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Abstract
Computer systems are increasingly bottlenecked by data movement, and rely on sophisticated memory

hierarchies to address this issue. However, conventional memory systems suffer from poor performance
on many irregular access patterns. This is because memory systems use an inexpressive interface that
does not convey sufficient program semantics: they organize data in fixed-sized chunks and access data
with only reads and writes. As a result, memory systems incur significant performance loss on several
common patterns. In this thesis, we identify three such patterns: accesses to small data fragments suffer
poor locality; concurrent updates introduce excessive traffic and serialization; and dependent reads incur
long latencies that are on the critical path.

To tackle these issues, this thesis proposes techniques that extend the semantics of the memory system.
We apply this insight to address each of the three issues and propose solutions with different degrees of
generality. COUP and COMMTM provide general architectural support by exploiting commutative updates
to reduce communication and synchronization. COUP supports strict single-instruction commutativity
by extending the cache coherence protocol, while COMMTM supports multi-instruction and semantic
commutativity by leveraging hardware transactional memory. Whereas COUP and COMMTM are general,
HTA and GAMMA target a specific data structure and a specific application, respectively. HTA addresses
the inefficiencies of small fragments in the context of hash tables. It exploits the associativity in hash
tables and leverages caches to reduce runtime overheads and to improve spatial locality. GAMMA is a
sparse matrix-matrix multiplication accelerator. Its novel storage idiom, FIBERCACHE, combines caching
and decoupled execution to ensure low latency for dependent reads with irregular reuse. This enables
GAMMA to adopt an efficient dataflow, Gustavson’s algorithm, to minimize off-chip traffic. In return,
these techniques improve the performance and reduce the data movement of challenging applications
significantly.

Thesis Supervisor: Daniel Sanchez
Title: Associate Professor of Electrical Engineering and Computer Science
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Introduction 1

Computer systems are increasingly bottlenecked by data movement. For instance, in a chip manufactured
at 28 nm technology, a 64-bit floating-point multiply-add, a complex arithmetic operation, consumes
20 pJ. However, shipping its operands across the chip consumes 1 nJ, 50× higher [72, 131, 231]. Shipping
the operands from off-chip DRAM is even worse, and can require 16 nJ, 800× more expensive than
the arithmetic operation. The gap between the cost of data movement and computation has a growing
impact as the system size increases, making memory system design increasingly critical.

One key approach to reduce data movement is to exploit temporal and spatial locality in the memory
system. To do this, most memory systems use a hierarchy of caches. Caches adopt sophisticated hardware
mechanisms such as the cache replacement policy to exploit locality dynamically without requiring
accesses to be known ahead. Such generality ensures its central role in conventional memory systems.

However, there is a large semantic gap between conventional memory systems and applications. This
gap often causes a significant performance penalty. Specifically, conventional memory systems typically
organize data in fixed-sized chunks. Examples include lines in caches and pages in virtual memory. In
contrast, applications use much more diverse data structures, such as trees and hash tables. Furthermore,
conventional memory systems typically support only two primitive operations: read and write. This is
not the case for applications: they can access data with various other operations such as push, enqueue,
and insert. While this narrow interface is general enough and allows for a simple implementation, this
interface is overly restrictive and hurts performance on many important access patterns.

Challenges 1.1

We identify three patterns that can cause conventional systems to suffer poor performance: small
fragments, concurrent updates, and dependent reads.

Small Fragments 1.1.1

Accesses to small fragments incur poor spatial locality and can waste significant capacity. This is caused
by the fixed-sized data representation in a conventional memory system. For instance, caches organize
data in fixed-sized lines, and expect all the bits in a line to be accessed at least once before an eviction.
However, a small fragment typically will not occupy a full cache line. Therefore, a significant portion of
the cache capacity can be wasted.

Typical examples of small fragments include the key-value pairs in a hash table and the nodes in a
tree. Such pairs and nodes consist of only a few words, much smaller than a typical cache line (e.g.,
64 B). Such fragments are usually accessed in a data-dependent fashion. This is especially true for the
pairs in a hash table: to reduce mapping conflicts, hashing intentionally spreads the pairs uniformly
across the hash table’s allocated memory.

11



1.2. CONTRIBUTIONS 12

1.1.2 Concurrent Updates

Concurrent updates to shared data cause expensive communication and serialization in a conventional
memory system. This happens because of the exclusive nature of a write. Specifically, in a conventional
memory system, an update must be expressed as a read-modify-write sequence. While reads are non-
exclusive, i.e., they can access the same data concurrently without communication or synchronization,
writes are exclusive: concurrent writes must communicate and synchronize with each other to ensure
serializability.

For instance, consider a counter that is updated by multiple cores in a shared memory system. On each
update, the updating core first fetches an exclusive copy of the counter’s cache line into its private cache,
invalidating all other copies, and modifies it locally using an atomic operation such as fetch-and-add,
Each update incurs significant traffic and serialization: traffic to fetch the line and invalidate other copies,
causing the line to ping-pong among updating cores; and serialization because only one core can perform
an update at a time.

1.1.3 Dependent Reads

Dependent reads introduce long access latencies on the critical path, limiting system performance
significantly. This is because a read introduces a roundtrip of a request and a response. In a conventional
cache, such a roundtrip is typically coupled with the long-latency data movement between the cache
and the main memory. When such reads are dependent upon each other, i.e., the address of a read is
computed from the return value of a previous read, e.g., A[B[i]], long roundtrip latencies accumulate,
bottlenecking system performance severely.

One example is accessing a compressed sparse matrix. Such an operation typically requires indirec-
tions in the form of A[B[i]]. If both the accesses to B[i] and A[B[i]] miss in the cache, the system can
incur a long critical-path latency that requires expensive mechanisms to hide.

Conventional memory systems were not designed or optimized for these access patterns. While prior
work has proposed techniques to address them, these techniques work for only regular applications,
where accesses are known ahead of time. For example, in a regular application like Dense Matrix-
Matrix Multiplication (MM), tiling improves spatial locality, software-based variable privatization avoids
concurrent updates, and prefetching hides the long latency incurred by reads.

However, irregular applications, i.e., applications where accesses are not known ahead, cannot exploit
these techniques. Sparse matrix-matrix multiplication (SPMSPM) is one example. SPMSPM may access
small fragments with dependent reads frequently to traverse matrices, and may issue concurrent updates
to produce the output. Techniques for regular applications do not work well for irregular applications
because of the lack of access knowledge. What’s even worse is that such irregular applications are
growing rapidly in many crucial domains, such as databases [144], graph analytics [93, 136, 160, 210],
bioinformatics [175], and deep learning [105, 199, 267]. Therefore, it is crucial to design architectural
support to address these patterns in irregular applications.

1.2 Contributions

The key insight that this thesis develops is that the memory system can be extended with rich semantics
to address the aforementioned irregular patterns. In this way, the memory system no longer reasons
in terms of only reads and writes. Instead, by codesigning hardware and software, activities in the
memory system are expressed more explicitly. This thesis applies this insight to address each of the
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Figure 1.1: Example comparing the cost of commutative updates under two schemes. Two cores add
values to a single memory location, A. (a) With conventional coherence protocols, A’s fetches and
invalidations dominate the cost of updates. (b) With COUP, caches buffer and coalesce updates locally,
and reads trigger a reduction of all local updates to produce the actual value.

three challenges mentioned above, and proposes solutions tailored to various degrees of generality. For
instance, we propose general architectural support for concurrent updates, but for dependent reads, we
narrow the scope down to a specific application, SPMSPM, and build a customized memory system for it
in an accelerator:

• COUP and COMMTM target the issues caused by concurrent updates. The key insight they exploit
is that many read-modify-write updates are commutative. Commutative operations produce the
same final result regardless of the order they are performed in. These operations need not read the
data they update, so they do not introduce true data dependencies and therefore can be processed
concurrently and coalesced locally before the data is read. Hence, updates can proceed concurrently,
without communication or synchronization. COUP extends the cache coherence protocol so that
single-instruction commutative updates can be performed locally and concurrently. COMMTM
further exploits multi-instruction commutativity by leveraging hardware transactional memory.

