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Abstract

Despite the many breakthroughs in biomedical research and the increasing demand for
new drugs to treat unmet medical needs, the productivity of research and development
in the pharmaceutical industry has been steadily declining for the past two decades
and is at its lowest level today. Traditional sources of financing in biopharma are
no longer compatible nor aligned with the new realities of biomedical innovation, a
process which has become more challenging, complex, expensive, time-consuming,
and risky in the past twenty years. This has led to an outflow of capital from the
biopharma industry, creating an ever-widening gap in funding between early-stage
basic biomedical research and late-stage clinical development, where many promising
academic discoveries fail not because of bad science but due to financial reasons. In
this thesis, we explore the use of data analytics to facilitate biomedical innovation with
a particular emphasis on the mismatch between the risk characteristics of biomedical
projects and the risk preferences of biopharma investors.

We begin with a brief introduction of the challenges faced by the biopharma indus-
try in Part I. In Part II, we focus on analytics in the context of clinical trials. First,
we develop analytics for precision medicine in non-small cell lung cancer, an emerging
area of innovation in disease treatment with the advent of human genome sequencing.
Next, we train and validate predictive models for estimating the probability of success
of drug development programs. By providing greater risk transparency, our models
can help facilitate more accurate matching of investor risk preferences with the risks
of biomedical investment opportunities, thus increasing the efficiency of capital allo-
cation. Finally, we turn our attention to the ongoing COVID-19 (coronavirus disease
2019) pandemic. We propose a systematic framework for quantitatively assessing the
potential costs and benefits of different vaccine efficacy trial designs for COVID-19
vaccine development, including traditional and adaptive randomized clinical trials,
and human challenge trials (HCTs). Our results contribute to the current ethical
debate about HCTs by identifying situations where HCTs can provide greater social
value versus non-challenge development pathways, and are thus justifiable.

In Part III, we explore new business models to address the dearth of funding for
translational medicine in the valley of death. In view of the increasingly critical role
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that academic institutions play in the biotechnology industry, we develop a system-
atic framework for tracking the financial and research impact of university technology
licensing in the life sciences using the Massachusetts Institute of Technology as a case
study. Next, we investigate the use of a recently proposed megafund structure for
financing early-stage biomedical research. We extend the existing model to account
for technical correlation between assets in the underlying portfolio, thus allowing us
to evaluate the tail risks of the megafund more accurately. We show that financial
engineering techniques can be used to structure the megafund into derivatives with
risk-reward characteristics that are attractive to a broad range of investors. This
allows the fund to tap into a substantially larger pool of capital than the traditional
sources of biopharma funding. In the last part of the thesis, we further extend the
megafund framework to include adaptive clinical trial designs, and demonstrate the
economic viability of using the megafund vehicle to finance and accelerate drug de-
velopment for glioblastoma, a disease with very few treatment options, low historical
probabilities of success, and huge unmet need.

Thesis Supervisor: Andrew W. Lo
Title: Charles E. and Susan T. Harris Professor, Sloan School of Management
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Chapter 1

Challenges of Biomedical

Innovation

1.1 Introduction

The past two decades have seen an onslaught of biomedical innovations that have

revolutionized drug discovery and disease treatment, including gene therapies for dis-

eases thought to be incurable, immunotherapies for cancers, the use of human genome

sequencing to discover new treatment modalities, 3D printing of complex biomateri-

als, and not to mention advances in medical imaging, bioinformatics, and diagnostics.

Despite the many promising breakthroughs, studies show that the research and devel-

opment (R&D) productivity of the pharmaceutical industry has actually been steadily

declining since 2000 and is at its lowest level today [1, 2, 3]. Even the most optimistic

estimate puts the current pharmaceutical R&D efficiency at levels no higher than

twenty years ago [4].

The truth is that biotechnology and pharmaceutical R&D has become more chal-

lenging for various reasons. Advances in molecular biology have led to a proliferation

of plausible targets to pursue for therapeutic intervention [5, 6]. Most of these genomic

targets are highly novel yet poorly validated, making projects based on such targets

much riskier undertakings than the well-characterized targets that were developed in

the 1990s [7]. The “omics” revolution has also catalyzed a shift in the drug indus-
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try away from the “one-size-fits-all” paradigm to personalized medicine approaches

optimized based on specific patient characteristics and biomarkers. While highly spe-

cific therapeutics show great potential, they are more expensive and time-consuming

to develop. More importantly, because such specialized products target only small

populations of patients, they generate significantly less revenue as compared to block-

buster drugs a decade ago, especially in the current climate where the pricing of new

therapies has come under increasing scrutiny and pressure from regulators, payers,

and patients.

Combinatorial drug discovery—an important alternative to the conventional single-

agent approach for identifying effective combination therapies to treat complex dis-

eases such cancers and neurological disorders—has also become less efficient over

time as the combinatorial chemical search space increases exponentially with each

new drug approval. The amount of resources required to search through the sheer

number of possibilities has substantially slowed down discovery efforts. Furthermore,

an ever-improving back catalog of approved medicines has raised the evidential hurdle

for approval, making it increasingly difficult to achieve incremental improvement over

time [1]. This crowds R&D activity into hard-to-treat diseases and complex treat-

ment modalities that are potentially more transformative but also riskier to develop.

Regulatory hurdles also appear to be rising as we observe a progressive lowering of risk

tolerance by regulators [1]. The ever-growing number of safety requirements imposed

by the U.S. Food and Drug Administration (FDA) has only made it more costly for

biopharma companies to navigate the drug development process [8].

Today, there is significant uncertainty surrounding the scientific, medical, eco-

nomic, regulatory, academic, and political environments within the biomedical ecosys-

tem. Rising costs of clinical trials, a shift in research focus to more complex scientific

pathways that have higher risks of failure, a tougher regulatory environment, tight-

ening of drug pricing legislation, increasing competition from generics, the looming

patent cliff for biologics, mounting competitive pressure in emerging markets, and

continuing downward pressure by funding organizations on R&D budgets have cre-

ated a volatile, unconducive environment for investments [2]. These factors have led

22



to diminishing returns in pharmaceutical R&D, further driving investors away from

the biomedical industry to other sectors that can provide more attractive opportu-

nities. According to the National Venture Capital Association (NVCA), the dollar

volume of venture capital (VC) investments in the life sciences as proportion of total

VC activity in the U.S. was 16.8% in 2019, one of the lowest levels since 2004 when

it was as high as 27.7% [9, 10]. The total number of active biotech VC firms and

number of biotech initial public offerings in the U.S. and Europe have also declined

since 2014, indicating weakened interest from both private and public equity, the

traditional funding sources of biotech startups [11, 12]. This outflow of capital has

created an ever-widening gap in funding between early-stage basic biomedical research

(usually funded by research grants from government agencies such as the National

Institutes of Health) and late-stage clinical development (typically financed by large

pharmaceutical companies), where many promising academic discoveries go to die not

because of bad science but due to financial reasons. This vacuum in the funding of

translational R&D is well known in the drug industry as the valley of death.

1.2 Thesis Contributions

In this thesis, we explore the use of data analytics to facilitate biomedical innovation

in different areas, with a particular emphasis on the mismatch between the risk char-

acteristics of biomedical projects and the risk preferences of biopharma investors as

outlined in Section 1.1. Apart from the introduction and the conclusion, the thesis

consists of six chapters, which can be broadly categorized into two themes: clinical

trial analytics and new business models. Work on this thesis has led to multiple pub-

lications on related topics [13, 14, 15, 16, 17, 18] and several papers that are currently

pending submission [19] or under review as of writing [20, 21].

1.2.1 Clinical Trial Analytics

In Chapter 2, we develop data analytics for precision medicine, an emerging area of

innovation in disease treatment with the advent of human genome sequencing. While
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the prediction of clinical outcomes is central to personalized medicine and the design

of clinical trials, especially for a heterogeneous disease like non-small cell lung cancer

(NSCLC), there are no predictive models for NSCLC that are widely implemented in

practice. In this chapter, we apply survival analysis and machine learning techniques

on patient-level clinical trial data to develop prognostic models for response and sur-

vival in patients with advanced NSCLC. Our models reflect recent advances in the

treatment paradigm of NSCLC, including biomarker-driven personalized treatments

such as targeted therapies (e.g., epidermal growth factor receptor tyrosine kinase in-

hibitors) and immunotherapies (e.g., programmed death-ligand 1 immune checkpoint

inhibitors).

In Chapter 3, we turn our attention to the development of better analytics for

quantifying and characterizing the risks and uncertainty in biomedical projects. In

particular, the probability of success (PoS) of clinical trials is a key parameter that

many clinical researchers and biopharma investors consider when making important

scientific and business decisions. Without up-to-date estimates, investors may mis-

judge the risk and value of projects, leading to lost opportunities for both investors

and patients. Therefore, having accurate estimates of the PoS is critical for effi-

cient risk management and resource allocation. In this chapter, we apply statistical

imputation methods and machine learning algorithms on two large pharmaceutical

pipeline databases to develop predictive models for estimating the PoS of drug de-

velopment programs. The use of artificial intelligence in drug development is not a

new concept. Drug developers have already applied machine-learning tools to the

discovery process via high-throughput screening of vast libraries of chemical and bio-

logical compounds to identify drug targets. However, in managing their portfolios of

investigational drugs, biopharma companies typically use unconditional estimates of

regulatory approval rates based on historically observed relative frequencies. We pro-

pose the use of a wide range of drug and clinical-trial features to obtain conditional

estimates of success, and show that our approach achieves promising levels of predic-

tive power. By providing more accurate forecasts of drug development outcomes, and

consequently greater risk transparency, our models can help facilitate more accurate
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matching of investor risk preferences with the risks of biomedical investment oppor-

tunities. Such predictive analytics also reduces the uncertainty surrounding drug

development, which will in turn increase the amount of capital that investors are

willing to allocate to biomedical projects. By extension, this would lower the cost of

capital and increase the efficiency of capital allocation and portfolio decision-making.

In Chapter 4, we focus on analytics related to the ongoing coronavirus pandemic.

The world is facing unprecedented challenges from the COVID-19 (coronavirus disease

2019) pandemic. Given the dire situation, human challenge clinical trials (HCTs) have

been proposed as a way to expedite the vaccine development process. While moral

concerns have been raised, bioethicists generally agree that an HCT may be ethi-

cally permissible if it can provide greater societal value versus traditional pathways.

However, there has not been any quantitative analysis of the potential benefits of

a COVID-19 HCT versus non-challenge trials in literature, thus making it difficult

to justify the use of a challenge study at this time. In this chapter, we propose a

systematic, transparent, reproducible, and principled simulation framework for quan-

titatively assessing the potential costs and benefits of different vaccine efficacy clinical

trial designs for COVID-19 vaccine development, including traditional and adaptive

randomized clinical trials, and HCTs. Our results contribute to the moral and eth-

ical debate about HCTs by identifying situations where HCTs can provide greater

social value versus conventional development pathways, and are thus justifiable. Our

methodology allows stakeholders, such as vaccine developers, policymakers, and HCT

volunteers to understand the implications of their actions (or inaction), and to make

more informed ethical decisions regarding accelerating COVID-19 vaccine develop-

ment amidst this crisis.

1.2.2 New Business Models

In Chapter 5, we perform a systematic study of technology licensing by the Mas-

sachusetts Institute of Technology (MIT) in the therapeutics domain. The process of

drug development in the pharmaceutical industry is undergoing a profound shift in its

industrial organization. Instead of relying on in-house research, big pharmaceutical
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companies are deploying growing amounts of capital previously committed to inter-

nal R&D to acquire late stage, de-risked clinical assets with nearer-term payoffs to

replenish their development pipelines [22]. On the other hand, smaller biotechnology

firms have taken a more active role in early-stage drug discovery. Academic institu-

tions also play an increasingly critical role in the industry through the licensing of

seminal discoveries and the creation of startups. Despite the growing importance of

technology licensing to the biomedical ecosystem, there has been surprisingly little

data collected on the impact of technology transfer by academia. In this chapter, we

address the knowledge and data gap through a systematic analysis of the financial

and research impact of MIT life sciences technology licensing. We construct several

measures of impact including MIT patents cited in the Orange Book, capital raised,

outcomes from mergers and acquisitions, patents granted to MIT intellectual property

licensees, drug candidates discovered, and U.S. drug approvals, a key benchmark of

innovation in the biopharma industry. Our methodology provides a useful framework

for other academic institutions to track the outcomes of their intellectual property in

the therapeutics domain.

As discussed in Section 1.1, traditional sources of financing in biopharma R&D,

such as private and public equity, and VC, are no longer effective nor adequate for sup-

porting early-stage translational research, which corresponds to the riskiest and most

challenging part of the biomedical innovation process. Due to increasing complex-

ity and risk, the needs and expectations of limited partners and shareholders have

become less aligned with the new realities of biomedical innovation. For example,

the constant scrutiny of corporate performance has steered the senior management of

public companies towards projects with surer and nearer-term payoffs, and away from

more speculative but potentially transformative research [23]. According to the Dow

Jones VentureSource, less than 4% of the biotech companies funded by VCs in 2014

were in the seed stage [24]. In contrast, almost 80% of the biotech companies that

received VC investments were already in product development, indicating the lack of

interest and support from VCs in early-stage startups. This is not surprising, given

that drug development is widely accepted as one of the most complex and riskiest
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businesses that is not only subjected to scientific challenges but also vulnerable to

external economic and public policy conditions.

Biomedical projects are difficult to fund on a standalone basis because they require

a large amount of initial capital, have long gestation lags during which no cash flows

are generated and additional investments are needed, and perhaps most importantly,

have low probabilities of success [25]. The average drug requires at least a decade of

translational research and clinical testing before it is approved by the FDA. Because of

these characteristics, the funding requirements of biomedical research far outstrip the

capital available from traditional sources of funding, thus creating a valley of death. In

Chapters 6 and 7, we study the use of financial engineering techniques such as portfolio

theory and securitization to mitigate and structure the risks inherent in biomedical

projects. In particular, we consider the recently proposed megafund approach [23],

which involves combining a large number of biomedical assets into a single portfolio

to diversify the financial risk of therapeutic development and increase the likelihood

of success through multiple “shots on goal.” Although it is impossible for any VC to

fund a portfolio of such scale (requiring capital between hundreds of millions to several

billion dollars to achieve sufficient risk reduction) singlehandedly, the megafund can

tranched—that is, securitized—to create equity and investment grade bonds with

risk-reward characteristics that are attractive to institutional investors. This allows

the fund to tap into the fixed income market, a substantially larger pool of capital

than the conventional sources of biopharma R&D financing but one traditionally

unwilling to participate in biopharma investments due to the risky and fragmented

nature of drug development. According to the Securities Industry and Financial

Markets Association, the size of the U.S. bond market was $45 trillion in 2019, which

is two orders of magnitude larger than the $444 billion in assets under management

by VCs in the same year, as reported by the NVCA [10, 26].

In Chapter 6, we extend the recently proposed megafund structure to account for

technical correlation between assets in the underlying portfolio using a single-factor

model with a Gaussian copula, thus making it a more realistic representation of bio-

pharma R&D, and also allowing us to evaluate the tail risks of the megafund more
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accurately—the financial crisis of 2008 has made clear the importance of correlations

between underlying assets in the valuation of asset-backed securities [27]. In Chap-

ter 7, we further extend the megafund framework to include adaptive clinical trial

designs, and demonstrate the economic viability of using the megafund vehicle to

finance and accelerate drug development for glioblastoma, a disease with very few

treatment options, low probabilities of success, and huge unmet need.
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Chapter 2

Predictive Models for Patient

Outcomes in Lung Cancer

Lung cancer is the leading cause of cancer-related mortality in the world. In par-

ticular, non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung

cancer cases. Recent advances in molecularly targeted therapy and immunotherapy

have changed the treatment paradigm of NSCLC. An updated predictive model for

clinical outcomes that reflects the current standard of care for advanced-stage NSCLC

has broad clinical utility in terms of developing individualized treatment plans and

risk stratification. In this chapter, we aggregate data from 17 randomized clinical tri-

als submitted to the U.S. Food and Drug Administration, evaluating chemotherapy,

targeted therapy, and immunotherapy in patients with advanced NSCLC. We develop

and validate a range of statistical and machine-learning predictive models for three im-

portant clinical endpoints—objective response (OR), progression-free survival (PFS)

and overall survival (OS)—in NSCLC patients using routinely collected patient and

disease variables, including biomarker mutations, and inhibitor therapy. Our models

achieved promising out-of-sample predictive performances. We find biomarker status

to be the strongest predictor of OR, PFS, and OS in patients treated with immune

checkpoint inhibitors and targeted therapies. However, single biomarkers have lim-

ited predictive value, especially for immunotherapy. To advance beyond the results

achieved in this study, data on composite multi-omic signatures is required.
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2.1 Introduction

Lung cancer is one of the most commonly diagnosed cancers in the United States and

worldwide, and the leading cause of cancer-related mortality. In particular, non-small

cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases. The

majority of NSCLC patients are diagnosed at advanced stages (III and above) [28].

The standard of care for these patients is typically chemotherapy. However, recent

advances in molecularly targeted therapy and immunotherapy have been shown to

significantly improve the survival of specific patient groups.

Predictive models play an important role in cancer treatment planning. These

models, by providing accurate predictions of the survival rate, allow patients to make

more informed decisions about treatment. Because cases of NSCLC comprise a het-

erogeneous group of patients, there is a wide variation in the effectiveness of different

therapies. With predictive models for clinical outcomes, physicians can develop treat-

ment plans based on the specific characteristics of individual patients rather than on

general statistics of the population. In addition, predictive models can be used to

support patient selection and risk stratification in clinical trials. Despite their clin-

ical relevance, however, there are no predictive models for NSCLC that are widely

implemented in practice. Mahar et al. [29] reviewed 32 lung cancer prognostic tools

published between 1996 and 2015. They found many studies to be poorly designed

and inadequately described. Most did not conduct a formal evaluation of the internal

validity of the developed model. Some contained novel but expensive and difficult to

measure factors that would be impractical to include in prognostic models intended

for common clinical use.

In this chapter, we perform a pooled analysis of 17 randomized clinical trials in

NSCLC submitted to the U.S. Food and Drug Administration (FDA) to support

New Drug Applications. The trials evaluated chemotherapy, targeted therapy, and

immunotherapy treatments in patients with advanced NSCLC. We characterize the

tumor dynamics, response, progression-free survival (PFS), and overall survival (OS)

of patients under these different treatment modalities. Our aim is to develop updated
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predictive models for three important clinical endpoints—tumor response, PFS, and

OS—that reflect recent advances in the treatment paradigm of NSCLC. To this end,

we propose a stochastic tumor growth model based on the longitudinal tumor size

data collected in clinical trials to predict tumor response. At the same time, we ex-

plore machine-learning algorithms and survival models. In our models, we consider

clinical, demographic, and pathological features routinely collected in medical screen-

ings. We describe our training and testing methodology in Section 2.3. At the end,

we identify baseline variables that are strongly associated with response and survival,

and compare our findings with related studies in the literature.

2.2 Data

2.2.1 Study Population

We specify 17 randomized clinical trials submitted to the FDA between January 2007

and February 2017 as our initial dataset. These trials evaluate treatments under nine

approved drugs for NSCLC, consisting of three programmed death-ligand 1 (PDL1)

immune checkpoint inhibitors (ICI), three epidermal growth factor receptor (EGFR)

tyrosine kinase inhibitors (TKI), and three anaplastic lymphoma kinase (ALK) TKIs.

We summarize the characteristics of the clinical trials—experimental and control

arms, trial design, line of therapy, and sample size—in Table 2.1. Five trials test

immunotherapy, one in the first-line setting and four in the second-line setting; four

trials assess ALK-translocation targeted therapy, two in the first-line setting and two

in the second-line setting; and eight trials evaluate EGFR-mutation targeted therapy,

four in the first-line setting, three in the second-line setting, and one in the third-line

setting. Almost all trials are open-label with standard-of-care chemotherapy as the

control arm. In aggregate, the dataset includes 8,925 patients in the intention-to-treat

population.

We extract survival data, tumor measurements, response outcomes, baseline de-

mographics, medical history, and laboratory tests results from patient-level Study
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Data Tabulation Model (SDTM) and Analysis Data Model (ADaM) databases. Af-

ter compiling and standardizing common features across all trials, we have 46 cate-

gorical variables and 5 continuous variables in the dataset (excluding endpoints, see

Table 2.2).

All trials in our dataset adopt the Response Evaluation Criteria in Solid Tu-

mors (RECIST) for tumor measurements and response outcomes. In cases where

both investigator-assessed and independent review committee (IRC)-determined tu-

mor measurements are available, we give priority to the version used by the investiga-

tors to decide the continuation or discontinuation of the study medication, as stated

in the clinical trial protocol. For response outcomes, we give priority to confirmed

outcomes over unconfirmed ones, and use values assessed by IRC whenever available,

since they are generally perceived to be more reliable and less susceptible to bias com-

pared to investigator-assessed outcomes—e.g., IRC-confirmed best overall responses

are often used to compute the objective response rate as a secondary endpoint in

clinical trials. We do the same for PFS. Five studies in the dataset were initiated

under the older RECIST version 1.0, and use the sum of longest diameter (SLD)

measurements based on up to ten measurable target lesions. This limit was reduced

to five lesions in RECIST version 1.1. In order to reconcile measurements collected

under the older criteria with the current version, we scale earlier measurements to

reflect the new five lesion limit (see Appendix A.1).

For our analysis, we exclude patients who either (1) did not have tumor measure-

ments in the database, or had ambiguous records, such as non-measurable disease, no

target lesions, or a 0 mm baseline SLD, (2) were given a placebo (e.g., the placebo

comparator arm in the third-line Afatinib trial) or were not otherwise treated by

chemotherapy, immunotherapy, or targeted therapy in the clinical trial before its dis-

continuation, or (3) had missing features in their records that were necessary for

subsequent analyses. The final sample comprises 7,805 patients (see Fig. 2-1). In

Tables 2.3 and 2.4, we pool patients by the type of therapy received—chemotherapy,

PDL1 ICI, EGFR TKI, and ALK TKI—and list the summary statistics of key baseline

demographics and medical history to give the reader an intuition for the characteris-

34



tics of the dataset.

Most patients in our dataset have advanced NSCLC with some form of metasta-

sis. All patients treated with ALK TKI are proven positive for the ALK mutation.

In contrast, about two-thirds of the patients (67%) under EGFR TKI have an un-

known EGFR mutation status. The proportion of patients in the sample with ALK

rearrangements (9%) is almost twice that observed in the general NSCLC population

(5%) [30]. The overall median patient age is 60 years, with that for the ALK trials

being lower at 53 years. Unlike other therapy groups, about 62% of the ALK sample

have no history of smoking, and over 90% are diagnosed with adenocarcinoma. This is

consistent with studies showing that ALK translocations are observed predominantly

in adenocarcinomas, and among younger and nonsmoking patients [31].

Most of the patients are enrolled outside the United States, mainly in the Asia-

Pacific and the Western Europe regions. Over half of the patients in the dataset

are white (58%). In particular, PDL1 ICI seems to be much more well-studied in

Caucasians (80%) than Asians (15%). In general, there is an even mix of both sexes

in the dataset, except in the PDL1 group, where over 60% of the patients are male.

Since more than half of the trials in the dataset are in the second-line setting or

higher, the majority of the patients (65%) have undergone at least one regimen of

chemotherapy prior to participation in these clinical trials.

2.2.2 Tumor Response Data

Tumor response is an important efficacy endpoint in cancer clinical trials, and one

of the most commonly used. The use of tumor regression for evaluating cancer ther-

apeutics is supported by multiple studies that demonstrate an association between

solid tumor shrinkage and improved OS, or to other time-to-event measures, such as

PFS [32]. It is typically employed as a secondary endpoint to complement survival

data, but tumor response has been used as the primary surrogate endpoint in some

single-arm trials to support the accelerated approval of breakthrough therapies and

orphan drugs, together with the duration of response. An example is Osimertinib,

which received accelerated approval in November 2015 based on an objective response
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Table 2.1: Characteristics of clinical trials in the dataset. Abbreviations: Chemo,
chemotherapy; R, randomized; OL, open-label; DB, double-blind; ITT, intention-to-
treat population.

Therapy Treatment Therapy Control Design Phase Line ITT Initiation Cutoff

EGFR Gefitinib Chemo Docetaxel R, OL 3 2nd 1,466 Mar-04 Mar-07
EGFR Gefitinib Chemo Carboplatin

with
paclitaxel

R, OL 3 1st 1,217 Mar-06 Apr-08

EGFR Erlotinib Chemo Pemetrexed
or docetaxel

R, OL 3 2nd 424 Apr-06 Aug-10

EGFR Erlotinib Chemo Docetaxel or
gemcitabine
with cisplatin
or carboplatin

R, OL 3 1st 173 Feb-07 Apr-12

EGFR Afatinib Placebo Best
supportive
care

R, DB 2/3 3rd 585 Apr-08 Jun-10

EGFR Afatinib Chemo Pemetrexed
with cisplatin

R, OL 3 1st 345 Aug-09 Nov-13

ALK Crizotinib Chemo Pemetrexed
or docetaxel

R, OL 3 2nd 347 Sep-09 Aug-15

ALK Crizotinib Chemo Pemetrexed
with cisplatin
or carboplatin

R, OL 3 1st 343 Jan-11 Nov-13

EGFR Erlotinib Chemo Gemcitabine
with cisplatin

R, OL 3 1st 217 Mar-11 Apr-14

EGFR Afatinib EGFR Erlotinib R, OL 3 2nd 795 Mar-12 Feb-15
PDL1 Nivolumab Chemo Docetaxel R, OL 3 2nd 272 Oct-12 Dec-14
PDL1 Nivolumab Chemo Docetaxel R, OL 3 2nd 582 Nov-12 Feb-15
ALK Ceritinib Chemo Pemetrexed

or docetaxel
R, OL 3 2nd 231 Jun-13 Jan-16

PDL1 Atezolizumab Chemo Docetaxel R, OL 2 2nd 287 Aug-13 Dec-15
PDL1 Pembrolizumab Chemo Docetaxel R, OL 2/3 2nd 1,033 Aug-13 Oct-15
ALK Alectinib ALK Crizotinib R, OL 3 1st 303 Aug-14 Feb-17
PDL1 Pembrolizumab Chemo Platinum-

based
R, OL 3 1st 305 Sep-14 May-16

Total 8,925
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Table 2.2: List of variables extracted from SDTM and ADaM databases. Abbrevia-
tions: APAC, Asia-Pacific; NAM, North America; WEUR, Western Europe; Adeno,
adenocarcinoma; SCC, squamous cell carcinoma; CR, complete response; PR, partial
response; SD, stable disease; PD:, progressive disease; NE, not evaluable.

Type Variable Values

Demographics Age Years
Weight kg
Sex Male, female
Race group Asian1, white, others
Region APAC, NAM, WEUR, others

Medical history Time since diagnosis Days
Performance status2 0, 1, 2 or higher
Smoking status Ever, never
Stage at screening IIIB or lower, IV
Prior chemotherapy Yes, no
Histology Adeno, SCC, others3

Metastases in brain, bone, liver and others Yes, no
Number of metastasis sites Count
Biomarker status in PDL1, EGFR and ALK4 Positive, negative, not tested
Number of baseline target lesions 1, 2, 3, 4, 5 or more
Baseline SLD5 mm
Comorbidities in 23 system organ class levels6 Yes, no

Laboratory Alkaline phosphate High, normal, low
measurements7 Alanine aminotransferase High, normal, low

Aspartate aminotransferase High, normal, low
Bilirubin High, normal, low
Creatine High, normal, low
Hemoglobin High, normal, low
Platelets count High, normal, low
White blood cells count High, normal, low

Therapy type Therapy received Chemotherapy, PDL1 ICI, EGFR TKI, ALK TKI
Endpoints Overall survival Days

Overall survival censor Yes, no
Progression-free survival Days
Progression-free survival censor Yes, no
Best overall response CR, PR, SD8, PD, NE
Objective response9 Yes, no
Timepoint SLD mm
Depth of response %

1 Includes Pacific Islanders. 2 Eastern Cooperative Oncology Group (ECOG) or World Health Organization (WHO)
score. 3 Includes large cell carcinoma (LCC) and not otherwise specified (NOS).
4 Patients are tested for at most one biomarker depending on the experimental arm of the the clinical trial they are
from: patients from PDL1 ICI trials are tested for PDL1 expression, EGFR TKI trials for EGFR-mutation, and ALK
TKI trials for ALK-translocation. 5 Measurements under RECIST version 1.0 are scaled to reconcile with version
1.1 (see Appendix A.1). 6 As defined in the Medical Dictionary for Regulatory Activities (MedDRA).
7 High, normal, low as determined by investigators on-site. 8 Includes non-CR/non-PD.
9 Defined as having either CR or PR as best overall response.
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Figure 2-1: Sample size of the dataset after filtering. We exclude patients who either
(1) did not have tumor measurements in the database or had ambiguous records
such as non-measurable disease, no target lesions, or 0 mm baseline SLD, (2) were
on placebo (e.g., the placebo comparator arm in the third-line Afatinib trial), or
were not treated by either chemotherapy, immunotherapy, or targeted therapy in the
clinical trial before discontinuation, or (3) had missing features that are necessary for
subsequent analyses (see Table 2.2). We randomly select 70% of the dataset as the
development cohort and use the other 30% as the validation cohort (see Section 2.3.2).
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Table 2.3: Summary statistics of key baseline demographics and disease characteris-
tics (categorical features) broken down by the type of therapy received.

Chemo PDL1 ICI EGFR TKI ALK TKI All
(n=2,999) (n=1,323) (n=2,781) (n=702) (n=7,805)

Variable Group n % n % n % n % n %

Sex Male 1,518 50.6 807 61 1,526 54.9 308 43.9 4,159 53.3
Female 1,481 49.4 516 39 1,255 45.1 394 56.1 3,646 46.7

Race group Asian 1,215 40.5 204 15.4 1,398 50.3 303 43.2 3,120 40
White 1,715 57.2 1,061 80.2 1,330 47.8 383 54.6 4,489 57.5
Others 69 2.3 58 4.4 53 1.9 16 2.3 196 2.5

Region APAC 1,232 41.1 213 16.1 1,389 49.9 305 43.4 3,139 40.2
NAM 413 13.8 380 28.7 215 7.7 93 13.2 1,101 14.1
WEUR 870 29 500 37.8 743 26.7 213 30.3 2,326 29.8
Others 484 16.1 230 17.4 434 15.6 91 13 1,239 15.9

Performance status 0 957 31.9 421 31.8 770 27.7 359 51.1 2,507 32.1
1 1,839 61.3 900 68 1,807 65 301 42.9 4,847 62.1
2 or higher 203 6.8 2 0.2 204 7.3 42 6 451 5.8

Smoking status Ever 1,703 56.8 1,116 84.4 1,592 57.2 268 38.2 4,679 59.9
Never 1,296 43.2 207 15.6 1,189 42.8 434 61.8 3,126 40.1

Stage at screening IIIB or lower 363 12.1 107 8.1 400 14.4 16 2.3 886 11.4
IV 2,636 87.9 1,216 91.9 2,381 85.6 686 97.7 6,919 88.6

Prior chemotherapy Yes 1,844 61.5 1,159 87.6 1,812 65.2 258 36.8 5,073 65
No 1,155 38.5 164 12.4 969 34.8 444 63.2 2,732 35

Histology Adeno 2,210 73.7 800 60.5 1,662 59.8 660 94 5,332 68.3
SCC 476 15.9 343 25.9 935 33.6 6 0.9 1,760 22.5
Others 313 10.4 180 13.6 184 6.6 36 5.1 713 9.1

Metastasis Brain 313 10.4 150 11.3 178 6.4 254 36.2 895 11.5
Bone 864 28.8 394 29.8 665 23.9 283 40.3 2,206 28.3
Liver 610 20.3 287 21.7 460 16.5 187 26.6 1,544 19.8
Others 2,926 97.6 1,282 96.9 2,559 92 697 99.3 7,464 95.6

PDL1 expression Positive 431 14.4 591 44.7 0 0.0 0 0.0 1,022 13.1
Negative 418 13.9 656 49.6 0 0.0 0 0.0 1,074 13.8
Not tested 2,150 71.7 76 5.7 2,781 100 702 100.0 5,709 73.1

EGFR-mutation Positive 538 17.9 0 0.0 677 24.3 0 0.0 1,215 15.6
Negative 223 7.4 0 0.0 233 8.4 0 0.0 456 5.8
Not tested 2,238 74.6 1,323 100.0 1,871 67.3 702 100.0 6,134 78.6

ALK-translocation Positive 404 13.5 0 0.0 0 0.0 702 100.0 1,106 14.2
Negative 1 0.0 0 0.0 0 0.0 0 0.0 1 0.0
Not tested 2,594 86.5 1,323 100.0 2,781 100 0 0.0 6,698 85.8

Table 2.4: Summary statistics of key baseline demographics and disease characteris-
tics (continuous features) broken down by the type of therapy received.

Median
(min–max)

Variable Chemo PDL1 ICI EGFR TKI ALK TKI All

Age (years) 60 62 61 53 60
(19–85) (20–90) (24–88) (18–91) (18–91)

Time since diagnosis (days) 164 312 183 87 201
(1–7,207) (21–11,068) (1–5,503) (11–4,734) (1–11,068)

Baseline SLD (mm) 70 79 68 59 70
(9–277) (10–298) (10–760) (10–274) (9–760)
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rate (ORR) endpoint for the treatment of patients with metastatic EGFR T790M

mutation-positive NSCLC who had progressive disease following first-line EGFR TKI

therapy.

We summarize the RECIST best overall response outcomes by the type of therapy

received and the biomarker mutation status of the patient in Table 2.5. The ORR of

patients under inhibitor therapy with the corresponding biomarker mutation (37% for

PDL1 ICI, 45% for EGFR TKI, and 65% for ALK TKI) is more than twice as large

as those with the same mutations but under chemotherapy (17%, 23%, and 29%).

Patients with a negative biomarker status, but still treated with inhibitor therapy,

have the worst outcomes. They exhibit progressive disease (PD) the most frequently

(43-44%), and have the lowest ORR, even when compared with their counterparts

in the chemotherapy group. On average, patients with an unknown EGFR-mutation

status seem to respond better to chemotherapy (ORR 16%) than EGFR TKI (ORR

14%).

In Fig. 2-2, we show how the distributions of depth of response (DPR), defined

as the maximum reduction in tumor burden with respect to the baseline SLD, differ

among the four treatment groups. In these waterfall plots, we sort the DPR in

descending order and plot it from left to right. Positive values represent growth,

while negative values correspond to shrinkage. Note that having a DPR smaller than

-30% does not always lead to an objective response, because the response may not

be confirmed in subsequent readings. It is clear that patients under inhibitor therapy

with the corresponding biomarker mutation experience a greater reduction in SLD.

This is shown by the shift in the waterfalls to the left compared to subgroups with

other mutations. Of the therapies, it seems that ALK TKI has the most aggressive

anti-tumor activity. Almost all ALK-positive patients demonstrate some extent of

tumor regression, and their ORR is substantially larger (65%) than the comparable

values for PDL1 ICI and EGFR TKI.
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Table 2.5: Summary statistics of best overall response broken down by the type of
therapy received and biomarker mutation status.

CR PR SD PD NE ORR

N n % n % n % n % n % n %

Chemotherapy
All 2,999 4 0.1 560 18.7 1,297 43.2 801 26.7 337 11.2 564 18.8
PDL1-positive 431 1 0.2 74 17.2 177 41.1 127 29.5 52 12.1 75 17.4
PDL1-negative 418 0 0 62 14.8 161 38.5 145 34.7 50 12 62 14.8
EGFR-positive 538 1 0.2 121 22.5 265 49.3 93 17.3 58 10.8 122 22.7
EGFR-negative 223 0 0 30 13.5 114 51.1 53 23.8 26 11.7 30 13.5
ALK-positive 404 2 0.5 115 28.5 138 34.2 122 30.2 27 6.7 117 29
ALK-negative 1 0 0 0 0 0 0 1 100 0 0 0 0
Not tested 984 0 0 158 16.1 442 44.9 260 26.4 124 12.6 158 16.1

PDL1 ICI
All 1,323 11 0.8 306 23.1 397 30 490 37 119 9 317 24
PDL1-positive 591 9 1.5 211 35.7 159 26.9 167 28.3 45 7.6 220 37.2
PDL1-negative 656 1 0.2 83 12.7 213 32.5 292 44.5 67 10.2 84 12.8
Not tested 76 1 1.3 12 15.8 25 32.9 31 40.8 7 9.2 13 17.1

EGFR TKI
All 2,781 8 0.3 575 20.7 1,027 36.9 858 30.9 313 11.3 583 21
EGFR-positive 677 5 0.7 300 44.3 216 31.9 112 16.5 44 6.5 305 45.1
EGFR-negative 233 0 0 26 11.2 81 34.8 101 43.3 25 10.7 26 11.2
Not tested 1,871 3 0.2 249 13.3 730 39 645 34.5 244 13 252 13.5

ALK TKI
All 702 27 3.8 431 61.4 149 21.2 60 8.5 35 5 458 65.2
ALK-positive 702 27 3.8 431 61.4 149 21.2 60 8.5 35 5 458 65.2
ALK-negative 0 0 - 0 - 0 - 0 - 0 - 0 -
Not tested 0 0 - 0 - 0 - 0 - 0 - 0 -

Total 7,805 50 0.6 1,872 24.0 2,870 36.8 2,209 28.3 804 10.3 1,922 24.6
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Figure 2-2: Waterfall plots of DPR broken down by the type of therapy received
and biomarker mutation status. For example, the second plot on the first row shows
the DPR of PDL1-positive patients under chemotherapy and the third plot on the
second row shows the DPR of PDL1-negative patients under PDL1 ICI. Each vertical
bar represents a single subject. Dashed horizontal line at -30% shows the RECIST
threshold for response. We truncate the plots at +100% for better visualization.
There are 27 patients who demonstrate tumor growth beyond this limit. We also
exclude 774 patients that have only the baseline measurement in the database.
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2.2.3 Longitudinal Tumor Size Data

In order to develop a continuous-time and continuous-SLD stochastic tumor growth

model to incorporate into our predictive model, we use longitudinal tumor size data

extracted from our dataset. This data consists of patient-level SLD measurements

collected at clinical trial visits. Studies typically record three types of clinical trial

visit, namely the baseline visit, the treatment visits, and the follow-up visits. We use

timepoint measurements from all three types of visit in our analysis.

In Fig. 2-3, we show the distributions of key data characteristics broken down

by the type of therapy received. In aggregate, the baseline SLDs (BSLDs) seem to

follow a shifted log-normal distribution with a mode between 25–35 mm. Patients

under chemotherapy and PDL1 ICI generally have larger BSLDs, with modes in the

45–55 mm and 45–65 mm ranges, respectively. In contrast, patients under ALK

TKI have the smallest BSLDs on average, with a mode between 15–25 mm. In the

dataset, about 10% of the patients completed only one visit, the screening visit.

These patients withdrew from the trial after receiving the first dose, but before the

first post-baseline tumor assessment visit. While the distributions for chemotherapy,

PDL1 ICI and EGFR TKI are largely skewed to the left, that for ALK TKI is quite

evenly spread out between 1–12 visits. In general, we rarely observe patients with

more than ten visits. Visits are mostly scheduled at intervals of 5–6 weeks, although

we observe a second peak for PDLI ICI and ALK TKI at about 9 weeks and 8 weeks,

respectively.

We examine several case studies in Appendix A.2 to illustrate some of the sub-

tleties present in the longitudinal SLD dataset. Apart from some straightforward

cases, it is often difficult to glean the exact reasons for discontinuations in tumor

assessment from the dataset. Nevertheless, it is clear that there is a discontinuation

process at work that affects our observation of SLD measurements. For example, we

are less likely to observe measurements after PD in SLD has occurred. This phe-

nomenon is in inherent to the data collection process because of the patient safety

protections designed into the clinical trials. In this chapter, we will develop a proba-
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bilistic model for the discontinuation mechanism, and incorporate it into our tumor

growth models.

2.2.4 Survival Data

Overall survival is the gold standard for efficacy endpoints in clinical trials. It is

defined as the time from randomization in a clinical trial until death from any cause.

While OS is universally recognized as a direct measure of clinical benefit, there are

multiple limitations associated with its use. For ethical reasons, many trials allow

patients in the control arm who experience progressive disease to receive the experi-

mental therapy (i.e., crossovers). This makes it difficult to assess the impact of the

new drug on OS. Moreover, large sample sizes and extended follow-ups are required

to demonstrate statistical differences in OS between treatment arms [33]. In many

cases, PFS is used as a surrogate endpoint for OS to support drug approvals. Similar

to OS, PFS is defined as the time from randomization to tumor progression or death.

However, PFS is more easily established because it requires a smaller sample size and

a shorter follow-up time. In addition, PFS is free from the confounding effects of

crossovers and post-trial therapies.

We extract both survival endpoints from our dataset, and summarize them in

Table 2.6 and Fig. 2-4. The median PFS and OS in the dataset are 127 and 384 days,

respectively. We observe PFS events in about 76% of the patients and OS events

in about 60%. We categorize patients into six treatment groups and examine their

survival outcomes, according to the type of therapy received and their biomarker mu-

tation status: (1) any biomarker status and under chemotherapy, (2) PDL1-positive

and under PDL1 ICI, (3) EGFR-positive and under EGFR TKI, (4) ALK-positive

and under ALK TKI, (5) negative biomarker status but under inhibitor therapy (that

is, either PDL1-negative but under PDL1 ICI or EGFR-negative but under EGFR

TKI), and (6) not tested for any biomarkers but under inhibitor therapy (either PDL1

ICI or EGFR TKI). In Table 2.6, we find that immunotherapy and targeted therapy

offer PFS improvements for patients with positive biomarkers. These patients have

a higher median survival compared to other treatment groups. The Kaplan-Meier
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Figure 2-3: Distributions of key tumor size data characteristics broken down by the
type of therapy received. The first column shows the BSLDs (scaled as described
in Section 2.2), second the number of visits completed by each patient, and third
the time intervals between two consecutive visits for all patients in the dataset. We
truncate the BSLD at 215 mm, number of visits at 15, and time between visits at 102
days for better visualization. There are 113 patients with BSLD larger than 215 mm,
97 patients who completed more than 15 visits, and 139 pairs of consecutive visits
that are apart by more than 102 days.
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Table 2.6: Median PFS and OS broken down by treatment group.

PFS (days) OS (days)

Treatment Group N Events Median Events Median

All 7,805 5,959 127 4,712 384
Chemotherapy 2,999 2,406 127 1,884 359
PDL1-positive and under PDL1 ICI 591 369 186 247 522
EGFR-positive and under EGFR TKI 677 488 246 402 639
ALK-positive and under ALK TKI 702 409 295 264 994
Negative biomarker but under inhibitor therapy 889 764 66 544 299
Not tested but under inhibitor therapy 1,947 1,523 84 1,371 283

survival curves in Fig. 2-4 further confirm this observation.
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(a) PFS. (b) OS.

Figure 2-4: Kaplan-Meier survival curves broken down by treatment group.
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2.3 Methods

2.3.1 Stochastic Model for Tumor Growth

We assume that net tumor growth in our dataset (that is, net of natural tumor

growth and drug-induced regression) follows an exponential model. This is one of the

most commonly used models in the literature to describe macroscopic tumor growth

[34, 35, 36, 37]. We make the rate constant a linear function of the treatment group (as

defined in Section 2.2.4), demographics, medical history, and laboratory test features

in the dataset (see Table 2.2). This will allow us to identify the key factors driving

tumor response. In addition, we incorporate additive Gaussian white noise into the

rate constant to account for any randomness intrinsic to the tumor growth process,

uncertainty in tumor measurements, or possible errors due to model misspecification.

d𝑌 (𝑡) =
(︁
𝜇 + 𝛽⊤ 𝑥 + 𝜎 𝜉(𝑡)

)︁
𝑌 (𝑡) d𝑡 , 𝑌 (𝑡) , 𝜎 > 0 , 𝛽 , 𝑥 ∈ R𝑚

=
(︁
𝜇 + 𝛽⊤ 𝑥

)︁
𝑌 (𝑡) d𝑡 + 𝜎 𝑌 (𝑡) d𝑊 (𝑡) (2.1)

where 𝑌 (𝑡) is the SLD measurement1 for some patient at time 𝑡, 𝑥 is the feature

vector for the patient with coefficients 𝛽, 𝑚 is the number of features, 𝜇 is the

intercept constant, (𝜇 + 𝛽⊤ 𝑥) is the linear function for the net rate of tumor growth,

𝜎 𝜉(𝑡) is Gaussian white noise scaled by a positive constant 𝜎, and 𝑊 (𝑡) is the Wiener

process.

The resulting model in Eq. (2.1) is a stochastic differential equation that cor-

responds to geometric Brownian motion. By applying Itô’s formula, we obtain an

analytic solution (see Eq. (2.2)). Under the model, the tumor growth process is

continuous and can only assume positive values. This agrees well with the physi-

cal characteristics of lesions. Since Brownian motion is a Markov process, timepoint

1We add a small 𝜖 = 0.1 mm to cases where SLDs are observed to be 0. We assume that target
lesions do not disappear completely under complete response. Instead, they shrink to small sizes
that are not easily discovered by the human eye through CT scans or X-ray imaging. We make this
assumption so that all SLDs are strictly positive and the data fulfills the 𝑌 (𝑡) > 0 constraint in
the model. It should make no material difference to our analysis, since the 𝜖 added is substantially
smaller than the smallest non-zero SLD observed—1 mm—in the dataset.
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transitions—the percentage changes in SLD from one visit to the next—are indepen-

dent log-normal random variables (see Eq. (2.3)). In other words, tumor sizes in the

future are independent of past measurements given the present state. The net rate

of tumor growth here, (𝜇 + 𝛽⊤ 𝑥), is better known as drift in literature, and 𝜎 as

volatility.

𝑌 (𝑡) = 𝑌 (0) exp
(︁
(𝜇 + 𝛽⊤ 𝑥− 1

2𝜎2) 𝑡 + 𝜎 𝑊 (𝑡)
)︁

(2.2)

ln
(︁𝑌 (𝑡 + ℎ)

𝑌 (𝑡)
)︁
∼ 𝒩

(︁
(𝜇 + 𝛽⊤ 𝑥− 1

2𝜎2) ℎ , 𝜎2 ℎ
)︁

(2.3)

where 𝑌 (0) is the BSLD, ℎ is the time interval between two visits.

As described earlier, patient discontinuation is a complex process that depends

on a multitude of factors. At each visit, investigators decide whether or not to

discontinue patients based on patient conduct and clinical condition. We propose to

model the process as a sequence of Bernoulli trials where patients have a probability of

being discontinued at each visit. This probability is conditioned on each individual’s

target lesion response at the current assessment—that is, whether SLD indicates

disease progression, one of the most important factors determining discontinuation—

as derived from observed SLD measurements (see Eq. (2.4)). Patients who discontinue

move to a state with a null measurement; patients who stay advance to the next visit.

𝐷(𝑡) | 𝑆(𝑡) = 𝑠(𝑡) ∼ Bernoulli(𝑃𝑠(𝑡)) , 𝐷(𝑡) ∈ {0 , 1} , 𝑆(𝑡) ∈ {PD , NPD} (2.4)

where 𝐷(𝑡) is the discontinuation decision at time 𝑡, 𝐷(𝑡) = 1 refers to discontinua-

tion, 𝐷(𝑡) = 0 refers to continuation, 𝑆(𝑡) is the response status of target lesions at

time 𝑡, and NPD refers to non-PD. We note that 𝑠(𝑡) is derived from all past SLDs

including the current assessment at time 𝑡.

We combine the tumor growth and the patient discontinuation models to obtain
the probability density function for our dataset (see Eq. (2.5)). The corresponding
likelihood function is shown in Eq. (2.6). We can estimate parameters of both models
jointly through maximum likelihood estimation. The set of features for considera-
tion is large (see Table 2.2). Therefore, we employ the stepwise forward selection
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algorithm with Akaike information criterion (AIC) as selection criteria to identify a
parsimonious set of factors for our model.

𝑝(𝑦(𝑡 + ℎ) | 𝑦(𝑡) , 𝑠(𝑡) ; 𝜃 , 𝑃PD , 𝑃NPD) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑃𝑠(𝑡) for 𝑦(𝑡 + ℎ) = NULL

(1− 𝑃𝑠(𝑡)) · 𝑓(𝑦(𝑡 + ℎ) | 𝑦(𝑡) ; 𝜃) for 𝑦(𝑡 + ℎ) > 0

0 otherwise

(2.5)

ℒ(𝜃 , 𝑃PD , 𝑃NPD | 𝒟) =
𝑛∏︁

𝑖=1

𝑘𝑖∏︁
𝑗=0

𝑝(𝑦𝑖(𝑡𝑖
𝑗+1) | 𝑦𝑖(𝑡𝑖

𝑗) , 𝑠𝑖(𝑡𝑖
𝑗) ; 𝜃 , 𝑃PD , 𝑃NPD) (2.6)

where 𝑝(·) is the probability density function for our dataset, NULL represents the lack

of tumor assessment due to discontinuation, 𝑓(·) is the probability density function

described in Eq. (2.3), 𝜃 are the parameters of the tumor growth model, ℒ(·) is the

likelihood function, 𝒟 is the observed data, 𝑛 is the number of patients in the dataset,

𝑘𝑖 is the number of visits for patient 𝑖, 𝑦𝑖(𝑡) is the SLD measurement for patient 𝑖

at time 𝑡, 𝑡𝑖
𝑗 refers to the time of visit 𝑗 for patient 𝑖, 𝑡𝑖

0 refers to the baseline visit

for patient 𝑖, 𝑡𝑖
𝑘𝑖+1 refers to the cutoff pseudo-visit with null measurement due to

discontinuation, and 𝑠𝑖(𝑡) is the response status of patient 𝑖 at time 𝑡. Since the data

is cut off at some point for everyone, every patient has a cutoff pseudo-visit. We

note that pseudo-visits are not associated with specific times, and the probability of

transition to cutoff is independent of time intervals as shown in Eq. (2.5).

The proposed model can be used to simulate tumor growth in patients with dif-

ferent intrinsic characteristics and under different types of therapy. By aggregating

outcomes from multiple bootstrap simulations, we can predict the probability of ob-

jective response (OR) in patients. This can serve as a baseline predictive model for

comparison with the machine-learning models we explore in Section 2.3.2. At the

same time, the estimated parameters of the model can provide valuable insights into

the drivers behind tumor response that are not readily apparent in the objective

response rate. We implement the model in Python.
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2.3.2 Machine Learning Models for Objective Response

The prediction of tumor response can be formulated as a supervised binary classifi-

cation problem, the goal of which is to predict the probability of objective response

in individual patients given a set of input features, including the treatment group,

demographics, medical history, and baseline laboratory test variables. We consider a

total of 45 categorical variables and 5 continuous variables. We convert categorical

features to binary variables, and we standardize the continuous variables by their

means and standard deviations (see Appendix A.3).

We randomly split the dataset into two disjoint sets, one training set (70%,

n=5,463) and one testing set (30%, n=2,342). We use the training set to develop

predictive models, and we keep the testing set as an out-of-sample dataset for model

validation. In addition to the proposed statistical model, we explore several linear and

non-linear machine-learning algorithms commonly used in the literature: penalized

logistic regression, decision trees, random forests, and multi-layer perceptrons.

We implement the models in Python using the scikit-learn [38] package and tune

their hyper-parameters using five-fold cross-validation with the standard “area under

the receiver operating characteristic curve" (AUC) as the metric for model perfor-

mance. In this context, AUC is the estimated probability that a classifier will rank a

responder higher than a non-responder [39]. An AUC of 0.5 corresponds to a random

classifier, while 1.0 corresponds to a perfect classifier. Here, we repeat the experiment

100 times for each model to obtain confidence intervals for the expected performance

on unseen data. To gain insight into the drivers behind tumor response, we extract

and examine the top 20 most important variables of the best-performing predictive

model.

Since patients with different biomarker mutations may have different genotypes

and phenotypes, and therefore distinct drivers for tumor response under inhibitor

therapy, we might expect classifiers trained on treatment-group specific data to out-

perform the general models trained on the entire dataset. We build and analyze such

specialized models by filtering the dataset by treatment group prior to training and
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testing. Subsequently, we compute an AUC for the entire dataset by aggregating

predictions from all six specialized models (one for each treatment group). As a

comparison, we also break down the performance of the general models by treatment

group.

2.3.3 Statistical Models for Survival

The modeling of time-to-event data such as PFS and OS is known as survival anal-

ysis. It is often performed in medical settings to identify groups at risk of adverse

clinical events. At its core, survival analysis is a regression problem involving the

estimation of the time (or risk) of occurrence of some event of interest, given a set

of dependent variables (see Appendix A.3). One of the main challenges in modeling

such longitudinal data is the presence of censoring. Censoring occurs when the event

of interest fails to happen within the finite span of the clinical trial, and the patient

is lost to follow-up for reasons unrelated to the event. In general, standard regression

techniques are not able to accommodate this data structure.

In this chapter, we examine two standard methods used in survival modeling: the

Cox proportional hazards model [40] and the accelerated failure time model with log-

normal distribution. As with the statistical model for tumor growth, we perform

stepwise forward selection with AIC as criteria to identify a parsimonious set of

features for each of the two models. In addition, we explore two nonlinear and non-

parametric survival models: the random survival forest model [41] and the neural

network survival model [42]. We implement the Cox, accelerated failure time, and

random survival forest models in R using packages survival [43] and randomForestSRC

[44], while we implement the neural network survival model in Python using PyTorch.

For the PFS models, we consider features in the same way as in the models for tumor

response. In view of the confounding effects of crossovers and post-trial therapies, we

replace the treatment group feature with biomarker positivity in PDL1, EGFR, or

ALK for the OS models (see Appendix A.3).

We adopt the training and validation methodology described in Section 2.3.2.

Instead of the AUC, we use the concordance index (C-index) as the metric for model
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performance. The C-index is commonly used to evaluate predictive power in survival

analysis. It is basically a measure of the concordance between orderings of observed

survival times and predicted times or risks [45]. Like AUCs, C-indices can range

between 0.5 (random predictions) and 1.0 (perfect model).

In addition to their discriminative power, we assess model calibration by compar-

ing the actual and the predicted survival probabilities at different times: 6, 12 and 24

months for PFS; and 12, 24 and 36 months for OS. For each time cutoff, we divide the

test set into quintiles based on the predicted risk scores. We then compute the aver-

age predicted score and the true survival probability observed in each of the quintiles.

Finally, we obtain calibration plots by plotting the observed probabilities against the

predicted probabilities. In the ideal case, the points will lie as close as possible to the

diagonal line, which represents perfect calibration. Lastly, we stratify patients in the

test set into different risk groups based on their predicted risk scores, and we examine

the differences in their Kaplan-Meier survival curves using the log-rank test.

2.4 Results

2.4.1 Tumor Response

We summarize the AUC results for the test set in Table 2.7. In general, we find

that the machine-learning models substantially outperform the baseline statistical

model, with improvements up to 0.07 AUC. In particular, logistic regression achieves

the best performance out of all models, with 0.79 AUC (95% C.I. 0.77–0.81). We

do not observe any appreciable difference in predictive power between the general

models and the specialized models. We note that the specialized random forest models

demonstrate marginally better performance than the general logistic regression model.

Nevertheless, we favor the latter due to its ease of interpretability.

The breakdown in performance by treatment group reveals a wide spread in pre-

dictive powers. For example, the general logistic regression model is capable of AUCs

as high as 0.8 for the untested treatment group under inhibitor therapy, but manages a
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performance that is only slightly better than random (0.53 AUC) for the group tested

negatively for biomarkers but under inhibitor therapy. This phenomenon persists in

the specialized models as well.

We extract the top 20 largest coefficients—that is, most important variables—

of the general statistical model and the best-performing general logistic regression

model. We compute the average estimates over all experiments and summarize their

standard deviations in Tables 2.8 and 2.9. The parameters are generally estimated

with good precision.

The probability of discontinuation estimated in the statistical model indicate an

81% chance of discontinuation given disease progression in target lesions at the cur-

rent visit. The remaining 19% accounts for the possibilities of follow-up visits and

treatment beyond progression at the investigators’ discretion. Conditional on a lack

of disease progression in target lesions, there is a 16% chance of data cutoff due to

progression in non-target lesions, appearance of new lesions or other adverse events.

Otherwise, the patient has an 84% chance of advancing to the next visit.

In Tables 2.8 and 2.9, we rank the coefficients according to the extent of their

effects on tumor growth and the probability of OR. In both the statistical model and

the logistic regression model, we find biomarker status to be among the strongest

drivers of regression and response in patients treated with immunotherapies and tar-

geted therapies. It is also interesting to note that EGFR TKI seems to have weaker

effects—that is, smaller coefficients—as compared with ALK TKI and PDL1 ICI. We

discuss possible reasons for this in Section 2.5.

Patients who have not undergone prior chemotherapy, nonsmokers, and women are

more likely to respond to therapy. On the other hand, patients who have squamous

cell carcinoma (SCC) histology or who suffer from gastrointestinal comorbidities are

at greater risk for progression. Not all factors overlap in both models. Here, we

focus on the logistic regression model, which has demonstrated stronger predictive

powers. Under this model, Asians have a greater likelihood of OR than non-Asians,

and patients that have normal functional status—ECOG performance status 0—have

a greater likelihood of OR than physically impaired patients. Other important risk
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factors include low hemoglobin count, elevated alanine aminotransferase and alkaline

phosphate levels, trial enrollment in Western Europe, and liver metastasis.
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Table 2.7: Performance of predictive models for tumor response broken down by treatment group. General models are trained
on the entire dataset. Specialized models are trained on treatment-group specific data.

Test Set Average AUC (95% C.I.)

Statistical Logistic Decision Random Multi-layer
Model Regression Tree Forest Perceptron

General Model
All 0.716 (0.695, 0.740) 0.787 (0.770, 0.805) 0.736 (0.718, 0.750) 0.774 (0.759, 0.791) 0.779 (0.764, 0.795)
Chemotherapy 0.628 (0.594, 0.670) 0.707 (0.675, 0.740) 0.648 (0.611, 0.685) 0.706 (0.678, 0.742) 0.694 (0.661, 0.729)
PDL1-positive and under PDL1 ICI 0.522 (0.459, 0.589) 0.561 (0.507, 0.620) 0.536 (0.484, 0.597) 0.556 (0.494, 0.613) 0.556 (0.503, 0.607)
EGFR-positive and under EGFR TKI 0.583 (0.517, 0.645) 0.719 (0.669, 0.764) 0.652 (0.568, 0.715) 0.709 (0.663, 0.753) 0.690 (0.634, 0.746)
ALK-positive and under ALK TKI 0.550 (0.482, 0.614) 0.625 (0.575, 0.685) 0.551 (0.493, 0.616) 0.620 (0.571, 0.678) 0.622 (0.561, 0.685)
Negative biomarker but under inhibitor therapy 0.504 (0.436, 0.581) 0.530 (0.458, 0.595) 0.547 (0.486, 0.616) 0.507 (0.437, 0.583) 0.547 (0.477, 0.632)
Not tested but under inhibitor therapy 0.739 (0.695, 0.784) 0.813 (0.777, 0.853) 0.748 (0.709, 0.793) 0.811 (0.771, 0.851) 0.803 (0.766, 0.838)

Specialized Models
All1 0.724 (0.707, 0.738) 0.775 (0.749, 0.789) 0.754 (0.718, 0.772) 0.790 (0.784, 0.800) 0.736 (0.700, 0.764)
Chemotherapy 0.627 (0.581, 0.661) 0.706 (0.676, 0.736) 0.651 (0.627, 0.681) 0.704 (0.677, 0.734) 0.658 (0.622, 0.692)
PDL1-positive and under PDL1 ICI 0.516 (0.461, 0.579) 0.528 (0.467, 0.581) 0.515 (0.453, 0.586) 0.555 (0.495, 0.609) 0.547 (0.479, 0.613)
EGFR-positive and under EGFR TKI 0.515 (0.419, 0.591) 0.690 (0.643, 0.732) 0.664 (0.623, 0.706) 0.717 (0.684, 0.753) 0.657 (0.577, 0.718)
ALK-positive and under ALK TKI 0.478 (0.409, 0.541) 0.605 (0.544, 0.672) 0.548 (0.479, 0.607) 0.609 (0.557, 0.657) 0.566 (0.509, 0.632)
Negative biomarker but under inhibitor therapy 0.563 (0.485, 0.629) 0.561 (0.491, 0.632) 0.530 (0.432, 0.605) 0.580 (0.511, 0.640) 0.551 (0.470, 0.621)
Not tested but under inhibitor therapy 0.721 (0.660, 0.776) 0.797 (0.766, 0.838) 0.782 (0.750, 0.811) 0.807 (0.778, 0.839) 0.779 (0.745, 0.817)

1 C-index derived from predictions aggregated from specialized models.
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2.4.2 Survival

We summarize the test set C-index results in Tables 2.10 and 2.11. We find the per-

formance to be similar across linear and nonlinear models for both PFS and OS. This

suggests that the prediction problem does not necessarily benefit from models with

greater complexity. We focus on the Cox model here due to its ease of implemen-

tation, application, and interpretability. The model achieves C-indices of 0.67 (95%

C.I. 0.66–0.69) and 0.73 (95% C.I. 0.72–0.74) on out-of-sample data for PFS and OS,

respectively. Our experiments indicate that specialized PFS models perform more

poorly than their general counterparts. As in Section 2.4.1, we observe a spread in

discriminative powers among the treatment groups, albeit less pronounced, with the

PDL1-positive group under PDL1 ICI treatment and the negative biomarker group

under inhibitor therapy having the lowest C-indices.

We show calibration plots of the Cox models at multiple time points in Figs. 2-5

and 2-6. The calibration curves lie close to the ideal diagonal, indicating that the

models are well-calibrated. They do not systematically overestimate or underestimate

survival rates in any of the quintiles. We only observe larger confidence intervals at

longer survival times, which is expected given that the number of patients at risk

decreases over time. We further stratify patients into two risk groups using a median

split of the risk scores, and plot their survival curves in Fig. 2-7. The difference in

survival between the high and low risk groups is significant (log-rank test 𝑝 < 0.0001)

for both PFS and OS. In general, the low-risk patients have longer median survival

times than the high-risk patients.

