in an environment with variable lighting condi-

tions. Agent 1 is tasked with observing Agent 2, but the quality of the observations

depends on the available lighting at the location in the environment. Agent 2 has no

goal, but is assigned the objective of maintaining a constant velocity while avoiding

Agent 1. In the provided examples, the agents do not directly exchange information.

Instead, they perceive themselves and the other agent only through observations. At

the time of initialization, neither agent has perfect information of the other but only

a noisy state estimate defining the initial belief b0. Using our approach, we show that

Agent 1 can successfully herd Agent 2 into the lighted region to achieve its surveil-

lance objective, which would not be possible without incorporating the belief space

planning into the dynamic game. Figures 3-2 and 3-3 show the planned trajectories

in two environments. Our case study goes beyond the commonly studied multi-robot

herding problem [116, 145, 144, 188] which has the goal of herding agents into a

specified location. In contrast, our goal is to reduce uncertainty in the final state of

another agent, which happens to coincide with pushing the other agent into the light.

Algorithms commonly applied to the herding problem are not applicable here as they

do not reason about the uncertainty of other agents.

The state of both car-like robots x(𝑖) = [𝑥(𝑖), 𝑦(𝑖), 𝜃(𝑖), 𝑣(𝑖)] consists of their position
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(𝑥, 𝑦), orientation 𝜃, and speed 𝑣. The control inputs u(𝑖) = [𝑢
(𝑖)
acc,𝑘, 𝑢

(𝑖)
steer,𝑘] are acceler-

ation 𝑢acc,𝑘 and steering wheel angle 𝑢steer,𝑘. The deterministic continuous dynamics

of both agents are given by

ẋ
(𝑖)
𝑘 =

[︀
𝑣
(𝑖)
𝑘 cos 𝜃

(𝑖)
𝑘 , 𝑣

(𝑖)
𝑘 sin 𝜃

(𝑖)
𝑘 , 𝑢

(𝑖)
acc,𝑘,

𝑣
(𝑖)
𝑘

𝐿 tan
(︁
𝑢
(𝑖)
steer,𝑘

)︁]︀⊤,
where L is the length of the robots. The discrete time dynamics are defined by

x𝑘+1 = 𝑓(x𝑘,u𝑘,m𝑘) = x𝑘 + ẋ𝑘𝜏 +𝑀(u𝑘) ·m𝑘,

for timestep 𝜏 and𝑀(u𝑘) scales the motion noise m𝑘 proportional to the control input

u𝑘, such that uncertainty increases if excessive controls are executed. We encode the

agent’s objective and goals in this game by defining the current and terminal costs

for Agent 1 and Agent 2 as

𝑐
(1)
𝑘 (b𝑘,u𝑘) = u

(1),⊤
𝑘 𝑅u

(1)
𝑘 ,

𝑐
(1)
𝑙 (b𝑙) = det(Σ(2)

𝑥,𝑦,𝑙),

𝑐
(2)
𝑘 (b𝑘,u𝑘) = u

(2),⊤
𝑘 𝑅u

(2)
𝑘 + 𝑎1(𝑣

(2)
𝑘 − 𝑣

(2)
𝑘,des)

2 + 𝑎2𝑐coll(x𝑘),

𝑐
(2)
𝑙 (b𝑙) = 𝑎1(𝑣

(2)
𝑙 − 𝑣

(2)
𝑙,des)

2 + 𝑎2𝑐coll(x𝑙).

Agent 1’s overall objective is to lower the uncertainty about the position of Agent

2 at the end of the planning horizon, encoded by 𝑐
(1)
𝑙 (b𝑙). The term det(Σ(2)

𝑥,𝑦) is

equivalent to the area of the 1𝜎-threshold ellipse of Agent 2 and representative of the

location uncertainty of Agent 2 at the end of the planning horizon. Note that both

agents penalize control effort by u
(𝑖),⊤
𝑘 𝑅u

(𝑖)
𝑘 , and Agent 2 has additional objectives for

maintaining a desired velocity 𝑣des and avoiding collisions via an exponential barrier

𝑐coll(x𝑘) = exp(−𝑑(x𝑘)). Here 𝑑(x𝑘) is the expected euclidean distance until collision

between the two agents, taking their outline into account.

We restrict the robots’ sensing abilities to only include noisy position measure-

ments. The observation model varies across the environment based on the available
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Figure 3-2: Active surveillance along linear light source: Agent 1 (blue) is
pushing Agent 2 (orange) into the light to reduce the uncertainty over Agent 2 at the
end of the planning horizon. Uncertainties are visualized by covariance ellipses. Both
agents are initialized with positive velocity in the x-direction.

light at a particular location,

z
(𝑖)
𝑘 = ℎ(x

(𝑖)
𝑘 ,n

(𝑖)
𝑘 ) = [𝑥

(𝑖)
𝑘 , 𝑦

(𝑖)
𝑘 ]𝑇 +𝑁(x

(𝑖)
𝑘 ) · n(𝑖)

𝑘 ,

where the matrix 𝑁(x
(𝑖)
𝑘 ) scales the measurement noise based on the current position

(𝑥, 𝑦) in the map. We show the nominal trajectories and the associated beliefs of the

solution computed using Algorithm 6 in Figures 3-2 and 3-3. In both cases Agent

1 (blue) is able to force Agent 2 into the light to successfully reduce uncertainty.

The emergent behavior would not have been possible without belief-space planning,

reasoning about another agent’s uncertainty, and without the dynamic game, esti-

mating how the own actions influence another agent’s actions. We show the resulting

behavior without belief-space planning and without any reasoning about Agent 2’s

uncertainty in the inset of Figure 3-3.
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Figure 3-3: Active surveillance along circular light source: By nudging Agent 2
onto the circular light source, Agent 1 is able to reduce the uncertainty over Agent 2’s
state at the end of the planning horizon. The lower left inset shows the same scenario
without any information gain. As a result, Agent 1 has no incentive to manipulate
Agent 2’s behavior since there is no way to influence its uncertainty. Both agents
start with positive velocity in the x-direction.
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Figure 3-4: Guide dog guides blind agent: Guide dog (orange) with leash (black
line) guides the blind agent (blue) towards the goal location (green). While doing
so it passes by both light sources to reduce the uncertainty of the blind person’s
position at the goal location. The top right inset shows the case where the guide dog
is indifferent about the blind person’s uncertainty.
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3.4.2 Guide Dog for Blind Agent

In this scenario, Agent 2 guides Agent 1 towards a goal location while choosing a

path that reduces the uncertainty in Agent 1’s position. The game is won if Agent 1

knows it reaches the goal location with a low uncertainty about its state. However,

Agent 1 does not have the ability to navigate itself. We refer to Agent 1 as the “blind”

agent. Following this analogy, Agent 2 acts as the “guide dog” for the blind agent.

The guide dog can gather information about its own state and the blind agent’s state

by passing through light sources in the environment which reduces uncertainty. The

agents are tethered together, which we model with spring dynamics and refer to the

tether as the “leash.” If the guide takes the blind agent on the direct path to the goal,

the guide would not have sufficient information to know it brought the blind agent to

the goal location. Under our approach, the guide dog detours to key areas to reduce

the blind agent’s uncertainty. We use the analogy of a guide dog leading a blind agent

to create an intuitive visual for the reader, however, this system is relevant to many

other robotic applications.

We model the system dynamics as two masses on a surface with friction connected

by a spring tether. The states of blind agent and guide dog are x(𝑖) = [r(𝑖),v(𝑖)] the 2D

position r and velocities v. The inputs u(𝑖) = 𝐹 (𝑖) are their respective force vectors.

The blind agent and guide dog have masses 𝑐mass,h and 𝑐mass,d respectively and are

bound to friction coefficients 𝑐fric,h and 𝑐fric,d. The accelerations are

a(1) = 1/𝑐mass,h(u(1) − 𝑓spring(∆r)− 𝑐fric,hv(1)),

a(2) = 1/𝑐mass,d(u(2) + 𝑓spring(∆r)− 𝑐fric,dv(2)),

and influenced by the spring force

𝑓spring(∆𝑟) =
∆r

||∆r||
𝑐spring max(||∆r|| − 𝑐leash, 0),

which is dependent on the distance vector ∆(r) = [r(1) − r(2)]. The dog’s leash is

flexible with spring constant 𝑐spring and has length 𝑐leash, such that it only generates
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a spring force if extended beyond 𝑐leash and is otherwise slack. The deterministic

continuous dynamics are ẋ(𝑖) = [v(𝑖),⊤, a(𝑖),⊤]⊤, and the discrete time dynamics

𝑓(x𝑘,u𝑘,m𝑘) = x𝑘 + ẋ𝑘𝜏 +𝑀(u𝑘) ·m𝑘,

for timestep 𝜏 and where 𝑀(u𝑘) scales the motion noise proportional to the inputs

u𝑘.

We use the cost functions to encode the behaviors and objectives of each agent.

Similar to the previous case study, minimizing det(Σ(1)
r,𝑙 ) encodes the guiding Agent

2’s objective of reducing the uncertainty over the position of the blind Agent 1 at the

end of the planning horizon. We define

𝑐
(1)
𝑘 (b𝑘,u𝑘) = u

(1),⊤
𝑘 𝑅u

(1)
𝑘 + 𝑐acc,ha

(1),⊤
𝑘 a

(1)
𝑘 ,

𝑐
(1)
𝑙 (b𝑙) = 0,

𝑐
(2)
𝑘 (b𝑘,u𝑘) = u

(2),⊤
𝑘 𝑅u

(2)
𝑘 ,

𝑐
(2)
𝑙 (b𝑙) = det(Σ(1)

r,𝑙 ) + ||r(1)𝑙 − rgoal||2.

Here, the term ||r(1)𝑙 − rgoal||2 drives the guide dog to relocate the blind agent to the

goal. We reduce the control efforts of each agent by u
(𝑖),⊤
𝑘 𝑅u

(𝑖)
𝑘 , and the blind agent

has the additional objective of reducing accelerations with 𝑐acc,ha
(1),⊤
𝑘 a

(1)
𝑘 . We use a

noisy observation model

z
(𝑖)
𝑘 = ℎ(x

(𝑖)
𝑘 ,n

(𝑖)
𝑘 ) = x

(𝑖)
𝑘 +𝑁(x

(𝑖)
𝑘 ) · n(𝑖)

𝑘 ,

where the matrix 𝑁(x
(𝑖)
𝑘 ) scales the measurement noise based on the environment

shown in Figure 3-4.

We show the resulting behavior in Figure 3-4: The dog (orange) guides the blind

agent (blue) from its initial position to the blind person’s goal location (green) while

reducing the uncertainty of the blind agent’s final state by planning a slight detour

through the light sources instead of directly towards the goal location. The guide
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does so while also taking the complex interaction originating from the blind person’s

forces on the tether into account. The inset on Figure 3-4 is the path taken by the

dog with no optimization over the blind agent’s uncertainty. While it takes a direct

path to the goal, the final uncertainty of the blind agent is large.

3.4.3 Autonomous Racing

Finally, we demonstrate our approach in competitive racing, a common problem in

dynamic games. By incorporating belief-space planning into the dynamic game for-

mulation, we show a significant increase in racing performance. This allows the agents

to reduce uncertainty and decrease chance constraints, thus maneuvers like overtaking

on tight road segments become possible.

In all racing runs each agent maintains a separate instance of Algorithm 6. This

means that each agent separately computes their own optimal control actions, the

predictions of other respective agents, and their own Nash equilibrium. No other

additional information, such as state estimates, beliefs, policies, or initializations are

shared among agents. Since each agent executes a separate instance of Algorithm 6,

Assumption 2 may not be accurate, i.e. the belief computed by agent 𝑗 over agent

𝑖 may only inaccurately resemble the belief of agent 𝑖 over itself. Nonetheless, we

will show that despite a first-order belief assumption, the presented approach yields

superior performance to all other baselines.

Each agent’s state x(𝑖) = [𝑥(𝑖), 𝑦(𝑖), 𝜃(𝑖), 𝑣(𝑖)] and controls u(𝑖) = [𝑢
(𝑖)
acc,𝑘, 𝑢

(𝑖)
steer,𝑘]

are the same as in the active surveillance experiment but the different deterministic

continuous dynamics are of the from

ẋ
(𝑖)
𝑘 =

[︀
𝑣
(𝑖)
𝑘 cos

(︁
𝜃
(𝑖)
𝑘

)︁
, 𝑣

(𝑖)
𝑘 sin

(︁
𝜃
(𝑖)
𝑘

)︁
, 𝑢

(𝑖)
acc,𝑘 − 𝑐drag,i𝑣

(𝑖)
𝑘 − 𝑐slip,i(𝜃

(𝑖))2, 𝜃(𝑖)
]︀⊤
,

with yaw rate 𝜃(𝑖) = 𝑣
(𝑖)
𝑘 /𝐿 tan

(︁
𝑢
(𝑖)
steer,𝑘

)︁
, and drag- 𝑐drag,i and slip coefficient 𝑐slip,i.

The stochastic discrete time dynamics,

x𝑘+1 = 𝑓(x𝑘,u𝑘,m𝑘) = x𝑘 + ẋ𝑘𝜏 +𝑀(b𝑘,u𝑘) ·m𝑘,
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are subject to noise scaled by 𝑀(b𝑘,u𝑘) proportional to the control input u𝑘 as well

as the squared yaw rate (𝜃(𝑖))2 of each agent 𝑖 separately. The observation model

z
(𝑖)
𝑘 = ℎ(x

(𝑖)
𝑘 ,n

(𝑖)
𝑘 ) = x

(𝑖)
𝑘 +𝑁(x

(𝑖)
𝑘 ) · n(𝑖)

𝑘 ,

is subject to noise scaled by 𝑁(x
(𝑖)
𝑘 ), depending on the position on the race track

map. As shown in Figure 3-1, we indicate zones of low measurement noise as red. It

may be beneficial for agents to plan to drive through these low measurement noise

regions to increase information gain and to reduce uncertainty.

Each agent’s goal is to maximize progress along the race track while staying on

the track and not colliding with other agents. We define the progress along the track

for any point p = (𝑥, 𝑦) as the arc-length progress 𝑟(p) of the closest point on the

centerline. Likewise, we define 𝑑(p) as the distance of the closest point on the track to

p. We visualize both the distance transform as well as the progress transform of the

race track shown in Figure 3-1 in Figure 3-5. For competitive racing, each agent tries

to maximize the relative progress over other agents 𝑟(p(𝑖))− 𝑟(p(¬𝑖)). Consequently,

agents will engage in competitive blocking and cutting behavior. We design the

current and terminal costs of each agent as

𝑐
(𝑖)
𝑘 (b𝑘,u𝑘) = u

(𝑖),⊤
𝑘 𝑅u

(𝑖)
𝑘 + 𝑐

(𝑖)
track(b𝑘) + 𝑐

(𝑖)
coll(b𝑘),

𝑐
(𝑖)
𝑙 (b𝑙) = −𝑟(𝑝(𝑖)𝑙 ) + 𝑟(𝑝

(¬𝑖)
𝑙 ),

penalizing control effort by 𝑅, while 𝑐(𝑖)track(b𝑘) and 𝑐(𝑖)coll(b𝑘) keep the agent on the track

and out of collision. We achieve this by finding the upper bound of the 2𝜎 positional

uncertainty Σ
(𝑖)
𝑥,𝑦 as 𝛼 = 2

√︁
max(eig(Σ

(𝑖))
𝑥,𝑦 )). We can then formulate a chance collision

constraint with other agents (limiting ||p(𝑖) − p(𝑗)||) and the boundary of the race

track (limiting 𝑑(p)) by restricting positions in the 𝛼 vicinity. Finally, to arrive

at 𝑐(𝑖)track(b𝑘) and 𝑐
(𝑖)
coll(b𝑘) we convert the constraints to soft constraints, penalizing

constraint violation exponentially strong, as suggested in [201]. Additionally, we also

limit control inputs u𝑘 by soft constraints.
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Figure 3-5: Distance and progress transforms: Top: (Distance Transform)
Map of the distances to the closest point on the center line 𝑑(p) of the race track
shown in Figure 3-1. Bottom: (Progress Transform) Map of the progress 𝑟(p)
along the race track of the closest point on the center line.
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Figure 3-6: Blocking and cutting maneuvers: Top: Blue agent cuts in front of
the red agent, forcing the red agent to break. As a result, the blue agent can remain
in front of the red agent at the end of the turn. Bottom: The red agent blocks
the blue agent’s overtaking maneuver forcing the blue agent to stay behind and take
a wider line in the upcoming right turn. Significant amount of noise is simulated
visualized by the deviation of the true trajectory (solid lines) and the predicted mean
of the belief (dashed lines).
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Competitive Racing

In our racing simulation, each car executes the current commanded control computed

by their own separate instance of Algorithm 6. The environment’s dynamics are

propagated forward subject to significant amount of noise. Subsequently, a noisy ob-

servation is generated to simulate measurement uncertainty and the current belief is

updated by an EKF step. Each agent runs an individual and independent EKF and

maintains their own separate belief over themselves and others. Each agent receives

noisy measurements with noise drawn independently from other agents. Agents do

not share any information, such as policies, measurements, initializations, state esti-

mates, or beliefs, during online operation. To test robustness, we simulate substantial

amounts of noise, such that the belief b may significantly deviate from the true state

of the system x, shown in Figure 3-1 and Figure 3-6.

We encourage interaction by starting one agent with lower drag coefficient (and

therefore higher speed) behind another slower agent. The faster agent will eventually

catch up to the previous agent and initiate an overtaking maneuver. The better

interactions are predicted and integrated into planning, the more successful overtaking

maneuvers will occur.

The algorithm described in this chapter is able to synthesize competitive emergent

behavior such as blocking of other vehicles and cutting in front of others, illustrated

in Figure 3-6. Additionally, although tight racing lines cut corners very closely, the

chance constraints are successful in prohibiting collisions under the presence of motion

and observation noise.

Benefits of Dynamic Game Planning

We compare the performance of Dynamic Game (DG) planning to conventional meth-

ods such as Model Predictive Control (MPC). Both DG and MPC agents plan in be-

lief space. The MPC agent has the exact same cost structure, but observes the other

agents’ executed actions and predicts agents to continue with the same action. The

MPC baseline therefore predicts agents to not react to changes of their own actions
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Figure 3-7: MPC vs DG traces and racing results: Top: Traces of agents
comparing MPC and DG. In both cases the MPC method moves away from the
ideal racing line more often due to failed overtaking attempts. It can not foresee it’s
influence on the DG agent’s actions and thus is less efficient. It is also not able to take
advantage of estimating is implicit control over the other agent like the DG agent.
The agents start from random initialization locations around the origin. Bottom:
Histograms of the ∆arc-length lead of the faster agent over the slower agent. Green
indicates that the faster agent won the race against the agent starting in the lead,
whereas red indicates the opposite. In comparison, the DG method won more races
than the MPC method and had a higher average lead.
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Table 3.2: Racing Performance: DG vs MPC and BSP vs non-BSP
Competition Pair Fraction of Fast winning
Fast DG BSP vs Slow MPC BSP 82%
Fast MPC BSP vs Slow DG BSP 64%
Fast DG BSP vs Slow DG non-BSP 77%
Fast DG non-BSP vs Slow DG BSP 63%
Fast DG BSP vs Slow DG BSP 67%

Table 3.3: Racing Performance: Winning Ratio
Competition Pair Win ratio
DG BSP vs MPC BSP 1.44:1
DG BSP vs DG non-BSP 1.33:1

and cannot leverage the effects of their own actions on other agents. The MPC is ca-

pable of synthesizing competitive racing trajectories, shown in Figure 3-7, which are

identical to the DG trajectories when no other agents are present. The performance

of the DG planning distinguishes itself when interactions occur.