• HTA mainly addresses the problems caused by small fragments. The key insight is that many such
fragments are parts of an unordered associative container, i.e., a hash table, and can be optimized
through hardware-software codesign. HTA adopts a table format that leverages characteristics
such as cache line sizes and boundaries to avoid accessing disjoint small fragments. This new
interface allows HTA to accelerate most operations with simple hardware, and to leave corner
cases to a software path.

• GAMMA targets the issues of dependent reads in the context of SPMSPM. We show that Gustavson’s
algorithm is an efficient dataflow for SPMSPM, but it introduces dependent reads with irregular
reuse that make conventional designs expensive. The key insight is that caching and decoupled
execution can be combined: decoupled execution hides the long latency of dependent reads, while
caching captures the irregular reuse patterns. GAMMA exploits this insight with a new storage idiom,
FIBERCACHE. In return, GAMMA outperforms state-of-the-art SPMSPM accelerators significantly.

COUP 1.2.1

COUP (Chapter 3) is a general technique that extends coherence protocols to allow local and concurrent
commutative updates. Specifically, COUP decouples read and write permissions, and introduces a limited



1.2. CONTRIBUTIONS 14

X0 

X2 

X1 

X3 

ld A 

st A 

ld A 

ld A 
st A 

ld A 

ld A 
st A 

ld A 

commit 

restart 

restart 

commit 

commit 

ld A 

st A 

commit 

restart 

ld A 

X5 ld A 
st A 

ld A 

commit 

restart 

ld A 

commit 

restart 

X4 

(a) Conventional HTM

X0 

X2 

X1 ld[ADD] A 

st[ADD] A 

ld[ADD] A 

st[ADD] A 

ld[ADD] A 

st[ADD] A 
commit commit 

commit 

X3 ld[ADD] A 

st[ADD] A 

commit 

X4 ld[ADD] A 

st[ADD] A commit X5 

ld A 

ld A 

commit 

restart 

(b) COMMTM

Figure 1.2: Example comparing (a) a conventional HTM and (b) COMMTM. Transactions X0–X4 increment
a shared counter, and X5 reads it. While conventional HTMs serialize all transactions, COMMTM allows
commutative operations (additions in X0–X4) to happen concurrently, serializing non-commutative
operations (the load in X5) only.

number of commutative-update primitive operations, in addition to reads and writes. With COUP,
multiple caches can acquire a line with update-only permission, and satisfy commutative-update requests
locally, buffering and coalescing updates. On a read request, the coherence protocol gathers all the local
updates and reduces them to produce the correct value before granting read permission. For example,
multiple cores can concurrently add values to the same counter. Unlike conventional systems that
suffer from excessive traffic and serialization shown in Figure 1.1a, COUP reduces communication and
synchronization by exploiting commutativity. Updates are held in their private caches as long as no core
reads the current value of the counter. When a core reads the counter, all updates are added to produce
the final value, as shown in Figure 1.1b.

COUP provides significant benefits at minimal cost. COUP introduces minor hardware overheads, pre-
serves coherence and consistency, and imposes small verification costs. We identify several update-heavy
parallel applications where current techniques have clear shortcomings, and discuss how COUP addresses
them. Specifically, COUP supports a limited number of single-instruction commutative operations, such
as addition and bitwise logical operations. We evaluate COUP under simulation, using single- and
multi-socket systems. At 128 cores, COUP improves the performance of update-heavy benchmarks by
4%–2.4× and reduces traffic by up to 20×.

1.2.2 COMMTM

COMMTM (Chapter 4) is a Commutativity-aware Hardware Transactional Memory (HTM) that extends
COUP to support an unlimited number of user-defined commutative operations that cannot be expressed
as single instructions. Specifically, COMMTM supports a much broader range of multi-instruction, seman-
tically commutative operations, such as set insertions and ordered puts. We find that commutativity and
transactional memory are complementary: transactions benefit commutativity by guaranteeing the atom-
icity of multi-instruction operations, and commutativity benefits transactions by avoiding unnecessary
conflicts and wasted work, as shown in Figure 1.2.
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COMMTM extends the coherence protocol with a reducible state that generalizes COUP’s update-only
state. Lines in this state must be tagged with a user-defined label. Multiple caches can hold a given
line in the reducible state with the same label, and transactions can implement commutative operations
through labeled loads and stores that keep the line in the reducible state. These commutative operations
proceed concurrently, without triggering conflicts or incurring any communication. A non-commutative
operation (e.g., a conventional load or store) triggers a user-defined reduction that merges the different
cache lines and may abort transactions with outstanding reducible updates.

We explore several variants of COMMTM that trade precision for hardware complexity. We first present
a basic version of COMMTM that achieves the same precision as software semantic locking [149, 265]. We
then extend COMMTM with gather requests, which allow software to distribute reducible data among
caches, achieving much higher concurrency in important use cases.

We evaluate COMMTM with microbenchmarks and full TM applications. Microbenchmarks show
that COMMTM scales on a variety of commutative operations, such as set insertions, reference counting,
ordered puts, and top-K insertions, which allow no concurrency in conventional HTMs. At 128 cores,
COMMTM improves full-application performance by up to 3.4×, lowers private cache misses by up to
45%, and reduces or even eliminates transaction aborts.

HTA 1.2.3

HTA (Chapter 5) is a Hash Table Acceleration technique that addresses the inefficiencies of hash table
operations. Hash tables are widely used and consume the majority of cycles on key applications in
databases [144] and genomics [175]. While hash tables have been extensively studied and optimized in
software, they leave significant performance on the table in conventional systems.

Specifically, hash tables suffer from two key inefficiencies in conventional systems:
• Poor core utilization: Each hash table operation consists of a long sequence of instructions to

compute hash values, memory accesses to keys and values, and comparisons. These instructions
include hard-to-predict, data-dependent branches that add wasted cycles, and incur long-latency
cache misses that limit instruction-level parallelism.

• Poor spatial locality: To reduce mapping conflicts, hashing spreads key-value pairs uniformly
across the hash table’s allocated memory. This causes poor spatial locality when key-value pairs
have mixed reuse, e.g., the same-line neighbors of a frequently accessed pair are rarely accessed.
This wastes a significant portion of cache capacity.

HTA address the issues through the combination of expressive ISA extensions and simple hardware
changes. HTA adopts a hash table format that leverages the associative nature of caches. With this new
format, multiple probes in a single lookup need access only one whole line instead of multiple small
fragments spread across multiple lines. HTA accelerates most operations in hardware, and leaves rare
cases to software.

We present two implementations of HTA, FLAT-HTA and HIERARCHICAL-HTA. FLAT-HTA adopts a simple,
hierarchy-oblivious layout and reduces runtime overheads with simple changes to cores. HIERARCHICAL-
HTA is a more complex implementation that uses a hierarchy-aware layout to improve spatial locality
at intermediate cache levels. It requires some changes to caches and provides modest benefits over
FLAT-HTA.

We evaluate HTA on hash table-intensive benchmarks and use it to accelerate memoization, a technique
that caches and reuses the outputs of repetitive computations. FLAT-HTA improves the performance of
the state-of-the-art hash table-intensive applications by up to 2×, while HIERARCHICAL-HTA outperforms
FLAT-HTA by up to 35%. FLAT-HTA also outperforms software memoization by 2×.
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1.2.4 GAMMA

GAMMA is a Gustavson-Algorithm Matrix-Multiplication Accelerator. It features architectural support for
dependent reads to enable an efficient dataflow of SPMSPM, i.e., Gustavson’s dataflow, in accelerators.