In Tables 2.12 and 2.13, we extract the top 20 coefficients in the Cox models

to identify specific factors that predict PFS and OS. The parameters are estimated

with good precision. We find biomarker positivity to be associated with better PFS

for patients treated with inhibitor therapies. According to the PFS Cox model, a

performance status of 2 or higher, metastasis in liver, elevated white blood cells and

alanine aminotransferase levels, histological subtype SCC, low hemoglobin count,

and gastrointestinal and blood-related comorbidities are related to increased risk.
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Table 2.8: Probability of discontinuation and top 20 coefficients of the general statis-
tical model. Factors with negative coefficients drive tumor regression, while factors
with positive coefficients have the opposite effect.

Type Variable Average Standard
Estimate Deviation

Discontinuation Model
Probability of discontinuation 𝑃PD 0.809 0.006
given PD in target lesions
at current visit
Probability of discontinuation 𝑃NPD 0.159 0.001
given NPD in target lesions
at current visit

Exponential Model (10-3) (10−3)
Treatment group ALK-positive and under ALK TKI -1.497 0.109
Intercept 𝜇 1.337 0.157
Treatment group PDL1-positive and under PDL1 ICI -1.116 0.125
Medical history Prior chemotherapy - No -0.823 0.101
Laboratory measurements Bilirubin - Low -0.683 0.443
Medical history Histology - SCC 0.544 0.105
Medical history Number of baseline target lesions - 5 or more -0.431 0.263
Demographics Race group - Others -0.418 0.373
Laboratory measurements Alkaline phosphate - Low -0.380 0.498
Medical history Smoking status - Never -0.371 0.119
Laboratory measurements Creatine - High -0.355 0.244
Comorbidities Endocrine disorders - Yes -0.278 0.270
Demographics Sex - Female -0.273 0.119
Metastasis Others - No 0.239 0.313
Comorbidities Social circumstances - Yes -0.239 0.341
Treatment group EGFR-positive and under EGFR TKI -0.220 0.190
Comorbidities Gastrointestinal disorders - Yes 0.194 0.130
Metastasis Number of metastasis sites -0.169 0.064
Laboratory measurements White blood cells count - High -0.151 0.159
Medical history Histology - Others 0.139 0.198
Comorbidities Respiratory, thoracic and mediastinal disorders - Yes -0.113 0.121
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Table 2.9: Top 20 coefficients of the general logistic regression model. Factors with
positive coefficients improve the odds of response, while factors with negative coeffi-
cients have the opposite effect.

Type Variable Average Standard
Coefficient Deviation

Intercept Intercept -1.692 0.347
Treatment group ALK-positive and under ALK TKI 1.649 0.316
Treatment group PDL1-positive and under PDL1 ICI 1.118 0.275
Medical history Prior chemotherapy - No 0.837 0.111
Treatment group EGFR-positive and under EGFR TKI 0.663 0.157
Medical history Histology - SCC -0.436 0.069
Laboratory measurements Hemoglobin - Low -0.204 0.050
Medical history Performance status - 2 or higher -0.199 0.076
Medical history Smoking status - Never 0.197 0.051
Metastasis Liver - Yes -0.175 0.052
Demographics Sex - Female 0.168 0.060
Laboratory measurements Alanine aminotransferase - High -0.145 0.068
Demographics Region - WEUR -0.142 0.076
Medical history Performance status - 0 0.140 0.045
Treatment group Not tested but under inhibitor therapy -0.130 0.094
Laboratory measurements White blood cells count - High -0.124 0.052
Comorbidities Gastrointestinal disorders - Yes -0.121 0.044
Laboratory measurements Alkaline phosphate - High -0.117 0.040
Demographics Race group - Asian 0.104 0.083
Demographics Region - Others -0.092 0.080
Metastasis Brain - Yes -0.078 0.055

Conversely, women, nonsmokers, patients not previously treated with chemotherapy

and those with low aspartate aminotransferase levels and normal functional status

are more likely to have a positive prognosis.

For OS, we find that the presence of a proven biomarker mutation in PDL1, EGFR,

or ALK leads to improved survival. Other factors that have positive effects on OS

include the lack of prior chemotherapy exposure, Asian ethnicity, a performance status

of 0, no history of smoking, and female sex. Adverse risk factors include high white

blood cell count, histological subtype SCC, low hemoglobin level, liver metastasis,

and BSLD size. We note that many of the features here also appear in the PFS

model, and have similar effects on survival.
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Table 2.10: Performance of predictive models for PFS broken down by treatment group.

Test Set Average C-index (95% C.I.)

Cox Proportional Accelerated Random Multi-layer
Hazards Failure Time Survival Forest Perceptron

General Model
All 0.673 (0.664, 0.685) 0.670 (0.660, 0.682) 0.672 (0.663, 0.684) 0.678 (0.668, 0.689)
Chemotherapy 0.660 (0.646, 0.675) 0.660 (0.645, 0.674) 0.650 (0.634, 0.663) 0.660 (0.645, 0.673)
PDL1-positive and under PDL1 ICI 0.602 (0.568, 0.639) 0.601 (0.561, 0.636) 0.592 (0.554, 0.635) 0.607 (0.568, 0.647)
EGFR-positive and under EGFR TKI 0.693 (0.667, 0.722) 0.699 (0.672, 0.728) 0.707 (0.678, 0.737) 0.703 (0.676, 0.734)
ALK-positive and under ALK TKI 0.654 (0.619, 0.690) 0.648 (0.614, 0.684) 0.646 (0.610, 0.685) 0.655 (0.615, 0.692)
Negative biomarker but under inhibitor therapy 0.603 (0.577, 0.630) 0.600 (0.573, 0.629) 0.606 (0.576, 0.636) 0.617 (0.591, 0.642)
Not tested but under inhibitor therapy 0.642 (0.626, 0.658) 0.638 (0.620, 0.654) 0.639 (0.619, 0.658) 0.649 (0.632, 0.668)

Specialized Models
All1 0.629 (0.620, 0.639) 0.660 (0.651, 0.668) 0.618 (0.599, 0.646) 0.628 (0.614, 0.641)
Chemotherapy 0.651 (0.636, 0.667) 0.651 (0.635, 0.669) 0.649 (0.632, 0.666) 0.640 (0.626, 0.658)
PDL1-positive and under PDL1 ICI 0.561 (0.516, 0.603) 0.550 (0.498, 0.590) 0.572 (0.532, 0.607) 0.558 (0.517, 0.598)
EGFR-positive and under EGFR TKI 0.677 (0.646, 0.708) 0.670 (0.636, 0.705) 0.696 (0.667, 0.721) 0.661 (0.623, 0.693)
ALK-positive and under ALK TKI 0.631 (0.591, 0.664) 0.628 (0.587, 0.664) 0.637 (0.599, 0.675) 0.615 (0.580, 0.645)
Negative biomarker but under inhibitor therapy 0.597 (0.571, 0.621) 0.588 (0.560, 0.618) 0.603 (0.577, 0.628) 0.572 (0.546, 0.604)
Not tested but under inhibitor therapy 0.636 (0.616, 0.655) 0.633 (0.610, 0.653) 0.638 (0.616, 0.659) 0.625 (0.599, 0.647)

1 C-index derived from predictions aggregated from specialized models.

Table 2.11: Performance of predictive models for OS.

Test Set Average C-index (95% C.I.)

Cox Proportional Accelerated Random Multi-layer
Hazards Failure Time Survival Forest Perceptron

General Model
All 0.729 (0.721, 0.739) 0.726 (0.717, 0.736) 0.725 (0.715, 0.734) 0.729 (0.720, 0.739)
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(a) At 6 months. (b) At 12 months. (c) At 24 months.

Figure 2-5: Calibration plots of the PFS Cox proportional hazards model for a random experiment iteration. Dashed line
represents the ideal model. Vertical bars show the 95% confidence intervals.
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(a) At 12 months. (b) At 24 months. (c) At 36 months.

Figure 2-6: Calibration plots of the OS Cox proportional hazards model for a random experiment iteration. Dashed line
represents the ideal model. Vertical bars show the 95% confidence intervals.
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(a) Risk stratification by the PFS Cox proportional
hazards model. Hazard ratio 2.58 (95% C.I. 2.35–2.85).
Log-rank test 𝑝 < 0.0001.

(b) Risk stratification by the OS Cox proportional haz-
ards model. Hazard ratio 3.94 (95% C.I. 3.52–4.42).
Log-rank test 𝑝 < 0.0001.

Figure 2-7: Risk stratification by survival models for a random experiment iteration.
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Table 2.12: Top 20 coefficients of the PFS Cox proportional hazards model. Factors
with negative coefficients improve survival, while factors with positive coefficients
have the opposite effect.

Type Variable Average Standard
Coefficient Deviation

Treatment group ALK-positive and under ALK TKI -0.928 0.040
Treatment group PDL1-positive and under PDL1 ICI -0.787 0.047
Medical history Prior chemotherapy - No -0.487 0.028
Treatment group EGFR-positive and under EGFR TKI -0.393 0.038
Medical history Performance status - 2 or higher 0.370 0.043
Metastasis Liver - Yes 0.242 0.028
Laboratory measurements White blood cells count - High 0.222 0.024
Laboratory measurements Bilirubin - High 0.182 0.127
Laboratory measurements Alkaline phosphate - Low 0.173 0.153
Metastasis Others - No 0.166 0.066
Laboratory measurements Aspartate aminotransferase - Low -0.145 0.169
Laboratory measurements Alanine aminotransferase - High 0.134 0.063
Demographics Race group - Others -0.133 0.101
Demographics Sex - Female -0.131 0.025
Medical history Histology - SCC 0.128 0.035
Laboratory measurements Hemoglobin - Low 0.125 0.022
Comorbidities Blood and lymphatic system disorders - Yes 0.122 0.048
Medical history Performance status - 0 -0.115 0.018
Comorbidities Gastrointestinal disorders - Yes 0.113 0.023
Medical history Smoking status - Never -0.113 0.035

2.5 Discussion

We have developed predictive models for OR, PFS, and OS in advanced-NSCLC

patients receiving chemotherapy, targeted therapy and immunotherapy. The models

are built on a large dataset composed of 7,805 patients from 17 clinical trials, which

have recorded a wide range of tumor-related and patient-related factors routinely

collected before clinical testing. They demonstrate promising predictive abilities,

achieving out-of-sample performances of 0.79 AUC, 0.67 C-index, and 0.73 C-index

for OR, PFS, and OS, respectively. The calibration plots suggest good agreement

between the actual and predicted survival probabilities.

By examining the top coefficients in the linear predictive models, we identify

the specific factors that have the greatest predictive values for tumor response and

survival. Since the endpoints for OR, PFS, and OS are related to one another2, many

of the important features found are common across the models. From Tables 2.9

and 2.12, we observe treatment group to be among the strongest predictors of response

2PFS is dependent on both response and mortality data, from which OR and OS are derived,
respectively.
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Table 2.13: Top 20 coefficients of the OS Cox proportional hazards model. Factors
with negative coefficients improve survival, while factors with positive coefficients
have the opposite effect.

Type Variable Average Standard
Coefficient Deviation

Medical history Performance status - 2 or higher 0.601 0.049
Medical history Prior chemotherapy - No -0.512 0.034
Biomarker positivity PDL1, EGFR or ALK - Yes -0.481 0.028
Demographics Race group - Asian -0.371 0.088
Medical history Performance status - 0 -0.369 0.021
Laboratory measurements White blood cells count - High 0.335 0.029
Laboratory measurements Bilirubin - High 0.296 0.129
Medical history Histology - SCC 0.263 0.034
Laboratory measurements Alkaline phosphate - High 0.253 0.026
Laboratory measurements Hemoglobin - Low 0.237 0.024
Metastasis Liver - Yes 0.218 0.028
Medical history Smoking status - Never -0.200 0.026
Comorbidities Eye disorders - Yes -0.178 0.059
Demographics Sex - Female -0.175 0.025
Medical history BSLD 0.173 0.014
Medical history Histology - Others 0.150 0.044
Comorbidities Nervous system disorders - Yes -0.134 0.033
Comorbidities Renal and urinary disorders - Yes -0.133 0.084
Demographics Weight -0.125 0.013
Comorbidities Skin and subcutaneous tissue disorders - Yes -0.123 0.061

and survival endpoints. In particular, biomarker mutation status has a substantial

effect on the efficacy of inhibitor therapies. Among patients treated with ICI and TKI,

those that tested positively for biomarkers have a higher probability of OR and a more

favorable PFS than those who either tested negatively or are untested. Patients in the

former treatment group also tend to have a more optimistic prognosis than patients

treated with chemotherapy in general. Our findings are consistent with that observed

in the ORR (see Table 2.5) and the survival data (see Table 2.6 and Fig. 2-4). For

OS, we find that the presence of an actionable mutation in PDL1, EGFR, or ALK is

associated with improved survival. This likely reflects survival benefits from advances

in molecularly targeted therapy and immunotherapy that are based on these three

driver mutations.

As reported in many studies, we find that nonsmokers, women, and those with

good performance status have a higher chance of responding to treatment [46, 47, 48,

49]. In addition to these well-established prognostic factors, we find prior chemother-

apy to be a strong predictor: patients who have undergone prior chemotherapy

treatments have poorer survival than chemotherapy-naive patients. The failure of
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chemotherapy suggests that the tumor cells are to some extent drug resistant and

more difficult to treat. Consequently, patients that do not go into remission after

chemotherapy are less likely to respond to subsequent treatments. Our models did

not identify either age or stage of cancer as significant features, despite their well-

established status as prognostic factors. We believe that this is because the dataset

is composed principally of advanced-stage patients who are relatively close in age to

each other.

We find that patients with abnormal baseline laboratory measurements tend to

have a poorer prognosis. Irregular blood test results are often indicative of underlying

physiological disorders that may interfere with cancer treatment delivery and thus

adversely affect survival [50]. For example, elevated alanine aminotransferase and

bilirubin levels are related to possible liver damage and hepatic dysfunction, while

a low hemoglobin count is associated with anemia and cachexia, and a high white

blood cell count is linked to systemic inflammation and subclinical infection. This

underscores the importance of comorbidity management to improve survival, and also

calls for the collection of more data on such conditions so that the experience of these

patients can be adequately analyzed through appropriate stratification in clinical

studies. Consistent with other studies, we identify liver metastasis [51] and SCC

histology as important risk factors. We note that driver mutations EGFR and ALK

are rarely found in SCC [52]. Thus, this group of patients generally have worse clinical

outcomes than non-squamous patients because they have fewer effective treatment

options.

In Table 2.9, we find that the coefficient for patients who are PDL1-positive and

under PDL1 ICI treatment is almost double that of the analogous coefficient for

EGFR-positive patients under EGFR TKI. This seems unusual, given that patients

in the former treatment group have a lower ORR than those in the latter (see Ta-

ble 2.5). A closer look at the testing set AUCs in Table 2.7 reveals that the logistic

regression model does not perform as well on the PDL1-positive treatment group

(0.56 AUC 95% C.I. 0.51–0.62) as on the EGFR-positive subgroup (0.72 AUC 95%

C.I. 0.67–0.76). This suggests that the prognostic factors described above are not as
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relevant for PDL1-positive patients that are under PDL1 ICI. Since we observe the

same trend in specialized and nonlinear models, we know that the poor performance

is not due to the linearity of the applied model, but rather due to the lack of strong

predictors for response within the PDL1-positive under PDL1 ICI subgroup. There-

fore, in the absence of other useful factors, the algorithm attributes the higher than

average ORR in the subgroup mainly to the effectiveness of ICI on PDL1-positive

patients, and assigns greater weight to the corresponding treatment group indicator

so that it dominates other factors in the dataset. This also in part explains why

the ALK-positive and under ALK TKI treatment group has such a large coefficient.

In contrast, because much of the response in the EGFR-positive subgroup can be

explained away by other factors, the corresponding treatment group coefficient has a

smaller magnitude. The same holds for the PFS Cox model.

The importance of PDL1 positivity for response to PDL1 ICI is well established.

However, our results suggest that there other factors beyond PDL1 expression at play

since not all PDL1-positive patients responded to treatment. These additional vari-

ables seem to be absent from the current feature set. Having ruled out demographic,

clinical, and pathological factors that are already present in the dataset, we suspect

that PDL1-positive patients may possess additional biomarkers, such as germline mu-

tations, that affect treatment efficacy and predispose patients to specific responses. In

fact, there is emerging evidence that variables such as tumor-mutational burden are

predictive of response to immunotherapy [53]. Unfortunately, while genomic profiling

is now almost routine in clinical trials, such data is typically not examined holistically

and rarely submitted to the FDA.

To the best of our knowledge, our work is one of the largest studies of NSCLC to

consider biomarker mutation and inhibitor therapy as candidate predictive variables.

With the emergence of new treatment pathways that significantly improve survival in

patients with relevant biomarkers, the importance of mutation status as a predictive

factor cannot be understated [54]. Putila et al. [47] developed a prognostic model for

OS based on almost two decades of data (1998-2006) from the Surveillance, Epidemi-

ology, and End Results Program (SEER) database. However, while the sample size
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is impressive (over 230,000 patients), the dataset does not capture recent advances

in cancer treatment, such as targeted therapies. Alexander et al. [46] proposed the

Lung Cancer Prognostic Index (LCPI) to predict OS. This model includes actionable

mutations in EGFR, ALK, and KRAS as features, but lacks the PDL1 biomarker.

Its derivation cohort is also much smaller (roughly 700 patients) than the training set

used here (around 5,400 patients). A direct comparison of predictive performances to

the SEER and LCPI models is limited by heterogeneity in data and features. Both

models focus on prognosis at the time of diagnosis. In contrast, our model focuses

on prediction prior to therapy for OR and PFS, and anytime after diagnosis for OS.

In addition, the SEER model requires TNM cancer staging information, which is not

available in our dataset. We also do not have information on the weight loss at diag-

nosis used in the LCPI model. In general, we find that a vast majority of prognostic

studies focus their attention on OS [55]. Here, we additionally develop similar models

for two other clinical endpoints of interest to patients and physicians, OR and PFS.

This study has several limitations. First, the dataset is based on clinical trial

data. Clinical trials have strict inclusion and exclusion eligibility criteria, such as

a minimum performance status or a specific prior chemotherapy exposure. As a

result, the patients enrolled may not be representative of the heterogeneous, real-

world patient population [56]. In this study, we try to increase the heterogeneity of

our patient cohort by pooling patients from multiple trials. However, advanced-stage

patients still make up a large part of the dataset. Second, our models are not tested

by populations independent of our study sample. It would be desirable to validate our

models with patients outside the clinical trial setting and in the general population.

Once validated, the models could be translated into clinical use as a web application,

like Adjuvant! Online, one that is easily accessible to patients and physicians.

In this chapter, we aggregate data from 17 clinical trials to estimate OR, PFS,

and OS models applicable to patients under different treatment modalities, including

chemotherapy, targeted therapy, and immunotherapy. The models include established

and novel predictive factors in lung cancer. We offer an interpretation of the effects

of each variable and find them to be largely consistent with other NSCLC prognostic
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tools in the literature. The models have broad clinical utility in developing individu-

alized treatment plans and augmenting clinical trial design. Our predictions are able

to complement the standard protocols used by physicians to guide medical decisions

by better informing their patients about their likelihood of response and predicted

survival under different therapies. The models illuminate the drivers behind response

and survival, which may be potentially useful for patient selection in clinical trials.

Survival risk scores can also be used in randomized trials to stratify patients into

groups with homogeneous risk for analysis. The predictive results are promising for

chemotherapy and targeted therapies, but much less so for immunotherapy. We hy-

pothesize that the lackluster performance in the PDL1-positive subgroup under PDL1

ICI treatment is due to its relatively small sample size and the lack of relevant ge-

nomic predictors. It is clear that PDL1 positivity alone does not tell the whole story

for immunotherapy.

To advance beyond the results achieved in this chapter, the model must include

genomics, immunogenomics, metabolomics, and other composite and complex mul-

tiomic signatures that can reflect the state of the tumor, its microenvironment, and

the microbiota in general. For example, radiomic features from deep learning models

have shown immense potential in NSCLC prognostication [57, 58, 59, 60, 61, 62, 63].

Such variables will inevitably become more important as we gradually reach the limits

of biomedical reductionism—that is, the target-based treatment paradigm—and shift

toward systems biology approaches for drug discovery [64]. This will allow us to de-

velop better predictive models to truly tailor treatments and clinical trial enrollment

strategies.
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Chapter 3

Predictive Models for Drug

Development Programs

Drug development is an extremely costly process, and the accurate evaluation of a

candidate drug’s likelihood of approval is critical to the efficient allocation of capital.

However, developers typically use general estimates of regulatory approval rates in

managing their portfolio of investigational drugs. In this chapter, we propose the use

of a wide range of drug and clinical-trial features, and apply machine-learning tech-

niques to predict whether a drug candidate will graduate from phase 2 to approval

and from phase 3 to approval. We use two large pharmaceutical pipeline databases to

train our models, and apply statistical imputation methods to deal with missingness

in the data. We achieve promising levels of predictive power, and find that the most

important features for predicting success are trial outcomes, trial status, trial ac-

crual rates, durations, prior approval, and sponsor track records. Our models may be

used to evaluate the risks of different investigational drugs at different clinical stages

more accurately. Such predictive analytics can be used to make more informed data-

driven decisions in risk assessment and portfolio management. This can increase the

efficiency of drug development by allowing various stakeholders, including pharma-

ceutical companies, biotech entrepreneurs, investors, and regulators to better assess

the risks and drivers of drug approvals and failures.
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3.1 Introduction

While many recent medical breakthroughs such as immuno-therapies, gene thera-

pies, and gene-editing techniques offer new hope for patients, they have also made

biomedical innovation riskier, and more complex and expensive. These breakthroughs

generate novel therapies for investigation, each of which requires many years of trans-

lational research and clinical testing, costing hundreds of millions to billions of dol-

lars, and yet often face a high likelihood of failure [23]. In fact, drug development

productivity—the ratio of the number of new drugs approved to R&D spending each

year—has declined steadily over the past 50 years despite scientific and technical

progress. This phenomenon, which Scannell et al. [1] termed “Eroom’s Law,” as the

reverse of Moore’s Law, suggests that the cost of developing new drugs has doubled

approximately every nine years since the 1950s. In the face of multiple uncertainties,

the need to evaluate drug candidates better and allocate capital to high-potential

opportunities more efficiently has only intensified.

To address these needs, in this chapter we apply machine-learning techniques to

predict the outcomes of randomized clinical trials. Machine learning is an interdisci-

plinary field focused on tackling pattern recognition problems and building predictive

models to make data-driven decisions, which is well-suited for this context. Successful

applications of these techniques have already revolutionized a number of industries

(e.g., advertising, marketing, finance and insurance, oil and gas exploration) and are

poised for even greater impact via autonomous vehicles, facial-recognition authenti-

cation, and general-purpose robotics.

Drug developers have already applied machine-learning tools to the discovery pro-

cess via high-throughput screening of vast libraries of chemical and biological com-

pounds to identify drug targets. However, in managing their portfolios of investiga-

tional drugs, biopharma companies typically use unconditional estimates of regulatory

approval rates based on historically observed relative frequencies. Machine learning

techniques yield conditional estimates of success, conditioned on a host of predictive

factors known to affect the likelihood of approval, including drug compound charac-
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teristics, clinical trial design, previous trial outcomes, and the sponsor track record.

We show that these features contain useful signals about drug development outcomes

that will allow us to forecast the outcome of pipeline developments more accurately.

Our methodology and results have several implications for stakeholders in the

biomedical ecosystem. More accurate forecasts of the likelihood of success of clinical

trials will reduce the uncertainty surrounding drug development, which will increase

the amount of capital that investors and drug developers are willing to allocate to this

endeavor. By extension, this would lower the cost of capital and increase the efficiency

of the allocation process. Specifically, we predict the probability of success of drug

candidates in two scenarios: (1) advancing from phase 2 to regulatory approval and

(2) from phase 3 to regulatory approval (see Fig. 3-1). Investors and drug developers

may use such predictions to evaluate the risks of different investigational drugs at

different clinical stages, providing them with much-needed transparency. Greater risk

transparency is one source of improved financial efficiency because it facilitates more

accurate matching of investor risk preferences with the risks of biomedical investment

opportunities.

Machine-learning models can offer guidance to scientists, clinicians, and bio-

pharma professionals as to which factors are most important in determining clinical-

trial success, suggesting ways to improve the drug development process and decel-

erate or reverse Eroom’s Law. Policymakers and regulators would also benefit from

machine-learning predictions, particularly for drug-indication pairs that are predicted

to fail with high likelihood—these cases highlight the most difficult challenges in

biomedicine and underscore the need for greater government and philanthropic sup-

port.

To the best of our knowledge, our study is the largest of its kind. We construct

two datasets, one for each scenario, from two proprietary pharmaceutical pipeline

databases, Pharmaprojects and Trialtrove provided by Informa R○ [65]. The phase-2-

to-approval dataset includes more than 4,000 unique drugs for 288 indications and over

14,500 phase 2 trials, and the phase-3-to-approval dataset contains more than 1,400

unique drugs for 253 indications and over 4,500 phase 3 trials. These data cover over
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15 indication groups. In contrast, most published research on drug approval prediction

have very small sample sizes, are concentrated on specific therapeutic areas, and

involve only one or a small number of predictive factors: Malik et al. [66] examined

the trial objective responses of 88 anticancer agents in phase 1; Goffin et al. [67]

studied the tumor response rates of 58 cytotoxic agents in 100 phase 1 trials and 46

agents in 499 phase 2 trials; El-Maraghi et al. [68] looked at the objective responses of

19 phase 2 anticancer drugs in 89 single agent trials; Jardim et al. [69] examined the

response rates of 80 phase 3 oncology drugs to identify factors associated with failures;

and DiMasi et al. [70] analyzed 62 cancer drugs and proposed an approved new drug

index (ANDI) algorithm with four factors to predict approval for lead indications in

oncology after phase 2 testing (see Appendix B.4 for a comparison of our analysis to

theirs).

Another key difference in our approach is that we deal with missing data using sta-

tistical imputation methods. We explore four common approaches to “missingness”

and demonstrate their advantages and disadvantages over discarding incomplete cases.

With the FDA Amendments Act of 2007, drug and clinical trial data collection has

been rapidly expanding, but these data are often sparse, and our dataset is no excep-

tion. Related studies (e.g., DiMasi et al. [70]) have typically used only complete case

observations—discarding clinical trials with any missing information—which typically

eliminates large portions of the data and may also lead to certain biases.

We use machine-learning techniques to form our predictions, including cross-

validation for training and a held-out testing set for performance evaluation, and use

the standard “area under the receiver operating characteristic curve” (AUC) metric

to measure model performance. (AUC is the estimated probability that a classifier

will rank a positive outcome higher than a negative outcome [39].) We achieve AUCs

of 0.78 for predicting phase 2 to approval (95% confidence interval (CI): [0.75, 0.81])

and 0.81 for predicting phase 3 to approval (95% CI: [0.78, 0.83]). A time-series,

walk-forward analysis approach shows similar results. We also apply our models to

the current drug pipeline—that is, all drugs still in development as of the end of

our dataset—to identify the candidates that have the highest and lowest probabili-
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Figure 3-1: Predictive models for assessing the probability of approval of drug candi-
dates in two scenarios: (1) after phase 2 testing and (2) after phase 3 testing.

ties of success. We examine the latest development statuses of these pipeline drug-

indication pairs—a true “out-of-sample” experiment (validation on data not used in

model building)—and find that candidates with higher scores are, indeed, more likely

to progress to later clinical stages. This indicates that our classifiers do discriminate

between high- and low-potential candidates.

3.2 Data

3.2.1 Summary Statistics

The commercial data vendor Informa R○ offers two databases that are used in our anal-

ysis: Pharmaprojects, which specializes in drug information, and Trialtrove, which

specializes in clinical trials information [65]. These two databases aggregate drug

and trial information from over 30,000 data sources in more than 150 countries, in-

cluding company press releases, government drug databases (e.g., Drugs@FDA) and

trial databases (e.g., clinicaltrials.gov [71] and clinicaltrialsregister.eu), and scientific

conferences and publications. Using these sources, we construct two datasets of drug-

indication pairs: phase 2 to approval (P2APP) and phase 3 to approval (P3APP). We

extract clinical trial features from Trialtrove, and augment this data using drug fea-

tures from Pharmaprojects. Applying machine-learning algorithms to these datasets

allows us to estimate: (1) whether a drug-indication pair that has concluded phase

2 testing will be approved eventually; and (2) whether a pair that has concluded

phase 3 testing will be approved eventually. Data cleaning procedures are outlined in
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Appendix B.1.

We consider all indications associated with a particular drug, as opposed to only

the lead indication. We extract all features that could conceivably correlate with the

likelihood of success, from drug compound attributes (31 features from Pharmapro-

jects profiles) to clinical trial characteristics (113 features from Trialtrove). These

features are defined in Table 3.1 and Appendix B.1. In general, each dataset may be

partitioned into two disjoint subsets: one with samples that have known outcomes,

and another with samples that are still in the pipeline at the time of snapshot of

the databases (that is, the outcomes are unknown). To provide intuition for the

characteristics of the samples, we describe key summary statistics of each subset.

The P2APP dataset consists of 6,344 drug-indication pairs that have ended phase 2

testing; that is, there are no phase 2 trials in progress or planned in the database. The

phase 2 trials in this dataset range from August 8, 1990 to December 15, 2015. In our

sample, 4,812 pairs have known outcomes, while 1,532 pairs are still in the pipeline. In

the subset with known outcomes, we define the development statuses of suspension,

termination, and lack of development as “failures” (86.8%), and registration and

launch as “successes” or approvals (13.2%). The P3APP dataset consists of 1,870

pairs that have ended phase 3 testing, of which 1,610 pairs have known outcomes,

while 260 pairs are still in the pipeline. For those pairs with known outcomes, we

define “failures” (59.1%) and “successes” (40.9%) in the same fashion as the P2APP

dataset. The phase 3 trials in P3APP span from January 1, 1988 to November 1,

2015. These figures are summarized in Table 3.2. Here, the use of terms “success”

and “failure” is in the context of achieving approval. We note that our definition of

“failures” can include drug development programs that are terminated due to factors

unrelated to the performance of the drug (e.g., market conditions, business decisions).

In Section 3.4, we find that this outcome variable has significant associations with

trial performance and other factors.

The datasets cover 15 indication groups: alimentary, anti-infective, anti-parasitic,

blood and clotting, cardiovascular, dermatological, genitourinary, hormonal, immuno-

logical, musculoskeletal, neurological, anti-cancer, rare diseases, respiratory, and sen-
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Table 3.1: Description of features extracted from Pharmaprojects and Trialtrove.
Some parent features are multi-label. We transform all multi-label parent features
into binary child features. Drug-indication pairs for the same drug have the same
drug features; drug-indication pairs involved in the same trial have the same trial
features.

Description Type

Drug Features

Route Route of administration of the drug, the path by which
the drug is taken into the body.

Multi-label

Origin Origin of the active ingredient in the drug. Multi-label
Medium Medium of the drug. Multi-label
Biological target family Family of proteins in the body whose activity is

modified by the drug, resulting in a specific effect.
Multi-label

Pharmacological target family Mechanism of action of the drug, the biochemical
interaction through which the drug produces its
pharmacological effect.

Multi-label

Drug-indication development
status

Current phase of development of the drug for the
indication.

Binary

Prior approval of drug for
another indication

Approval of the drug for another indication prior to the
indication under consideration (specific to
drug-indication pair).

Binary

Trial Features

Duration Duration of the trial (from reported start date to end
date) in days.

Continuous

Study design Design of the trial (keywords). Multi-label
Sponsor type Sponsors of the trial grouped by types. Multi-label
Therapeutic area Therapeutic areas targeted by the trial. Multi-label
Trial status Status of the trial. Binary
Trial outcomes Results of the trial. Multi-label
Target accrual Target accrual of the trial. Continuous
Actual accrual Actual accrual of the trial. Continuous
Locations Locations of the trial by country. Multi-label
Number of identified sites Number of sites where the trial was conducted. Continuous
Biomarker involvement Type of biomarker involvement in the trial. Multi-label
Sponsor track record Sponsor’s success in developing other drugs prior to the

drug-indication pair under consideration.
Continuous

Investigator experience Primary investigator’s success in developing other drugs
prior to the drug-indication pair under consideration.

Continuous

sory products. Anti-cancer agents make up the largest subgroup in P2APP, and the

second largest in P3APP (see Table 3.3). Industry-sponsored trials dominate both

datasets (see Table 3.4). In aggregate, we observe a decreasing trend in success rates

over five-year rolling windows from 2003 to 2015 (see Fig. 3-2).

To the best of our knowledge, this sample is the largest of its kind. All prior

published research in this literature involved fewer than 100 drugs or 500 trials [66,

67, 68, 70]. In addition, our datasets cover a diverse set of indication groups, as

opposed to a single area such as oncology.
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Table 3.2: Sample sizes of P2APP and P3APP datasets. We consider phase 2 trial
information in P2APP datasets and phase 3 trial information in P3APP dataset.

Counts

Drug-indication Phase 2/3 Unique Unique Unique Phase
Pairs Trials Drugs Indications 2/3 Trials

P2APP

Success 635 2,563 540 173 2,486
Failure 4,177 10,328 2,779 263 9,722
Pipeline 1,532 2,815 1,189 221 2,713

Total 6,344 15,706 4,073 288 14,584

P3APP

Success 659 1,830 572 171 1,801
Failure 951 2,425 764 203 2,360
Pipeline 260 494 240 120 480

Total 1,870 4,749 1,451 253 4,552

Table 3.3: Breakdown of drug-indication pairs by indication groups. A drug-
indication pair may have multiple indication group tags. For instance, renal cancer
is tagged as both anti-cancer and rare disease.

Counts

P2APP P3APP

All 6,344 1,870
Anti-cancer 2,239 409
Rare Diseases 1,105 259
Neurological 1,069 444
Alimentary 757 249
Immunological 474 101
Anti-infective 493 177
Respiratory 428 134
Musculoskeletal 394 121
Cardiovascular 388 158
Dermatological 254 45
Genitourinary 210 85
Blood and Clotting 160 97
Sensory 137 41
Hormonal 17 4
Anti-parasitic 8 0
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Table 3.4: Breakdown of trials by sponsor types. A trial may be sponsored by more
than one party (e.g., collaboration between industry developers and academia).

Counts

P2APP P3APP

All 14,584 4,552
Other Pharma 5,432 1,721
Top 20 Pharma 5,322 2,369
Academic 4,869 736
Government 1,807 314
Cooperative Group 958 230
Not for Profit 181 51
Generic 52 54
Contract Research Organization 41 17

Figure 3-2: Success rates in P2APP and P3APP over five-year rolling windows from
2003–2015.
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3.2.2 Missing Data

Prior to the 2007 FDA Amendments Act (FDAAA), it was not uncommon for in-

vestigators to release only partial information about pipeline drugs and clinical trials

to protect trade secrets or simply because there was no incentive to do more. Even

today, some investigators still do not adhere to the FDAAA-mandated registration

policy or submit adequate registrations. Therefore, all historical drug development

databases have missing data. We note that the “missingness” here is largely related

to the post-study reporting of clinical trial data as opposed to in-trial data missing-

ness (e.g., censorship of panel data due to patients terminating trial participation

prematurely). In the former case, the data (e.g., trial duration, trial outcomes) are

usually available to the investigators but may not be released publicly, and are thus

considered “missing” from our standpoint.

Figs. 3-3 and 3-4 and Tables 3.5 and 3.6 summarize the patterns of missingness

in our dataset (we exclude pipeline drug-indication pairs here because their outcomes

are still pending). The missing data patterns are multivariate. When conditioned

on the latest level of development, for any indication, we find that successful drugs

generally have lower levels of missingness compared to failed drugs. For instance, in

the P2APP dataset, 61% of failed drugs have an unknown medium, while only 15% of

approved drugs are missing this feature. We also observe that completed trials tend

to have greater levels of missingness than terminated trials. Between two datasets,

we find that the P3APP dataset, which focuses on phase 3 drugs and trials, generally

has less missing data for both drug and trial features than the P2APP dataset which

focuses on phase 2 drugs and trials. This is expected since phase 3 trials are primarily

used to support registration filings.

Most related studies do not report the extent of missing data in their samples,

presumably because smaller datasets were used. DiMasi et al. [70] reported missing

data for some of their factors, and addressed it through listwise deletion—deleting

all observations with any missing factors. Since statistical estimators often require

complete data, this approach is the simplest remedy for missingness. However, it
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Figure 3-3: Missingness patterns of drug features. Each row corresponds to a unique
drug. Features not included in the figure are complete and do not have missing values.
Abbreviations: dev status, highest level of development of a drug for any indication;
pharma, pharmacological target family; bio, biological target family.

greatly reduces the amount of data available and decreases the statistical power of

the resulting statistics. Furthermore, listwise deletion is valid only under strict and

unrealistic assumptions (see Section 3.3.1), and when such conditions are violated,

inferences are biased. In this study, we make an effort to include in our analysis all

observed examples, with or without complete features, through the use of statistical

imputation.

3.3 Methods

Our analysis consists of two parts. First, we impute missing values to generate com-

plete datasets. Next, we apply a range of machine-learning algorithms to build pre-

dictive models based on the imputed data. Illustration of the specific components of
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Figure 3-4: Missingness patterns of trial features. Each row corresponds to a unique
clinical trial. Features not included in the figure are complete and do not have missing
values. Abbreviations: dev status, highest level of development of a drug for any
indication; status, trial status; idsi, number of identified sites; actacc, actual accrual;
dura, duration; taracc, target accrual; loc, locations; dkw, trial study design keywords;
outcome, trial outcomes.

Table 3.5: Missingness in drug features with respect to unique drugs.

Missingness

Unconditional Success Failure

P2APP

Route 0.04 0.00 0.04
Pharmacological target family 0.06 0.02 0.07
Biological target family 0.32 0.27 0.32
Medium 0.53 0.15 0.61

P3APP

Route 0.01 0.00 0.02
Pharmacological target family 0.03 0.02 0.04
Biological target family 0.27 0.24 0.30
Medium 0.35 0.14 0.54
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Table 3.6: Missingness in trial features with respect to unique trials.

Missingness

Unconditional Completion Termination

P2APP

Number of identified sites 0.10 0.10 0.10
Actual accrual 0.12 0.10 0.22
Duration 0.26 0.29 0.05
Target accrual 0.37 0.42 0.09
Locations 0.02 0.02 0.02
Study design keywords 0.22 0.24 0.10
Trial outcomes 0.63 0.73 0.11

P3APP

Number of identified sites 0.10 0.09 0.12
Actual accrual 0.12 0.09 0.26
Duration 0.17 0.19 0.06
Target accrual 0.27 0.31 0.09
Locations 0.01 0.01 0.02
Study design keywords 0.09 0.09 0.06
Trial outcomes 0.53 0.62 0.07

Figure 3-5: Modeling methodology adopted in this study. Abbreviations: CV, cross-
validation.

our analysis appear in Fig. 3-5.

3.3.1 Statistical Imputation

Missing data may be classified into three categories [72]: missing completely at ran-

dom (MCAR), missing at random (MAR), and missing not-at-random (MNAR).

MCAR refers to data that are missing for reasons entirely independent of the data;

MAR applies when the missingness can be fully accounted for by the observed vari-

ables; and MNAR refers to situations when neither MCAR nor MAR is appropriate,
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in which case the probability of missingness is dependent on the value of an unob-

served variable [73].

For a more precise definition, let 𝑌 denote a 𝑛 by 𝑝 data matrix (with elements 𝑦𝑖𝑗)

where the rows represent samples and the columns represent variables. We further

partition the observed part of 𝑌 as 𝑌𝑜𝑏𝑠 and the missing part of 𝑌𝑚𝑖𝑠, so collectively:

𝑌 = (𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠) (3.1)

Next, let 𝑅 be a 𝑛 by 𝑝 response indicator matrix where elements 𝑟𝑖𝑗 = 0 if the

corresponding element 𝑦𝑖𝑗 is missing and 𝑟𝑖𝑗 = 1 if 𝑦𝑖𝑗 is observed. The distribution

of 𝑅, known as the missing data model/missingness mechanism, may be written

generally as 𝑃 (𝑅 | 𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠, 𝜉), where 𝜉 parameterizes the relationship between 𝑅

and 𝑌 . The missingness is said to be MCAR if the probability of missingness is totally

unrelated to the data:

𝑃 (𝑅 | 𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠, 𝜉) = 𝑃 (𝑅 | 𝜉) (3.2)

The missingness is said to be MAR if the missingness is independent of the values

of the missing data when conditioned on the observed data:

𝑃 (𝑅 | 𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠, 𝜉) = 𝑃 (𝑅 | 𝑌𝑜𝑏𝑠, 𝜉) (3.3)

Finally, the missingness is said to be MNAR if the probability of missingness,

𝑃 (𝑅 | 𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠, 𝜉), cannot be simplified, i.e., the probability of missingness depends

on the unobserved underlying values of the missing data and/or of other observed

variables.

Now, we let the distribution of 𝑌 , which is the data model we are interested

in, be described by some parameters 𝜃. The missingness mechanism can be further

described as ignorable under two conditions. First, the missingness must be MAR.

Second, the parameters 𝜃 and 𝜉 must be distinct, meaning 𝜃 and 𝜉 should be a priori

independent where 𝑃 (𝜃, 𝜉) factors into 𝑃 (𝜃)𝑃 (𝜉) [74]. In many situations, the second
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condition is reasonable because knowing 𝜃 provides little information about 𝜉 and

vice versa [75]. In general, the first requirement of MAR is considered to be the more

important condition. When ignorability holds, Rubin [76] showed that:

𝑃 (𝑌𝑚𝑖𝑠 | 𝑌𝑜𝑏𝑠, 𝑅) = 𝑃 (𝑌𝑚𝑖𝑠 | 𝑌𝑜𝑏𝑠) (3.4)

This implies that the distribution of the data is independent of the missing data

model, and is identical in both the observed and unobserved groups [73]:

𝑃 (𝑌 | 𝑌𝑜𝑏𝑠, 𝑅 = 1) = 𝑃 (𝑌 | 𝑌𝑜𝑏𝑠, 𝑅 = 0) (3.5)

In this case, we can model the conditional distribution 𝑃 (𝑌 | 𝑌𝑜𝑏𝑠, 𝑅 = 1) from the

observed data, and use it to draw imputations for the missing data. In other words,

the missing data model 𝑅 can be ignored and not modeled. If the missingness is

nonignorable, then Eq. (3.5) does not hold, and the distributions are not equivalent.

When this happens, we need to estimate the missingness mechanism, and incorporate

it into the imputation model.

If the missingness is MCAR, the observed samples can be viewed as a random

subsample of the dataset. Consequently, using listwise deletion should not introduce

any bias. While convenient, this assumption is rarely satisfied in practice. In most

drug-development databases, failed drugs are more likely to have missing features

than successful drugs (see Table 3.5). Clearly, MCAR does not hold.

Applying listwise deletion when the missingness is not MCAR can lead to severely

biased estimates. Moreover, given the nature of drug-development reporting, a large

portion of the original data may be discarded if many variables have missing values.

For these reasons, the listwise-deletion approach adopted by DiMasi et al. [70] and

others is less than ideal.

Given only the observed data, it is impossible to test for MAR versus MNAR

[77]. However, our knowledge of the data-collection process suggests that MAR is a

plausible starting point, and we hypothesize that the missingness in drug and trial

features is mainly accounted for by drug development and trial statuses, respectively.
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Our observations in Tables 3.5 and 3.6 support this approach, as the missingness

proportions for some features differ greatly depending on the outcome.

Our assumption of MAR is consistent with the data-collection methodology in

the Informa R○ databases. Drug profiles are built up over time in Pharmaprojects. As

a drug advances to later phases, information about its characteristics becomes more

readily available because investigators release more data about pipeline drugs after

each phase of clinical testing. Informa R○ inputs this information into its databases

as they become available in the public domain or through primary research. Ap-

proved drugs are more likely to have more complete profiles, while information about

failed drugs tends to stay stagnant because no further studies are conducted. It is

very plausible that the MAR nature of our datasets is an artifact of data collection,

and by extension, so are similar pharmaceutical datasets extracted from the public

domain and maintained in the same fashion. Originally intended to track drug and

trial activities, Pharmaprojects and Trialtrove are not structured to keep track of

information updates over time since there was no use for it. Without timestamps of

the updates, we are not able to eliminate the MAR artifact from our datasets.

In our analysis, we impute the missing data under the more plausible MAR as-

sumption to obtain complete datasets. In contrast to listwise deletion, we fill in

missing values using information in the observed variables. This allows us to uti-

lize data that would otherwise be discarded. Thereafter, we can apply all the usual

statistical estimators to this imputation-completed data.

We explore complete cases analysis and four imputation techniques commonly

used in social science research and biostatistics: unconditional mean imputation, 𝑘

nearest neighbors imputation, multiple imputation, and decision tree algorithms.

Complete Cases Analysis

In complete cases analysis (also known as listwise deletion), we discard all obser-

vations with missing data, in which case there is no imputation. It is the default

method in many statistical programs. This method is generally not recommended

because it is valid only under strict MCAR conditions, which rarely holds in practice.
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Applying this approach to MAR/MNAR data will likely yield biased inferences. It is

apparent that the dataset under study is not MCAR. Nevertheless, we can use this

as comparison against other methods.

Unconditional Mean Imputation

In unconditional mean imputation, we fill in the missing values of a variable with the

mean/mode (for continuous/nominal variables, respectively) of the observed cases of

that variable. This method is also highly discouraged because it distorts the data

distribution by reducing variability and undermining relationships between variables.

The use of mean imputation is non-ideal, nevertheless it can be used as a baseline. In

this study, we implement two variants: mean/mode and median/mode imputation.

𝑘 Nearest Neighbors Imputation

In 𝑘 nearest neighbors imputation (𝑘NN), given an instance with missing values,

we select the 𝑘 most similar cases that do not have missing values in the features

to be imputed. As the name suggests, the replacements for the missing values are

chosen from these 𝑘 nearest neighbors. In this study, we use the Gower distance

as a measure of similarity: the range-normalized Manhattan distance for continuous

variables and the Jaccard distance for categorical variables. We explore five and

ten nearest neighbors. For each missing value to be imputed, we use the median and

mode, for continuous variables and binary variables, respectively, of the corresponding

feature of the 𝑘 closest neighbors as imputation.

Multiple Imputation

Multiple imputation (MI) is a principled missing data method that involves three

steps: imputation, analysis, and pooling. In the first step, we specify an imputation

model for each incomplete variable in the form of a conditional distribution, that is,

missing data conditioned on the observed data. Then we draw multiple plausible val-

ues for each missing data point according to the specified variable models, creating

multiple imputed datasets from one incomplete dataset. In this study, we specify
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linear regression models for continuous variables and logistic regression models for

categorical variables. In the second step, we analyze each imputed dataset individ-

ually using standard statistical procedures. Finally, in the third step, we pool the

estimates obtained from the multiple individual analyses (e.g., probability predic-

tions and regression coefficients) using Rubin’s rules [76] to yield a single estimate.

See Appendix B.2 for more details.

Decision Tree Algorithms

Decision trees are commonly used as predictive models. In contrast to most machine-

learning algorithms, some decision tree algorithms can handle missing values inter-

nally without the need for imputation. In this study, we focus on the C5.0 algorithm.

C5.0 is a tree-based model developed by Quinlan [78]. It uses entropy as the node

impurity measure. When considering a variable for a split, C5.0 uses only examples

for which that variable is not missing to calculate the node impurity. When an in-

stance sent down C5.0 encounters a split variable for which it has a missing value, it is

split into the branches fractionally, according to the split proportion of the observed

instances.

3.3.2 Machine Learning Models

We formulate our two scenarios as supervised bipartite ranking problems, where the

goal is to predict the outcome—success or failure—of a drug-indication pair given a

set of input features. Initially, we split each dataset into training and testing sets.

For each scenario, we train various classifiers based on the corresponding training

set, and compute the expected error of our predictive models by testing them on the

held-out testing set.

We create feature matrices from the datasets by representing drug and trial fea-

tures for each drug-indication pair as vectors (see Fig. 3-6). Drug-indication pairs

associated with multiple trials are represented by the same number of feature vec-

tors, e.g., a pair with two trials has two rows. We give a concrete example in Fig. 3-6.
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Consider the drug-indication pair Analiptin-diabetes type 2 in the P2APP dataset.

We represent it using two vector rows since it has two phase 2 trials in Trialtrove.

Note that the feature matrix is incomplete due to missing drug and trial features. We

also construct a column vector of labels, which contains the outcomes of the drug-

indication pairs. Labels are not available for pipeline drug-indication pairs because

they are still in development and their outcomes are still uncertain, hence these ob-

servations are not used to train our classifiers. However, with the trained classifiers,

we can generate predictions for pipeline data.

We split each dataset (excluding pipeline drugs-indication pairs) into two disjoint

sets, one training set and one testing set, and form feature matrices for both according

to the drug-indication pairs in each set. The testing sets serve as out-of-sample

datasets to evaluate our models. Therefore, we mask their outcomes (that is, we treat

them as unknown) and access them only at the very end to check our performance.

To deal with missing data in both training and testing sets, we consider the

imputation techniques described in Section 3.3.1. We follow best practices of the

missing-data literature by including as many relevant auxiliary variables as possible,

as well as all variables used in subsequent models [77, 79, 80, 81]. This makes the

assumption of MAR more plausible in our datasets, and helps to reduce bias in sub-

sequent analyses [75]. In particular, it is necessary to include our target variable—the

drug-indication development status—in our imputation model because we hypothe-

size that missingness is mainly accounted for by it. This is not an issue for the training

sets. However, the outcomes in the testing sets are masked, and not supposed to be

known. Therefore, we treat the testing set outcomes as though they were missing

and impute them together with all the other missing features. After imputation, we

discard the imputed testing-set outcomes, and use only the imputed feature values

for predictions. We do the same when evaluating pipeline datasets.

With respect to the machine-learning algorithm, we explore several linear and non-

linear classifiers commonly used in literature, including penalized logistic regression

(PLR), random forests (RF), neural networks (NN), gradient boosting trees (GBT),

support vector machines with radial basis functions (SVM), and decision trees C5.0.
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We implement the first five algorithms in Python [38] and the last in R [82].

For training, we weight each feature matrix row example according to the number

of trials of the corresponding drug-indication pair. In our earlier example, the drug-

indication pair Analiptin-diabetes type 2 was involved in two phase 2 trials. It is

represented by two vector rows in the feature matrix (see Fig. 3-6). Both rows are

used as training examples, and each is weighted equally during training (0.5, since

there are two trials in total). To obtain predictions for a drug-indication pair, we

average the output probabilities and scores of the corresponding feature vector rows

that are used as inputs to the classifier.

All machine-learning algorithms have hyper-parameters that affect the flexibil-

ity of the model and must be tuned to each dataset to optimize goodness of fit.

Poorly-chosen hyper-parameters can lead to overfitting (attributing signal to noise)

or underfitting (attributing noise to signal). We tune our parameters using 𝑘-fold

cross-validation (with 𝑘 = 5 or 𝑘 = 10, depending on the sample size). Since the

cross-validation process should emulate the testing process as closely as possible, we

include imputation in the cross-validation loop as well. We split the training set

into validation and non-validation folds. Then we treat validation fold outcomes as

missing, and impute them as we would for a testing set. From here, we ignore the

imputed validation fold outcomes and proceed with the standard validation process.

In the final step, we test the trained classifiers on the unseen testing sets for out-

of-sample model validation. This gives the expected performance of our predictive

models for each of the scenarios, using the standard AUC metric to measure model

performance.

3.4 Results

3.4.1 Imputation Versus Listwise Deletion

We study the effects of imputation using a “gold-standard” dataset derived from the

complete cases of the P2APP dataset (see Table 3.7). To simulate the missingness
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Figure 3-6: Feature matrix of dataset. Each row corresponds to a feature vector; each
feature corresponds to an entry in the vector; each vector has a length of 144 since
we have 31 drug and 113 trial features. Feature vectors of all drug-indication pairs in
the dataset form the feature matrix collectively. Trial ID is a unique trial identifier
in Trialtrove.
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present in the original dataset, we introduce missingness in the gold-standard dataset

based on our MAR assumption and the missingness patterns observed in the P2APP

dataset. We randomly split the drug-indication pairs into a training set (70%) and

a testing set (30%), and use five different missing data approaches, as described in

Section 3.3.1, to generate complete training sets from the MAR training set. We

use each imputed training set to build six different predictive models (PLR, RF,

NN, GBT, SVM, and C5.0) according to the methodology outlined in Section 3.3.2.

We repeat this experiment 100 times for robustness. Table 3.8 summarize the AUC

performance of the classifiers on the gold-standard testing sets. See Appendix B.3 for

a more detailed description and results.

For all six machine-learning algorithms, we find that gold-standard classifiers—

that is, the models derived from complete data—consistently outperform their com-

plete case analysis and imputation counterparts. This is logical because useful infor-

mation is invariably lost when we introduce missingness in the datasets. In contrast,

complete case analysis often leads to inferior performance. The AUCs of classifiers

trained on complete cases training sets tend to be smaller than those trained on im-

puted training sets. This suggests that imputation does indeed offer improved fit and

predictive power over listwise deletion.

Overall, we find 𝑘NN imputation to be most compatible with our datasets. It

provides the least biased imputations among all missing data methods (see Ap-

pendix B.3). In particular, the combination of 𝑘NN imputation (𝑘 = 5) with RF

gives one of the highest gold-standard testing set AUCs (0.81). We note a few other

MI combinations that yield comparable or marginally better performance but focus

on the 5NN-RF approach in subsequent analyses on the main datasets due to its ease

of implementation and application. We find that SVM has the worst performance

among all machine-learning models. This is not surprising because SVMs are aimed

only at learning binary classifiers, and do not generally produce good class probability

estimates. Consequently, such models do not necessarily give high AUCs.

We also compare our approach with the ANDI algorithm [70] by applying a mod-

ified version of the index on oncology drugs in the gold-standard testing sets (see
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Table 3.7: Sample size of the gold-standard dataset (derived from complete cases of
P2APP).

Counts

Drug-indication Phase 2 Unique Unique Unique Phase
Pairs Trials Drugs Indications 2 Trials

Success 166 341 152 83 337
Failure 812 1,672 503 158 1,549

Total 978 2,013 623 171 1,872

Figure 3-7: Distributions of AUC of 5NN-RF and the modified ANDI on oncology-
only gold-standard testing sets.

Appendix B.4 for a more in-depth description). We find that our 5NN-RF model

achieves significantly higher AUC than the modified ANDI, with an average improve-

ment of 0.1 in AUC over 100 simulations (see Fig 7). We believe that this gain can be

attributed to a larger training set with a wider range of features, a nonlinear model

that can capture the complex relationships in the data, and a proper model validation

methodology.
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Table 3.8: Out-of-sample performance of different missing data approaches. Abbrevi-
ations: avg, average; sd, standard deviation; 5%, 5th percentile; 50%, median; 95%,
95th percentile; 𝑚, number of imputations generated.

Testing Set AUC

Avg Sd 5% 50% 95%

PLR

Gold Standard 0.810 0.028 0.761 0.808 0.853
Complete Cases 0.755 0.040 0.683 0.764 0.813
Mean/mode 0.778 0.031 0.729 0.779 0.823
Median/mode 0.778 0.031 0.728 0.779 0.824
5NN 0.786 0.032 0.738 0.787 0.834
10NN 0.787 0.032 0.739 0.791 0.835
MI (𝑚 = 1) 0.781 0.036 0.722 0.777 0.843
MI (𝑚 = 10) 0.782 0.031 0.729 0.782 0.831

RF

Gold Standard 0.837 0.027 0.793 0.837 0.876
Complete Cases 0.764 0.048 0.685 0.772 0.830
Mean/mode 0.775 0.031 0.726 0.771 0.822
Median/mode 0.774 0.031 0.723 0.774 0.827
5NN 0.805 0.033 0.755 0.805 0.857
10NN 0.802 0.033 0.747 0.805 0.856
MI (𝑚 = 1) 0.797 0.033 0.748 0.795 0.853
MI (𝑚 = 10) 0.804 0.030 0.751 0.804 0.848

NN

Gold Standard 0.800 0.032 0.754 0.799 0.849
Complete Cases 0.715 0.043 0.638 0.716 0.779
Mean/mode 0.790 0.037 0.739 0.789 0.848
Median/mode 0.789 0.036 0.740 0.792 0.849
5NN 0.794 0.032 0.743 0.798 0.842
10NN 0.797 0.036 0.737 0.798 0.851
MI (𝑚 = 1) 0.780 0.036 0.719 0.781 0.838
MI (𝑚 = 10) 0.795 0.030 0.750 0.795 0.838
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Table 3.8 (continued): Out-of-sample performance of different missing data ap-
proaches. Abbreviations: avg, average; sd, standard deviation; 5%, 5th percentile;
50%, median; 95%, 95th percentile; 𝑚, number of imputations generated.

Testing Set AUC

Avg Sd 5% 50% 95%

GBT

Gold Standard 0.820 0.028 0.776 0.821 0.868
Complete Cases 0.746 0.050 0.659 0.756 0.816
Mean/mode 0.781 0.034 0.724 0.784 0.826
Median/mode 0.778 0.033 0.719 0.783 0.823
5NN 0.796 0.029 0.737 0.798 0.837
10NN 0.796 0.028 0.748 0.798 0.838
MI (𝑚 = 1) 0.796 0.031 0.747 0.796 0.847
MI (𝑚 = 10) 0.804 0.031 0.757 0.803 0.854

SVM

Gold Standard 0.785 0.030 0.730 0.786 0.831
Complete Cases 0.733 0.053 0.650 0.741 0.795
Mean/mode 0.766 0.036 0.707 0.771 0.818
Median/mode 0.764 0.035 0.711 0.771 0.818
5NN 0.771 0.034 0.722 0.770 0.827
10NN 0.772 0.037 0.710 0.773 0.825
MI (𝑚 = 1) 0.760 0.035 0.696 0.762 0.813
MI (𝑚 = 10) 0.768 0.030 0.719 0.764 0.813

C5.0

Gold Standard 0.800 0.033 0.758 0.800 0.844
Complete Cases 0.710 0.063 0.585 0.713 0.802
Mean/mode 0.758 0.039 0.698 0.762 0.816
Median/mode 0.754 0.043 0.679 0.751 0.823
5NN 0.772 0.038 0.715 0.772 0.843
10NN 0.770 0.035 0.710 0.771 0.822
MI (𝑚 = 1) 0.758 0.037 0.701 0.754 0.819
MI (𝑚 = 10) 0.807 0.031 0.756 0.808 0.857
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3.4.2 Predicting Drug Approvals

We analyze the two main datasets (P2APP and P3APP) by first splitting each into a

training set (70%) and a testing set (30%) randomly (pipeline drug-indication pairs

are omitted since their outcomes have yet to be determined). Subsequently, we train

5NN-RF models for each scenario. We repeat this experiment 100 times for robust-

ness. Table 3.9 summarizes the AUC performance metrics for the testing sets. On

average, we achieve 0.78 AUC for P2APP and 0.81 AUC for P3APP.

The observed performance is essentially the MAR testing set AUC, since backfill-

ing has already affected the datasets used. In Appendix B.3, we highlight the perils

of relying on the MAR testing set for model validation, and suggest that the AUCs

for the gold-standard and MCAR testing sets are more reflective of a classifier’s real

performance. Unfortunately, we have access to neither the gold-standard nor the

MCAR testing sets, because we do not know the true, underlying values of the miss-

ing features. However, our experiments indicate that the AUCs for the MAR and

MCAR testing sets of the 5NN-RF combination are very close (a difference of 0.002

on average). This means that we may use the former, the only observed figure, as a

reasonable estimate of the latter, which reflects real performance.

Next, we train classifiers based on the union of the training and testing sets,

and use them to generate predictions for pipeline drug-indication pairs. We generate

predictions for P2APP using only information from phase 2 trials and for P3APP

using only information from phase 3 trials. While we cannot compute AUC scores

for these samples because their outcomes are still pending, we can compare their

prediction scores with their development status at the time of this writing. These

pipeline drug-indication pairs may still be in the same clinical stage (no change, i.e.,

phase 2 for P2APP; phase 3 for P3APP), be terminated (failed), or have progressed

to higher phases (advanced).

Fig. 3-8 and Tables 3.10 and 3.11 summarize the distributions of pipeline predic-

tion scores. We find that pairs that fail generally have lower scores than those that

advance to later phases of development. In Fig. 3-8, we observe peaks at the lower end
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of the score spectrum for failed pairs (red) for both datasets. In contrast, pairs that

advance tend to have peaks at higher scores (green). We observe the same patterns

when we disaggregate the distributions by indication groups: the green parts tend

to cluster above the distribution median while the red parts cluster below. However,

there are also some indication groups for which there are too few samples to make any

useful remarks (e.g., hormonal products in P2APP). From Table 3.10, we see that the

average scores of failed pairs are indeed lower than those that advance (differences

ranging from 0.05 to 0.15). In Table 3.11, we bin drug-indication pairs that have

new developments (whether failure or advancement) into four groupings, depending

on their prediction scores. For each bin, we compute the proportion of samples that

advance to later development stages. We find that the proportions generally increase

with the score magnitude, suggesting that pairs with higher scores are more likely to

advance than those with lower scores. We note that progress to later clinical stages

does not always lead to approval. However, the results are still promising because

advancement is a necessary condition for approval. Our experiments indicate that our

trained classifiers are able to discriminate between high- and low-potential candidates.

To gain insight into the logic of our trained predictive models, we compute the

average importance of features used in the 5NN-RF classifiers over all the experi-

ments, and extract the top ten most informative variables. The RF classifier we used

computes the importance of a variable by finding the decrease in node impurity for

all nodes that split on that variable, weighted by the probability of reaching that

node (as estimated by the proportion of samples reaching that node), averaged over

all trees in the forest ensemble [38, 83]. Table 3.12 summarizes the results.

We find that trial outcome (whether the trial was completed with its primary

endpoints met) and trial status (whether the trial was completed or terminated) have

significant associations with success. These two features were consistently ranked the

top two out of all variables and across both datasets. It is easy to imagine that a

drug-indication pair whose trials were terminated has a low probability of success in

terms of advancing from phase 2 or phase 3 to approval. In contrast, candidates that

achieve positive outcomes certainly have a better shot at success. We also observe
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that prior approval of a drug has an effect on success for new indications or patient

segmentation. It is plausible that developing an approved drug for a new indication

has a greater likelihood of success than a new candidate.

In addition, trial characteristics such as accrual, duration, and the number of

identified sites frequently appear in the top ten important variables. There are several

possible explanations. For example, trials that end quickly without achieving primary

endpoints may undermine the likelihood of success, and drugs with trials that have

small accrual—and thus low statistical power—may have a lower probability of being

approved.