We display the results of 200 runs in Figure 3-7, Table 3.2 and Table 3.3. The

DG method wins 44% more races relative to the MPC baseline and has a larger

lead on average. These results clearly illustrate the competitive advantage of our

game-theoretic algorithm from leveraging how others react to one’s own actions when

planning.

Benefits of Belief-Space Planning

We also compare the performance of DG planning with and without Belief-Space

Planning (BSP). In the non-BSP case the current uncertainty Σ0 of the belief b0 is

held constant over the planning horizon and is not influenced by expected measure-

ments. Note that the current belief is still updated online by an EKF for both agents.

Results are reported in Figure 3-9 and Table 3.2. The BSP variant wins 33% more

races, has a larger average lead, and the fewest number of collisions. The non-BSP

method collides nearly 10 times more often and exhibits behavior inappropriate for

observed uncertainty levels. For example, agents are too conservative because low

noise regions are not considered in the planning phase, or too aggressive when enter-
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Figure 3-8: Leveraging BSP for overtaking: Top: The blue agent overtakes the
red agent by decreasing the uncertainty through the low noise region and reducing
the chance constraint (ellipses). Bottom: The blue agent has the same uncertainty
over the planning horizon and fails to overtake since the chance constraints remain
large.
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ing sharp turns since additional motion noise due to breaking and steering are not

accounted for.

Figure 3-8 gives an intuitive explanation for the competitive advantage of planning

in belief space. Without information gain, the follower will never be able to overtake

due to the large chance constraint. Whereas with information gain, the chance con-

straint shrinks while moving through a low noise zone, allowing the blue agent to

overtake the leading agent. As shown in Figure 3-9, the BSP agent can adapt their

trajectories to account for increased noise due to strong actuation, i.e. braking and

steering, and gaining information in low noise regions.

Finally, we compare the performance when both agents use DG BSP, Table 3.2,

and see that the faster agent wins 67% of the races. Since the performance gain of

the faster over the slower agent is smaller than in the previous two comparisons, we

assume that the slower agent improves their blocking behavior more than the faster

agent improves their ability to overtake. In scenarios where high uncertainty causes

the chance constraints to occupy large parts of the track’s width, the slower agent

can often block the faster agent by proceeding in the middle of the road.

3.4.4 Real-Time Implementation Details

We implement our solver in the CasADi [20] framework leveraging auto-differentiation

by source code transformation, automatic problem specific compute graph generation,

C-code generation, and sparse operations. Exploiting sparsity is highly important to

allow for real-time performance since the belief space, encompassing the mean state

and the upper triangle of the covariance matrix can make respective Jacobian and

Hessian matrices very large. The average compute times on a Ryzen 7 1700X 3.4 GHz

are reported in Table 3.4. Algorithm 1 was run until convergence starting from a cold

start for all experiments, i.e. the initial control trajectory u consists of all zeros.

Nonetheless, it is also possible to run the algorithm sequentially by hot starting

the optimization with the previous solution. This is common practice in related

optimization techniques for controls such as sequential quadratic programming [139]

and allows to run Algorithm 6 at 100-200Hz. In these cases it is often enough to run
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Figure 3-9: BSP vs non-BSP traces and racing results: Top: Traces of agents
comparing BSP and non-BSP. In both cases the non-BSP method shows more unsafe
behavior, leaving the track several times and nearly colliding with the other agent.
The BSP agent attempts more aggressive overtaking maneuvers due to the lower un-
certainty estimate over itself and the other agent, as shown in the cutout. The agents
start from random initialization locations around the origin. Bottom: Histograms of
the ∆arc-length lead of the faster agent over the slower agent. Here, the BSP method
won more races than the non-BSP method and had a higher average lead.
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only very few iterations to update the previous solution.

Table 3.4: Average computation time
Experiment Per iteration Until convergence
Active surveillance 9.3 ms 371.3 ms
Guide dog 11.2 ms 474.9 ms
Racing 5.8 ms 110.5 ms

3.5 Discussion

In this chapter, we propose a formulation for integrating belief-space planning into

dynamic games, and present a real-time algorithm for solving the local Nash equilibria

of these dynamic games in belief space. We demonstrate its performance of combining

game-theoretic planning and information gathering with three case studies: active

surveillance, guiding blind agents, and racing with autonomous vehicles.

While game-theoretic planning models the interaction and dependency among

agents, it does not address the quality of information available to the agent for de-

cision making. Incorporating belief-space planning in dynamic games allows for new

capabilities not possible with other approaches, essential in house service robots or in-

teracting with human agents in traffic. Reasoning about another agent’s uncertainty

and simultaneously leveraging the effect of own actions on other agents’ actions re-

sults in complex emergent behavior such as indirectly pushing and guiding others

through regions of light, without the use of any form direct of communication.

In competitive use cases such as racing, emergent behavior consists of cutting,

blocking, forcing others to break hard with the goal of increasing their uncertainty

and slowing them down in turns, as well as the exploitation of high information-gain

zones for overtaking. In particular, game-theoretic belief-space planning significantly

increased performance in dynamic racing when benchmarked against state-of-the-art

planning methods. Game-theoretic belief-space planning wins 44% more races when

competing with a non-game-theoretic baseline with belief-space planning and 34%

more races than a game-theoretic baseline without belief-space planning.

136



In this work we limit ourselves to first-order beliefs to avoid the explosion in

parameters for recursive beliefs over beliefs. Nonetheless, even in cases where a first-

order belief assumption is a simplification of the true belief dynamics, such as racing,

we see improved performance to baselines that do not take the belief over other agents

into account. In future work we intend to develop extensions beyond first-order belief

spaces.

We efficiently solve for Nash equilibria in belief space and achieve real-time perfor-

mance, operating our algorithm at more than 100Hz. Efficiently solving a quadratic

game at each stage of the recursive backward pass of a belief-space variant of iLQG

results in an algorithm with runtime complexity 𝒪(𝑙𝑁7𝑛𝑖,6x ). Linear complexity in the

planning horizon allows for online deployment, in comparison to point-based POMDP

algorithms with exponential complexity. While our algorithm also achieves polyno-

mial runtime complexity in the number of agents 𝑁 , future work will investigate

lowering the complexity further.

In the presented work so far, we have learned reward functions from human data

and leveraged known models for dynamics and observations for game-theoretic plan-

ning. We will now drop the assumption of known models and learn to compete from

scratch without any prior knowledge about the world. Additionally, while the previ-

ous work had access to proprioceptive state estimation, we will present agents that

learn competitive control policies directly from raw image observations.
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Chapter 4

Learning from Competition: Learning

to Race Using Visual Control Policies

in Latent Space

4.1 Introduction

Driverless racing is a challenging task promising to push the limits of autonomous

navigation as it requires robust operation of the entire driving stack at high speeds.

Racing becomes particularly challenging when multiple agents simultaneously com-

pete within the same environment. This requires both, fast processing of observations

and reasoning about opponent behavior. By addressing these challenges, racing can

provide novel insights for the deployment of autonomous systems. In the context of

Multi-Agent Reinforcement Learning (MARL), racing can benchmark competitive-

ness as it requires reasoning about the interplay between ego actions and opponent

behavior. This is particularly challenging when operating under partial observabil-

ity in high-dimensional input spaces and in the absence of structured priors over

environment behavior.

Recent approaches to autonomous racing tend to assume access to a nominal en-

vironment model [9, 44, 120]. Some also leverage game-theoretic frameworks such as
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iterated best response [183, 214, 119]. However, in racing and other real-world multi-

agent settings, relevant behavioral and environmental features may be too complex to

be captured by MPC or purely game-theoretic approaches that assume perfect knowl-

edge of the state and the system dynamics. MARL provides an alternative framework

for modeling rich agent interactions. Impressive successes have been demonstrated

for large-scale competition in discrete action spaces [208] with access to privileged

ground truth information such as categorized entity lists and multi-layer maps. Con-

tinuous control applications of MARL in competitive settings that only provide image

observations are less well-studied. In particular, combining high-dimensional obser-

vations such as images, partial observability of other agents, multi-agent world model

learning, and acquiring complex competitive behaviors through self-play is still a

challenge.

4.1.1 Main Assumptions

Human Formula 1 drivers may assume that other drivers’ cars handle in similar

ways to their own vehicle. Similarly, we assume that our vehicle and the vehicles of

other agents have comparable performance and handling characteristics. Likewise,

we assume that the competitors’ reward structure is similar to our own. Drivers

seek to make progress along the track and stay in the lead. These assumptions allow

us to make rational predictions about the behavior of other agents. Nonetheless,

in comparison to the previous chapters, the functions for reward, dynamics, and

observation are unknown and have to be inferred from collected experience. In this

work, we use top-down views of the vehicle and the track. While the presented

approach may extend to more general and less advantageous perspectives, exploring

these is beyond the scope of this chapter. We do not assume access to any privileged

information such as the locations of the track or other vehicles. Instead, our method

operates on raw image observations. During the online phase of our algorithm, we do

not assume access to the opponent’s view or controls. Instead, we learn to predict the

opponent’s view in a latent space based on our observations. Nonetheless, during the

offline phase of the algorithm, we assume access to both the own and the opponent’s
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observations and controls of past episodes and races.

4.1.2 Contributions

We address the outlined research gap by proposing Deep Latent Competition (DLC),

a novel model-based MARL method that operates on raw image inputs. While this

method can be applied to a range of problems, we focus on demonstrating it in

the context of two-player racing. Our approach learns a world model for imagining

competitive behavior in latent-space. This allows for training agents via imagined

self-play such that they can predict opponent behavior and incorporate the expected

outcomes of action sequences in their policy selection. We further learn to predict the

belief of other agents purely based on observations from the ego agent’s perspective.

We validate this methodology on a novel multi-agent racing benchmark based on

OpenAI Gym [37] that requires the application of continuous visual control policies.

In summary, this work contains the following contributions:

1. A novel model-based reinforcement learning algorithm for learning compet-

itive control policies for multi-agent problems from raw image observations

through self-play in latent space.

2. A multi-agent world model structure that allows for (a) imagination of com-

peting agents’ behavior in a learned latent space and (b) estimation of

the beliefs of others from own observations.

3. Extensive evaluations in a new multi-agent racing benchmark demon-

strating superiority over approaches that do not reason about other agents in

imagination.

4.2 Related Work

4.2.1 Autonomous Racing and Navigation

Most recent approaches considering autonomous racing assume knowledge of the un-

derlying dynamics model and use machine learning based techniques for improving
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said model. This can be employed in conjunction with a variety of control ap-

proaches [9, 44, 120, 172]. Game-theoretic methods additionally explicitly model

interactions with other agents for decision making [174, 183, 213, 214, 216, 119, 173].

These approaches usually do not operate on high-dimensional input spaces and often

impose assumptions on the type of interactions. On the other hand, learning-based

end-to-end navigation approaches [154, 12, 28, 33, 96, 14, 13] can operate directly on

high-dimensional sensor data but typically involve no inductive biases for considering

interactions.

4.2.2 Multi-Agent Reinforcement Learning

Recently, MARL agents have surpassed human-level performance in many multi-

agent environments including complex board and card games such as Go [182], chess,

shogi [181], and Poker [131, 39]. MARL agents also reached grandmaster-level per-

formance in the real-time strategy game Star Craft II [208, 209], and showed complex

emergent tool use in hide-and-seek [25]. We are motivated by the success of recent

algorithms for continuous control tasks in cooperative, competitive, and team com-

petition environments [112, 90, 122, 29]. While these agents leveraged privileged

information, such as entity lists, states, and maps, we present an agent that learns

competitive strategies directly from raw image observations. A common thread in

MARL is self-play auto-curricula [123, 104, 83, 84]. In contrast, we gain competitive-

ness from imagined self-play in a learned multi-agent latent world model.

4.2.3 Latent Imagination in RL

Use of neural networks, particularly recurrent neural networks, for modeling the evo-

lution of the environment allowing for "mental imagination" has been proposed as

early as 1990 [166] and recently revisited in [74]. In a similar spirit, variational infer-

ence approaches have been combined with the linear-quadratic-regulators for learning

to control from raw images [215, 220]. Another line of recent algorithms combines

latent (multi-step) imagination with video prediction [95, 76, 176], achieving state-
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Table 4.1: Deep Latent Competition: Main Symbols and Notation
𝑆, 𝐴𝑖 set of environment states, continuous action set
𝑇 : 𝑆 × 𝐴1 × · · · × 𝐴𝑛 → Π(𝑆) transition function
𝑅𝑖 : 𝑆 × 𝐴𝑖 → R reward function
𝑂𝑖 : 𝑆 × 𝐴𝑖 → Π(Ω𝑖) observation function
𝑜𝑖𝑡, 𝑟𝑖𝑡 observation and reward of agent 𝑖 at time 𝑡
𝑎𝑖𝑡, 𝑠𝑖𝑡, 𝑧𝑖𝑡 action, latent state, latent embedding
𝜃, 𝜓 model and policy parameters
𝒟 replay buffer
𝐿,𝐻 batch sequence length, trajectory rollout length
𝐾 number of episodes
𝛾, 𝜆 discount factor, exponential recency factor
𝑛, 𝑇 number of agents, time horizon

of-the-art performance on several standard benchmarks. We draw inspiration from

these ideas and generalize the concept of multi-step latent imagination to multiplayer

settings.

4.3 Representing Multi-Agent World Models

We define competitive visual control in our racing domain as a MARL problem. A

collection of agents interacts within the environment and learns to optimize their

behavior in an effort to maximize individual cumulative reward. MARL is typically

modelled as a Markov game [177, 121, 71], in which each agent solves a partially

observable Markov decision process (POMDP) [94, 79, 193]. In the following, we first

introduce the general problem definition, outline our approach to imagined self-play

and introduce our representation learning approach.

4.3.1 Problem Formulation of Competitive MARL

We define the POMDP of agent 𝑖 ∈ {1, . . . , 𝑛} as the tuple 𝑀 𝑖 = ⟨𝑆,𝐴𝑖, 𝑇,Ω𝑖, 𝑂𝑖, 𝑅𝑖⟩,

where 𝑆 denotes the set of environment states, 𝐴𝑖 the continuous action set, and

𝑇 : 𝑆 ×𝐴1 × · · · ×𝐴𝑛 → Π(𝑆) the corresponding transition function with associated

probability distribution Π(·). For each agent 𝑖, we furthermore define a reward func-

tion 𝑅𝑖 : 𝑆×𝐴𝑖 → R, as well as an observation set Ω𝑖 with corresponding observation
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Figure 4-2: Model learning: The agent learns to encode observations into separate
latent states for each agent based on reconstruction and reward prediction. The
learned transition model propagates all agents’ latent states jointly.

function 𝑂𝑖 : 𝑆 × 𝐴𝑖 → Π(Ω𝑖). In the following, we consider a homogeneous set of

agents with identical action and observation spaces as well as reward functions, such

that 𝑋 𝑖 = 𝑋 for 𝑋 = {𝐴,Ω, 𝑂,𝑅}.

We do not assume prior knowledge about the environment. Thus, the nominal

reward function 𝑅, state transition function 𝑇 , and observation function 𝑂 are un-

known. Let 𝑞𝜑(𝑎𝑖𝑡|𝑜𝑖≤𝑡, 𝑎𝑖<𝑡) denote the policy of agent 𝑖, conditioned only on its own

observation-action history, and define the associated expected return over a race of

duration 𝑇 to be E
∑︀𝑇

𝑡=1 𝑟
𝑖
𝑡. The objective is then to develop an agent that maximizes

the expected return in the absence of prior knowledge about nominal environment and

opponent behavior. This defines an extensive-form game as the agents are competing

for reward over multiple timesteps, while only receiving instantaneous environment

feedback via high-dimensional observations 𝑜𝑖𝑡 and scalar rewards 𝑟𝑖𝑡.

4.3.2 Learning through Imagined Self-Play

Model-based reinforcement learning consists of the tasks of (a) model learning, (b)

behavior optimization, and (c) environment interaction. Model-based MARL ex-

tends model learning to include predictions of other agents’ behavior, while behavior

optimization needs to account for competitive fitness. The training proceeds central-
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Figure 4-3: Self-play in imagination: The agent predicts state values and optimizes
actions that maximize future returns by propagating gradients back through imagined
game trajectories. The agent’s competitiveness continuously improves through self-
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Figure 4-4: Environment interaction: The agent estimates the own and other
agents’ current state based on an encoding of own historic observations only and
predicts the actions of the other agent and the own actions to be executed in the
environment. True observations and actions of other agents are not available.
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ized. While the learning algorithm has access to the observation-action histories of

all agents, the deployment is decentralized, providing each agent only with their in-

dividual observation-action history. As detailed in Figures 4-2,4-3,4-4 our algorithm

iteratively executes the following:

1. Learning a world model consisting of the joint dynamics and reward function

based on previous experience of all agents, see Figure 4-2. Learning to predict

how the world evolves conditioned on own and expected opponent actions en-

ables each agent to imagine the outcome of games without requiring additional

real-world experience.

2. Learning action and value function models through policy iteration on imagined

model rollouts. The agents interact with their adversaries through imagined

self-play and acquire increasingly competitive behaviors without the necessity

for execution in the real world, see Figure 4-3.

3. Competing in the real world to collect novel experience and judge the per-

formance of the current behavior. Each agent only has access to their own

observation-action history and performance indirectly depends on how well the

states of opponents are being estimated, see Figure 4-4.

Representing Multi-Agent World Models

Leveraging a multi-agent world model accelerates learning through imagined self-play.

The agent optimizes its behavior by simulating interactions with its opponents in the

environment without execution in the real world. In contrast to single-agent world

models [215, 220, 77], this requires explicit representation of the state and action

of each agent, as well as a mechanism for an agent to predict behavior of another

agent. In the following, we will consider a two-player game (𝑛 = 2) and extend the
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representation model formulation provided in [76] to yield:

Representation model: 𝑝𝜃
(︀
𝑠1𝑡 , 𝑠

2
𝑡 |𝑠1𝑡−1, 𝑠

2
𝑡−1, 𝑎

1
𝑡−1, 𝑎

2
𝑡−1, 𝑜

1
𝑡 , 𝑜

2
𝑡

)︀
,

Transition model: 𝑞𝜃
(︀
𝑠1𝑡 , 𝑠

2
𝑡 |𝑠1𝑡−1, 𝑠

2
𝑡−1, 𝑎

1
𝑡−1, 𝑎

2
𝑡−1

)︀
,

Encoder model: 𝑞𝜃
(︀
𝑧𝑖𝑡, 𝑧

¬𝑖
𝑡

⃒⃒
𝑜𝑖𝑡),

Observation model: 𝑞𝜃
(︀
𝑜𝑖𝑡|𝑠𝑖𝑡

)︀
,

Reward model: 𝑞𝜃
(︀
𝑟𝑖𝑡|𝑠𝑖𝑡

)︀
,

(4.1)

where 𝑝 and 𝑞 denote distributions in latent space, with 𝜃 as their joint parameteri-

zation. The representation model encodes observations (𝑜1𝑡 , 𝑜
2
𝑡 ) into Markovian model

states (𝑠1𝑡 , 𝑠
2
𝑡 ) [76], which are propagated under a joint transition function to predict

future model states (𝑠1𝑡+1, 𝑠
2
𝑡+1). We explicitly provide the underlying encoder model

to emphasize that each agent not only learns an embedding corresponding to its own

viewpoint, 𝑧𝑖𝑡, but additionally learns to predict embeddings of the opponent, 𝑧¬𝑖𝑡 . This

is crucial during deployment, as ground truth observations and actions of opponents

are not available. Instead, we leverage our predicted embeddings 𝑧¬𝑖𝑡 in conjunction

with an action model 𝑞𝜑 (𝑎¬𝑖𝑡 |𝑠¬𝑖𝑡 ) and employ a slightly modified representation model

𝑝𝜃
(︀
𝑠𝑖𝑡, 𝑠

¬𝑖
𝑡 |𝑠𝑖𝑡−1, 𝑠

¬𝑖
𝑡−1, 𝑎

𝑖
𝑡−1, 𝑎

¬𝑖
𝑡−1, 𝑜

𝑖
𝑡

)︀
that is only conditioned on the observation of the

ego agent, 𝑜1𝑡 . The encoder model is part of the representation model and embeds

observations into embedding states based on which model states are then generated.