Specifically, SPMSPM is a key kernel that lies at the heart of many sparse algorithms [39, 105,
136, 140, 199, 274]. First, SPMSPM is bottlenecked by memory traffic and data movement, and admits
three dataflows (i.e., computation schedules) with different tradeoffs: inner-product [109, 207], outer-
product [196, 291], and Gustavson’s algorithm [99]. Though Gustavson often achieves the least amount
of memory traffic and requires simpler operations, prior accelerators exploit either inner-product or
outer-product dataflows. This is because Gustavson has more irregular reuse across data structures,
demanding a storage organization that can accommodate them to effectively reduce memory traffic.

GAMMA addresses this issue. GAMMA performs SPMSPM’s computation using specialized processing
elements (PE) with simple high-radix mergers, and performs many merges in parallel to achieve high
throughput. GAMMA uses a novel on-chip storage structure that combines features of both caches and
explicitly managed buffers. This structure captures Gustavson’s irregular reuse patterns and streams
thousands of concurrent sparse fibers, i.e., variable-sized rows from inputs or partial outputs, with
explicitly decoupled data movement. FIBERCACHE fetches the needed fibers ahead of time so that
when the processing element reads each input fiber element, the data is served from the FIBERCACHE

without incurring memory accesses. This avoids PE stalls and lets the FIBERCACHE pull double duty
as a latency-decoupling buffer, and saves megabytes of dedicated on-chip buffers. GAMMA features a
new dynamic scheduling algorithm to achieve high utilization despite irregularity. We also present new
preprocessing algorithms that boost GAMMA’s efficiency and versatility.

We synthesize GAMMA and evaluate its performance on a wide range of sparse matrices. With a
similar hardware budget, compared to state-of-the-art accelerators, GAMMA reduces total DRAM traffic
by 2.2× on average, non-compulsory DRAM traffic by 12× on average, and achieves nearly full DRAM
bandwidth utilization. Moreover, GAMMA is effective on a much broader range of sparse matrices.

In summary, the goal of this thesis is to address the patterns that used to be challenging for conven-
tional memory systems: concurrent updates, small fragments, and dependent reads. By codesigning
hardware and software, the memory system can be extended with high-level semantics. COUP and
COMMTM are general support for concurrent updates, by exploiting operation-level commutativity. HTA
is tailored to leverage the knowledge of a data structure, hash table, while GAMMA is tailored to an
important application, SPMSPM. In return, the techniques proposed by this thesis improve performance
significantly.
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Modern memory systems should allow fast (e.g, nanoseconds) accesses to large (e.g., gigabytes) volumes
of data. But this is hard to achieve with a single storage structure: storage structures with large capacity
incur high access latencies, and fast storage structures cannot be made sufficiently large.

Therefore, memory systems combine fast/small and slow/large storage structures in a hierarchy. The
off-chip main memory made of DRAM is the root of the tree: it typically has gigabytes of capacity with
an access latency of hundreds of nanoseconds. On-chip storage components are the internal nodes and
the leaves of the tree. They are typically made of kilobytes to megabytes of SRAM, with access latencies
ranging from one to tens of nanoseconds. As a result, most accesses are fulfilled by the fast/small on-chip
structures, while others are served by the off-chip main memory.

On-chip storage can be implemented as various structures with tradeoffs in their interfaces, overheads,
and capabilities. Section 2.1 presents various storage structures, and then Section 2.2 summarizes prior
software and hardware techniques proposed to improve the performance of memory systems.

Memory System Architecture 2.1

Caches 2.1.1

A cache is a storage structure that receives accesses, i.e., reads and writes, from processors, and transpar-
ently retains recently accessed data. Subsequent accesses to data present in the cache (hits) are served
directly by the cache; otherwise (misses), the cache accesses the next level of the hierarchy. Caches
are widely adopted in CPUs, GPUs, and some accelerators to reduce access latency and save memory
bandwidth.

Transparency: A cache can be made architecturally invisible while retaining good performance in most
cases at a reasonable cost. Such transparency to software is a critical property for an on-chip structure
to be widely adopted, especially in general-purpose CPUs and GPUs, as it simplifies programming and
enhances compatibility significantly. To achieve this, caches support only global accesses, i.e., accesses
based on global addresses rather than structure-specific locations, and require additional synchronization
mechanisms to provide a shared-memory illusion when there are multiple private caches caching the
same data.

Supporting global accesses: A cache maps multiple memory locations to the same cache location, and
introduces a tag for each cache line slot to differentiate them. Such a mapping may have different levels
of flexibility. A direct-mapped cache allows no flexibility as it maps each memory location to only one
cache location. In contrast, a fully-associative cache enjoys the most flexibility as a line in memory may
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map to all locations. An N-way set-associative cache sits in the middle, as it allows a line in memory
to map to a set of N locations. Higher associativity leads to fewer conflict misses but higher area and
energy costs.

Such flexibility of mapping in fully-associative and N -way set-associative caches introduces a decision
problem: a cache must determine which line to evict when there is not enough capacity for a new
line. Because cache accesses typically do not control evictions explicitly 1, such decisions are made
in hardware by a cache replacement policy. The optimal replacement policy is MIN [28, 171]. But it
is impractical to implement as it requires knowing future accesses. Practical replacement policies use
heuristics, e.g., access history, to approximate MIN. Therefore, they do not require knowing accesses
ahead, and are effective as long as the accesses exhibit good locality. Common policies include LRU,
DIP [208], PDP [83], SHiP [271], and RRIP [121].

Supporting the shared-memory model: In a multicore system, it is common to have multiple private
caches, each attached to a different core to improve performance. This poses challenges on providing
a shared-memory programming model as these caches must synchronize on writes to shared data
transparently.

Cache coherence is a property of a cache hierarchy that makes private caches invisible to applications.
Coherence can be expressed as two invariants [68]: write propagation, that writes eventually become
visible to all cores, and write serialization, that writes to the same address are observed in the same order
by all processors.

Coherence is enforced by the cache coherence protocol. The cache coherence protocol can be imple-
mented in various styles: write-invalidate or write-update depending on how to ensure write propagation,
and snooping-based [95] or directory-based [42] depending on how to track states and serialize requests.
Coherence can be implemented as hardware-managed, software-managed, or hybrid. Hardware coher-
ence protocols [42, 95, 247, 281] are widely adopted in cache-based multicore systems. Typical examples
include the MSI, MESI, and MOESI protocols [247]. Software-managed protocols [133, 148] and hybrid
protocols [57, 132, 134, 135] such as DeNovo [57] and WayPoint [135] often leverage self-invalidations
to avoid high-latency critical paths and are often seen in GPUs. One issue of the conventional cache
coherence protocol is that it is limited by the narrow read-write interface: updates must be expressed
as read-modify-write sequences and hence concurrent updates may introduce excessive traffic and
serialization.

Cache coherence simplifies the implementation of common memory consistency models. The memory
consistency model is an interface between software and hardware that precisely specifies how the memory
system behaves with respect to reads and writes. Coherence concerns what values a read can return,
while consistency concerns when writes become visible to reads. Coherence concerns reads/writes to a
single memory location, while consistency concerns reads/writes to multiple memory locations. Common
memory consistency models include sequential consistency [155], total store order (TSO), and release
consistency [91].

Drawbacks: Caches may suffer from significant performance loss on several access patterns as explained
in Section 1.1. Besides, caches introduce high area and energy overheads attributed to tag arrays,
replacement policies, and coherence events. Therefore, when caches’ costs outweigh their benefits,
explicitly managed storage structures can be promising substitutes.