We also find sponsor track records—quantified by the number of past successful

trials (trials that achieve positive results or meet primary endpoints)—to be a useful

factor for prediction. This factor has not been considered in previous related studies,

but the intuition for its predictive power is clear: strong track records are likely

associated with greater expertise in drug development.

Since drugs developed for different indication groups may have very different char-

acteristics, we might expect classifiers trained on indication-group-specific data to

outperform general classifiers. We build and analyze such specialized classifiers by

filtering the datasets by indication group before performing the experiment described

in the previous section. As a comparison, we also break down the performance of

the general classifiers by indication group. Table 3.9 shows the results for selected

indication groups. In general, we find specialized models to give poorer performance

than general models. This is likely because the former are trained on less data, which

makes them less accurate and more susceptible to overfitting.

We note that the approach adopted in this section—splitting drug-indication pairs

into training and testing sets randomly without considering the dates of development—

may be less than ideal because of look-ahead bias. For example, if the results of a

2008 trial are included in the training set for predicting the outcome of a 2004 devel-

opment path for a drug-indication pair, our model will be using future information

during validation, which can yield misleading and impractical inferences. To address

this issue, in the next section we apply our machine-learning framework to time-series
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Table 3.9: Out-of-sample performance of classifiers. Comparison of the general and
indication-group-specific classifiers. Abbreviations: avg, average; sd, standard devia-
tion; 5%, 5th percentile; 50%, median; 95%, 95th percentile.

Testing Set AUC

General Indication-Group-Specific

Avg Sd 5% 50% 95% Avg Sd 5% 50% 95%

P2APP

All 0.777 0.017 0.749 0.775 0.806
Anti-cancer 0.805 0.025 0.764 0.805 0.847 0.818 0.029 0.773 0.819 0.865
Rare Diseases 0.800 0.028 0.756 0.800 0.848 0.775 0.036 0.715 0.777 0.838
Neurological 0.767 0.036 0.710 0.769 0.819 0.778 0.039 0.721 0.779 0.834
Alimentary 0.749 0.045 0.672 0.751 0.817 0.732 0.048 0.651 0.734 0.807
Immunological 0.783 0.065 0.665 0.786 0.889 0.766 0.069 0.646 0.775 0.860
Anti-infective 0.735 0.043 0.673 0.736 0.800 0.750 0.047 0.684 0.746 0.832
Respiratory 0.756 0.055 0.648 0.764 0.835 0.867 0.043 0.794 0.872 0.921
Musculoskeletal 0.822 0.049 0.736 0.821 0.899 0.731 0.076 0.614 0.745 0.849
Cardiovascular 0.709 0.072 0.580 0.711 0.812 0.694 0.073 0.579 0.698 0.807
Genitourinary 0.633 0.086 0.503 0.634 0.790 0.706 0.091 0.552 0.710 0.840

P3APP

All 0.810 0.018 0.781 0.810 0.834
Anti-cancer 0.783 0.047 0.699 0.779 0.853 0.707 0.054 0.612 0.714 0.786
Rare Diseases 0.819 0.054 0.727 0.822 0.896 0.786 0.058 0.687 0.793 0.875
Neurological 0.796 0.037 0.734 0.794 0.857 0.789 0.038 0.741 0.787 0.853
Alimentary 0.817 0.047 0.744 0.820 0.891 0.805 0.054 0.718 0.808 0.888
Immunological 0.811 0.074 0.680 0.815 0.910 0.757 0.099 0.586 0.765 0.892
Anti-infective 0.757 0.065 0.644 0.752 0.854 0.708 0.068 0.600 0.707 0.808
Respiratory 0.823 0.065 0.712 0.831 0.920 0.773 0.083 0.627 0.784 0.907
Musculoskeletal 0.741 0.095 0.576 0.747 0.866 0.763 0.072 0.646 0.762 0.882
Cardiovascular 0.794 0.058 0.702 0.788 0.887 0.755 0.076 0.639 0.765 0.864
Genitourinary 0.814 0.083 0.670 0.821 0.937 0.801 0.090 0.635 0.808 0.927

data using rolling windows that account for temporal ordering in the construction of

training and testing sets. Although this process makes use of less data within each

estimation window than when the entire dataset is used, it minimizes the impact of

look-ahead bias and yields more realistic inferences. We study the effects of random

splitting versus temporal ordering in Appendix B.5.

3.4.3 Predictions Over Time

Drug development has changed substantially over time, thanks to new scientific dis-

coveries and technological improvements. To reflect these changes in our predictive

analytics, we adopt a time series, walk-forward approach to create training and test-

ing sets for each of the two datasets, P2APP and P3APP (see Fig. 3-9). We sample

five-year rolling windows between 2004 and 2014 from each dataset. Each window

99



Table 3.10: Distributions of prediction scores for all indication groups in aggregate.
Advanced refers to progress to a higher phase from the original phase. Original
phase for P2APP is phase 2; for P3APP is phase 3. For instance, out of 1,511 drug-
indication pairs in the P2APP testing set, 859 pairs are still pending decision in phase
2, 244 pairs have failed, and 408 pairs have successfully advanced to phase 3 testing.
Abbreviations: avg, average; sd, standard deviation; 5%, 5th percentile; 50%, median;
95%, 95th percentile; n, sample size.

Prediction Scores

n Avg Sd 5% 50% 95%

P2APP

Aggregate 1,511 0.153 0.061 0.044 0.155 0.258
No change 859 0.143 0.060 0.041 0.147 0.246
Failed 244 0.137 0.061 0.034 0.147 0.240
Advanced 408 0.183 0.056 0.093 0.178 0.274

P3APP

Aggregate 252 0.417 0.189 0.128 0.402 0.695
No change 142 0.392 0.185 0.129 0.384 0.693
Failed 32 0.348 0.185 0.100 0.344 0.656
Advanced 78 0.492 0.176 0.233 0.492 0.699

Table 3.11: Distributions of prediction scores for all indication groups in aggregate.
Proportion refers to the fraction of samples that advanced to a later phase from the
original phase. Abbreviations: n, sample size.

Scores n Proportion

P2APP

< 0.1 108 0.231
0.1-0.2 368 0.671
0.2-0.3 171 0.766
≥ 0.3 5 1.000

P3APP

< 0.2 13 0.308
0.2-0.4 35 0.686
0.4-0.6 27 0.667
≥ 0.6 35 0.914
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Figure 3-8: Distributions of prediction scores for P2APP and P3APP. First row for
all indication groups in aggregate. Subsequent rows for specific indication groups.
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Table 3.12: Top ten most important variables of 5NN-RF classifiers for P2APP and
P3APP. Average and standard deviation taken across all experiments. Abbreviations:
avg, average; sd, standard deviation.

Importance

Avg Sd

P2APP

Trial outcome - completed, positive outcome or primary endpoint(s) met 0.234 0.043
Trial status 0.160 0.026
Medium - solution 0.051 0.018
Actual accrual 0.046 0.010
Sponsor type - industry, all other pharma 0.025 0.008
Sponsors track record - number of positive phase 3 trials 0.023 0.006
Sponsors track record - number of failed drug-indication pairs 0.021 0.007
Study design - placebo control 0.019 0.009
Target accrual 0.018 0.005
Prior approval of drug for another indication 0.018 0.007

P3APP

Trial outcome - completed, positive outcome or primary endpoint(s) met 0.357 0.028
Trial status 0.148 0.014
Duration 0.099 0.016
Trial outcome - terminated, lack of efficacy 0.033 0.010
Trial outcome - completed, negative outcome or primary endpoint(s) not met 0.033 0.008
Therapeutic area - oncology 0.030 0.009
Prior approval of drug for another indication 0.021 0.007
Actual accrual 0.015 0.003
Medium - powder 0.014 0.007
Medium - solution 0.012 0.006

consists of a training set of drug-indication pairs whose outcomes become finalized

within the window, and an out-of-sample, out-of-time testing set of drug-indication

pairs that ended phase 2 or phase 3 testing, but are still in the pipeline with unde-

termined outcomes within the window. For example, consider the P2APP dataset.

We draw the first window from 2004–2008, train our algorithm on drug-indication

pairs that failed or were approved within this period as the training set, and apply

the trained model to predict the outcomes of drug-indications that just ended phase

2 testing within the same window as the testing set.

We evaluate the resulting classifier by comparing its predictions with outcomes

that are realized in the future (2009–2015). This rolling-window approach yields a

total of eight overlapping training and testing periods where a new 5NN-RF model

is trained for each period. The eighth testing period consists of drug-indication pairs

in the pipeline at the time of snapshot of the databases. Unlike the first seven peri-

ods, their outcomes are still pending current development, and therefore we cannot
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compute a testing AUC for this window. However, we can examine the predictions

and compare the scores with their development statuses at the time of this writing.

Fig. 3-10 summarizes the results of the time-series analysis for the first seven

windows. We observe an increasing trend over the years for both P2APP (0.67 in the

first and 0.80 in the last window) and P3APP (0.77 in the first and 0.88 in the last

window). Interestingly, we note that the proportions of complete cases in the training

sets correlate well with the time series AUC (correlation coefficient 0.95 for P2APP

and 0.90 for P3APP). We compute the proportion of complete cases by taking the

number of feature vector rows with complete information over the total number of

rows. As is apparent from Fig. 3-10, the proportions have been increasing over the

years for both datasets. This is likely due to better data reporting practices by drug

developers, a possible consequence of FDAAA.

Next, we examine the 2011–2015 window. Fig. 3-11 and Tables 3.13 and 3.14 sum-

marize the distributions of prediction scores for the P2APP and P3APP datasets. We

observe very similar patterns to the static pipeline predictions above. The histograms,

average scores, and binning of samples indicate that pairs that fail tend to have lower

prediction scores than those that advance. This shows that our classifiers are indeed

able to differentiate successful candidates.

Table 3.15 summarizes the top ten most informative variables in the 5NN-RF

classifiers over the eight rolling windows. We find them to be largely consistent with

those observed in the static case: the trial outcome and trial status are significantly

associated with success; trial characteristics (such as accrual, duration, and number

of identified sites), sponsor track record, and drug medium appear frequently in both

scenarios.

As in the static case, we also train indication-group specific classifiers using rolling

windows. Tables 3.16 and 3.17 summarize the results for selected indication groups in

P2APP and P3APP, respectively (see Appendix B.6 for results of all other indication

groups). Indication groups with small sample sizes tend to produce poor and unstable

specialized classifiers (e.g., the musculoskeletal indication group in P2APP). This

is expected because models trained on small training sets are more susceptible to
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overfitting, especially when non-linear algorithms such as RF are used. In contrast,

indication groups with larger sample sizes tend to give rise to rather good classifiers

(e.g., anti-cancer in P2APP).

For comparison, we disaggregate performance by indication group. We find that

these classifiers do not lose out to their specialized counterparts. In fact, our re-

sults show that the former tend to exhibit more stable performance across the seven

windows, particularly on indication groups with small sample sizes. We hypothesize

that classifiers trained on all data benefit from having access to larger datasets with

greater diversity, and are thus able to make more informed predictions. This suggests

that it may be more appropriate to rely on general classifiers, rather than specialized

ones, for predictions over time where samples are spread out over multiple windows,

since further filtering by indication group results in even smaller sample sizes.

Finally, we extract the top five P2APP pipeline drug candidates with the highest

scores in each indication group as predicted by the 2011–2015 rolling-window model.

Table 3.18 summarizes the results. We include only candidates that are still outstand-

ing at the time of writing (neither discontinued nor approved). It is encouraging that

many of these candidates (indicated in italics) have advanced beyond phase 2 test-

ing since our analysis, indicating the predictive power of our models. We include an

interactive version (illustration in Fig. 3-12) where readers can filter our pipeline pre-

dictions by indication group and probability of approval. Ultimately, all biopharma

stakeholders can use such scores to rank and evaluate the potential risks and rewards

of drug candidates.

3.5 Discussion

Drug development is an extremely costly process and the accurate evaluation of a

candidate drug’s likelihood of approval is critical to the efficient allocation of capi-

tal. Historical successes and failures contain valuable insights on the characteristics

of high-potential candidates. Unfortunately, such data are often incomplete due to

partial reporting by investigators and developers. Most analytic methods require
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Figure 3-9: Time-series walk-forward analysis approach. The testing set in the last
window (green) comprises drug-indication pairs in the pipeline at the time of snapshot
of the databases.

Figure 3-10: Time-series walk-forward analysis results for P2APP and P3APP using
5NN-RF. We use bootstrapping to determine the 95% CI for AUC (dotted lines).
The dashed lines plot the corresponding proportions of complete cases in the training
sets of each five-year window. Abbreviations: CC, proportion of complete cases.
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Table 3.13: Distributions of prediction scores for all indication groups in aggregate.
Advanced refers to progress to a higher phase from the original phase. Original
phase for P2APP is phase 2; for P3APP is phase 3. Abbreviations: avg, average; sd,
standard deviation; 5%, 5th percentile; 50%, median; 95%, 95th percentile; n, sample
size.

Prediction Scores

n Avg Sd 5% 50% 95%

P2APP

Aggregate 1,190 0.158 0.080 0.036 0.173 0.290
No change 712 0.148 0.080 0.035 0.158 0.275
Failed 195 0.143 0.079 0.034 0.149 0.255
Advanced 283 0.197 0.071 0.068 0.200 0.323

P3APP

Aggregate 218 0.431 0.211 0.113 0.476 0.689
No change 121 0.395 0.207 0.113 0.403 0.684
Failed 28 0.362 0.211 0.093 0.335 0.640
Advanced 69 0.521 0.193 0.149 0.631 0.707

Table 3.14: Distribution of prediction scores for all indication groups in aggregate.
Proportion refers to the fraction of samples that advanced to a higher phase from the
original phase. Abbreviations: n, sample size.

Scores n Proportion

P2APP

< 0.1 99 0.313
0.1-0.2 183 0.607
0.2-0.3 168 0.690
≥ 0.3 28 0.893

P3APP

< 0.2 17 0.412
0.2-0.4 17 0.706
0.4-0.6 17 0.647
≥ 0.6 46 0.848
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Figure 3-11: Distributions of prediction scores of the 2011–2015 window testing set
for P2APP and P3APP. First row for all indication groups in aggregate. Subsequent
rows for specific indication groups.
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Figure 3-12: Network graph of P2APP pipeline drug candidates. See here for an
interactive version. Black nodes correspond to indication groups. Colored nodes
correspond to drug-indication pairs. Each drug-indication pair node is connected to
its parent indication group and also other drug-indication pairs that have the same
indication. They are colored according to their respective probability of approval as
predicted by our model—blue for higher scores and red for lower scores. Hover over
nodes for details of each drug-indication pair. Black indication group nodes are sized
based on the number of connections.
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Table 3.15: Top ten most important variables in 5NN-RF classifiers for P2APP and
P3APP. Average and standard deviation taken across the eight rolling windows. Ab-
breviations: avg, average; sd, standard deviation.

Importance

Avg Sd

P2APP

Trial outcome - completed, positive outcome or primary endpoint(s) met 0.203 0.083
Trial status 0.102 0.033
Prior approval of drug for another indication 0.077 0.061
Actual accrual 0.039 0.015
Target accrual 0.031 0.010
Duration 0.027 0.014
Sponsor track record - number of completed phase 3 trials 0.025 0.007
Medium - suspension 0.024 0.018
Sponsor type - academic 0.023 0.017
Medium - solution 0.021 0.019

P3APP

Trial outcome - completed, positive outcome or primary endpoint(s) met 0.348 0.028
Trial status 0.125 0.020
Duration 0.053 0.017
Prior approval of drug for another indication 0.046 0.028
Trial outcome - completed, negative outcome or primary endpoint(s) not met 0.033 0.026
Target accrual 0.021 0.005
Trial outcome - terminated, lack of efficacy 0.020 0.013
Actual accrual 0.019 0.004
Therapeutic area - oncology 0.017 0.013
Number of identified sites 0.012 0.002

complete data, however, and prior studies on estimating approval rates and predict-

ing approvals are typically based on a small number of examples that have complete

information for just a few features.

In this study, we extract two datasets, P2APP and P3APP, from Informa R○

databases and apply 5NN statistical imputation to make efficient use of all available

data. We use machine-learning techniques to train and validate our RF predictive

models and achieve promising levels of predictive power for both datasets. When

applied to pipeline drugs, we find that candidates with higher scores are indeed more

likely to advance to higher clinical phases, indicating that our 5NN-RF classifiers are

able to discriminate between high- and low-potential candidates.

A time-series analysis of the datasets shows generally increasing trends in perfor-

mance over five-year rolling windows from 2004 to 2014. We find that the classifiers’

performance correlates well with the proportions of complete cases in the training

sets: as completeness increases, the classifier learns better and achieves higher AUCs.
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Table 3.16: Out-of-sample and out-of-time performance for P2APP. Comparison of
the general and indication-group specific classifiers for selected indication groups. We
use bootstrapping to determine the 95% CI for AUC.

General Indication-Group-Specific

Training Testing Testing Set Training Testing Testing Set
Set Set AUC (95% CI) Set Set AUC (95% CI)

All

2004–2008 1,361 551 0.669 (0.614, 0.725)
2005–2009 1,562 591 0.680 (0.625, 0.735)
2006–2010 1,764 636 0.712 (0.668, 0.755)
2007–2011 1,969 598 0.738 (0.698, 0.777)
2008–2012 2,082 597 0.799 (0.760, 0.837)
2009–2013 2,212 517 0.823 (0.779, 0.867)
2010–2014 2,289 380 0.797 (0.718, 0.876)

Anti-cancer

2004–2008 1,361 137 0.665 (0.528, 0.803) 456 137 0.683 (0.533, 0.833)
2005–2009 1,562 163 0.739 (0.618, 0.861) 494 163 0.635 (0.512, 0.758)
2006–2010 1,764 188 0.774 (0.702, 0.846) 546 188 0.726 (0.635, 0.816)
2007–2011 1,969 193 0.830 (0.773, 0.887) 618 193 0.746 (0.661, 0.831)
2008–2012 2,082 198 0.805 (0.717, 0.894) 682 198 0.760 (0.665, 0.855)
2009–2013 2,212 177 0.852 (0.783, 0.922) 736 177 0.786 (0.696, 0.876)
2010–2014 2,289 173 0.815 (0.691, 0.938) 791 173 0.803 (0.666, 0.940)

Musculoskeletal

2004–2008 1,361 35 0.765 (0.597, 0.933) 96 35 0.704 (0.512, 0.896)
2005–2009 1,562 38 0.716 (0.489, 0.944) 109 38 0.674 (0.472, 0.876)
2006–2010 1,764 35 0.634 (0.439, 0.830) 111 35 0.509 (0.276, 0.742)
2007–2011 1,969 37 0.737 (0.571, 0.903) 119 37 0.677 (0.493, 0.860)
2008–2012 2,082 36 0.884 (0.773, 0.995) 127 36 0.683 (0.462, 0.904)
2009–2013 2,212 26 0.792 (0.573, 1.000) 133 26 0.667 (0.429, 0.904)
2010–2014 2,289 19 0.882 (0.724, 1.000) 128 19 0.882 (0.706, 1.000)
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Table 3.17: Out-of-sample and out-of-time performance for P3APP. Comparison of
the general and indication-group specific classifiers for selected indication groups. We
use bootstrapping to determine the 95% CI for AUC.

General Indication-Group-Specific

Training Testing Testing Set Training Testing Testing Set
Set Set AUC (95% CI) Set Set AUC (95% CI)

All

2004–2008 472 196 0.769 (0.704, 0.834)
2005–2009 559 177 0.724 (0.650, 0.798)
2006–2010 604 211 0.738 (0.671, 0.805)
2007–2011 664 174 0.806 (0.740, 0.871)
2008–2012 677 197 0.827 (0.768, 0.886)
2009–2013 740 153 0.868 (0.809, 0.927)
2010–2014 734 110 0.876 (0.811, 0.941)

Anti-cancer

2004–2008 472 34 0.773 (0.618, 0.928) 95 34 0.684 (0.495, 0.874)
2005–2009 559 28 0.740 (0.543, 0.936) 107 28 0.568 (0.345, 0.791)
2006–2010 604 50 0.754 (0.599, 0.910) 110 50 0.630 (0.452, 0.809)
2007–2011 664 24 0.587 (0.333, 0.842) 132 24 0.392 (0.132, 0.651)
2008–2012 677 40 0.793 (0.549, 1.000) 134 40 0.668 (0.457, 0.879)
2009–2013 740 29 0.800 (0.480, 1.000) 151 29 0.775 (0.528, 1.000)
2010–2014 734 26 0.943 (0.842, 1.000) 153 26 0.852 (0.558 ,1.000)

Rare Diseases

2004–2008 472 22 0.711 (0.465, 0.957) 54 22 0.620 (0.364, 0.876)
2005–2009 559 23 0.735 (0.517, 0.952) 60 23 0.606 (0.360, 0.852)
2006–2010 604 24 0.888 (0.747, 1.000) 66 24 0.825 (0.645, 1.000)
2007–2011 664 22 0.838 (0.652, 1.000) 72 22 0.735 (0.520, 0.950)
2008–2012 677 34 0.893 (0.780, 1.000) 76 34 0.700 (0.523, 0.877)
2009–2013 740 28 0.962 (0.899, 1.000) 94 28 0.932 (0.840, 1.000)
2010–2014 734 18 0.908 (0.766, 1.000) 109 18 0.985 (0.942, 1.000)
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Table 3.18: Top five P2APP pipeline drug candidates with the highest scores in each
indication group as predicted by our model. We include only candidates that are
still outstanding at the time of writing (neither discontinued nor approved). Drug-
indication pairs in italics are those that have advanced beyond phase 2 testing since
our analysis.

Drug Indication Score Drug Indication Score

Anti-cancer Musculoskeletal

ontecizumab Cancer, colorectal 0.34 tofacitinib Arthritis, psoriatic 0.31
calmangafodipir Radio/chemotherapy-

induced injury, bone
marrow, neutropenia

0.31 ixekizumab Arthritis, rheumatoid 0.31

tivantinib Cancer, sarcoma, soft
tissue

0.30 anti-BLyS/APRIL
antibody fusion
protein

Arthritis, rheumatoid 0.31

pidilizumab Cancer, colorectal 0.29 sirukumab Arthritis, rheumatoid 0.29
NK-012 Cancer, colorectal 0.28 romosozumab Osteoporosis 0.28

Rare Diseases Cardiovascular

surotomycin Infection, Clostridium
difficile

0.34 K-134 Peripheral vascular
disease

0.37

tivantinib Cancer, sarcoma, soft
tissue

0.30 nitric oxide,
inhaled

Hypertension,
pulmonary

0.29

VP-20621 Infection, Clostridium
difficile prophylaxis

0.30 TY-51924 Infarction, myocardial 0.28

KHK-7580 Secondary
hyperparathyroidism

0.29 s-amlodipine +
telmisartan

Hypertension,
unspecified

0.27

nitric oxide,
inhaled

Hypertension,
pulmonary

0.29 tirasemtiv Peripheral vascular
disease

0.24

Alimentary Genitourinary

dasotraline Attention deficit
hyperactivity disorder

0.35 tofacitinib Arthritis, psoriatic 0.31

idalopirdine Alzheimer’s disease 0.35 dimethyl fumarate Psoriasis 0.27
GRC-17536 Neuropathy, diabetic 0.34 pefcalcitol Psoriasis 0.24
caprylic
triglyceride

Alzheimer’s disease 0.32 Benvitimod Psoriasis 0.22

levodopa Parkinson’s disease 0.31 calcipotriol
monohydrate +
betamethasone
dipropionate

Psoriasis 0.22

Neurological Dermatological

ibodutant Irritable bowel
syndrome,
diarrhoea-predominant

0.37 etonogestrel +
estradiol (vaginal
ring), next
generation

Contraceptive, female 0.30

GRC-17536 Neuropathy, diabetic 0.34 drospirenone +
estradiol

Contraceptive, female 0.28

mesalazine +
N-acetylcysteine

Colitis, ulcerative 0.31 finerenone Nephropathy, diabetic 0.27

apabetalone
(tablet)

Diabetes, Type 2 0.31 afacifenacin
fumarate

Overactive bladder 0.26

phosphatidylcholine Colitis, ulcerative 0.31 GKT-137831 Nephropathy, diabetic 0.26
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Table 3.18 (continued): Top five P2APP pipeline drug candidates with the highest
scores in each indication group as predicted by our model. We include only candidates
that are still outstanding at the time of writing (neither discontinued nor approved).
Drug-indication pairs in italics are those that have advanced beyond phase 2 testing
since our analysis.

Drug Indication Score Drug Indication Score

Immunological Blood and Clotting

tofacitinib Arthritis, psoriatic 0.31 calmangafodipir Radio/chemotherapy-
induced injury, bone
marrow, neutropenia

0.31

ixekizumab Arthritis, rheumatoid 0.31 balugrastim Radio/chemotherapy-
induced injury, bone
marrow, neutropenia

0.27

anti-BLyS/APRIL
antibody fusion
protein

Arthritis, rheumatoid 0.31 eflapegrastim Radio/chemotherapy-
induced injury, bone
marrow, neutropenia

0.25

sirukumab Arthritis, rheumatoid 0.29 pegfilgrastim Radio/chemotherapy-
induced injury, bone
marrow, neutropenia

0.22

dimethyl fumarate Psoriasis 0.27 lexaptepid pegol Radio/chemotherapy-
induced
anaemia

0.20

Anti-infective Sensory

delafloxacin Infection, skin and skin
structure, acute bacterial

0.39 AR-13324 +
latanoprost

Glaucoma 0.27

surotomycin Infection, Clostridium
difficile

0.34 S-646240 Macular degeneration,
age-related, wet

0.27

delafloxacin Infection, pneumonia,
community-acquired

0.33 netarsudil Glaucoma 0.26

plazomicin Infection, urinary tract,
complicated

0.33 fenofibrate,
micronized-2

Oedema, macular,
diabetic

0.25

Ypeginterferon
alpha-2b

Infection, hepatitis-C
virus

0.33 LX-7101 Glaucoma 0.21

Respiratory Hormonal

fluticasone +
salmeterol

Asthma 0.36 KHK-7580 Secondary
hyperparathyroidism

0.29

fluticasone furoate
+ umeclidinium
+ vilanterol

Chronic obstructive
pulmonary disease

0.36 somatropin
prodrug, pegylated

Growth hormone
deficiency

0.21

fluticasone furoate
+ umeclidinium

Chronic obstructive
pulmonary disease

0.36 2MD Secondary
hyperparathyroidism

0.21

beclometasone +
formoterol

Chronic obstructive
pulmonary disease

0.35 velcalcetide Secondary
hyperparathyroidism

0.19

fluticasone
propionate DPI

Asthma 0.35 tesamorelin
acetate

Growth hormone
deficiency

0.18
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This highlights the importance of data quality in building more accurate predictive

algorithms for drug development.

Finally, we compute feature importance in the predictive models and find that trial

outcomes, trial status, trial accrual rate, duration, prior approval for another indica-

tion, and sponsor track record are the most critical features for predicting success.

Because the 5NN-RF classifiers are non-linear, there is no simple interpretation of

the incremental contribution of each predictor to the forecast. However, the intuition

behind some of these factors is clear: drug-indication pairs with trials that achieve

positive outcomes certainly have a better chance of approval; candidates sponsored by

companies with strong track records and greater expertise in drug development should

have higher likelihood of success; and approved drugs may have higher chances of ap-

proval for a second related indication. Many of these factors contain useful signals

about drug development outcomes but have not been considered in prior studies.

These results are promising and raise the possibility of even more powerful drug

development prediction models with access to better quality data. This can be driven

by programs such as Project Data Sphere [84] and Vivli [85] that promote and fa-

cilitate public sharing of patient-level clinical trial data. Ultimately, such predictive

analytics can be used to make more informed data-driven decisions in the risk assess-

ment and portfolio management of investigational drugs at all clinical stages.
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Chapter 4

Cost/Benefit Analysis of Vaccine

Trial Designs for COVID-19

The world is facing unprecedented challenges from the COVID-19 pandemic. It is

clear that the development of a vaccine is critical to stopping the epidemic and the

socio-economic crisis. Given the dire situation, human challenge clinical trials (HCTs)

have been proposed as a way to accelerate the vaccine development process, which

typically takes more than a decade to complete. While moral concerns have been

raised, bioethicists generally agree that an HCT may be ethically permissible if one

can demonstrate the explicit societal value of an HCT. However, to the best of our

knowledge, there has not been any quantitative analysis of the societal value of a

COVID-19 HCT versus non-challenge trials in literature, thus making it difficult to

justify the use of a challenge study at this time. In this chapter, we propose a

simulation framework for quantitatively assessing the costs and benefits trade-offs—

as measured by the expected number of infections and deaths that can be avoided—of

four vaccine efficacy clinical trial designs for COVID-19, including an HCT. Using

epidemiological models calibrated to the current pandemic, we simulate the time

course of each trial design for a total of 756 unique combinations of parameters—such

as different vaccine efficacies, epidemiological scenarios, vaccination schedules after

licensure, approval requirements, and set-up times for HCTs—to determine which

design is most effective for a given scenario. We find that a human challenge trial
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provides maximal net benefits—averting up to 1.1M infections and 8,000 deaths in

the U.S. compared to the next best non-challenge clinical trial design—if initiated

early in an epidemic or if the rate of infection is relatively low. In most of the other

cases, we find that an adaptive trial provides greater net benefits. This framework will

allow stakeholders to make more informed practical and ethical decisions regarding

accelerating COVID-19 vaccine development in the ongoing pandemic.

4.1 Introduction

The COVID-19 pandemic has caused the deaths of hundreds of thousands. Its eco-

nomic fallout has upended the lives of billions, and caused trillions of dollars in finan-

cial losses. Life may not return to normal until a vaccine is found [86]. Despite the

many candidates undergoing testing, an approved vaccine is not expected until 2021,

even with substantially compressed development timelines [87], smooth proceeding of

clinical trials, and not accounting for possible failures [18]. It is possible—though con-

sidered highly unlikely at the present time—that, like many non-influenza epidemics,

the crisis may be over before a successful vaccine is developed [88].

Unlike typical therapeutics that are administered to sick patients, vaccines are

intended for the healthy. Therefore, confirming the safety and effectiveness of a

vaccine is of critical importance [89]. The two primary methods for demonstrating

vaccine safety and efficacy are through either a vaccine efficacy randomized clinical

trial (RCT) or a vaccine immunogenicity RCT. In the former, large numbers of healthy

volunteers are randomly selected to receive either a vaccine candidate or a control

and then monitored for a period of time. At the end of the surveillance period, the

difference in the proportion of infections between the treatment and control arms is

computed to demonstrate the ability of the vaccine to prevent infection or disease.

A large number of participants and a long time is needed to obtain statistically

significant results because only a small proportion of participants will eventually

encounter the disease since many will take precautions to avoid exposure. To put

things into perspective, a phase 3 vaccine efficacy RCT typically takes five to ten
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years to complete [90].

In a vaccine immunogenicity RCT, the primary endpoint is an immunity mea-

surement or a surrogate marker that is known to correlate with protection against

infection or a disease. This type of trial involves a smaller number of volunteers and

requires a shorter follow-up period, and as a result, is quicker and less costly [91].

Given that SARS-CoV-2 is a novel pathogen for which we do not yet know how to

determine whether a subject is protected, vaccine efficacy must be confirmed using

the longer and more costly vaccine efficacy RCT. While there exists the possibility

of an expedited (conditional) licensure based on immunogenicity results with post-

approval commitments, we find it unlikely to occur given the latest information. The

U.S. Food and Drug Administration (FDA) has also issued a guidance stating that

“the goal of development programs should be to pursue traditional approval via direct

evidence of vaccine efficacy [92].”

Given the dire situation posed by COVID-19, human challenge clinical trials

(HCTs) have been proposed as an alternative to expedite the vaccine development

process. In HCTs, participants are randomized into either the vaccine or control arm,

and then deliberately exposed to a virus under controlled conditions to study safety

and efficacy. In comparison to traditional vaccine efficacy field trials, HCTs typi-

cally require a much smaller sample size and shorter duration as investigators do not

need to wait for infections to occur naturally. Moreover, correlates of protection—

that is, measurable signs that a person is immune from infection and/or the disease,

e.g., minimum level of antibodies for immunity—can be more easily established in

HCTs [91]. This can help to accelerate future COVID-19 vaccine development be-

cause correlates of protection can be used as surrogate endpoints for vaccine efficacy

in immunogenicity trials, which can be completed much faster.

While concerns have been raised regarding the ethics and morality of HCTs, it

turns out that ethically permissible HCTs have been successfully conducted in the

past for multiple infectious diseases such influenza [93], cholera [94], malaria [95],

typhoid fever [96], and dengue fever [97]. In fact, there are already multiple studies

in literature that examine the ethical considerations of HCTs for COVID-19 vaccine
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development. One fundamental premise of many of these discussions is the high

social value of challenge trials versus traditional pathways [98]. While the estimation

of benefits is clearly a key criterion for justifying COVID-19 HCTs, we do not find

any studies in literature that goes beyond a qualitative discussion to quantify the

potential value of HCTs.

In this chapter, we seek to bridge this gap by proposing a systematic framework

for quantitatively assessing the costs and benefits of four different clinical trial designs

for COVID-19 vaccine development, including a traditional vaccine efficacy RCT, a

vaccine efficacy RCT with an optimized fixed-duration surveillance period that max-

imizes the benefits of the trial (ORCT), an adaptive vaccine efficacy RCT (ARCT),

and an HCT.

4.2 Simulation Framework

Our simulation framework is illustrated in Fig. 4-1. In our analysis, we quantify

cost/benefit in terms of the number of infections prevented and deaths averted. Al-

though our framework applies broadly to any vaccine candidate for any infectious

disease, we calibrate our simulations to the current pandemic.

We first estimate baseline epidemiological models for COVID-19 in U.S. and con-

sider several possible scenarios regarding the evolution of the epidemic after the re-

opening and during the clinical trial. Using the attack rates from the estimated

epidemic model—the proportion of a susceptible population infected with a disease,

we simulate the outcomes of different clinical trial designs, including the date of li-

censure and the probability of approval. Conditioned on the approval of the vaccine

candidate, we make assumptions on the vaccination schedule and simulate the new

path of the epidemic in order to compute the net number of infections and deaths

prevented versus the baseline case where no vaccine is ever approved. We compute

the expected net value of each clinical trial design using Monte Carlo simulations.

We review the assumptions of four vaccine trial designs in Section 4.3, review the

statistical methods for efficacy analysis in Section 4.4, and present the epidemiological
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model used in our forecasts in Section 4.5. We describe our cost/benefit computations

in Section 4.6 and report our simulation results in Section 4.7. Finally, we discuss

our findings and some broader issues of COVID-19 clinical trials in Section 4.8 and

conclude in Section 4.9.

4.3 Vaccine Efficacy Trial Designs

4.3.1 Traditional Randomized Clinical Trial

First, we consider a traditional double-blind vaccine efficacy trial design. We as-

sume that a closed cohort of 30,000 infection-free but at-risk healthy U.S. adults

aged between 18 and 50 years will be enrolled for the study, similar to the phase 3

studies planned or underway for the COVID-19 vaccines developed by Moderna [99],

AstraZeneca [100], Pfizer/BioNTech [101], and others. The participants will be ran-

domized equally between the treatment and control arms, receiving either the vaccine

candidate or an active control vaccine (e.g., vaccine against meningococcal bacteria),

respectively. The use of an active vaccine (e.g., vaccine against meningococcal bacte-

ria) as control provides some benefit to the participants, making it more ethical. It

also serves to ensure that the participants are unable to tell whether they received

the COVID-19 vaccine based on side effects such as soreness at the injection site,

reducing the possibility of behavioral changes that can bias the results of the study.

Unlike clinical trials for cancer therapeutics where patient accrual can be a chal-

lenge due to the small pool of afflicted patients and strict inclusion/exclusion criteria,

subject enrollment for vaccine efficacy studies are often accelerated because there is

a large pool of healthy adult volunteers to recruit from. Therefore, we assume an

accrual rate of 250 patients per day in our simulations.

Similar to the design of study protocols adopted for phase 3 clinical trials of current

leading SARS-CoV-2 vaccine candidates, we assume a hypothetical COVID-19 vaccine

candidate that will be administered to subjects in two doses, 28 days apart, i.e., the

prime-boost regimen [102, 103]. Furthermore, we assume that it takes approximately
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Figure 4-1: Simulation framework. For each Monte Carlo simulation path, we simu-
late patient-level infections data based on input trial design assumptions and attack
rates from the population epidemiological model (for an RCT, ORCT, and ARCT).
At the end of the trial (or, at each interim analysis for an ARCT), we determine if
the vaccine candidate is approved under superiority or superiority-by-margin testing.
Finally, we compute the expected net value of the trial design over 100,000 simulation
paths.
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28 days after the booster dose for antibodies to develop (i.e., seroconversion) before

surveillance can begin.

We consider efficacy in the prevention of infection by SARS-CoV-2 as the pri-

mary endpoint in our study. To draw meaningful conclusions from the trial results,

volunteers must be monitored long enough for a sufficient number of infections to

occur. Here, we assume a fixed post-vaccination surveillance period of 180 days for

all subjects in the cohort, after which a single safety and primary efficacy analysis

will be performed to determine licensure (see Section 4.4.1).

Finally, we assume an interval of 120 days after surveillance for the preparation of

a biologics license application (BLA) submission to the FDA, including an analysis

and publication of safety, immunogenicity, and efficacy results; collection of chemistry,

manufacturing, and controls (CMC) data; the writing of a clinical study report; and

subsequent review by the FDA. Under these assumptions, we estimate the time to

licensure of our hypothetical candidate under a traditional RCT to be approximately

476 days. This is the baseline value against which we will compare the other three

trial designs.

4.3.2 Optimized Randomized Clinical Trial

Depending on the transmission rate of COVID-19 during the trial and the assumed

efficacy of the hypothetical candidate, a shorter surveillance period might be sufficient

to observe significant results. In general, the higher the transmission rate, the shorter

the surveillance period required to observe a statistically significant difference in in-

fection risk between the treatment arm and the control arm (or the lack of thereof) at

the same level of significance and power, assuming a constant sample size and vaccine

efficacy.

We also note that there is a trade-off between time and power here: A shorter

surveillance period will, ceteris paribus, reduce the power of the RCT. However, it will

also reduce the time to licensure of the vaccine (if approved), which can potentially

prevent more infections and save more lives. Conversely, a longer surveillance period

will increase the power of the RCT but prolong the time it takes for the vaccine to
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be approved.

Therefore, we consider an optimized version of the traditional vaccine efficacy

RCT design in which the surveillance period is optimized between 30 to 180 days

based on different epidemiological scenarios and vaccine efficacies to maximize the

expected number of incremental infections and deaths prevented. Apart from the

surveillance period, we assume that the ORCT is identical to the RCT in all other

aspects.

4.3.3 Adaptive Randomized Clinical Trial

An adaptive version of the traditional vaccine efficacy RCT design is based on group

sequential methods [104]. Instead of a fixed study duration with a single final analysis

at the end, we allow for early stopping for efficacy via periodic interim analyses of ac-

cumulating trial data (see Section 4.4.3). While this reduces the expected duration of

the trial, adaptive trials typically require more complex study protocols which can be

operationally challenging to implement for test sites unfamiliar with this framework.

In our simulations, we assume a maximum of six interim analyses spaced 30 days

apart, with the first analysis performed when the first 10,000 subjects have been

monitored for at least 30 days. While we have assumed interim analyses at periodic

calendar time points here, we note that most vaccine efficacy trials are event based,

e.g., performing interim analyses when pre-specified numbers of events occur. In

addition, we have adopted Pocock’s test for sequential testing (see Section 4.4.3), but

we note that some companies are using variants of the O’Brian-Fleming test [105],

which have stricter requirements for early stopping, and therefore may lead to longer

studies [104].

4.3.4 Human Challenge Trial

Unlike traditional vaccine efficacy field trials which require large sample sizes to ob-

serve significant results, we assume that the HCT requires only 250 volunteers, ran-

domized 4:1 between the treatment and control arms. Furthermore, to minimize the
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risk to participants, we assume that this study will recruit only young and healthy

adults aged between 18 and 25 years without any underlying chronic conditions be-

cause this group of individuals has the lowest risk of mortality and complications

after recovering from the infection [106, 107, 108].

It is clear that extensive preparations are required to set up an HCT: selecting,

developing, and testing an appropriate challenge virus strain among multiple lineages

of SARS-CoV-2; manufacturing a batch of the selected challenge strain under good

manufacturing practices (GMP); and identifying the dose level required to achieve

satisfactory attack risk of non-severe clinical illness [108] (see Appendix C.7). From

discussions with challenge trial experts, there seems to be a lack of consensus on the

appropriate set-up time for HCTs. We reflect this uncertainty in our simulations by

incorporating a lag time for HCTs (“set-up time”) that ranges between 30 to 120

days.

In the challenge study, volunteers are deliberately exposed to the SARS-CoV-2

virus, reducing post-vaccination monitoring times because investigators do not need

to wait for infections to occur naturally as with non-challenge RCTs. Therefore, we

assume a surveillance period of only 14 days (the incubation period for COVID-19

[109, 110, 111]) for the challenge study. Moreover, the attack rate in the control

arm will be independent of the population epidemiological model since the study will

be conducted in isolated facilities. In our simulations, we assume that 90% of the

subjects in the control arm will be infected after the challenge. We do not assume a

100% attack rate since the challenge strain used is likely weakened to reduce risk to

volunteers, and some individuals might have innately stronger immune systems that

can counteract the virus.

We note that the FDA is unlikely to approve an experimental vaccine tested in

only 200 subjects (versus thousands in non-challenge RCTs), hence we assume that

a large-scale safety study will be performed immediately after the conclusion of the

challenge study—conditional on positive efficacy results—to evaluate the safety of

the hypothetical vaccine candidate in a broader population. Assuming a single-arm

study with 5,000 subjects followed for 30 days, we expect the process to be completed
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Table 4.1: Trial design assumptions common across RCT, ORCT, ARCT, and HCT.

Parameter Value

Cohort Closed and fixed
Accrual rate (patients/day) 250
Control arm Vaccine for meningococcal bacteria
Treatment arm Vaccine candidate for COVID-19
Vaccination schedule Two doses administered 28 days apart
Vaccine efficacy (%) 30–90
Time for immune response (days) 28
Endpoint Infection by SARS-CoV-2
Time for safety data collection 120
data analysis, and FDA review (days)
Type I error (%) 5

in 106 days. To accelerate licensure, we assume that the collection of safety data will

be performed in parallel with BLA submission and FDA review. Since the latter is

assumed to take 120 days, the additional safety study does not actually add to the

time to licensure of the vaccine candidate. It does, however, add to the financial costs

of the HCT (see Appendix C.5).

Apart from the sample size, randomization ratio, set-up time, surveillance period,

and safety data requirement, we assume that the HCT is identical to the RCT in all

other respects. See Tables 4.1 and 4.2 for a summary of our assumptions.

We anticipate similar post-marketing commitments for both the HCT and the non-

challenge RCTs, in terms of the collection of additional safety and effectiveness data,

and supplementary studies to support the effectiveness of the vaccine in populations

not included in the initial efficacy study, e.g., infants. However, we do not model

them here because they do not affect our cost/benefit computations.

4.4 Efficacy Analysis

4.4.1 Fixed-Duration Clinical Trial

The protective effect of a vaccine—that is, vaccine efficacy—is defined as [91]:

𝜀 = 1− 𝑝1

𝑝0
= 1− 𝑐1/𝑛1

𝑐0/𝑛0
(4.1)

where 𝜀 refers to the vaccine efficacy, 𝑝1 and 𝑝0 are the attack rates observed in
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Table 4.2: Trial design assumptions specific to RCT, ORCT, ARCT, and HCT.

Parameter RCT ORCT ARCT HCT

Set-up time (days) 30–120
Sample size 30,000 30,000 30,000 250
Inclusion criteria Healthy adults aged

18–50 years
Healthy adults aged

18–50 years
Healthy adults aged

18–50 years
Healthy adults aged

18–25 years
Randomization ratio
(treatment:control)

1:1 1:1 1:1 4:1

Time for enrollment
(days)

120 120 40–120 1

Surveillance period
(days)

Fixed and constant
for all subjects; 180

Fixed and constant
for all subjects;

30–180

Calendar time
interval

Fixed and constant
for all subjects; 14

Attack rate (%) Depends on
epidemiological

model

Depends on
epidemiological

model and
surveillance period

Depends on
epidemiological

model and
surveillance period

90

Efficacy analysis Single analysis at
end of study

Single analysis at
end of study

Up to 6 interim
analyses spaced 30

days apart

Single analysis at
end of study

Additional safety
study

Single-arm with
5,000 subjects

Estimated time to
licensure (days)

476 326–476 246–396 221–311

the treatment arm and the control arm, respectively, 𝑛1 and 𝑛0 refer to the sample

sizes of the treatment arm and the control arm, respectively, and 𝑐1 and 𝑐0 refer

to the number of infections observed in the treatment arm and the control arm,

respectively. The attack rate is defined as the fraction of a cohort at risk that becomes

infected during the surveillance period. There are conflicting views on the possibility

of human reinfections [112, 113]; for simplicity, we rule out recurrent infections in our

simulations.

Superiority Testing

First, we consider superiority testing to determine the licensure of a vaccine candi-

date at the end of a clinical study, e.g., RCT, ORCT, or HCT. The aim is to demon-

strate that the efficacy of the candidate in the prevention of infections is greater than

zero. Such a criteria might be appropriate for emergency use authorization during

a pandemic where no alternative treatments are available. For this, we consider the

following null and alternative hypotheses:

𝐻0 : 𝑝1 − 𝑝0 ≥ 0 , 𝐻1 : 𝑝1 − 𝑝0 < 0 (4.2)
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The test statistic under the null hypothesis is given by:

𝑧 = |𝑝1 − 𝑝0| − 𝑎√
2𝑝𝑞𝑎

(4.3)

𝑎 = 𝑟 + 1
2𝑟𝑛0

, 𝑟 = 𝑛1

𝑛0

𝑝 = 𝑐1 + 𝑐0

𝑛0(𝑟 + 1) = 𝑟𝑝1 + 𝑝0

𝑟 + 1 , 𝑞 = 1− 𝑝

where 𝑧 is the test statistic. For large samples, 𝑧 is approximately the standard

Normal distribution.

The power of a vaccine efficacy study under superiority testing is given by [114,

115]:

𝑧𝛽 =
|𝑃1 − 𝑃0|

√︁
𝑟𝑛0 − (𝑟 + 1)/|𝑃1 − 𝑃0| − 𝑧𝛼/2

√︁
(𝑟 + 1)𝑃�̄�

√
𝑃1𝑄1 + 𝑟𝑃0𝑄0

(4.4)

𝑃 = 𝑟𝑃1 + 𝑃0

𝑟 + 1 , �̄� = 1− 𝑃

𝑃1 = (1− 𝜖)𝑃0 , 𝑄𝑖 = 1− 𝑃𝑖, 𝑖 ∈ {0, 1}

where 𝛼 is the level of significance, 𝛽 refers to the type II error under the alternative

hypothesis, 𝑧𝑎 is the 100(1−𝑎) percentage points of the standard Normal distribution,

𝑃1 and 𝑃0 refer to the underlying attack rate in the treatment arm and the control

arm, respectively, and 𝜖 refers to the true vaccine efficacy.

4.4.2 Superiority-by-Margin Testing

Next, we consider the case where superiority by margin (also known as super-superiority)—

that is, a vaccine efficacy that is greater than some minimum threshold—must be

demonstrated for full licensure:

𝐻0 : 𝜗− 𝜃 ≥ 0 , 𝐻1 : 𝜗− 𝜃 < 0 (4.5)

where 𝜗 = 𝑝1/𝑝0, and 𝜃 is a specified minimum threshold larger than 0 and smaller

than 1.

126



The test statistic under the null hypothesis is given by [114]:

𝑧 = |𝑝1 − 𝜃𝑝0|√︁
(𝑝1𝑞1 + 𝑟𝜃2𝑝0𝑞0)/𝑟𝑛0

(4.6)

𝑞𝑖 = 1− 𝑝𝑖, 𝑖 ∈ {0, 1}

where 𝑧 is the test statistic, and 𝑝1 and 𝑝0 are the large sample approximations of

the constrained maximum likelihood estimate of 𝑃1 and 𝑃0, respectively, under the

null hypothesis (see Appendix C.1 for closed-form solutions). For large samples, 𝑧 is

approximately the standard Normal distribution.

The power of a vaccine efficacy study under superiority-by-margin testing is given

by:

𝑧𝛽 = (𝜃𝑃0 − 𝑃1)
√

𝑟𝑛0 − 𝑧𝛼/2
√

𝑝1𝑞1 + 𝑟𝜃2𝑝0𝑞0√
𝑃1𝑄1 + 𝑟𝜃2𝑃0𝑄0

(4.7)

4.4.3 Adaptive Clinical Trial

We propose an adaptive vaccine efficacy RCT design (ARCT) based on group sequen-

tial methods. First, we consider an alternative definition of vaccine efficacy based on

relative force of infection, as opposed to relative risk of infection in Eq. (4.1):

𝜀 ≈ 1− Λ1

Λ0
(4.8)

Λ𝑖 =
∫︁ 𝑡𝑠

0
𝜆𝑖(𝑢) d𝑢, 𝑖 ∈ {0, 1}

where 𝜆1 and 𝜆0 refer to the force of infection in the treatment arm and the control

arm, respectively, and 𝑡𝑠 refers to the duration of the surveillance period. The force

of infection of an infectious disease is defined as the expected number of new cases

of the disease per unit person-time at risk. When the risk of infection is small, e.g.,

smaller than 0.10, the risk of infection is approximately equal to the cumulative force

of infection [91].

Next, we note that the force of infection and the hazard function in survival
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analysis actually take the same functional form [91]. This suggests that infections can

also be treated as time-to-event data, in addition to binary variables as in Eq. (4.1).

By performing Cox regression on the time-to-infections data of a clinical trial, we can

estimate the efficacy of the vaccine candidate from the hazard ratio of the treatment

arm versus the control arm:

𝜀 ≈ 1− exp(𝛽) (4.9)

𝜆(𝑡|𝑧) = 𝜆baseline(𝑡) exp(𝛽𝑧)

where 𝑧 refers to the treatment variable, i.e., whether the patient is vaccinated or

not, 𝜆baseline is the baseline hazard function, and 𝛽 is the log hazard ratio. We note

that the proportional hazards assumption is not unreasonable if we assume that the

proportion of cases prevented by the vaccine is independent of the possibly non-

homogeneous force of infection [91].

We consider the following null and alternative hypotheses based on the coefficient

of the treatment variable in the Cox model:

𝐻0 : 𝛽 − 𝛽0 ≥ 0 , 𝐻1 : 𝛽 − 𝛽0 < 0 (4.10)

where 𝛽0 is 1 for superiority testing and smaller than 1 for superiority-by-margin

testing.

The test statistic under the null hypothesis is given by:

𝑧 = |𝛽 − 𝛽0|
se(𝛽)

(4.11)

where 𝛽 is the maximum partial likelihood estimate of 𝛽 and se(𝛽) is its standard

error, and 𝑧 is asymptotically Normal. This is also known the Wald test. It turns

out this statistic satisfies the criteria for group sequential testing [104], allowing us

to perform periodic interim analyses of accumulating trial data, rather than just a

single final analysis at the end of a traditional vaccine efficacy RCT (see Fig. 4-2).

Under the group sequential testing framework, we estimate a new Cox model at

128



each interim calendar time point based on the infections data that has accrued up to

that point, over the course of the study surveillance period. At the interim analyses,

we decide whether to stop the study early by rejecting the null hypothesis, i.e., ap-

proving the vaccine candidate, or to continue on to the next analysis by monitoring

the subjects for a longer period of time [104].

We adopt Pocock’s test for sequential testing [116]. It involves repeated testing at

successive interim analyses at some constant nominal significance level over the course

of the study (see Algo. 4-1). The critical value is chosen to satisfy the maximum type

I error requirement, e.g., 5%.

In our simulations, we consider a maximum of six interim analyses spaced 30 days

apart, with the first analysis performed when the first 10,000 subjects enrolled have

been monitored for at least 30 days. To keep the type I error at 5%, we consider a

nominal significance level of 2.453 at each interim analyses [116].

For each of the epidemiological-model and population-vaccination schedule as-

sumptions, we compute the expected net value of ARCT over 100,000 Monte Carlo

simulation paths. For each path, we track the infections data of 30,000 patients for

up to 180 days of surveillance. In addition, we estimate up to six Cox proportional

hazards models, one at each interim analysis. The simulation process is computation-

ally intensive despite parallelization, requiring approximately 8 hours to complete on

the MIT Sloan “Engaging” high-performance computing cluster using over 400 pro-

cessors.

While we have considered a simple adaptive design in this analysis, we note that

our framework can be easily extended to other sequential boundaries such as the

O’Brien & Fleming’s test, to two-sided tests that allow for early stopping under

the null hypothesis, i.e., early stopping for both futility and efficacy, and to flexible

monitoring using the error spending approach, instead of using a constant nominal

significance level for all interim analyses [104].
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Figure 4-2: Infections as time-to-event data, measured from the start of surveillance.
The horizontal lines represent the time to infection of ten subjects enrolled at different
times. We monitor the subjects until an infection occurs or the end of study, whichever
comes earlier. A solid circle at the right end denotes an infection, whereas a hollow
circle indicates censoring. In the figure, we consider up to six analyses. At an interim
analysis, subjects are considered censored if they are known to be uninfected and
at risk at that point in time. Information on these subjects will continue to accrue
through the surveillance period.

Algorithm 4-1: Pocock’s test. 𝑘 refers to the 𝑘th interim analysis, 𝐾 refers
to the maximum number of interim analyses planned, 𝑧𝑘 refers to the test
statistic at the 𝑘th interim analysis, and 𝑐(𝐾, 𝛼) refers to the nominal sig-
nificance level which is a function of 𝐾 and 𝛼, the maximum type I error
allowed.

for 𝑘 = 1, . . . , 𝐾 do
if |𝑧𝑘| ≥ 𝑐(𝐾, 𝛼) then

stop, reject 𝐻0
else

if 𝑘 == 𝐾 then
stop, accept 𝐻0

else
continue

end if
end if

end for
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4.5 Epidemiological Model

To estimate the attack rate encountered by subjects in a given clinical trial—a key

component for our cost/benefit calculations—we require information about the spread

of the COVID-19 epidemic in the U.S. We use the Susceptible-Infected-Resolving-

Dead-ReCovered with social distancing (SIRDC-SD) model proposed by Fernandez-

Villaverde and Jones [117] because it is able to fit both the cumulative and daily

number of deaths in all the states well despite being a simple model, to establish a

baseline for the epidemic.

We assume that there is a constant population of 𝑁 people and denote the number

of people who are susceptible to infection, infected, resolving their infected status,

dead, and recovered as 𝑆𝑡, 𝐼𝑡, 𝑅𝑡, 𝐷𝑡, and 𝐶𝑡, respectively.

𝑁 = 𝑆𝑡 + 𝐼𝑡 + 𝑅𝑡 + 𝐷𝑡 + 𝐶𝑡 (4.12)

Under SIRDC-SD, the dynamics of the epidemic are governed by the following

differential equations:

𝑑𝑆𝑡

𝑑𝑡
= −𝛽(𝑡)𝑆𝑡𝐼𝑡

𝑁
(4.13)

𝑑𝐼𝑡

𝑑𝑡
= 𝛽(𝑡)𝑆𝑡𝐼𝑡

𝑁
− 𝛾𝐼𝑡 (4.14)

𝑑𝑅𝑡

𝑑𝑡
= 𝛾𝐼𝑡 − 𝜃𝑅𝑡 (4.15)

𝑑𝐷𝑡

𝑑𝑡
= 𝛿𝜃𝑅𝑡 (4.16)

𝑑𝐶𝑡

𝑑𝑡
= (1− 𝛿)𝜃𝑅𝑡 (4.17)

Unlike most epidemiological models that assume a static contact rate 𝛽, the

SIRDC-SD model assumes a contact rate parameter, 𝛽(𝑡), that decreases exponen-

tially over time at a rate of 𝜆 from an initial value of 𝛽0 to 𝛽*:

𝛽(𝑡) = 𝛽0𝑒
−𝜆𝑡 + 𝛽*(1− 𝑒𝜆𝑡) (4.18)
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This dynamic 𝛽(𝑡) incorporates the belief that social distancing over time will lead

to a lower contact rate. This is particularly true in the U.S. where many cities have

issued stay-at-home orders. Many people are also voluntarily wearing masks and are

avoiding crowded places, which serve to reduce the contact rate.

The model assumes that infections resolve at a Poisson rate 𝛾, which implies that

a person is infectious for a period of 1/𝛾 on average. Thereafter, the individual will

stop being infectious and transition into the “resolving” state. Resolving cases will

clear up at a Poisson rate of 𝜃. There is an implicit assumption that people who

recovered from the virus gain immunity to the virus and cannot be reinfected.

We estimate the model for each of the 50 states in the U.S. and Washington, D.C.

using the time series of deaths in the U.S. obtained from the John Hopkins Center

for Systems Science and Engineering (CSSE) COVID-19 repository [118, 119] as of

June 16, 2020. See Appendix C.2 for our parameter estimation method.

To predict the path of the epidemic after the lockdowns are relaxed and/or vac-

cines are developed, we propose the Susceptible-Infected-Resolving-Dead-ReCovered-

Vaccinated with social distancing (SIRDCV) model as an extension of the SIRDC-SD

model which accounts for vaccination. See Appendix C.3 for details.

We consider three different scenarios for the evolution of the epidemic over time.

In the first, we assume that the current situation will continue indefinitely until the

end of the epidemic (“status quo”). That is, stay-home orders and bans on social

gatherings will be extended until there are no new infections. We simply forecast

ahead of time using the estimated parameters in this scenario.

In the second, we consider a partial reopening with strict monitoring across all

states starting from June 15, 2020 (“ramp”). To model this, we assume a ramp

function for 𝛽(𝑡) that increases over 90 days to 0.22 and remains at that level until

the end of the epidemic. The parameters are chosen to imply a final 𝑅0 of 1.1, which

reflects close monitoring and contact tracing, and if needed, temporary quarantines

to arrest clusters of infections that may pop up.

In the third, we consider the behavioral-based response proposed by John Cochrane

(“behavioral”), whereby people voluntarily reduce social contact when they perceive
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danger (e.g., when they observe that there is an uptick in the daily number of deaths)

and increase social contact when they observe that there is a decrease in risk (e.g.,

when they observe a reduction in the daily number of deaths) [120]. See Appendix C.4

for the functional forms of 𝛽 in the three scenarios.

Lastly, we assume that vaccines will be immediately available for distribution and

inoculation upon licensure. This reflects how leading vaccine companies have been

scaling up their manufacturing capabilities and producing millions of doses at indus-

trial scale in parallel to the clinical trials [121, 122] and well before the demonstration

of vaccine efficacy and safety, i.e., at-risk manufacturing. We model three ways that

the susceptible population will be vaccinated upon vaccine licensure: 1M, 10M, and

infinite doses administered per day. In the last case, the entire U.S. population is

assumed to be vaccinated the day after licensure. While unrealistic, this gives an

upper bound on the potential benefit of a vaccine approval.

4.6 Cost/Benefit Analysis Framework

We apply cost benefit analysis to quantify and compare the net value of each trial

design. We focus on public health outcomes—that is, the risks of mortality and

morbidity—and provide a qualitative discussion of the societal and financial impact

in Section 4.8.

As shown by Montazerhodjat et al. [123], Isakov et al. [124], and Chaudhuri et al.

[125], the value associated with a pathway can be decomposed into an in-trial cost

and a post-trial benefit. The former measures the cost of conducting the study to

volunteers in the trial while the latter estimates the net benefit of the trial to society

at large:

Net Value = Post-trial Benefit− In-trial Cost (4.19)

We quantify the cost of a trial design in terms of the number of COVID-19 in-

fections and deaths observed in the clinical study. For post-trial benefit, we first
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consider a baseline scenario in which a vaccine is never developed and the epidemic

is allowed to run its course. Next, we simulate the case where a vaccine is approved

at some point in time depending on the duration of the trial design. The post-trial

benefit is then the difference in the cumulative number of infections and deaths in

the population between the two scenarios, i.e., the incremental number of infections

and deaths prevented with a vaccine licensure.

In our simulations, we consider a vaccine candidate with some efficacy 𝜖 and

assume that infections in the clinical study follow a stochastic process (e.g., binomial

distribution). Due to this randomness, false rejections of the efficacious vaccine might

occur. This is also known as type II error. The false negative rate depends on the trial

design (e.g., sample size, surveillance period, maximum type I error, and superiority

testing) and the epidemiological model (e.g., attack rate in the clinical study). In

cases where the vaccine candidate is rejected, net value will be negative since post-

trial benefit is zero but cost has been incurred for conducting the clinical trial. Lastly,

we assume that the hypothetical vaccine candidate is generally well tolerated and any

vaccine-related adverse reactions are mild and negligible with respect to in-trial costs

and post-trial benefits [126, 127, 128].

4.7 Results

We compute the expected net value of different trial designs using Monte Carlo sim-

ulations and asymptotic distributions of the efficacy test statistics (see Section 4.4).

Fig. 4-1 illustrates the inputs, computations, and outputs of our simulation frame-

work. We assume that all trials start on August 1, 2020, and simulate the epidemio-

logical models until December 31, 2022. We perform sensitivity analysis over a wide

range of trial design, epidemiological model, and population vaccination schedule as-

sumptions (see Table 4.3), covering 756 different scenarios. We summarize our results

in Table 4.4 and Appendix C.6. In addition to our results, we release an open-source

version of our simulation software, and encourage readers to rerun our simulations

with their own preferred set of assumptions and inputs.
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Assuming superiority testing and a vaccine efficacy of 50%, we estimate the date

of licensure of the hypothetical vaccine candidate to be some time in November 2021

under an RCT (476 days), between June and August 2021 under an ORCT (326 to

380 days), between April and June 2021 under an ARCT (246 to 306 days), and

between March and June 2021 under an HCT (221 to 311 days). For specificity, we

report estimated times to licensure using calendar dates and provide the correspond-

ing number of days in parentheses. However, our simulations do depend on calendar

dates in one respect: the epidemiological model used to estimate the attack rates

depends on current data. Therefore, the estimates reported here are all based on

extrapolated conditions as of August 1, 2020, and may need to be revised for other

start dates.