For each agent, we furthermore define an individual observation model 𝑞𝜃 (𝑜𝑖𝑡|𝑠𝑖𝑡) and

reward model 𝑞𝜃 (𝑟𝑖𝑡|𝑠𝑖𝑡). The underlying architectures follow [77, 76], where the tran-

sition model is represented by a recurrent state space model (RSSM), the encoder and

observation models by a convolutional neural network (CNN) and transposed CNN,

respectively, and the reward model by a dense neural network. Training of these

models then proceeds centralized, such that the learning algorithm is given access to

the interaction histories of each agent.
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4.4 Learning to Compete by Imagined Self-Play

Our proposed algorithm learns a world model from ground truth data, based on

which behavior is refined through imagined self-play. In the following, we introduce

the objectives for the two stages.

4.4.1 Representation Learning

The representation learning objective combines image reconstruction with reward pre-

diction in order to discover latent spaces that not only offer compact representations

of environment states but further facilitate prediction of associated trajectory perfor-

mance. Because agents are actively competing for reward, their states are propagated

jointly through the transition model with each agent learning to predict relevant op-

ponent states. The observation model then not only provides reconstruction signals

for the ego perspective via the true ego state 𝑠𝑖𝑡, but also for the opponent perspec-

tive via the predicted opponent state 𝑠¬𝑖𝑡 . Following [76], the models introduced in

Eq. (4.1) are optimized to maximize a reformulation of their variational lower bound

objective:

𝐽𝑀,𝑠 = E𝒟(
∑︀

𝑡(𝐽𝑂,𝑡 + 𝐽𝑅,𝑡 + 𝐽𝐷,𝑡)), (4.2)

𝐽𝑂,𝑡 = ln 𝑞(𝑜1𝑡 |𝑠1𝑡 ) + ln 𝑞(𝑜2𝑡 |𝑠2𝑡 ),

𝐽𝑅,𝑡 = ln 𝑞(𝑟1𝑡 |𝑠1𝑡 ) + ln 𝑞(𝑟2𝑡 |𝑠2𝑡 ),

𝐽𝐷,𝑡 = −𝛽KL(𝑝(𝑠1𝑡 , 𝑠
2
𝑡 |𝑠1𝑡−1, 𝑠

2
𝑡−1, 𝑎

1
𝑡−1, 𝑎

2
𝑡−1, 𝑜

1
𝑡 , 𝑜

2
𝑡 ) ‖ 𝑞(𝑠1𝑡 , 𝑠2𝑡 |𝑠1𝑡−1, 𝑠

2
𝑡−1, 𝑎

1
𝑡−1, 𝑎

2
𝑡−1)),

where the general model state 𝑠 may either originate from ground truth embeddings 𝑠

or their predictions 𝑠. In practice, we optimize a linear combination of 𝐽𝑀,𝑠 with 𝑠 =

{(𝑠1𝑡 , 𝑠2𝑡 ), (𝑠1𝑡 , 𝑠2𝑡 ), (𝑠1𝑡 , 𝑠2𝑡 )}. This enables learning of latent representations conducive

to solving the task via the ground truth embeddings, while constraining predicted

embeddings to sensible representations within that space.
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4.4.2 Behavior Learning

The behavior learning objective optimizes for competitive fitness by maximizing the

expected return of the action model 𝑞𝜑(𝑎𝑖𝑡|𝑠𝑖𝑡) over a 𝑇 -step race. The agent can imag-

ine outcomes of potential interaction sequences by leveraging the learned transition

model, therefore bypassing execution in the real world through imagined self-play.

Generating entire race sequences can be computationally prohibitive and we follow

[76] in complementing finite horizon model rollouts with predictions from a value

model 𝑣𝜓(𝑠𝑖𝑡) in order to approximate returns corresponding to an extensive form

race. The action and value model are then trained jointly using policy iteration on

the objectives

max𝜑 E𝑞𝜃,𝑞𝜑
(︁∑︀𝑡+𝐻

𝜏=𝑡 𝑉𝜆(𝑠𝜏 )
)︁
, min𝜓 E𝑞𝜃,𝑞𝜑

(︁∑︀𝑡+𝐻
𝜏=𝑡 ‖𝑣𝜓(𝑠𝜏 )− 𝑉𝜆(𝑠𝜏 )‖2

)︁
, (4.3)

where 𝑉𝜆(𝑠𝜏 ) represents an exponentially (𝜆) recency-weighted average of the 𝑘-step

value estimates 𝑉 𝑘
𝑁(𝑠𝜏 ) to stabilize the learning [193]. We provide the corresponding

value function definitions as

𝑉𝜆(𝑠𝜏 ) = (1− 𝜆)
∑︀𝐻−1

𝑛=1 𝜆
𝑛−1𝑉 𝑛

𝑁 (𝑠𝜏 ) + 𝜆𝐻−1𝑉 𝐻
𝑁 (𝑠𝜏 ),

𝑉 𝑘
𝑁(𝑠𝜏 ) = E𝑞𝜃,𝑞𝜑

(︁∑︀ℎ−1
𝑛=𝜏 𝛾

𝑛−𝜏𝑟𝑛 + 𝛾ℎ−𝜏𝑣𝜓(𝑠ℎ)
)︁
,

(4.4)

where ℎ = min(𝜏 + 𝑘, 𝑡+𝐻). This process leverages imagined trajectories

{(𝑠1𝜏 , 𝑠2𝜏 , 𝑎1𝜏 , 𝑎2𝜏 )}𝑡+𝐻𝜏=𝑡 over a horizon of 𝐻 starting from each timestep 𝑡 within the

sampled batch sequence, where opponent behavior is estimated by querying the ac-

tion model with predicted latent viewpoints as 𝑞𝜑(𝑎¬𝑖𝑡 |𝑠¬𝑖𝑡 ). The resulting algorithm

optimizes policies by back-propagating analytic value gradients of imagined self-play

trajectories through the learned multi-agent world model.

4.4.3 Deep Latent Competition

The resulting algorithm is provided as pseudocode in Algorithm 7. It runs for 𝐾

episodes and proceeds in two phases: during the online phase, data is collected from
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a 𝑇 -step race with each agent only having access to their respective observations

and relying on predicted opponent behavior. During the offline phase, representation

learning and policy iteration propagate information into the world model and the

action model based on the interaction histories of all agents. To this end, batch

sequences of length 𝐿 are sampled from replay memory 𝒟 to serve as targets for

representation learning. The behavior is then refined in simulation based on rollout

trajectories of length 𝐻 starting from the ground truth samples which are used in

generating the value estimates according to Eq. 4.4. Here, we set the underlying

parameters to 𝑇 = 1000, 𝐿 = 50 and 𝐻 = 15. All models are then optimized on the

previous objectives with the Adam optimizer [97].
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Algorithm 7 Deep Latent Competition (DLC)
1: Initialize: model parameters {𝜃, 𝜓, 𝜑} randomly; memory 𝒟 with 5 random

episodes

2: for episode 𝑘 ← 1 to 𝐾 do

3: Online:

4: for timestep 𝑡← 1 to 𝑇 do

5: Observe 𝑜1𝑡 and predict embeddings 𝑧1𝑡 , 𝑧2𝑡 ∼ 𝑞𝜃(𝑧
1
𝑡 , 𝑧

2
𝑡 |𝑜1𝑡 )

6: Propagate states 𝑠1𝑡 , 𝑠2𝑡 ∼ 𝑝𝜃
(︀
𝑠1𝑡 , 𝑠

2
𝑡 |𝑠1𝑡−1, 𝑠

2
𝑡−1, 𝑎

1
𝑡−1, 𝑎̃

2
𝑡−1, 𝑧

1
𝑡 , 𝑧

2
𝑡

)︀
7: Generate action 𝑎1𝑡 ∼ 𝑞𝜑(𝑎1𝑡 |𝑠1𝑡 ), predicted response 𝑎̃2𝑡 ∼ 𝑞𝜑(𝑎̃2𝑡 |𝑠2𝑡 )

8: Execute 𝑎1𝑡 in the environment

9: end for

10: Offline:

11: Add episode transitions {(𝑜1𝑡 , 𝑜2𝑡 , 𝑎1𝑡 , 𝑎2𝑡 , 𝑟1𝑡 , 𝑟2𝑡 )}𝑇𝑡=1 to memory 𝒟

12: for trainstep 𝑠← 1 to 𝑆 do

13: Model update:

14: Sample batch of sequences {(𝑜1𝑡 , 𝑜2𝑡 , 𝑎1𝑡 , 𝑎2𝑡 , 𝑟1𝑡 , 𝑟2𝑡 )}𝑏+𝐿𝑡=𝑏 ∼ 𝒟

15: Use the encoder model to predict embeddings 𝑧1𝑡 , 𝑧1𝑡 , 𝑧2𝑡 , 𝑧2𝑡
16: Use the representation model to predict states 𝑠1𝑡 , 𝑠1𝑡 , 𝑠2𝑡 , 𝑠2𝑡
17: Update 𝜃 via representation learning on {(𝑠1𝑡 , 𝑠2𝑡 ), (𝑠1𝑡 , 𝑠2𝑡 ), (𝑠1𝑡 , 𝑠2𝑡 )}

18: Policy and Value update:

19: Compute value estimates 𝑉 1
𝜆 (𝑠1𝜏 ), 𝑉

2
𝜆 (𝑠2𝜏 )← rollout(𝑠1𝑡 , 𝑠2𝑡 , 𝐻)

20: Update 𝜑 and 𝜓 based on Eq. (4.3) for all targets {𝑉 1
𝜆 (𝑠1𝜏 ), 𝑉

2
𝜆 (𝑠2𝜏 )}

21: end for

22: end for

4.5 Implementation Details

In this section, we report the network architecture parameters and detail the models

used in our approach.
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4.5.1 Network Architectures

Table 4.2 reports all network parameters. The transition model is joint in our imple-

mentation and the associated input and output variables correspond to joint repre-

sentations (e.g. the previous action 𝑎𝜏−1 (6) can be interpreted as 𝑎𝜏−1 (2×3)). We

note that repeated layers have been condensed with Dense × 𝑖 referring to application

of the same dense layer architecture 𝑖 times. The employed parameter abbreviations

are referring to: a=activation, k=kernel, p=padding, s=stride.

Based on the general network architectures provided in Table 4.2, we comment

on how the two parts of the transition model integrate with each other and provide

further details on each of the models.

Transition Model

The joint transition model follows the recurrent state space model (RSSM) archi-

tecture presented in [77, 76]. The RSSM is extended to the multi-agent setting and

propagates joint model states consisting of a deterministic and a stochastic compo-

nent, respectively denoted by 𝑠𝑡,𝑑 and 𝑠𝑡,𝑠 at time 𝑡. The stochastic component 𝑠𝑡,𝑠

is implemented via a diagonal Gaussian distribution and its derivation is provided

in the next section. The transition model then predicts priors for the associated

mean and standard deviation based on the previous model state and applied action

(imagine 1-step). In the presence of observations, prior estimates can be updated

to posterior estimates (observe 1-step). The transition model may then initialize its

states by propagating posteriors based on a context sequence (imagine 1-step and ob-

serve 1-step) from which interactions can be imagined by propagating prior estimates

(imagine 1-step).

Encoder Model

The encoder parameterization follows the architectural choices presented in [74],

where we adapt the convolutional layers to match the dimensionality of our ob-

servations. The agent leverages two encoders in parallel, one for generating latent
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Table 4.2: General network architectures of the underlying models.
Layer Type Input (dimensions) Output (dimensions) Additional Parameters
Transition model (imagine 1-step)

Dense 𝑠𝜏−1,𝑠 (60), 𝑎𝜏−1 (6) fc1𝑡,𝑖 (600) a=ELU

GRU fc1𝑡,𝑖 (600), 𝑠𝜏−1,𝑑 (400) rs𝜏 (400), 𝑠𝜏,𝑑 (400) a=tanh

Dense rs𝜏 (400) fc2𝑡,𝑖 (600) a=ELU

Dense fc2𝑡,𝑖 (600) 𝜇𝑝𝑟𝑖𝑜𝑟𝜏,𝑠 (60), 𝜎𝑝𝑟𝑖𝑜𝑟𝜏,𝑠 (60) a=None

Transition model (observe 1-step)

Dense 𝑠𝜏,𝑑 (400), 𝑧𝜏 (2048) fc1𝑡,𝑜 (600) a=ELU

Dense fc1𝑡,𝑜 (600) 𝜇𝑝𝑜𝑠𝑡𝜏,𝑠 (60), 𝜎𝑝𝑜𝑠𝑡𝜏,𝑠 (60) a=None

Encoder model

Conv2D obs (96, 96, 3) cv1 (31, 31, 32) a=ReLU, s=3, k=(4,4)

Conv2D cv1 (31, 31, 32) cv2 (14, 14, 64) a=ReLU, s=2, k=(4,4)

Conv2D cv2 (14, 14, 64) cv3 (6, 6, 128) a=ReLU, s=2, k=(4,4)

Conv2D cv3 (6, 6, 128) cv4 (2, 2, 256) a=ReLU, s=2, k=(4,4)
Observation model

Dense 𝑠𝑖𝜏,𝑑 (200), 𝑠𝑖𝜏,𝑠 (30) fc1𝑜 (1, 1, 1024) a=None

Deconv2D fc1𝑜 (1, 1, 1024) dc1 (5, 5, 128) a=ReLU, s=2, k=(5,5)

Deconv2D dc1 (5, 5, 128) dc2 (13, 13, 64) a=ReLU, s=2, k=(5,5)

Deconv2D dc2 (13, 13, 64) dc3 (31, 31, 32) a=ReLU, s=2, k=(6,6), p=1

Deconv2D dc3 (31, 31, 32) dc4 (96, 96, 3) a=ReLU, s=3, k=(6,6)
Reward model

Dense 𝑠𝑖𝜏,𝑑 (200), 𝑠𝑖𝜏,𝑠 (30) fc1𝑟 (400) a=ELU

Dense × 1 fc{1}𝑟 (400) fc{2}𝑟 (400) a=ELU

Dense fc2𝑟 (400) fc3𝑟 (1) a=ELU
Value model

Dense 𝑠𝑖𝜏,𝑑 (200), 𝑠𝑖𝜏,𝑠 (30) fc1𝑣 (400) a=ELU

Dense × 2 fc{1,2}𝑣 (400) fc{2,3}𝑣 (400) a=ELU

Dense fc3𝑣 (400) fc4𝑣 (1) a=ELU
Action model

Dense 𝑠𝑖𝜏,𝑑 (200), 𝑠𝑖𝜏,𝑠 (30) fc1𝑎 (400) a=ELU

Dense × 3 fc{1,2,3}𝑎 (400) fc{2,3,4}𝑎 (400) a=ELU

Dense fc4𝑎 (400) 𝜇𝑎 (3), 𝜎𝑎 (3) a=ELU
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vectors of the ego perspective and one for predicting latent vectors of the opponent

perspective. Inputs are 96×96 RGB image observations.

Observation Model

The observation model follows the decoder architecture presented in [74], where we

adapt the transposed convolutional layers to match the dimensionality of our observa-

tions. The image observations of agent 𝑖 are reconstructed from the associated model

states 𝑠𝑖𝜏,𝑑 and 𝑠𝑖𝜏,𝑠.

Reward and Value Model

Rewards and values of agent 𝑖 are both predicted as scalar values from fully-connected

networks that operate on the associated model states 𝑠𝑖𝜏,𝑑 and 𝑠𝑖𝜏,𝑠, similar to [76].

Action Model

The action model follows [76], where the predicted mean 𝜇𝑎 is rescaled and passed

through a tanh function to allow for saturated action distributions. It is combined

with a softplus standard deviation based on 𝜎𝑎 and the resulting Normal distribution

is again squashed using a tanh [76, 75].

Order Independence

We note as an implementation detail that the transition distribution

𝑞𝜃
(︀
𝑠1𝑡 , 𝑠

2
𝑡 |𝑠1𝑡−1, 𝑠

2
𝑡−1, 𝑎

1
𝑡−1, 𝑎

2
𝑡−1

)︀
should be independent of the order in which agents are

provided. Thus, reversing the ordering and considering 𝑞𝜃
(︀
𝑠2𝑡 , 𝑠

1
𝑡 |𝑠2𝑡−1, 𝑠

1
𝑡−1, 𝑎

2
𝑡−1, 𝑎

1
𝑡−1

)︀
should yield the same distribution. We achieve this by two passes through the

learned transition model and subsequent averaging. In the second forward pass the

agents’ input order to the transition model is flipped.
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Training Parameters

Most of the training parameters correspond to the implementation of [76], a state-

of-the-art model-based RL algorithm for learning to plan in latent-space from image

observations. DLC trains every 1000 environment steps for 200 iterations with the

Adam optimizer [97]. The batch size is set to 50. The representation, value and actor

model are respectively trained with learning rates 6e-4, 6e-4, and 8e-5. Gradients

over the magnitude of 100 are clipped for all models. The prior 𝜎𝑝𝑟𝑖𝑜𝑟𝜏,𝑠 and posterior

𝜎𝑝𝑜𝑠𝑡𝜏,𝑠 variance in the transition model are bounded from below to a minimum value

of 0.1. The model loss on true observations 𝐽𝑀,𝑠1𝑡 ,𝑠
2
𝑡

is weighted twice as much as the

model losses on predicted opponent observations 𝐽𝑀,𝑠1𝑡 ,𝑠
2
𝑡

and 𝐽𝑀,𝑠1𝑡 ,𝑠
2
𝑡
. Throughout,

we use 𝛾 = 0.99 and 𝜆 = 0.95. The model learning horizon is 𝐿 = 50 whereas the

imagination horizon is 𝐻 = 15. Value and action models are trained on the same

trajectory rollouts.

Environment Details

To ensure generalization, we randomized both the color and initial position of all

vehicles throughout training. We also evaluated (but did not use) penalization for

driving in the backward direction which can occur after returning from a spin on the

grass.