1Some processors have instructions for evictions, such as CLFLUSH in x86.
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Explicitly managed storage structures 2.1.2

Explicitly managed storage structures include scratchpads [26, 193], stashes, queues, and buffets. Com-
pared to caches, they have two characteristics. First, they adopt a more explicit programming interface:
they grant applications more precise control of data organization and movement and typically accept only
local addresses, while sacrificing the generality and simplicity of the programming model. Maintaining
the shared-memory model may require expensive software coherence protocols [14]. Second, they allow
simpler hardware implementations at the cost of reduced capability to exploit irregular data reuse.

Scratchpad [26, 193] is a storage structure that grants software full control over its content, by mapping
its storage locations to an address range exposed to the applications. Therefore, a scratchpad avoids all
the expensive hardware designed for global accesses such as the tag array and the cache replacement
policy. As a result, it is a nice fit for GPUs and accelerators. Typical GPU applications bear enormous
data-level parallelism and incur regular accesses that can be easily structured.

Stash [147] combines the characteristics of a scratchpad and a cache. Like a scratchpad, it unifies its
content into the global address space, and allows a flexible data organization. Instead of controlling data
movement eagerly as in a scratchpad, a stash records a mapping between a local region and a global
address region to enable lazy data movement on misses and writebacks. Such a mapping requires more
hardware but saves data movement when there is dynamic coarse-grain data reuse.

Caches, scratchpads, and stashes use the read-write interface, and incur long access latency when the
data is off-chip. To overlap the long latency with other useful work, CPUs and GPUs adopt sophisticated
mechanisms, e.g., out-of-order execution in CPUs and multithreading in GPUs. However, accelerators
cannot afford such overheads as they are designed to be efficient and simple. Instead, accelerators
typically adopt other storage structures that exploit decoupled execution to hide the latency.

Queue-based communication is the simplest form of decoupled execution. With a queue, the producer
and the consumer can run simultaneously. Because of its simple synchronization and low hardware cost,
queues are widely adopted in decoupled access-execute architectures [94, 102, 236, 244] and streaming
multicores [67, 76, 250]. However, in-place updates, needed by many applications [54, 167], are hard to
support in queues.

Buffet [201] is a storage structure proposed for accelerators to preserve the decoupling of a queue while
supporting offset-based indexing and inexpensive in-place updates. A buffet achieves so by restricting the
four operations performed on data, i.e., fill, read, update, and shrink, to form a fixed sequence and
managing the sequence with a finite-state machine. Buffets and queues both exhibit good composability
and simple synchronization, and allow decoupled execution to hide long access latencies.

Summary 2.1.3

As explained above, there are a diverse set of on-chip storage structures that can be used in a memory
system. Pellauer et al. [201] introduced a taxonomy for data orchestration, i.e., transferring data into
and out of a storage structure.

Specifically, for an on-chip storage structure, reusable data should not be evicted when they are on-chip,
and should be staged on chip early when they are off-chip. Depending on how these two aspects are
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Data Orchestration Implicit Explicit

Coupled Cache
Scratchpad

Stash

Decoupled
Decoupled Access-Execute (DAE)

FIBERCACHE (Chapter 6)
Scratchpad (w/ DMAs)

Buffet

Table 2.1: Taxonomy of data orchestration approaches as used in typical scenarios. A scratchpad can be
combined with Direct Memory Access (DMA) engines to achieve decoupling. A stash explicitly maps
local addresses to global addresses, though data movement may be triggered implicitly by load misses.

implemented, storage structures can be classified as either explicit or implicit, and can be used in either
coupled or decoupled manner, as summarized in Table 2.1.

Explicit vs. Implicit Data Orchestration

Broadly speaking, the content of an on-chip storage structure can be managed in two styles: explicit or
implicit. Explicitly orchestrated structures allow applications to directly control what to retain or remove,
while implicitly orchestrated structures infer such decisions implicitly based on read/write accesses.

Based on this criteria, scratchpads, queues, and buffets are all explicit: they determine whether to
keep or forfeit data based on direct operations such as enqueue and dequeue, or fill and shrink. In
contrast, caches are implicit. A cache predicts what to evict based on the previous accesses, tracked and
analyzed by the cache replacement policy.

Implicitly orchestrated structures are widely adopted in general-purpose computing. Though they
incur high hardware overheads, implicitly orchestrated structures are typically equipped with hardware,
such as the cache replacement policy, to exploit locality in irregular accesses. Compared to the resource
budget of the on-chip storage, general-purpose systems are more concerned with the poor performance
caused by irregular access patterns. These accesses exhibit locality that can be extracted only at runtime,
and therefore cannot be exploited by explicitly orchestrated structures.

In contrast, domain-specific accelerators prefer explicitly orchestrated structures. Though explicitly
orchestrated structures do not capture irregular data reuse, they require simple hardware and incur
low energy consumption. Accelerators aim to be efficient in area and energy. Therefore, accelerator
designers often choose applications and algorithms that avoid irregular accesses so that they can minimize
area and energy overheads by adopting explicitly orchestrated structures such as queues and buffets
(Section 6.1.4).

Coupled vs. Decoupled Data Orchestration

A storage structure can be used in either coupled or decoupled manner depending on whether the data
needed is pre-staged ahead of processing to hide the memory access latency. They differ in whether the
requester that initiates data movement from/to main memory is the same as the actual consumer of the
data. With coupled data orchestration, the requester and the consumer are the same; with decoupled
data orchestration, they are different units.

Coupled staging of data, commonly used in caches, stashes, and scratchpads without DMA engines,
enjoys intuitive synchronization between data demand and data availability. However, the read roundtrip
incurs long memory access latency, and requires sophisticated mechanisms to hide, such as those that
exploit instruction-, memory-, or thread- level parallelism.
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Decoupled staging of data, such as in scratchpads with DMA engines, buffets, and queues used
in decoupled access-execute architectures, separates the requester that initiates data movement from
memory and the data consumer. This decoupling allows the consumer to have low-latency accesses, as
the data needed is staged ahead of processing. For instance, decoupled access-execute architectures
are based on queues, and separate the units for sending read requests and receiving read responses.
Though they may work well on regular applications, on irregular applications, they may suffer from load
imbalance and lack of control-flow mechanisms [192]. Finally, decoupled data orchestration must also
incorporate careful synchronization: too aggressive staging may overwrite live data, too conservative
staging may result in poor efficiency.

FIBERCACHE (Chapter 6) is a storage structure with implicit and decoupled data orchestration. It
orchestrates data implicitly to exploit irregular data reuse, and uses decoupled execution to hide the
long memory access latencies incurred by dependent reads.

Improving Memory System Performance 2.2

Despite the diversity in organizing on-chip storage, there are common challenges in memory systems:
• Accesses that exhibit poor locality, e.g., accesses to small fragments, waste storage capacity.
• Concurrent updates in shared-memory systems incur excessive communication and synchronization.
• Dependent reads accumulate a long access latency that is expensive to hide in systems with implicitly

orchestrated storage structures.

Improving Locality 2.2.1

The performance of an on-chip storage structure can be hurt significantly if accesses do not exhibit good
locality. To address this issue, prior work has proposed many techniques. They either change the data
representation or modify the compute schedule.

Changing the data representation can be effective on improving the locality of accesses. This can be
performed either in software, such as graph/tensor preprocessing [16, 69, 103, 124, 203, 264, 282] and
cache-aware data structures [293], or in hardware, such as compressed caches [11, 101, 209], texture
caches [100], and storage structures with variable-sized lines [152] or object awareness [252]. Besides
increased locality, modifying the data representation can unlock potential for SIMD operations, as data
needed by similar operations are likely to be grouped together.

HTA exploits this with a table format that maps multiple key-value pairs to the same cache line. This
allows multiple probes in a single lookup to be performed in parallel with only one memory access.