Apart from an RCT which has a fixed trial duration, the dates of licensure from

the ORCT and ARCT depend largely on the status of the epidemic during the clinical

trial. If the transmission rate of the disease is low (e.g., due to social distancing or

other non-pharmaceutical interventions), an extended surveillance period is required

to accrue enough natural infections in order to observe a statistically significant dif-

ference in infection risk between the treatment arm and the control arm. Conversely,

when the transmission rate is high, a short surveillance period is sufficient to observe

significant results. We note that an HCT, on the other hand, does not depend on

the epidemic situation but is instead limited by the time required to set up the chal-

lenge model. In general, we find that the time to licensure under ORCT and ARCT

decreases with increasing vaccine efficacy: the greater the efficacy, the easier it is to

observe a significant treatment effect.

We find that the ARCT provides the greatest expected net benefit among the three

RCT designs in almost all scenarios. The utility of an HCT versus the RCTs, however,

depends critically on the set-up time and the dynamics of the epidemic. For example,

assuming superiority testing, a vaccine efficacy of 50%, the behavioral epidemiological

model, and a population vaccination schedule of 10M doses per day, we estimate that

the ARCT can help accelerate licensure by almost 8 months versus the RCT, thus

preventing approximately 2.9M incremental infections and 23,000 incremental deaths
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Table 4.3: Sensitivity analysis with respect to trial design, epidemiological model,
and population vaccination schedule assumptions. The total number of configurations
simulated is 756 (computed as the product of the last column).

Parameter Values Number of
Combinations

Trial design RCT, ORCT, ARCT, HCT (30-day set-up), HCT
(60-day set-up), HCT (90-day set-up), HCT (120-day
set-up)

7

Vaccine efficacy of
hypothetical candidate
(%)

30, 50, 70, 90 4

Efficacy requirement Superiority, superiority by margin of 30% [89],
superiority by margin of 50%

3

Epidemiological scenario Status quo, ramp, behavioral 3
Population vaccination
schedule (doses/day)

1M, 10M, infinite 3

from COVID-19 in the U.S. versus the latter.

Under the same set of assumptions, an HCT that requires 30 days to set up can

further reduce the time to licensure by a month, thus preventing approximately 1.1M

more infections and 8,000 more deaths versus the ARCT. However, the advantage

of the HCT vanishes when its set-up time is long: an HCT that requires 90 days to

set up takes about one month longer to reach licensure as compared to the ARCT,

leading to around 1.0M more infections and 8,000 more deaths versus the latter (see

Fig. 4-3a). Under such circumstances, the use of an HCT is worthwhile only when

the prevalent transmission rate is low. If we consider the status quo scenario instead

of the behavioral epidemiological model, the time to licensure is about one month

shorter under the HCT than under the ARCT even with a 90 day set-up period

(see Fig. 4-3b). In this case, the HCT prevents approximately 60,000 incremental

infections and 500 incremental deaths versus the ARCT. We observe similar trends

under superiority-by-margin testing at a threshold of 50%.

4.8 Discussion

There has been a plethora of papers highlighting various ethical considerations for

conducting HCTs [129, 130], some specifically for COVID-19 [98, 131, 132, 133, 134,

135]. Some of the main ethical concerns are: (1) what is the explicit scientific rationale
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Table 4.4: Expected number of incremental infections and deaths avoided in the
U.S. under different trial designs, vaccine efficacies, and epidemiological scenarios,
assuming trials start on August 1, 2020, superiority testing, and 10M doses of a
vaccine per day are available after licensure, compared to the baseline case in which
no vaccine is ever approved.

Vaccine Efficacy (%)

30 50

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 3,914 31 11,539 92
ORCT 5,589 45 16,802 134
ARCT 9,596 76 31,473 250
HCT (30-day set-up) 140,731 1,124 152,263 1,216
HCT (60-day set-up) 110,046 879 118,937 950
HCT (90-day set-up) 86,466 690 93,370 745
HCT (120-day set-up) 68,213 544 73,611 587

Behavioral

RCT 363,382 2,845 386,081 3,026
ORCT 1,139,585 9,061 1,377,157 10,955
ARCT 2,588,881 20,647 3,248,449 25,924
HCT (30-day set-up) 3,903,566 31,167 4,309,316 34,411
HCT (60-day set-up) 2,795,316 22,301 3,082,676 24,598
HCT (90-day set-up) 2,011,244 16,028 2,211,985 17,633
HCT (120-day set-up) 1,466,239 11,668 1,605,833 12,784

Ramp

RCT 1,075,634 8,316 1,131,531 8,764
ORCT 2,853,202 22,569 3,839,945 30,432
ARCT 5,711,310 45,401 7,442,922 59,253
HCT (30-day set-up) 8,744,377 69,672 9,452,413 75,330
HCT (60-day set-up) 6,814,762 54,235 7,381,425 58,762
HCT (90-day set-up) 5,266,925 41,851 5,711,663 45,404
HCT (120-day set-up) 4,053,134 32,141 4,396,033 34,879
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Table 4.4 (continued): Expected number of incremental infections and deaths avoided
in the U.S. under different trial designs, vaccine efficacies, and epidemiological sce-
narios, assuming trials start on August 1, 2020, superiority testing, and 10M doses of
a vaccine per day are available after licensure, compared to the baseline case in which
no vaccine is ever approved.

Vaccine Efficacy (%)

70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 19,130 151 21,557 170
ORCT 33,757 269 50,288 401
ARCT 66,641 531 83,522 665
HCT (30-day set-up) 156,885 1,254 159,876 1,277
HCT (60-day set-up) 122,482 979 124,777 997
HCT (90-day set-up) 96,111 768 97,886 782
HCT (120-day set-up) 75,747 605 77,132 615

Behavioral

RCT 397,396 3,117 404,562 3,174
ORCT 1,426,014 11,345 1,457,500 11,598
ARCT 3,389,541 27,052 3,473,035 27,720
HCT (30-day set-up) 4,481,448 35,789 4,591,750 36,671
HCT (60-day set-up) 3,205,159 25,579 3,283,975 26,209
HCT (90-day set-up) 2,297,350 18,316 2,352,436 18,757
HCT (120-day set-up) 1,664,613 13,255 1,702,601 13,558

Ramp

RCT 1,160,564 8,996 1,179,234 9,145
ORCT 3,973,769 31,501 4,050,013 32,111
ARCT 7,924,650 63,107 8,071,866 64,285
HCT (30-day set-up) 9,725,022 77,511 9,897,591 78,892
HCT (60-day set-up) 7,602,878 60,534 7,743,514 61,659
HCT (90-day set-up) 5,887,421 46,811 5,999,381 47,706
HCT (120-day set-up) 4,532,400 35,970 4,619,521 36,667

138



08
/0
1/
20
20

08
/3
1/
20
20

10
/3
0/
20
20

03
/0
9/
20
21

05
/0
8/
20
21

04
/0
3/
20
21

06
/2
2/
20
21

11
/1
9/
20
21

Date

RCT

ORCT

ARCT

HCT (30-day set-up)

HCT (90-day set-up)

Licensure

Licensure

Licensure

Licensure

Licensure

(a) Under the behavioral epidemiological model.

08
/0
1/
20
20

10
/3
0/
20
20

06
/0
2/
20
21

05
/0
8/
20
21

08
/1
5/
20
21

11
/1
9/
20
21

Date

RCT

ORCT

ARCT

HCT (90-day set-up)

Licensure

Licensure

Licensure

Licensure

(b) Under the status quo epidemiological model.

Figure 4-3: Dates of licensure under RCT, ORCT, ARCT, HCT (30-day set-up time),
and HCT (90-day set-up time), assuming superiority testing, a vaccine efficacy of 50%,
and a population vaccination schedule of 10M doses per day.
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for, and societal value of, an HCT; (2) whether the risks of harm to the subjects and

the public at large are understood by the scientists and have been minimized; (3)

whether informed consents have been obtained from subjects after they are given

full disclosures of the risks involved; and (4) whether the subjects have been selected

fairly and given appropriate compensation for both the risk and actual harm brought

on by HCTs. Most bioethicists generally accept that these concerns can be addressed

within the existing ethical framework for human medical research.

Our work addresses the first of these ethical concerns by quantifying the relative

cost/benefits of a COVID-19 HCT compared to traditional vaccine development path-

ways. We also discuss scientific justifications for HCTs by considering how conducting

them can allow companies to estimate protection curves and correlates of protection,

which can potentially accelerate future COVID-19 vaccine development by enabling

immunogenicity trials.

However, our analysis does not address the remaining ethical considerations as

they concern the execution of HCTs, which is beyond the scope of this study. Nonethe-

less, companies and scientists seeking to perform HCTs, and especially regulators, will

have to address those concerns to preserve public trust and avoid a public backlash

that could jeopardize other important medical research critical to addressing the cur-

rent epidemic.

Some scientists argue that “a single death or severe illness in an otherwise healthy

volunteer would be unconscionable.” [135] However, it can be argued that allowing

tens of thousands of individuals to die by denying the consent of an informed indi-

vidual to take a calculated risk is equally unconscionable. In this study, we adopt

the Benthamite approach [136], where every individual’s utility is weighted equally

in the aggregate utility function, as is the common convention in public economics

analyses. Within this ethical perspective, our calculations show that an HCT can

potentially provide substantial public health benefits in terms of accelerating vaccine

development and reducing the burden of coronavirus-related mortality and morbidity

in the U.S.—in some cases, by more than 1.1M infections and 8,000 deaths compared

to the best performing non-challenge RCT—when conducted early in the pandemic’s
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life cycle and in cases where the spread of COVID-19 in the population is muted due

to non-pharmaceutical interventions.

We also expect the financial costs of an HCT—even after accounting for the cost

of liability protection—to be lower than those of a traditional vaccine efficacy RCT,

adding further support for a challenge design (see Appendix C.5 for further dis-

cussion). While we have focused on public health outcomes here, it is clear that

accelerated vaccine development provides tremendous societal and economic bene-

fits as well—e.g., savings in insured medical costs, direct medical expenditures, and

hospitalization costs, and accelerated economic recovery from an earlier reopening.

We emphasize that the expected costs and benefits of a clinical trial depend crit-

ically on many assumptions about existing conditions. For example, recruiting sub-

jects in sufficient numbers and diversity can sometimes present a challenge for clinical

trials involving experimental vaccines. (Although, in the case of HCTs for COVID-19,

the organization 1Day Sooner reports over 32,000 registered volunteers as of July 27,

2020 [137].) Also, we do not include set-up time for non-challenge RCTs because

phase 3 vaccine efficacy trials are already imminent as of now. Moreover, we assume

a relatively short set-up time for HCTs because a challenge study can be set up rela-

tively quickly using a wild-type strain [108], and the National Institute of Allergy and

Infectious Diseases (NIAID) appears to have already made some headway in manu-

facturing challenge doses [138, 139, 140]. If, instead, we assume comparable set-up

times (e.g., two months) and start dates for both an HCT and non-challenge RCTs,

we expect that an HCT can accelerate licensure by two months when compared to

an adaptive RCT (assuming superiority testing, a vaccine efficacy of 50%, and the

behavioral epidemiological model). Some have argued that at least one to two years

is required to develop a robust model from scratch [135]. In this case, our results

indicate that an ARCT will almost always be faster than an HCT. However, even if

an HCT with a long set-up time does not lead to faster vaccine licensures over an

ARCT given current conditions, the creation of a standing HCT agent and setting up

an HCT now can provide a hedge against potential failures in the current crop of vac-

cine candidates. By having an approved, ready-to-go challenge virus and ready-to-go
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HCT sites that vaccine developers can access immediately, the approval process for

as-yet-untested SARS-CoV-2 vaccine candidates can be accelerated when required.

For a pandemic like COVID-19, such a hedge will almost always show substantial net

benefits relative to its costs.

HCTs have several other benefits that will be more obvious as the pandemic

progresses. They require many fewer eligible volunteers, whose numbers will dwin-

dle as the pandemic progresses. They do not depend on attack rates at clinical

trial sites which are notoriously difficult to estimate and highly dependent on non-

pharmaceutical interventions such as lockdowns and other social-distancing policies.

They also avoid logistical problems such as identifying subjects, obtaining subjects’

consent, obtaining institutional review board’s approval or tracking subjects, partic-

ularly when attempting large-scale clinical trials in places where contract research

organizations (CROs) have little experience.

It is conceivable that multiple vaccines—instead of the single vaccine in our sim-

ulation study—are tested concurrently in a single trial design [141]. For example,

five vaccines, such as those selected by Operation Warp Speed [142], could be tested

concurrently in a six-arm trial (five vaccine arms and a control arm), requiring 40%

fewer test subjects, thereby reducing in-trial expected morbidity and mortality costs

by the same amount. The benefits can be increased if an adaptive platform clini-

cal trial—designed to eliminate ineffective vaccines at the first signs of futility—is

adopted. A clinical trial testing multiple vaccines can also reduce competition for

volunteers, a problem that continues to plague vaccine developers [143].

We choose to quantify the cost and benefits of the clinical trials by measuring the

number of infections and deaths avoided, and refrain from performing a traditional

health technology assessment, such as comparing the economic value of an HCT versus

an RCT using quality-adjusted life years measures or willingness to pay estimates such

as the value of a statistical life. Performing such computations is straightforward given

the output of our simulations, but we have refrained from doing so in deference to

non-economist stakeholders who find it offensive to use any pecuniary measures when

discussing the loss of human life.
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Finally, our analysis focuses mainly on the U.S. for practical reasons involving

access to data with which to calibrate our simulations and the broader goal of in-

forming U.S. public health officials and policymakers as the country enters the final

stages of vaccine development. However, we note that vaccine companies such as

Pfizer/BioNTech are also looking at recruitment in the Southern Hemisphere (e.g.,

Brazil [144]), which can affect the rate at which these events accumulate in trials,

depending on the spread of COVID-19 in those countries. In addition, a vaccine li-

censure may apply internationally. Given that the U.S. currently comprises 25% of

all confirmed COVID-19 cases (as of July 7, 2020) [118], if the assumptions made

in our study also hold internationally, the net benefits for all the clinical trials will

scale by a factor of 4, in which case HCTs can save an additional 4.4M infections and

32,000 deaths compared to the best performing RCT in certain situations.

We highlight that these figures depend heavily on the development of the epidemic

in the U.S. moving forward. We have considered three simple scenarios, status quo,

ramp, and behavioral, corresponding to low transmission, moderate transmission,

and behavioral-based response, respectively. There are clearly many other sources

of uncertainty that are not reflected here. For example, non-adherence to social dis-

tancing advisories and/or resistance to precaution recommendations such as wearing

a mask in public will lead to an uncontrolled outbreak, which will help to accelerate

non-challenge RCTs, making them attractive even when compared to an HCT with

a short set-up time. We have found it difficult and impractical to incorporate these

uncertainties in our assumptions due to the speed at which things are evolving and

the unpredictability of public reaction. In addition, studies that have attempted to

incorporate such uncertainties in their epidemic model report huge error bounds in

their projections [145]. The wide confidence intervals prevent us from drawing any

useful conclusions, which severely limit the usefulness of such models. Therefore, we

recommend readers not to take our results as final or definitive, but to re-run our

simulations with their own preferred set of assumptions, calibrated using the most

current epidemiological data.
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4.9 Conclusion

In this chapter, we present a systematic, transparent, reproducible, and principled way

to quantify the trade-offs between the different COVID-19 vaccine efficacy clinical trial

designs under various scenarios. We hope that this framework will allow stakeholders

such as vaccine developers, policymakers, and HCT volunteers to understand the

implications of their actions (or inaction). Our results also contribute to the moral

and ethical debate about HCTs amidst this crisis. One of the main ethical and

regulatory barriers to the acceptability of HCTs has been the lack of immediately

available, effective “rescue therapies.” However, this situation is already changing

with the emergency use authorizations of remdesivir and convalescent plasma therapy.

Our findings, coupled with these therapeutics, may have an impact on how critical

public health decisions like whether to employ HCTs are made.
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New Business Models
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Chapter 5

Impact of University Technology

Licensing: A Case Study of MIT

Academic institutions play an increasingly critical role in the biotechnology industry

through technology licensing and the creation of startups, but there is little data on

their performance and the magnitude of their impact. In this chapter, we address

the knowledge and data gap through a systematic study of technology licensing by

the Massachusetts Institute of Technology (MIT). Using data on the 76 therapeutics-

focused life sciences companies formed through MIT’s Technology Licensing Office

from 1983 to 2017, we construct several measures of impact including MIT patents

cited in the Orange Book, capital raised, outcomes from mergers and acquisitions,

patents granted to MIT intellectual property licensees, drug candidates discovered,

and U.S. drug approvals, a key benchmark of innovation in the biopharmaceutical

industry. As of the cutoff of our dataset, we find four small molecule drugs that

cited MIT patents in the Orange Book. However, we find that MIT licensees played

a directly traceable role in the approval of 31 drugs by the U.S. Food and Drug

Administration (excluding candidates acquired after phase 3) from 1991 to 2017, of

which 55% were a new molecular entity or new biological entity, and 55% were granted

priority review, an indication of addressing an unmet medical need. Our methodology

provides a useful framework for other academic institutions to track the outcomes of

their intellectual property in the therapeutics domain.
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5.1 Introduction

The process of drug development in the pharmaceutical industry is undergoing a

profound shift in its industrial organization. Increasingly, smaller biotechnology firms

apply recent academic research in the life sciences to develop new drugs, which are

then acquired by pharmaceutical giants using their financial war chests and access to

low-cost capital to purchase expertise [146].

Technology licensing is a key driver of this process in the United States. Prior to

the passage of the Bayh-Dole Act of 1980, few universities in the U.S. held significant

portfolios of patent rights. The Bayh-Dole Act was explicitly intended to promote

the commercialization of products developed from federally funded research. Under

the Act, grantees of federal funds, such as universities, would be allowed to pursue

patent rights to their research—rights that, under the terms of many earlier federal

grants, had been automatically assigned to the government.

The passage of Bayh-Dole was contemporaneous with an enormous expansion of

patents granted to universities. In 1979, the year before the act’s passage, only 264

U.S. patents were awarded to universities in the United States; by 1997, this number

had grown to 2,436 [147]. In 2016, American universities were issued 7,021 U.S.

patents and had filed for 2,507 patents abroad [148].

More importantly for the biopharma sector, the number of startup companies

formed as a result of technology licensing increased from 145 in 1994 to 278 in 2000

to 1,024 in 2016 [148, 149]. And this trend has had a remarkable impact on drug

development, as Tables 5.1 and 5.2 show. Of the 30 top-selling drugs worldwide in

2000, only five were traceable to universities, and only two of these were in the top

10; the remaining 25 were developed by big pharma. By 2015, more than one-third

of the top 30 drugs were sourced from academia, and 60% of the top 10.

Despite the growing importance of technology licensing to the biomedical ecosys-

tem, there has been surprisingly little data collected on the impact of technology

transfer by academia. We hope to change this deficit by providing a detailed analysis

of the portfolio of life sciences intellectual property (IP) of the Massachusetts Institute
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of Technology (MIT) from 1983–2017. Although other studies have been published

on patenting activity at specific universities [150], to the best of our knowledge, this

study is the first systematic analysis of a portfolio of therapeutics companies that

have licensed the IP of a specific academic institution.

Under the prior leadership of Lita Nelsen, and now Lesley Millar-Nicholson, the

MIT Technology Licensing Office (TLO) has for decades played a critical role in

transferring IP from MIT to private enterprise in Kendall Square and beyond. MIT’s

biomedical research engine has contributed significantly to the growth of the biotech

ecosystem that has emerged in the Boston/Cambridge area. The life sciences sector—

which includes firms developing therapeutics, medical devices, diagnostics, and re-

search tools—is an active area of innovation at MIT.

In this chapter, we limit our scope to a subset of the life sciences sector, one that

includes biotechnology, pharmaceuticals, and other therapeutics, defined as firms in

the business of developing new drugs, either small molecules or biologics. We focus

on therapeutics for two reasons. First, the ecosystem physically surrounding MIT has

its primary focus on drug discovery and development. Second, this focus allows us

to use the number of drug approvals as a core metric of innovation, as is done every

year by journals such as Nature Reviews Drug Discovery [151].

We develop a framework for tracking innovation originating in academia that

builds upon prior work measuring innovation in the pharmaceutical industry [146,

152, 153]. Using the Orange Book, we attempt to link MIT IP to drugs approved

by the U.S. Food and Drug Administration (FDA) [154, 155]. However, explicit lines

of causality are rare due to the complexity of the journey from IP licensing to FDA

approvals, which complicates the determination of the degree of contribution from

the IP versus the degree of contribution from the company.

To provide a clearer picture of the impact of MIT IP, we separately track the origin

of each drug in our dataset to weight the contributions of MIT licensees—that is, com-

panies that have licensed MIT IP—to their respective approved drugs. To measure

different types of innovation, these drugs are also labeled as new molecular entities

(NMEs) or new biological entities (NBEs), and as drugs granted priority review (PR)
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Table 5.1: Top 30 worldwide top-selling drugs in 2000. The last column indicates
the university/hospital that was involved in the drug’s discovery or early stage de-
velopment [155, 156, 157, 158, 159]. Blanks indicate that no university/hospital was
involved.

Marketer Drug Worldwide Sales University/Hospital

AstraZeneca Prilosec 6,260
Merck Zocor 5,280
Pfizer Lipitor 5,030
Pfizer Norvasc 3,361
TAP Pharmaceuticals Prevacid 2,740
Johnson & Johnson Procrit 2,709 University of Chicago
Pfizer; Pharmacia Celebrex 2,614 Brigham Young University
Eli Lilly Prozac 2,585
Eli Lilly Zyprexa 2,366
GlaxoSmithKline Paxil 2,349
Schering Plough Claritin 2,194
Merck Vioxx 2,160
Pfizer Zoloft 2,140
Amgen Epogen 1,963 University of Chicago
Wyeth Premarin 1,870
GlaxoSmithKline Augmentin 1,847
Merck Vasotec 1,790
Bristol-Myers Squibb Pravachol 1,766
Bristol-Myers Squibb Glucophage 1,718
Merck Cozaar 1,715
Johnson & Johnson Tylenol 1,680
Novo Nordisk Novolin 1,671
Bayer Cipro; Ciprobay 1,648
Johnson & Johnson Risperdal 1,603
Bristol-Myers Squibb Taxol 1,561 Florida State University
Pfizer Zithromax 1,382
Schering Plough Intron A 1,360 University of Zurich
Pfizer Viagra 1,344
Pfizer Neurontin 1,334
GlaxoSmithKline Flixotide; Flovent 1,334

Total ($M) 69,374 10,207
Percent of Total 15

[146, 152, 153]. Ultimately, this framework enables us to compare the innovation

contributed by MIT licensees against the benchmark of historical pharmaceutical in-

dustry averages. In addition, we analyze the following company outcomes: capital

raised in initial public offerings (IPOs), mergers and acquisitions (M&A) volumes,

total drug candidates developed, and patent granted. Finally, we examine several

case studies that demonstrate the broader contribution of MIT to the growth of the

biotech industry beyond IP licensing, e.g., the role of MIT faculty as co-founders and

advisors to biotech companies that have gone on to be very successful.
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Table 5.2: Top 30 worldwide top-selling drugs in 2015. The last column indicates the
university/hospital that was involved in the drug’s discovery or early stage develop-
ment [155, 156, 160, 161, 162, 163]. Blanks indicate that no university/hospital was
involved.

Marketer Drug Worldwide Sales University/Hospital

Abbvie; Eisai Humira 14,359 Rockefeller University; Scripps
Gilead Harvoni 13,864 University of Heidelberg;

Rockefeller University
Amgen; Pfizer; Takeda Enbrel 9,037 Massachusetts General Hospital;

University of Texas
Johnson & Johnson; Merck;
Mitsubishi Tanabe Pharma

Remicade 8,151 New York University

Pharmstandard; Roche Rituxan 7,393
Sanofi Lantus 7,089
Roche Avastin 6,945
Roche Herceptin 6,794 University of California, Los

Angeles
Daewoong Pharmaceutical;
Pfizer

Prevnar 13 6,328

Celgene Revlimid 5,801 Boston Children’s Hospital
GlaxoSmithKline Seretide; Advair 5,625
AstraZeneca Crestor 5,381
Gilead Sovaldi 5,276
Pfizer Lyrica 4,876 Northwestern University
Amgen Neulasta 4,800 Memorial Sloan-Kettering

Cancer Center
Novartis Gleevec 4,658 Dana-Farber Cancer Institute;

Oregon Health & Science
University

Bayer; Regeneron Eylea 4,372
Teva Copaxone 4,029 Weizmann Institute of Science
Boehringer Ingelheim; Eli Lilly Spiriva 3,942
Bayer; Johnson & Johnson Xarelto 3,930
Merck Januvia 3,870 Tufts University
Novartis; Roche Lucentis 3,639
Biogen Tecfidera 3,638
Gilead Truvada 3,567 Emory University; Yale

University
AstraZeneca Symbicort 3,394
AstraZeneca; Pfizer Nexium 3,202
Bristol-Myers Squibb; Gilead;
Merck

Atripla 3,134 Emory University; Yale
University

Novo Nordisk NovoRapid; NovoLog 3,082
Bristol-Myers Squibb; Otsuka Abilify 2,896
Eli Lilly Humalog 2,842

Total ($M) 165,914 86,940
Percent of Total 52
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Table 5.3: Summary of MIT portfolio of life science and therapeutics companies.

Count

Private Companies 43
Public Companies

IPO
Alive 10
Acquired 13
Bankrupt 3

Reverse Merger
Alive 4

Others
Alive 2
Bankrupt 1

Total 76

5.2 Data

From an initial list of 225 life sciences MIT licensees, we identify 76 therapeutics

companies. (See Appendix D.1 for more details.) We further narrow the bulk of our

analysis to 33 companies that were or are currently publicly listed on an exchange, due

to the availability of detailed information in their financial filings. Table 5.3 provides

an overview of the MIT portfolio of companies reviewed as part of our analysis.

With the exception of Aprecia Pharmaceuticals, none of the private licensees

have brought a drug to market singlehandedly. This is not surprising given the

capital-intensive process of commercializing therapeutic candidates. To address these

capital needs, biotech companies will tap the public markets, or engage in strategic

business development or M&A transactions with larger biopharmaceutical companies.

Thus, we will focus primarily on public companies, but also summarize private M&A

outcomes.

5.3 Measures of Impact

5.3.1 Orange Book Citations

Following the approach in Stevens et al. [155], we use the Orange Book [154, 164, 165]

and the United States Patent and Trademark Office (USPTO) databases [166, 167] to

link MIT IP and FDA-approved drugs (cutoff at December 2017). To identify drugs
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that owe their origin, at least in part, to MIT IP, we search the publication for New

Drug Applications (NDAs) that cite patents assigned to MIT (see Appendix D.2).

We find four small molecule drugs that cited MIT patents (see Table 5.4). (See

Appendix D.2 for citations that fall outside the scope of our analysis or occurred

after our cutoff.) Redux was brought to approval by Indevus in partnership with

Wyeth for obesity. However, its approval was later withdrawn due to safety concerns

[168]. Gliadel, Sarafem, and Spritam are examples of a direct link between MIT IP

and approval. The technology behind Gliadel, an implantable wafer loaded with the

chemotherapy agent carmustine for use in glioblastoma treatment, was invented by

Robert Langer’s lab at MIT, and developed by Guilford Pharmaceuticals, a spinout

of Scios Nova. Scios acquired Nova Pharmaceutical, which had licensed the IP from

MIT. Scios Nova was uninterested in developing the product, so MIT facilitated the

creation of Guilford, a spinout started specifically to develop and commercialize the

wafer and related technologies [169].

In the development of Sarafem, MIT professor Richard Wurtman patented his

discovery that low serotonin levels in the brain contributed to premenstrual dys-

phoric disorder (PMDD). He then founded Indevus to license the patent to Eli Lilly,

which already marketed Prozac, a selective serotonin reuptake inhibitor that increased

serotonin levels in the brain for the treatment of depression. Eli Lilly subsequently

developed the compound for PMDD and launched a newly branded version called

Sarafem [170].

The use of Orange Book citations as a measure of impact of MIT IP has sev-

eral limitations. First, the absence of a medical school and hospital predisposes

research at MIT to platform-based technology that may be applicable to many dif-

ferent drugs/diseases, over optimization of specific drug compounds. Therefore, most

of MIT patents do not cover composition of matter, which are most pertinent for

market exclusivity protection and inclusion in the Orange Book; they usually focus

on explication of mechanisms. This also means that MIT licensees are likely to spend

a large part of the patent term seeking the optimal target for the platform, e.g., Sang-

amo and its zinc finger nuclease (ZFN) gene-editing platform. Given that the time to
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Table 5.4: List of MIT IP citations for small molecule drugs in the Orange Book.
See Appendix D.2 for citations that fall outside the scope of our analysis or occurred
after our cutoff.

Company Drug Patent No. Title

Indevus Sarafem 4,035,511 Process for promoting analgesia
Indevus Sarafem 4,083,982 Process for producing analgesia
Indevus Sarafem 4,971,998 Methods for treating the premenstrual or late luteal phase

syndrome
Indevus Redux 4,309,445 d-Fenfluramine for modifying feeding behavior
Guilford Gliadel 4,757,128 High molecular weight polyanhydride and preparation thereof
Guilford Gliadel 4,789,724 Preparation of anhydride copolymers
Guilford Gliadel 5,179,189 Fatty acid terminated polyanhydrides
Aprecia Spritam 6,471,992 Dosage form exhibiting rapid disperse properties, methods of

use and process for the manufacture of same
Aprecia Spritam 9,463,160 Dosage form exhibiting rapid disperse properties, methods of

use and process for the manufacture of same

market for new drugs can be as long as 20 years, it is not uncommon for MIT patents

to expire before a drug is approved.

To further complicate the link between academic IP and approvals, companies of-

ten license additional IP from other institutions, and build upon existing technology

to file new patent applications during the development process. In addition, investiga-

tional drugs typically undergo many iterations of formulation studies. Consequently,

it is not surprising if the initial MIT IP is ultimately displaced from the Orange Book

by more recent patents that can afford greater protection.

Clearly, the impact of MIT IP extends beyond citations in the Orange Book. MIT

IP also plays an important role in catalyzing a company’s financing by attracting

interest from venture capitalists, and serving as foundation for future research and

development (R&D). To provide a clearer picture of the innovation contributed by

MIT IP, we analyze the financials and the R&D portfolios of MIT licensees, and

provide several other measures of impact including capital raised, M&A outcomes,

drug candidates discovered, drug approvals, and patents granted.

5.3.2 Initial Public Offerings

Of the 33 public biotech MIT licensees, 26 completed the standard IPO process, four

reverse-merged into publicly listed companies, and three listed through alternative

pathways. We use the Form S-1 financial filings—registration forms submitted to the
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Securities and Exchange Commission (SEC) for new securities—to produce Table 5.5,

which summarizes the results of the IPOs that have sufficiently available data. (The

financial filings for firms that conducted an IPO prior to 1996 were not available.)

It includes the proposed share price range, the final share price, the proceeds net

of underwriting fees, the shares issued and outstanding, and the dilution due to

financing.

On average, the IPOs of MIT licensees raised about $41M in net proceeds, diluted

the existing shareholders 26% in the offering, and achieved a post-IPO valuation

of $218M. Given that therapeutics companies typically conduct an IPO to finance

R&D and clinical trials when their assets are under development, the average valu-

ation post-IPO is in line with expectations. The capital generated by the IPOs and

the resulting shareholder dilution were also plotted over time (see Appendix D.3).

Over the studied period, MIT licensees raised more capital, though this also came

with increased dilution to shareholders. After adjusting for inflation using the Con-

sumer Price Index (CPI) and the Biomedical Research and Development Price Index

(BRDPI), we find that net proceeds experienced a high level of growth, an indication

of the dramatic expansion of the biotech capital markets over the past two decades.
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Table 5.5: Available IPO data from financial filings of 26 publicly traded therapeutics companies. The column Priced compares
the final share price to its corresponding proposed range. It provides an assessment of the demand for the company’s equity,
and thus in some sense measures the “success” of the IPO. Abbreviations: adj, adjusted.

Net Proceeds (US$M)9 IPO Valuation (US$M)

Company Date Low High Final Priced1 Shares Nominal CPI Adj BRDPI Adj Shares Dilution Nominal CPI Adj BRDPI Adj
(US$) (US$) (US$) Issued (2017$) (2017$) Outstanding (%) (2017$) (2017$)

(Mil) (Mil)

Scios Nova2 Jan-83 12.0 1.0 12 30 41
Cistron Jun-86 1.0 5.0 5 11 14
Interneuron3 Mar-90 2.0 5.3 11 20 25 14.9 36 30 56 71
Alkermes Jul-91 10.0 1.8 16 29 37 7.3 24 73 132 166
Cell Genesys Jan-93 9.0 11.0 11.0 1 4.0 41 69 85
Arris4 Nov-93 7.0 2.5 16 28 34 8.4 30 59 100 123
ARIAD May-94 8.0 1.9 14 23 27 15.7 12 125 207 252
Guilford5 Jun-94 8.0 1.9 13 21 26
Millennium May-96 11.0 12.0 12.0 1 4.5 50 78 95 22.8 20 274 428 519
T Cell6 Jun-96 12.0 2.3 25 39 47 19.9 12 239 374 453
Algos Sep-96 14.0 16.0 14.0 -1 3.5 46 71 86 15.5 23 218 340 412
Cubist Oct-96 6.0 7.0 6.0 -1 2.5 14 22 26 9.1 27 55 86 104
Abgenix7 Jul-98 10.0 12.0 8.0 -2 2.5 19 28 33 10.6 24 85 128 152
Sangamo Apr-00 15.0 17.0 15.0 -1 3.5 49 70 81 20.9 17 313 445 521
Praecis May-00 10.0 12.0 10.0 -1 8.0 74 106 124 40.0 20 400 569 665
Acusphere Oct-03 13.0 15.0 14.0 0 3.8 49 65 74 14.3 26 200 266 301
Alnylam Jun-04 6.0 8.0 6.0 -1 5.0 28 36 41 19.3 26 116 150 168
Momenta Jun-04 6.5 7.0 6.5 -1 5.4 32 42 47 24.6 22 160 207 232
Tengion Apr-10 8.0 10.0 5.0 -2 6.0 28 32 33 12.4 49 62 69 72
Merrimack Apr-12 8.0 10.0 7.0 -2 14.3 96 102 106 92.4 15 647 691 720
bluebird Jun-13 14.0 16.0 17.0 2 5.9 94 99 103 22.8 26 388 408 424
Conatus Jul-13 10.0 12.0 11.0 0 6.0 61 65 67 15.6 39 171 180 187
BIND Sep-13 14.0 16.0 15.0 0 4.7 66 69 72 15.8 30 237 249 259
Cerulean8 Apr-14 11.0 13.0 7.0 -2 8.5 56 58 60 19.0 45 133 138 142
Editas Feb-16 16.0 18.0 16.0 -1 5.9 88 90 90 35.7 17 571 583 586
Selecta Jun-16 14.0 16.0 14.0 -1 5.0 65 66 67 17.9 28 251 256 257

Mean 10.9 12.7 9.8 -1 4.6 41 53 59 21.6 26 218 276 308
Median 10.5 12.0 10.0 -1 4.6 37 50 53 16.8 25 186 228 254
1 -2: Priced IPO below initial range; -1 = Priced IPO at the bottom of initial range; 0 = Priced IPO at the middle of initial range. 2 Now Scios. 3 Now Indevus. 4 Now Axys.
5 Scios Nova spin-off. 6 Now Celldex. 7 Cell Genesys spin-off. 8 Now Dare. 9 Italics: estimated from gross proceeds.
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5.3.3 Mergers and Acquisitions

Among the 76 biotech MIT licensees, 23 companies were acquired in 11 private and

12 public M&A transactions, with a total value of $30.7B (see Table 5.6 and Ap-

pendix D.4). This large volume was driven primarily by three public company deals

totaling $23.5B. Millennium (acquired by Takeda), ARIAD (acquired by Takeda),

and Cubist (acquired by Merck) were all fully integrated biopharmaceutical compa-

nies with potential blockbuster assets at the time of transaction. Millennium mar-

keted Velcade for multiple myeloma and mantle cell lymphoma, but also had a diverse

pipeline of small molecule inhibitors and monoclonal antibodies. ARIAD marketed

Iclusig for select hematological malignancies, and had potential blockbuster brigatinib

for ALK+ non-small cell lung cancer on the cusp of FDA approval. Cubist marketed

a variety of antibiotics, including blockbuster Cubicin for S. aureus and complicated

skin and skin structure infections, and had a late-stage clinical pipeline of antibiotics.

A significant difference in size between private and public M&A is expected, due to

the crucial role that public markets play in funding the growth of development-stage

biotech companies [171]. However, one particularly notable private deal was Merck’s

acquisition of SmartCells, founded by Todd Zion, an MIT chemical engineer. In 2010,

SmartCells was sold for over $500M, including upfront and downstream milestones,

based on a preclinical asset called MK-2640 for type-1 diabetes [172, 173]. The value

created for SmartCells shareholders is unknown, as the breakdown of upfront cash

and contingent value rights was not disclosed. Another large private deal was Civitas,

which was on the cusp of an IPO when it sold to Acorda Therapeutics for $525M.

Civitas was developing a drug for Parkinson’s disease ready for phase 3, and had filed

an S-1 just one month before Acorda stepped in [174].

5.3.4 Research and Development Pipeline

The average drug takes at least a decade of translational research and several clinical

studies before it is approved by the FDA. Each phase of clinical testing costs millions

of dollars, typically leading to multiple publications and a better understanding of
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Table 5.6: Acquisition values of MIT biotech companies. Abbreviations: adj, adjusted.

Value (US$M)

Type MIT Company Acquirer Date Nominal CPI Adj BRDPI Adj
(2017$) (2017$)

Private Enzytech Alkermes Dec-92 30 52 65
Private Oculon Pharmos Apr-95 4 6 8
Private Peptimmune Genzyme Jul-99
Private Sirenade NeuroTek AG Dec-05 9 11 13
Private FoldRx Pfizer Sep-10
Private SmartCells1 Merck Dec-10 >500 >562 >580
Private Surface Logix Nano Terra Apr-11
Private Pervasis1 Shire Apr-12 200 214 223
Private Ceregene2 Sangamo Aug-13 >1 >1 >1
Private Synglyco Coden Nov-13
Private Civitas Acorda Sep-14 525 544 562

Total 1,269 1,391 1,450

Public Algos Endo Nov-99 241 355 417
Public Cistron1 Celltech Apr-00 25 36 42
Public Axys Celera Jun-01 173 239 279
Public Scios Johnson & Johnson Apr-03 2,400 3,197 3,616
Public Guilford3 MGI Jul-05 178 223 248
Public Abgenix2 Amgen Dec-05 2,200 2,761 3,076
Public Praecis GlaxoSmithKline Dec-06 55 67 73
Public Millennium Takeda Apr-08 8,800 10,019 10,823
Public Indevus1 Endo Jan-09 637 728 761
Public Cell Genesys Biosante Jul-09 38 43 45
Public Cubist Merck Dec-14 9,500 9,836 10,162
Public ARIAD Takeda Feb-17 5,200 5,200 5,200
Public Cerulean Dare Jul-17 20 20 20

Total 29,467 32,725 34,762
1 Acquisition value includes contingent value rights. 2 Cell Genesys spin-off. 3 Scios spin-off.
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the targeted disease and its pathway. Because of this complexity, we believe that

examining the full R&D pipelines of MIT licensees—that is, all drugs developed

over a company’s lifespan—can provide valuable insights about their economic and

biomedical contribution to the biopharma industry.

In order to track their R&D pipelines, we went through each company’s annual

financial filings to the SEC (Form 10-K), and manually extracted all investigational

compounds in the clinical phase. We focus on the number of unique pipeline drug

candidates (quantity), the highest stage of development for any indication (depth),

and the therapeutic areas involved (breadth), with less emphasis given to the specific

number of indications targeted. This is to maintain consistency with Mullard [151],

which excludes label expansions, but it is also due to the difficulties in quantifying the

scope of a candidate during its early clinical phases. (See Appendix D.5 for details.)

The final dataset consists of 281 drug candidates from 33 public MIT licensees

over 23 years of development, spanning from 1994–2017 (Figs. 5-1 and 5-2; see Ap-

pendix D.5 for breakdown by company). We find that oncology, neurological, and

genitourinary-related drugs are the most popular areas of development in MIT biotech

companies—over 50% of the companies were involved in at least one of these ther-

apeutic areas. Of the 281 candidates, 51 are FDA-approved products. Among the

companies, Alkermes outperforms the rest in both quantity and depth, leading the

group with 22 approved products and an aggregate of 46 pipeline drugs developed

or marketed in its portfolio. Other notable companies include Millennium with 26

compounds, and Indevus with 21 drug candidates.

We note that the numbers here include drugs that were acquired by MIT licensees

after FDA approval, and fail to capture the impact of MIT IP that led to FDA-

approved products following their acquisition by other companies. To provide a more

accurate picture of the biopharma innovation in the MIT portfolio, in the next section,

we categorize the approved drugs in the dataset to better reflect their origins and the

contributions of MIT licensees.
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Figure 5-1: Highest stage of development of pipeline candidates of MIT licensees.
Abbreviations: BLA: biologics license application; APP: approval.

Figure 5-2: Indication groups of pipeline candidates of MIT licensees.
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5.3.5 Drug Approvals

The number of drug approvals by the FDA is the key benchmark of success in the

biopharma industry. However, the number of approvals of NMEs/NBEs and of

drugs with a PR designation can help further differentiate novel drugs and drugs

that address significant unmet medical needs or provide substantial clinical benefits

[146, 151, 175, 176]. To capture both types of innovation, we screen the financial

filings of the 33 public companies, and use the Drugs@FDA database to generate a

list of approved drugs with their targeted indications, years of approval, properties,

NME/NBE statuses, and PR designations (see Appendix D.6).

Although label expansions for already approved drugs were excluded earlier to

maintain consistency with the prior literature [151], they are accounted for separately

in Appendix D.6. For inclusion in our dataset, we define a label expansion as the FDA

approval of a drug for a different disease than prior approvals, and omit expansions

into various lines of therapy or patient populations within a disease. For example,

in 2003, Velcade received initial approval to treat third-line multiple myeloma. We

exclude the 2005 expansion of Velcade into second-line multiple myeloma, but we do

include the 2006 addition of mantle cell lymphoma to Velcade’s label.

The journey from MIT-licensee company formation and IP licensing to a success-

ful drug approval is rarely straightforward. The high cost, high risk, and lengthy

timeline of drug development often results in tortuous paths, and can involve split

ownership in the form of licensing deals and collaboration agreements, or the exchange

of ownership over time, often through M&A transactions [146]. Therefore, we classify

drug approvals in four ways to more accurately identify the origins of the assets and

clarify the contributions of the MIT licensees to their respective FDA-approved drugs:

Partners, Originators, Originators*, and Acquirers (see Fig. 5-3).

Partners led the clinical development of drugs that were initially discovered by

MIT licensees or were enabled by technologies from MIT licensees. Partners were

common in the dataset, as biotech firms often license their technology to validate

their science, generate non-dilutive capital, or share risk. For example, Curis discov-
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ered a hedgehog pathway inhibitor for basal cell carcinoma that eventually became

Erivedge under a collaboration agreement granting Genentech an exclusive, royalty-

bearing license. Though Curis played a key role in the discovery of the compound,

Genentech had complete responsibility over all clinical development and commercial-

ization, ultimately spending significantly more resources and time on the asset. In

contrast, ARIAD discovered and advanced Iclusig through clinical trials on its own

without any partners.

The Originator classifier indicates ownership of assets at varying stages of devel-

opment that were ultimately acquired and developed by MIT licensees. For exam-

ple, Millennium acquired LeukoSite in 1999, which came with Campath and LDP-

341. LDP-341 later became Velcade, a first-in-class proteasome inhibitor for multiple

myeloma. In contrast to the case of ARIAD, where the approved molecules originated

within company labs, Millennium did not contribute to the discovery of Velcade. The

Originator classifier highlights the cases in which any MIT IP was likely far removed

from the discovery of the assets.

Originators* differentiates drugs that were acquired after phase 3, which includes

compounds that were NDA-ready, NDA-filed, or already marketed. When Millennium

acquired LeukoSite, an NDA for Campath in chronic lymphocytic leukemia (CLL) had

already been filed, while LDP-341 was only in phase 1. Thus, Millennium contributed

meaningfully to the clinical development of Velcade, but not Campath. The MIT

licensee objectively had no role in the development of Originator* drugs, let alone

any contribution from MIT IP. These drugs are excluded from our analyses.

Many successful MIT licensees were bought by “Acquirers.” For example, ARIAD,

Abgenix, and Millennium had pipeline assets that were eventually approved by the

FDA following their acquisition. In these cases, we still attribute credit to the MIT

licensees for their involvement. For example, Takeda acquired Millennium in 2008 and

retained the business as its dedicated U.S. oncology subsidiary. In 2015, Millennium

and Takeda brought Ninlaro, a second-generation proteasome inhibitor, to market

[177]. We consider Ninlaro as developed by Millennium with Takeda as a “Partner”

to attribute credit appropriately, instead of excluding the asset entirely because the
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Table 5.7: Summary statistics of drug approvals by MIT licensees.

NME/NBE PR NME/NBE/PR

Total n % n % n %

All 58 28 48 25 43 34 59
All (excluding Originators*) 31 17 55 17 55 22 71
Drug development led by an MIT company
(excluding Originators* and Partners)

16 9 56 9 56 12 75

approval occurred after Millennium was no longer a standalone entity. Similarly,

Abgenix’s XenoMouse monoclonal antibody technology continued to produce drug

candidates like Repatha [178] after the company was acquired by Amgen. We list

such cases in Appendix D.6 and include them in our subsequent analysis.

Including seven drugs approved post-acquisition, a total of 58 unique drugs have

been on the market and under the ownership of MIT licensees (see Table 5.7). How-

ever, these 58 include 27 Originator* drugs that were acquired by MIT licensees,

which dilute the impact of MIT IP on compounds for which MIT licensees played a

role in their discovery or clinical development. Excluding these assets, 22 out of 31

(71%) were an NME/NBE or had PR, key indicators of innovation and impact on

unmet needs. Further excluding assets classified as “Partners” narrows the group to

those drugs for which MIT licensees led their development to market. This subset

had 16 approvals, of which 12 (75%) were an NME/NBE or had PR. These final 16

include a number of well-known drugs, including Gliadel, Vivitrol, Aristada, Cubicin,

Onivyde, and Velcade.

5.3.6 Intellectual Property

In the context of evaluating the impact of MIT IP, the number of patents granted

to MIT licensees could be used as a proxy for the contribution of MIT’s licensees to

biopharma innovation. However, it is important to note that this metric is not ideal.

The mission of the biopharma industry is ultimately to improve the health outcomes

of patients. It is more appropriate to measure innovation by assessing the approval

of drugs rather than granting of patents, whose technology may never reach patients.

The USPTO database was used to collect data for the 33 public MIT licensees
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Figure 5-3: Summary statistics of special status and classifications of FDA-approved
drugs with MIT licensee ownership or contribution. The 58 drugs include seven which
were approved post-acquisition of MIT licensees. The “partner” classification applies
if another firm led clinical development of the drug enabled by the MIT company’s
technology. The “originator” classification applies if the drug was acquired by the
MIT company. The “originator*” classification applies if the drug acquired by the
MIT licensee was a post-phase 3 asset (NDA-ready, NDA-filed, or marketed). The
“acquirer” classification applies if the MIT company was the lead developer but was
later acquired. The “none” tag applies if the MIT licensee was both the originator and
lead developer of the approved drug. For example, there were two FDA approvals
in 1991 that are associated with MIT licensees. The clinical development of both
approvals was led by partners, i.e., both tagged with “partner” classification. One of
the assets were acquired post-phase 3 by an MIT licensee for development, i.e., one
tagged with “originator*” classification. See Appendix D.6 for the list of approvals.
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(cutoff at December 2017; see Appendix D.7). The 33 companies licensed 258 unique

patents from MIT in initial startup agreements totaling $39.9M in royalties. These

companies were additionally granted 2,512 patents between 1985–2017, clearly show-

ing that MIT licensees continue to innovate beyond an initial license from MIT.

The number of patents filed by a therapeutics company can be very different

depending on the nature of the innovation involved. While certain types of innova-

tion lend themselves to large patent estates to protect an investigational compound,

others might rely on just a few patents based on core biological insights. We find

that companies that developed novel technology platforms, e.g., Millennium, Alny-

lam, and Sangamo, were the most productive in terms of number of patents grated

per year. In contrast, companies focused on developing in-licensed assets, such as

Conatus Pharmaceuticals, tend to be focused on clinical development rather than on

innovating new technology. In general, we do not find a strong correlation between

the number of drugs approvals and the number of patents granted for MIT licensees

(see Appendix D.7).

Although patent data does not measure the direct impact on patients, it does

reveal one aspect of MIT’s contributions not reflected in drug approvals. Companies

such as Alnylam and Sangamo are pioneering new technologies, and had not yet

achieved FDA approval before the cutoff of our dataset. However, as suggested by

their extensive patent portfolios both firms contributed significant advances to the

scientific community’s understanding of siRNA and ZFN technologies as therapeutics

during this time. (In August 2018, Alnylam received FDA approval for patisiran, a

first-in-class siRNA therapeutic [179].)

5.4 Discussion

An analysis of the 2,529 new drugs approved by the FDA from 1991–2017 shows that

31% were NMEs, and 24% had PR (see Appendix D.8). In contrast, MIT licensees

played a traceable role in the approval of 31 drugs over the same time period, of which

55% were NMEs and 55% had PR. This comparison is limited because of its small
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sample size, and because the preference for NMEs and PR candidates by smaller

biotech companies is unknown. Nevertheless, this suggests that MIT licensees may

have been more innovative than the industry average.

The convoluted link between academic IP and FDA approval makes an analy-

sis that tracks the outcomes of academic IP difficult. This limitation arises due to

multiple factors. IP licensing is only an early step in a lengthy drug development

timeline, companies may license IP from several institutions, and asset ownership

is frequently multi-partied and variable over time. However, we believe that our

approach—examining Orange Book citations, IPOs, M&As, R&D pipeline, drugs ap-

provals, and intellectual property of MIT licensees—provides a fair and comprehensive

framework to simultaneously acknowledge MIT origins and recognize the complex,

multi-party contributions that extend beyond MIT and are required to commercial-

ize drugs.

In some cases, MIT licensees found success after pivoting away from its initial

IP and strategy. For example, Cubist Pharmaceuticals purchased daptomycin, a

discontinued compound for Gram-positive infections in phase 2, from Eli Lilly in 1997

[180]. Cubist pushed daptomycin across the finish line as Cubicin in 2003. The drug

subsequently became a blockbuster, and enabled Cubist to further acquire Adolor,

Optimer, Calixa, and Trius, each of which resulted in an FDA-approved drug. Other

examples include ARIAD and Millennium.

However, even without clear links between drug approvals and academic patents,

academic IP still contributes to three critical aspects of a company’s success: bringing

together unique people and talent, catalyzing a company’s financing, and serving

as a foundation for future R&D. The case of Millennium is a prime example: Its

technology platform enabled the firm to sign multiple partnership deals with large

pharmaceutical companies and raise significant capital from the public markets. By

1998, Millennium had struck deals totaling $1B with pharmaceutical giants Eli Lilly,

Roche, and Bayer [181]. These alliances provided Millennium with substantial funding

and access to key downstream technologies for drug development. In 2000, Millennium

raised over $1B from a follow-on public offering and a convertible debt sale. Its
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lucrative partnerships validated its platform and attracted significant capital from

investors. This combination of business development and financing activity ultimately

allowed Millennium to make its transformative acquisitions of LeukoSite and COR

Therapeutics. Clearly, the initial licensing of MIT IP had a broad impact on the

organization.

Our analysis does not capture all aspects of MIT’s contribution to therapeutic

innovation. Within our dataset, biotech companies such as Alkermes, Abgenix, and

Millennium have licensed their technologies to large pharmaceutical companies. Al-

though drugs disclosed within the financial filings of MIT licensees were tracked, it

is possible that others predominantly owned by outside partners have been missed.

Specifics of early-stage drug development activity are not necessarily disclosed in a

large pharmaceutical company’s financial filings, and a biotechnology company may

be contractually limited in its own disclosures of such programs. Similarly, access to

public company financial filings prior to 1994 was limited, and preclinical assets or

drug discovery technology of an acquired private company may remain undisclosed.

One example that falls outside of our framework is the case of Idun. Idun was

founded in 1993 and licensed multiple MIT patents based on the work of Dr. Robert

Horvitz. Idun and Abbott Laboratories (now AbbVie) collaborated to develop in-

hibitors of Bcl-2, a regulator of apoptosis. While the initial molecule produced by

this collaboration did not progress due to poor oral bioavailability, Abbott developed

follow-on compounds navitoclax and venetoclax. The latter has been approved for

the treatment of various hematological malignancies including CLL. It has also been

granted multiple breakthrough therapy designations based on its profound therapeu-

tic impact particularly in diseases of high unmet need such as acute myeloid leukemia.

Further beyond our dataset, four biotech giants, Genzyme, Biogen, Amgen, and

Genentech, were co-founded by MIT faculty or people with connections to MIT.

However, these companies did not license MIT IP, and consequently were not included

in our analysis [182, 183]. It is not uncommon for MIT faculty and affiliates to launch

therapeutics companies without licensing MIT IP, such as Verastem, co-founded by

Robert Weinberg and Eric Lander [184]. Finally, MIT research publications that are
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not translated into patents also advance the therapeutics landscape. Our analysis

does not capture these sources of impact because they do not involve an explicit

licensing transaction with the MIT TLO.

On the other hand, as shown by the analysis of IP generated by the MIT li-

censees, entirely new classes of potentially transformative drugs are on the horizon

whose development uses MIT IP. A brief survey of drugs in the development phase

underscores MIT’s contribution to the current creation of innovative therapeutics.

Alnylam, bluebird bio, Editas Medicine, and Sangamo are just four examples of firms

that have licensed MIT IP to develop platform technologies capable of discovering

new drugs.

Alnylam was founded in 2002 by a group of MIT faculty, including Robert Langer

and Phillip Sharp, to develop RNAi therapeutics based on siRNA discoveries. The

firm licensed patents from MIT on the formulation and delivery of siRNAs, and also

engaged in a five-year research collaboration to improve delivery to target tissues.

Alnylam has a broad clinical development pipeline of seven assets, including patisiran,

an RNAi therapeutic for hereditary ATTR amyloidosis, a severe neuropathy, under

PR by the FDA as of the cutoff of our dataset [185]. (In August 2018, Alnylam

received FDA approval for patisiran as a first-of-its kind targeted RNA-based therapy

[179].) See Appendix D.9 for other examples.

It must be noted that other parties contributed to these innovative platforms in

addition to MIT, such as Tekmira, which licensed its siRNA patents to Alnylam, and

the Scripps Research Institute, which licensed its zinc finger proteins IP to Sangamo.

In fact, Sangamo’s most recent annual report references the ZFN IP licensed from

the California Institute of Technology and the University of Utah, but not the 1996

patent license agreement between Sangamo and MIT. Although the original patent

from 1996 may not be scientifically important relative to the more recent ZFN patents,

perhaps it was critical to nucleate the company and enable Sangamo to become the

leader of ZFN technology.

This highlights the critical point that developing a drug starting from an initial

academic patent can require over 20 years, at which time the foundational patent
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may be expired and no longer commercially relevant. Most of MIT licenses are not

composition of matter patents, which are the most commercially valuable Orange-

Book listable patents. Unlike many other institutions active in academic stage life

sciences research, MIT does not have a medical school. This precludes large animal or

early clinical testing prior to academic licensing and may bias the typical MIT license

towards technology that underpin a new platform rather than towards an identifiable

drug that would have a clearer, shorter path to market. A company that licenses

technology may spend a decade developing the platform and identifying the optimal

targets/diseases to pursue. So, it is not surprising if MIT patents have expired by the

time a drug is approved. Nevertheless, MIT IP has played an important role in the

formation of innovative companies and development of novel therapies. Numerous

drug candidates produced by these companies are likely to reach the market in the

coming years.

5.5 Conclusion

Due to the complexity of academic IP transactions and the difficulty in determining

causation, the systematic tracking of the outcomes of academic IP transactions has

been neglected, despite its obvious benefit to all players and its potential to increase

the rate of biomedical innovation. The use of the framework developed in this chapter

to analyze university IP would not only allow cross-university comparisons, but could

provide convincing data in favor of increasing funding to bridge the financing gap

for preclinical assets and drug discovery technology. As shown by the recent $130M

collaboration between Deerfield Management and Duke University [186], there is both

precedent and desire for such funding to accelerate innovation at the academic level.

More speculatively, with such data in hand, one could conceive of an “Academic

Translational Medicine” (ATM) fund that raises money from limited partners to in-

vest in therapeutics companies that license IP among a consortium of universities,

each of which contributes IP to a commingled pool using a standardized IP agreement,

managed by an external third-party portfolio manager dedicated to selecting and de-
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veloping assets on behalf of investors in the fund, similar to the CRISPR patent pool

initiative by MPEG LA [187]. If this fund were large enough, it could also provide

additional value-added services such as animal studies, medicinal chemistry, toxicol-

ogy, and even clinical-trial designs, not unlike the support offered by the National

Institutes of Health’s National Center for Advancing Translational Sciences.

Some seasoned biotech VCs may be skeptical about the prospect of multiple uni-

versities, each with its own unique group of stakeholders, goals, and constraints,

collaborating productively in commercializing their IP. However, the downward pres-

sure by funding organizations on overhead rates at a time of tremendous expansion

in life sciences research has created the potential for a more conducive environment

for cooperation between multiple universities, especially if motivated by the prospect

of significant funding. One example is the research consortium between Celgene, the

University of Pennsylvania, Columbia University, Johns Hopkins, and Mount Sinai,

established to accelerate the discovery of new cancer treatments [188].

Given the assumption that innovation in biopharma is primarily constrained by

a lack of capital rather than talent or worthwhile ideas, an ATM fund could greatly

accelerate the commercialization of new drug discovery technologies and the discovery

of new and innovative medicines. As suggested by our data, such an investment could

prove beneficial not only for the researcher and the investor, but also patients.
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Chapter 6

Financing Correlated Drug

Development Projects

Current business models have struggled to support early-stage drug development due

to the rising costs of clinical trials and a shift in research focus to more complex sci-

entific pathways that have higher chances of failure. To address this issue, Fernandez

et al. [23] proposed a novel megafund structure to finance early-stage translational

research. Fagnan et al. [189, 190] applied the approach to a portfolio of therapeutics

for orphan diseases. In this chapter, we extend the simulation framework proposed

in previous studies to account for correlation between phase transitions in a portfolio

of drug development projects for rare diseases, thus making the model a more real-

istic representation of biopharma research and development and also allowing us to

evaluate the tail risks of the megafund more accurately. In addition, we update the

parameters used by Fagnan et al. [190] with more recent probability of success (PoS)

estimates. We find that the performance of the megafund becomes less attractive

when correlation between projects is introduced. However, the risk of default and

the expected returns of the vanilla megafund remain promising even under moderate

levels of correlation. Furthermore, we find that a leveraged megafund outperforms

an equity-only structure over a wide range of assumptions about correlation and

PoS. Despite our focus on orphan drugs in this chapter, our framework can be easily

generalized to arbitrary drug development portfolios.
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6.1 Introduction

The drug development process has become increasingly expensive and risky over the

past few decades. This phenomenon can be attributed to the rising cost of clinical

trials and a shift in research focus to more complex biological mechanisms that are

potentially more transformative but also have higher risks of failure. As a result,

the current business model for research and development (R&D) in biopharma is

becoming less effective. This is reflected in the decline of R&D productivity and the

lackluster performance of investments in the biotech and pharma sectors in recent

years.

Fernandez et al. [23] proposed a megafund structure to address this issue. This

structure pools a large number of biomedical programs together in its portfolio, thus

diversifying the risk of drug development and increasing the likelihood of success

through multiple “shots on goal.” By tranching this structure and redistributing the

risk of default, the megafund can tap into the fixed income market, a substantially

larger pool of capital than the conventional sources of biopharma R&D financing—

public and private equity—but one traditionally unwilling to participate in biopharma

investments due to the risky and fragmented nature of drug development. The mega-

fund finances its large portfolio using capital raised from issuing equity and debt, i.e.,

bonds collateralized by the portfolio of pipeline drugs and their associated intellectual

property. Simulation results by Fernandez et al. [23] show that this alternative finan-

cial structure can yield reasonable returns for investors in both types of securities.

More recently, Fagnan et al. [189, 190] have applied the megafund approach to

early-stage drug development, the riskiest part of the drug discovery process, and the

one where funding is also the scarcest. They found that the megafund structure is

particularly well suited for financing orphan drugs, as orphan drugs typically have

higher probabilities of success, lower clinical costs, and shorter development times

than their non-orphan counterparts. In their simulations, an orphan drug megafund

managed to generate double-digit annualized returns with a portfolio of only ten to

twenty orphan drug projects.
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In this chapter, we use the multi-state, multi-period simulation framework de-

scribed in Fernandez et al. [23] and Fagnan et al. [189, 190] to analyze the potential

performance of an orphan drug megafund. However, we note that the assumption of

independent phase transitions of previous megafund studies rarely holds in practice,

since drug candidates tend to exhibit some amount of correlation with one another

depending on the similarities of their underlying treatment pathways. We demon-

strate that the presence of correlated transitions has important consequences for the

performance of the megafund, as seen in our formal derivation and empirical results

(Section 6.2.4 and Section 6.3, respectively). To obtain a more realistic representa-

tion of biopharma R&D, we examine the use of a single-factor model with a Gaussian

copula to model correlations between pipeline drugs in the portfolio. This approach

allows us to evaluate the tail risks of the megafund more accurately.

In addition, we update the parameters for clinical trial durations and probabili-

ties of success based on the estimates reported by Wong et al. [17] in a recent study.

We also simulate the performance of several different megafund structures with corre-

lated portfolios (vanilla, guarantee-backed, and equity-only), and perform a sensitivity

analysis of several key parameters in our framework, specifically the capital structure,

the portfolio acquisition strategy, the level of correlation between projects, and the

probabilities of success for phase transitions.

Along with our results, we release an open-source version of our simulation soft-

ware, and encourage readers to rerun our simulations with their own preferred set of

assumptions and inputs.