Encoder

Our representation model is a latent variable model. That is, it can be written as

𝑝𝜃(𝑆𝑡|𝑆𝑡−1, 𝐴𝑡−1, 𝑂𝑡) = 𝑝𝜃
(︀
𝑠1𝑡 , 𝑠

2
𝑡 |𝑠1𝑡−1, 𝑠

2
𝑡−1, 𝑎

1
𝑡−1, 𝑎

2
𝑡−1, 𝑜

1
𝑡 , 𝑜

2
𝑡

)︀
=

∫︁ ∫︁
𝑝𝜃
(︀
𝑠1𝑡 , 𝑠

2
𝑡 |𝑠1𝑡−1, 𝑠

2
𝑡−1, 𝑎

1
𝑡−1, 𝑎

2
𝑡−1, 𝑧

1
𝑡 , 𝑧

2
𝑡

)︀
(4.5)

· 𝑝(𝑧1𝑡 |𝑜1𝑡 ) · 𝑝(𝑧2𝑡 |𝑜2𝑡 ) d𝑧1𝑡 d𝑧2𝑡 ,

where 𝑆𝑡 := {𝑠1𝑡 , 𝑠2𝑡} is the concatenation of both states and 𝐴𝑡−1, 𝑂𝑡−1 are defined

analogously. Each agent 𝑖 maintains its own belief of the world, without having access
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to both observations. Thus, at test time it computes instead

𝑝𝜃(𝑆𝑡|𝑆𝑡−1, 𝐴𝑡−1, 𝑜
𝑖
𝑡) =∫︁ ∫︁

𝑝𝜃
(︀
𝑠1𝑡 , 𝑠

2
𝑡 |𝑠1𝑡−1, 𝑠

2
𝑡−1, 𝑎

1
𝑡−1, 𝑎

2
𝑡−1, 𝑧

𝑖
𝑡, 𝑧

¬𝑖
𝑡

)︀
· 𝑞𝜃(𝑧𝑖𝑡, 𝑧¬𝑖𝑡 |𝑜𝑖𝑡) d𝑧𝑖𝑡 d𝑧¬𝑖𝑡 . (4.6)

Therefore, we never need to learn 𝑝(𝑧𝑖𝑡|𝑜𝑖𝑡). Instead we directly learn the represen-

tation 𝑞𝜃(𝑧
𝑖
𝑡, 𝑧

¬𝑖
𝑡 |𝑜𝑖𝑡). This is implemented as a convolutional encoder 𝑓𝐸(𝑜𝑖) making

𝑞𝜃(𝑧
𝑖
𝑡, 𝑧

¬𝑖
𝑡 |𝑜𝑖𝑡) a Dirac distribution

𝑞𝜃(𝑧
𝑖
𝑡, 𝑧

¬𝑖
𝑡 |𝑜𝑖𝑡) = 𝛿

(︀
(𝑧𝑖𝑡, 𝑧

¬𝑖
𝑡 )− 𝑓𝐸(𝑜𝑖𝑡)

)︀
. (4.7)

4.6 Latent Racing Experiments

We demonstrate the ability of DLC to learn competitive visual control policies in a

novel multi-agent racing environment, and compare performance against baselines to

highlight the importance of both the joint transition model and the learned observer.

We further highlight the learned representation model’s capability of predicting op-

ponent viewpoints from ego observations.

4.6.1 Racing Environment

We propose MultiCarRacing-v0, a novel multi-agent racing environment for learn-

ing competitive visual control policies1. The environment extends the Gym task

CarRacing-v0 [37] and provides each agent with top-down 96x96 pixel image obser-

vations from their ego perspective based on which continuous control inputs need

to be selected. The viewpoint is motivated by recent results in the context of driv-

ing [55, 46, 124] and holds the promise of future deployment on physical platforms.

The environment allows for differentiating between skillful and competitive driving.

While the former is the basis for high-performance racing, learning to beat a skill-

ful opponent is a far greater challenge. Interactions between agents are sparse but

1Code available at https://github.com/igilitschenski/multi_car_racing
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information-rich: only when agents collide, push, or block each other do they directly

impact each others state.

4.6.2 Dynamics and Rewards

The vehicles in the environment exhibit slip and collision dynamics. Breaking or

accelerating too hard induces skidding and in combination with steering causes sub-

stantial understeering or oversteering (drifting). Similarly, moving off the track lowers

available friction. Collision dynamics allow for elaborate interaction strategies during

the race: pushing other agents off the track, blocking overtaking attempts, or turning

an opponent sideways via a PIT maneuver. We show examples in Figures 4-1, 4-5,

and 4-6. The reward mapping follows CarRacing-v0, in that each agent incurs a loss

of −0.1 per timestep and receives a reward for each visited tile along the track. We

incentivize competition by discounting rewards based on visitation order: the first

agent to visit a track tile is rewarded with +1000/𝑁 , while the second agent receives

+500/𝑁 (on an 𝑁 -tile track).

4.6.3 Benchmarking Performance

The algorithm presented in this work, DLC, learns a multi-agent world model that

enables imagined self-play by combining the underlying transition function with an

observer capable of predicting opponent latent states. We refer to this method as

joint transition + observer and compare performance against two baselines. The first

is joint transition, which propagates ground truth latent states of both agents and

allows for assessing performance of the observer. The second is individual transition,

which propagates ground truth latent states individually and highlights the added

value of a joint transition model. Each method is trained on 500 races. We evaluate

the resulting performance in a round-robin tournament, a competition in which each

contestant meets all other contestants in turn. The round-robin tournament consists

of 100 races for each pairing (300 races per tournament) at multiple stages of training

progress. We repeat this for 5 random seeds.
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A: Cornering

B: Overtaking on the outside

E: PIT maneuver

F: Overtaking attempt on the inside

H: Evading a blocking maneuver 

I: Avoiding PIT maneuver

J: Cutting corner by maneuvering on green

G: PIT Maneuver

D: Blocking

C: Evading a blocking maneuver

time

Figure 4-5: Learned racing skills: The agent has learned to leverage a large variety
of racing skills towards their competitive advantage. The skills include cornering,
blocking, overtaking, and forcing others off the road.
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A: PIT maneuver

B: Forcing opponent off the road

C: Controlling drift

D: Failure to control traction

E: Blocking opponent

F: Blocking via line adjustment

G: Forcing opponent off the road

H: Blocking overtaking maneuver

I: Overtaking by cutting corner

J: Overtaking via PIT maneuver

time

Figure 4-6: Common racing scenarios: During a race, agents have to drive at the
dynamical limits of handling to move as fast as possible along the track. While they
don’t receive penalties for leaving the road, moving onto the slippery grass increases
the risk of spinning out.

160



Ag
en

t 1
O

bs
er

va
tio

n
Pr

ed
ic

tio
n 

of
 A

ge
nt

 1
Ag

en
t 2

Ag
en

t 1
Ag

en
t 2

B: Agent 1 (red) does not observe Agent 2 (blue)A: Agent 1 (blue) observes Agent 2 (red)

Agent 1

Agent 2

Agent 2

Agent 1

Figure 4-7: Closed loop prediction: A: Agent 1 observes the opponent and is
therefore able to reconstruct both views. B: 1 is unable to observe 2 and reconstructs
their view with high uncertainty.
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C D
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Figure 4-8: Comparison of racing performance and competitiveness: A: Win
ratio of all agents in a round-robin tournament. B: Agents with joint and joint
+ observer transition compete directly against an agent with individual transition
function. C: Average score of all agents in a round-robin tournament. D: Single
agent racing performance disentangles general skill learning from learning to compete
through interaction.
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Figure 4-8A shows the resulting win-ratio and Figure 4-8B the average score for

the round-robin tournament. The representation learning problem for individual tran-

sition is easier as the learned transition function does not need to disentangle how

the states and actions of both agents affect the transition. Therefore, the individual

transition baseline starts off strong. However, after 200 races both joint transition

methods have learned to compete more effectively through imagined self-play. The

individual transition baseline can not leverage this effect, as agent actions do not

affect opponents states during imagined rollouts and self-play may only occur in the

real world. As visible in Figure 4-8C, after 500 races both joint transition approaches

win 70-80% of races against the individual transition baseline. Furthermore, both

joint transition methods perform similarly, suggesting that the learned observer is

capable of predicting opponent latent states in a way that is sufficient in order to

induce learning of competitive behaviors.

The single agent racing performance, see Figure 4-8D, further allows us to disen-

tangle general skill learning from learning to compete. It confirms that the individual

transition baseline is able to acquire general racing skills faster. Similarly, the joint

transition methods do not outperform the individual transition baseline in the single

agent racing case, such that their performance increase for the multi-agent setting in

Figure 4-8A can be explained by their increased ability to compete.

4.6.4 Predicting the Opponent’s Latent State from Ego Ob-

servations

Given an agent’s own history of observations and controls, we can estimate the com-

pact latent state and it’s associated reconstruction to visualize the representation

model’s understanding of the world. More interestingly, we can create a reconstruc-

tion of the predicted opponent’s latent state to visualize how well the agent can infer

the opponent view. Given a predicted opponent state we can predict their actions

based on the learned policy. Figure 4-7 provides two scenarios with reconstructions

based only on observations of agent 1.
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In Figure 4-7A, the opponent is within the field of view of agent 1. The recon-

structions are focused and close to the ground truth for both the ego and opponent

viewpoints, indicating that the latent state is accurate and well understood. In Fig-

ure 4-7B, agent 1 never observes its opponent and is unable to accurately predict

their view. However, instead of predicting only noise, agent 2 is imagined to drive on

a straight road with the possibility of an upcoming turn. This is a sensible prediction

given that agent 2 is currently not observable and in turn will not immediately affect

the motion plan of agent 1.

4.6.5 Imagining Interaction Sequences

To facilitate efficient self-play in a learned world model, we require all agent states to

be jointly propagated in a consistent manner. In Figure 4-9, we provide 5 observations

of agent 1 as context and investigate the model’s ability to predict forward in time for

25 additional timesteps. Similarly to Figure 4-7, we exclude ground-truth observations

of agent 2. While actions of agent 1 are available for the full horizon, the learned

policy predicts the actions of agent 2.

Referring to the context frames, we observe the benefit of recursively estimating

states in agent 1’s reconstruction of agent 2’s viewpoint: while the reconstruction has

high uncertainty in the first frame, accuracy improves with every new observation.

Agent 1’s reconstruction of their ego view is detailed from the start with the blue agent

remaining blurry. Moving beyond the context frames, the predicted views quickly

diverge from the ground truth. This is expected as the agent is unable to see beyond

the first turn. In the following imagination, the blue agent overtakes the red agent

by forcing them off the track (Figure 4-9 prediction of agent 1, timestep 15). This is

reasonable, as the blue agent leaves the left turn on the inside with an opportunity to

push the red agent off the road. The imagined sequences feature detailed predictions

of the track, including markings on an upcoming left turn (timestep 25).

Most importantly, the predictions of both agents remain consistent. The two

agents’ relative positions with each other and the track are in correspondence along

the full horizon. Likewise, the predicted characteristics of a track including curbs
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Figure 4-9: Open loop prediction: Agent 1 (red) receives 5 observation frames
as context and predicts the own view and the view of agent 2 (blue). We employ
the learned dynamics to forward propagate 25 additional timesteps into the future
without any further observations.

and a left turn are consistent between both agents’ predicted views (timestep 25).

Consistency is crucial as it allows to learn from imagined self-play in a world model.

If the two predictions were to diverge, the impact of the ego actions on another

agent’s behavior could not be estimated. The outcome of the imagined games would

be uncertain. The joint transition model helps keeping predictions consistent, as it

allows for information exchange between both agents’ latent states during forward

propagation.

4.7 Discussion

We present Deep Latent Competition (DLC), a novel reinforcement learning algo-

rithm that learns competitive visual control policies through self-play in imagination.

The DLC agent can imagine interaction sequences in the compact latent space based

on a multi-agent world model that combines a joint transition function with opponent

viewpoint prediction. The behavior is then optimized by back-propagating the ana-

lytic value gradients of these imagined game trajectories through the learned world

model. Experiments in a novel continuous visual control racing environment demon-

strate that the DLC agent learns to make consistent multi-agent forward predictions.
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Optimizing competitive behaviors through imagined self-play based on these joint pre-

dictions yields an agent that performs superior to an agent that propagates ground

truth observations separately. In the future, we aim to deploy the DLC agent on

hardware platforms to yield competitive racecar driving in the real world. Extending

the framework to include more complex game-theoretic considerations in the forward

predictions offers another intriguing avenue for future work.

Chapters 2-4 investigated interactions between agents as individual entities. In

the next chapter we will present a guardian angel system that interacts with a human

driver by sharing control. Our goal is to gradually bring autonomy capabilities to

practice, by using a guardian system that aims to correct the driver’s mistakes.
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Chapter 5

Guardian Angel: Parallel Autonomy

in Automated Vehicles

5.1 Introduction

Globally, over 3,000 human lives are lost every day [22] in vehicle-related accidents

and over one hundred thousand are injured or disabled on average. Worse still is that

we expect this number to continue to increase [136]. In the United States, 11% of

accidents are caused by driver distraction (such as cell phone use), 31% involve an

impaired driver due to alcohol consumption, 28% involve speeding, and an additional

2.6% are due to fatigue [138]. This troubling trend has resulted in the continued

development of advanced safety systems by commercial car manufacturers and sup-

pliers.

For example, systems exist to automatically brake in the case of unexpected ob-

stacles [140], to maintain a car inside a lane at a given speed, and alert users of

pedestrians, signage, and other vehicles on the roadway [51]. However, the scenarios

that these systems can deal with are relatively simple compared to the diverse and

complicated situations that we routinely find ourselves in as human drivers. Human

drivers are capable of handling nearly all driving tasks well enough most of the time

but are overwhelmed in key moments when quick and precise actions are needed in

fast and complex traffic scenarios. A deer crossing the road, a preceding crash on

167



Figure 5-1: Parallel Autonomy in complex driving scenarios: A human driver
(red) tries to accelerate into an intersection, as shown by the red acceleration bar in
the lower left inset. Since this action would result in a collision, the Parallel Autonomy
system prevents the vehicle from continuing. The system brakes, indicated by the
blue bar and deviates from the driver’s commanded controls to ensure safety.

the highway, a missed blind spot, or driver tiredness are only some of the ubiquitous

challenges human drivers face in everyday traffic. To handle these situations, an ad-

vanced autonomy system must ensure safety when required while a human driver is

in control of the car.

In this work we propose a framework for advanced safety in complex scenarios

that we refer to as Parallel Autonomy. In this framework we minimize the deviation

from the human input while ensuring safety. The design of the system has two

main objectives: (a) minimal intervention - we only apply autonomous control when

necessary, and (b) guaranteed safety - the collision free state of the vehicle is explicitly

enforced through constraints in the optimization.

There are three types of collaborative autonomy:

1. Series Autonomy, in which the human driver orders the vehicle to execute

a function, similar to most self-driving approaches to date. Currently, we do

not yet have systems that work reliably under all driving conditions or even for

highway driving. While this direction is promising to save lives in the future, it

is not applicable at this point.

2. Interleaved Autonomy, in which the human driver and the autonomous sys-

tem intermittently take turns in operating the vehicle. The human driver will
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Figure 5-2: System schematic: A receding horizon planner computes control inputs
based on human inputs and an environment consisting of the road, and static and
dynamic obstacles.

take over control of the vehicle if the autonomy system fails or requests interven-

tion. This may result in the handover problem: If the system fails abruptly, the

human driver may not be ready to immediately resume control. Since failures

may only occur in rare cases, people may become overconfident in the system,

lose attentiveness, use their phone [160], sleep [81], or conduct other activities.

Systems would have to be able to predict their own failure way ahead into the

future to give people enough time to be cognizant of their environment and

safely respond.

3. Parallel Autonomy, in which the autonomous system functions as a guardian

angel in the background to ensure safety while the human driver is operating

the vehicle. Ideally, the system will follow the do no harm principle and will

only intervene when it is certain to improve safety. The benefit of this approach

is that autonomous driving technology can be rolled out incrementally without

the strict requirement to work perfectly in all driving conditions. Therefore,

this approach can save lives already at this point in time.

Whether drivers are distracted by smartphones, searching in their glove box, operating

the navigation system, or are simply overwhelmed by the difficulty of driving in

challenging scenarios, the Parallel Autonomy principles offer additional safety due to

redundancy.
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5.1.1 Main Assumptions

In this work, we assume that a perception system provides the current state of the

ego vehicle and the road boundaries, see Figure 5-2. Additionally, we assume that a

prediction system produces uncertain future predictions of other vehicles, which we

will integrate into our planning framework. Similar neural network prediction models

that provide both expectations and estimated uncertainties [12] have become available

in recent years. In this work, we assume that we can parametrize the posterior

distributions, describing the uncertain current and future states of other vehicles, in

the form of Gaussians. In contrast to Chapters 2 and 3, we neglect the influence of

our actions on other agents and assume that their predictions remain independent.

We model the vehicle through kinematic and dynamic models. Their parameters

have to be estimated to ensure the models to remain accurate. In comparison to

the stochastic dynamics in Chapter 3, we model these dynamics as deterministic and

assume that their impact is negligible to the uncertainty in the predictions of the

other drivers. We employ local optimization that makes choosing a suitable initial

guess necessary to ensure good performance. While we can compute these through

search-based or sampling-based methods, simpler heuristics such as an all-zero initial

guess proved sufficient.

5.1.2 Contributions

We provide a formulation and algorithmic solution to Parallel Autonomy based on a

Nonlinear Model Predictive Control (NMPC) policy. Specifically, in this chapter we:

∙ incorporate the time-varying uncertainty of the dynamic obstacle predictions as

analytic chance constraints in the optimization;

∙ introduce a contour tracking approach with additional constraints for the road

boundaries to ensure that the vehicle safely follows the road;

∙ minimize the deviation of the system’s steering and acceleration control and the

control commanded by the driver subject to not compromising safety; and
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∙ plan online over long time horizons (∼ 9𝑠).

We show the basic operation of the controller in Figure 5-1, where the driver

attempts to cut into of oncoming traffic to make a left turn. The Parallel Autonomy

system prevents a collision with the approaching vehicles by intervening.

This chapter contributes the following:

1. A formulation of Parallel Autonomy as a shared control approach between hu-

man drivers and intelligent vehicles, which adheres to the minimal intervention

principle and can handle complex driving scenarios.

2. A NMPC formulation for real-time trajectory generation in intelligent and au-

tonomous vehicles, suitable for state of the art solvers.1

3. Extensive evaluations in complex traffic scenarios with real human inputs of

different driving styles, such as left turns across traffic and driving on a snowy

race track subject to slip.

In the following, we will employ two motion models of different complexity:

1. A dynamical nonlinear combined slip vehicle model including load transfer for

static environments.

2. A kinematic model for dynamic and complex. environments

We organize the chapter as follows: In Section 5.2 we summarize the related work

in the field. Section 5.3 presents the Parallel Autonomy control approach. In Sec-

tion 5.4 we provide a concrete instantiation of the framework and present the NMPC

approach to solving it. Finally, we show detailed simulation results in Section 5.5 and

conclusions in Section 5.6.