Changing the compute schedule is the other approach to improve locality and can be performed by
either software or hardware.

Some techniques do not require changes in data representation. Instead, they schedule compute to
maximize data reuse, either statically [7, 243, 275], or dynamically [3, 50, 115, 122, 234, 276]. Others
are combined with modifications in data representation [90, 160, 185]. For instance, tiling [6, 107, 116,
239, 255, 290, 294] typically works on a nested loop: Based on knowledge of accesses, tiling sometimes
reorganizes data in storage-fitting chunks [107, 116, 290, 294], which effectively increases the iteration
levels in the loop, and then reorders the iteration levels to improve data reuse. Since it is effective on
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regular accesses, many accelerators built on explicitly orchestrated storage structures rely on tiling to
improve locality and avoid overflows [107].

2.2.2 Reducing Communication and Synchronization

Concurrent updates can incur excessive traffic and serialization. This is an especially serious problem for
shared memory systems with cache coherence. Many software and hardware optimizations seek to reduce
the cost of updates. Though often presented in the context of specific algorithms or implementations,
we observe these techniques can be classified into two categories: Privatization [21, 62, 190] exploits
commutativity to avoid communication and serialization. Delegation [37, 38] is more general, in that it
does not require operations to be commutative, but it suffers from serialization and complexity in the
memory consistency model.

Privatization lowers the cost of commutative updates by using thread-local variables [21, 62, 190].
Privatization schemes buffer updates in thread-private storage, and require reads to reduce these thread-
private updates to produce the correct value. Privatization is most commonly used to implement reduction
variables efficiently, often with language support (e.g., reducers in MapReduce [77], OpenMP pragmas,
and Cilk Plus hyperobjects [90]). Privatization is generally used when updates are frequent and reads
are rare.

Privatization is limited to commutative updates, and works best when data goes through long update-
only phases without intervening reads. However, privatization has two major sources of overhead.
First, software reductions are much slower, making finely-interleaved reads and updates inefficient.
Second, with N threads, privatized variables increase the memory footprint by a factor of N . This
makes naïve privatization impractical in many contexts (e.g., reference counting). Dynamic privatization
schemes [62, 190, 278] can lessen space overheads, but add time overheads and complexity.

Delegation sends updates to a single location to reduce data movement and hence the cost of updates.
Delegation does not leverage commutativity. This limits their performance benefits, but makes them
applicable for non-commutative operations.

Specifically, in software, delegation schemes send updates to a single thread [37, 38]. They divide
shared data among threads and send updates to the corresponding thread, using shared-memory
queues [37] or active messages [225, 258]. Delegation is common in architectures that combine shared
memory and message passing [225, 270] and in NUMA-aware data structures [37, 38]. Although
delegation reduces data movement and synchronization, it still incurs global traffic and serialization.

Remote memory operations (RMOs) [97, 114, 228, 287] are the hardware counterpart of delegation.
Rather than caching lines to be updated, update operations are sent to a fixed location, as shown in
Figure 2.1. The NYU Ultracomputer [97] proposed implementing atomic fetch-and-add using adders in
network switches, which could coalesce multiple requests on their way to memory. The Cray T3D [137],
T3E [228], and SGI Origin [157] implemented RMOs at the memory controllers, while TilePro64 [114]
and recent GPUs [268] implement RMOs in shared caches. Prior work has also proposed adding caches
to memory controllers to accelerate RMOs [287] and data-parallel RMOs [9].

Although RMOs reduce update costs for both commutative and non-commutative operations, they
suffer from two issues. First, while RMOs avoid ping-ponging cache lines, they still require sending
every update to a shared, fixed location, causing global traffic, a serious issue in shared-memory systems.
RMOs are also limited by the throughput of the single updater. For example, in Figure 2.1, frequent
remote-add requests drive the shared cache’s ALU near saturation. Second, consistency models must
be considered because there can be concurrent users of the data, but strong consistency models are
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Figure 2.1: With remote memory operations, cores send updates to a fixed location, the shared cache in
this case.

challenging to implement with RMOs, as it is harder to constrain memory operation order. For example,
TSO requires making stores globally visible in program order, which is feasible with local store buffers,
but much more complicated when stores are also performed by remote updaters. As a result, most
implementations provide weakly-consistent RMOs. Timestamp-based order validation [153, §5] allows
strong consistency with RMOs, but it is complicated.

Hiding Memory Access Latency 2.2.3

Irregular applications often leverage implicitly orchestrated storage structures, such as caches, to capture
irregular data reuse. However, the high latency of reads that access main memory can be a serious issue.
Such high latency can accumulate on dependent reads, eventually bottlenecking the system performance.
Therefore, techniques that hide the memory access latency for implicitly managed storage structures are
necessary.

Prior work can be classified into two categories, they either tolerate the long latency by exploiting
parallelism, i.e., finding something else to do, or prefetching and specialized fetching.

Exploiting parallelism is effective as it overlaps the long memory access latency with other useful
work. This works because of Little’s law [163]. By allowing multiple long-latency events to happen
simultaneously, the system can maintain its high throughput that would otherwise be degraded by the
long latency.

Modern CPUs, GPUs, and accelerators exploit various levels of parallelism, such as instruction-level
parallelism in out-of-order execution, thread-level parallelism in multicore CPUs and GPUs, operation-
level parallelism in accelerators [106, 144, 151], and pipeline parallelism [67, 118, 138, 192]. However,
they do not work well when there is little parallelism to begin with, e.g., on dependent reads.

Prefetching and specialized fetching are crucial to get some of the benefits of explicit data orchestration
in a cache-based system. In this way, accesses from the real consumers can incur low latency since the
needed data is already resident in the cache.

Prefetching allows data to be speculatively fetched into the cache ahead of accesses, so that actual
accesses are likely to hit, reducing the latency drastically. Prefetching can be implemented in either
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hardware [10, 27, 53, 127, 168, 187, 280] or software [182, 183]. Hardware prefetchers capture dynamic
patterns at runtime. However, simple prefetchers can be limited by the access patterns they can handle,
while complex prefetching techniques such as runahead execution [187] and indirect prefectures [10, 27,
280] incur high hardware overheads. Software prefetchers allow direct control from applications, but
can incur high instruction overheads and poor cross-platform compatibility. Specialized fetchers [144,
151, 185, 192] are capable of fetching data non-speculatively into the cache. They rely on customized
hardware and are often limited to specific access patterns and applications.

In this thesis, we propose GAMMA, a SPMSPM accelerator that adopts a novel storage idiom FIBER-
CACHE. FIBERCACHE is customized for an efficient SPMSPM dataflow. It combines decoupled execution
and caching to both hide memory access latency and exploit irregular data reuse.



COUP 3

In this chapter, we present COUP, a general technique that extends coherence protocols to allow local
and concurrent commutative updates. COUP allows multiple caches to acquire a line with update-only
permission, and satisfy commutative-update requests locally, buffering and coalescing updates. Upon a
read, the coherence protocol collects all the local updates and reduces them to produce the correct value
before granting read permission.

Unlike RMOs (Section 2.2.2) that suffer from serialization and complicate memory consistency, COUP

confers significant benefits over RMOs, especially when data receives several consecutive updates before
being read. Moreover, COUP maintains full cache coherence and does not affect the memory consistency
model. This makes COUP easy to apply to current systems and applications. Note that COUP’s advantages
come at the cost of a more restricted set of operations: COUP is limited to commutative updates, while
RMOs support non-commutative operations such as fetch-and-add and compare-and-swap.