6.2 Methods

6.2.1 Simulation Framework

A drug development megafund is a financial entity that pools and repackages a port-

folio of pipeline drug assets into an arbitrary number of tranches with different risk,

reward, and maturity characteristics. It offers the repackaged securities to investors
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as “research-backed obligations” (RBOs)—that is, debt and equity securities backed

by the pool of underlying drug assets—and uses the capital raised to finance the de-

velopment of pipeline drugs in its portfolio. The RBO is structured to follow a strict

priority for cash flow distributions. In general, senior debt tranches have first priority

on the cash flows generated by the portfolio, and therefore have the best credit rating.

Mezzanine tranches have the second claim on cash flows, but they are compensated

by higher coupon rates for the higher risk of default. Finally, equity holders bear the

risk of first loss, but at the same time, they are entitled to all the residual cash from

debt repayment.

Here, we consider an RBO structure with the same three types of tranches: senior

debt, junior debt, and equity. In addition to the subordination of cash flows, however,

we adopt credit enhancement mechanisms designed to provide additional protection

for the bondholders [25]: we maintain a reserve account at levels in excess of the fund’s

current liabilities, i.e., its short-term interest and principal payments. This account

is tracked periodically to ensure that it remains above a minimum target level, failing

which assets are liquidated to cover the shortfall. These coverage triggers can prevent

the fund from abruptly going into default by identifying potential shortfalls ahead

of time, thus giving portfolio managers sufficient lead time to monetize available

assets. This is especially important for assets which are relatively illiquid, such as

drug development programs, where extensive negotiation is necessary, and there is a

lag between the sale of a project and the actual cash inflow.

We assume an investment structure based on the licensing framework commonly

used in the biopharmaceutical industry [23]. The megafund first acquires a majority

stake in each drug development program for an upfront payment. In our model,

pipeline drugs undergo the standard drug approval process: starting from pre-clinical

research, advancing through phase 1, phase 2, phase 3, and New Drug Application

(NDA), before finally gaining approval. Each stage of development requires a certain

amount of time and funding, at the end of which the program will either progress

to the next higher phase or be discontinued. In exchange for the majority stake, the

megafund is responsible for all clinical trial expenses (“development costs”), and also
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any milestone payments due to the project investigators for the successful completion

of each phase of development. Pipeline drugs are typically financed up to a specific

target phase before being monetized, but they can also be sold for revenue at any

point during development. As mentioned earlier, we assume that there is some lag

time between a sale and the actual cash inflow.

The cash flow waterfall of the megafund is complex. In addition to periodic debt

and interest payments, investments in pipeline drugs at each phase of development

must be carefully managed to ensure that the interest coverage ratio remains above

a minimum level. Depending on the performance of the portfolio, projects may need

to be either put on hold until sufficient capital becomes available, or prematurely

liquidated prior to the target phase, to make up for any shortfall in cash flows.

We use a multi-period Monte Carlo simulation model to evaluate the returns of

the megafund over a fixed time horizon (see Fig. 6-1). We assume that the fund

assembles a portfolio of drug development programs at the start of the simulation.

We compute the financial statistics of the fund and the performance of the portfolio at

discretized time steps (“periods”), and allocate the cash flows in each period according

to the waterfall structure. We assume that the phase transitions follow a stochastic

process, with the clinical trial cost, testing duration, and asset valuation drawn from

continuous random distributions. When the end of life of the fund is reached, or if

the fund defaults on its bond payments at any point during its tenor, the portfolio

is liquidated. The proceeds are used to repay all outstanding debt, and any residual

cash is distributed to the equity holders. Thereafter, the megafund is dissolved.
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Figure 6-1: Simulation framework for the megafund. The cash flow waterfall incorporates the subordination of cash flow, the
credit enhancement mechanism, the investment structure of drug development, and the drug approval process. Pipeline drugs
that successfully advance to the next phase are funded only if there is sufficient cash remaining after settling current liabilities
and fulfilling the interest coverage test. If not, they are held in the portfolio without further development until additional capital
becomes available. The sale of pipeline drugs is the dominant source of cash flow for the megafund. Abbreviations: Y, yes; N,
no; F, fail; P, pass; IC, interest coverage.
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6.2.2 Parameters

In our simulation, we assume that the megafund has a tenor of ten years and a capital

structure comprising three tranches: a senior debt tranche, a junior debt tranche, and

an equity tranche. At the start of each simulation, the fund raises $575M of capital,

including $250M from senior debt, $50M from junior debt, and $275M from equity.

The senior bonds are structured to have a maturity of five years with an annual

coupon rate of 5% and the junior bonds nine years with 8%. Each tranche is amortized

evenly (i.e., straight-line amortization) over the four-year interval preceding its date

of maturity. The schedule is structured so that principal payments do not overlap,

and junior bonds are retired only after senior bonds have been fully redeemed.

We discretize the simulation horizon into six-month time periods, and assume that

the megafund makes debt and coupon payments at the end of each period (i.e., semi-

annual payouts) according to the amortization schedules of the bonds. In addition,

we assume that the sale of each drug development program takes a year to settle,

from the initiation of transaction to the receipt of cash proceeds. Therefore, we con-

sider a simulation horizon of ten years, which spans the tenor of the fund, and leaves

an additional year at the end for portfolio liquidation. In the absence of default, all

clinical assets that have not already been sold or discontinued at the end of the ninth

year are liquidated, and the proceeds received in the last period are distributed to

the equity investors.

Here, we focus on early-stage orphan drug development projects for the RBO

portfolio. We assume that the megafund acquires 23 pre-clinical programs at the

start of simulation, with the aim of funding them through the completion of phase 2

clinical testing (i.e., to phase 3) before their sale. This is the maximum number of

drugs the megafund can afford to finance, based on the amount of capital raised and

the expected development cost required for each drug to reach the target phase. Each

acquisition grants the megafund an 85% ownership stake in the asset, thus entitling

the fund to the same portion of proceeds when the asset is monetized.

The simulation framework relies on several important modeling assumptions re-
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garding the cost of clinical trials, the duration of clinical testing, asset valuation, and

phase transition. Following the approach by Fagnan et al. [190], we model the cost and

duration of clinical trials at each phase of development as independent and identically

distributed (IID) log-normal random variables. We impose an upper bound on the

development cost of each phase to limit the maximum possible expense that can be

incurred per compound. Upfront costs and milestone payments are taken to be con-

stants based on the phase of development. Similar to our treatment of development

costs, we assume an upper-bounded log-normal distribution for drug asset valuation

at each stage of development. However, instead of imposing independence, we intro-

duce pairwise correlation of market valuation between projects using a single-factor

model (see Section 6.2.3).

We model the drug development process as a sequence of Bernoulli trials, i.e.,

as a Bernoulli process: at each phase of development 𝑘, a pipeline drug has some

probability 𝑝𝑘 of advancing to the next higher phase 𝑘 +1 (“success”) and probability

1+𝑝𝑘 of being discontinued (“failure”). The time spent in each phase depends on the

clinical testing duration drawn from the log-normal distribution described earlier. In

our model, discontinuation is assumed to be an absorbing state, i.e., a drug that has

been withdrawn can no longer reenter the development process (see Fig. 6-2).

Fagnan et al. [190] modeled phase transitions as IID random variables. However,

we note that the assumption of independence rarely holds in practice, since drugs tend

to exhibit some amount of correlation with one another, depending on the similarities

in their underlying scientific pathways, mechanisms, and targets (e.g., two drugs

with similar mechanisms of action are likely to have similar outcomes in testing).

The presence of correlation has significant implications for the performance of the

megafund. In general, correlation between assets introduces systematic risk to the

portfolio, which by definition cannot be diversified away. Increased correlation leads to

fatter tails in the distribution of the number of successful projects in the portfolio (see

Section 6.2.4), which in turn adversely affects the credit profile of the debt tranches

and the risk-reward profile of the equity tranche.

In this work, we extend the framework to account for this dependence between
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drug development projects. We introduce a single-factor model with a Gaussian

copula to model correlations between pipeline drugs (see Section 6.2.3). This approach

allows us to generate correlated phase transitions in our simulations, thus evaluating

the probability of default and the financial performance of the RBO more accurately.

We use the parameters proposed by Fagnan et al. [190] for a rare disease portfolio

(see Table 6.1). In addition, we update the parameters for duration and phase transi-

tions based on the empirical estimates reported by Wong et al. [17] in a recent study

using two large pharmaceutical databases to determine the success rates of clinical

trials. Compared to the parameters used in Fagnan et al. [190], our recalibrated sim-

ulation results in longer clinical development times (0.6 years longer in phase 1 and

1.1 years longer in phase 2), and lower probabilities of success (14 percentage points

lower for phase 1 and 9 percentage points lower for phase 2).

In our simulation, we assume a relatively conservative value of 0.20 for pairwise

correlation in phase transitions among drug development projects. Although a litera-

ture search has not found any estimates of historical correlation between drug devel-

opment projects, we believe that the correlation between orphan drugs is likely to be

weak, given that a large proportion of orphan diseases have monogenic pathologies

that act through largely unrelated mechanisms [189, 191]. Furthermore, appropriate

portfolio selection protocols can effectively minimize the correlation between assets.

By limiting the maximum number of projects that can be acquired per indication

group and target family, we can ensure that pipeline drugs in the portfolio are as

dissimilar as possible and any risks of failure are largely idiosyncratic in nature. In

later sections, we also perform a sensitivity analysis of our results over a range of

probabilities of success and pairwise correlation values.

6.2.3 Gaussian Copula

The Gaussian copula is widely used in quantitative finance to model dependence

between assets and compute tail risks in credit portfolios. Due to its analytical

tractability and simplicity, the model has become the industry standard for pricing

collateralized debt obligations (CDOs) [192, 193].
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Figure 6-2: Drug development process as a multi-state Markov chain. Each state
corresponds to a phase of development. At each phase, pipeline drugs have some
probability of advancing to the next higher phase. Drugs that do not successfully
advance are discontinued from any further development.

Table 6.1: Parameters used to simulate a megafund with a rare disease portfolio.

Distribution Parameters Pre-clinical Phase 1 Phase 2 Phase 3

Upfront cost Fixed Constant 3.71
($ millions)
Milestone cost Fixed Constant 3.75 10.00
($ millions)
Clinical trial cost Bounded Mean 2.80 3.03 7.64
($ millions) log-normal Standard deviation 2.29 2.51 7.52

Upper bound 10.00 20.00 50.00
Duration Log-normal Mean 2.34 2.14 3.09
(years)1 Standard deviation 1.17 3.79 2.82
Value Bounded Mean 7.66 24.20 57.80 321.50
($ millions) log-normal Standard deviation 9.18 28.99 69.24 385.11

Upper bound 20.00 60.00 200.00 1000.00
Pairwise correlation 0.20 0.20 0.20 0.20

Phase Bernoulli Mean 0.80 0.76 0.49
transition1 Pairwise correlation 0.20 0.20 0.20 0.20
1 Parameters for phase 1 and phase 2 based on estimates reported by Wong et al. [17].
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The copula approach decomposes the problem of estimating multivariate probabil-

ity distributions into two parts: (1) estimation of the univariate marginal distributions

of the underlying random variables, and (2) estimation of the dependence structure

between these variables. In particular, the Gaussian copula is defined as:

𝐶Σ
(︁
Φ(𝑥1), . . . , Φ(𝑥𝑛)

)︁
= Φ𝑛

Σ(𝑥1, . . . , 𝑥𝑛) (6.1)

where 𝐶Σ is the copula function, Φ𝑛
Σ is the cumulative distribution function of an

𝑛-dimensional standard normal distribution with a correlation/covariance matrix Σ

that characterizes the dependence structure between the standard normal random

variables {𝑋1, . . . , 𝑋𝑛}, and Φ is the cumulative distribution function of a univariate

standard normal distribution. A common approach is to assume that dependence

is driven by a single common latent factor and write each random variable 𝑋𝑖 as

the sum of a systematic and an idiosyncratic Gaussian factor. This is known as the

single-factor model [194, 195].

𝑋𝑖 = √𝜌𝑖 · 𝑌 +
√

1− 𝜌𝑖 · 𝜖𝑖 (6.2)

where 𝑖 ∈ {1, . . . , 𝑛}, 𝜌𝑖 ∈ [0, 1]∀ 𝑖, {𝑌, 𝜖1, . . . , 𝜖𝑛} are IID standard normal variables,

and 𝑋𝑖 has a standard normal distribution. In the context of portfolio credit risk

modeling, 𝑋𝑖 can represent the logarithmic value of each asset in a portfolio; 𝑌 can

be interpreted as a market risk factor, such as the general state of the economy, that

is common to all 𝑛 assets; and 𝜖𝑖 can be interpreted as idiosyncratic risk factors

that are specific to each asset. The relative sizes of the systematic and idiosyncratic

components are determined by the linear correlation coefficient 𝜌𝑖. If 𝜌𝑖 = 1 ∀ 𝑖,

then all assets have identical values. If 𝜌𝑖 = 0 ∀ 𝑖, then the values of all assets are

independent of each other. In general, the pairwise correlation between any two assets

𝑋𝑖 and 𝑋𝑗, Corr(𝑋𝑖, 𝑋𝑗), is given by √𝜌𝑖𝜌𝑗. We note that the single-factor model

defined in Eq. (6.2) is equivalent to a Gaussian copula model that has a correlation

matrix with off-diagonal elements Σ𝑖𝑗 = √𝜌𝑖𝜌𝑗.

The single-factor model can be further simplified by assuming identical pairwise

181



correlations between all random variables {𝑋1, . . . , 𝑋𝑛}, i.e., 𝜌𝑖 = 𝜌∀ 𝑖. This reduces

the number of parameters in the model from 𝑛 to just 1. The resulting model is

also known in the field of credit risk as the homogeneous large pool Gaussian copula

model [192]. The name arises from the assumption of homogeneity in the underlying

pool of assets, in terms of identical standard normal marginal distributions and equal

correlation coefficients. We make the same assumptions here to generate correlated

asset valuations and phase transitions.

We define asset valuations at each stage of development as follows:

𝐵𝑖𝑗 = min(𝑉𝑖𝑗, 𝑀𝑗) (6.3)

𝑉𝑖𝑗 = exp(𝜇𝑗 + 𝑋𝑖𝑗 · 𝜎𝑗)

𝑋𝑖𝑗 = √𝜌 · 𝑌 +
√

1− 𝜌 · 𝜖𝑖𝑗

𝜇𝑗 = ln(𝑚𝑗)−
1
2 ln

(︁
1 +

𝑠2
𝑗

𝑚2
𝑗

)︁

𝜎𝑗 =

⎯⎸⎸⎷ln
(︁
1 +

𝑠2
𝑗

𝑚2
𝑗

)︁

where 𝑉𝑖𝑗 is the value of asset 𝑖 in phase 𝑗, 𝑚𝑗 and 𝑠𝑗 are the estimated mean and

standard deviation, respectively, of the asset value distribution at phase 𝑗, 𝑀𝑗 is the

upper bound of possible valuations of assets in phase 𝑗, and 𝐵𝑖𝑗 is the upper-bounded

value of asset 𝑖 in phase 𝑗. The parameters used for each stage of development 𝑗 are

summarized in Table 6.1. We draw a single systematic factor 𝑌 for each Monte Carlo

simulation path.

We define phase transitions at each stage of development in a similar manner:

𝑇𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
Success if 𝑋𝑖𝑗 < Φ−1(𝑝𝑗)

Failure otherwise
(6.4)

𝑋𝑖𝑗 = √𝜌 · 𝑌 +
√

1− 𝜌 · 𝜖𝑖𝑗

where 𝑝𝑗 is the unconditional probability of success for phase 𝑗, Φ−1 is the inverse

cumulative distribution function of a univariate standard normal distribution, 𝑇𝑖𝑗 is
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the outcome of drug development project 𝑖 in phase 𝑗 (i.e., whether the project has

successfully advanced to the next higher phase (𝑗 + 1)). We draw different sets of 𝑌

and 𝜖𝑖𝑗 for asset valuations and for phase transitions. The parameters used for each

stage of development 𝑗 are summarized in Table 6.1.

While we have focused on a flat correlation structure in the derivations and in our

analysis, the Gaussian copula single-factor model can be easily extended to arbitrary

correlation structures by using multi-factor models. In addition, it is straightforward

to generalize the single-factor model for non-Gaussian distributions with zero mean

and unit variance.

6.2.4 Impact of Correlation on Tail Risk

Suppose there are 𝑛 correlated projects in a portfolio, each with an unconditional

probability of success equal to 𝑝. We can derive the distribution function of the

number of successes in the portfolio by rewriting Eq. (6.4). Using the property of

conditional independence, we observe that, given a realization of the systematic factor,

successes are independent with probability:

𝑃 [𝑇 = Success | 𝑌 = 𝑦] = Φ
(︃

Φ−1(𝑝)−√𝜌 · 𝑦√
1− 𝜌

)︃
(6.5)

= 𝑝𝑦

The probability of having exactly 𝑚 successes out of 𝑛 projects is thus:

𝑃 [𝐻 = 𝑚] =
∫︁ ∞

−∞
𝑃 [𝐻 = 𝑚 | 𝑌 = 𝑦] · 𝜑(𝑦) d𝑦 (6.6)

=
∫︁ ∞

−∞

(︃
𝑛

𝑚

)︃
· 𝑝𝑦

𝑚 · (1− 𝑝𝑦)(𝑛−𝑚) · 𝜑(𝑦) d𝑦

where 𝜑 is the probability density function of the standard normal distribution. We
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can approximate the integral in Eq. (6.6) using the Gauss-Hermite quadrature:

𝑃 [𝐻 = 𝑚] ≈ 1√
𝜋

𝑘∑︁
𝑖=1

𝑤𝑖 ·
(︃

𝑛

𝑚

)︃
· 𝑝𝑥𝑖

𝑚 · (1− 𝑝𝑥𝑖
)(𝑛−𝑚) (6.7)

𝑝𝑥𝑖
= Φ

(︃
Φ−1(𝑝)−

√
2𝜌 · 𝑥𝑖√

1− 𝜌

)︃

where 𝑘 is the number of nodes used, and {𝑥𝑖}𝑘
𝑖=1 and {𝑤𝑖}𝑘

𝑖=1 are the correspond-

ing abscissas and weights, respectively. To illustrate the impact of correlation on tail

risk, we compute for homogeneous portfolios of different sizes, unconditional probabil-

ities of success, and pairwise correlations—𝑛 = {20, 50, 100}, 𝑝 = {0.1, 0.3, 0.5}, and

𝜌 = {0.0, 0.10, 0.2, 0.3, 0.4}, respectively—their distribution functions of successes.

Table 6.2 and Fig. 6-3 summarize the results.

From Table 6.2, we find that correlation has no effect on the expected number

of successful projects in the portfolio. However, it has significant impact on the

variability of the distribution of successes. For a portfolio with 𝑛 = 20 projects and

𝑝 = 0.1, a pairwise correlation of 𝜌 = 0.1 increases the standard-deviation-to-mean

ratio (a standardized measure of dispersion of the probability distribution; also known

as the coefficient of variation [CV]) of the distribution of successes by 31.3% relative

to the case with zero correlation. In addition, we observe that the increase in CV

is greater with higher unconditional probabilities of success, ceteris paribus: For a

portfolio with 𝑛 = 20 and 𝑝 = 0.5, a pairwise correlation of 𝜌 = 0.1 increases the

CV by 50.0% relative to a portfolio with the same parameters but zero correlation.

The effect is also more pronounced as the size of the portfolio becomes larger: For

𝑛 = 100 and 𝑝 = 0.1, the increase is 116.7%.

In general, the impact of correlation seems to be weaker for portfolios with smaller

𝑛 and 𝑝, likely because the distributions of successes under such parameters are very

skewed to begin with (see Fig. 6-3). Nevertheless, it is clear that positive correla-

tion between assets reduces benefits from diversification by introducing systematic

risk to the portfolio. This has major implications for the megafund because returns

are directly related to portfolio performance (i.e., the number of successful projects).
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Table 6.2: Distribution functions of successes computed using Gauss-Hermite quadra-
ture with 𝑘 = 30 nodes.

𝑛 = 20 𝑛 = 50 𝑛 = 100

𝜌 𝜇 𝜎 𝜎/𝜇 𝜇 𝜎 𝜎/𝜇 𝜇 𝜎 𝜎/𝜇

𝜌 = 0.1

0.0 2 1.34 0.67 5 2.12 0.42 10 3.00 0.30
0.1 2 1.75 0.88 5 3.56 0.71 10 6.48 0.65
0.2 2 2.13 1.06 5 4.70 0.94 10 8.96 0.90
0.3 2 2.49 1.25 5 5.74 1.15 10 11.14 1.11
0.4 2 2.85 1.43 5 6.73 1.35 10 13.19 1.32

𝜌 = 0.3

0.0 6 2.05 0.34 15 3.24 0.22 30 4.58 0.15
0.1 6 2.98 0.50 15 6.37 0.42 30 11.93 0.40
0.2 6 3.70 0.62 15 8.46 0.56 30 16.37 0.55
0.3 6 4.32 0.72 15 10.20 0.68 30 19.97 0.67
0.4 6 4.90 0.82 15 11.74 0.78 30 23.15 0.77

𝜌 = 0.5

0.0 10 2.24 0.22 25 3.54 0.14 50 5.00 0.10
0.1 10 3.33 0.33 25 7.18 0.29 50 13.52 0.27
0.2 10 4.14 0.41 25 9.54 0.38 50 18.50 0.37
0.3 10 4.84 0.48 25 11.46 0.46 50 22.47 0.45
0.4 10 5.47 0.55 25 13.15 0.53 50 25.95 0.52

In reality, drug development programs tend to exhibit some extent of correlation

with one another depending on the similarities in their underlying scientific path-

ways, mechanisms and targets. Therefore, the risk of the megafund portfolio will

be underestimated if we assume that the projects are independent. To obtain ac-

curate estimates of default probabilities and investment performance, it is critical

that model used for phase transitions incorporates some form of dependence between

pipeline drugs.
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Figure 6-3: Distribution functions of successes computed using Gauss-Hermite quadrature with 𝑘 = 30 nodes. We find that
the impact of correlation on the distribution of the number of successes depends on both the number of projects and their
unconditional probabilities of success.
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6.3 Results

6.3.1 Simulation

We perform three sets of experimental simulations of an orphan drug megafund. In the

first, we simulate the performance of a “vanilla” megafund as outlined in Section 6.2.

In the second, we consider an RBO structure identical to the first, except that it

incorporates an additional credit enhancement mechanism proposed by Fagnan et

al. [196]. We assume that a third party is willing to take on some of the downside

risk to debtholders by providing a guarantee for part of the debt issued, up to a

maximum value of $100M. This funding guarantee serves as a form of collateral that

can be used to make up any shortfall in cash flow to meet debt obligations during

the tenor of the fund. This type of external credit support may be provided to the

megafund by a government agency, a private foundation, or even a patient advocacy

group to advance a scientific or medical cause (e.g., drug development for a specific

rare disease).

In our third experiment, we consider for comparative purposes an all-equity financ-

ing structure, while keeping all other modeling assumptions unchanged, to demon-

strate the advantages of leverage and diversification. We assume that this megafund

begins with an initial amount of capital of $275M, the size of the equity tranche

in the first two sets of experiments. With a smaller pool of investable capital, the

equity-only fund can only afford to acquire and finance 11 pre-clinical compounds for

its portfolio, as opposed to 23 in the other two experiments.

For each experiment, we perform 2,000,000 Monte Carlo simulated paths of drug

development, drawing from the random distributions parameterized in Section 6.2

for each realization. By aggregating the results for each RBO structure—vanilla,

guarantee-backed, and equity-only—we compute the risk profile of the debt tranches,

the distribution of returns of the equity tranche, the expected cost of guarantee, and

the impact of the research, quantified by the number of compounds sold in phases 2

and 3. The results are summarized in Fig. 6-4 and Table 6.3.

We find that the risk of bond default is very small for both the senior and junior
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debt tranches under the vanilla megafund structure. The probability of default for

the senior tranche is less than 1 basis point (bp), comparable to the historical default

rate of AAA-rated corporate bonds. The default rate of the mezzanine tranche is

higher at 55 bp, but still well below the average default rate of investment-grade

corporate bonds over the same time horizon (see Appendix E.1). With the addition

of a third-party funding guarantee, the default rates of both tranches fall to zero. This

effectively makes the junior tranche a second senior tranche. We therefore combine

both debt tranches in the guarantee-backed megafund into a single senior debt issue

in our treatment. Despite the high face value of the guarantee, we note that the

expected cost to the guarantor is actually very small, about $37,000.

The vanilla megafund outperforms the all-equity financing structure in equity

returns. It achieves an expected annualized return on equity (ROE) of 11.0%, 2.8

percentage points higher than that of the equity-only fund. Moreover, the probability

of substantial gains, defined as an annualized ROE in excess of 25%, is four times

higher under the standard structure (14.4%) that the equity-only fund (3.6%). Its

Sharpe ratio, however, is about 3 percentage points lower in comparison.

Although the chances of a wipeout in the leveraged megafund are slightly higher

than in the all-equity structure (0.6% versus 0.0%), the probability of a loss to eq-

uity is lower overall (19.4% versus 24.5%). In general, we find that distribution of

cumulative ROE has a fatter left tail under the all-equity structure than under the

vanilla structure (see Fig. 6-4), suggesting that the use of leverage helps to reduce

the downside risk and improve the upside potential.

With the addition of a funding guarantee, we observe a modest improvement in the

return profile. The probability of loss falls further to 18.7%, while the expected an-

nualized ROE improves slightly to 11.5%. The Sharpe ratio for the guarantee-backed

structure is also the highest among the three RBO structures (66.1%), suggesting

that the presence of a guarantee can help to reduce volatility without compromising

returns. (As a reference point, the average return and the corresponding Sharpe ratio

of the Center for Research in Security Prices (CRSP) value-weighted index between

1970 and 2016 were 10.9% and 37%, respectively [25].)
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Among the three RBO structures, the leveraged structure performs the best in

terms of research impact. On average, 9.5 out of 23 pre-clinical projects in the vanilla

megafund portfolio reach either phase 2 or phase 3 by the end of the simulation

horizon, the rest discontinued or sold at earlier phases. In contrast, the equity-only

fund starts with 11 investigational compounds in its portfolio, out of which typically

only 4.1 are successfully liquidated at either phase 2 or phase 3, less than half that

of its leveraged counterpart.
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Figure 6-4: Distributions of cumulative ROE for different RBO structures (top), cap-
ital structures (middle), and acquisition strategies (bottom). We truncate the distri-
butions when cumulative ROE equals 10x for better visualization. The distributions
demonstrate a positive skew with higher-than-normal kurtosis (leptokurtic).
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Table 6.3: Performance of each RBO structure over 2,000,000 Monte Carlo simulation paths. Abbreviations: ann, annualized.

RBO Structure

Vanilla Guarantee- Equity- Under- Over- Decreasing Uniform Increasing
backed only leveraged leveraged

Structure

Capital
Total ($ millions) 575 575 275 425 875 575 575 575
Senior tranche ($ millions) 250 300 125 500 250 250 250
Junior tranche ($ millions) 50 25 100 50 50 50
Equity tranche ($ millions) 275 275 275 275 275 275 275 275

Guarantee
Total ($ millions) 100

Portfolio
Number acquired at pre-clinical 23 23 11 17 35 23 23 23

Performance

Senior tranche
Prob of default (bp) 0.8 0.0 0.0 26.9 0.1 0.0 0.0
Expected loss (bp) 0.0 0.0 0.0 1.7 0.0 0.0 0.0

Junior tranche
Prob of default (bp) 54.8 4.0 266.1 30.9 21.5 13.7
Expected loss (bp) 16.1 0.7 143.7 7.3 4.6 2.6

Equity tranche
Expected cumulative ROE 3.8 3.8 2.1 3.0 5.0 3.2 2.9 2.8
Cumulative ROE sd 4.5 4.5 2.7 3.6 5.9 4.0 3.7 3.5
Cumulative ROE skewness 1.6 1.6 1.6 1.5 1.8 1.6 1.6 1.6
Cumulative ROE kurtosis 3.3 3.2 3.1 3.1 4.1 3.4 3.4 3.4
Expected ann ROE (%) 11.0 11.5 8.2 9.8 11.5 9.9 9.3 9.2
Sharpe ratio1 (%) 58.2 66.1 61.2 62.6 42.6 56.6 54.7 56.6
Prob of ann ROE = −1.00 (%) 0.6 0.3 0.0 0.1 2.7 0.3 0.2 0.2
Prob of ann ROE < 0.00 (%) 19.4 18.7 24.5 21.5 15.8 21.3 22.4 22.4
Prob of ann ROE > 0.10 (%) 59.2 60.4 46.1 54.7 64.1 55.3 53.0 51.9
Prob of ann ROE > 0.25 (%) 14.4 14.7 3.6 8.9 21.7 10.8 8.9 8.2

Guarantee
Prob of draw (%) 0.3
Expected cost2 ($ thousands) 37.4

Research impact
Number sold in phase 2 5.3 5.1 1.5 3.2 10.2 5.0 4.6 4.9
Number sold in phase 3 4.2 4.3 2.6 3.6 4.9 3.7 3.4 3.2

1 Risk-free rate 2.0%. 2 Net present value at 2.0% discount rate.
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6.3.2 Sensitivity Analysis

We perform a sensitivity analysis of our results with respect to several key parameters

in our framework, namely the capital structure, the acquisition strategy, and the

correlation and probability of success at phase transition.

Capital Structure

In the previous section, we assumed a relatively well-balanced capital structure with

a debt-to-equity ratio of 1.09 for the vanilla megafund. To examine the impact of dif-

ferent capital structures on performance, we consider two additional configurations.

The first assumes an underleveraged capital structure with the same amount of equity

as the vanilla case ($275M), but half as much debt ($150M). The second assumes an

overleveraged structure with also the same amount of equity ($275M), but twice as

much debt ($300M). The resulting debt-to-equity ratios for the underleveraged mega-

fund and the overleveraged megafund are 0.55 and 2.18, respectively. We summarize

their performance in Fig. 6-4 and Table 6.3.

We find that the risk of bond default generally increases with the leverage ratio

of the capital structure. In the underleveraged megafund, the equity tranche (the

tranche that absorbs the first loss to capital) is almost twice as large as the debt

tranches combined. This high level of overcollateralization allows the fund to remain

solvent over a wide range of portfolio losses. Assuming a zero-coupon bond, the

underleveraged megafund can lose up to 62% of its portfolio and still have enough

capital to repay all of its debt obligations.

In contrast, the size of the equity tranche in the overleveraged megafund is less

than half that of the debt tranches. Consequently, a small shock to the portfolio can

easily wipe out the entire equity tranche and force the megafund into default. Assum-

ing a zero-coupon bond, the overleveraged megafund must not lose more than 26% of

its portfolio in order to have sufficient funds to redeem its bonds. The probabilities

of default are therefore much larger for the overleveraged capital structure than for

the balanced and the underleveraged structures.
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By issuing more debt, the overleveraged megafund can acquire and finance a larger

number of projects (35 versus 17 for the underleveraged megafund). With a larger

and therefore more diversified portfolio, its expected ROE is correspondingly higher.

Its Sharpe ratio, however, is the lowest among the three capital structures, suggesting

that the improvement in returns is outweighed by the increase in volatility associated

with the use of greater leverage. We observe the opposite for the underleveraged

megafund, which has the lowest expected ROE but the highest Sharpe ratio.

The megafund demonstrates very different risk-reward characteristics under each

of these capital structures. In general, the use of leverage helps to improve the

performance of the megafund. However, it comes at the cost of increased risk to

bondholders and also greater volatility in returns. The capital structure of a megafund

should therefore be carefully selected to maximize the ROE while keeping the Sharpe

ratio and the default rates attractive to equity holders and fixed-income investors.

To avoid under-borrowing and over-borrowing, the leverage ratio should be optimized

based on the cost, value, and risk profiles of the underlying assets in the portfolio.

Acquisition Strategy

In the next step of our sensitivity analysis, instead of assuming that all assets are

acquired at the start of the simulation, we consider an alternative strategy in which a

small number of projects is acquired each period until the target capacity is reached

(i.e., the portfolio is built up over time). Under some conditions, this strategy may be

a more realistic example of a potential business model for an orphan drug megafund.

The earlier assumption is useful if there is a large pool of projects that is readily

available for immediate investment, e.g., the rare diseases therapeutic development

program at the National Center for Advancing Translational Sciences [190]. In other

cases, there may not be enough projects of sufficient quality on the market to create

a strong and well-diversified portfolio.

Instead of settling for mediocre opportunities, a strategy of rolling acquisitions

gives portfolio managers more time to source, evaluate, and identify promising clin-

ical assets for acquisition. This approach leaves room for potential investment in
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breakthroughs that may emerge after the inception of the fund. Moreover, it aligns

with the typical operation of translational drug development grant programs, which

screen a large number of proposals annually, while enrolling only a few high-potential

projects that have innovative scientific approaches or target unmet clinical needs.

Here, we consider three different acquisition patterns. We assume that the vanilla

megafund either makes a monotonically increasing number of acquisitions each period,

a uniform number, or a monotonically decreasing number, until the portfolio contains

23 projects. We find that the expected annualized ROE and research impact are

smaller under rolling acquisitions than under our original assumption (see Table 6.3).

This is not surprising, since each stage of drug development requires a certain amount

of time for clinical testing. Under a rolling acquisition strategy, a part of the portfolio

is acquired after the first period. These projects are generally financed and developed

for a shorter duration than those acquired at the beginning. As a result, they are

less likely to complete phase 2 within the time horizon of the simulation before the

portfolio must be liquidated. The probability of default in the junior tranche is

consequently lower, because fewer risky late-stage drug development programs need

to be funded. (The probability of transition is the lowest for phase 2 to phase 3.)

As a trade-off, the expected ROE is also smaller because more drugs are sold before

they can reach phase 3, which has the highest sale value. The effect is the greatest

under the monotonically increasing pattern, in which the largest part of the portfolio

is acquired later in the simulation.

Correlation and Probability of Success

Finally, we investigate the sensitivity of our results to different pairwise correlations

in phase transitions and the probabilities of success. We vary the correlation between

0% and 40%, and adjust the probabilities of success for all phases by -10%, 0%, and

+10%. For each combination of RBO structure, correlation value, and adjustment

to the probability of success, we perform 100,000 Monte Carlo simulation paths. We

summarize the results in Tables 6.4 to 6.6 and Fig. 6-5.

Intuitively, the expected number of projects that reach phase 3 increases with
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the probability of success. We also observe a corresponding increase in expected

returns with higher adjusted phase transition probabilities, since the sale value of

assets is substantially higher for late-stage projects than for early-stage drugs in the

pipeline. As shown in Tables 6.4 to 6.6, a relative adjustment of +10% to the baseline

probability of success at each stage of development improves the expected annualized

ROE of the vanilla megafund by 4 percentage points, while the same adjustment in

the opposite direction reduces the ROE by about 4.3 percentage points. We observe

similar trends for the guaranteed-backed and the equity-only megafunds.

In Fig. 6-5, we plot the distribution of cumulative ROE for the different RBO

structures, correlations, and adjustments to the probabilities of success. Because

correlated projects tend to have similar outcomes, we find that the risk of tail events

generally increases with the correlation between projects in the portfolio. This can be

seen from the large positive skew and the heavy tails that highly correlated portfolios

show in their distributions. We observe improvements in the expected cumulative

ROE when the correlation is increased, but this is likely the effect of outliers in the

right tail—that is, rare events where a large number of correlated projects reach

phase 3 simultaneously, thus giving rise to extremely high returns. The mean of

the annualized ROE is less sensitive to these outliers (see Fig. 6-6). In fact, the

Sharpe ratio demonstrates an inverse relationship to the correlation (see Tables 6.4

to 6.6), indicating that greater correlation actually leads to lower annualized returns

and greater volatility.

In most cases, the vanilla megafund outperforms the equity-only structure, ex-

cept in the worst-case scenario, where the probabilities of success are low and the

correlation between projects is high. The expected number of successful projects is

small under this set of parameters, and it is thus unlikely that the megafund can

generate sufficient cash flow to sustain its debt obligations and investment activities

under these conditions. The high level of correlation further exacerbates the situ-

ation by introducing substantial systematic risk to the portfolio. It is clear that,

given the risk profile of the underlying portfolio, the megafund is overleveraged. In

such cases, a better performing megafund could be created by either adopting a more
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appropriate capital structure or securing some form of funding guarantee, i.e., the

guarantee-backed structure.

Despite the variation in parameter values, the probability of default for the senior

tranche remains below 1 bp in almost all scenarios. This can be attributed to the

credit enhancement mechanisms adopted in the RBO structure, including the sub-

ordination of cash flows and the interest coverage tests to trigger early liquidation

during periods of illiquidity. The risk of default for the junior tranche, however, is

very sensitive to changes in either parameter. Like the trends observed in equity

returns, the risk of default increases with the level of correlation between projects,

when there is a greater probability of loss, but decreases with the probabilities of

success, when there is a greater probability of profit. With a funding guarantee in

place, the probability of default for the guarantee-backed megafund is consistently

kept below 0.1 bp. The expected cost to the guarantee also increases with the level

of correlation and decreases with the probabilities of success.

In general, we find that the performance of the megafund becomes less attractive

when correlation between projects is introduced. Nevertheless, the vanilla megafund

outperforms the all-equity structure over a wide range of probabilities of success and

correlation, except in cases where there is substantial deviation from the presumed

values. In those scenarios, the capital structure and leverage ratio need to be re-

optimized with respect to the risk profile of the underlying portfolio. The use of a

funding guarantee can also greatly improve the performance of the megafund. Over-

all, the risk of default for the senior tranche remains close to zero even when large

correlations and small probabilities of success are assumed.
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Table 6.4: Sensitivity of the vanilla RBO performance to different pairwise correlations between phase transitions and proba-
bilities of success. The results are based on 100,000 Monte Carlo simulation paths for each combination of pairwise correlation
and probability of success. Abbreviations: 𝜌, pairwise correlation between phase transitions; 𝑝, probabilities of success for
pre-clinical, phase 1, and phase 2; ann, annualized.

0.9𝑝 1.0𝑝 1.1𝑝

𝜌 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

Senior tranche
Prob of default (bp) 1.2 0.9 0.9 1.1 0.9 1.0 0.5 0.5 0.4 0.4 0.2 0.5 0.4 0.6 0.5
Expected loss (bp) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Junior tranche
Prob of default (bp) 41.1 71.1 99.6 118.2 131.8 20.3 36.0 54.1 75.3 87.3 9.9 16.6 26.5 37.5 49.8
Expected loss (bp) 15.1 20.7 24.7 27.6 28.8 8.6 12.5 16.0 19.3 20.7 4.6 6.7 9.1 11.8 13.6

Equity tranche
Expected cumulative ROE 2.0 2.4 2.7 3.1 3.4 3.1 3.4 3.8 4.1 4.4 4.4 4.7 5.0 5.3 5.5
Cumulative ROE sd 2.5 3.3 4.0 4.6 5.1 3.0 3.8 4.5 5.0 5.5 3.6 4.4 5.0 5.5 5.9
Cumulative ROE skewness 1.5 1.7 1.8 1.8 1.8 1.3 1.5 1.6 1.6 1.5 1.1 1.4 1.4 1.4 1.3
Cumulative ROE kurtosis 2.8 4.2 4.5 4.3 3.7 2.1 3.2 3.3 3.0 2.6 1.7 2.4 2.4 2.2 1.9
Expected ann ROE (%) 7.8 7.2 6.7 6.3 6.2 11.9 11.4 11.0 10.6 10.3 15.7 15.3 15.0 14.7 14.3
Sharpe ratio1 (%) 46.8 33.6 26.1 22.1 20.0 92.9 71.4 58.5 49.2 44.3 142.1 117.4 99.0 86.0 76.0
Prob of ann ROE = −1.00 (%) 0.4 0.7 1.1 1.3 1.4 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.3 0.4 0.5
Prob of ann ROE < 0.00 (%) 20.9 26.1 29.2 31.5 33.3 10.9 15.9 19.3 22.2 24.4 5.3 8.3 11.3 13.8 16.1
Prob of ann ROE > 0.10 (%) 46.4 47.3 48.0 48.6 49.2 62.2 60.3 59.3 58.8 58.5 76.0 72.6 70.4 69.0 67.9
Prob of ann ROE > 0.25 (%) 2.6 6.2 9.4 12.4 15.2 6.7 10.9 14.5 17.5 20.2 14.2 18.2 21.3 23.8 26.0

Research impact
Number sold in phase 2 4.3 4.4 4.5 4.5 4.6 5.2 5.3 5.3 5.4 5.4 6.2 6.2 6.3 6.3 6.3
Number sold in phase 3 2.5 2.9 3.2 3.6 3.9 3.6 3.9 4.2 4.6 4.9 4.8 5.1 5.4 5.7 5.9

1 Risk-free rate 2.0%.
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Table 6.5: Sensitivity of the guarantee-backed RBO performance to different pairwise correlations between phase transitions
and probabilities of success. The results are based on 100,000 Monte Carlo simulation paths for each combination of pairwise
correlation and probability of success. Abbreviations: 𝜌, pairwise correlation between phase transitions; 𝑝, probabilities of
success for pre-clinical, phase 1, and phase 2; ann, annualized.

0.9𝑝 1.0𝑝 1.1𝑝

𝜌 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

Senior tranche
Prob of default (bp) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Expected loss (bp) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Equity tranche
Expected cumulative ROE 2.1 2.4 2.8 3.1 3.5 3.2 3.5 3.9 4.2 4.5 4.5 4.8 5.1 5.3 5.6
Cumulative ROE sd 2.5 3.3 4.0 4.6 5.1 3.0 3.8 4.5 5.1 5.6 3.7 4.4 5.0 5.5 5.9
Cumulative ROE skewness 1.4 1.7 1.8 1.8 1.7 1.2 1.5 1.6 1.6 1.5 1.1 1.3 1.4 1.3 1.3
Cumulative ROE kurtosis 2.6 4.2 4.6 4.2 3.6 1.9 3.2 3.2 2.9 2.6 1.6 2.4 2.3 2.1 1.9
Expected ann ROE (%) 8.2 7.7 7.5 7.3 7.3 12.3 11.8 11.5 11.2 11.1 16.0 15.6 15.3 15.1 14.8
Sharpe ratio1 (%) 54.0 41.1 35.1 31.1 29.3 99.1 78.5 66.0 58.7 54.1 147.5 122.8 105.8 94.2 84.9
Prob of ann ROE = −1.00 (%) 0.3 0.4 0.4 0.5 0.5 0.2 0.2 0.3 0.4 0.4 0.1 0.1 0.2 0.2 0.2
Prob of ann ROE < 0.00 (%) 19.7 25.2 28.4 30.9 32.7 10.2 15.0 18.6 21.5 23.9 4.8 7.8 10.7 13.4 15.8
Prob of ann ROE > 0.10 (%) 47.7 48.3 49.1 49.6 50.2 63.6 61.5 60.4 59.7 59.4 77.5 73.8 71.7 70.1 68.9
Prob of ann ROE > 0.25 (%) 2.6 6.3 9.6 12.6 15.5 6.8 11.2 14.7 17.8 20.5 14.7 18.6 21.7 24.3 26.7

Guarantee
Prob of draw (%) 0.3 0.4 0.4 0.5 0.5 0.2 0.2 0.3 0.4 0.4 0.1 0.1 0.2 0.2 0.2
Expected cost2 ($ thousands) 33.7 38.6 41.4 44.1 45.3 26.8 31.8 35.0 37.0 35.5 18.8 21.9 25.8 27.2 29.0

Research impact
Number sold in phase 2 4.2 4.2 4.3 4.4 4.4 5.1 5.1 5.1 5.2 5.2 6.0 6.0 6.1 6.1 6.1
Number sold in phase 3 2.6 2.9 3.3 3.6 4.0 3.6 4.0 4.3 4.6 4.9 4.9 5.2 5.5 5.7 6.0

1 Risk-free rate 2.0%. 2 Net present value at 2.0% discount rate.
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Table 6.6: Sensitivity of the equity-only RBO performance to different pairwise correlations between phase transitions and
probabilities of success. The results are based on 100,000 Monte Carlo simulation paths for each combination of pairwise
correlation and probability of success. Abbreviations: 𝜌, pairwise correlation between phase transitions; 𝑝, probabilities of
success for pre-clinical, phase 1, and phase 2; ann, annualized.

0.9𝑝 1.0𝑝 1.1𝑝

𝜌 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

Equity tranche
Expected cumulative ROE 1.2 1.4 1.6 1.7 1.9 1.8 1.9 2.1 2.3 2.4 2.5 2.6 2.8 2.9 3.0
Cumulative ROE sd 1.7 2.1 2.4 2.7 2.9 2.0 2.4 2.7 3.0 3.2 2.4 2.7 3.0 3.2 3.4
Cumulative ROE skewness 1.5 1.7 1.8 1.8 1.8 1.4 1.5 1.6 1.6 1.5 1.2 1.3 1.4 1.3 1.3
Cumulative ROE kurtosis 2.9 4.1 4.4 4.3 3.9 2.4 3.0 3.2 3.1 2.7 1.9 2.3 2.3 2.1 1.9
Expected ann ROE (%) 5.2 5.5 5.9 6.2 6.6 8.0 8.0 8.2 8.4 8.6 10.8 10.7 10.7 10.7 10.7
Sharpe ratio1 (%) 37.1 37.8 39.4 40.8 42.3 69.6 63.8 61.3 59.8 59.4 106.8 93.7 86.4 81.6 78.4
Prob of ann ROE = −1.00 (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Prob of ann ROE < 0.00 (%) 29.1 31.6 33.6 35.2 36.6 18.4 21.8 24.4 26.6 28.4 10.4 13.7 16.4 18.8 20.8
Prob of ann ROE > 0.10 (%) 31.1 34.1 36.4 38.2 40.0 43.2 44.9 46.1 47.3 48.4 56.6 56.4 56.6 56.8 57.1
Prob of ann ROE > 0.25 (%) 0.3 1.2 2.2 3.3 4.4 1.0 2.3 3.6 4.9 6.2 2.6 4.2 5.7 7.1 8.4

Research impact
Number sold in phase 2 1.2 1.2 1.2 1.3 1.3 1.4 1.5 1.5 1.5 1.6 1.8 1.8 1.8 1.8 1.9
Number sold in phase 3 1.7 1.9 2.0 2.2 2.4 2.3 2.5 2.6 2.8 3.0 3.0 3.2 3.3 3.4 3.6

1 Risk-free rate 2.0%.
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Figure 6-5: Sensitivity of cumulative ROE to different pairwise correlations between phase transition and probabilities of
success. Each plot corresponds to a different combination of RBO structure and adjustment to the probability of success. We
truncate the plots when cumulative ROE equals 10x for better visualization. Abbreviations: 𝜌, pairwise correlation between
phase transitions; 𝑝, probabilities of success for pre-clinical, phase 1, and phase 2.
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Figure 6-6: Sensitivity of annualized ROE to different pairwise correlations between phase transitions and probabilities of
success. Each plot corresponds to a different combination of RBO structure and probability-of-success adjustment. We truncate
the plots at annualized ROE -0.4 and +0.4 for better visualization. Abbreviations: 𝜌, pairwise correlation between phase
transitions; 𝑝, probabilities of success for pre-clinical, phase 1, and phase 2.
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6.4 Discussion

Traditional financing models have generally struggled to support early-stage drug

development, which corresponds to the riskiest and most challenging part of the drug

approval process. Due to the lack of funding, early-phase translational research is

often referred to as the “Valley of Death” in the drug development pipeline. In this

chapter, we study an alternative financing model proposed by Fernandez et al. [23]—

an RBO structure funded using both debt and equity—for early-stage orphan drug

development. We extend their framework to account for dependence between phase

transitions in projects, thus making it a more realistic representation of biopharma

R&D. Using a multi-state, multi-period simulation approach, we characterize the

performance of different megafund structures over a wide range of assumptions.

We find that our “vanilla” megafund demonstrates risk-reward characteristics at-

tractive to both fixed-income investors and equity holders. The default risks of its

debt tranches are comparable to the historical default rates of AAA-rated corporate

bonds. In addition, the expected returns and the Sharpe ratio of the vanilla megafund

are promising when compared to the CRSP index. Because R&D projects typically

have small betas (i.e., weak correlation with market returns), the RBO structure can

be an attractive option to investors seeking to diversify their portfolios away from

conventional instruments. Consistent with previous studies, our results also show

that the performance of the megafund can be further improved with the addition of a

funding guarantee. Although the face value of the considered guarantee is large, the

expected cost to the guarantor is, in fact, very small.

We simulate an equity-only structure as a baseline for comparison with the vanilla

megafund, and find that the latter outperforms the former both in terms of ROE and

research impact (quantified by the number of compounds successfully sold in phases

2 and 3). The disparity in performance can be attributed to the use of leverage in the

vanilla megafund, which allows it to acquire a larger and more diversified portfolio.

As shown in Table 6.3, equity returns generally increase with leverage in the capital

structure. However, we note that adding leverage increases the volatility and default
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risk of the megafund as well. Because of the trade-off between risk and return, greater

leverage is not always better, and will therefore depend on the risk profile of the assets

in the portfolio. The size of the debt tranches should be carefully selected to maximize

the ROE while keeping the risk of default below thresholds acceptable to institutional

investors.

In addition to the capital structure, we investigate the sensitivity of our results

with respect to different project acquisition strategies, assuming a range of correla-

tions and probabilities of success. We observe lower returns when the portfolio is

constructed in stages over time instead of a single period at the start of simulation.

This is explained by the projects acquired later having less time for development over

the tenor of the megafund. In these cases, the use of more sophisticated securitization

techniques like dynamic leverage can help to improve its performance [197].

In contrast with previous studies, we do not assume independence between phase

transitions. The introduction of correlation leads to fatter tails in the distribution of

returns, which imply higher probabilities of debt default and equity loss. However,

we find that the senior tranche is protected by credit enhancement mechanisms from

systematic risk even at high levels of correlation in the portfolio. In general, the

vanilla and guarantee-backed megafunds outperform the all-equity structure over a

wide range of correlations and probabilities of success.

We emphasize that our simulation is based on specific modeling assumptions re-

garding the cost, duration, valuation, and transition probability of clinical trials at

each stage of development (outlined in Table 6.1). As seen in Tables 6.4 to 6.6, the

expected performance of the megafund can change materially when different param-

eter values are used. The usefulness of our results depends heavily on the accuracy

of the parameter estimates.

Unfortunately, given the nature of biopharma R&D, model calibration is especially

challenging. For example, drug development projects are notoriously difficult to value

since domain experts tend to have conflicting opinions on the therapeutic potential

and the market value of investigational drugs. This is particularly common for first-

in-class programs with novel treatment pathways. Furthermore, project outcomes are
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often dependent on factors which cannot be easily quantified, e.g., the expertise and

experience of the investigators and the managers in charge of the clinical trials.

Here, we use the empirical estimates proposed by Fagnan et al. [190] based on

industry averages and expert panel evaluations for a rare disease portfolio. We also

update the parameters for duration and phase transition based on a more recent study

by Wong et al. [17] using two large pharmaceutical databases. Our assumptions may

be considered conservative, since they do not account for possibilities that can make

orphan drug development less costly or more lucrative, e.g., adaptive clinical trials

that cost less and require shorter durations, or priority review vouchers (PRVs) that

can be sold for additional revenue. (As an illustration, GW Pharmaceuticals received

a PRV from the U.S. Food and Drug Administration for developing Epidiolex, a drug

that treats rare childhood epilepsy. It sold the PRV to Biohaven Pharmaceutical for

$105M in March 2019 [198].)

We should note that the investment mandate of the megafund outlined in this work

is related to, but differs from, that of the “biopharmaceutical mega-fund” proposed

by Ortiz et al. [199]. We consider the financing of a portfolio of risky early-stage

pre-clinical assets, in contrast to their objective of securitizing a large pool of phase

1 assets. In addition, they investigate the potential benefits of incorporating assets

backed by revenue-generating licensing and royalty agreements with well-capitalized

entities.

Also, despite our focus on orphan drugs here, our framework can be easily gen-

eralized to arbitrary drug development portfolios once the simulation parameters are

modified accordingly.
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Chapter 7

Financing Treatments for

Glioblastoma

Glioblastoma multiforme (GBM) is the most common type of brain cancer that is

also the most aggressive and deadly. The prognosis for GBM is extremely poor,

and one of the lowest among all cancers, with less than 6% of afflicted patients

surviving more than five years after diagnosis. In fact, the survival rates for GBM

have not shown any improvements over the past three decades. Treatment options

are very limited. Apart from surgery and radiation, there are only four U.S. Food

and Drug Administration approved drugs for brain tumors. Due to the significant

scientific challenges, high costs of development, long investment horizons, and low

probabilities of success, the development of curative treatments for GBM has largely

remained stagnant. In this chapter, we investigate the use of a megafund [23, 189,

190, 200, 201, 202] as a financing vehicle to diversify and reduce the financial risks of

drug discovery for GBM. We extend the simulation framework in previous studies to

include adaptive clinical trial designs—specifically, the Glioblastoma Adaptive Global

Innovative Learning Environment platform [203]—in addition to the traditional fixed-

sample and fixed-duration protocols. We collaborate with the scientific team at the

National Brain Tumor Society (NBTS) to identify a portfolio of 20 promising projects

for investment, based on actual brain cancer therapies that are under development

at the time of writing. Using modeling assumptions provided by the domain experts
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from NBTS and from literature (e.g., probabilities of success, costs of development,

durations, correlations, and profitability), we simulate the financial performance of the

portfolio, and demonstrate that the megafund approach can provide promising returns

to equity investors through diversification across different phases of development and

multiple therapeutic mechanisms. Our results show that the megafund model has the

potential to overcome current financial disincentives and accelerate innovation in the

development of treatments for GBM.

7.1 Introduction

Glioblastoma (GBM) is the most common and the most lethal malignant primary

brain tumor in the United States. It has an extremely poor prognosis, due to an

unclear pathogenesis and a lack of curative treatments. A study in 2017 reported that

GBM accounts for 47.1% of primary malignant brain tumor incidence in the U.S., and

its five-year relative survival rate is only 5.5%, significantly worse than the survival

rate for all malignant brain and central nervous system tumors combined, 34.9% [204].

Under the current standard of care, consisting of maximal surgical resection followed

by chemoradiation [205], approximately 70% of GBM patients experience recurrence

within one year of diagnosis, and the median survival time is merely 14.4 months

[206].

Developing curative treatments for GBM is a social imperative. Nevertheless, it

is financially risky, due to the long investment horizon and the low probability of

success. In theory, the financial risks of early-stage GBM drug development could be

mitigated via the “multiple shots on goal” strategy of a megafund vehicle [23]. Instead

of placing its entire stake into a single asset, a megafund invests in a sizable portfolio of

clinical assets diversified across development stages and therapeutic mechanisms. The

risk-return performance of such a portfolio can be attractive to many private sector

investors. Furthermore, the inherent parallelism of the approach greatly increases

the chance of producing breakthrough life-saving therapies for presently incurable

diseases.
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The megafund vehicle was originally proposed to finance translational research in

oncology, and it was subsequently adapted to specific disease areas such as orphan

diseases [189], Alzheimer’s disease [200], and ovarian cancer [202]. It is currently

under consideration as a financing method by the National Brain Tumor Society

(NBTS), the largest nonprofit organization in the U.S. dedicated to advancing inno-

vative treatments of brain tumors with a vision to ultimately conquer and cure these

deadly diseases once and for all.

In this chapter, we demonstrate the viability of applying the megafund vehicle

to finance drug development programs for GBM and gliomas. Using estimates from

the NBTS network of GBM experts and an extensive literature review, we perform

Monte Carlo simulations to analyze the performance of such a megafund. We find

that diversifying the portfolio across different stages of development and therapeu-

tic mechanisms makes the risk-return profile acceptable to a large group of investors

in the private sector. Furthermore, we demonstrate the synergy between the mega-

fund approach and the novel platform clinical trial program Glioblastoma Adaptive

Global Innovative Learning Environment (GBM AGILE) in simultaneously reducing

the scientific and financial risks of developing early-stage innovative GBM therapies.

7.2 Parameters

In this analysis, we characterize the financial returns of a hypothetical portfolio of

brain cancer therapeutics using Monte Carlo simulation. We adopt a framework

similar to that used in prior studies to analyze the performance of an Alzheimer’s

disease megafund [200], a pediatric oncology megafund [201], and an ovarian cancer

portfolio [202] (see Fig. 7-1). To reflect recent breakthroughs in brain cancer drug

development, we extend the simulation model to include adaptive clinical trial designs

in addition to the traditional fixed-sample protocol. In particular, we consider the

GBM AGILE trial design [203]. As an inferentially seamless phase 2/3 platform trial

[207], GBM AGILE has the potential to identify effective therapies for GBM more

efficiently and rapidly than earlier methods. The cost and duration of such trials
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are typically substantially lower than conventional clinical trials. Projects eligible for

GBM AGILE significantly improve the risk-reward profile of the portfolio, which has

special importance given the low historical success rates of treatment development

for brain cancer [208].

This framework depends on a number of key modeling assumptions about the size

and composition of the portfolio, the correlation between development outcomes, and

the potential economic value of successful compounds. Each asset in the portfolio is

assigned a probability of success, cost of development, and duration of clinical testing

at each phase of development. We describe each aspect in detail in the following

sections.

7.2.1 Portfolio

The performance of the megafund depends crucially on the composition of its un-

derlying portfolio. To exploit the benefits of diversification and achieve an attractive

risk-reward profile for the megafund, the portfolio should ideally cover a range of sci-

entific pathways, mechanisms of action, and molecular targets, prudently allocating

more capital towards projects that demonstrate strong scientific evidence, but also

investing in programs based on more speculative hypotheses. In practice, project

selection for the megafund would typically be performed by a team of medical ex-

perts and portfolio managers exercising scientific and business judgment and acumen

acquired through years of domain-specific experience.

In this work, we identify scientifically promising pathways based on discussions

with neuro-oncologists and leading industry experts from the NBTS network and the

scientific team. This process yielded 20 projects for inclusion in our hypothetical

NBTS portfolio (see Table 7.1). The projects are based on actual brain cancer thera-

pies under development at the time of writing, spanning from assets in the late-stage

discovery phase through the early- to mid-phases of clinical development. We also

asked these experts to identify treatments that are potentially transformative, eli-

gible for inclusion in GBM AGILE, or eligible for regulatory incentives, such as an

Orphan Drug or Priority Review designation. This information is used to estimate
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Figure 7-1: Simulation framework for the megafund. The fund acquires a portfolio of
investigational assets at the start of the simulation. Pipeline drugs that successfully
advance to the next phase of development are funded; those that fail are discontinued.
Assets are liquidated at market value on approval. We compute the returns of the
megafund at the end of the simulation.
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the profitability of approved drugs.
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Table 7.1: Hypothetical portfolio of brain cancer therapeutics. We assume that projects targeting pediatric patients are
eligible for Priority Review Vouchers. Abbreviations: GA, eligibility for GBM AGILE; ODS, eligibility for Orphan Drug status;
PP, target pediatric patients; TT, transformative treatment; IMM, immunotherapy; DDR, DNA damage repair; TM, tumor
metabolism; PM, precision medicine; DE, devices; PRE, preclinical; P1, phase 1; P2, phase 2; HGGs, high-grade gliomas;
uMGMT, unmethylated O6-methylguanine DNA methyltransferase; DNA-PK, DNA-dependent protein kinase; ATM, ataxia-
telangiectasia mutated; ATR, ataxia telangiectasia and Rad3-related protein; FGFR, fibroblast growth factor receptor; LPCAT1,
lysophosphatidylcholine acyltransferase 1; DRD2, dopamine receptor D2; BBB, blood-brain barrier; EGFR, epidermal growth
factor receptor.

Therapeutic Project Patient population Phase GA ODS PP TT
area

IMM T cell activation Recurrent GBM P2 Yes Yes No Yes
T cell activation Recurrent GBM P2 Yes No No Yes
T cell activation Recurrent GBM P2 Yes Yes No Yes
Personalized dendritic cell vaccine Newly diagnosed GBM and HGGs P1 Yes Yes Yes Yes
Retroviral replicating vectors HGG PRE No Yes Yes Yes
Oncolytic virus Recurrent GBM PRE Yes Yes No Yes
Autologous tumor cell vaccine Newly diagnosed GBM P2 Yes Yes No Yes

DDR DNA-PK inhibitor Newly diagnosed uMGMT GBM P2 Yes Yes No Yes
ATM inhibitor Newly diagnosed uMGMT GBM P2 Yes Yes No Yes
ATR inhibitor Newly diagnosed GBM P2 Yes Yes No Yes
FGFR inhibitor Recurrent GBM P2 Yes Yes No Yes
DNA repair inhibitors Newly diagnosed uMGMT GBM PRE No Yes No No
ATM inhibitor Pediatric gliomas PRE No Yes Yes Yes

TM LPCAT1 inhibitor Newly diagnosed and recurrent GBM PRE No Yes No No
PM DRD2 receptor antagonist Recurrent GBM with EGFR-low P2 Yes Yes Yes Yes

and DRD2-high tumor phenotype
BBB-penetrant signaling inhibitor Newly diagnosed GBM PRE Yes Yes No No
CRISPR-Cas9 gene editing Newly diagnosed and recurrent GBM PRE Yes Yes No Yes
BBB-penetrant transcription factor inhibitor Newly diagnosed GBM PRE Yes Yes No No
BBB-penetrant transcription factor inhibitor Brain metastases PRE Yes Yes No No

DE Fluorescence-guided surgery Brain tumor P2 No Yes No No
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7.2.2 Probability of Success, Cost of Development, and Du-

ration

We first compile from the literature a set of estimates about the probability of success,

the cost of development, and the testing duration of each phase of brain cancer drug

development [189, 202, 208, 209, 210, 211] (see Appendix F.1). Next, we ask each

expert from the NBTS network to estimate the same set of parameters based on their

experience. To reduce the impact of outliers, we focus on the median of the estimates

provided by the panel (see Appendix F.2). Finally, we take the average of both sets

of estimates—those derived from the literature and the median of expert opinion—as

the baseline values for our simulation (see Table 7.2).

Assuming standard clinical trials, we estimate that a brain cancer drug requires

approximately 12 years of clinical development and about $110 million in develop-

ment costs to move from preclinical stage to approval by the U.S. Food and Drug

Administration (FDA). The baseline overall probability of success is estimated to be

about 5.7%. This low figure reflects the challenges in developing brain tumor treat-

ments, such as the lack of clinical trials for patients with brain metastases and the

difficulties in delivering drugs across the blood-brain barrier, but it also implies that

the unmet need and market potential in this patient population is very large.