5.2 Related Works

In this section we provide an overview of the related work in the areas of general

safety, shared control for autonomous vehicles, and Model Predictive Control (MPC).
1We employ FORCES Pro by Embotech to generate a fast NMPC solver for our problem formu-

lation.
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5.2.1 Safety of Autonomous Vehicles

In theory, safety can be guaranteed for deterministic systems by computing the set

of the states for which the vehicle will inevitably have a collision and then ensuring

that the vehicle never enters that set. The set is referred to by different terms in

the literature, such as the capture set [63, 7, 35, 87], the inevitable collision states

(ICS) [64, 31, 11], the region of inevitable collision (RIC) [45], and the target set

[127]. However, without some assumptions or limiting the applicability to relatively

simplistic scenarios, this set is difficult to compute analytically. [47] apply a control

barrier function to guarantee never entering the infeasible set upon moving into an

avoidable set constructed from a polar algorithm in slow speeds to avoid pedestrians.

These ICS-inspired methods tend to only intervene when the system is at the bound-

ary of the capture set, which can cause undesirable behavior, toggling between either

the autonomous system input or the human input. We follow the idea of [63, 31, 11]

and define a set of probabilistic constraints for collision avoidance to produce safe

behavior. Yet, our method provides smooth inputs to the vehicle since the Paral-

lel Autonomy safety system smoothly minimizes deviation from user inputs in an

optimization framework subject to safety constraints.

5.2.2 Shared Control of Intelligent Vehicles

The most intuitive way of merging the human input with the output of a safety system

is by linear combination of the two, possibly by threat measures based on the dynamic

limitations of the vehicle [17, 19]. The system could simply override the human input

depending on the severity of the threat. While systems may reason about following

the human driver’s intended homotopy class [17], these presented systems do not take

the human input directly into account but rather interpolate between human driver

and system controls. In a similar line of research, safety margins can be computed

from sampled trajectories clustered into homotopy classes [50]. These approaches do

not directly share the control with the human driver.

In contrast, in this work we directly incorporate the human inputs into an opti-
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mization framework in a minimally invasive manner and also add a soft nudging be-

havior to guide the driver. Our approach minimizes the deviation of the autonomous

system’s plan from the driver’s intent - current steering and acceleration inputs - and

provides small feedback to the driver already shortly before situations are predicted

to become critical. This is important to prevent startling the driver and to decrease

the likelihood of unnecessary strong intervention, thanks to slight intervention early

on.

Similar to our method, several constrained optimization approaches for shared

control exist. While some approaches directly minimize the difference of the human

predicted control input from the necessary control input to produce safe trajecto-

ries [179], others minimize the difference in steering wheel angle [68]. [10] minimized

the deviation from human inputs, in this case, orientation and speed, via a convex

constrained optimization to generate safe motion. Beyond direct control inputs, other

approaches minimize the deviation from the currently desired front wheel lateral force

with an additional discount factor decreasing the impact over time [59]. We apply a

discount factor in a similar manner to focus on the deviation from human inputs in

the short term but give the optimization objective more freedom in the far future.

We present a general approach where we jointly minimize deviation from both steer-

ing and acceleration inputs, blend in additional trajectory-specific costs to provide a

nudging behavior, model the slip-dynamics of the vehicle, and strictly enforce safety

constraints.

5.2.3 Receding Horizon Control for Shared Control

We formulate the constrained optimization as a receding horizon control problem,

typically referred to as Model Predictive Control (MPC). Related to our work, [68]

employed a hierarchical MPC approach for avoidance of static obstacles with motion

primitives and path tracking, which switches control to and from the driver as a func-

tion of driver attentiveness. Instead of planning paths first and computing velocity

profiles separately, we directly plan full trajectories that also avoid dynamic obsta-

cles. Similar approaches include: a constrained pathless MPC that blends human and
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controller steering commands only, proposed by [17], a shared control MPC for static

unstructured robot environments avoiding circular obstacles [187], and robust NMPC

[68] to avoid static obstacles while tracking the roads center line over a very short

horizon of less than 1.5𝑠. Alternatively, [59] defined vehicle-stability and environ-

mental envelopes to supply safe steering commands at constant speed in a discretized

environment.

In contrast, our approach does not require manual linearization - we solve a Non-

linear MPC (NMPC) problem directly - and can handle complex road scenarios with

dynamic maneuvers and dynamic obstacles, with steering and acceleration control

over long horizons (∼ 9𝑠).

Some methods [18, 59] construct corridors consisting of multiple convex regions

to describe the area that the vehicle will drive through. Based on the corridors

and constant velocity, they apply constraints on the lateral position of the vehicle

to avoid colliding with obstacles yielding a convex optimization problem with global

optimality. In contrast, operating over both steering and acceleration in a non-convex

environment and solving our NMPC formulation inherits the general limitations of

non-convex optimization, such as uncertain convergence and runtime, and lack of

guarantee of optimality. Nonetheless, combined steering and braking is an essential

function in vehicle safety.

We provide all costs and constraints to the solver in closed form without pre-

linearization and benefit from recent advances in efficient Interior-Point solvers [53]

to directly solve the NMPC. To guide the planner along the road, we build upon

Model Predictive Contouring Control (MPCC) [60, 103, 118], which approximates

path progress inside a corridor, the road in our application. By tracking the center of

the lane and remaining within the limits of the road our planner can be employed for

both Parallel Autonomy, where we minimize the deviation from human input, and

for fully autonomous vehicles.
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5.3 Problem Formulation

The Parallel Autonomy problem is based on two overarching principles:

∙ Minimal intervention with respect to the human driver. That is, the control

inputs to the vehicle should be as close as possible to those of the human driver.

∙ Safety. The probability of collision with respect to the environment and other

traffic participants is below a given threshold.

5.3.1 Definitions

We use the discrete time shorthand 𝑘 , 𝑡𝑘, where 𝑡𝑘 = 𝑡0 +
∑︀𝑘

𝑖=1 ∆𝑡𝑖, with 𝑡0 the

current time and ∆𝑡𝑖 the 𝑖-th timestep of the planner. Vectors are bold.

Ego Vehicle

We refer to the car operated by the human driver as ego vehicle. At time 𝑘, we

denote the configuration of the ego vehicle, typically position p𝑘 = [𝑥𝑘, 𝑦𝑘], heading

𝜑𝑘, longitudinal and lateral velocity 𝑣𝑥,𝑘, 𝑣𝑦,𝑘, yaw rate 𝜑̇𝑘 and steering angle 𝛿𝑘, by

the state x𝑘 = [p𝑘, 𝜑𝑘, 𝛿𝑘, 𝑣𝑥,𝑘, 𝑣𝑦,𝑘] ∈ 𝒳 . Its control input, typically steering velocity

𝛿̇𝑘 and longitudinal acceleration 𝑣̇𝑥,𝑘, is labeled u𝑘 = [𝛿̇𝑢𝑘 , 𝑣̇
𝑢
𝑥,𝑘] ∈ 𝒰 .

The evolution of the state of a vehicle is then represented by a general discrete

dynamical system

x𝑘+1 = 𝑓(x𝑘,u𝑘), (5.1)

described in Section 5.3.3. The arguably largest source of uncertainty in the system

operating over long time horizons lies in the prediction of motions of other vehicles,

which dominates all other sources of uncertainty. The comparably low uncertainty in

the dynamic motions of the ego vehicle thus motivates the choice for a deterministic

motion model. We denote the area occupied by the ego vehicle at state x𝑘 by ℬ(x𝑘) ⊂

R2. In particular, we model it as a union of circles as shown in Section 5.4.5, Figure 5-

5.
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Other Traffic Participants

Apart from the ego vehicle, other traffic participants, such as vehicles, pedestrians

and bikes, are indexed by 𝑖 = {1, . . . , 𝑛}. We denote their states as x𝑖𝑘 ∈ 𝒳𝑖. To incor-

porate uncertainty, we assume that an approximate posterior distribution describing

the current and future state of the other vehicles for up to 𝑚 timesteps is available,

e.g. from an inference framework [80]. The distributions are parametrized by their

expected mean configuration [p𝑖0:𝑚, 𝜑𝑖0:𝑚] and positional covariance Σ𝑖
0:𝑚.

At a given state, each traffic participant occupies an area ℬ𝑖(x𝑖𝑘,Σ𝑖
𝑘, 𝑝𝜖) ⊂ R2 with

probability larger than 𝑝𝜖. Here 𝑝𝜖 is the accepted probability of collision. We model

them as ellipses that grow in size with uncertainty, as described in the forthcoming

Section 5.4.5. This results in an approximate closed-form description of a probabilistic

collision constraint and enables computational tractability.

Free Space

We consider the workspace 𝒲 = R2 and an obstacle map 𝒪 ⊂ 𝒲 containing the

static obstacles, such as the limits of the road and areas not classified as road. We

define the environment ℰ(𝑘) as the state of the world (obstacles, traffic participants)

at a time instance 𝑘.

5.3.2 Parallel Autonomy Formulation

We formulate a general discrete time constrained optimization with 𝑚 timesteps and

time horizon 𝜏 =
∑︀𝑚

𝑘=1 ∆𝑡𝑘. We use the following notation for a set of states x0:𝑚 =

[x0, . . . ,x𝑚] ∈ 𝒳𝑚+1 and for a set of inputs u0:𝑚−1 = [u0, . . . ,u𝑚−1] ∈ 𝒰𝑚.

The objective is to compute the optimal inputs u*
0:𝑚−1 for the ego vehicle which

minimize a cost function 𝐽ℎ(u0:𝑚−1,uℎ0) + 𝐽𝑡(x0:𝑚,u0:𝑚−1), where

∙ 𝐽ℎ(u0:𝑚−1,uℎ0) is a cost term that minimizes the deviation of the planned con-

trols from the currently observed human input uℎ0 .

∙ 𝐽𝑡(x0:𝑚,u0:𝑚−1) is a cost term that only depends on intrinsic properties of the

planned trajectory. It can include various optimization objectives such as energy
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minimization, comfort, or following a lane.

The optimization is subject to a set of constraints, which represent

∙ the transition model of the ego vehicle, x𝑘+1 = 𝑓(x𝑘,u𝑘),

∙ no collisions with static obstacles, ℬ(x𝑘) ∩ 𝒪 = ∅, and

∙ no collisions with other traffic participants up to probability 𝑝𝜖 described by

ℬ(x𝑘) ∩
⋃︀

𝑖∈{1,...,𝑛}
ℬ𝑖(x𝑖𝑘,Σ𝑖

𝑘, 𝑝𝜖) = ∅.

Given the estimated trajectories (x𝑖0:𝑚, Σ𝑖
0:𝑚) for all traffic participants 𝑖 = 1, . . . , 𝑛

and the initial state x0 of the ego vehicle, the optimal trajectory for the ego vehicle

is then given by the following receding-horizon optimization,

u*
0:𝑚−1 = arg min

u0:𝑚−1

𝐽ℎ(u0:𝑚−1,uℎ0) + 𝐽𝑡(x0:𝑚,u0:𝑚−1)

s.t. x𝑘+1 = 𝑓(x𝑘,u𝑘)

ℬ(x𝑘) ∩ 𝒪 = ∅

ℬ(x𝑘) ∩
⋃︁

𝑖∈{1,...,𝑛}

ℬ𝑖(x𝑖𝑘,Σ𝑖
𝑘, 𝑝𝜖) = ∅,

∀𝑘 ∈ {0, . . . ,𝑚}.

(5.2)

We describe the method in detail in Section 5.4.

5.3.3 Motion Models

Previous approaches utilized constant longitudinal speed and small angle assumptions

in selected static obstacle avoidance scenarios along straight roads [17, 19, 59]. In

contrast, we consider the impact of joint speed and steering control for higher safety

in dynamic, more general and more complex traffic environments over longer time

horizons.

We first introduce a kinematic motion model with constraints to ensure limited

slip for complex and dynamic environments in dense traffic, and subsequently present
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Table 5.1: Parallel Autonomy: Main Symbols and Notation
x,u Vehicle state and control input
u* optimal control input
𝜏 =

∑︀𝑚
𝑘=1 ∆𝑡𝑘 time horizon

x𝑘+1 = 𝑓(x𝑘,u𝑘) state transition function
x𝑖0:𝑚, Σ𝑖

0:𝑚 state and covariance trajectory of agent 𝑖
uℎ0 current human control input
𝐽ℎ, 𝐽𝑡 Minimal intervention, and trajectory cost
𝐽MPCC Model predictive contouring cost
ℬ𝑖(x𝑖𝑘,Σ𝑖

𝑘, 𝑝𝜖) Probabilistic footprint of dynamic obstacles
ℬ(x𝑘) Ego vehicle footprint
𝒪, ℰ ,𝒲 Static obstacles, environment, workspace
𝑣𝑥, 𝑣𝑦 longitudinal and lateral speed
𝛿, 𝜑 steering wheel angle, yaw angle
𝐿 vehicle length
𝑙𝑟, 𝑙𝑓 distance to cog from front and rear axle
𝑠𝑓𝑥, 𝑠𝑓𝑦 longitudinal and lateral slip on front tire
𝐹𝑓𝑥, 𝐹𝑓𝑦 longitudinal and lateral front tire forces
𝑚, 𝐼𝑧 vehicle mass and moment of inertia
𝜇,𝐵𝛼, 𝐶𝛼, 𝐷𝛼 Pacejka tire friction coefficients
𝛾(𝑠) longitudinal slip distribution among front and rear tires(︀
𝑥𝑃 (𝜃), 𝑦𝑃 (𝜃)

)︀
path parametrized by 𝜃

𝜓𝑃 (𝜃) path heading
𝑏𝑙(𝜃), 𝑏𝑟(𝜃) left and right road boundary
𝑟 arc length
n(𝜃), t(𝜃) normal and tangential path vectors
𝑒𝑙(x𝑘, 𝜃𝑘), 𝑒𝑙(x𝑘, 𝜃𝑘) longitudinal and lateral path tracking error
𝑝𝜖 collision probability threshold
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a more complex combined slip dynamic model including load transfer. Our method

applies to both models.

Kinematic Model

The kinematic model is a simplified car model with a fixed rear wheel and a steerable

front wheel with state x = [p, 𝜑, 𝛿, 𝑣𝑥, 𝑣𝑦] and controls u = [𝛿̇𝑢, 𝑣̇𝑢𝑥 ] with lateral velocity

𝑣𝑦 = 0. The rear-wheel driven vehicle with inter-axle distance 𝐿 and continuous

kinematic model ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥̇

𝑦̇

𝜑̇

𝛿̇

𝑣̇𝑥

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

ẋ

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣𝑥 cos(𝜑)

𝑣𝑥 sin(𝜑)

𝑣𝑥
𝐿

tan(𝛿)

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣ 𝛿̇𝑢
𝑣̇𝑢𝑥

⎤⎦
⏟  ⏞  

u

, (5.3)

is described by a discrete time model by integration x𝑘+1 = x𝑘 +
∫︀ 𝑘+Δ𝑡𝑘
𝑘

ẋ d𝑡 =

𝑓(x𝑘,u𝑘). A fourth order Runge-Kutta scheme ensures integration between timesteps

𝑘 to sufficient accuracy.

We limit the steering angle, |𝛿| ≤ 𝛿max, the steering speed, |𝛿̇| ≤ 𝛿̇max, the longi-

tudinal speed, 𝑣𝑥 ≤ 𝑣𝑥,max, as well as braking and acceleration 𝑣̇𝑥,min ≤ 𝑣𝑥 ≤ 𝑣̇𝑥,max

to reasonable values conforming with the vehicle’s performance and some rules of the

road, e.g. limits on speed.

We account for, and prohibit, unsafe driving modes such as high cornering speeds

by limiting the product of longitudinal velocity and yaw-rate

|𝑣𝑥𝜑̇| ≤ (𝑣𝑥𝜑̇)max, (5.4)

which essentially poses a velocity dependent constraint on the vehicle’s maximum

allowed curvature. This model works well for less aggressive driving behaviors that

are not too close to the vehicle’s limits of handling.

179



Figure 5-3: Dynamical half-car model

Combined Slip Model with Load Transfer

Combined braking and steering is one of the most essential aspects of vehicle safety

and motivates our choice for a combined slip model [89]. Specifically, we allow load

transfer between the front and rear tires - a dynamic that is often leveraged by rally

racing drivers to control the yaw dynamics [205]. For simplicity, we neglect suspension

and wheel dynamics, and assume that only the front wheel is steerable. The motion

model is a dynamical half-car model with mass 𝑚, and yaw moment of inertia 𝐼𝑧.

The distances of front and rear wheel from the center of gravity (cog) are 𝑙𝑓 and 𝑙𝑟

respectively. ℎ is the height of the cog. The position of the cog in inertial frame is

given by p = [𝑥, 𝑦] and the heading by 𝜑. 𝑣𝑥, 𝑣𝑦 denote the longitudinal and lateral

velocities in the car-body fixed axis system, and 𝐹𝛼𝛽, 𝛼 ∈ {𝑓, 𝑟}, 𝛽 ∈ {𝑥, 𝑦}, the tire

force components, see Figure 5-3. The equations of motion of the dynamical half-car

model are then described by

ṗ =

⎡⎣ 𝑥̇
𝑦̇

⎤⎦ =

⎡⎣ cos𝜑 − sin𝜑

sin𝜑 cos𝜑

⎤⎦⎡⎣ 𝑣𝑥
𝑣𝑦

⎤⎦ , (5.5)
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⎡⎢⎢⎢⎣
𝑚𝑣̇𝑥

𝑚𝑣̇𝑦

𝐼𝑧𝜑

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝐹𝑓𝑥 cos 𝛿 − 𝐹𝑓𝑦 sin 𝛿 + 𝐹𝑟𝑥 +𝑚𝑣𝑦𝜑̇

𝐹𝑓𝑥 sin 𝛿 + 𝐹𝑓𝑦 cos 𝛿 + 𝐹𝑟𝑦 −𝑚𝑣𝑥𝜑̇

𝑙𝑓 (𝐹𝑓𝑥 sin 𝛿 + 𝐹𝑓𝑦 cos 𝛿)− 𝑙𝑟𝐹𝑟𝑦

⎤⎥⎥⎥⎦ ; (5.6)

and define a discrete time model by integration in the same way as for the kinematic

model.

We denote the state as x = [p, 𝜑, 𝛿, 𝑣𝑥, 𝑣𝑦], control the vehicle by steering velocity

𝛿̇, and longitudinal slip 𝑠, and write them as u = [𝛿̇𝑢, 𝑠𝑢]. 𝑠𝑢 defines the longitudinal

slips as 𝑠𝑓𝑥 = 𝛾(𝑠𝑢)𝑠𝑢, 𝑠𝑟𝑥 = (1− 𝛾(𝑠𝑢)) 𝑠𝑢. 𝛾(𝑠𝑢) ∈ [0, 1] specifies the longitudinal

slip distribution among front and rear tire. This enables us to model both front and

rear wheel driven vehicles as well as arbitrary all-wheel drive configurations.