COUP also completes a symmetry between hardware and software schemes to reduce the cost of
updates. Just as remote memory operations are the hardware counterpart to delegation, COUP is the
hardware counterpart to privatization. COUP has two benefits over software privatization. First, transitions
between read-only and update-only modes are much faster, so COUP remains practical in many scenarios
where software privatization requires excessive synchronization. Second, privatization’s thread-local
copies increase memory footprint and add pressure to shared caches, while COUP does not.

We demonstrate COUP’s utility by applying it to improve the performance of single-word update
operations, which are currently performed with expensive atomic read-modify-write instructions.

Overall, we make the following contributions:
• We present COUP, a technique that extends coherence protocols to support concurrent commutative

updates (Section 3.2 and Section 3.3). We show that COUP preserves coherence and consistency
(Section 3.4), and imposes small verification costs (Section 3.5).

• We identify several update-heavy parallel applications where current techniques have clear short-
comings (Section 3.6), and discuss how COUP addresses them.

• We evaluate COUP under simulation, using single- and multi-socket systems (Section 3.7). At 128
cores, COUP improves the performance of update-heavy benchmarks by 4%–2.4×, and reduces
traffic by up to 20×.

In summary, COUP shows that extending coherence protocols to leverage the semantics of commutative
updates can substantially improve performance without sacrificing the simplicity of cache coherence.

Motivation 3.1

Historically, exploiting commutativity has been a fruitful approach to reduce the cost of updates. Com-
mutativity [265] has been widely exploited in parallel systems, such as databases [21, 190], parallelizing
compilers [204, 219], and runtimes [149, 204].

25
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Figure 3.1: Performance of parallel histogram implementations using atomics, software privatization,
and COUP. More bins reduce contention and increase privatization overheads, favoring atomics. COUP

does not suffer these overheads, so it outperforms both software implementations.

Commutative updates are common in many cases. Strictly commutative operations produce exactly the
same final state when reordered. For instance, consider two additions to a counter. Reordering them does
not affect the final result at all, and therefore integer addition is strictly commutative. Besides addition,
multiplication, minimization, maximization and bitwise logical operations are all strictly commutative.
Such operations are typically implemented as single instructions in non-speculative parallel system.

Privatization is the software technique that exploits commutativity to reduce the costs of updates.
However, it incurs significant overheads that often make privatization underperform conventional updates.
For instance, Jung et al. [126] propose parallel histogram implementations using both atomic operations
and privatization. These codes process a set of input values, and produce a histogram with a given number
of bins. Jung et al. note that privatization is desirable with a few output bins, but works poorly with many
bins, as the reduction phase dominates execution time and hurts locality. Figure 3.1 shows this tradeoff.
It compares the performance of histogram implementations using atomic fetch-and-add, privatization,
and COUP, when running on 64 cores (see Section 3.7 for methodology details). In this experiment, all
schemes process a large, fixed number of input elements. Each line shows the performance of a given
implementation as the number of output bins (x-axis) changes from 32 to 32 K. Performance is reported
relative to COUP’s at 32 bins (higher numbers are better). While the costs of privatization impose a
delicate tradeoff between both implementations in software, COUP robustly outperforms both. In fact,
COUP is the hardware counterpart of privatization.

3.2 COUP Example: Extending MSI

We first present the main concepts and operation of COUP through a concrete, simplified example.
Consider a system with a single level of private caches, kept coherent with the MSI protocol. This system
has a single shared last-level cache with an in-cache directory. It implements a single commutative-update
operation, addition. Finally, we restrict this system to use single-word cache blocks. We will generalize
COUP to other protocols, operations, and cache hierarchies in Section 3.3.

3.2.1 Structural changes

COUP requires modest changes to hardware structures, summarized in Figure 3.2 and described below.
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Figure 3.2: Summary of additions and modifications needed to support COUP.

Commutative-update instructions: In most ISAs, COUP needs additional instructions that let programs
convey commutative updates, as conventional atomic instructions (e.g., fetch-and-add) return the latest
value of the data they update. In this case, we add a commutative-addition instruction, which takes an
address and a single input value, and does not write to any register.

Some ISAs may not need additional instructions. For instance, the recent Heterogeneous System
Architecture (HSA) includes atomic-no-return instructions that do not return the updated value [2].
While these instructions were likely introduced to reduce the cost of RMOs, COUP could use them directly.

Update-only permission: COUP extends MSI with an additional state, update-only (U), and a third type
of request, commutative update (C), in addition to conventional reads (R) and writes (W). We call the
resulting protocol MUSI. Figure 3.3 shows MUSI’s state-transition diagram for private caches. MUSI
allows multiple private caches to hold read-only permission to a line and satisfy read requests locally (S
state); multiple private caches to hold update-only permission to a line and satisfy commutative-update
requests locally (U state); or at most a single private cache to hold exclusive permission to a line and
satisfy all types of requests locally (M state). By allowing M to satisfy commutative-update requests,
interleaved updates and reads to private data are as cheap as in MSI.

MUSI’s state-transition diagram shows a clear symmetry between S and U: all transitions caused by
R/C requests in and out of S match those caused by C/R requests in and out of U. We will exploit this
symmetry in Section 3.5 to simplify our implementation.

Directory state: Conventional directories must track both the sharers of each line (using a bit-vector or
other techniques [45, 223, 284]), and, if there is a single sharer, whether it has exclusive or read-only
permission. In COUP, the directory must track whether sharers have exclusive, read-only, or update-only
permission. The sharers bit-vector can be used to track both multiple readers or multiple updaters, so
MUSI requires only one extra bit per directory tag.

Reduction unit: Though cores can perform local updates, the memory system must be able to perform
reductions. Thus, COUP adds a reduction unit to the shared cache, consisting of an adder in this case.

Protocol operation 3.2.2

Performing commutative updates: Both the M and U states provide enough permissions for private
caches to satisfy update-only requests. In M, the private cache has the actual data value; in U, the cache
has a partial update. In either case, the core can perform the update by atomically reading the data
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Figure 3.3: State-transition diagrams of MSI and MUSI protocols. For clarity, diagrams omit actions that
do not cause a state transition (e.g., R requests in S).

from the cache, modifying it (by adding the value specified by the commutative-add instruction) and
storing the result in the cache. The cache cannot allow any intervening operations to the same address
between the read and the write. This scheme can reuse the existing core logic for atomic operations.
We assume this scheme in our implementation, but note that alternative implementations could treat
commutative updates like stores to improve performance (e.g., using update buffers similar to store
buffers and performing updates with an ALU at the L1).

Entering the U state: When a cache has insufficient permissions to satisfy an update request (I or S
states), it requests update-only permission from the directory. The directory invalidates any copies in S,
or downgrades the single copy in M to U, and grants update-only permission to the requesting cache,
which transitions to U. Thus, there are two ways a line can transition into the U state: by requesting
update-only permission to satisfy a request from its own core, as shown in Figure 3.4a; or by being
downgraded from M, as shown in Figure 3.4b.

When a line transitions into U, its contents are always initialized to the identity element, 0 for
commutative addition. This is done even if the line had valid data. This avoids having to track which
cache holds the original data when doing reductions. However, reductions require reading the original
data from the shared cache.

Leaving the U state: Lines can transition out of U due to either evictions or read requests.
Evictions initiated by a private cache (to make space for a different line) trigger a partial reduction,

shown in Figure 3.4c: the evicting cache sends its partial update to the shared cache, which uses its
reduction unit to aggregate it with its local copy.

The shared cache may also need to evict a line that private caches hold in U. This triggers a full
reduction: all caches with update-only permission are sent invalidations, reply with their partial updates,
and the shared cache uses its reduction unit to aggregate all partial updates and its local copy, producing
the final value.
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due to an update request from another core; (c) partial reduction caused by an eviction from a private
cache; and (d) full reduction caused by a read request. Each diagram shows the initial and final states in
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Finally, read requests from any core also trigger a full reduction, as shown in Figure 3.4d. Depending
on the latency and throughput of the reduction unit, satisfying a read request can take somewhat longer
than in conventional protocols. Hierarchical reductions can rein in reduction overheads with large core
counts (Section 3.3). In our evaluation, we observe that reduction overheads are small compared to
communication latencies.