We believe that a portfolio handpicked by the NBTS medical and scientific ad-

visory council has the potential to outperform the industry average. Therefore, we

adjust the overall probability of success estimate upward by a factor of 1.25x (a “skill

and access factor” calibrated through discussions with the NBTS network of GBM

experts) to 7.2% for our simulations. In the Section 7.3.2, we perform a sensitivity

analysis of our results with respect to this factor.

7.2.3 GBM AGILE

GBM AGILE is a global, two-stage platform trial designed to facilitate the expedited

approval of effective therapies for GBM, and reduce the cost of performing large-scale

clinical studies [203]. It is operated by the Global Coalition for Adaptive Research

212



Table 7.2: Probability of success, costs of development, and duration at each phase
of development for standard clinical trials. We believe that the NBTS portfolio has
the potential to do better than the industry average. Therefore, we adjust the overall
probability of success estimate upwards by a factor of 1.25x (a “skill and access
factor”). This factor is distributed evenly among preclinical, phase 1, phase 2, and
phase 3, i.e., an increase of approximately 1.06x for each phase, so that the overall
probability of success from preclinical to approval is increased by 1.25x. Abbreviations:
PoS, probability of success; PRE, preclinical; P1, phase 1; P2, phase 2; P3, phase 3;
NDA, New Drug Application.

Parameter PRE to P1 P1 to P2 P2 to P3 P3 to NDA to PRE to
NDA Approval Approval

PoS (%)
Baseline 64.5 70.7 35.3 35.8 100.0 5.7
NBTS portfolio 68.2 74.8 37.3 37.9 100.0 7.2

Skill and access factor 1.06x 1.06x 1.06x 1.06x 1.00x 1.25x
Duration (months) 12.0 33.1 39.3 50.0 10.8 145.1
Development cost 3.4A 8.3 18.6 81.4 0.0 111.7
($ millions)
Discount factor (%) 23.0 20.0 17.2 12.5 10.0
A Includes an upfront cost of $2.3M.

(GCAR), a 501(c)(3) nonprofit organization. A platform trial evaluates the effects

of multiple therapies, each as an experimental arm, against a common control arm.

The platform is maintained under a master protocol, and therapies enter or exit the

platform based on a decision algorithm [212]. In GBM AGILE, all drugs that enter

the platform first undergo a screening stage (“stage 1”), which identifies promising

therapies and enrichment biomarkers using overall survival as the primary endpoint.

After a short burn-in period with fixed randomization to acquire initial response data,

newly enrolled patients are assigned treatments via Bayesian adaptive randomization,

with the probability of receiving each therapy proportional to the probability of that

therapy improving overall survival. Promising therapies identified in the first stage

then seamlessly transition to the second stage (the “confirmation stage” or “stage

2”), which uses fixed randomization on a smaller number of patients to confirm the

therapeutic effects to support registration for FDA approval.

Under GBM AGILE, patient enrollment for arms that demonstrate promising

results is prioritized and therefore, effective therapies proceed more rapidly through

the trial, thus enabling faster registration. This can substantially reduce the cost

and duration of developing GBM therapeutics. Therapies that do not enter the
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confirmatory stage may still generate valuable clinical data for biopharma companies

to improve drug and trial designs outside of GBM AGILE. Biopharma companies

may also conduct follow-up trials—standard phase 2 or phase 3—for therapies that

exhibit positive effects in stage 1, but do not meet the criteria to enter stage 2.

We model GBM AGILE as a two-stage process—stage 1 and stage 2—in place of

the standard phase 2 and phase 3 trials (see Fig. 7-2). To simulate the uncertainty

in the project selection process, we assume that each asset in the portfolio that is

eligible for GBM AGILE has some probability of being included in the platform.

Assets not selected for GBM AGILE proceed via the standard 505(b)(1) pathway for

registration.

For assets in stage 1 of GBM AGILE, we assume that those which demonstrate

promising treatment effects earlier will enter stage 2 with a smaller number of accrued

patients (“early graduation”)—further reducing the cost and duration of these trials.

Other assets may either enter stage 2 after enrolling a larger number of patients

(“regular graduation”), or exit the platform after stage 1 due to futility or tolerability

issues. We also simulate the scenario where the megafund conducts follow-up standard

phase 2 or phase 3 trials for assets that exit GBM AGILE after stage 1. Similar to

the phase transitions of standard trials, we model inclusions in GBM AGILE and

transitions from stage 1 and stage 2 as correlated Bernoulli random variables (see

Section 7.2.4 and Appendix F.4).

We derive our cost and duration estimates assuming a steady state of one control

arm and three experimental arms in GBM AGILE (see Appendix F.3 for baseline

assumptions). We calibrate our estimates—patient accrual rate, cost per patient,

and probability of inclusion and graduation of each stage—with the input from both

NBTS and GCAR (see Table 7.3). No literature estimates were available at the time

of writing since GBM AGILE is the first global, disease-specific platform trial for

GBM. We note that the cost and duration of each GBM AGILE trial are much lower

than standard phase 2 and phase 3 trials combined, approximately 75–85% lower in

terms of cost, and 20–30% shorter in terms of duration.
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Figure 7-2: Possible development paths for assets in the NBTS portfolio.

Table 7.3: Probability of transition, costs of development, and duration at each stage
of development for GBM AGILE. Abbreviations: PoT, probability of transition; P1,
phase 1; S1, stage 1; S2, stage 2; P2, phase 2; P3, phase 3; NDA, New Drug Appli-
cation.

Parameter P1 to S1 S1 to S2 S1 to S2 S1 to P2 S1 to P3 S1 to S2 to
(Regular) (Early) Futility NDA

PoT (%) 33.0A 15.0 5.0 10.0 10.0 60.0 50.0
Duration (months) 7.0B 21.0 15.0 21.0 21.0 21.0 42.0
Development cost 15.2 10.7 15.2 15.2 15.2 7.5
($ millions)
A Probability of inclusion in GBM AGILE conditioned on a successful phase 1 trial (see P1 to P2 in Ta-
ble 7.2). B Negotiation period for inclusion in GBM AGILE.
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7.2.4 Correlation

The presence of pairwise correlation among the outcomes of therapeutic projects has

major implications for the performance of the megafund. It introduces systematic risk

to the portfolio that cannot be diversified away, and it has adverse effects on the risk

profile of the fund in general. Depending on the similarities between the underlying

treatment pathways and targets of projects in the portfolio, the outcomes of these

projects (e.g., phase transitions, and entry to and graduation from GBM AGILE) are

likely correlated with one another. That is, drugs with similar mechanisms of action

are likely to have similar trial outcomes.

To quantify the level of correlation in our hypothetical portfolio, we asked the

NBTS network of experts to estimate the pairwise correlation between every pair of

projects in the portfolio. The correlations were first qualitatively assessed as low, low-

medium, medium-high, and high by the team, and subsequently mapped to numerical

values of 10%, 25%, 75%, and 90%, respectively. In the final step, we average the

estimates by the experts (see Fig. 7-3) before projecting the resulting correlation

matrix to its nearest positive-definite counterpart for use in our simulations [213].

See Appendix F.4 for the details of implementation.

7.2.5 Profitability of an Approved Compound

Brain cancer patients have very limited treatment options. The standard of care

that has remained largely unchanged for over 20 years consists of surgery followed

by radiation and temozolomide treatment. The other three FDA approved drugs for

use in brain tumors, lomustine, carmustine, and bevacizumab, offer limited survival

benefits. With so few historical data points, it is difficult to estimate the profitability

of an approved brain cancer drug, as Chaudhuri et al. [125] did for ovarian cancer

therapeutics. To complicate the process, the projects in our portfolio target a variety

of patient populations, such as newly diagnosed patients, patients with recurrent

disease, and adult versus pediatric patients. Therefore, it is quite likely they will have

different valuations on approval. The use of a single market value as in Chaudhuri et
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Figure 7-3: Correlation matrix of brain cancer projects (average of estimates from
all the experts). Heat-map representation of pairwise correlations between all 380
ordered pairs of projects in our hypothetical portfolio. Red indicates high correla-
tion, orange indicates medium-high correlation, yellow indicates low-medium cor-
relation, and green indicates low correlation. Abbreviations: IMM, immunother-
apy; DDR, DNA damage repair; TM, tumor metabolism; PM, precision medicine;
DE, devices; DNA-PK, DNA-dependent protein kinase; ATM, ataxia-telangiectasia
mutated; ATR, ataxia telangiectasia and Rad3-related protein; FGFR, fibroblast
growth factor receptor; LPCAT1, lysophosphatidylcholine acyltransferase 1; DRD2,
dopamine receptor D2; BBB, blood-brain barrier.
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al. [125] may not be appropriate in this analysis.

Instead, we follow the approach used by Lo et al. [200] and Das et al. [201]. We

estimate the economic value of a successful compound by the net present value (NPV)

of its projected future cash flows upon FDA approval. The future cash flows are es-

timated using a set of assumptions about the incidence rate of the targeted patient

population, the potential market penetration, the price charged per patient, the mar-

keting exclusivity period, and the eligibility for pediatric extension and a Priority

Review Voucher. In addition, we take into account the transformative potential of

the treatment pathway; transformational treatments that substantially improve pa-

tient outcomes are priced at a premium—a “transformative factor” of 2.0x—relative

to the standard of care. We calibrate our assumptions through discussions with the

NBTS network of experts, and a review of the current standard of care and market

research reports [214]. In our base case, the NPV of approved drugs in our portfolio

ranges between $530M and $2,988M, with a median valuation of $1,272M. Fig. 7-4

illustrates the investment timeline of one drug in our portfolio. See Appendix F.5 for

our baseline assumptions and valuation of all other drugs.

7.3 Results

7.3.1 Baseline

We summarize the performance of the NBTS portfolio in Table 7.4. The baseline

portfolio achieves an average return of 15.1% per annum, which outperforms similar

megafund portfolios for ovarian cancer [125] and Alzheimer’s disease [200], suggesting

that such an investment opportunity may be attractive a wide group of private sector

investors. Its NPV is approximately $86M, indicating that the megafund is likely to

be profitable.

On the other hand, the baseline portfolio demonstrates high volatility and large

probabilities of loss and wipeout, a limitation imposed by the scientific challenges of

GBM therapeutic innovation. Nonetheless, our simulation shows that, on average,
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Figure 7-4: Investment timeline of a brain cancer drug targeted at recurrent GBM
patients. We assume an incidence rate of 30,000 patients per year, a conservative
market penetration of 10%, and a price of $132,000 per patient. For simplicity, we
assume that our price is the amortized cost of the entire course of treatments needed
for each patient. We use the annual per-patient expenditure of Temodar—computed
based on the average wholesale price—as reference for the price of a newly approved
GBM drug. We believe that a new therapy with greater efficacy over the standard of
care and marketing exclusivity is likely to be priced closer to a brand-name drug than
a cheaper generic drug like temozolomide. The annual cost of Temodar is estimated to
be $66,000 per patient [215], adjusted to 2019 dollars using the Biomedical Research
and Development Price Index. We note that the drug in this example is priced at a
premium of 2.0x, i.e., $132,000, because it has been identified to be a transformative
treatment by the experts. Assuming a cost of capital of 10%, the drug has a net
present value at $1,928M on approval. Abbreviations: PRE, preclinical; P1, phase 1;
P2, phase2; P3, phase 3; NDA, New Drug Application; PV, present value.
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more than two therapies financed by the megafund will receive FDA approval, though

the uncertainty in the number of approved therapies is also significant. There is a

79.1% probability that at least one therapy in the portfolio will receive FDA approval,

and the average duration from the initial acquisition of the assets until the first FDA

approval is 8.3 years. The advent of new curative therapies for GBM should generate

tremendous societal benefits on a global scale, which cannot be captured by these

financial metrics.
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Table 7.4: Performance of the NBTS portfolio, simulated with 100,000 Monte Carlo runs. The baseline portfolio consists
of 12 projects from a mix of phases, 15 of which are eligible for inclusion in GBM AGILE, and assumes a skill and access
factor of 1.25x, a transformative factor of 2.0x, a maximum market penetration of 20% for approved drugs, and a correlation
matrix derived from estimates by the NBTS network of experts. E[·] denotes expectation and SD[·] denotes standard deviation.
Abbreviations: R, average return per annum; N, number of approved drugs; T, time until first FDA approval; PoL, probability
of loss; PoW, probability of wipeout; 𝜌, pairwise correlation; SAF, skill and access factor; TF, transformative factor; MP, rate
of market penetration.

E[R] SD[R] E[NPV] SD[NPV] E[N] SD[N] E[T] SD[T] PoL PoW
(%) (%) ($ millions) ($ millions) (years) (years) (%) (%)

Baseline 15.1 24.3 86 780 2.2 2.0 8.3 1.7 25.6 20.9
Preclinical only 11.4 26.3 -19 398 1.5 1.6 11.5 0.9 37.2 33.8
Equi-correlation (𝜌 = 0%) 17.4 18.6 80 574 2.2 1.4 8.2 1.6 14.3 9.5
Equi-correlation (𝜌 = 10%) 16.1 21.5 81 673 2.2 1.7 8.2 1.6 19.9 15.1
Equi-correlation (𝜌 = 40%) 12.4 29.2 91 962 2.2 2.5 8.2 1.6 34.7 30.2
Equi-correlation (𝜌 = 80%) 4.4 42.7 86 1,419 2.2 3.8 8.1 1.5 56.6 53.6
SAF = 1.0x 12.8 25.0 16 737 1.9 1.9 8.3 1.7 29.3 24.9
TF = 1.0x 8.7 19.3 -60 434 2.2 2.0 8.3 1.7 31.5 20.9
MP = 10% 6.4 17.5 -95 376 2.2 2.0 8.3 1.7 32.8 21.2
MP = 30% 18.2 27.0 170 1,185 2.2 2.0 8.3 1.7 24.3 20.8
Standard clinical trials only 11.6 22.3 -38 711 2.2 2.0 8.9 1.3 28.5 22.9
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7.3.2 Sensitivity Analysis

To analyze the robustness of our results against each model assumption, we perform

sensitivity analyses on the portfolio composition, the correlation structure between

projects, the added value of biomedical expertise, the price premium of transformative

therapies, as well as the potential market penetration of an approved drug. We

summarize the results in Table 7.4.

Portfolio Composition

The performance of the portfolio hinges on its diversification. In addition to the

baseline portfolio which consists of projects from a mix of phases (see Table 7.1), we

simulate a portfolio with the same set of projects but all acquired at the preclinical

stage. This allows us to gauge the effect of diversification across different stages of

development.

We find that a preclinical-only portfolio requires an average investment of only

$673M, much lower than the $1,037M of the mixed-stage baseline portfolio, since

market valuations are based on lower probabilities of success and longer investment

horizons. However, the lack of diversification across development stages substantially

increases the risk that no therapy in the portfolio will receive FDA approval, leading

to a 3.7 percentage point fall in expected annualized return and an 11.6 percentage

point increase in the probability of loss versus the base case. The expected NPV also

becomes negative, indicating that the investment will result in a net loss. To ensure

an attractive risk-return profile, it is critical to structure the portfolio with assets

spanning early- and mid-phases of clinical development.

Correlation

The volatility of the portfolio is largely determined by the correlation structure of the

underlying drug development programs. A portfolio consisting of multiple drugs that

are highly correlated with one another, e.g., based on similar therapeutic mechanisms,

will have high volatility. To test the sensitivity of our results to this parameter, we
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simulate portfolios where the pairwise correlation between any two distinct assets is

identical, i.e., equi-correlation. We sweep values between 0% and 80% and find that

the expected annualized return decreases with higher correlation, while all other risk

measures—probability of loss and wipeout, and volatility of returns—increase.

The correlation structure of the baseline NBTS portfolio is based on the qualitative

assessment of program similarity by domain experts. Although certain groups of

drugs in the portfolio are highly correlated due to similar therapeutic mechanisms,

diversification across therapeutic mechanisms lowers the overall correlation to a level

equivalent to that of an equi-correlated portfolio with pairwise correlations between

10% and 40%.

Skill and Access Factor

In our baseline scenario, we assume that the portfolio managers are skilled at identify-

ing promising drug candidates for investment, and model this advantage by adjusting

the overall probability of success estimate upwards by a skill and access factor of

1.25x. Here, we reduce the factor to 1.0x, implying no incremental improvement in

the probability of success beyond the industry average. This reduces the expected

annualized return by 2.3 percentage points, while increasing the probabilities of loss

and wipeout by 3.7 and 4.0 percentage points, respectively. The expected NPV re-

mains positive but decreases to less than a fifth of the baseline value. The sensitivity

of the megafund performance to the skill and access factor reveals the importance of

biomedical expertise in project selection and portfolio management.

Transformative Factor

In our base case, we assume that transformative therapies, once approved, can be

priced at a premium of 2.0x relative to the current standard of care, thus generat-

ing much higher revenue than an average drug for GBM. As drug prices are facing

increasing scrutiny from regulators, payers, and patients, such a high premium may

be inappropriate and unrealistic. Therefore, we consider the case where all approved

therapies are priced at the current standard of care, i.e., a pricing transformative

223



factor of 1.0x. We find that this leads to a 6.4-percentage-point decrease in expected

annualized return, and a 5.9-percentage-point increase in the probability of loss. Fur-

thermore, the expected NPV becomes negative, indicating that the ability and flexi-

bility to price transformative therapies at a premium has substantial implications on

the financial viability of a GBM venture fund.

Market Penetration

A key factor determining profitability and returns is the potential market penetration

of an approved drug, i.e., the proportion of the target patient population who will

receive the therapy once it enters the market. Our baseline model assumes the max-

imum market penetration of any approved drug to be 20%. This estimate is likely

conservative, since no curative treatment of GBM is currently available. However,

we can reasonably expect a transformative therapy to become the new standard of

care for GBM once approved. Such a drug will likely acquire a market share well

above 20%. Increasing the maximum market penetration to 30% increases the ex-

pected annualized return by 3.1 percentage points, and doubles the expected NPV. In

contrast, decreasing the maximum market penetration to 10% reduces the expected

annualized return by more than half, and turns the expected NPV negative. The

impact of the market penetration on returns illustrates the significant profit potential

of transformative GBM therapies.

GBM AGILE

The megafund vehicle and GBM AGILE share the same concept of “multiple shots

on goal.” They have complementary goals: the former facilitates the financing of

multiple drug development programs in parallel, while the latter expedites the clin-

ical investigation of multiple experimental treatments simultaneously. The baseline

portfolio includes 15 assets that are eligible for inclusion in GBM AGILE, out of a

total of 20 projects. To demonstrate the synergy between these two novel models, we

simulate a portfolio with the same set of projects but without GBM AGILE, i.e., a

portfolio with non-adaptive, conventional clinical trials only. In the absence of GBM
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AGILE, we find that the expected annualized return falls by 3.5 percentage points.

Furthermore, the expected NPV becomes negative, indicating that the venture fund

will likely make a net loss. This illustrates the value added by GBM AGILE, in terms

of boosting returns and NPV, and reducing risks.

7.4 Discussion

The development of new transformative therapeutics for GBM has been largely un-

successful for decades. This is due not only to the inherent scientific challenges of

development, but also the significant financial risks of investing in early-stage clinical

programs. The performance of a GBM megafund may be attractive to a wide group

of investors from both the public and private sectors, provided the underlying port-

folio is suitably diversified and uses the GBM AGILE platform to increase its overall

probability of approval.

Sensitivity analysis reveals that domain expertise plays a crucial role in identifying

promising and potentially transformative therapies for investment in the GBM mega-

fund portfolio. It also demonstrates the importance of diversification across different

stages of development and mechanisms of action as an effective way to increase the

megafund’s overall probability of success and reduce the volatility of its returns.

In addition, the use of the novel GBM AGILE platform generates significant syn-

ergy with the megafund. Inclusion of portfolio assets in the platform boosts annu-

alized returns and NPV, reduces risks, and expedites the delivery of transformative

GBM therapies to patients, making the venture fund attractive to both private sector

and impact investors. The GBM AGILE platform also provides a financially efficient

means to collect valuable clinical data for a therapeutic asset to guide its subsequent

development in clinical trials, even if the therapy does not meet the criteria to enter

stage 2 of the platform.

In our simulations, we assume that enough capital can be raised to finance the

entire portfolio through all stages of development. In practice, it may be difficult for

nonprofit organizations such as NBTS to raise nearly $1.5B at the outset. To address
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this issue, the fund may consider a mixture of equity and debt in its capital structure

and adjust the leverage dynamically as the clinical trials progress into later stages

[197]. Under a tight budget constraint, it may also be necessary to acquire drug

development programs dynamically, liquidating some projects during intermediary

development in order to fund more promising candidates. Our simulation results

may be regarded as an upper bound on the performance of a GBM megafund in

practice.

7.5 Conclusion

Developing curative treatments for GBM is an urgent social imperative. However,

the high development costs, long investment horizons, and significant risks of failure

in the clinical trial process have prevented private sector investors from investing

in early-stage GBM drug development programs to treat this deadly disease. We

demonstrate the potential viability of the megafund vehicle to finance a portfolio

of 20 GBM drug development programs. Through the appropriate diversification

of the portfolio across different stages of development and therapeutic mechanisms,

while simultaneously leveraging the novel GBM AGILE platform to lower costs and

accelerate clinical testing, the risk-reward profile of such a megafund can be attractive

to equity investors.
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Part IV

Conclusion
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Chapter 8

Summary of Findings

Despite the many breakthroughs in biomedical research and the increasing demand

for new drugs to treat unmet medical needs, the productivity of the pharmaceutical

industry has not grown at the same pace. It appears that the traditional sources of

financing in biopharma research and development (R&D) are no longer compatible

with the new realities of biomedical innovation, a process which has become more

challenging, complex, expensive, time-consuming, and risky in the past two decades.

There is a need for better analytics in different areas of biomedical research to allow

stakeholders to make more informed decisions. In addition, new business models are

required to address the dearth of funding for translational medicine in the valley of

death due to the mismatch between the risk characteristics of biomedical projects and

the risk preferences of biopharma investors. We explore both topics in this thesis,

with Chapters 2 to 4 in Part II focusing on the former and Chapters 5 to 7 in Part III

on the latter.

In Chapter 2, we develop predictive analytics for precision medicine in advanced

non-small cell lung cancer (NSCLC) that reflects the current standard of care. Our

work is one of the largest studies of NSCLC to consider biomarker mutation and

inhibitor therapy as candidate predictive variables. We propose a stochastic tumor

growth model to predict tumor response, and consider a range of machine learning

algorithms and survival models for predicting clinical endpoints. We estimate and

validate our models using data from pivotal randomized clinical trials submitted to
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the U.S. Food and Drug Administration, and demonstrate that our models achieve

promising out-of-sample predictive performances. In addition, we identify baseline

variables that are strongly associated with response and survival, and find that our

results are consistent with related studies in the literature. Our findings also point

to the need for data on composite multi-omic signatures in order to develop more

powerful predictive models.

In Chapter 3, we develop better analytics for quantifying the risks in drug devel-

opment projects. Using drug and clinical trial data from two large pharmaceutical

pipeline databases, we train machine learning models to predict the probability of

approval of drug candidates in phase 2 and phase 3, respectively. Unlike related

studies that use complete case analysis—i.e., dropping all data points with missing

information—we apply statistical imputation methods to deal with missingness. To

the best of our knowledge, our analysis is the largest of its kind. The dataset used

includes more than 6,000 unique drugs and over 19,000 unique clinical trials. In

contrast, most published research are based on datasets with less than a hundred

drugs. In addition, our models provide conditional estimates of success based on a

wide range of drug and clinical trial features. Such estimates are more accurate than

the unconditional estimates that biopharma companies typically use to manage their

portfolios. Our models may be used to make more informed data-driven decisions in

risk assessment and portfolio management. By reducing the uncertainty surrounding

drug development and providing greater risk transparency, our work can help improve

financial efficiency and facilitate capital allocation in biomedical research.

In Chapter 4, we propose a systematic framework for quantitatively assessing

the costs and benefits of different vaccine efficacy clinical trial designs for COVID-

19 (coronavirus disease 2019) vaccine development, including fixed-duration clinical

trials, a novel adaptive clinical trial, and a human challenge trial (HCT). We use epi-

demiological models calibrated to the current pandemic to simulate the time course

of each trial design for different vaccine efficacies, epidemiological scenarios, vaccina-

tion schedules, and approval requirements, and identify situations where HCTs can

provide greater social value versus non-challenge trials. To the best of our knowl-
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edge, our work is the first study that attempts to quantify the potential benefits of

a COVID-19 HCT. Our results contribute to the moral and ethical debate about

HCTs by allowing stakeholders, such as vaccine developers, policymakers, and HCT

volunteers to understand the implications of their actions (or inaction).

In Chapter 5, we develop a systematic framework for tracking the outcomes of

university technology licensing in the life sciences using the Massachusetts Institute

of Technology as a case study. We construct several measures of impact including

patents cited in the Orange Book, capital raised, outcomes from mergers and acqui-

sitions, patents granted to university intellectual property licensees, drug candidates

discovered, and U.S. drug approvals. As academic institutions play an increasingly

important role in the biotechnology industry through technology transfer and the cre-

ation of startups, our methodology provides a useful framework for other institutions

to track the outcomes of their intellectual property in the therapeutics domain. Our

results also raise the possibility of a novel business model—an Academic Translational

Medicine fund that raises capital from limited partners to invest in therapeutics com-

panies that license intellectual property from a consortium of universities for further

development and commercialization.

In Chapter 6, we investigate the use of a recently proposed megafund structure for

financing early-stage biomedical research. We extend the existing model to account

for technical correlation between assets in the underlying portfolio using a single-

factor model with a Gaussian copula, thus allowing us to evaluate the tail risks of

the megafund more accurately. We show that financial engineering techniques such

as portfolio theory and securitization can be used to structure the megafund into

derivatives (e.g., bonds and equity) with risk-reward characteristics that are attractive

to different classes of investors. This allows the fund to tap into a substantially larger

pool of capital (e.g., the bond market) than the traditional sources of biopharma

R&D funding (e.g., venture capital, philanthropic donations, and public and private

equity). By improving the efficiency of the financing process and lowering the cost of

capital, the megafund approach can help alleviate the valley of death in translational

R&D.
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In Chapter 7, we collaborate with physicians and researchers at the National Brain

Tumor Society to identify and model a portfolio of promising glioblastoma (GBM)

therapies for investment. We further extend the megafund model to include the

Glioblastoma Adaptive Global Innovative Learning Environment (GBM AGILE), a

novel adaptive clinical trial platform designed specifically to accelerate clinical test-

ing for GBM. Despite the low historical success rates of treatment development for

brain cancer, our simulations show that a GBM venture fund can generate promising

returns to equity investors through appropriate diversification. Our results also high-

light the synergy between the GBM AGILE platform and the megafund approach: the

former expedites the clinical testing of multiple experimental treatments simultane-

ously, while the latter facilitates the financing of multiple drug development programs

in parallel. By leveraging on innovations in clinical trial design and financing mecha-

nism, we can overcome current financial disincentives and accelerate the development

of treatments for GBM, a deadly disease with very limited treatment options and

huge unmet need.
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Appendix A

Supplement to Chapter 2

A.1 Scaling RECIST Measurements

Under RECIST, investigators select target lesions to follow throughout a patient’s

treatment course in the clinical trial. They use the sum of longest diameter in these

target lesions (SLD) as a measure of tumor burden, and ultimately for response

determination. When first published in 2000, RECIST (version 1.0) accommodated

up to ten measurable target lesions. However, an update to the criteria in January,

2009 (version 1.1) reduced the maximum number from ten to five. As a result, there

are two groups of SLD measurements in the dataset. Five of the studies in the dataset

were initiated before RECIST version 1.1 was published and have SLD measurements

based on more than five lesions. This group of measurements are, in general, greater

than those from the remaining 12 trials that use the revised RECIST.

In order to reconcile SLD measurements collected under the older criteria with

the current version, we scale earlier measurements to reflect the new five lesion limit

by right-censoring measurements with more than five lesions to values equal to five

times the size of the corresponding average target lesion. For example, a baseline

SLD of 140 mm for seven identified target lesions has an average lesion size of 20

mm. Since it has more than five lesions, we scale the measurement to 5×20 = 100

mm. We keep measurements with less than five lesions as they are since they do not

violate the new target lesion maximum. We also do not modify response outcomes
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determined under RECIST version 1.0 because they are largely dependent on relative

changes. We believe these adjustments achieve a good balance between discarding a

considerable part of the dataset and distorting the data distribution. It is impossible

to account for all changes introduced in RECIST version 1.1 perfectly due to the lack

of precise patient-level tumor information and domain expertise.
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A.2 Case Studies of Longitudinal Data

Clinical trials typically record patient-level SLD measurements collected at three

types of visit, namely the baseline visit, the treatment visits, and the follow-up visits.

The baseline visit of the clinical trial is self-explanatory, typically part of the screen-

ing visit for the trial. Treatment visits are conducted throughout the clinical trial, as

patients receive the allocated study medication. These visits are scheduled at regular

intervals, with the exact interval depending on the study protocol and patient avail-

ability. It is not uncommon for patients to miss visits, or for investigators to conduct

additional unscheduled visits to confirm response or progression. At any point in

the trial, patients can be withdrawn from treatment if any of the following occurs:

documentation of PD, protocol violation, a serious adverse event, or their withdrawal

of consent. While investigators typically follow these discontinuation rules closely,

there is some discretion involved. For example, they may choose to treat beyond PD

if they determine the subject is stable and deriving clinical benefits from the drug.

Follow-up visits are performed after the discontinuation or completion of the trial

treatment. The number of follow-up visits depends on multiple factors. Some pro-

tocols schedule only one follow-up, while others may require investigators to track

patients who discontinue for reasons other than PD until they experience PD or start

a new anti-cancer therapy1. In some cases, follow-up visits are not possible, either be-

cause the subject withdrew consent, or became unreachable due to other reasons (e.g.,

death, relocation, etc). There are also other complicated scenarios, such as crossovers

to the experimental therapy upon disease progression. We exclude such data to en-

sure that the effects observed are solely due to the therapies we are interested in, and

not caused by other interventions.

We examine three case studies in detail in Fig. A-1 to illustrate some of the

subtleties present in the longitudinal SLD dataset. Patient 1 represents a typical

responder who demonstrates OR at some point in the trial. In this example, the re-
1The time course of response to treatment is typically delayed relative to drug administration

[216, 217]. Therefore, follow-up visits prior to the start of another anti-cancer therapy are arguably
as important as treatment visits, because drug effects may manifest themselves during this period
of time.
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sponse lasted for 18 consecutive weeks and is considered to be confirmed, barring any

negative changes in non-target lesions or appearances of new lesions. The time series

ends when PD in SLD occurs and the patient is discontinued. Patient 3 represents a

typical progressor—that is, a patient who exhibits disease progression—whose SLD

increases monotonically until PD is documented. Thereafter, the patient is taken

off therapy without any follow-up visits. The lack of post-discontinuation measure-

ments suggests that the patient either started a new therapy almost immediately,

has been lost to follow-up visits, or simply withdrew consent. In similar cases of

disease progression, however, follow-up visits may be present. Patient 2 presents a

more interesting example. The patient demonstrates PD in SLD at week 12 of the

trial, but unlike Patient 3, is kept on treatment, perhaps because the patient has been

determined to derive clinical benefits despite growth. In contrast with Patients 1 and

3, the measurements for Patient 2 ended on SD, and not PD, at week 36. There are

several possible explanations: Patient 2 could have been discontinued either because

of progression in non-target lesions, the appearance of new lesions, serious adverse

events preventing further administration of treatment, withdrawal of consent, or se-

vere non-compliance with the study protocol. On the other hand, the patient could

still be under therapy, and the lack of measurements is due to a data cutoff.

Apart from straightforward cases like Patients 1 and 3, it is often difficult to

glean the exact reasons for discontinuations in tumor assessment from the dataset.

Nevertheless, it is clear that there is a discontinuation process at work that affects

our observation of SLD measurements. For example, we are less likely to observe

measurements after PD in SLD has occurred. This phenomenon is in inherent to the

data collection process because of the patient safety protections designed into the

clinical trials.
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Figure A-1: Case studies of longitudinal SLD data for three example patients. We
normalize the SLDs with respect to the corresponding BSLDs, and assume that visits
are scheduled at intervals of 6 weeks. Timepoint SLDs that qualify as response or
disease progression according to RECIST are highlighted in green and red, respec-
tively.
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A.3 Features for Predictive Models
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Table A.1: List of predictive factors for tumor response. We have 45 categorical
variables and 5 continuous variables. Categorical variables are converted to binary
variables; continuous variables are centered and scaled by their standard deviations.

Type Variable Values

Treatment group1 Biomarker status and therapy received Six categories3

Biomarker positivity2 PDL1, EGFR or ALK Yes, no
Demographics Age Years

Weight kg
Sex Male, female
Race group Asian, white, others
Region APAC, NAM, WEUR, others

Medical history Time since diagnosis Days
Performance status 0, 1, 2 or higher
Smoking status Ever, never
Stage at screening IIIB or lower, IV
Prior chemotherapy Yes, no
Histology Adeno, SCC, others
Number of baseline target lesions 1, 2, 3, 4, 5 or more
BSLD mm

Metastasis Brain Yes, no
Bone Yes, no
Liver Yes, no
Others Yes, no
Number of metastasis sites Count

Comorbidities Neoplasms benign, malignant and unspecified Yes, no
Immune system disorders Yes, no
Endocrine disorders Yes, no
Musculoskeletal and connective tissue disorders Yes, no
General disorders and administration site conditions Yes, no
Metabolism and nutrition disorders Yes, no
Vascular disorders Yes, no
Nervous system disorders Yes, no
Injury, poisoning and procedural complications Yes, no
Hepatobiliary disorders Yes, no
Eye disorders Yes, no
Respiratory, thoracic and mediastinal disorders Yes, no
Cardiac disorders Yes, no
Ear and labyrinth disorders Yes, no
Skin and subcutaneous tissue disorders Yes, no
Blood and lymphatic system disorders Yes, no
Reproductive system and breast disorders Yes, no
Congenital, familial and genetic disorders Yes, no
Infections and infestations Yes, no
Gastrointestinal disorders Yes, no
Social circumstances Yes, no
Psychiatric disorders Yes, no
Renal and urinary disorders Yes, no

Laboratory Alkaline phosphate High, normal, low
measurements Alanine aminotransferase High, normal, low

Aspartate aminotransferase High, normal, low
Bilirubin High, normal, low
Creatine High, normal, low
Hemoglobin High, normal, low
Platelets count High, normal, low
White blood cells count High, normal, low

1 For tumor response and PFS models. 2 For OS models.
3 Any biomarker status and under chemotherapy, PDL1-positive and under PDL1 ICI, EGFR-positive and
under EGFR TKI, ALK-positive and under ALK TKI, negative biomarker status but under inhibitor therapy
(either PDL1-negative but under PDL1 ICI or EGFR-negative but under EGFR TKI) and not tested for any
biomarkers but under inhibitor therapy (either PDL1 ICI or EGFR TKI).
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Appendix B

Supplement to Chapter 3

B.1 Data Preprocessing

We construct our datasets from two Informa R○ databases: Pharmaprojects and Trial-

trove, two separate relational databases organized by largely different ontologies. We

extract drug-specific features and drug-indication development status from Pharmapro-

jects, and clinical trial features from Trialtrove. We merge the databases through keys

provided separately by Informa R○.

Pharmaprojects was created earlier than Trialtrove, and thus the disease coverage

for clinical trials is not as extensive. We start the merging process by first identifying

all drug-indication pairs in Pharmaprojects. Subsequently, we drop pairs that do not

have any trials recorded in Trialtrove. As highlighted in Section 3.2.2, profiles in

Pharmaprojects and Trialtrove are fraught with missingness. Therefore, we impose

several filters when constructing the datasets to ensure that all instances collected

are usable for analysis.

Table B.1 summarizes the steps in the filter. We note that the drug, indication,

and trial relationships in the constructed datasets are surjective and non-injective:

different drugs may target the same indication, and some trials may involve multiple

drug-indication pairs. This is logical because it is common that drugs treat mul-

tiple diseases, multiple drugs treat a specific disease, or trials involve two or more

related primary investigational drugs. To provide some intuition for the size of these
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Figure B-1: Data cleaning for P2APP.

databases, we summarize, in Fig. B-1 and Fig. B-2 (for P2APP and P3APP, re-

spectively), how the number of drug-indication pairs and clinical trials change as we

perform the filters.

We extract drug compound attributes and clinical trial characteristics from Pharmapro-

jects and Trialtrove, respectively (see Table 3.1 and Table B.2). In addition to features

readily available in the databases, we create an augmented set of variables capturing

sponsor track record and investigator experience. We quantify the track record of

sponsors of a specific trial by their success in developing other drugs, using the num-

ber of prior approved and failed drug-indication developments; and in past trials for

phases 1, 2, and 3 separately, using the total number of trials sponsored, the num-

ber of trials sponsored with positive and negative results, and the number of trials

sponsored to completion and termination. We use the end date of the last trial of the

drug-indication pair under consideration as the cutoff for considering prior experience.

This is because the last end date will be the time of prediction. We abstract investi-

gator experience in the same manner. Lastly, we construct a binary drug-indication

pair feature, whether the drug has been approved for another indication before. Sim-

ilarly, we use the end date of the last trial as cutoff for considering prior approval. In

total, our datasets have 31 drug-related features and 113 trial-related features.
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Table B.1: Filters for creating datasets.

Rationale

Drug-indication Pairs in Pharmaprojects

Trials observed in Trialtrove (phase 2 for P2APP; phase
3 for P3APP)

We exclude pairs for which we do not observe any trials
in Trialtrove.

Known approval date (if approved). Approval dates are
not available directly in Pharmaprojects. They are
embedded within text blocks. We had to mine these
text blocks (combination of heuristics and manual
extraction) to extract the dates.

We define the approval date as the earliest date a
drug-indication pair was approved in any market. We
need these dates to create an augmented set of variables
capturing sponsors and investigators experience, and
also to perform time-series analysis.

Known failure date (if failed) Failure dates are not directly available in
Pharmaprojects. We define failure date as one year after
the end-date of the last phase 2 or phase 3 trial (if any),
whichever is latest.

Clinical Trials in Trialtrove

Phase 2 for P2APP; phase 3 for P3APP We are interested in predicting approvals using trial
features.

Known end date We need these dates to perform time series analysis. For
approved drug-indication pairs in P2APP and P3APP,
we compare the trial end date with the corresponding
approval date to filter out post-approval trials. These
trials may be for supplemental New Drug Applications
(e.g., modified dosage) that are irrelevant to our
analysis.

Known sponsors and disease types Trials not tagged with sponsor/disease types are
typically out of Trialtrove commercial coverage and are
not maintained.

Figure B-2: Data cleaning for P3APP.
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Table B.2: Examples of features extracted from Pharmaprojects and Trialtrove. After
transforming multi-label parent features into binary child features, there were over
3,000 drug and trial categories in total. However, not all are useful for our analysis.
For instance, trials rarely take place in Nepal, so the corresponding location feature
rarely appears. Thus, this feature is unlikely to have meaningful associations with
success. We remove these near zero variance factors. Also, we standardize continuous
variables prior to all experiments.

Examples Categories

Drug Features

Route Inhaled; Injectable; Oral; Topical 4
Origin Biological, protein, antibody; Biological, protein, recombinant; Chemical,

synthetic
3

Medium Capsule, hard; Capsule, soft; Powder; Solution; Suspension; Tablet 6
Biological target family Cytokine/growth factor; Enzyme; Ion channel; Receptor; Transporter 5
Pharmacological target
family

5 Hydroxytryptamine receptor antagonist; Angiogenesis inhibitor;
Apoptosis stimulant; Cell cycle inhibitor; DNA inhibitor; DNA synthesis
inhibitor; Growth factor receptor antagonist; Immunostimulant;
Immunosuppressant; Ion channel antagonist; Protein kinase inhibitor

11

Drug-indication
development status

True; false 2

Prior approval of drug
for another indication

Approved; failed 2
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Table B.2 (continued): Examples of features extracted from Pharmaprojects and
Trialtrove.

Examples Categories

Trial Features

Duration Integer 1
Study design Active comparator; Cross over; Dose response; Double blind/blinded;

Efficacy; Multiple arm; Non-inferiority; Open label; Pharmacodynamics;
Pharmacokinetics; Placebo control; Randomized; Safety; Single arm

14

Sponsor type Academic; Cooperative Group; Government; Industry, all other pharma;
Industry, top 20 Pharma

5

Therapeutic area Autoimmune/Inflammation; Cardiovascular; CNS; Infectious Disease;
Metabolic/Endocrinology; Oncology

6

Trial status Completed; terminated 2
Trial outcomes Completed, negative outcome or primary endpoint(s) not met;

Completed, outcome indeterminate; Completed, positive outcome or
primary endpoint(s) met; Terminated, business decision - other;
Terminated, business decision - pipeline reprioritization; Terminated, lack
of efficacy; Terminated, poor enrollment; Terminated, safety or adverse
effects

8

Target accrual Integer 1
Actual accrual Integer 1
Locations Argentina; Australia; Austria; Belgium; Brazil; Bulgaria; Canada; Chile;

Czech Republic; Denmark; Europe; Finland; France; Germany; Hungary;
India; Israel; Italy; Japan; Mexico; Netherlands; New Zealand; Peru;
Poland; Romania; Russia; Slovakia; South Africa; South Korea; Spain;
Sweden; Switzerland; Taiwan; Ukraine; United Kingdom; United States

36

Number of identified
sites

Integer 1

Biomarker involvement Biomarker/efficacy; Biomarker/toxicity; PGX - biomarker
identification/evaluation; PGX - pathogen; PGX - patient
preselection/stratification

5

Sponsor track record Number of prior approved drug-indication pairs; Number of prior failed
pairs; Total number of phase 1 trials sponsored; Number of phase 1 trials
with positive results; Number of phase 1 trials with negative results;
Number of completed phase 1 trials; Number of terminated phase 1
trials; Total number of phase 2 trials sponsored; Number of phase 2 trials
with positive results; Number of phase 2 trials with negative results;
Number of completed phase 2 trials; Number of terminated phase 2
trials; Total number of phase 3 trials sponsored; Number of phase 3 trials
with positive results; Number of phase 3 trials with negative results;
Number of completed phase 3 trials; Number of terminated phase 3 trials

17

Investigator experience Refer to sponsor track record 17
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B.2 Multiple Imputation

Multiple imputation is a principled missing data method that can provide valid sta-

tistical inferences when missingness is ignorable. It involves three steps: imputation,

analysis, and pooling (see Fig. B-3).

Figure B-3: Multiple imputation.

B.2.1 Imputation

Under MI, we draw multiple plausible values for each missing data point, thus creating

multiple imputed datasets from one incomplete dataset. There are different strategies

for multivariate multiple imputation. In this study, we focus on Fully Conditional

Specification (FCS), specifically the Multivariate Imputation by Chained Equations

(MICE) algorithm [73, 218]. In MICE, we first specify an imputation model for each

incomplete variable in the form of conditional distributions (missing data conditioned

on the observed data). The algorithm starts with simple random draws from the

observed data and imputes the incomplete data in an iterative variable-by-variable

fashion according to the specified variable models. Each iteration entails one cycle

through all the incomplete variables (see Algo. B-2). The number of iterations should

be set such that convergence is reached. This is typically checked by monitoring the

means of imputed values and/or the values of regression coefficients and making sure

they are stable over the iterations. In practice, a small number of iterations appears to
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Algorithm B-1: Pseudo-code for Multivariate Imputation by Chained Equa-
tions.

Define 𝑌 as a 𝑛× 𝑝 matrix where rows represent samples and columns represent variables
Data: Incomplete dataset 𝑌 = (𝑌 obs, 𝑌 mis)
Result: Imputed dataset 𝑌 𝑇 = (𝑌 obs, 𝑌 mis,𝑇 ) at iteration 𝑇
Define 𝑌𝑗 as the 𝑗th feature column of 𝑌 where 𝑌𝑗 = (𝑌 obs

𝑗 , 𝑌 mis
𝑗 )

for 𝑗 ← 1 to 𝑝 do
imputation model for incomplete variable 𝑌𝑗 ← 𝑃 (𝑌𝑗 |𝑌−𝑗 , 𝜃𝑗)
starting imputations 𝑌 mis,0

𝑗 ← draws from 𝑌 obs
𝑗

Define 𝑌 𝑡
−𝑗 = (𝑌 𝑡

1 , . . . , 𝑌 𝑡
𝑗−1, 𝑌 𝑡−1

𝑗+1 , . . . , 𝑌 𝑡−1
𝑝 ) where 𝑌 𝑡

𝑗 is the 𝑗th feature at iteration 𝑡

for 𝑡← 1 to 𝑇 do
for 𝑗 ← 1 to 𝑝 do

𝜃𝑡
𝑗 ← draw from posterior 𝑃 (𝜃𝑗 |𝑌 obs

𝑗 , 𝑌 𝑡
−𝑗)

𝑌 mis,𝑡
𝑗 ← draws from posterior predictive 𝑃 (𝑌 mis

𝑗 |𝑌 𝑡
−𝑗 , 𝜃𝑡

𝑗)

return 𝑌 𝑇

be sufficient, from 10 to 20. Multiple imputed datasets can be generated by running

MICE in parallel the desired number of times.

In this study, we specify linear regression models for incomplete continuous vari-

ables and logistic regression models for incomplete nominal variables. We monitor

convergence by computing the mean/mode of the imputed values and making sure

that they were stable over iterations. Twenty iterations appear to be sufficient.

B.2.2 Analysis

The analysis step after single imputation is straightforward: We apply any standard,

complete-data statistical methods and end up with one set of results. In MI, we have

multiple imputed compete datasets. After analyzing them individually using standard

statistical procedures, we end up with multiple sets of results. These results will differ

from each other since each dataset is imputed with different values. These differences

represent the uncertainty due to the missing data. The pooling step describes how

we can combine these sets of results into a single set.

B.2.3 Pooling

In this step, we pool the estimates obtained from multiple individual analyses using

Rubin’s rules to yield a single estimate [76]. Estimates that can be combined using
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Rubin’s rules include means, regression coefficients and probability predictions. Let 𝑄

be a column vector of the estimands of interest, �̃� be its estimate, 𝑚 be the number of

imputed datasets, and �̃�𝑙 be the estimate of the 𝑙th repeated analysis. The combined

estimate is given by:

�̄� = 1
𝑚

𝑚∑︁
𝑙=1

�̃�𝑙 (B.1)
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B.3 Imputation Versus Listwise Deletion

We design an experiment to study the effects of imputation and verify that impu-

tation indeed offers an improvement over complete cases analysis. First, we create

a gold standard dataset by taking complete cases of the P2APP dataset (see Ta-

ble 3.7). Next, we randomly split the gold standard dataset drug-indication pairs

into a training set (70%) and a testing set (30%).

To simulate missingness present in the original dataset, we introduce missingness

in the gold standard training and testing sets based on our MAR assumptions and

the missingness patterns observed in the P2APP dataset. When making MAR, we

ensure that the proportions of drugs and trials with fully observed features (i.e.,

complete cases) are consistent with those in the parent dataset (see Appendix B.3.1

for description).

We must be cautious relying on the MAR testing set for model validation. Re-

sults may not accurately capture whether a classifier has learned the true underly-

ing relationship between the features and the outcome. To illustrate, suppose that

drug-indication pairs have only one binary feature (“0” or “1”) that is unrelated to

approval/failure. Thus, no classifier can do better than random guessing (0.5 AUC).

Now, assume that we have MAR in the dataset: failed pairs are more likely to have

missing values due to the data collection process, unrelated to the binary feature.

Suppose that we impute all the missing values with 1. Intuitively, we know that

this is a poor imputation method because it distorts the feature distribution of failed

pairs, and it reduces the variability in the data. However, this is seemingly a “good”

method because it allows the AUC of a classifier on this imputed dataset to exceed

0.5. That is, we can identify a disproportionate number of failures by guessing all

pairs with feature value 1 as failures. The classifier has learned a nonexistent rela-

tionship introduced by the imputations. By predicting all 1s as failures, the classifier

is implicitly exploiting its MAR-ness.

Some may argue that it is acceptable to use missingness as a signal. Unfortunately,

this is inappropriate in our case, because the MAR nature of the dataset on hand is
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merely an artifact of data collection that would not be present during actual testing.

MAR was introduced to the data due to the backfilling of information over time. This

occurs due to a combination of reasons—some drug characteristics (e.g., mechanism

of action) only become clear as the study progresses to higher phases; poor reporting

practices. We believe that missingness in current test cases, e.g., drug-indication

pairs currently in the pipeline, is more MCAR-like in nature because no backfilling

has been performed. For example, immediately after phase 2 testing, pairs that go on

to be approved are equally likely to have missing information as pairs that go on to

be terminated. Clearly, missingness will not be a useful predictive factor. A classifier

that relies heavily on the missingness in the dataset will fail miserably when put into

production.

It is difficult to assess how good a classifier really is from the performance on a

MAR testing set. Therefore, we create an additional testing set (the “MCAR testing

set”) in which we introduce missingness based on patterns observed in pipeline drug-

indication pairs in the P2APP dataset (see Appendix B.3.1 for a description). Because

the drugs were still in development at the time of snapshot of the databases, they are

likely to be less affected by backfilling. Consequently, the AUC on the MCAR testing

set will be more reflective of a classifier’s real performance. We also use the gold

standard testing sets for evaluation. These two testing sets serve as a control for the

backfilling artifact in the data collection process. They can help to identify non-ideal

imputation methods: poor imputation methods tend to distort the data distribution

and undermine relationships between variables. This noise makes it more difficult

for classifiers to learn the true underlying patterns in the data. These classifiers will

perform poorly on the gold standard and MCAR testing sets. Returning to the above

binary feature example, if we had tested the classifier on a gold standard testing

set, we would realize that it did not learn any useful patterns. On the other hand,

applying imputation methods that are capable of preserving the data distribution

will make it easier for classifiers to capture useful relationships in the data. These

classifiers will perform well on the gold standard and MCAR testing sets.

We have two training sets (gold standard and MAR) and three testing sets (gold
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standard, MAR, and MCAR) (see Fig. B-4). We use five different missing data

approaches, as described in Section 3.3.1, to generate multiple complete training sets

from the MAR training set. Subsequently, we use each imputed training set to build

six different predictive models (PLR, RF, NN, GBT, SVM, and C5.0) according to

the methodology outlined in Section 3.3.2. We use ten-fold cross-validation to select

the hyper-parameters for each model. In addition to the imputed MAR training sets,

we use the gold standard training set to train gold standard classifiers: the models

that would have been built if the data was complete. We impute the MAR and

MCAR testing sets in a similar fashion as the training sets, and evaluate the AUC

performance of all classifiers on the imputed and gold standard testing sets. We

repeat the entire procedure of introducing MAR and MCAR in the dataset, imputing

missingness, training models and validating performance 100 times for robustness. In

addition to the AUC, we compute the biasness of the imputed values in the imputed

training and testing sets with respect to their gold standard counterparts. This is

a measure of accuracy of each imputation method. Finally, we use the results from

the gold standard, MAR, and MCAR testing sets as basis to select an imputation

method and machine-learning algorithm combination most suitable to the dataset on

hand.

Table B.4 summarizes the results. Since the training and testing sets are fixed, us-

ing the same drug-indication pairs for all methods, direct comparison across different

missing data techniques and machine-learning algorithms is possible. Each row cor-

responds to different missing data techniques used to process the training and testing

sets in the experiments. Each column group corresponds to different types of missing-

ness introduced in the testing sets. For all six machine-learning algorithms, we find

that gold standard classifiers consistently outperform their complete cases analysis

and imputation counterparts. This is logical because useful information is invari-

ably lost when we intentionally introduce missingness in the datasets. In contrast,

complete cases analysis often leads to inferior performance. The AUCs of classifiers

trained on complete cases training sets are on average 0.04 less than those trained on

imputed training sets. As expected, complete cases are ill suited for MAR data. This
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supports our conjecture that the use of imputation has allowed predictive models to

learn useful patterns that would otherwise be lost from discarding incomplete data.

When comparing across rows, we observe that the different imputation techniques

are not equally effective. In terms of imputation quality, MI and mean/mode give

the most inaccurate imputations while nearest neighbors recovers data best for both

continuous and nominal variables (see Table B.3).

To better visualize each imputation method, Fig. B-5 plots the distributions of the

trial feature of actual accrual, a continuous variable, in the gold standard, complete

cases, and imputed MAR training sets of one iteration. It is evident that mean and

median imputations have distorted the variable distribution, introducing previously

absent peaks at the observed mean and median, respectively. In contrast, MI and

nearest neighbors imputation managed to preserve the general shape of the variable

distribution without introducing anomalous peaks.

We believe that the noise introduced by mean and median imputations have an

adverse impact on a classifier’s learning process. These effects may not be obvious

from the AUC of the MAR testing sets. Indeed, for all six machine-learning algo-

rithms, we observe that mean and median imputations give the highest AUCs for the

MAR testing sets. However, the trend is reversed when we look at the gold standard

and MCAR testing sets. Classifiers trained on mean or median imputation performed

the worst of all imputation methods on these testing sets, implying that the noise

introduced by the distortions must have hindered the machine-learning algorithms

from fully capturing the underlying relationships in the data. It will therefore be

prudent to avoid this imputation approach.

Overall, we find 𝑘NN imputation to be most suitable to the dataset. Note that

the MI (𝑚 = 10)-RF and MI (𝑚 = 10)-C5.0 combinations yielded slightly better

performances than 𝑘NN-RF. However, we excluded MI (𝑚 = 10) from consideration

because the improvement is only marginal while the imputation and analysis processes

are much more time consuming, since we have ten imputed datasets in MI (𝑚 =

10). Furthermore, the imputation method does not converge well (or at all) for

smaller datasets. This poses an issue for the time series analysis in Section 3.4.3. In

254



Figure B-4: Datasets created in the experiment.

contrast, 𝑘NN imputation is relatively straightforward to implement and more stable.

It provides the least biased imputations among all missing data methods. More

importantly, classifiers built on 𝑘NN-imputed training sets give the highest AUCs for

the gold standard testing set for all machine-learning models explored. By preserving

the original data distribution while filling in missing values, 𝑘NN imputation has

allowed classifiers to learn underlying patterns more effectively. In particular, the

combination of 5NN with RF gives the one of the highest gold standard (0.805) and

MCAR (0.780) testing set AUCs. This may be attributed to the fact that RF is

a nonlinear model, and thus it is able to better capture the complex interactions

between the features and regulatory approval than PLR, a linear model. We focus

on the 5NN-RF combination in our analyses, since it appears that this pair is most

compatible with our datasets.
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Table B.3: Biasness of imputations with respect to gold standard.

MAR Training Set MAR Testing Set MCAR Testing Set

Bias1 Wrongly
Imputed2

Bias1 Wrongly
Imputed2

Bias1 Wrongly
Imputed2

% % % % % %

Mean/mode 234.6 23.0 236.2 23.3 274.2 22.2
Median/mode 115.5 23.0 116.1 23.3 128.7 22.2
5NN 95.4 22.7 94.9 22.0 96.2 21.8
10NN 87.3 21.7 87.9 21.2 90.2 21.0
MI (m=1) 262.0 25.3 268.9 27.9 323.0 26.9
MI (m=10) 260.9 25.3 269.0 27.9 322.7 26.7
1 Average percentage bias of imputed continuous variables. We first find the sum of the absolute percentage difference
between imputed values that are continuous and their corresponding gold standard values (gold standard values as
denominator), averaged over the total number of missing values that are continuous. Next, we take the mean over 100
iterations. 2 Percentage of nominal variables that were wrongly imputed. We first find the number of imputed cat-
egorical values that differ form their corresponding gold standard values, averaged over the total number of missing
values that are categorical. Next, we take the mean over 100 iterations.
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Table B.4: Performance of different missing data approaches. Abbreviations: avg, average; sd, standard deviation; 5%, 5th
percentile; 50%, median; 95%, 95th percentile; 𝑚, number of imputations generated.

Testing Set AUC

MAR MCAR Gold Standard

Avg Sd 5% 50% 95% Avg Sd 5% 50% 95% Avg Sd 5% 50% 95%

PLR

Gold Standard 0.810 0.028 0.761 0.808 0.853
Complete Cases 0.755 0.040 0.683 0.764 0.813
Mean/mode 0.786 0.028 0.746 0.785 0.829 0.751 0.029 0.702 0.753 0.794 0.778 0.031 0.729 0.779 0.823
Median/mode 0.786 0.028 0.745 0.786 0.829 0.751 0.029 0.704 0.753 0.794 0.778 0.031 0.728 0.779 0.824
5NN 0.763 0.032 0.716 0.762 0.814 0.757 0.032 0.707 0.758 0.805 0.786 0.032 0.738 0.787 0.834
10NN 0.774 0.030 0.730 0.773 0.821 0.757 0.032 0.695 0.756 0.802 0.787 0.032 0.739 0.791 0.835
MI (𝑚 = 1) 0.746 0.035 0.688 0.747 0.804 0.758 0.035 0.705 0.755 0.818 0.781 0.036 0.722 0.777 0.843
MI (𝑚 = 10) 0.755 0.030 0.705 0.757 0.801 0.766 0.032 0.719 0.764 0.815 0.782 0.031 0.729 0.782 0.831

RF

Gold Standard 0.837 0.027 0.793 0.837 0.876
Complete Cases 0.764 0.048 0.685 0.772 0.830
Mean/mode 0.794 0.027 0.753 0.794 0.836 0.761 0.030 0.712 0.761 0.809 0.775 0.031 0.726 0.771 0.822
Median/mode 0.793 0.027 0.756 0.793 0.831 0.759 0.030 0.709 0.762 0.808 0.774 0.031 0.723 0.774 0.827
5NN 0.782 0.031 0.735 0.783 0.830 0.780 0.030 0.734 0.783 0.828 0.805 0.033 0.755 0.805 0.857
10NN 0.788 0.029 0.741 0.786 0.833 0.780 0.030 0.729 0.778 0.827 0.802 0.033 0.747 0.805 0.856
MI (𝑚 = 1) 0.774 0.028 0.732 0.777 0.825 0.782 0.031 0.737 0.779 0.845 0.797 0.033 0.748 0.795 0.853
MI (𝑚 = 10) 0.782 0.029 0.734 0.781 0.831 0.791 0.029 0.739 0.790 0.835 0.804 0.030 0.751 0.804 0.848

NN

Gold Standard 0.800 0.032 0.754 0.799 0.849
Complete Cases 0.715 0.043 0.638 0.716 0.779
Mean/mode 0.789 0.030 0.736 0.790 0.835 0.766 0.037 0.709 0.766 0.819 0.790 0.037 0.739 0.789 0.848
Median/mode 0.788 0.030 0.742 0.788 0.835 0.766 0.034 0.711 0.766 0.818 0.789 0.036 0.740 0.792 0.849
5NN 0.776 0.030 0.730 0.776 0.821 0.771 0.035 0.715 0.774 0.823 0.794 0.032 0.743 0.798 0.842
10NN 0.784 0.034 0.724 0.785 0.842 0.773 0.039 0.702 0.776 0.831 0.797 0.036 0.737 0.798 0.851
MI (𝑚 = 1) 0.753 0.035 0.689 0.758 0.801 0.764 0.037 0.708 0.760 0.820 0.780 0.036 0.719 0.781 0.838
MI (𝑚 = 10) 0.774 0.028 0.729 0.774 0.816 0.784 0.031 0.725 0.789 0.827 0.795 0.030 0.750 0.795 0.838
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Table B.4 (continued): Performance of different missing data approaches. Abbreviations: avg, average; sd, standard deviation;
5%, 5th percentile; 50%, median; 95%, 95th percentile; 𝑚, number of imputations generated.

Testing Set AUC

MAR MCAR Gold Standard

Avg Sd 5% 50% 95% Avg Sd 5% 50% 95% Avg Sd 5% 50% 95%

GBT

Gold Standard 0.820 0.028 0.776 0.821 0.868
Complete Cases 0.746 0.050 0.659 0.756 0.816
Mean/mode 0.793 0.029 0.746 0.795 0.839 0.762 0.029 0.716 0.763 0.808 0.781 0.034 0.724 0.784 0.826
Median/mode 0.792 0.030 0.743 0.793 0.832 0.760 0.030 0.708 0.762 0.804 0.778 0.033 0.719 0.783 0.823
5NN 0.780 0.030 0.732 0.779 0.821 0.772 0.032 0.717 0.772 0.822 0.796 0.029 0.737 0.798 0.837
10NN 0.787 0.026 0.747 0.788 0.830 0.773 0.028 0.722 0.773 0.817 0.796 0.028 0.748 0.798 0.838
MI (𝑚 = 1) 0.763 0.031 0.714 0.762 0.812 0.773 0.031 0.727 0.768 0.820 0.796 0.031 0.747 0.796 0.847
MI (𝑚 = 10) 0.778 0.029 0.733 0.780 0.822 0.789 0.030 0.739 0.789 0.838 0.804 0.031 0.757 0.803 0.854

SVM

Gold Standard 0.785 0.030 0.730 0.786 0.831
Complete Cases 0.733 0.053 0.650 0.741 0.795
Mean/mode 0.772 0.032 0.724 0.773 0.820 0.741 0.032 0.686 0.748 0.788 0.766 0.036 0.707 0.771 0.818
Median/mode 0.771 0.029 0.729 0.768 0.817 0.740 0.031 0.683 0.745 0.780 0.764 0.035 0.711 0.771 0.818
5NN 0.751 0.031 0.699 0.748 0.803 0.745 0.034 0.697 0.746 0.800 0.771 0.034 0.722 0.770 0.827
10NN 0.758 0.035 0.688 0.760 0.814 0.745 0.037 0.679 0.749 0.808 0.772 0.037 0.710 0.773 0.825
MI (𝑚 = 1) 0.731 0.035 0.676 0.732 0.788 0.741 0.033 0.684 0.745 0.790 0.760 0.035 0.696 0.762 0.813
MI (𝑚 = 10) 0.746 0.030 0.705 0.746 0.797 0.755 0.031 0.707 0.753 0.797 0.768 0.030 0.719 0.764 0.813

C5.0

Gold Standard 0.800 0.033 0.758 0.800 0.844
Complete Cases 0.710 0.063 0.585 0.713 0.802
Mean/mode 0.764 0.033 0.711 0.768 0.810 0.734 0.032 0.675 0.737 0.777 0.758 0.039 0.698 0.762 0.816
Median/mode 0.764 0.038 0.708 0.761 0.825 0.735 0.041 0.676 0.736 0.797 0.754 0.043 0.679 0.751 0.823
5NN 0.756 0.036 0.703 0.753 0.816 0.749 0.038 0.695 0.745 0.805 0.772 0.038 0.715 0.772 0.843
10NN 0.759 0.035 0.696 0.762 0.807 0.747 0.037 0.687 0.749 0.799 0.770 0.035 0.710 0.771 0.822
MI (𝑚 = 1) 0.733 0.038 0.672 0.731 0.795 0.741 0.036 0.680 0.740 0.800 0.758 0.037 0.701 0.754 0.819
MI (𝑚 = 10) 0.786 0.030 0.738 0.786 0.836 0.793 0.031 0.738 0.797 0.842 0.807 0.031 0.756 0.808 0.857
MAR1 0.759 0.037 0.699 0.759 0.811 0.744 0.037 0.685 0.741 0.801 0.761 0.037 0.705 0.757 0.812
1 For MAR, we leave the missingness as it is and rely on the decision tree algorithm to handle them internally.
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B.3.1 Simulating Missingness

We simulate missingness in gold standard training and testing sets (see Table 3.7)

based on our assumption of MAR and the missingness patterns observed in the

P2APP dataset (see Table B.5 and Table B.6). For example, 36% of approved drugs

in the P2APP dataset have some incomplete drug features. Accordingly, we ran-

domly select 36% of approved drugs in the gold standard training set and introduce

missingness in drug features according to the observed proportions to form the MAR

training set, e.g., 6% of these drugs will have missing pharmacological target family

values, 76% will have missing biological target family values, and so on. We repeat

this process for failed drugs, completed trials, and terminated trials. At the end, we

propagate the missing drug and trial features into the training set feature matrix,

so that drug-indication pairs for the same drug have the same drug features missing

in their feature vectors, and drug-indication pairs with the same trial have the same

trial features missing. Conversely, when making the sets MAR, we ensure that the

proportions of drugs and trials with fully observed features (i.e., complete cases) are

consistent with that observed in the parent dataset, e.g., 64% of approved drugs in

the MAR training set have complete drug features. We repeat this procedure for the

gold standard testing set to form the MAR testing set.