The lateral slips for front and rear tire are

𝑠𝑓𝑦 =
(𝑣𝑦 + 𝑙𝑓 𝜑̇) cos 𝛿 − 𝑣𝑥 sin 𝛿

𝑣𝑥 cos 𝛿 + (𝑣𝑦 + 𝑙𝑓 𝜑̇) sin 𝛿
, 𝑠𝑟𝑦 =

𝑣𝑦 − 𝑙𝑟𝜑̇
𝑣𝑥

. (5.7)

The total tire slips are 𝑠𝛼 =
√︀
𝑠2𝛼𝑥 + 𝑠2𝛼𝑦, 𝛼 ∈ {𝑓, 𝑟}. We can compute the tire forces

as

𝐹𝛼𝛽 = 𝜇𝛼𝛽𝐹𝛼𝑧, 𝛼 ∈ {𝑓, 𝑟}, 𝛽 ∈ {𝑥, 𝑦}, (5.8)

with normal loads on front and rear tires

𝐹𝑓𝑧 =
𝑚𝑔(𝑙𝑟 − 𝜇𝑟𝑥ℎ)

𝑙𝑓 + 𝑙𝑟 + ℎ(𝜇𝑓𝑥 cos 𝛿 − 𝜇𝑓𝑦 sin 𝛿 − 𝜇𝑟𝑥)
, (5.9)

𝐹𝑟𝑧 = 𝑚𝑔 − 𝐹𝑓𝑧. (5.10)

Pacejka’s simplified magic formula [26] defines the corresponding friction coefficients

as

𝜇𝛼𝛽 = −(𝑠𝛼𝛽/𝑠𝛼)𝜇𝛼, 𝛼 ∈ {𝑓, 𝑟}, 𝛽 ∈ {𝑥, 𝑦}, (5.11)

with

𝜇𝛼 = 𝐷𝛼 sin (𝐶𝛼 arctan(𝐵𝛼𝑠𝛼)) , 𝛼 ∈ {𝑓, 𝑟}. (5.12)

𝐷𝛼, 𝐶𝛼, 𝐵𝛼 are tire and road surface specific coefficients.
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We limit the total friction forces for both front and rear tires by

𝐹𝛼 =
√︁
𝐹 2
𝛼𝑥 + 𝐹 2

𝛼𝑦 ≤ 𝜇𝛼,max𝐹𝛼𝑧, 𝛼 ∈ {𝑓, 𝑟}, (5.13)

to ensure operation in a safe driving envelope. 𝜇𝛼,max is the maximum allowed friction

coefficient. The constraint essentially limits the yaw rate dependent on the state

x. The constraint is suitable even for race-car driving under significant amounts of

slip [89] and prohibits unsafe driving modes.

The constraints on steering speed |𝛿̇| ≤ 𝛿̇max, steering angle |𝛿| ≤ 𝛿max, and lon-

gitudinal speed, 𝑣𝑥 ≤ 𝑣𝑥,max remain the unchanged. We introduce an additional

constraint on the lateral velocity |𝑣𝑦| ≤ 𝑣𝑦,max .

5.4 Method

In this section we describe the method to solve the general problem of (5.2) in a

specific setting.

5.4.1 Overview

We formulate a NMPC to compute a safe trajectory for the predefined time horizon.

The constrained optimization consists of the following costs and constraints.

Cost

To maintain generality of the problem formulation while easing the understanding of

the specifics of the instantiation, we slightly alter the notation 𝐽ℎ, 𝐽𝑡, compare (5.2),

to 𝐽ℎ, 𝐽𝑡 and will include weighting factor between these two losses in (5.42). We

define the time-dependent weighted combination of 𝐽ℎ and 𝐽𝑡 to avoid the necessity

of prediction of future human inputs in Section 5.4.7. The cost term 𝐽𝑡(x0:𝑚,u0:𝑚−1)

defined in Section 5.4.3 consists of terms commonly used in autonomous driving. It

is responsible for giving feedback to the driver in the form of slightly nudging them

back into the correct direction without strong intervention. If diverted too far from
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a common autonomous driving trajectory, e.g. the road’s center (Section 5.4.2), the

trajectory cost will guide the driver back to safety and avoid strong future control

intervention to maintain safety (Section 5.4.3). It also directly penalizes controls, the

yaw rate and other features indicating discomfort or extreme driving conditions. This

is to avoid unnecessary future intervention by small intervention early on.

The cost term 𝐽ℎ penalizes the deviation of the system from the current accelera-

tion and steering angle specified by the human driver. This term and its generalization

to higher order states is described in Section 5.4.6.

Constraints

The optimization is subject to a set of constraints: (1) to respect the transition

model of the system, including kinematic and dynamic constraints, described in Sec-

tion 5.3.3, (2) to maintain the vehicle within the limits of the road, indicated in

Section 5.4.4 and (3) to avoid other traffic participants in the sense of guaranteeing

a probability of collision below 𝑝𝜖, as given in Section 5.4.5.

Constrained Optimization

The resulting NMPC, which solves (5.2), is then described in Section 5.4.8.

5.4.2 Lane Tracking

In this section we build on the MPCC method of [60, 103, 118] and apply it to

our problem setting. The control framework combines path generation and path

tracking into one problem. The MPCC essentially plans a progress-optimal path by

(nonlinear) projection of the vehicle’s position onto the centerline. This is different

from tracking controllers in that the controller has more freedom to determine the

state trajectories to follow the given path. For example this allows jointly optimize

for a velocity profile which in tracking is already defined by a reference trajectory.

The resulting controller can plan and follow a path inside a specified corridor which is

similar to time-optimal paths in race tracks when the horizon is chosen long enough.
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We can adapt the MPCC control framework to our problem formulation by including

additional cost terms into the optimization such as the minimal intervention cost,

see Section 5.4.6. We use the center line as a reference path but employ it merely

as a measure of progress by selecting appropriate weights in the optimization. The

MPCC control framework also allows us formulate analytic road-boundary constraints

by constraining the deviation from the centerline.

The MPCC approach is a suitable choice for our Parallel Autonomy formulation

since it can (a) ensure safety by staying within the the road defined as a the contour,

(b) can integrate slight nudging by penalizing deviation from the center line, and (c)

integrate the driver’s goal of achieving progress along the road.

Before posing the adapted MPCC problem and integrating it into our approach,

we introduce several preliminaries, including the parametrization of the reference path

(for which we will use the center line of the driving lane), and the definition of useful

error measures due to an approximated path progress.

Progress on the Reference Path

The vehicle at position p𝑘 = (𝑥𝑘, 𝑦𝑘) at time 𝑘 tracks a continuously differentiable

two-dimensional geometric reference path
(︀
𝑥𝑃 (𝜃), 𝑦𝑃 (𝜃)

)︀
with path parameter 𝜃 and

the tangential and normal vectors

t(𝜃) =

⎡⎣ 𝜕𝑥𝑃 (𝜃)
𝜕𝜃

𝜕𝑦𝑃 (𝜃)
𝜕𝜃

⎤⎦ , n(𝜃) =

⎡⎣ −𝜕𝑦𝑃 (𝜃)
𝜕𝜃

𝜕𝑥𝑃 (𝜃)
𝜕𝜃

⎤⎦ . (5.14)

The direction of the path is given by

𝜑𝑝(𝜃) = arctan

(︂
𝜕𝑦𝑝(𝜃)

𝜕𝑥𝑝(𝜃)

)︂
, (5.15)

and we will refer to ∆𝜑 = 𝜑 − 𝜑𝑝(𝜃) as the deviation of the vehicle’s heading to

the path. We parametrize the path by the arc length 𝑟, such that 𝜕𝜃/𝜕𝑟 = 1.

This allows us to estimate the progress of the vehicle along the reference path with

the vehicle’s actually driven longitudinal velocity 𝑣𝑥,𝑘 and distance 𝑟 =
∫︀
𝑣𝑥 d𝑡, for
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small ∆𝜑. While parametrization of curves by the arc length is not trivial, cubic

spline parametrizatios are close to the arc length if the distance between knots is

small relative to the curvature. Since the ego vehicle will follow a given road with

sufficiently low deviation from the reference, enforced by the road’s boundary, we can

assume that

∆𝜃 ≈ ∆𝑟 = 𝑣𝑥∆𝑡, (5.16)

holds. This additional assumption yields an approximated progress along the path

parameter

𝜃𝑘+1 = 𝜃𝑘 + 𝑣𝑥,𝑘∆𝑡𝑘, (5.17)

where 𝑣𝑥,𝑘∆𝑡𝑘 describes the approximated progress at time step 𝑘. Ideally, we want

to compute the path parameter 𝜃𝑃 (𝑥𝑘, 𝑦𝑘) of the closest point on the reference path

to the ego vehicle’s current position p𝑘 = (𝑥𝑘, 𝑦𝑘) to evaluate the associated progress,

distance, and relative heading of the vehicle to the path to evaluate costs and road

boundary constraints.

Finding 𝜃𝑃 (𝑥𝑘, 𝑦𝑘) exactly from the projection operator involves embedding the

optimization

𝜃𝑝(𝑥𝑘, 𝑦𝑘) = arg min
𝜃′𝑘

(︀
𝑥𝑘 − 𝑥𝑃 (𝜃′𝑘)

)︀2
+
(︀
𝑦𝑘 − 𝑦𝑃 (𝜃′𝑘)

)︀2
, (5.18)

into the NMPC optimization. The projection optimization is computationally expen-

sive for general curves and renders the direct projection operator unsuitable for fast

MPC. We therefore approximate 𝜃𝑃 (𝑥𝑘, 𝑦𝑘) by (5.17) for a fast lookup of path costs

and constraints.

Longitudinal Error

The approximation of the curvilinear abscissa 𝜃𝑃 (𝑥𝑘, 𝑦𝑘) by 𝜃𝑘 introduces two errors

(see Figure 5-4) if the vehicle’s actual path deviates from the reference path: a lon-

gitudinal (lag) error along the path and a lateral (countouring) error normal to the
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Figure 5-4: Path tracking coordinate system: Approximation of actual path ab-
scissa 𝜃𝑃 by virtual integrator 𝜃𝑘, and therefore approximation of the true projection
(𝑥𝑃 (𝜃𝑃 ), 𝑦𝑃 (𝜃𝑃 ) by (𝑥𝑃 (𝜃𝑘), 𝑦

𝑃 (𝜃𝑘). The path projection estimation causes the lon-
gitudinal error 𝑒𝑙𝑘 approximated by 𝑒𝑙(x𝑘, 𝜃𝑘), and contouring error 𝑒𝑐𝑘 approximated
by 𝑒𝑐(x𝑘, 𝜃𝑘). The contouring error 𝑒𝑐(x𝑘, 𝜃𝑘) is also used for an approximation of the
lateral distance of the vehicle to the reference path.
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path. The longitudinal error is

𝑒𝑙(x𝑘, 𝜃𝑘) =
t(𝜃𝑘)

⊤

||t(𝜃𝑘)||

⎡⎣ 𝑥𝑘 − 𝑥𝑃 (𝜃𝑘)

𝑦𝑘 − 𝑦𝑃 (𝜃𝑘)

⎤⎦ (5.19)

= − cos𝜑𝑃 (𝜃𝑘)
(︀
𝑥𝑘 − 𝑥𝑃 (𝜃𝑘)

)︀
− sin𝜑𝑃 (𝜃𝑘)

(︀
𝑦𝑘 − 𝑦𝑃 (𝜃𝑘)

)︀
, (5.20)

resulting from projecting the position error of the vehicle with respect to the path’s

abscissa 𝜃𝑘 along the path’s tangent t(𝜃𝑘), see Figure 5-5.

For sufficiently small 𝑒𝑙(x𝑘, 𝜃𝑘) the approximated path progress is close to the

actual curvilinear abscissa ((5.16)), and 𝜃𝑘 ≈ 𝜃𝑃 (𝑥𝑘, 𝑦𝑘). The longitudinal error

𝑒𝑙(x𝑘, 𝜃𝑘) needs to be penalized in the MPCC optimization to keep the error of the

approximated evolution 𝜃𝑘 along the path sufficiently small, as suggested in [103].

Contouring Error

The contouring error

𝑒𝑐(x𝑘, 𝜃𝑘) =
n(𝜃𝑘)

⊤

||n(𝜃𝑘)||

⎡⎣ 𝑥𝑘 − 𝑥𝑃 (𝜃𝑘)

𝑦𝑘 − 𝑦𝑃 (𝜃𝑘)

⎤⎦ (5.21)

= sin𝜑𝑃 (𝜃𝑘)
(︀
𝑥𝑘 − 𝑥𝑃 (𝜃𝑘)

)︀
− cos𝜑𝑃 (𝜃𝑘)

(︀
𝑦𝑘 − 𝑦𝑃 (𝜃𝑘)

)︀
(5.22)

describes the deviation of the vehicle’s actual position from the estimated position

projected onto the path’s normal. It is thus a measure of how far the vehicle deviates

from a given reference path in lateral direction.

The MPCC cost function

𝐽MPCC(x𝑘, 𝜃𝑘) = e⊤
𝑘𝑄e𝑘 − 𝜌𝑣𝑥,𝑘, (5.23)

with path error vector, formed from approximated longitudinal and contouring error

e𝑘 =

⎡⎣ 𝑒𝑙(x𝑘, 𝜃𝑘)

𝑒𝑐(x𝑘, 𝜃𝑘)

⎤⎦ , (5.24)

187



balances the trade-off between contouring error, longitudinal error, and approximated

path progress 𝑣𝑘. We can encode the previously discussed nudging behavior for di-

verting too far from the reference path and the driver’s anticipated intention to make

progress along the road through the parameters 𝑄 ∈ S2
++ and 𝜌 ∈ R+. Since each

stage 𝑘 in the complete cost function will be scaled with ∆𝑡𝑘, see (5.42) in Sec-

tion 5.4.8, 𝑣𝑥,𝑘 is not multiplied with ∆𝑡𝑘 but represents the approximate progress

along the path regardless.

5.4.3 Trajectory Cost

The trajectory cost

𝐽𝑡(x𝑘,u𝑘, 𝜃𝑘) = 𝐽MPCC(x𝑘, 𝜃𝑘) + u⊤
𝑘 𝑅u𝑘 + 𝜑𝑘𝛼𝜑𝑘. (5.25)

contains the MPCC cost, compare (5.23), and additionally penalizes strong control

inputs and yaw rate, a measure of driving comfort. The weights 𝑅 ∈ S++ and

𝛼 ∈ R+ allow for different prioritization of these objectives. 𝐽MPCC readily encodes the

penalization of large deviation from the reference path and simultaneously encourages

progress along the road that aligns with the driver’s goal of progressing towards their

destination.

By not only minimizing the intervention 𝐽ℎ but also including the trajectory costs

𝐽𝑡 into the total cost function we achieve the following:

Continuous Increase in Intervention

Potentially startling and confusing the driver by abrupt intervention may result in

an increased risk of degenerated driver performance. Instead of suddenly taking over

control in a thrashing manner to enforce safety constraints we achieve a continuous

increase in intervention by including the trajectory cost. Therefore, it is possible

to provide feedback to the driver by inducing a slight nudging behavior, potentially

increasing driver alertness and preparation while continuously increasing the level of

intervention the closer the system moves towards meeting safety constraints.
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Preventing Disruptive Interventions by Small Early Intervention

Early and small intervention resulting in nudging the driver into beneficial directions

also reduces the risk of large intervention in the future. Additionally to this direct ef-

fect, some hazardous situations can be avoided altogether due to potentially increased

awareness and early feedback to the driver. Therefore 𝐽𝑡 also aligns with our goal to

minimize the occurrence of extreme intervention.

5.4.4 Road Representation and Static Obstacle Constraints

The ego vehicle’s reference path is parametrized by a 𝐶1-continuous clothoid following

the road network through pre-specified points. We approximate the clothoid by cubic

splines. Closely spaced knots parameterize the spline by the arc length to sufficient

accuracy. The evaluation of the clothoid is computationally expensive because it

requires solving a Fresnel integral Cubic splines enable fast and analytic evaluation

of the reference path, its derivatives, and the road boundaries needed for solving the

non-linear optimization.

The signed lateral distance 𝑑(x𝑘, 𝜃) of the ego vehicle’s position p𝑘 from the ref-

erence path is given by the projection along the normal of the reference path at the

current curvilinear abscissa 𝜃𝑃 , approximated by 𝜃𝑘 such that 𝑑(x𝑘, 𝜃𝑘) = 𝑒𝑐(x𝑘, 𝜃𝑘).

The free and drivable space of the ego vehicle at the path abscissa 𝜃𝑘 is limited

by both the left road boundary 𝑏𝑙(𝜃𝑘) and the right road boundary 𝑏𝑟(𝜃𝑘), Figure 5-5.

They are parametrized by cubic splines to enable analytic evaluation and derivation.

The boundaries may enclose other obstacles 𝒪 in addition to the limits of the road

such as static obstacles, construction zones and other potentially dangerous objects.

We limit the lateral offset of the vehicle to the path by

𝑏𝑙(𝜃𝑘) + 𝑤(∆𝜑𝑘) ≤ 𝑑(x𝑘, 𝜃𝑘) ≤ 𝑏𝑟(𝜃𝑘)− 𝑤(∆𝜑𝑘), (5.26)

to ensure that the ego vehicle stays clear of all static obstacles. We must choose

𝑤(∆𝜑𝑘) larger than half the vehicle’s width to account for the ego vehicle’s relative ori-

entation to the path. We project the vehicle’s orientation-dependent outline onto the
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Figure 5-5: Agent and road representation: Ego vehicle (red) approximated by
circles of radius 𝑟disc and other vehicle (blue) with shape- and uncertainty-ellipse
corresponding to minimum occupancy probability 𝑝𝜖. Road boundaries 𝑏𝑙(𝜃) on the
left and right 𝑏𝑟(𝜃) of reference path (𝑥𝑃 (𝜃), 𝑦𝑃 (𝜃)).

reference path’s normal and arrive at 𝑤(∆𝜑𝑘) = 𝑤/2 cos(∆𝜑𝑘)+max(𝑙𝑓 , 𝑙𝑟) sin(|∆𝜑𝑘|)

as a suitable bound. Simply taking the vehicle’s length as an upper bound turns out

to be too conservative for navigating in narrow road segments. It would also severely

limit the host vehicle’s ability to utilize the road to its full extent to avoid other

vehicles and road hazards. We additionally constrain the difference between the ego

vehicle’s heading 𝜑𝑘 and the path’s heading 𝜑𝑃 (𝜃𝑘) as

|𝜑𝑘 − 𝜑𝑃 (𝜃𝑘)| ≤ ∆𝜑max. (5.27)

5.4.5 Avoidance of Dynamic Traffic Participants

The ego vehicle needs to plan its motion in dynamic, uncertain environments. Suc-

cessful and efficient operation of autonomous systems in such environments requires

reasoning about the uncertain future evolution of the states of the moving agents and

obstacles. The evolution of trajectories of other vehicles can be reasonably predicted

for a short time (typically less than a second) by considering physical quantities such

as the vehicles’ estimated velocities, directions, and yaw rates. We can analytically

propagate uncertain states with linear dynamics subject to Gaussian noise. The pre-

diction of other traffic participants within the driving environment over longer hori-
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zons is much stronger influenced by their intentions, motivations, and goals. Thus,

a different representation is more suitable. In our experiments, we choose to model

the mean and uncertainty propagation for vehicles following their lanes. Regardless,

it is straightforward to integrate more elaborate predictions of other agents that are

parametrized by trajectories of Gaussians. Nonetheless, accurate predictions of other

agents are beyond the scope of this work.

In the following, we will derive chance constraints that ensure safety despite uncer-

tain dynamic obstacle predictions. We will also detail the approximations necessary

to make the computationally challenging problem tractable for real-time applications.