Generalizing COUP 3.3

We now show how to generalize COUP to support multiple operations, larger cache blocks, other protocols,
and deeper cache hierarchies.

Multiple operations: Formally, COUP can be applied to any commutative semigroup (G,◦).1 For example,
G can be the set of 32-bit integers, and ◦ can be addition, multiplication, and, or, xor, min, or max .

Supporting multiple operations in the system requires minor changes. First, additional instructions
are needed to convey each type of update. Second, reduction units must implement all supported
operations. Third, the directory and private caches must track, for each line in U state, what type of
operation is being performed. Fourth, COUP must serialize commutative updates of different types,
because they do not commute in general (e.g., + and ∗ do not commute with each other). This can be
accomplished by performing a full reduction every time the private cache or directory receives an update
request of a type different from the current one.

1(G,◦) is a commutative semigroup iff ◦ : G × G→ G is a binary, associative, commutative operation over elements of set G,
and G is closed under ◦.
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actions that do not cause a state transition (e.g., C requests in U).

Larger cache blocks: Supporting multi-word blocks is trivial if (G,◦) has an identity element (formally,
this means (G,◦) is a commutative monoid). The identity element produces the same value when applied
to any element in G. For example, the identity elements for addition, multiplication, and, and min are
0, 1, all-ones, and the maximum representable integer, respectively.

All the operations we implement in this work have an identity element. In this case, it is sufficient
to initialize every word of the cache block to the identity element when transitioning to U. Reductions
perform element-wise operations even on words that have received no updates. Note this holds even
if those words do not hold data of the same type, because applying ◦ on the identity element produces
the same output, so it does not change the word’s bit pattern. Alternatively, reduction units could skip
operating on words with the identity element.

In general, not all operations may have an identity element. In such cases, the protocol would require
an extra bit per word to track uninitialized elements.

Finally, note we assume that data is properly aligned. Supporting commutative updates to unaligned
data would require more involved mechanisms to buffer partial updates. If the ISA allows unaligned
accesses, they can be performed as normal read-modify-writes.

Other protocols: COUP can extend protocols beyond MSI. Figure 3.5 shows how MESI [197] is extended
to MEUSI, which we use in our evaluation. Note that update requests enjoy the same optimization that
E introduces for read-only requests: if a cache requests update-only permission for a line and no other
cache has a valid copy, the directory grants the line directly in M.
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Deeper cache hierarchies: COUP can operate with multiple intermediate levels of caches and directories.
COUP simply requires a reduction unit at each intermediate level that has multiple children that can issue
update requests. For instance, a system with private per-core L1s and L2s and a fully shared L3 needs
reduction units only at L3 banks. However, if each L2 was shared by two or more L1Ds, a reduction unit
would be required in the L2s as well.

Hierarchical organizations lower the latency of reductions in COUP, just as they lower the latency of
sending and processing invalidations in conventional protocols: on a full reduction, each intermediate
level aggregates all partial updates from its children before replying to its parent. For example, consider
a 128-core system with a fully-shared L4 and 8 per-socket L3s, each shared by 16 cores. In this system, a
full reduction of a line shared in U state by all cores has 8+ 16= 24 operations in the critical path—far
fewer than the 128 operations that a flat organization would have, and not enough to dominate the cost
of invalidations.

Other contexts: We focus on single-word atomic operations and hardware cache coherence, but note
that COUP could apply to other contexts. For example, COUP could be used in software coherence
protocols (e.g., in distributed shared memory).

Coherence and Consistency 3.4

COUP maintains cache coherence and does not change the consistency model.

Coherence: A memory system is coherent if, for each memory location, it is possible to construct a
hypothetical serial order of all operations to the location that is consistent with the results of the execution
and that obeys two invariants [68, §5.1.1]:2

1. Operations issued by each core occur in the order in which they were issued to the memory system
by that core.

2. The value returned by each read operation is the value written to that location in the serial order.

In COUP, a location can be in exclusive, read-only, or update-only modes. The baseline protocol that
COUP extends already enforces coherence in and between exclusive and read-only modes. In update-only
mode, multiple cores can concurrently update the location, but because updates are commutative, any
serial order we choose produces the same execution result. Thus, the first invariant is trivially satisfied.
Moreover, transitions from update-only to read-only or exclusive modes propagate all partial updates
and make them visible to the next reader. Thus, the next reader always observes the last value written to
that location, satisfying the second property. Therefore, COUP maintains coherence.

Consistency: As long as the system restricts the order of memory operations as strictly for commutative
updates as it does for stores, COUP does not affect the consistency model. In other words, it is sufficient
for the memory system to consider commutative updates as being equivalent to stores. For instance, by
having store-load, load-store, and store-store fences apply to commutative updates as well, systems with
relaxed memory models need not introduce new fence instructions.

2Others reason about coherence using the single-writer, multiple-reader and the data-value invariants [241], which are
sufficient but not necessary. COUP does not maintain the single-writer, multiple-reader invariant.
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Figure 3.6: COUP implementation: (a) full state-transition diagram for the L1 cache on the baseline
two-level MESI protocol; (b) corresponding MEUSI state-transition diagram. The non-exclusive state, N,
generalizes S and U, and requires only an extra transient state and four transitions over MESI.

3.5 Implementation and Verification Costs

While we have presented COUP in terms of stable states, realistic protocols implement coherence trans-
actions with additional transient states and are subject to races, which add complexity and hinder
verification. By studying full implementations of MESI and MEUSI, we show that COUP requires a
minimal number of transient states and adds modest verification costs.

We first implement MESI protocols for two- and three-level cache hierarchies. Our implementations
work on networks with unordered point-to-point communication, and use two virtual networks without
any message buffering at the endpoints. In the two-level protocol, the L1 coherence controller has 12
states (4 stable, 8 transient), and the L2 has 6 states (3 stable, 3 transient). Figure 3.6a shows the
state-transition diagram of the more complex L1 cache. In the three-level protocol, the L1 has 14 states
(4 stable, 10 transient), the L2 has 38 (9 stable, 29 transient), and the L3 has 6 (3 stable, 3 transient).

Generalized non-exclusive state: While we have introduced U as an additional state separate from S,
both have a strong symmetry and many similarities. In fact, reads are just another type of commutative
operation. We leverage this insight to simplify COUP’s implementation by integrating S and U under
a single, generalized non-exclusive state, N. This state requires minor extensions over the machinery
already described in Section 3.3 to support multiple commutative updates.

Multiple caches can have a copy of the line in N, but all copies must be under the same operation type,
which can be read-only or one of the possible commutative updates. An additional field per line tracks its
operation type when in N. Non-exclusive and downgrade requests are tagged with the desired operation
type. E and M can satisfy all types of requests; commutative updates cause an E→M transition. N can
satisfy non-exclusive requests of the same type, but requests of a different type trigger an invalidation (if
starting from read-only) or a reduction (if starting from a commutative-update type) and cause a type
switch. Invalidations and reductions involve the same request-reply sequence, so they can use the same
transient states.

Implementing two-level MEUSI this way requires 13 states in the L1 and 6 states in the L2. Compared
to two-level MESI, MEUSI introduces only one extra L1 transient state. Figure 3.6b shows the L1’s
state-transition diagram, which is almost identical to MESI’s. The new transient state, NN, is used when
moving between operation types (e.g., from read-only to commutative-add or from commutative-and
to commutative-or). Our three-level MEUSI protocol is also similar to three-level MESI: the L1 has 15
states (one more transient than MESI, NN), the L2 has 43 (five more transient states than MESI, which,
similarly to NN, implement transitions between operation types), and the L3 has 6.
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Figure 3.7: COUP exhaustive verification costs for two- and three-level protocols. Costs grow much more
quickly with the number of cores and levels than the number of commutative updates.