We simulate MCAR in the gold standard testing set in a similar fashion to form

the MCAR testing set. However, here we use unconditional missingness patterns

observed in the pipeline dataset (see Table B.5 and Table B.6), instead of the known

outcomes set where backfilling has occurred.
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Figure B-5: Gold standard, complete cases, MAR, and imputed distributions of actual
accrual in the training set of one of the iterations. The range of actual accrual goes
up to 3,000. However, only a small number of samples go beyond 600. Thus, we
truncated the histograms at 600 for better visualization. For MAR distribution, we
ignored all missing values.
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Table B.5: Breakdown of missingness in drug features in P2APP with respect to
unique drugs.

Missingness1

Known Outcomes Pipeline

Success Failure Unconditional

Complete Cases 0.64 0.29 0.46
Incomplete cases 0.36 0.71 0.54

Route 0.00 0.06 0.04
Pharmacological target family 0.06 0.10 0.17
Biological target family 0.76 0.45 0.63
Medium 0.43 0.86 0.69

1 Feature missingness with respect to incomplete cases, e.g., 36% of success
drugs have some incomplete drug features. 43% of these drugs have missing
medium values.

Table B.6: Breakdown of missingness in trial features in P2APP with respect to
unique trials.

Missingness1

Known Outcomes Pipeline

Completion Termination Unconditional

Complete Cases 0.22 0.60 0.44
Incomplete cases 0.78 0.40 0.56

Number of identified sites 0.13 0.24 0.21
Actual accrual 0.13 0.54 0.18
Duration 0.37 0.13 0.24
Target accrual 0.54 0.21 0.37
Locations 0.02 0.04 0.02
Study design keywords 0.31 0.24 0.13
Trial outcomes 0.93 0.27 0.81

1 Feature missingness with respect to incomplete cases.
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B.4 Comparison with ANDI

The ANDI algorithm was proposed by DiMasi et al. [70] to predict regulatory approval

for lead indications of cancer drugs after phase 2 testing. It is composed of a rubric

of four factors to score anticancer agents (see Appendix B.4.1). The factors are based

on pivotal trial characteristics and disease prevalence. Higher scores correspond to

a higher probability of success. In this analysis, we apply ANDI on the oncology

samples in the P2APP dataset, analyze its performance, and compare it with our

5NN-RF classifier in Appendix B.3.

First, we extract all cancer drugs from P2APP to form an oncology-only dataset.

Since ANDI requires complete-cases, we drop all examples with missing values in any

of the four ANDI factors (see Table B.7 for the resulting sample size). From this

dataset, we draw a training set of 62 drugs with the same composition as that used

by DiMasi et al. [70]: 40 failures and 22 successes. We set aside the remaining 319

drugs as a held-out testing set.

In replicating the ANDI experiment, we endeavored to follow the original proposed

rubric as closely as possible. Unfortunately, two factors in the rubric are not in our

dataset. We replace them with surrogate variables, and tune their cutoffs using the

training set put aside earlier. The modified rubric is given in Table B.8. In order to

apply ANDI, we have to identify the lead indication of each oncology drug and the

pivotal phase 2 trial for that drug-indication pair. However, DiMasi et al. [70] did

not provide clear instructions for identifying lead indications or pivotal trials. In this

experiment, we apply heuristics which we felt were most logical. See Appendix B.4.1

for details on the proxy variables and heuristics used.

DiMasi et al. [70] reported an impressive 0.92 AUC for ANDI on a dataset of

62 drugs. However, this figure is based on in-sample/training-set testing, i.e., the

algorithm was tested on the dataset on which the scoring rubric itself was derived.

Such testing naturally yields excellent results because the four factors and their cutoffs

were optimized for the algorithm to do well on the dataset. It is nearly impossible

to judge whether an algorithm will generalize well without some form of testing on
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held-out datasets. Unfortunately, such validation was not performed by DiMasi et

al. [70]. Furthermore, ANDI was derived from a small sample, making it even more

susceptible to overfitting.

For these reasons, it is very likely that the discriminative power of ANDI is actually

much lower than that implied by the reported AUC of 0.92. Knowing these issues,

we augment the ANDI experiment by including an out-of-sample model validation

step, using the 319 drugs set aside as the testing set. This will allow us to determine

ANDI’s real performance more accurately.

The receiver operating characteristic curves of the original ANDI algorithm as

reported in DiMasi et al. [70] and the modified ANDI on the oncology-only training

and testing sets are shown in Fig. B-6. Similar to the original ANDI, our modified

ANDI rubric demonstrates excellent performance on the training set with 0.94 AUC,

95% CI (0.89, 0.99). Unfortunately, this performance does not hold up on the testing

set. The modified ANDI managed only 0.69 AUC on new, unseen samples. The

large discrepancy between training and testing AUCs is indicative of overfitting. It

is apparent that the patterns learned from the small training sample (n=62) do not

generalize well, highlighting the importance of proper model validation. We believe

the same holds for the original ANDI.

For a direct comparison with our classifiers, we apply the modified ANDI on

oncology drugs in the gold standard testing sets in Appendix B.3. Fig. 3-7 summarizes

the distributions of the results and compares 5NN-RF with the modified ANDI. On

this testing set subsample, we find that our classifier achieves significantly higher AUC

than the modified ANDI, an average improvement of 0.1 in AUC over 100 simulations.

We believe that this gain can be attributed to a larger training set with a wider range

of features, a nonlinear model that can capture the complex relationships in the data,

and proper model validation methodology.

Lastly, we note that DiMasi et al. [70] applied complete-cases analysis in their

study without any characterization of the missingness in their dataset. This is dan-

gerous because complete-cases are appropriate only under strict MCAR conditions.

Violation of these conditions will lead to biased estimates. Since data is rarely MCAR
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Table B.7: Sample size of the oncology-only dataset (derived from P2APP).

Counts

Drug-indication Phase 2 Unique Unique Unique Phase
Pairs Trials Drugs Indications 2 Trials

Success 71 178 61 28 176
Failure 668 1,345 347 40 1,213

Total 739 1,523 381 40 1,368

Table B.8: Modified ANDI rubric in this study.

Score

0 1 2

Trial outcomes1 Terminated, lack of
efficacy; Completed,
negative outcomes or

primary endpoint(s) not
met

Completed, outcome
indeterminate

Terminated, early positive
outcomes; Completed,
positive outcomes or

primary endpoint(s) met

Number of patients in
pivotal phase 2 trial

≤ 37 38–49 ≥ 50

US incidence† > 100,000 10,000–100,000 < 10,000
Phase 2 duration (months) > 44 21–44 < 21
1 Surrogate variable.

in reality, it is unsurprising that the modified ANDI yields an inferior performance.

In practice, this limits the applicability of ANDI to only samples with complete infor-

mation. Given the scattershot nature of reporting in drug development, this makes

ANDI less useful.

B.4.1 Modified ANDI

In replicating the ANDI experiment [70], we endeavored to follow the original pro-

posed rubric as closely as possible (see Table B.9). Unfortunately, two factors in the

rubric are not in our dataset: worldwide prevalence and activity. We replace them

with surrogate variables, and tune their cutoffs using the training set placed aside

earlier. The modified rubric is given in Table B.8. First, we use US incidence as a

proxy for worldwide prevalence. This is because the latter figure is not known accu-

rately for many of the oncology indications in our dataset, while the US incidence is

much better documented and more accessible. (Sources include the American Cancer

Society and the National Cancer Institute Surveillance, Epidemiology and End Re-
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Figure B-6: Receiver operating characteristic curves of the original ANDI (as reported
in [70]) and the modified ANDI on the oncology-only training and testing sets. We use
bootstrapping to determine the 95% CI. We plot the receiver operating characteristic
curve of the original ANDI in [70] (red) by using the ANDI scores breakdown provided
in the study. The slight difference in the lower bound of the 95% CI between what
we computed (0.84) and what DiMasi et al. [70] reported (0.81) may be accounted by
randomness in the bootstraps. Abbreviations: ROC, receiver operating characteristic
curve.
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sults Program.) We determine the cutoffs in a manner similar to DiMasi et al. [70]: a

larger incidence has lower scores while a smaller incidence has higher scores. Second,

we use the trial outcome (i.e., the results of the trial) as a proxy for activity. We set

the cutoffs similarly as in the original rubric: negative results have lower scores, while

positive results have higher scores.

In order to apply ANDI, we have to identify the lead indication of each oncology

drug and the pivotal phase 2 trial for that drug-indication pair. Unfortunately, DiMasi

et al. [70] did not provide clear instructions for identifying lead indications or pivotal

trials in the paper. Their attention was focused on what “they determined to be

the lead cancer indication pursued,” and they “identified what appeared to be the

phase II trial that was most pivotal to the decision to proceed to large-scale phase

III testing or to abandon the compound after phase II testing.” It appears a fair

amount of subjectivity is involved; there was no mention of any concrete criteria

in the paper. This makes it difficult to replicate their study on other datasets. In

this experiment, we apply heuristics which we felt were most logical. For drugs with

multiple indications, we take the indication with the most phase 2 trials as the lead.

We hypothesize that companies will invest in more trials for the designated lead

indication. For drug-indication pairs with multiple phase 2 trials, we choose the trial

with the largest accrual as the pivotal trial. This is logical, since trials with larger

sample size have greater statistical power. They should hold greater weight in the

decision of whether to proceed to phase 3 testing. In the event of ties, with the same

number of trials or an identical accrual, we randomly select one of the candidates as

the lead indication or pivotal trial.
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Table B.9: Oncology ANDI proposed by DiMasi et al. [70].

Score

0 1 2

Pivotal phase 2 trial
activity

< 3.0% or negative
randomized phase 2

trial

3.0–13.8% > 13.8% or positive
randomized phase 2

trial
Number of patients in
pivotal phase 2 trial

≤ 37 38–49 ≥ 50

Number of patients
treated worldwide

> 302,000 50,000–302,000 < 50,000

Phase 2 duration
(months)

> 44 21–44 < 21
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B.5 Random Splitting Versus Temporal Ordering

We design an experiment to study the effects of any look-ahead bias introduced by

splitting drug-indication pairs into training and testing sets randomly without con-

sidering the dates of development. First, we sample five-year rolling windows between

2004 and 2014 from the P2APP and P3APP datasets. In Section 3.4.3, we note that

each window consists of a training set of drug-indication pairs whose outcomes become

finalized within the window, and an out-of-sample, out-of-time testing set of drug-

indication pairs that ended phase 2 or phase 3 testing, but are still in the pipeline

with undetermined outcomes within the window. Here we disregard the temporal

ordering—we aggregate the training and testing sets, and re-split them randomly be-

fore applying our machine-learning framework. To allow direct comparison with the

time-series approach, we keep the new training and testing sample sizes same as those

in Section 3.4.3. Table B.10 summarize the results.

We find that random splitting is indeed susceptible to overoptimistic performance

(e.g., first four windows in P2APP). This may be attributed to the presence of future

information in the training set, thus leading to look-ahead bias. However, we also ob-

serve over pessimistic results in some cases (e.g., last three windows in P3APP). This

may occur when useful past information are set aside in the testing set. We believe

that historical successes and failures contain valuable insights on the characteristics of

high-potential candidates. Consider prediction for a phase 3 drug today. If we know

that a drug with similar mechanism of action has been approved before, we should

probably assign a higher chance of success to the pipeline drug under consideration.

Conversely, if we see termination of drugs with similar mechanism of action in the

past, we should lower our expectations for the pipeline drug as well. Under random

allocation, the pipeline drug may be set aside in the testing set together with its

historical counterpart. This prevents the model from learning from past experiences,

which leads to over pessimistic performance.

The use of random splitting may be less than ideal due to the reasons noted above.

It is prudent to adhere to the temporal ordering in the dataset when constructing
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Table B.10: Comparison of classifiers trained on random splitting and temporal or-
dering. We use bootstrapping to determine the 95% CI for AUC.

Sample Size Testing Set AUC (95% CI)

Training Set Testing Set Random Splitting Temporal Ordering

P2APP

2004-2008 1,361 551 0.750 (0.703, 0.797) 0.669 (0.614, 0.725)
2005-2009 1,562 591 0.764 (0.720, 0.808) 0.680 (0.625, 0.735)
2006-2010 1,764 636 0.748 (0.703, 0.794) 0.712 (0.668, 0.755)
2007-2011 1,969 598 0.768 (0.727, 0.809) 0.738 (0.698, 0.777)
2008-2012 2,082 597 0.750 (0.705, 0.795) 0.799 (0.760, 0.837)
2009-2013 2,212 517 0.781 (0.732, 0.829) 0.823 (0.779, 0.867)
2010-2014 2,289 380 0.795 (0.732, 0.858) 0.797 (0.718, 0.876)

P3APP

2004-2008 472 196 0.720 (0.650, 0.790) 0.769 (0.704, 0.834)
2005-2009 559 177 0.748 (0.675, 0.821) 0.724 (0.650, 0.798)
2006-2010 604 211 0.771 (0.707, 0.835) 0.738 (0.671, 0.805)
2007-2011 664 174 0.810 (0.743, 0.877) 0.806 (0.740, 0.871)
2008-2012 677 197 0.805 (0.744, 0.866) 0.827 (0.768, 0.886)
2009-2013 740 153 0.820 (0.754, 0.885) 0.868 (0.809, 0.927)
2010-2014 734 110 0.849 (0.772, 0.925) 0.876 (0.811, 0.941)

training and testing sets in order to obtain more realistic inferences.
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B.6 Additional Results

Table B.11: Out-of-sample and out-of-time performance for P2APP. Comparison of
the general and indication-group specific classifiers for selected indication groups. We
use bootstrapping to determine the 95% CI for AUC. We exclude indication groups
with too few samples.

General Indication-Group-Specific

Training Testing Testing Set Training Testing Testing Set
Set Set AUC (95% CI) Set Set AUC (95% CI)

All

2004-2008 1,361 551 0.669 (0.614, 0.725)
2005-2009 1,562 591 0.680 (0.625, 0.735)
2006-2010 1,764 636 0.712 (0.668, 0.755)
2007-2011 1,969 598 0.738 (0.698, 0.777)
2008-2012 2,082 597 0.799 (0.760, 0.837)
2009-2013 2,212 517 0.823 (0.779, 0.867)
2010-2014 2,289 380 0.797 (0.718, 0.876)

Alimentary

2004-2008 1,361 86 0.494 (0.294, 0.694) 170 86 0.502 (0.310, 0.694)
2005-2009 1,562 93 0.613 (0.440, 0.785) 197 93 0.459 (0.287, 0.630)
2006-2010 1,764 80 0.589 (0.447, 0.731) 237 80 0.491 (0.321, 0.662)
2007-2011 1,969 77 0.707 (0.592, 0.821) 257 77 0.541 (0.396, 0.686)
2008-2012 2,082 67 0.802 (0.694, 0.909) 275 67 0.402 (0.252, 0.553)
2009-2013 2,212 58 0.834 (0.715, 0.954) 279 58 0.610 (0.441, 0.780)
2010-2014 2,289 39 0.670 (0.427, 0.913) 274 39 0.656 (0.414, 0.899)

Cardiovascular

2004-2008 1,361 39 0.515 (0.313, 0.717) 93 39 0.541 (0.310, 0.771)
2005-2009 1,562 38 0.307 (0.104, 0.509) 105 38 0.452 (0.230, 0.674)
2006-2010 1,764 46 0.613 (0.430, 0.795) 118 46 0.628 (0.449, 0.806)
2007-2011 1,969 37 0.634 (0.396, 0.872) 135 37 0.793 (0.644, 0.942)
2008-2012 2,082 42 0.640 (0.426, 0.853) 137 42 0.621 (0.425, 0.818)
2009-2013 2,212 35 0.360 (0.138, 0.582) 145 35 0.460 (0.272, 0.648)
2010-2014 2,289 19 0.529 (0.000, 1.000) 148 19 0.618 (0.000, 1.000)

Anti-infective

2004-2008 1,361 46 0.658 (0.502, 0.815) 124 46 0.645 (0.478, 0.812)
2005-2009 1,562 44 0.695 (0.525, 0.866) 146 44 0.707 (0.551, 0.863)
2006-2010 1,764 53 0.733 (0.568, 0.897) 161 53 0.708 (0.552, 0.864)
2007-2011 1,969 44 0.648 (0.479, 0.818) 171 44 0.592 (0.420, 0.763)
2008-2012 2,082 43 0.801 (0.666, 0.936) 165 43 0.815 (0.684, 0.945)
2009-2013 2,212 32 0.658 (0.454, 0.862) 169 32 0.649 (0.435, 0.864)
2010-2014 2,289 18 0.875 (0.708, 1.000) 167 18 0.750 (0.515, 0.985)

Anti-cancer

2004-2008 1,361 137 0.665 (0.528, 0.803) 456 137 0.683 (0.533, 0.833)
2005-2009 1,562 163 0.739 (0.618, 0.861) 494 163 0.635 (0.512, 0.758)
2006-2010 1,764 188 0.774 (0.702, 0.846) 546 188 0.726 (0.635, 0.816)
2007-2011 1,969 193 0.830 (0.773, 0.887) 618 193 0.746 (0.661, 0.831)
2008-2012 2,082 198 0.805 (0.717, 0.894) 682 198 0.760 (0.665, 0.855)
2009-2013 2,212 177 0.852 (0.783, 0.922) 736 177 0.786 (0.696, 0.876)
2010-2014 2,289 173 0.815 (0.691, 0.938) 791 173 0.803 (0.666, 0.940)
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Table B.11 (continued): Out-of-sample and out-of-time performance for P2APP.
Comparison of the general and indication-group specific classifiers for selected in-
dication groups.

General Indication-Group-Specific

Training Testing Testing Set Training Testing Testing Set
Set Set AUC (95% CI) Set Set AUC (95% CI)

Musculoskeletal

2004-2008 1,361 35 0.765 (0.597, 0.933) 96 35 0.704 (0.512, 0.896)
2005-2009 1,562 38 0.716 (0.489, 0.944) 109 38 0.674 (0.472, 0.876)
2006-2010 1,764 35 0.634 (0.439, 0.830) 111 35 0.509 (0.276, 0.742)
2007-2011 1,969 37 0.737 (0.571, 0.903) 119 37 0.677 (0.493, 0.860)
2008-2012 2,082 36 0.884 (0.773, 0.995) 127 36 0.683 (0.462, 0.904)
2009-2013 2,212 26 0.792 (0.573, 1.000) 133 26 0.667 (0.429, 0.904)
2010-2014 2,289 19 0.882 (0.724, 1.000) 128 19 0.882 (0.706, 1.000)

Neurological

2004-2008 1,361 122 0.688 (0.572, 0.803) 211 122 0.768 (0.676, 0.859)
2005-2009 1,562 119 0.612 (0.471, 0.753) 271 119 0.625 (0.501, 0.748)
2006-2010 1,764 125 0.656 (0.532, 0.779) 334 125 0.673 (0.560, 0.787)
2007-2011 1,969 105 0.701 (0.580, 0.822) 375 105 0.649 (0.522, 0.776)
2008-2012 2,082 114 0.806 (0.707, 0.904) 382 114 0.695 (0.586, 0.804)
2009-2013 2,212 87 0.938 (0.857, 1.000) 417 87 0.718 (0.558, 0.879)
2010-2014 2,289 55 0.984 (0.952, 1.000) 408 55 0.860 (0.721, 0.999)

Respiratory

2004-2008 1,361 34 0.673 (0.418, 0.927) 89 34 0.833 (0.650, 1.000)
2005-2009 1,562 42 0.842 (0.722, 0.962) 104 42 0.825 (0.670, 0.979)
2006-2010 1,764 49 0.797 (0.663, 0.931) 125 49 0.801 (0.644, 0.959)
2007-2011 1,969 36 0.694 (0.513, 0.875) 143 36 0.519 (0.323, 0.715)
2008-2012 2,082 43 0.751 (0.604, 0.899) 149 43 0.692 (0.520, 0.865)
2009-2013 2,212 37 0.827 (0.694, 0.961) 154 37 0.876 (0.764, 0.987)
2010-2014 2,289 23 0.724 (0.365, 1.000) 160 23 0.842 (0.679, 1.000)

Rare Diseases

2004-2008 1,361 69 0.664 (0.517, 0.811) 212 69 0.521 (0.349, 0.693)
2005-2009 1,562 81 0.627 (0.471, 0.782) 231 81 0.528 (0.368, 0.687)
2006-2010 1,764 108 0.774 (0.666, 0.881) 257 108 0.691 (0.546, 0.836)
2007-2011 1,969 101 0.786 (0.698, 0.874) 303 101 0.680 (0.547, 0.812)
2008-2012 2,082 112 0.787 (0.696, 0.879) 329 112 0.600 (0.469, 0.731)
2009-2013 2,212 90 0.803 (0.702, 0.903) 358 90 0.730 (0.626, 0.834)
2010-2014 2,289 89 0.793 (0.621, 0.965) 391 89 0.779 (0.626, 0.932)
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Table B.12: Out-of-sample and out-of-time performance for P3APP. Comparison of
the general and indication-group specific classifiers for selected indication groups. We
use bootstrapping to determine the 95% CI for AUC. We exclude indication groups
with too few samples.

General Indication-Group-Specific

Training Testing Testing Set Training Testing Testing Set
Set Set AUC (95% CI) Set Set AUC (95% CI)

All

2004-2008 472 196 0.769 (0.704, 0.834)
2005-2009 559 177 0.724 (0.650, 0.798)
2006-2010 604 211 0.738 (0.671, 0.805)
2007-2011 664 174 0.806 (0.740, 0.871)
2008-2012 677 197 0.827 (0.768, 0.886)
2009-2013 740 153 0.868 (0.809, 0.927)
2010-2014 734 110 0.876 (0.811, 0.941)

Alimentary

2004-2008 472 65 0.826 (0.651, 1.000) 25 65 0.889 (0.756, 1.000)
2005-2009 559 75 0.683 (0.324, 1.000) 17 75 0.650 (0.331, 0.969)
2006-2010 604 80 0.672 (0.428, 0.915) 30 80 0.651 (0.429, 0.872)
2007-2011 664 91 0.911 (0.786, 1.000) 28 91 0.800 (0.630, 0.970)
2008-2012 677 97 0.786 (0.572, 1.000) 24 97 0.700 (0.469, 0.931)
2009-2013 740 107 0.607 (0.149, 1.000) 18 107 0.786 (0.570, 1.000)
2010-2014 734 99 0.944 (0.850, 1.000) 19 99 0.733 (0.492, 0.975)

Anti-cancer

2004-2008 472 95 0.773 (0.618, 0.928) 34 95 0.684 (0.495, 0.874)
2005-2009 559 107 0.740 (0.543, 0.936) 28 107 0.568 (0.345, 0.791)
2006-2010 604 110 0.754 (0.599, 0.910) 50 110 0.630 (0.452, 0.809)
2007-2011 664 132 0.587 (0.333, 0.842) 24 132 0.392 (0.132, 0.651)
2008-2012 677 134 0.793 (0.549, 1.000) 40 134 0.668 (0.457, 0.879)
2009-2013 740 151 0.800 (0.480, 1.000) 29 151 0.775 (0.528, 1.000)
2010-2014 734 153 0.943 (0.842, 1.000) 26 153 0.852 (0.558, 1.000)

Neurological

2004-2008 472 118 0.851 (0.753, 0.949) 59 118 0.837 (0.735, 0.939)
2005-2009 559 151 0.782 (0.646, 0.918) 45 151 0.784 (0.649, 0.919)
2006-2010 604 169 0.732 (0.593, 0.871) 52 169 0.759 (0.629, 0.890)
2007-2011 664 180 0.706 (0.532, 0.880) 40 180 0.698 (0.529, 0.867)
2008-2012 677 178 0.765 (0.604, 0.926) 41 178 0.743 (0.586, 0.900)
2009-2013 740 185 0.827 (0.681, 0.973) 31 185 0.805 (0.641, 0.968)
2010-2014 734 166 0.779 (0.567, 0.990) 27 166 0.900 (0.782, 1.000)

Rare Diseases

2004-2008 472 54 0.711 (0.465, 0.957) 22 54 0.620 (0.364, 0.876)
2005-2009 559 60 0.735 (0.517, 0.952) 23 60 0.606 (0.360, 0.852)
2006-2010 604 66 0.888 (0.747, 1.000) 24 66 0.825 (0.645, 1.000)
2007-2011 664 72 0.838 (0.652, 1.000) 22 72 0.735 (0.520, 0.950)
2008-2012 677 76 0.893 (0.780, 1.000) 34 76 0.700 (0.523, 0.877)
2009-2013 740 94 0.962 (0.899, 1.000) 28 94 0.932 (0.840, 1.000)
2010-2014 734 109 0.908 (0.766, 1.000) 18 109 0.985 (0.942, 1.000)
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Appendix C

Supplement to Chapter 4

C.1 Asymptotics for Superiority-by-Margin Test-

ing

The constraint is:

𝑝1 = 𝜃𝑝0 (C.1)

where 𝑝1 and 𝑝0 are the constrained maximum likelihood estimates of 𝑃1 and 𝑃0,

respectively, under the null hypothesis.

The closed-form solution is given by:

𝑝0 = −𝐵 −
√

𝐵2 − 4𝐴𝐶

2𝐴
(C.2)

𝐴 = (𝑟 + 1)𝜃𝑛0 , 𝐵 = −(𝜃𝑟𝑛0 + 𝑐1 + 𝑛0 + 𝜃𝑐0) , 𝐶 = 𝑐1 + 𝑐0

The asymptotic approximation is:

𝑝0 = −𝐵 −
√

𝐵2 − 4𝐴𝐶

2𝐴
, 𝑝1 = 𝜃𝑝0 (C.3)

𝐴 = (𝑟 + 1)𝜃 , 𝐵 = −(𝜃𝑟 + 𝑟𝑃1 + 1 + 𝜃𝑃0) , 𝐶 = 𝑟𝑃1 + 𝑃0
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C.2 Parameter Estimation for the SIRDC-SD Model

Let 𝐷𝑡 and 𝑑𝑡 be the cumulative and daily number of deaths from data at time 𝑡,

respectively. Let �̂�𝑡 and ℎ𝑎𝑡𝑑𝑡 denote the estimated values of 𝐷𝑡 and 𝑑𝑡, respectively.

We use the following optimization program to estimate the parameters of the model:

min
𝛽0,𝛽*,𝜆,𝐼0,𝜂

ln
(︃∑︁

𝑡

(𝐷𝑡 − �̂�𝑡)2
)︃

+ ln
(︃∑︁

𝑡

(𝑑𝑡 − 𝑑𝑡)2
)︃

(C.4)

subject to:

𝐼0 < 𝑁 , (C.5)

𝑅0 = 𝜂𝐼0 , (C.6)

𝑆0 = 𝑁 −𝑅0 − 𝐼0 , (C.7)

𝛽0 > 𝛽* . (C.8)

Our loss function is given by Eq. (C.4), which says that we minimize the sum

of 1) the natural logarithm of the sum of squared errors for the cumulative deaths,

and 2) the natural logarithm of the sum of squared errors for the daily deaths. The

minimization program is subjected to the four constraints. Eq. (C.5) says that the

initial number of infected must be less than the entire population. Eq. (C.6) imposes

that the number of initial resolving cases must be less than the number of initial

infected cases. Eq. (C.7) states that the conservation of population must hold at the

start of the simulation and Eq. (C.8) constrains the initial contact rate to be greater

than the final contact rate. We set 𝛾, 𝛿, and 𝜃 to 0.2, 0.008, and 0.1, respectively [117].

We solve the optimization program using the constrained Trust-Region algorithm as

implemented in the SciPy Optimize package.
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C.3 SIRDCV Model

We let 𝑉 and 𝜖 be the number of persons vaccinated at every time step and the

effectiveness of the vaccine, respectively. Effectiveness is defined as the performance

of the vaccine under real-world conditions in a general population whereas efficacy is

defined as the ability to protect against a virus under ideal conditions in a homoge-

neous population. The former is usually is less than the latter due to several reasons,

e.g., improper storage of vaccines leading to loss of potency and non-compliance with

the vaccine dosing schedule. For simplicity, we assume that the effectiveness of the

vaccine in the epidemiological model is identical to the efficacy of the vaccine in the

clinical trials.

𝑑𝑆𝑡

𝑑𝑡
= −𝛽(𝑡)𝑆𝑡𝐼𝑡

𝑁
− 𝑉 (C.9)

𝑑𝐼𝑡

𝑑𝑡
= 𝛽(𝑡)(𝑆𝑡 + 𝑉 𝑛𝑟

𝑡 )𝐼𝑡

𝑁
− 𝛾𝐼𝑡 (C.10)

𝑑𝑉 𝑛𝑟
𝑡

𝑑𝑡
= (1− 𝜖)𝑉 − 𝛽(𝑡)𝑉 𝑛𝑟

𝑡 𝐼𝑡

𝑁
(C.11)

𝑑𝑉 𝑟
𝑡

𝑑𝑡
= 𝜖𝑉 (C.12)

𝑑𝑅𝑡

𝑑𝑡
= 𝛾𝐼𝑡 − 𝜃𝑅𝑡 (C.13)

𝑑𝐷𝑡

𝑑𝑡
= 𝛿𝜃𝑅𝑡 (C.14)

𝑑𝐶𝑡

𝑑𝑡
= (1− 𝛿)𝜃𝑅𝑡 (C.15)

where 𝑉 𝑟
𝑡 and 𝑉 𝑛𝑟

𝑡 represent the stock of people who are inoculated, and respond (𝑟)

and do not respond (𝑛𝑟) to the vaccine, respectively. Eq. (4.13) has been modified to

remove vaccinated persons at every time step in Eq. (C.9). We also modify Eq. (4.14)

to allow people who are vaccinated but do not respond to the inoculation to be

infected in Eq. (C.10). Eq. (C.11) and Eq. (C.12) keep track of the stock of people

who are vaccinated. With this specification, the virus is allowed to spread even when

the entire population is vaccinated because not everyone will respond to the mass

inoculation.
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C.4 Evolution of the Epidemic

We model three different scenarios regarding the evolution of the epidemic after lock-

down is relaxed. We define 𝛽𝑠𝑠 as 𝑚𝑎𝑥(0.22, 𝛽(𝑇𝑣)), where 𝛽(𝑇𝑣) is the value of 𝛽

when the lockdown is released.

C.4.1 Status Quo

For the “status quo” scenario, we use the estimated dynamic 𝛽(𝑡) for our forecasts.

C.4.2 Ramp

For the “ramp” scenario, we model 𝛽(𝑡) according to:

𝛽′(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛽(𝑡) ∀ 𝑡 < 𝑇𝑣

𝛽(𝑇𝑣) + 𝛽𝑠𝑠−𝛽(𝑇𝑣)
90 𝑡 ∀𝑇𝑣 ≤ 𝑡 ≤ (𝑇𝑣 + 90)

𝛽𝑠𝑠 otherwise

(C.16)

C.4.3 Behavioral

The “behavioral” scenario is modeled by making the percentage change in contact

rate parameter negatively proportionate to the change in the observed death rate

over an interval of 𝑡𝑜. That is,

1
𝛽

𝑑𝛽

𝑑(Δ𝐷
𝑁

)
= −𝑘 (C.17)

The contact rate parameter in this case is defined by:

𝛽′(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝛽(𝑡) ∀ 𝑡 < 𝑇𝑣

𝑒𝑐−𝑘
𝐷𝑡−𝐷𝑡−𝑡𝑜

𝑁 otherwise
(C.18)

276



C.5 Financial Costs of Vaccine Efficacy Studies

There are many sources of costs involved in a clinical trial, e.g., patient recruitment

and retention, medical and administrative staff, clinical procedures and central labo-

ratory, site management, and data collection and analysis. For a back-of-the-envelope

calculation, we assume that the cost per subject in a phase 3 vaccine efficacy trial is

around US$5,000. This suggests a cost of US$150M for a study with 30,000 subjects,

close to that estimated for rotavirus vaccines [219] in one of the very few studies that

estimate the cost of vaccine development [220]. The figure is very high as compared

to the median expense of a phase 3 trial for novel therapeutic agents, estimated to

be US$19M [221]. However, this is not surprising because vaccine efficacy studies

are notorious for being costly due to the large sample sizes and lengthy follow-up

durations.

If we assume that challenge studies have a cost per subject that is ten times

higher, i.e., US$50,000 per volunteer, the estimated cost of an HCT is approximately

US$37.5M, where we have assumed a cost of US$5,000 per subject for the follow-up

single-arm safety study comprising of 5,000 subjects. This makes up just 25% of the

cost of an RCT with 30,000 subjects. Assuming a mortality rate of 1% in HCT—

which is an overestimation given that the case fatality rate of adults aged 18–25 years

has been estimated to be approximately 0.2% [107]—and a value of statistical life of

$10M, the expected cost of liability compensation is $25M. This brings the expected

cost of an HCT to $62.5M, approximately 40% of the cost of a traditional phase 3

vaccine efficacy field trial.
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C.6 Additional Results

Table C.1: Expected number of incremental infections and deaths avoided in the
U.S. under different trial designs, vaccine efficacies, and epidemiological scenarios,
assuming trials start on August 1, 2020, superiority testing, and 1M doses of a vaccine
per day are available after licensure, compared to the baseline case where no vaccine
is ever approved.

Vaccine Efficacy (%)

30 50

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 2,506 20 8,116 64
ORCT 3,654 29 11,947 95
ARCT 6,248 49 22,261 177
HCT (30-day set-up) 90,472 722 106,202 848
HCT (60-day set-up) 71,223 568 83,467 666
HCT (90-day set-up) 56,263 448 65,857 525
HCT (120-day set-up) 44,556 355 52,122 415

Behavioral

RCT 224,835 1,736 264,810 2,056
ORCT 705,881 5,591 925,920 7,344
ARCT 1,502,846 11,959 2,051,223 16,346
HCT (30-day set-up) 2,209,905 17,618 2,695,582 21,502
HCT (60-day set-up) 1,611,969 12,834 1,951,336 15,548
HCT (90-day set-up) 1,190,836 9,465 1,429,078 11,370
HCT (120-day set-up) 894,225 7,092 1,065,008 8,457

Ramp

RCT 756,692 5,764 845,731 6,477
ORCT 1,825,095 14,344 2,656,479 20,964
ARCT 3,594,521 28,466 5,131,954 40,766
HCT (30-day set-up) 5,526,735 43,930 6,565,535 52,235
HCT (60-day set-up) 4,282,314 33,975 5,086,688 40,404
HCT (90-day set-up) 3,311,292 26,206 3,926,171 31,120
HCT (120-day set-up) 2,564,645 20,233 3,031,075 23,959

278



Table C.1 (continued): Expected number of incremental infections and deaths avoided
in the U.S. under different trial designs, vaccine efficacies, and epidemiological sce-
narios, assuming trials start on August 1, 2020, superiority testing, and 1M doses of
a vaccine per day are available after licensure, compared to the baseline case in which
no vaccine is ever approved.

Vaccine Efficacy (%)

70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 14,162 112 16,506 130
ORCT 25,167 200 38,663 308
ARCT 49,396 393 63,896 508
HCT (30-day set-up) 114,847 918 120,945 966
HCT (60-day set-up) 90,167 720 94,885 758
HCT (90-day set-up) 71,088 567 74,766 597
HCT (120-day set-up) 56,235 449 59,123 471

Behavioral

RCT 289,168 2,251 306,050 2,386
ORCT 1,007,301 7,995 1,065,183 8,459
ARCT 2,269,753 18,094 2,423,075 19,321
HCT (30-day set-up) 2,982,094 23,794 3,189,157 25,451
HCT (60-day set-up) 2,150,531 17,142 2,294,765 18,295
HCT (90-day set-up) 1,566,872 12,473 1,666,446 13,269
HCT (120-day set-up) 1,161,296 9,228 1,230,321 9,780

Ramp

RCT 899,765 6,909 937,666 7,212
ORCT 2,890,096 22,832 3,047,293 24,089
ARCT 5,768,903 45,861 6,091,608 48,443
HCT (30-day set-up) 7,130,975 56,759 7,523,068 59,896
HCT (60-day set-up) 5,528,656 43,941 5,837,268 46,409
HCT (90-day set-up) 4,265,392 33,834 4,503,392 35,738
HCT (120-day set-up) 3,288,349 26,018 3,469,234 27,465
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Table C.2: Expected number of incremental infections and deaths avoided in the
U.S. under different trial designs, vaccine efficacies, and epidemiological scenarios,
assuming trials start on August 1, 2020, superiority testing, and infinite doses of a
vaccine per day are available after licensure, compared to the baseline case in which
no vaccine is ever approved.

Vaccine Efficacy (%)

30 50

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 4,343 35 12,691 101
ORCT 6,190 50 18,462 147
ARCT 10,655 84 34,672 276
HCT (30-day set-up) 157,044 1,255 168,612 1,347
HCT (60-day set-up) 122,531 978 131,429 1,049
HCT (90-day set-up) 96,093 767 102,986 822
HCT (120-day set-up) 75,691 604 81,068 647

Behavioral

RCT 401,196 3,147 422,644 3,318
ORCT 1,284,033 10,217 1,542,261 12,276
ARCT 2,957,024 23,592 3,683,384 29,403
HCT (30-day set-up) 4,466,352 35,669 4,884,898 39,016
HCT (60-day set-up) 3,196,408 25,510 3,494,817 27,895
HCT (90-day set-up) 2,291,219 18,268 2,500,498 19,941
HCT (120-day set-up) 1,659,356 13,214 1,805,003 14,377

Ramp

RCT 1,174,517 9,107 1,229,484 9,547
ORCT 3,172,803 25,126 4,242,057 33,649
ARCT 6,347,189 50,488 8,191,884 65,245
HCT (30-day set-up) 9,669,217 77,070 10,366,266 82,641
HCT (60-day set-up) 7,564,062 60,228 8,126,045 64,719
HCT (90-day set-up) 5,860,161 46,598 6,304,440 50,146
HCT (120-day set-up) 4,512,448 35,815 4,857,257 38,569
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Table C.2 (continued): Expected number of incremental infections and deaths avoided
in the U.S. under different trial designs, vaccine efficacies, and epidemiological sce-
narios, assuming trials start on August 1, 2020, superiority testing, and infinite doses
of a vaccine per day are available after licensure, compared to the baseline case in
which no vaccine is ever approved.

Vaccine Efficacy (%)

70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 20,900 165 23,426 185
ORCT 36,872 294 54,672 436
ARCT 72,976 581 90,989 725
HCT (30-day set-up) 172,598 1,380 174,917 1,398
HCT (60-day set-up) 134,478 1,075 136,254 1,088
HCT (90-day set-up) 105,338 841 106,709 852
HCT (120-day set-up) 82,896 662 83,965 670

Behavioral

RCT 432,235 3,396 437,725 3,439
ORCT 1,587,101 12,634 1,613,158 12,843
ARCT 3,813,885 30,447 3,881,898 30,991
HCT (30-day set-up) 5,039,465 40,253 5,128,348 40,964
HCT (60-day set-up) 3,605,985 28,786 3,670,305 29,300
HCT (90-day set-up) 2,578,527 20,566 2,623,871 20,928
HCT (120-day set-up) 1,858,914 14,809 1,890,330 15,060

Ramp

RCT 1,255,157 9,752 1,270,085 9,871
ORCT 4,362,661 34,612 4,422,914 35,094
ARCT 8,662,725 69,012 8,776,472 69,922
HCT (30-day set-up) 10,597,019 84,487 10,728,517 85,539
HCT (60-day set-up) 8,315,537 66,236 8,423,946 67,103
HCT (90-day set-up) 6,456,348 51,362 6,543,545 52,059
HCT (120-day set-up) 4,976,272 39,521 5,044,819 40,070
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Table C.3: Expected number of incremental infections and deaths avoided in the
U.S. under different trial designs, vaccine efficacies, and epidemiological scenarios,
assuming trials start on August 1, 2020, superiority-by-margin testing at 30%, and
1M doses of a vaccine per day are available after licensure, compared to the baseline
case where no vaccine is ever approved.

Vaccine Efficacy (%)

30 50

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 263 2 2,618 21
ORCT 999 8 4,251 34
ARCT 369 2 3,735 29
HCT (30-day set-up) 2,139 17 99,609 795
HCT (60-day set-up) 1,648 13 78,283 625
HCT (90-day set-up) 1,267 10 61,765 492
HCT (120-day set-up) 969 8 48,882 389

Behavioral

RCT 2,252 18 264,786 2,056
ORCT 18,752 149 746,378 5,915
ARCT 26,078 207 1,635,970 13,024
HCT (30-day set-up) 56,145 448 2,528,441 20,169
HCT (60-day set-up) 40,908 326 1,830,340 14,584
HCT (90-day set-up) 30,177 240 1,340,463 10,665
HCT (120-day set-up) 22,619 180 998,966 7,933

Ramp

RCT 11,528 88 845,618 6,476
ORCT 56,093 442 1,893,630 14,903
ARCT 74,754 590 3,823,126 30,295
HCT (30-day set-up) 140,662 1,118 6,158,447 48,996
HCT (60-day set-up) 108,952 865 4,771,293 37,899
HCT (90-day set-up) 84,209 667 3,682,731 29,190
HCT (120-day set-up) 65,184 515 2,843,132 22,473
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Table C.3 (continued): Expected number of incremental infections and deaths avoided
in the U.S. under different trial designs, vaccine efficacies, and epidemiological scenar-
ios, assuming trials start on August 1, 2020, superiority-by-margin testing at 30%,
and 1M doses of a vaccine per day are available after licensure, compared to the
baseline case in which no vaccine is ever approved.

Vaccine Efficacy (%)

70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 10,240 81 16,273 129
ORCT 16,049 128 34,943 278
ARCT 20,883 166 50,277 400
HCT (30-day set-up) 114,847 918 120,945 966
HCT (60-day set-up) 90,167 720 94,885 758
HCT (90-day set-up) 71,088 567 74,766 597
HCT (120-day set-up) 56,235 449 59,123 471

Behavioral

RCT 289,168 2,251 306,050 2,386
ORCT 1,007,287 7,995 1,065,183 8,459
ARCT 2,266,473 18,068 2,423,075 19,321
HCT (30-day set-up) 2,982,094 23,794 3,189,157 25,451
HCT (60-day set-up) 2,150,531 17,142 2,294,765 18,295
HCT (90-day set-up) 1,566,872 12,473 1,666,446 13,269
HCT (120-day set-up) 1,161,296 9,228 1,230,321 9,780

Ramp

RCT 899,765 6,909 937,666 7,212
ORCT 2,887,058 22,808 3,047,293 24,089
ARCT 5,629,215 44,744 6,091,608 48,443
HCT (30-day set-up) 7,130,975 56,759 7,523,068 59,896
HCT (60-day set-up) 5,528,656 43,941 5,837,268 46,409
HCT (90-day set-up) 4,265,392 33,834 4,503,392 35,738
HCT (120-day set-up) 3,288,349 26,018 3,469,234 27,465
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Table C.4: Expected number of incremental infections and deaths avoided in the
U.S. under different trial designs, vaccine efficacies, and epidemiological scenarios,
assuming trials start on August 1, 2020, superiority-by-margin testing at 30%, and
10M doses of a vaccine per day are available after licensure, compared to the baseline
case where no vaccine is ever approved.

Vaccine Efficacy (%)

30 50

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 437 4 3,735 30
ORCT 1,533 12 5,986 48
ARCT 592 4 5,288 42
HCT (30-day set-up) 3,419 28 142,814 1,141
HCT (60-day set-up) 2,637 21 111,554 891
HCT (90-day set-up) 2,037 17 87,572 699
HCT (120-day set-up) 1,572 13 69,039 551

Behavioral

RCT 4,525 36 386,046 3,026
ORCT 30,524 243 1,102,052 8,763
ARCT 44,995 358 2,557,372 20,395
HCT (30-day set-up) 99,301 793 4,042,120 32,277
HCT (60-day set-up) 71,062 567 2,891,534 23,073
HCT (90-day set-up) 51,082 407 2,074,828 16,540
HCT (120-day set-up) 37,195 296 1,506,259 11,991

Ramp

RCT 16,969 131 1,131,380 8,763
ORCT 88,322 700 2,719,614 21,513
ARCT 118,816 943 5,548,454 44,098
HCT (30-day set-up) 222,651 1,774 8,866,332 70,659
HCT (60-day set-up) 173,482 1,381 6,923,750 55,119
HCT (90-day set-up) 134,041 1,065 5,357,518 42,589
HCT (120-day set-up) 103,112 818 4,123,460 32,716
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Table C.4 (continued): Expected number of incremental infections and deaths avoided
in the U.S. under different trial designs, vaccine efficacies, and epidemiological scenar-
ios, assuming trials start on August 1, 2020, superiority-by-margin testing at 30%,
and 10M doses of a vaccine per day are available after licensure, compared to the
baseline case in which no vaccine is ever approved.

Vaccine Efficacy (%)

70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 13,837 109 21,254 168
ORCT 21,526 172 45,436 362
ARCT 28,115 223 65,559 522
HCT (30-day set-up) 156,885 1,254 159,876 1,277
HCT (60-day set-up) 122,482 979 124,777 997
HCT (90-day set-up) 96,111 768 97,886 782
HCT (120-day set-up) 75,747 605 77,132 615

Behavioral

RCT 397,396 3,117 404,562 3,174
ORCT 1,425,995 11,345 1,457,500 11,598
ARCT 3,384,449 27,012 3,473,035 27,720
HCT (30-day set-up) 4,481,448 35,789 4,591,750 36,671
HCT (60-day set-up) 3,205,159 25,579 3,283,975 26,209
HCT (90-day set-up) 2,297,350 18,316 2,352,436 18,757
HCT (120-day set-up) 1,664,613 13,255 1,702,601 13,558

Ramp

RCT 1,160,564 8,996 1,179,234 9,145
ORCT 3,969,592 31,468 4,050,013 32,111
ARCT 7,735,702 61,596 8,071,866 64,285
HCT (30-day set-up) 9,725,022 77,511 9,897,591 78,892
HCT (60-day set-up) 7,602,878 60,534 7,743,514 61,659
HCT (90-day set-up) 5,887,421 46,811 5,999,381 47,706
HCT (120-day set-up) 4,532,400 35,970 4,619,521 36,667
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Table C.5: Expected number of incremental infections and deaths avoided in the
U.S. under different trial designs, vaccine efficacies, and epidemiological scenarios,
assuming trials start on August 1, 2020, superiority-by-margin testing at 30%, and
infinite doses of a vaccine per day are available after licensure, compared to the
baseline case in which no vaccine is ever approved.

Vaccine Efficacy (%)

30 50

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 489 4 4,111 33
ORCT 1,702 14 6,582 53
ARCT 662 5 5,825 46
HCT (30-day set-up) 3,835 31 158,149 1,263
HCT (60-day set-up) 2,956 24 123,272 984
HCT (90-day set-up) 2,282 19 96,592 771
HCT (120-day set-up) 1,762 14 76,033 607

Behavioral

RCT 5,145 41 422,606 3,318
ORCT 34,444 275 1,231,877 9,802
ARCT 51,350 409 2,894,121 23,089
HCT (30-day set-up) 113,642 908 4,582,014 36,597
HCT (60-day set-up) 81,282 649 3,278,121 26,165
HCT (90-day set-up) 58,217 465 2,345,452 18,705
HCT (120-day set-up) 42,116 336 1,693,080 13,486

Ramp

RCT 18,656 145 1,229,320 9,546
ORCT 98,315 780 3,001,533 23,767
ARCT 132,140 1,049 6,119,602 48,667
HCT (30-day set-up) 246,217 1,963 9,723,523 77,517
HCT (60-day set-up) 192,575 1,534 7,622,202 60,706
HCT (90-day set-up) 149,158 1,186 5,913,541 47,037
HCT (120-day set-up) 114,816 912 4,556,087 36,178

286



Table C.5 (continued): Expected number of incremental infections and deaths avoided
in the U.S. under different trial designs, vaccine efficacies, and epidemiological sce-
narios, assuming trials start on August 1, 2020, superiority-by-margin testing at 30%,
and infinite doses of a vaccine per day are available after licensure, compared to the
baseline case in which no vaccine is ever approved.

Vaccine Efficacy (%)

70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 15,118 120 23,096 183
ORCT 23,509 187 49,390 394
ARCT 30,759 245 71,348 568
HCT (30-day set-up) 172,598 1,380 174,917 1,398
HCT (60-day set-up) 134,478 1,075 136,254 1,088
HCT (90-day set-up) 105,338 841 106,709 852
HCT (120-day set-up) 82,896 662 83,965 670

Behavioral

RCT 432,235 3,396 437,725 3,439
ORCT 1,587,079 12,634 1,613,158 12,843
ARCT 3,808,128 30,401 3,881,898 30,991
HCT (30-day set-up) 5,039,465 40,253 5,128,348 40,964
HCT (60-day set-up) 3,605,985 28,786 3,670,305 29,300
HCT (90-day set-up) 2,578,527 20,566 2,623,871 20,928
HCT (120-day set-up) 1,858,914 14,809 1,890,330 15,060

Ramp

RCT 1,255,157 9,752 1,270,085 9,871
ORCT 4,358,075 34,576 4,422,914 35,094
ARCT 8,458,206 67,376 8,776,472 69,922
HCT (30-day set-up) 10,597,019 84,487 10,728,517 85,539
HCT (60-day set-up) 8,315,537 66,236 8,423,946 67,103
HCT (90-day set-up) 6,456,348 51,362 6,543,545 52,059
HCT (120-day set-up) 4,976,272 39,521 5,044,819 40,070
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Table C.6: Expected number of incremental infections and deaths avoided in the U.S.
under different trial designs, vaccine efficacies, and epidemiological scenarios, assum-
ing trials start on August 1, 2020, superiority-by-margin testing at 50%, and 1M doses
of a vaccine per day are available after licensure, compared to the baseline case where
no vaccine is ever approved. We observe negative expected net values when vaccine
efficacy is 30% because the candidate is almost never approved under superiority-
by-margin testing. While a cost from conducting the trial is always incurred, the
expected post-trial benefit is close to zero.

Vaccine Efficacy (%)

30 50

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT -34 0 319 3
ORCT 239 2 1,149 9
ARCT -39 0 199 1
HCT (30-day set-up) -171 -1 2,523 20
HCT (60-day set-up) -171 -1 1,955 16
HCT (90-day set-up) -171 -1 1,515 12
HCT (120-day set-up) -171 -1 1,171 9

Behavioral

RCT -1,461 -11 2,242 17
ORCT -331 -2 21,526 171
ARCT -1,384 -11 29,583 235
HCT (30-day set-up) -171 -1 67,258 537
HCT (60-day set-up) -171 -1 48,652 388
HCT (90-day set-up) -171 -1 35,595 283
HCT (120-day set-up) -171 -1 26,494 210

Ramp

RCT -1,406 -11 10,693 82
ORCT -198 -1 64,285 508
ARCT -1,196 -9 82,127 649
HCT (30-day set-up) -171 -1 164,007 1,305
HCT (60-day set-up) -171 -1 127,036 1,009
HCT (90-day set-up) -171 -1 98,023 777
HCT (120-day set-up) -171 -1 75,645 598
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Table C.6 (continued): Expected number of incremental infections and deaths avoided
in the U.S. under different trial designs, vaccine efficacies, and epidemiological scenar-
ios, assuming trials start on August 1, 2020, superiority-by-margin testing at 50%,
and 1M doses of a vaccine per day are available after licensure, compared to the
baseline case where no vaccine is ever approved.

Vaccine Efficacy (%)

70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 4,091 32 14,935 118
ORCT 6,123 49 26,189 208
ARCT 3,840 30 27,107 215
HCT (30-day set-up) 113,800 910 120,945 966
HCT (60-day set-up) 89,345 713 94,885 758
HCT (90-day set-up) 70,439 562 74,766 597
HCT (120-day set-up) 55,722 445 59,123 471

Behavioral

RCT 289,168 2,251 306,050 2,386
ORCT 955,088 7,581 1,065,183 8,459
ARCT 2,043,288 16,282 2,423,068 19,321
HCT (30-day set-up) 2,954,925 23,577 3,189,157 25,451
HCT (60-day set-up) 2,130,938 16,986 2,294,765 18,295
HCT (90-day set-up) 1,552,596 12,359 1,666,446 13,269
HCT (120-day set-up) 1,150,715 9,144 1,230,321 9,780

Ramp

RCT 899,765 6,909 937,666 7,212
ORCT 2,467,656 19,477 3,047,293 24,089
ARCT 4,714,327 37,425 6,088,218 48,416
HCT (30-day set-up) 7,066,008 56,242 7,523,068 59,896
HCT (60-day set-up) 5,478,287 43,541 5,837,268 46,409
HCT (90-day set-up) 4,226,532 33,526 4,503,392 35,738
HCT (120-day set-up) 3,258,390 25,781 3,469,234 27,465
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Table C.7: Expected number of incremental infections and deaths avoided in the
U.S. under different trial designs, vaccine efficacies, and epidemiological scenarios,
assuming trials start on August 1, 2020, superiority-by-margin testing at 50%, and
10M doses of a vaccine per day are available after licensure, compared to the baseline
case where no vaccine is ever approved. We observe negative expected net values
when vaccine efficacy is 30% because the candidate is almost never approved un-
der superiority-by-margin testing. While a cost from conducting the trial is always
incurred, the expected post-trial benefit is close to zero.

Vaccine Efficacy (%)

30 50

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT -25 0 471 4
ORCT 374 3 1,625 13
ARCT -33 0 298 2
HCT (30-day set-up) -171 -1 3,675 29
HCT (60-day set-up) -171 -1 2,842 23
HCT (90-day set-up) -171 -1 2,203 18
HCT (120-day set-up) -171 -1 1,709 14

Behavioral

RCT -1,461 -11 3,852 30
ORCT -331 -2 32,156 256
ARCT -1,384 -11 46,267 368
HCT (30-day set-up) -171 -1 107,601 859
HCT (60-day set-up) -171 -1 76,935 614
HCT (90-day set-up) -171 -1 55,168 440
HCT (120-day set-up) -171 -1 40,014 319

Ramp

RCT -1,406 -11 14,720 115
ORCT -183 -1 93,009 738
ARCT -1,142 -9 119,304 947
HCT (30-day set-up) -171 -1 236,179 1,882
HCT (60-day set-up) -171 -1 184,404 1,468
HCT (90-day set-up) -171 -1 142,660 1,134
HCT (120-day set-up) -171 -1 109,769 871
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Table C.7 (continued): Expected number of incremental infections and deaths avoided
in the U.S. under different trial designs, vaccine efficacies, and epidemiological scenar-
ios, assuming trials start on August 1, 2020, superiority-by-margin testing at 50%,
and 10M doses of a vaccine per day are available after licensure, compared to the
baseline case where no vaccine is ever approved.

Vaccine Efficacy (%)

70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 5,536 44 19,507 154
ORCT 8,217 66 34,029 271
ARCT 5,170 41 35,268 280
HCT (30-day set-up) 155,455 1,243 159,876 1,277
HCT (60-day set-up) 121,365 970 124,777 997
HCT (90-day set-up) 95,234 761 97,886 782
HCT (120-day set-up) 75,056 599 77,132 615

Behavioral

RCT 397,396 3,117 404,562 3,174
ORCT 1,352,103 10,757 1,457,500 11,598
ARCT 3,037,771 24,238 3,473,025 27,720
HCT (30-day set-up) 4,440,619 35,463 4,591,750 36,671
HCT (60-day set-up) 3,175,958 25,346 3,283,975 26,209
HCT (90-day set-up) 2,276,419 18,149 2,352,436 18,757
HCT (120-day set-up) 1,649,447 13,134 1,702,601 13,558

Ramp

RCT 1,160,564 8,996 1,179,234 9,145
ORCT 3,387,704 26,840 4,050,013 32,111
ARCT 6,492,110 51,647 8,067,450 64,250
HCT (30-day set-up) 9,636,422 76,805 9,897,591 78,892
HCT (60-day set-up) 7,533,612 59,983 7,743,514 61,659
HCT (90-day set-up) 5,833,783 46,385 5,999,381 47,706
HCT (120-day set-up) 4,491,107 35,642 4,619,521 36,667
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Table C.8: Expected number of incremental infections and deaths avoided in the
U.S. under different trial designs, vaccine efficacies, and epidemiological scenarios,
assuming trials start on August 1, 2020, superiority-by-margin testing at 50%, and
infinite doses of a vaccine per day are available after licensure, compared to the
baseline case where no vaccine is ever approved. We observe negative expected net
values when vaccine efficacy is 30% because the candidate is almost never approved
under superiority-by-margin testing. While a cost from conducting the trial is always
incurred, the expected post-trial benefit is close to zero.

Vaccine Efficacy (%)

30 50

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT -22 0 523 4
ORCT 416 3 1,789 14
ARCT -31 0 332 2
HCT (30-day set-up) -171 -1 4,084 33
HCT (60-day set-up) -171 -1 3,154 25
HCT (90-day set-up) -171 -1 2,443 20
HCT (120-day set-up) -171 -1 1,895 15

Behavioral

RCT -1,461 -11 4,337 34
ORCT -331 -2 36,046 287
ARCT -1,384 -11 52,340 417
HCT (30-day set-up) -171 -1 121,991 974
HCT (60-day set-up) -171 -1 87,239 696
HCT (90-day set-up) -171 -1 62,381 498
HCT (120-day set-up) -171 -1 44,993 358

Ramp

RCT -1,406 -11 16,101 126
ORCT -178 -1 102,769 816
ARCT -1,126 -9 131,636 1,045
HCT (30-day set-up) -171 -1 259,025 2,065
HCT (60-day set-up) -171 -1 203,020 1,617
HCT (90-day set-up) -171 -1 157,479 1,253
HCT (120-day set-up) -171 -1 121,300 963
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Table C.8 (continued): Expected number of incremental infections and deaths avoided
in the U.S. under different trial designs, vaccine efficacies, and epidemiological sce-
narios, assuming trials start on August 1, 2020, superiority-by-margin testing at 50%,
and infinite doses of a vaccine per day are available after licensure, compared to the
baseline case where no vaccine is ever approved.

Vaccine Efficacy (%)

70 90

E[ΔInfections] E[ΔDeaths] E[ΔInfections] E[ΔDeaths]

Status Quo

RCT 6,050 48 21,198 168
ORCT 8,976 72 36,974 295
ARCT 5,655 45 38,342 305
HCT (30-day set-up) 171,025 1,367 174,917 1,398
HCT (60-day set-up) 133,252 1,065 136,254 1,088
HCT (90-day set-up) 104,377 833 106,709 852
HCT (120-day set-up) 82,140 656 83,965 670

Behavioral

RCT 432,235 3,396 437,725 3,439
ORCT 1,504,842 11,979 1,613,158 12,843
ARCT 3,416,029 27,264 3,881,886 30,991
HCT (30-day set-up) 4,993,552 39,886 5,128,348 40,964
HCT (60-day set-up) 3,573,132 28,524 3,670,305 29,300
HCT (90-day set-up) 2,555,035 20,379 2,623,871 20,928
HCT (120-day set-up) 1,841,978 14,674 1,890,330 15,060

Ramp

RCT 1,255,157 9,752 1,270,085 9,871
ORCT 3,718,588 29,487 4,422,914 35,094
ARCT 7,109,717 56,588 8,771,717 69,884
HCT (30-day set-up) 10,500,475 83,717 10,728,517 85,539
HCT (60-day set-up) 8,239,778 65,633 8,423,946 67,103
HCT (90-day set-up) 6,397,527 50,894 6,543,545 52,059
HCT (120-day set-up) 4,930,935 39,161 5,044,819 40,070

293



Table C.9: Estimated date of licensure and probability of approval under different
trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on
August 1, 2020, superiority testing, and 1M doses of a vaccine per day are available
after licensure. For ARCT, we report the median date of licensure over all Monte
Carlo simulations. Abbreviations: DoL, date of licensure (month/day/year); PoA,
probability of approval.

Vaccine Efficacy (%)

30 50

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 20.2 11/19/21 55.9
ORCT 08/14/21 13.6 08/15/21 38.9
ARCT 07/02/21 14.5 06/02/21 44.2
HCT (30-day set-up) 03/09/21 98.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 98.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 98.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 98.1 06/07/21 100.0

Behavioral

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/24/21 90.5 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 98.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 98.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 98.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 98.1 06/07/21 100.0

Ramp

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 07/06/21 88.9 06/22/21 99.6
ARCT 05/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 98.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 98.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 98.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 98.1 06/07/21 100.0
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Table C.9 (continued): Estimated date of licensure and probability of approval under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials
start on August 1, 2020, superiority testing, and 1M doses of a vaccine per day are
available after licensure. Abbreviations: DoL, date of licensure (month/day/year);
PoA, probability of approval.