We formulate collision chance constraints

𝑃 (𝐶) < 𝑝𝜖, (5.28)

as a bound on the probability of collision

𝑃 (𝐶) =

∫︁ ∫︁
𝐼𝐶(x𝑘,x𝑖𝑘)𝑝(x𝑘,x

𝑖
𝑘) 𝑑x𝑘 𝑑x

𝑖
𝑘. (5.29)

between the ego vehicle’s footprint ℬ(x𝑘) and vehicle 𝑖’s footprint ℬ(x𝑖𝑘). We integrate

over the distributions of their states x𝑘, x𝑖𝑘 and indicate a collision with

𝐼𝐶(x𝑘,x𝑖𝑘) :=

⎧⎪⎨⎪⎩0, if ℬ(x𝑘) ∩ ℬ𝑖(x𝑖𝑘) = ∅

1, otherwise.
(5.30)

For the general case, including rectangular objects and arbitrary distributions, the

probability of collision can only be estimated by Monte Carlo sampling that makes it

unsuitable for use in real-time optimization.

Assuming conditional independence between vehicles, no uncertainty over the host

vehicle’s state x𝑘, and uncertainty only over the other vehicles state x𝑖𝑘, simplifies

(5.29). The chance constraint for encoding (5.28) simplifies to

ℬ(x𝑘) ∩ ℬ𝑖(x𝑖𝑘,Σ𝑖
𝑘, 𝑝𝜖) = ∅. (5.31)
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Here, ℬ(x𝑘) is the host vehicle’s footprint and ℬ𝑖(x𝑖𝑘,Σ𝑖
𝑘, 𝑝𝜖) the other vehicle’s foot-

print with probability of more than 𝑝𝜖. We will derive a closed form approximation

for this constraint in the following.

For brevity, index 𝑖 will be omitted in this part of this section. The shapes of

other traffic participants, such as vehicles, pedestrians, and bikes are approximated

by a footprint encompassing ellipse ℰ(𝑎shape, 𝑏shape). The ellipse has orientation 𝜑 with

semi-major axes 𝑎shape and 𝑏shape in longitudinal and lateral direction of the obstacle

respectively, see Figure 5-5. We take advantage of the analytic description of their

occupied area to derive approximate collision states that can be described in closed

analytic form. We assume to know the evolution of the obstacles’ future trajectories

up to some uncertainty in the form of a posterior distributions parameterized by mean

x0:𝑚 and uncertainty Σ0:𝑚 trajectories. For our experiments, we supply a model of

the growth of uncertainty

Σ𝑘+1 = min (Σ𝑘 + Σ∆𝑡𝑘,Σmax) . (5.32)

We describe the vehicle’s position uncertainty with the covariance matrix Σ𝑘 =

diag[(𝜎𝑎𝑘)
2, (𝜎𝑏𝑘)

2] at time 𝑘. We approximate the covariance in the vehicle’s posi-

tion to be aligned with the vehicle’s heading. The principal axis of the vehicle’s

Gaussian and the principal axis of the encompassing ellipse are therefore aligned, see

Figure 5-5. The growth of uncertainty is determined by Σ = diag[(𝜎𝑎)2, (𝜎𝑏)2]. We

model the uncertainty growth as bounded by Σmax to account for the high likelihood

of vehicles to stay in their current lanes. While we have chosen this model of propa-

gation of uncertainty for simplicity in our experiments, other more complex models

or learned predictions are feasible in this framework as well.

The 𝑝𝜖 level-set lines of the Gaussian 𝒩 (0,Σ𝑘) describing the position uncertainty

of the other traffic participants form ellipses ℒ(𝑎Σ𝑘
, 𝑏Σ𝑘

) with coefficients

⎡⎣ 𝑎Σ𝑘

𝑏Σ𝑘

⎤⎦ =

⎡⎣ 𝜎𝑎𝑘
𝜎𝑏𝑘

⎤⎦(︀−2 log
(︀
𝑝𝜖2𝜋𝜎

𝑎
𝑘𝜎

𝑏
𝑘

)︀)︀1/2
. (5.33)
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The Minkowski-sum ⊕ of the axis aligned uncertainty ellipse ℒ(𝑎Σ𝑘
, 𝑏Σ𝑘

) and the

shape ellipse ℒ(𝑎shape, 𝑏shape) is approximately an ellipse

ℬ𝑖(x𝑖𝑘,Σ𝑖
𝑘, 𝑝𝜖) ⊂ ℒ(𝑎Σ𝑘

, 𝑏Σ𝑘
)⊕ ℒ(𝑎shape, 𝑏shape)

⊂ ℒ(𝑎Σ𝑘
+ 𝑎shape, 𝑏Σ𝑘

+ 𝑏shape),
(5.34)

inscribing the vehicle’s footprint up to an uncertainty threshold 𝑝𝜖. A similar, but

conservative outer approximation is defined in [36]. The axis alignment of the shape

and uncertainty ellipses enables us to directly add the coefficients of the semi-major

axes to find the obstacle’s approximate ellipse ℬ(x𝑖𝑘,Σ
𝑖
𝑘, 𝑝𝜖) with occupancy probabil-

ity above the 𝑝𝜖 threshold.

We approximate the rectangular shape of the ego vehicle by a set of 4 discs

ℛ𝑗(x𝑘), 𝑗 ∈ {1, . . . , 4}, of radius 𝑟ego chosen to conservatively enclose the vehicle,

see Figure 5-5.

ℬ(x𝑘)⊂
⎛⎝ ⋃︁
𝑗∈{1,...,4}

ℛ𝑗(x𝑘)

⎞⎠ , (5.35)

It is necessary to employ discs instead of ellipses for the ego vehicle, since the

ego vehicle and the other vehicles are not necessarily axis aligned. The approximate

Minkowski sum can not be derived easily for non-axis aligned ellipses. The approx-

imate Minkowski sum of the ego-car’s discs and an ellipse on the other hand has a

closed form description. We can therefore transform the collision constraint (5.31) to

⎛⎝ ⋃︁
𝑗∈{1,...,4}

ℛ𝑗(x𝑘)

⎞⎠⋂︁ℒ(𝑎Σ𝑘
+ 𝑎shape, 𝑏Σ𝑘

+ 𝑏shape) = ∅, (5.36)

and we can apply the approximate Minkowski sum on the ego car’s 𝑗-th discs ℛ𝑗(x𝑘)
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and the previously derived occupancy ellipse to form analytic collision constraints

𝑐obst.,i
𝑘 (x𝑘) =

⎡⎣ ∆𝑥𝑗

∆𝑦𝑗

⎤⎦⊤

𝑅(𝜑)⊤

⎡⎣ 1
𝑎2

0

0 1
𝑏2

⎤⎦𝑅(𝜑)

⎡⎣ ∆𝑥𝑗

∆𝑦𝑗

⎤⎦
⃒⃒⃒⃒
⃒⃒⃒
𝑘,𝑖

> 1,

∀𝑗 ∈ {1, . . . , 4} (5.37)

where ∆𝑥𝑗, ∆𝑦𝑗 are the distance of the ego vehicle’s 𝑗-th disc to the center of the

obstacle 𝑖 at time 𝑘. 𝑅(𝜑) is the rotation matrix corresponding to the obstacle’s

heading, and ⎡⎣ 𝑎
𝑏

⎤⎦ =

⎡⎣ 𝑎shape + 𝑎Σ𝑘
+ 𝑟disc

𝑏shape + 𝑏Σ𝑘
+ 𝑟disc

⎤⎦ , (5.38)

describe the semi-major axis of the resulting constraint-ellipse. As a result we have

an analytic closed-form constraint prohibiting collisions with probability higher than

𝑝𝜖 with other vehicles.

For more elaborate methods of uncertainty propagation, such as sigma point trans-

formations or Monte Carlo sampling, we can compute a conservative approximation

of a Gaussian with the principal axis aligned to the expected vehicle orientation. The

conservative approximation would define new uncertainty ellipse coefficients 𝑎Σ𝑘
, 𝑏Σ𝑘

.

The uncertainty propagation does not affect optimization run-time as much since it

only needs to be completed once before the optimization. More generally, if we can

describe the 𝑝𝜖 occupancy of other vehicles by an ellipse, the remainder of the method

remains applicable without the need for the axis alignment assumption.

5.4.6 Minimal Intervention

It is our goal to follow the human input very closely and intervene only when deemed

necessary. The intervention cost

𝐽h(x𝑘,u𝑘,uℎ𝑘) =
[︁
{u𝑘,x𝑘} − uℎ𝑘

]︁⊤
𝐾
[︁
{u𝑘,x𝑘} − uℎ𝑘

]︁
, (5.39)
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with weights 𝐾 ∈ S++ penalizes the deviation of the system’s state or input from the

human driver’s predicted desired input uℎ𝑘. We may adapt the function depending

on the which human inputs uℎ𝑘 are observable. We penalize the deviation of the

corresponding states x𝑘 and control inputs u𝑘 from human inputs uℎ𝑘 accordingly.

Instead of predicting future driver inputs uℎ0 from a driver model [179], we hold

the human input constant uℎ𝑘 = uℎ0 ∀𝑘 and penalize the difference of planned controls

and the current human input. As we will see in the forthcoming Section 5.4.7, we

will introduce a time-dependent weighting such that the impact of 𝐽h(x𝑘,u𝑘,uℎ0)

dominates the optimization in the short term but drops off quickly. Hence, we do

not need to rely on accurate driver predictions. The optimization plans trajectories

sufficiently close to the short term intentions of the human driver and subsequently

follows the long-term goals with increasing time.

In our experimental setup we can only observe the driver’s desired steering angle

𝛿ℎ and acceleration 𝑣̇ℎ𝑥 , but not the steering speed 𝛿̇ℎ. The minimal intervention cost

accounting only for the deviation from the current human driver input uℎ0 = [𝛿ℎ0 , 𝑣̇
ℎ
𝑥,0]

⊤

becomes

𝐽h(x𝑘,u𝑘,uℎ0) =

⎡⎣ 𝑣̇𝑢𝑥,𝑘 − 𝑣̇ℎ𝑥,0
𝛿𝑘 − 𝛿ℎ0

⎤⎦⊤

𝐾

⎡⎣ 𝑣̇𝑢𝑥,𝑘 − 𝑣̇ℎ𝑥,0
𝛿𝑘 − 𝛿ℎ0

⎤⎦ . (5.40)

Nonetheless, if available, the framework is general enough to incorporate predic-

tions of desired human inputs. If observable, we may also use other quantities as the

driver’s desired input, such as steering velocity, acceleration, or torque.

5.4.7 Merging of Minimal Intervention and Trajectory Costs

We propose a linear, time-dependent combination of the cost of intervention 𝐽ℎ (5.40)

and trajectory cost 𝐽𝑡 (5.25)

𝐽(x𝑘,u𝑘, 𝜃𝑘,uℎ0) = 𝛽𝜔(𝑡𝑘)𝐽h(x𝑘,u𝑘,uℎ0) + (1− 𝜔(𝑡𝑘)) 𝐽t(x𝑘,u𝑘, 𝜃𝑘), (5.41)

with the goal of decreasing dependence on accurate prediction of future driver com-

mands uℎ0:𝑚 and instead only relying on the current human input uℎ0 .
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Figure 5-6: Minimal intervention and trajectory cost trade off: Comparison
of magnitude of minimal intervention cost 𝐽ℎ weighting (𝛽𝑤(𝑡𝑘)), red, and trajectory
cost 𝐽ℎ weighting (1− 𝑤(𝑡𝑘)), blue, over the planning horizon.

We chose weights 𝛽 ∈ R+ and an exponential decay function 𝑤(𝑡𝑘) = exp(−𝛼𝑡𝑘),

𝛼 ∈ R+ to increase the impact of the human input in the short-term, see Figure 5-6.

We set 𝑤(𝑡𝑘), the relative weight of 𝐽ℎ to drop off to 10% of its initial value after only

0.5s. Therefore, and because of a large 𝛽, the minimal intervention cost 𝐽ℎ dominates

the optimization in the short term to make the system very responsive to current

human inputs. With increasing time it will more and more rely on 𝐽𝑡, while 𝐽ℎ loses

relevance. The system’s planned output trajectory may not coincide with the human

driver’s anticipated trajectory for timesteps far into the future. Regardless, the output

trajectory will eventually snap into the correct human long term intention as time

progresses. A deviation of the system will only become noticeable if safety constraints

become active. The human driver will perceive the system as inactive otherwise. A

study on driving in shared safety systems [18] underlines the importance: Human

drivers approved of a surprisingly high amount of intervention if their own high-level

goals were achieved. Intervention may not be perceived as such if it does not follow

adversary goals.
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Figure 5-7: NMPC control scheme

5.4.8 Optimization

We collect the aforementioned state-, dynamics-, path-, and obstacle constraints and

form the final constrained nonlinear optimization problem

u*
0:𝑚−1 = arg min

u0:𝑚−1

𝑚∑︁
𝑘=0

𝐽(x𝑘,u𝑘, 𝜃𝑘,uℎ0)∆𝑡𝑘 (5.42)

s.t. x𝑘+1 = 𝑓(x𝑘,u𝑘), (5.43)

𝜃𝑘+1 = 𝜃𝑘 + 𝑣𝑘∆𝑡𝑘, , (5.17)

xmin < x𝑘 < xmax, (5.44)

umin < u𝑘 < umax, (5.45)

|𝜑𝑘 − 𝜑𝑃 (𝜃𝑘)| < ∆𝜑max, (5.27)

|𝑣𝑥𝜑𝑘| < (𝑣𝑥𝜑̇)max, (5.4)

𝐹𝛼 =
√︁
𝐹 2
𝛼𝑥 + 𝐹 2

𝛼𝑦 ≤ 𝜇𝛼,max𝐹𝛼𝑧, 𝛼 ∈ {𝑓, 𝑟}, (5.13)

𝑏𝑙(𝜃𝑘) + 𝑤(∆𝜑𝑘) ≤ 𝑑(x𝑘, 𝜃𝑘) ≤ 𝑏𝑟(𝜃𝑘)− 𝑤(∆𝜑𝑘), (5.26)

𝑐obstacle,i
𝑘 (x𝑘) > 1, 𝑖 = {1, . . . , 𝑛}, (5.37)

∀𝑘 ∈ {0, . . . ,𝑚}.

Constraint (5.4) is active for the kinematic model only, while (5.13) is only active for

the dynamical model. At initialization the path (𝑥𝑃 (𝜃), 𝑦𝑃 (𝜃)) and boundaries 𝑏𝑙(𝜃)

and 𝑏𝑟(𝜃) are given by the road and static obstacles, see Figure 5-7 and Algorithm 8.

The boundaries are updated once new information about roads or static obstacles
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become available. At the beginning of each control loop the initial states x0, 𝜃0,

human control input uℎ0 , and predictions of other traffic participants mean x𝑖0:𝑚 and

covariances Σ𝑖
0:𝑚 are provided to the NMPC and the corresponding constraint ellipses

are computed. Subsequently, we solve (5.42) and the system executes the resulting

optimal control u*
0. The system consequently returns to the beginning of the loop,

see Figure 5-7 and Algorithm 8. We solve the optimization problem (5.42) with a

Primal-Dual Interior Point solver generated by FORCES Pro [53].

Algorithm 8 Summary of NMPC control flow
1: Sense environment ℰ including static obstacles 𝒪 and dynamic obstacles x𝑖0,
𝑎𝑖shape, 𝑏

𝑖
shape, 𝑖 ∈ {1, . . . , 𝑛};

2: Initialize (𝑥𝑃 (𝜃), 𝑦𝑃 (𝜃)), the path spline of the ego vehicle from the road network;
3: Compute 𝑏𝑙(𝜃), 𝑏𝑟(𝜃), the path-boundary splines including road constraints and

static obstacles 𝒪;
4: loop
5: Sense env. ℰ , i.e. 𝒪, x𝑖0, 𝑎𝑖shape, 𝑏

𝑖
shape, 𝑖 ∈ {1, . . . , 𝑛};

6: if Static environment changed then
7: Update

(︀
𝑥𝑃 (𝜃), 𝑦𝑃 (𝜃)

)︀
;

8: Compute 𝑏𝑙(𝜃), 𝑏𝑟(𝜃);
9: end if

10: for 𝑖 ∈ {1, . . . , 𝑛} do;
11: Predict x𝑖1:𝑚;
12: Propagate Σ𝑖

0:𝑚; ◁ (5.32)
13: Compute (𝑎𝑖0:𝑚, 𝑏

𝑖
0:𝑚); ◁ (5.38)

14: end for
15: Find 𝜃0, ego vehicle path abscissa; ◁ (5.18)
16: Measure x0, the current ego state;
17: Measure uℎ0 , the current human driver input;
18: Compute u*

0; ◁ (5.42)
19: Apply u*

0 to system;
20: end loop

5.4.9 Technical Discussion

The described method guarantees dynamic collision avoidance while staying within

the limits of the road up to the time horizon. The conditions for this are that (a) the

solver can find a solution, and (b) knowledge of the road, static obstacles, dynamic

obstacles on the road, and a prediction of the mean states of the dynamic obstacles’
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motion up to a sufficient uncertainty are available. Since this work does not address

recursive feasibility, (a) can not always be guaranteed.

Quality of the Trajectory

The optimization problem is non-convex and, e.g. in the event of deciding to overtake

a vehicle on the left or right, can become of combinatorial nature. Although the

Primal-Dual Interior Point method solves for a local solution, we have achieved good

results even for poor initialization for four reasons:

1. The local solution trajectory will snap into the human driver’s desired trajectory

eventually as time progresses. Only the current control u0 is executed and

since the current human inputs uℎ0 dominate the cost function, as discussed in

Section 5.4.7, it is acceptable to currently execute a local solution.

2. Any local solution is safe. While not necessarily optimal in the sense of minimal

intervention, any feasible solution will abide by the safety constraints.

3. Increased static and dynamic regularization parameters yield robust optimiza-

tion in practice.

4. The 𝐽MPCC cost term shapes the trajectory optimization process closer to convex

by encouraging progress along the path and creating a cost basin by penalizing

large lateral offsets from the path.

Executing the NMPC, including solving a nonlinear non-convex optimization prob-

lem, has a number of general drawbacks such as uncertain convergence, potentially

unbounded runtime, and the lack of guarantees of optimality. In future work a high-

level trajectory planner, solving the combinatorial problem, could be applied to yield

a meaningful initialization to ensure global optimality.

Number of Variables

Per stage 1 state originates from the path integrator 𝜃𝑘, 2 inputs, and 5 (7) states x𝑘

for the kinematic (dynamical) model, thus 8 (10) variables exist. The NMPC plans
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over 50 stages, including 8 (10) variables per stage, and thus 394 (492) variables in

total excluding the initial states for the kinematic (dynamical) model are needed.

Number of Constraints

Including the system dynamics and path progress evolution in total 6 (8) equality

constraints need to be respected. 14 (16) inequality constraints result from state, in-

put, velocity-yaw-rate, (friction), heading-deviation, and road boundary constraints.

4𝑛 additional inequality constraints originate from 𝑛 dynamic obstacles in the en-

vironment and the 4 circle approximation of the ego vehicle. In total 20 (24) + 4𝑛

constraints are specified per stage. Depending on the solver only a subset of those

are active.