Vaccine Efficacy (%)

70 90

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 89.9 11/19/21 99.6
ORCT 07/30/21 67.2 07/10/21 84.3
ARCT 06/02/21 83.8 06/02/21 99.6
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0

Behavioral

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/22/21 100.0 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0

Ramp

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/22/21 100.0 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0
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Table C.10: Estimated date of licensure and probability of approval under different
trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on
August 1, 2020, superiority testing, and 10M doses of a vaccine per day are available
after licensure. For ARCT, we report the median date of licensure over all Monte
Carlo simulations. Abbreviations: DoL, date of licensure (month/day/year); PoA,
probability of approval.

Vaccine Efficacy (%)

30 50

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 20.2 11/19/21 55.9
ORCT 08/15/21 13.8 08/15/21 38.9
ARCT 07/02/21 14.5 06/02/21 44.2
HCT (30-day set-up) 03/09/21 98.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 98.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 98.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 98.1 06/07/21 100.0

Behavioral

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/23/21 89.6 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 98.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 98.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 98.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 98.1 06/07/21 100.0

Ramp

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 07/06/21 88.9 06/22/21 99.6
ARCT 05/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 98.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 98.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 98.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 98.1 06/07/21 100.0
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Table C.10 (continued): Estimated date of licensure and probability of approval under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials
start on August 1, 2020, superiority testing, and 10M doses of a vaccine per day are
available after licensure. Abbreviations: DoL, date of licensure (month/day/year);
PoA, probability of approval.

Vaccine Efficacy (%)

70 90

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 89.9 11/19/21 99.6
ORCT 07/30/21 67.2 07/10/21 84.3
ARCT 06/02/21 83.8 06/02/21 99.6
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0

Behavioral

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/22/21 100.0 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0

Ramp

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/22/21 100.0 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0
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Table C.11: Estimated date of licensure and probability of approval under different
trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority testing, and infinite doses of a vaccine per day are
available after licensure. For ARCT, we report the median date of licensure over all
Monte Carlo simulations. Abbreviations: DoL, date of licensure (month/day/year);
PoA, probability of approval.

Vaccine Efficacy (%)

30 50

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 20.2 11/19/21 55.9
ORCT 08/14/21 13.6 08/14/21 38.6
ARCT 07/02/21 14.5 06/02/21 44.2
HCT (30-day set-up) 03/09/21 98.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 98.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 98.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 98.1 06/07/21 100.0

Behavioral

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/23/21 89.6 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 98.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 98.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 98.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 98.1 06/07/21 100.0

Ramp

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 07/06/21 88.9 06/22/21 99.6
ARCT 05/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 98.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 98.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 98.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 98.1 06/07/21 100.0
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Table C.11 (continued): Estimated date of licensure and probability of approval under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials
start on August 1, 2020, superiority testing, and infinite doses of a vaccine per day
are available after licensure. Abbreviations: DoL, date of licensure (month/day/year);
PoA, probability of approval.

Vaccine Efficacy (%)

70 90

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 89.9 11/19/21 99.6
ORCT 07/30/21 67.2 07/10/21 84.3
ARCT 06/02/21 83.8 06/02/21 99.6
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0

Behavioral

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/22/21 100.0 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0

Ramp

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/22/21 100.0 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0
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Table C.12: Estimated date of licensure and probability of approval under different
trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority-by-margin testing at 30%, and 1M doses of a vac-
cine per day are available after licensure. For ARCT, we report the median date
of licensure over all Monte Carlo simulations. Abbreviations: DoL, date of licensure
(month/day/year); PoA, probability of approval.

Vaccine Efficacy (%)

30 50

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 2.5 11/19/21 18.2
ORCT 06/22/21 2.5 06/22/21 13.6
ARCT 07/02/21 1.0 07/02/21 8.3
HCT (30-day set-up) 03/09/21 2.5 03/09/21 93.8
HCT (60-day set-up) 04/08/21 2.5 04/08/21 93.8
HCT (90-day set-up) 05/08/21 2.5 05/08/21 93.8
HCT (120-day set-up) 06/07/21 2.5 06/07/21 93.8

Behavioral

RCT 11/19/21 1.6 11/19/21 100.0
ORCT 06/22/21 2.4 06/22/21 78.3
ARCT 07/22/21 2.4 05/03/21 100.0
HCT (30-day set-up) 03/09/21 2.5 03/09/21 93.8
HCT (60-day set-up) 04/08/21 2.5 04/08/21 93.8
HCT (90-day set-up) 05/08/21 2.5 05/08/21 93.8
HCT (120-day set-up) 06/07/21 2.5 06/07/21 93.8

Ramp

RCT 11/19/21 1.7 11/19/21 100.0
ORCT 06/22/21 2.4 06/22/21 61.3
ARCT 08/21/21 2.6 05/03/21 99.9
HCT (30-day set-up) 03/09/21 2.5 03/09/21 93.8
HCT (60-day set-up) 04/08/21 2.5 04/08/21 93.8
HCT (90-day set-up) 05/08/21 2.5 05/08/21 93.8
HCT (120-day set-up) 06/07/21 2.5 06/07/21 93.8
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Table C.12 (continued): Estimated date of licensure and probability of approval under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials
start on August 1, 2020, superiority-by-margin testing at 30%, and 1M doses of a
vaccine per day are available after licensure. Abbreviations: DoL, date of licensure
(month/day/year); PoA, probability of approval.

Vaccine Efficacy (%)

70 90

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 65.1 11/19/21 98.2
ORCT 08/06/21 42.7 07/31/21 75.9
ARCT 07/02/21 42.5 07/02/21 94.2
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0

Behavioral

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/22/21 100.0 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0

Ramp

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/30/21 99.9 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0
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Table C.13: Estimated date of licensure and probability of approval under different
trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority-by-margin testing at 30%, and 10M doses of a vac-
cine per day are available after licensure. For ARCT, we report the median date
of licensure over all Monte Carlo simulations. Abbreviations: DoL, date of licensure
(month/day/year); PoA, probability of approval.

Vaccine Efficacy (%)

30 50

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 2.5 11/19/21 18.2
ORCT 06/22/21 2.5 06/22/21 13.6
ARCT 07/02/21 1.0 07/02/21 8.3
HCT (30-day set-up) 03/09/21 2.5 03/09/21 93.8
HCT (60-day set-up) 04/08/21 2.5 04/08/21 93.8
HCT (90-day set-up) 05/08/21 2.5 05/08/21 93.8
HCT (120-day set-up) 06/07/21 2.5 06/07/21 93.8

Behavioral

RCT 11/19/21 1.6 11/19/21 100.0
ORCT 06/22/21 2.4 06/22/21 78.3
ARCT 07/22/21 2.4 05/03/21 100.0
HCT (30-day set-up) 03/09/21 2.5 03/09/21 93.8
HCT (60-day set-up) 04/08/21 2.5 04/08/21 93.8
HCT (90-day set-up) 05/08/21 2.5 05/08/21 93.8
HCT (120-day set-up) 06/07/21 2.5 06/07/21 93.8

Ramp

RCT 11/19/21 1.7 11/19/21 100.0
ORCT 06/22/21 2.4 06/22/21 61.3
ARCT 08/21/21 2.6 05/03/21 99.9
HCT (30-day set-up) 03/09/21 2.5 03/09/21 93.8
HCT (60-day set-up) 04/08/21 2.5 04/08/21 93.8
HCT (90-day set-up) 05/08/21 2.5 05/08/21 93.8
HCT (120-day set-up) 06/07/21 2.5 06/07/21 93.8
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Table C.13 (continued): Estimated date of licensure and probability of approval under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials
start on August 1, 2020, superiority-by-margin testing at 30%, and 10M doses of a
vaccine per day are available after licensure. Abbreviations: DoL, date of licensure
(month/day/year); PoA, probability of approval.

Vaccine Efficacy (%)

70 90

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 65.1 11/19/21 98.2
ORCT 08/06/21 42.7 07/31/21 75.9
ARCT 07/02/21 42.5 07/02/21 94.2
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0

Behavioral

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/22/21 100.0 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0

Ramp

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/29/21 99.9 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0
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Table C.14: Estimated date of licensure and probability of approval under different
trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority-by-margin testing at 30%, and infinite doses of a
vaccine per day are available after licensure. For ARCT, we report the median date
of licensure over all Monte Carlo simulations. Abbreviations: DoL, date of licensure
(month/day/year); PoA, probability of approval.

Vaccine Efficacy (%)

30 50

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 2.5 11/19/21 18.2
ORCT 06/22/21 2.5 06/22/21 13.5
ARCT 07/02/21 1.0 07/02/21 8.3
HCT (30-day set-up) 03/09/21 2.5 03/09/21 93.8
HCT (60-day set-up) 04/08/21 2.5 04/08/21 93.8
HCT (90-day set-up) 05/08/21 2.5 05/08/21 93.8
HCT (120-day set-up) 06/07/21 2.5 06/07/21 93.8

Behavioral

RCT 11/19/21 1.6 11/19/21 100.0
ORCT 06/22/21 2.4 06/22/21 78.3
ARCT 07/22/21 2.4 05/03/21 100.0
HCT (30-day set-up) 03/09/21 2.5 03/09/21 93.8
HCT (60-day set-up) 04/08/21 2.5 04/08/21 93.8
HCT (90-day set-up) 05/08/21 2.5 05/08/21 93.8
HCT (120-day set-up) 06/07/21 2.5 06/07/21 93.8

Ramp

RCT 11/19/21 1.7 11/19/21 100.0
ORCT 06/22/21 2.4 06/22/21 61.3
ARCT 08/21/21 2.6 05/03/21 99.9
HCT (30-day set-up) 03/09/21 2.5 03/09/21 93.8
HCT (60-day set-up) 04/08/21 2.5 04/08/21 93.8
HCT (90-day set-up) 05/08/21 2.5 05/08/21 93.8
HCT (120-day set-up) 06/07/21 2.5 06/07/21 93.8
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Table C.14 (continued): Estimated date of licensure and probability of approval under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials
start on August 1, 2020, superiority-by-margin testing at 30%, and infinite doses of
a vaccine per day are available after licensure. Abbreviations: DoL, date of licensure
(month/day/year); PoA, probability of approval.

Vaccine Efficacy (%)

70 90

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 65.1 11/19/21 98.2
ORCT 08/06/21 42.7 07/31/21 75.9
ARCT 07/02/21 42.5 07/02/21 94.2
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0

Behavioral

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/22/21 100.0 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0

Ramp

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/29/21 99.9 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 100.0 03/09/21 100.0
HCT (60-day set-up) 04/08/21 100.0 04/08/21 100.0
HCT (90-day set-up) 05/08/21 100.0 05/08/21 100.0
HCT (120-day set-up) 06/07/21 100.0 06/07/21 100.0
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Table C.15: Estimated date of licensure and probability of approval under different
trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on
August 1, 2020, superiority-by-margin testing at 50%, and 1M doses of a vaccine per
day are available after licensure. For ARCT, we report the median date of licensure
over all Monte Carlo simulations. A blank entry indicates that the vaccine candidate
is never approved. Abbreviations: DoL, date of licensure (month/day/year); PoA,
probability of approval.

Vaccine Efficacy (%)

30 50

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 0.1 11/19/21 2.5
ORCT 06/22/21 0.3 06/22/21 2.5
ARCT 0.0 07/02/21 0.6
HCT (30-day set-up) 0.0 03/09/21 2.5
HCT (60-day set-up) 0.0 04/08/21 2.5
HCT (90-day set-up) 0.0 05/08/21 2.5
HCT (120-day set-up) 0.0 06/07/21 2.5

Behavioral

RCT 0.0 11/19/21 1.3
ORCT 0.0 06/22/21 2.4
ARCT 0.0 06/02/21 2.4
HCT (30-day set-up) 0.0 03/09/21 2.5
HCT (60-day set-up) 0.0 04/08/21 2.5
HCT (90-day set-up) 0.0 05/08/21 2.5
HCT (120-day set-up) 0.0 06/07/21 2.5

Ramp

RCT 0.0 11/19/21 1.4
ORCT 0.0 06/22/21 2.4
ARCT 0.0 06/02/21 2.5
HCT (30-day set-up) 0.0 03/09/21 2.5
HCT (60-day set-up) 0.0 04/08/21 2.5
HCT (90-day set-up) 0.0 05/08/21 2.5
HCT (120-day set-up) 0.0 06/07/21 2.5
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Table C.15 (continued): Estimated date of licensure and probability of approval under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials
start on August 1, 2020, superiority-by-margin testing at 50%, and 1M doses of a
vaccine per day are available after licensure. Abbreviations: DoL, date of licensure
(month/day/year); PoA, probability of approval.

Vaccine Efficacy (%)

70 90

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 26.2 11/19/21 90.1
ORCT 08/06/21 16.3 07/31/21 53.5
ARCT 08/01/21 9.3 08/01/21 64.3
HCT (30-day set-up) 03/09/21 99.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 99.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 99.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 99.1 06/07/21 100.0

Behavioral

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/22/21 94.8 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 99.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 99.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 99.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 99.1 06/07/21 100.0

Ramp

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/30/21 83.2 06/22/21 100.0
ARCT 05/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 99.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 99.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 99.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 99.1 06/07/21 100.0
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Table C.16: Estimated date of licensure and probability of approval under different
trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start on
August 1, 2020, superiority-by-margin testing at 50%, and 10M doses of a vaccine per
day are available after licensure. For ARCT, we report the median date of licensure
over all Monte Carlo simulations. A blank entry indicates that the vaccine candidate
is never approved. Abbreviations: DoL, date of licensure (month/day/year); PoA,
probability of approval.

Vaccine Efficacy (%)

30 50

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 0.1 11/19/21 2.5
ORCT 06/22/21 0.3 06/22/21 2.5
ARCT 0.0 07/02/21 0.6
HCT (30-day set-up) 0.0 03/09/21 2.5
HCT (60-day set-up) 0.0 04/08/21 2.5
HCT (90-day set-up) 0.0 05/08/21 2.5
HCT (120-day set-up) 0.0 06/07/21 2.5

Behavioral

RCT 0.0 11/19/21 1.3
ORCT 0.0 06/22/21 2.4
ARCT 0.0 06/02/21 2.4
HCT (30-day set-up) 0.0 03/09/21 2.5
HCT (60-day set-up) 0.0 04/08/21 2.5
HCT (90-day set-up) 0.0 05/08/21 2.5
HCT (120-day set-up) 0.0 06/07/21 2.5

Ramp

RCT 0.0 11/19/21 1.4
ORCT 0.0 06/22/21 2.4
ARCT 0.0 06/02/21 2.5
HCT (30-day set-up) 0.0 03/09/21 2.5
HCT (60-day set-up) 0.0 04/08/21 2.5
HCT (90-day set-up) 0.0 05/08/21 2.5
HCT (120-day set-up) 0.0 06/07/21 2.5

308



Table C.16 (continued): Estimated date of licensure and probability of approval under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials
start on August 1, 2020, superiority-by-margin testing at 50%, and 10M doses of a
vaccine per day are available after licensure. Abbreviations: DoL, date of licensure
(month/day/year); PoA, probability of approval.

Vaccine Efficacy (%)

70 90

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 26.2 11/19/21 90.1
ORCT 08/06/21 16.3 07/31/21 53.5
ARCT 08/01/21 9.3 08/01/21 64.3
HCT (30-day set-up) 03/09/21 99.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 99.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 99.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 99.1 06/07/21 100.0

Behavioral

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/22/21 94.8 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 99.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 99.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 99.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 99.1 06/07/21 100.0

Ramp

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/29/21 83.2 06/22/21 100.0
ARCT 05/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 99.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 99.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 99.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 99.1 06/07/21 100.0
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Table C.17: Estimated date of licensure and probability of approval under different
trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials start
on August 1, 2020, superiority-by-margin testing at 50%, and infinite doses of a
vaccine per day are available after licensure. For ARCT, we report the median date
of licensure over all Monte Carlo simulations. A blank entry indicates that the vaccine
candidate is never approved. Abbreviations: DoL, date of licensure (month/day/year);
PoA, probability of approval.

Vaccine Efficacy (%)

30 50

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 0.1 11/19/21 2.5
ORCT 06/22/21 0.3 06/22/21 2.5
ARCT 0.0 07/02/21 0.6
HCT (30-day set-up) 0.0 03/09/21 2.5
HCT (60-day set-up) 0.0 04/08/21 2.5
HCT (90-day set-up) 0.0 05/08/21 2.5
HCT (120-day set-up) 0.0 06/07/21 2.5

Behavioral

RCT 0.0 11/19/21 1.3
ORCT 0.0 06/22/21 2.4
ARCT 0.0 06/02/21 2.4
HCT (30-day set-up) 0.0 03/09/21 2.5
HCT (60-day set-up) 0.0 04/08/21 2.5
HCT (90-day set-up) 0.0 05/08/21 2.5
HCT (120-day set-up) 0.0 06/07/21 2.5

Ramp

RCT 0.0 11/19/21 1.4
ORCT 0.0 06/22/21 2.4
ARCT 0.0 06/02/21 2.5
HCT (30-day set-up) 0.0 03/09/21 2.5
HCT (60-day set-up) 0.0 04/08/21 2.5
HCT (90-day set-up) 0.0 05/08/21 2.5
HCT (120-day set-up) 0.0 06/07/21 2.5
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Table C.17 (continued): Estimated date of licensure and probability of approval under
different trial designs, vaccine efficacies, and epidemiological scenarios, assuming trials
start on August 1, 2020, superiority-by-margin testing at 50%, and infinite doses of
a vaccine per day are available after licensure. Abbreviations: DoL, date of licensure
(month/day/year); PoA, probability of approval.

Vaccine Efficacy (%)

70 90

DoL PoA (%) DoL PoA (%)

Status Quo

RCT 11/19/21 26.2 11/19/21 90.1
ORCT 08/06/21 16.3 07/31/21 53.5
ARCT 08/01/21 9.3 08/01/21 64.3
HCT (30-day set-up) 03/09/21 99.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 99.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 99.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 99.1 06/07/21 100.0

Behavioral

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/22/21 94.8 06/22/21 100.0
ARCT 04/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 99.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 99.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 99.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 99.1 06/07/21 100.0

Ramp

RCT 11/19/21 100.0 11/19/21 100.0
ORCT 06/29/21 83.2 06/22/21 100.0
ARCT 05/03/21 100.0 04/03/21 100.0
HCT (30-day set-up) 03/09/21 99.1 03/09/21 100.0
HCT (60-day set-up) 04/08/21 99.1 04/08/21 100.0
HCT (90-day set-up) 05/08/21 99.1 05/08/21 100.0
HCT (120-day set-up) 06/07/21 99.1 06/07/21 100.0
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C.7 Steps in HCT Setup

Steps in HCT setup include:

∙ Selection of SARS-CoV-2 challenge strain (assuming a currently circulating and

predominant wild-type strain) with careful validation of provenance and health

status of the subject from which the strain is procured or generation of viral

strain by reverse genetics

∙ Selection of a high-level containment laboratory to prepare and manufacture

the challenge strain, and contracting with said laboratory

∙ Purification and full characterization of challenge strain

∙ cGMP (current Good Manufacturing Practice) production of challenge pool

∙ Testing of challenge pool for impurities (including contaminating organisms)

∙ Titration of challenge strain in cell

∙ Development of clinical study protocol (design, inclusion/exclusion criteria,

study endpoints)

∙ Validation of virologic and immunologic assays to be used in the clinical study

∙ Development of informed consent form, and compensation to be paid to volun-

teers

∙ Development of robust rescue protocols (supportive care, therapeutics)

∙ Regulatory approvals of each stage of the above steps submitted to FDA in an

IND for 1) the challenge pool and separately 2) for the clinical study protocol,

for their review

∙ Adaptation/development of a secure quarantine facility in a hospital setting

with monitoring equipment, ventilation controls, and specialist staff

∙ Training of nurses, securing PPE and other equipment
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∙ IRB review and approval of protocol

∙ Development of communications program, including dedicated website for sign-

ons

∙ Recruitment of volunteers

∙ Intensive screening of volunteers for susceptibility to SARS-CoV-2, including

prior exposure to human coronaviruses, known risk factors, including comor-

bidities, preexisting conditions, known genetic risk factors for severe COVID-19,

and anti-interferon antibodies

∙ Final go-ahead from study sponsor and regulatory authority

∙ Conduct dose-ranging study to determine the lowest infectious dose/appropriate

inoculum to reliably infect susceptible volunteers with challenge virus before

proceeding with vaccinating and challenging volunteers per updated/revised

study protocol
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Appendix D

Supplement to Chapter 5

D.1 Company Screening

Therapeutics companies were identified from an initial list of 225 life sciences com-

panies that have licensed IP from MIT. (For purposes of exposition, we will refer

to a firm that licensed MIT IP as an “MIT licensee.”) Based on company business

descriptions and financial filings, 73 MIT licensees were identified by the authors as

therapeutics companies, and further characterized as private versus public, and as

alive versus acquired versus bankrupt.

Among the MIT licensees in therapeutics, Cell Genesys launched two spinoffs,

Abgenix in 1996 and Ceregene in 2001. Abgenix eventually underwent its own IPO

process in 1998, while Ceregene stayed private. Scios Nova also launched a spinoff,

Guilford Pharmaceuticals in 1993, which went public in 1994. These three companies

were added to the dataset, bringing the total count to 76 companies.
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D.2 Orange Book Citations

Following the approach used by Stevens et al. [155], we use two databases to link MIT

IP and drugs approved by the FDA. Our primary source is the Orange Book that

is published and updated periodically by the FDA [154]. The publication identifies

drug products approved on the basis of safety and effectiveness by the FDA under the

Federal Food, Drug, and Cosmetic Act. It includes only currently marketed prescrip-

tion drug products approved through NDAs and Abbreviated New Drug Applications

(ANDAs or Generics) [222]. In addition to therapeutic equivalence evaluations, the

Orange Book lists all patents protecting each approved product, as provided by the

drug application owner.

First, we compile historical snapshots of the Orange Book published between 1985–

2017 (cutoff at December 2017), made available by Jean Roth and Heidi Williams on

the National Bureau of Economic Research data archive [164, 165]. To identify drugs

that owe their origin, at least in part, to MIT IP, we search the compiled Orange Book

dataset for applications that cite patents assigned to MIT. We use the USPTO Patent

Full-Text and Patent Assignment databases to determine the chain of ownership for

each patent [166, 167].

We find six NDAs in the Orange Book that cited MIT patents (see Table D.1).

They correspond to five small molecule drugs and two in vivo diagnostic products.

We note that latter, Cardiolite and Miraluma, are radioactive tracers used in nu-

clear medicine imaging. They fall outside the scope of our analysis which focuses on

therapeutic drug discovery. Alnylam received FDA approval for patisiran, a novel

first-in-class siRNA therapeutic for hereditary ATTR amyloidosis, in August 2018

(after the cutoff of our analysis, December 2017) [179]. Therefore, we excluded these

drugs from the main text. Stevens at el. [155] credited the approval of Visudyne,

a photodynamic therapy, to MIT. However, we did not find any MIT patent cita-

tions in Visudyne’s NDA in the Orange Book. Most of Visudyne’s cited patents

were assigned to the University of British Columbia, QLT Phototherapeutics, and

the Massachusetts Eye and Ear Infirmary.
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Table D.1: Expanded list of MIT IP citations in the Orange Book.

NDA Drug Type Patent No. Title

18936 Sarafem Small molecule drug 4,035,511 Process for promoting analgesia
18936 Sarafem Small molecule drug 4,083,982 Process for producing analgesia
18936 Sarafem Small molecule drug 4,971,998 Methods for treating the premenstrual or

late luteal phase syndrome
19785 Cardiolite In vivo diagnostics 4,452,774 Isonitrile radionuclide complexes for

labelling and imaging agents
19785 Miraluma In vivo diagnostics 4,452,774 Isonitrile radionuclide complexes for

labelling and imaging agents
20344 Redux Small molecule drug 4,309,445 d-Fenfluramine for modifying feeding

behavior
20637 Gliadel Small molecule drug 4,757,128 High molecular weight polyanhydride and

preparation thereof
20637 Gliadel Small molecule drug 4,789,724 Preparation of anhydride copolymers
20637 Gliadel Small molecule drug 5,179,189 Fatty acid terminated polyanhydrides
207958 Spritam Small molecule drug 6,471,992 Dosage form exhibiting rapid disperse

properties, methods of use and process for
the manufacture of same

207958 Spritam Small molecule drug 9,463,160 Dosage form exhibiting rapid disperse
properties, methods of use and process for
the manufacture of same

210922 Patisiran Small molecule drug 8,362,231 RNA interference mediating small RNA
molecules

210922 Patisiran Small molecule drug 8,372,968 RNA interference mediating small RNA
molecules

210922 Patisiran Small molecule drug 8,552,171 RNA sequence-specific mediators of RNA
interference

210922 Patisiran Small molecule drug 8,778,902 RNA interference mediating small RNA
molecules

210922 Patisiran Small molecule drug 8,895,718 RNA interference mediating small RNA
molecules

210922 Patisiran Small molecule drug 8,895,721 RNA interference mediating small RNA
molecules

210922 Patisiran Small molecule drug 9,193,753 RNA sequence-specific mediators of RNA
interference

210922 Patisiran Small molecule drug 9,567,582 RNA interference mediating small RNA
molecules
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D.3 Initial Public Offerings

We plot the capital generated by the IPOs of MIT licensees and the resulting share-

holder dilution over time (see Figs. D-1 to D-3). Over the studied period, MIT

licensees raised more capital, though this also came with increased dilution to share-

holders. While inflation has been a likely contributor over the last two decades,

Fig. D-2 highlights that it was not the sole contributor. After adjusting for inflation

using the BRDPI, net proceeds experienced a high level of growth, an indication of

the dramatic expansion of the biotech capital markets over the past two decades.

In particular, these markets experienced a resurgence in the years leading up to the

2016 crash. The IPOs occurred in clusters that coincided with this window and other

periods of favorable market conditions, as shown in Fig. D-1.

Figure D-1: Simple moving average of the number of MIT biotech companies that
went through IPO/reverse-merger, plotted against the S&P 500 index. Abbreviations:
SMA, simple moving average.
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Figure D-2: BRDPI adjusted net proceeds for IPOs.

Figure D-3: IPO dilution.
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D.4 Mergers and Acquisitions

Figure D-4: Acquisition values of MIT biotech companies. The size of the marker
indicates the size of the deal. The large M&A volume was driven primarily by three
public company deals: Millennium, ARIAD, and Cubist.
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D.5 Research and Development Pipeline

We propose to quantify the economic and biomedical impact of MIT licensees by

measuring the quantity, the depth (the extent of development), and the breadth (the

therapeutic areas involved) of candidates in each company’s pipeline. In order to

track their R&D pipelines, we went through each company’s annual financial filings

to the SEC (Form 10-K) throughout their entire lifespan and manually extracted

all investigational compounds in the clinical phase. (The EDGAR archive contains

filings only from 1994 onwards.)

In constructing our dataset, we chose to exclude preclinical candidates from con-

sideration. This was done for several reasons. Companies are often vague in describ-

ing preclinical programs, perhaps for strategic purposes, typically describing only

the broad direction of research without going into detail about the drugs under in-

vestigation. Furthermore, preclinical candidates are often excluded from financial

filings altogether. Consequently, it is difficult to determine the exact number of such

candidates accurately.

Our study focuses on the number of unique pipeline drug candidates (quantity),

the highest stage of development for any indication (depth), and the therapeutic areas

involved (breadth), with less emphasis given to the specific number of indications

targeted. This is to maintain consistency with the approach of Mullard [151], which

excludes label expansions, but it is also due to the difficulties in quantifying the scope

of a candidate during its early clinical phases. It is not uncommon for companies to

adopt the “shotgun” approach in early phases, enrolling patients with several different

diseases that may be related, with the intention of converging to a lead indication in

later phases. For example, BIND Therapeutics’ BIND-014 in its phase 2 trial studied

patients with urothelial carcinoma, cholangiocarcinoma, cervical cancer, and head

and neck cancer, while Millennium’s MLN341 phase 1 trial studied patients with a

variety of solid tumors, including colon, breast, pancreatic, and prostate cancers. In

these cases, the number of targeted indications is unclear.

Summary statistics of the dataset are shown in Tables D.2 and D.3, broken down
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by company, stage of development, and indication group.
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Table D.2: Pipeline candidates in 10-K filings by highest development stage. Editas Medicine and Enumeral Biomedical did
not report any pipeline drugs in clinical trials in their 10-K. Abbreviations: n, number of unique drugs.

Year Highest Development Stage

Company Start End Span Status P1 P2 P3 NDA1 APP2 n

Scios 1994 2002 9 Acquired 1 3 1 1 1 7
Indevus 1995 2008 14 Acquired 5 1 6 2 7 21
Celldex 1995 2017 23 Alive 7 13 1 1 22
Algos 1996 1999 4 Acquired 2 5 1 1 9
Axys 1996 2000 5 Acquired 2 2
Cistron 1996 2000 5 Acquired 1 1
Guilford 1996 2004 9 Acquired 2 2 2 2 8
Millennium 1996 2007 12 Acquired 13 10 1 2 26
Cell Genesys 1996 2008 13 Acquired 1 3 1 5
Cubist 1996 2013 18 Acquired 3 3 2 6A 14
ARIAD 1996 2015 20 Acquired 2 1 1 4
Alkermes 1996 2017 22 Alive 8 8 5 3 22 46
Adhera 1996 2017 22 Alive 12 7 2 3 24
Abgenix 1998 2005 8 Acquired 2 1 1 1 5
Praecis 2000 2005 6 Acquired 1 2 1 4
Curis 2000 2017 18 Alive 4 3 1 1 9
Insmed 2000 2017 18 Alive 2 3 1 1 1 8
Sangamo 2000 2017 18 Alive 2 4 6
Acusphere 2003 2007 5 Bankrupt 2 1 3
Alnylam 2004 2017 14 Alive 4 7 4 1 16
Momenta 2004 2017 14 Alive 3 2 1 1 2 9
Avicena 2005 2007 3 Bankrupt 3 2 5
Noxxon3 2006 2017 12 Alive 3 3
Tengion 2010 2013 4 Bankrupt 2 1 3
Merrimack 2011 2017 7 Alive 2 4 1 7
BIND 2013 2015 3 Bankrupt 1 1 2
bluebird 2013 2017 5 Alive 1 1 2 4
Conatus 2013 2017 5 Alive 1 1
Enumeral 2013 2017 5 Alive
Cerulean 2014 2017 4 Acquired 2 2
Editas 2015 2017 3 Alive
Synlogic 2015 2017 3 Alive 1 1 2
Selecta 2016 2017 2 Alive 2 1 3

Total 83 100 33 14 51 281
1 Includes BLA. 2 Includes drugs acquired post-approval and withdrawn products.
3 Pipeline determined from Noxxon Pharma’s press releases and publications.
A Zerbaxa and Sivextro reported approval in 10-Qs just prior to acquisition.
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Table D.3: Pipeline candidates in 10-K filings by indication group. Editas Medicine and Enumeral Biomedical did not report
any pipeline drugs in clinical trials in their 10-K. Abbreviations: cardio, cardiovascular; derm, dermatological; diges, digestive;
genit, genitourinary; hema, hematological; horm, hormonal; immu, immunological; infec, infection; meta, metabolic; musc,
musculoskeletal; neuro, neurological; onco, oncology; resp, respiratory.

Indication Group

Company Cardio Derma Digest Genit Hema Horm Immu Infec Meta Musc Neuro Onco Resp

Scios 3 1 2 2 1 2 1
Indevus 2 2 9 4 3 2 2 4 1 1
Celldex 2 1 2 4 2 3 7 2 12 2
Algos 1 9
Axys 1 1 1 1
Cistron 1
Guilford 1 2 5 2 1
Millennium 8 2 4 4 8 1 4 8 10 3
Cell Genesys 1 1 4 1 1 1 5 1
Cubist 1 3 4 1 1 10 1
ARIAD 1 2 1 1 1 3 1
Alkermes 4 1 2 2 4 2 5 3 24 3 3
Adhera 1 2 1 2 2 1 4 2 10 5
Abgenix 2 1 1 1 2 1 3 2
Praecis 1 1 1 2 2
Curis 1 1 1 3 4 7 2
Insmed 1 1 1 3 3 1 2 3 3 3 5
Sangamo 1 2 1 1 1 1 3 1
Acusphere 1
Alnylam 2 2 1 2 5 4 1
Momenta 1 1 1 2 4 2 1 1
Avicena 1 2 5
Noxxon1 1 1 2 1 1
Tengion 2 1
Merrimack 2 1 1 7 2
BIND 1 2 1
bluebird 3 1 1 2
Conatus 1 1 1
Enumeral
Cerulean 1 1 2
Editas
Synlogic 1 1 1 1 1
Selecta 1 1 1

Total 29 14 24 48 28 15 29 27 27 23 84 75 26
1 Pipeline determined from Noxxon Pharma’s press releases and publications.
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D.6 Drug Approvals
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Table D.4: List of FDA-approved drugs with MIT licensee ownership or contribution. Partner tag applies if another firm led
clinical development of the drug enabled by the MIT company’s technology. Originator tag applies if the drug was acquired by
the MIT company. An asterisk indicates that the drug acquired was a post-phase 3 asset (NDA-ready, NDA-filed, or marketed).
Acquirer tag applies if the MIT company was lead developer but was later acquired.

Company Drug Indication Properties Approved NME/NBE PR Partner Originator Acquirer

Adhera Stadol Pain Transnasal opioid 1991 BMS
Adhera Nascobal Vitamin B12 deficiency Intranasal cyanocobalamin 2005 Questcor
Adhera Prestalia Hypertension ACE inhibitor, calcium channel blocker 2015 Symplmed*
Alkermes Verelan Hypertension Calcium channel blocker 1990 Cephalon Elan*
Alkermes Cardizem CD Hypertension, Angina Calcium channel blocker 1991 Cephalon Elan*
Alkermes Naprelan Mild-to-moderate pain COX-1, COX-2 antagonist 1996 Shionogi Elan*
Alkermes Zanaflex Muscle spasticity 𝛼2 adrenergic agonist 1996 NME Acorda Elan*
Alkermes Rapamune Renal transplant rejection mTOR inhibitor 1999 NME PR Pfizer Elan*
Alkermes Nutropin depot Growth deficiency rHGH [XR] 1999 PR Genentech
Alkermes Afeditab CR Hypertension Calcium channel blocker 2001 Watson Elan*
Alkermes Avinza Chronic moderate to severe pain Opioid [XR] 2002 Pfizer Elan*
Alkermes Ritalin LA ADHD Methylphenidate [XR] 2002 Novartis Elan*
Alkermes Emend Chemo and surgery-associated nausea NK1 antagonist 2003 NME PR Merck Elan*
Alkermes Risperdal Consta Schizophrenia Risperidone [XR] 2003 Janssen
Alkermes Tricor 145 Cholesterol lowering PPARa agonist 2004 Abbvie Elan*
Alkermes Focalin XR ADHD Methylphenidate [XR] 2005 Novartis Elan*
Alkermes Megace ES Cachexia associated with AIDS Varied 2005 Strativa Elan*
Alkermes Vivitrol Alcohol dependence Naltrexone [XR] 2006 PR
Alkermes Luvox CR Obsessive-compulsive disorder 𝜎1 receptor agonist 2008 Jazz Elan*
Alkermes Invega Sustenna Schizophrenia Paliperidone [XR] 2009 Janssen Elan*
Alkermes Ampyra Multiple sclerosis Potassium channel blocker [XR] 2010 NME PR Acorda Elan*
Alkermes Bydureon Type 2 diabetes GLP-1 agonist [XR] 2012 Astrazeneca
Alkermes Zohydro Pain Opioid [XR] 2013 Zogenix Elan
Alkermes Aristada Schizophrenia Aripiprazole [XR] 2015 NME
Alkermes Invega Trinza Schizophrenia Paliperidone [XR] 2015 PR Janssen Elan
ARIAD Iclusig T315+ CML & ALL, Ph+ ALL BCR-ABL 2012 NME PR Takeda
Celldex Rotarix Rotavirus gastroenteritis Rotavirus vaccine 2008 NBE GSK Avant*
Cubist Merrem Broad-spectrum antibiotic Carbapenem 1996 NME Astrazeneca* Pfizer
Cubist Cubicin Gram-positive cSSSI Antibiotic 2003 NME PR Eli Lilly Merck
Cubist Entereg Post-surgery GI recovery Peripheral 𝜇-opioid antagonist 2008 NME Adolor* Merck
Cubist Dificid C. diff-associated diarrhea RNA polymerase-𝜎 inhibitor 2011 NME PR Optimer* Merck
Cubist Sivextro ABSSSI Oxazolidinone 2014 NME PR Trius* Merck
Cubist Zerbaxa Abdominal and urinary tract infections Cephalosporin 2014 NME PR Calixa Merck
Curis Erivedge Advanced BCC Hedgehog signaling inhibitor 2012 NME PR Genentech
Guilford Gliadel Glioblastoma multiforme Chemotherapy-loaded wafer 1996 PR Arbor
Guilford Aggrastat Acute coronary syndrome Fibrinogen inhibitor 1998 PR Merck*
Indevus Delatestryl Hypogonadism Testosterone 1953 Savient* Endo
Indevus Redux Obesity Serotonergic anorectic 1996 NME Wyeth
Indevus Sanctura Overactive bladder Muscarinic antagonist 2004 NME Madaus Endo
Indevus Vantas Prostate cancer GnRH agonist 2004 Valera* Endo
Indevus Supprelin LA Precocious puberty GnRH agonist 2007 Valera* Endo
Indevus Sanctura XR Overactive bladder Muscarinic antagonist [XR] 2007 Endo
Insmed Iplex Severe primary IGF-1 deficiency Recombinant IGF-1 and IGFBP-3 2005 NBE PR Celtrix
Merrimack Onivyde Metastatic pancreatic adenocarcinoma Topoisomerase-1 inhibitor 2015 PR Pharmengine Ipsen
Millennium Integrilin Acute coronary syndrome Inhibits platelet aggregation 1998 NME PR COR Therapeutics* Schering
Millennium Campath Chronic lymphocytic leukemia CD52 inhibitor (IgG1𝜅) 2001 NBE PR LeukoSite* Genzyme
Millennium Velcade Multiple myeloma Proteasome inhibitor 2003 NME PR LeukoSite Takeda
Momenta Enoxaparin Sodium Acute heart attack Lovenox generic 2014
Momenta Glatopa Multiple sclerosis Copaxone generic 2015
Praecis Plenaxis Advanced prostate cancer GnRH inhibitor 2003 NME PR
Scios Natrecor Acute congestive heart failure B-type natriuretic peptide 2001 NME
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Table D.5: Label expansions into new disease indications by MIT licensees. We define a label expansion as FDA approval in
a different disease than the first approval, omitting expansions into various lines of therapy or patient populations within a
disease.

Company Drug Indication Properties Approved NME/NBE PR Partner Originator Acquirer

Alkermes Risperdal Consta Bipolar disorder Risperidone [XR] 2009 Janssen
Alkermes Vivitrol Opioid dependence Naltrexone [XR] 2010 PR
Alkermes Invega Sustenna Schizoaffective disorder Paliperidone [XR] 2014 PR Janssen
Cubist Cubicin S. aureus blood infections Antibiotic 2006 PR Eli Lilly Merck
Indevus Sarafem Premenstrual dysphoric disorder SSRI 2000 Lilly Lilly Endo
Millennium Velcade Mantle cell lymphoma Proteasome inhibitor 2006 PR LeukoSite Takeda
Millennium Campath (Lemtrada) Multiple sclerosis CD52 inhibitor (IgG1𝜅) 2014 LeukoSite Genzyme1

1 Genzyme acquired Millennium’s equity stake in Campath in 2004.
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Table D.6: Post-acquisition drug approvals by MIT licensees.

Company Drug Indication Properties Approved NME/NBE PR Partner Originator Acquirer

Abgenix Vectibix EGFR+ mCRC EGFR+ inhibitor (IgG2) 2006 NBE PR Amgen Amgen
Abgenix Prolia High-risk osteoporosis RANKL inhibitor (IgG2) 2010 NBE PR Amgen Amgen
Abgenix Repatha LDL-C lowering PCSK9 inhibitor (IgG2) 2015 NBE Amgen Amgen
Abgenix Imfinzi Advanced UC PD-L1 inhibitor (IgG1𝜅) 2017 NBE PR Astrazeneca
ARIAD Alunbrig ALK+ NSCLC ALK, EGFR inhibitor 2017 NME PR Takeda Takeda
Indevus Aveed Male hypogonadism Testosterone prodrug 2014 Endo Schering AG Endo
Millennium Ninlaro Multiple myeloma Proteasome inhibitor 2015 NME PR Takeda Leukosite Takeda
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D.7 Intellectual Property

The USPTO database was used to collect data for the 33 MIT licensees. Using the

patent assignee name, the database was queried for the patent number and date

of granting. We limit the dataset to patents granted rather than to patents filed

because not all patents are ultimately approved. Number of patents per year for a

given company was calculated by dividing the total patents by the lifetime of the

company since inception. The dataset cutoff is December 31, 2017.

Company specific licensing data, patent data, summary statistics, and cumulative

patent data for the MIT portfolio of companies are shown in Table D.7 and Fig. D-5.

The 33 companies licensed 258 unique patents from MIT in initial startup agreements

totaling $39.9M in royalties. These companies were additionally granted 2,512 patents

between 1985 and 2017, clearly showing that MIT licensees continue to innovate

beyond an initial license from MIT. The trend over time in number of yearly patents

granted roughly mimics the cycles in the public markets. This pattern is likely due to

the fact that capital availability fueled significant R&D investments. For example, the

1999 technology bubble provided significant sums of capital to biotechnology firms,

such as Millennium Pharmaceuticals. Millennium raised over $1B in 2000 alone from

public market investors and also achieved 202 patents granted from 2000–2002.

The most “productive” companies, defined by the number of patents granted per

year, are shown in Table D.7. As might be expected, these companies—including

Millennium Pharmaceuticals, Alnylam, and Sangamo Biosciences—developed novel

technology platforms. Millennium developed technology using new genomic insights

and technology; Alnylam pioneered the cutting-edge siRNA technology discovered

by its co-founder Phillip Sharp; and Sangamo Biosciences similarly worked on its

unique zinc-finger nuclease gene-editing platform. In contrast, companies focused on

developing in-licensed assets, such as Conatus Pharmaceuticals, tend to be focused on

clinical development rather than on innovating new drug discovery and development

technology. Conatus acquired emricasan, a compound for liver disease, from Pfizer,

who itself acquired the drug from Idun, co-founded by MIT’s Robert Horvitz [223].
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Figure D-5: Cumulative patents granted to MIT licensees from 1985–2017.

Fig. D-6 correlates the number of drug approvals (excluding Originators*) ver-

sus the number of patents granted per year for MIT licensees. The correlation is

complicated by the blend of companies in the MIT dataset. Some developed novel

technology platforms, while others focused on acquiring and developing assets, which

inherently do not rely on securing new patents. If one considers the number of patents

to be a proxy for the strength of a drug development technology platform, the poor

correlation supports the prior conclusion that many of the drugs under ownership

by MIT licensees were acquired from Originators—drug approvals from originators

have little relation to the company’s own drug discovery capabilities. The lack of

correlation also highlights that developing new drugs is a difficult business, as new

technologies and discoveries do not necessarily translate to new products.
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Table D.7: Patents licensed by and granted to MIT licensees from 1985–2017.

Company Status Licensed MIT Patents Granted Patents Patents Granted/Year

Abgenix1 Acquired
Algos Acquired 1 9 2
ARIAD Acquired 3 69 3
Axys Acquired 1 42 4
Cell Genesys Acquired 16 84 4
Cerulean2 Acquired
Cistron Acquired 9 2
Cubist Acquired 2 64 3
Guilford Acquired 29 104 9
Indevus Acquired 20 29 2
Millennium Acquired 1 803 50
Praecis2 Acquired
Scios Acquired 18 127 8
Adhera2 Alive
Alkermes Alive 1 212 10
Alnylam Alive 9 232 15
bluebird Alive 7 7
Celldex Alive 7 48 2
Conatus Alive 6
Curis Alive 28 118 6
Editas Alive 10 1
Enumeral Alive 10
Insmed Alive 6 32 1
Merrimack2 Alive
Momenta Alive 39 78 5
Noxxon Alive 1 23 1
Sangamo Alive 10 155 7
Selecta Alive 23 10 1
Synlogic Alive 7 2
Acusphere Bankrupt 6 27 2
Avicena Bankrupt 1 5
BIND Bankrupt 14 39 4
Tengion Bankrupt 6 4

Total (unique) 258 2512
1 Cell Genesys spin-off, may have used MIT IP through the license to Cell Genesys.
2 Licensed MIT IP for which no US patent applications were issued (abandoned prior to issuance).
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Figure D-6: Correlation between number of drug approvals and number of patents
granted per year for MIT licensees. We exclude Millennium, an outlier with 50
patents granted per year on average and two approvals, from the plot to obtain a
better regression fit.
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D.8 FDA Approvals

Table D.8: FDA NDA/BLA and NME/ NBE drug approvals by year and by review
priority between 1991–2017 [152, 175, 224, 225].

NDA/BLA NME/NBE

Year Priority Standard Total Priority-Total Priority Standard Total Novel-Total
Ratio (%) Ratio (%)

1991 19 44 63 30 14 16 30 48
1992 17 74 91 19 11 15 26 29
1993 19 51 70 27 13 12 25 36
1994 16 45 61 26 12 9 21 34
1995 16 67 83 19 10 19 29 35
1996 29 102 131 22 18 35 53 40
1997 20 101 121 17 9 30 39 32
1998 25 65 90 28 16 14 30 33
1999 28 55 83 34 19 16 35 42
2000 20 78 98 20 9 18 27 28
2001 10 56 66 15 7 17 24 36
2002 11 67 78 14 7 10 17 22
2003 14 58 72 19 9 12 21 29
2004A 29 89 118 25 21 15 36 31
2005 22 58 80 28 15 5 20 25
2006 21 80 101 21 10 12 22 22
2007 23 55 78 29 8 10 18 23
2008 18 70 88 20 9 15 24 27
2009 19 78 97 20 8 18 26 27
2010 16 76 92 17 11 10 21 23
2011 26 68 94 28 15 15 30 32
2012 23 77 100 23 16 23 39 39
2013 16 82 98 16 9 18 27 28
2014 34 84 118 29 24 17 41 35
2015 37 84 121 31 24 21 45 37
2016 24 70 94 26 15 7 22 23
2017 47 96 143 33 28 18 46 32

Total 599 1,930 2,529 24 367 427 794 31
A Beginning in Fiscal Year 2004, Center for Drug Evaluation and Research (CDER) started reviewing therapeutic
biologic products transferred from Center for Biologics Evaluation and Research (CBER) to CDER.
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D.9 Additional Discussion

As shown by the analysis of IP generated by the MIT licensees, entirely new classes

of potentially transformative drugs are on the horizon whose development uses MIT

IP. A brief survey of drugs in the development phase underscores MIT’s contribution

to the current creation of innovative therapeutics. Alnylam, bluebird bio, Editas

Medicine, and Sangamo are four examples of firms that have licensed MIT IP to

develop platform technologies capable of discovering new drugs.

Alnylam was founded in 2002 by a group of MIT faculty, including Robert Langer

and Phillip Sharp, to develop RNAi therapeutics based on siRNA discoveries. The

firm licensed patents from MIT on the formulation and delivery of siRNAs, and also

engaged in a five-year research collaboration to improve delivery to target tissues.

Alnylam has a broad clinical development pipeline of seven assets, including patisiran,

an RNAi therapeutic for hereditary ATTR amyloidosis, a severe neuropathy, under

priority review by the FDA as of the cutoff of our dataset [185]. (In August 2018,

Alnylam received FDA approval for patisiran as a first-of-its kind targeted RNA-based

therapy [179].)

One of bluebird bio’s lead candidates is LentiGlobin, a lentiviral-based gene ther-

apy for transfusion-dependent 𝛽-thalassemia, an inherited blood disorder. LentiGlobin

is currently in a phase 3 clinical trial. The company co-owns a patent portfolio with

MIT containing patents from Irving London’s laboratory on the specific composition

of lentiviral 𝛽-globin expression vectors.

Sangamo is pioneering the use of zinc finger proteins (ZFPs) in gene editing,

a technology with its roots at MIT in Carl Pabo’s lab [226, 227]. In 1996, MIT

granted Sangamo an exclusive license to its ZFP IP, although the company has not

yet developed a drug to a market. The firm has five drug candidates in phase 1/2

trials enabled by ZFP technology for hemophilia B, MPS (mucopolysaccharidosis) I,

MPS II, and HIV.

Most recently, Editas was formed in 2013 to commercialize CRISPR/Cas9 gene

editing technology, in part invented by Feng Zhang at the Broad Institute of MIT and
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Harvard. Though Editas was founded too recently to have developed an extensive

patent portfolio or any clinical-stage drugs, its platform technology has the potential

to transform the treatment paradigm for a vast array of diseases.
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Appendix E

Supplement to Chapter 6

E.1 S&P Historical Default Rates
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Table E.1: Global corporate average cumulative default rates by rating modifier (1981–2018). Sources: S&P Global Fixed
Income Research and S&P Global Market Intelligence’s CreditPro R○.

(%) Time horizon (years)

Rating 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AAA 0.00 0.03 0.13 0.24 0.35 0.45 0.51 0.59 0.65 0.70 0.73 0.76 0.79 0.85 0.92
AA+ 0.00 0.05 0.05 0.10 0.15 0.21 0.26 0.32 0.38 0.44 0.50 0.56 0.62 0.69 0.76
AA 0.02 0.03 0.08 0.22 0.36 0.48 0.60 0.71 0.80 0.89 0.97 1.03 1.14 1.20 1.27
AA- 0.03 0.08 0.17 0.25 0.32 0.44 0.50 0.55 0.61 0.66 0.72 0.79 0.81 0.85 0.90
A+ 0.05 0.09 0.20 0.33 0.43 0.53 0.64 0.76 0.89 1.03 1.17 1.31 1.47 1.66 1.83
A 0.06 0.14 0.23 0.35 0.48 0.65 0.83 1.00 1.19 1.41 1.59 1.73 1.86 1.95 2.12
A- 0.06 0.16 0.26 0.38 0.54 0.70 0.93 1.10 1.23 1.34 1.45 1.58 1.71 1.83 1.92
BBB+ 0.10 0.29 0.50 0.73 0.97 1.25 1.46 1.68 1.93 2.17 2.41 2.58 2.80 3.07 3.37
BBB 0.16 0.41 0.64 1.01 1.36 1.72 2.04 2.36 2.72 3.08 3.46 3.77 4.01 4.12 4.33
BBB- 0.24 0.73 1.35 2.04 2.77 3.42 4.00 4.55 5.00 5.39 5.83 6.19 6.51 7.00 7.37
BB+ 0.32 1.04 1.91 2.79 3.69 4.56 5.29 5.81 6.42 7.04 7.45 7.95 8.43 8.77 9.27
BB 0.53 1.61 3.19 4.68 6.17 7.35 8.43 9.35 10.22 10.98 11.76 12.39 12.81 13.12 13.53
BB- 0.95 2.98 5.11 7.33 9.27 11.15 12.71 14.21 15.42 16.46 17.28 17.99 18.74 19.48 20.15
B+ 2.01 5.52 8.95 11.88 14.15 15.89 17.54 18.97 20.30 21.49 22.48 23.14 23.80 24.45 25.09
B 3.41 7.84 11.69 14.73 17.09 19.27 20.74 21.77 22.74 23.74 24.48 25.18 25.77 26.30 26.85
B- 6.75 13.73 19.04 22.70 25.43 27.42 29.01 30.11 30.82 31.37 32.13 32.67 32.91 33.18 33.50
CCC/C 26.89 36.27 41.13 43.94 46.06 46.99 48.20 49.04 49.80 50.44 50.96 51.51 52.16 52.72 52.80
Investment grade 0.09 0.25 0.43 0.66 0.90 1.14 1.36 1.56 1.77 1.96 2.16 2.32 2.48 2.63 2.80
Speculative grade 3.66 7.13 10.12 12.56 14.55 16.18 17.55 18.69 19.70 20.62 21.39 22.02 22.60 23.13 23.65
All rated 1.48 2.91 4.16 5.21 6.08 6.82 7.44 7.97 8.44 8.88 9.26 9.58 9.87 10.13 10.41
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Appendix F

Supplement to Chapter 7

F.1 Literature Estimates

Table F.1: Literature estimates of probability of success, costs of development, and
duration at each phase of development for standard clinical trials. Abbreviations:
PoS, probability of success; PRE, preclinical; P1, phase 1; P2, phase 2; P3, phase 3;
NDA, New Drug Application.

Parameter PRE to P1 P1 to P2 P2 to P3 P3 to NDA to PRE to
NDA Approval Approval

PoS (%) 69.0A 81.4B 30.5B 26.5B 100.0 4.5
Duration (months) 12..0C 42.1D 40.6D 48.5D 9.6E 152.8
Development cost 1.2C 10.1F 20.7F 92.8F 0.0F 127.1
($ millions)
Upfront cost 2.3G 0.0 0.0 0.0 0.0
($ millions)
Discount factor (%) 23.0H 20.0H 17.2H 12.5H 10.0H

A For new molecular entities (NMEs) [209]. B For GBM [208].
C For small molecule oncology NMEs [210], assuming acquisition after lead optimization.
D Median for glioblastoma [208]. E For orphan drugs [211]. F Assume development cost is similar
to that for orphan drugs since most brain cancers are rare diseases [189], adjusted to 2019 dollars
using the Biomedical Research and Development Price Index (BRDPI)
G For small molecule oncology NMEs [210], assume an upfront cost that is equal to the cost required
to complete lead optimization, adjusted to 2019 dollars using BRDPI.
H Assume costs of capital are similar for oncology drugs [202].
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F.2 Estimates by Experts

Table F.2: Probability of success, costs of development, and duration at each phase
of development for standard clinical trials as estimated by the experts at NBTS. To
reduce the impact of outliers, we use the median of the estimates provided by the
panel. Abbreviations: PoS, probability of success; PRE, preclinical; P1, phase 1; P2,
phase 2; P3, phase 3; NDA, New Drug Application.

Parameter PRE to P1 P1 to P2 P2 to P3 P3 to NDA to PRE to
NDA Approval Approval

PoS (%) 60.0 60.0 40.0 45.0 100.0 6.5
Duration (months) 24.0 38.0 51.5 12.0
Development cost 1.0 6.5 16.5 70.0
($ millions)
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F.3 Cost and Duration of GBM AGILE

We derive cost and duration estimates for GBM AGILE assuming a steady state of

four arms (one control and three experimental arms), an accrual rate of 30 patients per

month (taking into account the number of sites launched in the U.S., Canada, China,

and Europe), and a cost per patient of $84,000 (estimates as of June 2020). In GBM

AGILE, the cost of the common control arm is shared among the three experimental

arms, i.e., each experimental arm incurs a cost of $28,000 per patient in the control.

For simplicity, we allocate 20% of the newly enrolled patients each month to the

control arm, and assign the remaining 80% evenly among the experimental arms.

(In reality, the proportion allocated to each experimental arm will change over time

according to its demonstrated efficacy, and is determined through Bayesian adaptive

randomization.)

We assume that 100 patients are required for early graduation from stage 1 of

GBM AGILE to stage 2, and 150 patients are required for regular graduation to

stage 2, or a transition to a phase 2 or phase 3 trial. Due to the use of Bayesian adap-

tive randomization, we expect experimental arms that do not demonstrate efficacy to

be allocated fewer patients over time before being discontinued. Therefore, we assume

a smaller accrual of 50 patients for arms that are stopped for futility in stage 1. For

stage 2, we assume that 50 patients are required for confirmation in a subgroup com-

prising 30% of the patient population (e.g., the newly diagnosed unmethylated, newly

diagnosed methylated, or recurrent disease with additional stratification/enrichment

biomarkers subgroups).

Given the rates of accrual and enrollment, the duration of an experimental arm

is given by:

𝑑 = 𝑛𝑚

𝑣𝑒𝑠
+ 𝑓 (F.1)

where 𝑑 is the duration in months, 𝑛 is the trial accrual required for graduation,

transition, or futility (e.g., 100 patients for early graduation from stage 1), 𝑣 is the

overall monthly accrual rate (e.g., 30 patients per month), 𝑒 is the proportion of
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newly enrolled patients allocated to experimental arms (e.g., 80%), 𝑚 is the number

of experimental arms in steady state, 𝑠 is the prevalence of the patient subtype under

investigation (e.g., 30% for confirmation in stage 2), and 𝑓 is the time added to

allow for follow-up and data analysis after the last patient has been enrolled. The

terms 𝑠 and 𝑓 are relevant only for stage 2; we assume that stage 1 encompasses all

patient subtypes and the prevalence is 100%. Because GBM AGILE is designed to

be a seamless platform trial, we assume that no follow-up time is required at the end

of stage 1. On the other hand, we factor in an analysis and follow-up period of 18

months for stage 2.

We assume quarterly and semiannual payments for patient costs of the experi-

mental arm and the control arm, respectively. They are given by:

𝑐𝑒 = 𝑝𝑛 (F.2)

𝑐𝑐 = 𝑝

𝑚
· 𝑛 · (1− 𝑒) (F.3)

where 𝑐𝑒 is the cost due for the experimental arm in millions, 𝑐𝑐 is the cost for

the control arm, and 𝑝 is the price per patient (e.g., $84,000). Note that the cost

per patient of the common control arm is divided among the 𝑚 experimental arms.

Furthermore, we assume that the number of control patients enrolled is limited to

(1− 𝑒) of the experimental arm accrual (e.g., 20%). In addition to patient costs, we

assume that an initiation fee of $1.75M is due at the start of stage 1, an extension fee

of $1.5M at the start of stage 2, and a final fee of $1.5M for data analysis at the end

of stage 2. For our simulation, we discount these periodic cash flows to an equivalent

single payment due at the start of each stage using a cost of capital of 15%.
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F.4 Correlation

We first average the correlation estimates made by the experts. Next, we symmetrize

the resulting correlation matrix by performing the following operation:

𝑅 = 1
2(𝑋 + 𝑋T) (F.4)

where 𝑋 is the correlation matrix created from averaging the estimates by the experts,

and 𝑅 is a symmetric correlation matrix. Finally, we project the symmetric correlation

matrix 𝑅 to its nearest positive-definite counterpart Σ for use in our simulations [213].

To generate correlated trial outcomes, we first draw a vector of random multi-

variate standard normal variables 𝜖𝑗 ≡ [𝜖1𝑗, 𝜖2𝑗, . . . , 𝜖𝑛𝑗]T, where 𝑛 is the number of

projects in the portfolio, and 𝑗 is the phase of development that is of interest. Next,

we obtain 𝑧𝑗 ∈ R𝑛×1 by pre-multiplying 𝜖𝑗 with Σ1/2, where Σ1/2 denotes the Cholesky

decomposition of Σ, a positive-definite matrix. The resulting vector 𝑧𝑗 is consequently

multivariate normal with covariance matrix Σ.

Given the probabilities of success in Tables 7.2 and 7.3, we can model trial out-

comes as Bernoulli variables:

𝐵𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
Success, 𝑧𝑖𝑗 > 𝛼𝑗

Failure, 𝑧𝑖𝑗 ≤ 𝛼𝑗

(F.5)

where 𝐵𝑖𝑗 is the outcome for trial 𝑖 in phase 𝑗, 𝑧𝑖𝑗 is component 𝑖 of 𝑧𝑗, 𝛼𝑗 =

Φ−1(1− 𝑝𝑗), Φ−1 is the inverse cumulative distribution function of a univariate stan-

dard normal distribution, and 𝑝𝑗 is the probability of success for phase 𝑗.

343



F.5 Profitability of a Successful Compound

Table F.3: Assumptions for profitability of an approved drug for GBM. Abbrevia-
tions: HGGs, high-grade gliomas; uMGMT, unmethylated O6-methylguanine DNA
methyltransferase; DRD2, dopamine receptor D2; EGFR, epidermal growth factor
receptor.

Market size Market Price per
per year penetration (%) patient ($)

Newly diagnosed GBM and HGGs 16,500 10.0 66,000
Recurrent GBM 30,000 10.0 66,000
Newly diagnosed uMGMT GBM 9,900 20.0 66,000
Recurrent GBM with EGFR-low 9,000 20.0 66,000
and DRD2-high tumor phenotype
Newly diagnozed GBM with EGFR 9,900 20.0 66,000
Pediatric gliomas 3,500 20.0 66,000
Brain metastases 70,000 10.0 66,000
Brain tumor 100,000 10.0 33,000

Table F.3 (continued): Assumptions for profitability of an approved drug for GBM.

Value

Premium for transformative treatments 2.0x
Marketing exclusivity (years) 7.0
Pediatric extension (years) 0.5
Cost of capital (%) 10.0
Priority Review Voucher ($ millions) 100.0
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Table F.4: NPV of projects on approval. Abbreviations: IMM, immunother-
apy; DDR, DNA damage repair; TM, tumor metabolism; PM, precision medicine;
DE, devices; DNA-PK, DNA-dependent protein kinase; ATM, ataxia-telangiectasia
mutated; ATR, ataxia telangiectasia and Rad3-related protein; FGFR, fibroblast
growth factor receptor; LPCAT1, lysophosphatidylcholine acyltransferase 1; DRD2,
dopamine receptor D2; BBB, blood-brain barrier.

Therapeutic Project Market size NPV
area per year ($ millions)

IMM T cell activation 30,000 1,928
T cell activation 30,000 985
T cell activation 30,000 1,928
Personalized dendritic cell vaccine 16,500 1,214
Retroviral replicating vectors 16,500 1,214
Oncolytic virus 30,000 1,928
Autologous tumor cell vaccine 16,500 1,060

DDR DNA-PK inhibitor 9,900 1,272
ATM inhibitor 9,900 1,272
ATR inhibitor 16,500 1,060
FGFR inhibitor 30,000 1,928
DNA repair inhibitors 9,900 636
ATM inhibitor 3,500 572

TM LPCAT1 inhibitor 46,500 1,494
PM DRD2 receptor antagonist 9,000 1,315

BBB-penetrant signaling inhibitor 16,500 530
CRISPR-Cas9 gene editing 46,500 2,988
BBB-penetrant transcription factor inhibitor 16,500 530
BBB-penetrant transcription factor inhibitor 70,000 2,249

DE Fluorescence-guided surgery 100,000 1,607
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