5.5 Results

We evaluate the capabilities of our approach in a variety of simulated scenarios. The

human driver controls a physical steering wheel and pedals, see Figure 5-8, which

generate the desired inputs uℎ0 = [𝛿ℎ0 , 𝑣̇
ℎ
𝑥,0], i.e. steering angle 𝛿ℎ0 and acceleration

𝑣̇ℎ𝑥,0. The human inputs are then processed in the NMPC formulation to achieve safe

motion. The reference path and the road boundaries 𝑏𝑙 and 𝑏𝑟 are designed to fit

the road network. We adopt a variable step size approach in all scenarios, and for

all motion models, to increase the time horizon of the planner without sacrificing

computation cost. During the first 10 steps we employ ∆𝑡𝑘 = 0.1𝑠 and ∆𝑡𝑘 = 0.2𝑠

for the remaining 40 steps, resulting in a planning horizon of nearly 9𝑠. During all

experiments the cost function’s weights remained unchanged and are displayed in

Table 5.2.

5.5.1 Left Turn Across Traffic, Merging, and Overtaking

In this challenging left turn cross traffic scenario, see Figure 5-1 and Figure 5-9, the ego

vehicle intends to merge into the oncoming traffic while avoiding collisions with cross

traffic. Afterwards, the driver attempts to overtake a vehicle while traffic obstructs
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Table 5.2: Cost weights
Function Parameter Value
MPCC 𝑄 = diag(𝑞long, 𝑞lat) diag(1.0, 1.0)
Progress 𝜌 5.0
Control 𝑅 = diag(𝑟𝑎𝑐𝑐, 𝑟𝛿̇) diag(1.0, 1.0)
Yaw rate 𝛼 0.1
Minimal intervention 𝐾 = diag(𝑘𝑣̇, 𝑘𝛿) diag(1.0, 2.0)
Scaling of intervention 𝛽 500

Figure 5-8: Virtual driving setup with steering wheel and pedals
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the maneuver. For this challenging scenario with multiple dynamic obstacles and a

decision-making component the simpler kinematic model was employed.

We have evaluated the method in a set of 100 randomly generated scenarios.

In these scenarios the initial positions, trajectories including acceleration and veloc-

ity profiles, of all other traffic participants were randomly generated. The Parallel

Autonomy system was able to ensure safety at all times, although we purposefully

caused unsafe human driver inputs which would have resulted in crashes without the

proposed system.

In the following we will present two representative examples for two different

human driving styles, i.e. an aggressive and a calm driver. We define the total

intervention as a direct measure to compare the NMPC’s behavior subject to different

scenarios and driving styles:

Intervention :=
100

2

(︃
|𝑣̇𝑥,0 − 𝑣̇ℎ𝑥,0|

2𝑣̇𝑥,max
+
|𝛿0 − 𝛿ℎ0 |

2𝛿max

)︃
[%]. (5.46)

We measure the amount of total intervention as the sum of deviation from the human

input normalized with the maximum possible inputs scaled to % .

Aggressive Driver

In the first case, see Figure 5-9, an aggressive driver nearly collides with the right

road boundary even before entering the intersection 1 , which is prevented by counter-

steering of the autonomous system since the right road boundary constraint becomes

active. Then, the driver tries to accelerate into the intersection 2 , although other

vehicles are just passing by, resulting in a near collision. Our system brings the ego

vehicle to a full stop, lets the other vehicles pass, and then proceeds by allowing the

driver to merge into the traffic when a large enough gap appears. Here the dynamic

obstacle constraints prevented a collision and influenced the merging behavior. To

achieve this high-level of reasoning and scheduling, both a long planning horizon as

well as low-level control on a trajectory basis combined with high replanning frequency

to quickly account for changes in the environment are necessary.
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Figure 5-9: Aggressive left turn across traffic: The system’s steering angle and
acceleration are displayed in blue, the human input in red. Snapshots of the current
scenes at specific time-stamps are displayed above the acceleration and steering plots:
The ego vehicle in red, the MPC planned path in blue. All other vehicles in black.
An aggressive driver causes multiple critical situations where the system is forced to
intervene to large amounts to keep the vehicle in a safe state. Large deviation from
the driver’s desired acceleration and steering wheel angle to the actual system output
are observable. E.g. collision at time (2) is prohibited by strong braking.
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Figure 5-10: Calm left turn with traffic: System output stays close to the desired
human acceleration and steering wheel angle. An exception appears at (4) where the
driver is not counter steering enough to prohibit a predicted collision with the left
road boundary.

At 3 the driver approaches a preceding vehicle with high relative speed and tries

to collide by accelerating even further. Our system brakes the ego vehicle, first with

gradually increasing effort and then with maximum acceleration 𝑎max, and allows an

overtaking maneuver once the oncoming traffic has passed. At 4 the driver erratically

tries to break through the right road boundary, which is prohibited by our system,

and the ego vehicle can continue driving on the road safely. In all these cases, the

system can guard the human driver from actually causing any harm to himself and

others.

Due to the severity of the scenario a maximum intervention of 71% and 23% on

average was necessary to assure safety.

Calm Driver

We show the opposite spectrum of how our method reacts in Figure 5-10: A calm

driver experiences the same previous scenario. We observe that if the inputs from

the human driver are deemed safe, barely any difference between human and system
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Figure 5-11: Impact of prediction uncertainty: Comparison of NMPC plans with
uncertainty estimate (top) and without (bottom) shown by the ellipses representing
their occupancy probability threshold. Predicted future states are shown in fading
colors 0.4𝑠 apart over a horizon of 9𝑠.

inputs occurs. The system thus minimizes intervention if no critical situations arise.

Since steering the vehicle with steering wheel and pedals in simulation is not an

easy task, due to the lack of feedback, the human driver did not brake sufficiently

at 2 and misses to counter-steer during a lane change maneuver 4 . Here the

system applied the slight nudging behavior to carefully guide the driver away from the

imminent collision with the left road boundary. Even in this situation, the maximum

intervention did not exceed 16% and was only 3% on average for the whole scenario,

which underlines the functionality of the minimal intervention principle.

5.5.2 Impact of Uncertainty

Taking the uncertainty in the prediction of other vehicles into account is significant

since future states can deviate substantially from the expectation. In the case of

neglecting uncertainties, the planned behavior can be more aggressive and is given

more leeway in the constraints. See Figure 5-11-bottom, where the vehicle is allowed

to merge into the lane in front of a second vehicle. Taking future obstacles’ uncertainty

growth into account, see Figure 5-11-top, results in more conservative behavior, and

the ego vehicle is prohibited from merging in front of the oncoming driver. Here, we

discussed the plan of the NMPC and not the actual observed behavior. Since the

control loop runs at more than 10𝐻𝑧, frequently updating the planned trajectory,
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the executed controls will be less conservative as they adapt to new observations.

It will be possible to actually observe the true positions and velocities of the other

vehicles over time and thus replan with lower uncertainty. Nonetheless, we have

shown the impact of uncertainty aware planning by including chance constraints into

the optimization.

5.5.3 Snowy Race Track

Table 5.3: Vehicle specifications
Parameter Value
𝑙𝑓 , 𝑙𝑟, 𝑤, ℎ 1.2, 1.5, 1.76, 0.9 (m)
𝑚, 𝐼𝑧 1400𝑘𝑔, 3000𝑘𝑔/𝑚2

𝐵𝛼, 𝐶𝛼, 𝐷𝛼 (snow) 5, 2, 0.3

Sharp Turn

In this scenario, see Figure 5-12(a), the vehicle enters a sharp left turn on a race

track. The current human inputs would cause the vehicle to spin off the road at high

speed. The controller brakes the vehicle to a safe speed complying with the friction

constraints, see Figure 5-12(b), then accelerates at the exit of the turn to maximize

progress while always respecting the road’s limits. The planned trajectory shows

similarities to a racing line during high-speed cornering. This behavior shows the

advantage of longitudinal and lateral control. Without deceleration, the vehicle would

not have been able to complete the turn, see Figure 5-12(a). The plan maintains a

smooth acceleration profile during the turn and maximizes the use of available forces,

see Figure 5-12(b), while abiding by the friction constraint.

Sudden Appearance of Obstacles

A suddenly appearing static obstacle represented by an ellipse in the driving-path

of the vehicle, e.g. a stationary deer, needs to be avoided, see Figure 5-13(a). After

replanning a new trajectory, the vehicle can swerve to the left side of the road to avoid

the static obstacle in its previous driving path. The optimization does not have any
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(a) NMPC plan of vehicle, where vehicle poses are 0.2𝑠 apart for a horizon of 9𝑠.
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(b) Normalized friction for both tires, 𝐹𝛼𝛽,normalized = 𝐹𝛼𝛽/(𝜇𝛼,max𝐹𝛼𝑧).

Figure 5-12: NMPC plan in tight turn: The planner decelerates into the sharp
corner to comply with friction constraints.
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(a) NMPC plan of vehicle avoiding unexpected obstacle, where vehicle poses are
0.2𝑠 apart for a horizon of 9𝑠.
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(b) The friction constraints remain valid during the avoidance maneuver.

Figure 5-13: Avoiding unexpected obstacle: The system successfully avoids the
collision.

208



Figure 5-14: NMPC computation times: Computation times for the different
human in the loop scenarios and varying number of other traffic participants, as well
as scenarios with high uncertainty. Finally the case of AI only, without the human
in the loop. On the far right is the dynamic vehicle model in a static environment.
Results were computed on a single core of an AMD Ryzen 7 1700X @3.4Ghz.

incentive to slow down in the vicinity of obstacles and thus continues to accelerate to

increase progress along the road until it brakes for the imminent left corner.

5.5.4 Computation Time

We display the NMPC solve times collected during several runs on a single-core CPU

in Figure 5-14. For the kinematic model, we observed a strong influence of the com-

plexity of the scenario on the computation time. In the case of no dynamic obstacles,

we observed solve-times of less than 20𝑚𝑠 even for a challenging race track with many

tight turns, forcing the NMPC to intervene and decelerate due to velocity-yaw-rate

constraints. In cases where the system needs to nudge into tight gaps while simulta-

neously deciding whether a subsequent overtaking maneuver is feasible, computation

times can reach up to 50𝑚𝑠 in exceptional cases.

The dynamical vehicle model is surprisingly fast on average but exhibits worst-case

run-times of nearly 75𝑚𝑠. While we achieved robust performance and convergence for

all tests in static environments, for some cases in dynamic environments no feasible

solution was found and we, therefore, exclude the dynamical model from those use
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cases.

In summary, our system was able to reach the goal replanning frequency of 10𝐻𝑧

at all times for the kinematic vehicle model in complex dynamic environments, and

the dynamical model in simpler and static environments.

5.6 Discussion

In this work, we presented a NMPC that minimizes deviation from the human input

while ensuring safety according to our proposed general Parallel Autonomy control

framework. We have shown the increased functionality compared to other approaches

in complex and more realistic driving scenarios. The approach is capable of reasoning

over long time horizons of more than 9𝑠 in real-time, i.e. more than 10𝐻𝑧, while

maintaining close to the human input without a necessary prediction layer for human

intention.

We have shown our method to work with a kinematic model in challenging and

highly complex dynamic environments, and a dynamical model in static environments.

Future work will try to reduce general limitations of NMPC, such as uncertain

convergence and lack of a guarantee of optimality by the initialization in a correct

homotopy class, or by exploring strategies on how to deal with failure cases where

no solution can be found, or to extend the presented method to achieve provable

safety beyond the planning horizon by ensuring recursive feasibility. Additional tests

on our experimental platform [135], will also enclose an inference framework to gain

more elaborate predictions of other traffic participants, future trajectories, and their

uncertainty. More work is also needed to investigate the importance of visibility to

other drivers [16].

Instead of nudging the driver in the correct direction, it is possible to not intervene

at all if the driver is doing well. The impact of the different methodologies on human

drivers will be studied in the future. Lastly, the proposed receding horizon planner

also applies to fully autonomous vehicles if the minimal intervention cost is excluded

and future experiments will show the functionality.
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Chapter 6

Conclusions and Closing Remarks

This thesis presents algorithms for learning and control for interactions in mixed

human-robot environments. We contribute methods that enable complex interac-

tions towards robots that work with and around people for a variety of applications.

We enable (I) social human-robot interactions by estimating and reasoning about

the social preferences of people and leverage how actions can affect the beliefs and

plans of other people, even under (II) uncertainty and with partial observations. We

demonstrate agents that (III) learn through competition based on raw unprivileged

visual observations. Toward a future where robots elevate and protect people, we

introduce a guardian system in the form of (IV) Parallel Autonomy.

6.1 Final Thoughts and Lessons Learned

In the following, we will discuss valuable insights we have gained from working on the

topics in this thesis.

6.1.1 Local Solutions in Optimization and Nash Equilibria

Many of the approaches presented in this thesis rely on first-order (gradient descent) or

second-order (Newton’s method) optimization methods. Regardless of whether single-

agent real-time optimal control and motion planning or multi-agent game-theoretic
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planning in the form of solving for Nash equilibria, most approaches discussed em-

ploy local optimization. The benefits of fast solve times and real-time operation

come at the cost of local optimality and relying on smooth and well defined objective

functions. The optimization algorithms are limited to converge to a local minimum

of a single homotopy class that does not necessarily coincide with the global opti-

mum. The homotopy class is highly dependent on the initial solution guess but is

a detrimental factor for actual performance. Unfortunately, whether an algorithm

avoids an obstacle on the left or the right may be determined by the randomness of

an initial guess instead of a deliberate choice. Making the correct global decision,

i.e. correctly deciding on a homotopy class, can be more important than local opti-

mality. Regardless, there are ways to overcome some of the issues of these methods

towards arriving at a globally optimal solution. Convexifying the problem simplifies

the solution process as it is straight forward to find the only existing globally op-

timal solution. While this is not always possible, one can also convert the original

problem into a mixed-integer combination of convex problems, essentially evaluating

all possible homotopy classes. Finally, another option is to supply an initial guess

inside the globally optimal homotopy class and to additionally restrict the solution to

never leave the homotopy class during convergence. However, all these improvements

require sophisticated domain knowledge that may not always be available. They also

open other combinatorial problems when evaluating all homotopy classes. This can

pose issues for real-time operation. Additionally, the procedures are less well defined

in game-theoretic settings. While there are also different classes of algorithms relying

on sampling or searching, these usually do not scale well to high-dimensional and

complex problems for online operation. Regardless, the success of learning highly

skilled policies in this thesis as well as in the field of RL in general, suggests that

combining offline policy-learning for an initial guess and refining the solution online

through higher-order methods, such as in MPC, promises scalable and multi-purpose

motion-planning for problems where models of the environment are either learned,

or known a priori. This approach is especially promising for game-theoretic prob-

lems, where policies can be first learned through self-play offline and subsequently
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solutions refined online through state-of-the-art Nash equilibrium solvers presented

in this thesis.

6.1.2 Scalable and General Solutions vs Domain-Specific En-

gineering

The recent decade of progress in AI research has shown that general solutions which

scale well will eventually surpass engineered domain-specific solutions in the long-

term [192]. While manually engineered methods are mostly superior in the short

term through faster computation time and better interpretability of outcomes they

become increasingly difficult to scale to complex systems. As (parallel) compute ca-

pabilities increase over time, more general solution techniques that can be applied

across domains become more successful. This observation shall by no means devalue

contributions that do make domain-specific progress. The progress is essential in

the pursuit of scientific understanding of the specialized fields and enables building

frameworks that keep future more general solution methods in check. While there

is excitement about the novel and unprecedented capabilities of general and scalable

algorithms in AI, accelerated by the increase in compute, these advances also came at

the cost of a lack in interpretability, understanding, and provable correctness of the

solutions. While some engineering disciplines such as aviation adhere to a strict set of

rules and safety standards, newer disciplines such as autonomous driving do not yet

have a rigid body of requirements. For some applications which rely on learned per-

ception and learned direct control from perception, it may never be possible to define

a strict set of rules that prove safety in all cases. Instead, safety requirements may

have to be more statistical in nature. In these cases, domain-specific knowledge is es-

sential in defining the statistical tests and requirements that the more general solution

methods have to adhere to. They may also give feedback and help improve the more

general systems online and help to keep them in check. One may pose the question

of whether these domain-specific fields should focus their efforts on building systems

that ensure the general solution methods safety or whether they should continue de-
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veloping solution methods themselves. Regardless, the advent of new capabilities in

autonomy will yield many novel application areas that contribute positively to society

and do not have such strict requirements. It is especially promising to move on from

replicating human capabilities to reduce labor costs to inventing new products and

applications that create more value instead of redistributing it.

6.1.3 Emergent Behavior

As we have seen in this thesis, emergent behavior may result from many different so-

lution approaches ranging from optimal control, through solving for Nash equilibria,

to self-play in Multi-Agent Reinforcement Learning (MARL). Nonetheless, a suit-

able problem formulation is equally critical. Problem formulations include specifying

cost objectives, dynamics, and observation models. We also saw problems in which

agents didn’t have access to any of these models and had to learn them from scratch.

On the one hand, policy optimization can leverage the learned models to accelerate

learning such that we can interpret learning a model of the world as a part of the

solution. On the other hand, we can also see model learning as part of the problem

formulation since we may reuse learned models to learn policies for different tasks

in similar environments. Problem formulations also include game or group dynamics

in the case of multi-agent environments. While we usually see problem formulations

as a prerequisite to propose potential solutions, we often make simplifications to the

problems at hand to make solutions feasible. We replace sparse objectives with dense

cost functions to guide optimizers along gradients (contouring cost in Chapter 5),

impose artificial structure to reduce search spaces (Gaussian beliefs in Chapter 3),

and decouple problems into hierarchies of subproblems (SVO estimation and planning

in Chapter 2). These directions usually require some form of domain knowledge to

transform the original sparse reward, infinite horizon problems into more amenable

formulations. In many cases, such as in tying a shoe-lace or giving people emotional

support, it is not clear how to concisely formulate a problem at all. It is debatable

what optimization objective to choose. Ideally, we would advise robots to make the

world a better place, which is a very high-level, fuzzy, long-term, mixed-human robot,
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and multi-agent goal. Miss-specifying this goal could have detrimental outcomes and

has been a source of inspiration for movies starring robots that decide the world to be

better off without humans. Getting stuck in local optima could have equally destruc-

tive outcomes. Aside from these concerns, game-theoretic formulations may be a way

towards more general formulations. In this thesis we saw great promise in training

agents in progressively more challenging environments in the form of self-play. Self-

play as an auto-curriculum automatically regulates the difficulty of the environment:

The competitor’s performance increases whenever the own agent’s performance in-

creases. Other successful game-theoretic auto-curricula like the min-max formulation

in GANs rely on similar principles but can be harder to train due to mode collapse.

Regulating the right amount of competitiveness between generator and adversary can

be difficult, especially in zero-sum games. Self-play in non-zero-sum formulations on

the other hand has the potential to also discover cooperative strategies while still

improving single agent performance. Generalizing this procedure of ever improving

agents and environments could be the next step towards intelligent agents.

6.2 Closing Remarks

With systems capable of increasingly complex interactive behavior, robots are on

their way into consumer products and our daily lives. By incorporating knowledge

from disciplines that study human social behavior, game-theory as well as learning

from observed human behavior, robots will learn to seamlessly work with and around

us, and elevate and protect people. Intelligent agents that are cognizant of how

their actions affect the environment, other agents, and their beliefs allow them to

learn complex skills from interacting with others and themselves in imagination. The

interplay of learning agents and imagined multi-agent environments that become more

challenging as performance increases will bring us closer to agents that exhibit the

generality and flexibility of human intelligence. Perhaps this will also bring us closer

to understanding the nature of general intelligence itself.
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