Verification costs: We use Murphi [81] to verify MESI and MEUSI. We adopt common simplifications to
limit the state space, modeling caches with a single 1-bit line; self-eviction rules model a limited capacity.
In three-level protocols, we model systems with a single L2 and a single L3, and simulate traffic from
other L2s with L3-issued invalidation and downgrade rules. Even then, Murphi can only verify systems
of up to 4-8 cores, a well-known limitation of this approach [288, 289].

MEUSI’s verification costs grow more quickly with the number of cores and levels than the number
of commutative operations. Figure 3.7 reports the verification times for two- and three-level MESI and
MEUSI protocols supporting 2–20 commutative-update types. We run Murphi on a Xeon E5-2670, and
limit it to 16 GB of memory. Murphi can exhaustively verify MESI up to 7-9 cores and MEUSI up to 3-7
cores depending on the number of levels and commutative updates. This shows that MEUSI can be
effectively verified up to a large number of commutative updates. Moreover, just as protocol designers
assume that modeling a few cores provide reasonable coverage, verifying up to a few commutative
operations should be equally reasonable.

Motivating Applications 3.6

In this work, we apply COUP to accelerate single-word updates to shared data. To guide our design, we
first study under what circumstances COUP is beneficial over state-of-the-art software techniques, and
illustrate these circumstances with specific algorithms and applications.

As discussed in Section 3.1, COUP is the hardware counterpart to privatization. Privatization schemes
create several replicas of variables to be updated. Each thread updates one of these replicas, and threads
synchronize to reduce all partial updates into a single location before the variable is read.

In general, COUP outperforms prior software techniques if either of the following two conditions
holds:

• Reads and updates to shared data are finely interleaved. In this case, software privatization has
large overheads due to frequent reductions, while COUP can move a line from update-only mode
to read-only mode at about the same cost as a conventional invalidation. Thus, privatization needs
many updates per core and data value to amortize reduction overheads, while COUP yields benefits
with as little as two updates per update-only epoch.

• A large amount of shared data is updated. In this case, privatization significantly increases memory
footprint and puts more pressure on shared caches.
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We now discuss several parallel patterns and applications that have these properties.

3.6.1 Separate Update- and Read-Only Phases

Several parallel algorithms feature long phases where shared data is either only updated or only read.
Privatization techniques naturally apply to these algorithms.

Reduction variables: Reduction variables are objects that are updated by multiple iterations of a
loop using a binary, commutative operator (a reduction operator) [214, 215], and their intermediate
state is not read. Reduction variables are natively supported in parallel programming languages and
libraries such as HPF [145], MapReduce [77], OpenMP [84], TBB [216], and Cilk Plus [90]. Prior work
in parallelizing compilers has developed a wide array of techniques to detect and exploit reduction
variables [125, 214, 215]. Reductions are commonly implemented using parallel reduction trees, a form
of privatization. Each thread executes a subset of loop iterations independently, and updates a local copy
of the object. Then, in the reduction phase, threads aggregate these copies to produce a single output
variable.

Reduction variables can be small, for example when computing the mean or maximum value of an
array. In these cases, the reduction variable is a single scalar, the reduction phase takes negligible time,
and COUP would not improve performance much over software reductions.

Reduction variables are often larger structures, such as arrays or matrices. For example, consider a
loop that processes a set of input values (e.g., image pixels) and produces a histogram of these values
with a given number of bins. In this case, the reduction variable is the whole histogram array, and the
reduction phase can dominate execution time [126], as shown in Figure 3.1. Yu and Rauchwerger [278]
propose several adaptive techniques to lower the cost of reductions, such as using per-thread hash
tables to buffer updates, avoiding full copies of the reduction variable. However, these techniques add
time overheads and must be applied selectively [278]. Instead, COUP achieves significant speedups by
maintaining a single copy of the reduction variable in memory, and overlapping the loop and reduction
phases.

Reduction variables and other update-only operations often use floating-point data. For example,
depending on the format of the sparse matrix, sparse matrix-vector multiplication can require multiple
threads to update overlapping elements of the output vector [9]. However, floating-point operations
are not associative or commutative, and the order of operations can affect the final result in some
cases [257]. Common parallel reduction implementations are non-deterministic, so we choose to support
floating-point addition in COUP. Implementations desiring reproducibility can use slower deterministic
reductions in software [79].

Ghost cells: In iterative algorithms that operate on regular data, such as structured grids, threads
often work on disjoint chunks of data and only need to communicate updates to threads working on
neighboring chunks. A common technique is to buffer updates to boundary cells using ghost or halo
cells [141], private copies of boundary cells updated by each thread during the iteration and read by
neighboring threads in the next iteration. Ghost cells are another form of privatization, different from
reductions in that they capture point-to-point communication. COUP avoids the overheads of ghost cells
by letting multiple threads update boundary cells directly.

The ghost cell pattern is harder to apply to iterative algorithms that operate on irregular data, such as
PageRank [194, 227]. In these cases, partitioning work among threads to minimize communication can
be expensive, and is rarely done on shared-memory machines [227]. By reducing the cost of concurrent
updates to shared data, COUP helps irregular iterative algorithms as well.
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Interleaved Updates and Reads 3.6.2

Several parallel algorithms read and update shared data within the same phase. Unlike the applications
in Section 3.6.1, software privatization is rarely used in these cases, as software would need to detect
data in update-only mode and perform a reduction before each read. By contrast, COUP transparently
switches cache lines between read-only and update-only modes in response to accesses, improving
performance even with a few consecutive updates or reads.

Graph traversals: High-performance implementations of graph traversal algorithms such as breadth-
first search (BFS) encode the set of visited nodes in a bitmap that fits in cache to reduce memory
bandwidth [8, 55]. The first thread that visits a node sets its bit, and threads visiting neighbors of the
node read its bit to find whether the node needs to be visited.

Existing implementations use atomic-or operations to update the bitmap [8], or use non-atomic
load-or-store sequences, which reduce overheads but miss updates, causing some nodes to be visited
multiple times [55]. In both cases, updates from multiple threads are serialized. In contrast, COUP allows
multiple concurrent updates to bits in the same cache line.

Besides graph traversals, commutative updates to bitmaps are common in other contexts, such as
recently-used bits in page replacement policies [66], buddy memory allocation [142], and other graph
algorithms [154].

Reference counting: Reference counting is a common automatic memory management technique. Each
object has a counter to track the number of active references. Threads increment the object’s counter
when they create a reference, and decrement and read the counter when they destroy a reference, When
the reference count reaches zero, the object is garbage-collected.

Using software techniques to reduce reference-counting overheads is a well-studied problem [61,
62, 85, 176]. Scalable Non-Zero Indicators (SNZIs) [85] reduce the cost of non-zero checks. SNZIs keep
the global count using a tree of counters. Threads increment and decrement different nodes in the tree,
and may propagate updates to parent nodes. Readers just need to check the root node to determine
whether the count is zero. SNZIs make non-zero checks fast and allow some concurrency in increments
and decrements, but add significant space and time overheads, and need to be carefully tuned.

Refcache [61] delays and batches reads to reference counts, which allows it to use privatization.
Threads maintain a software cache of reference counter deltas, which are periodically flushed to the
global counter. When the global counter stays at zero for a sufficiently long time, the true count is
known to be zero and the object is deallocated. This approach reduces reference-counting overheads,
but delayed deallocation hurts memory footprint and locality.

COUP enables shared reference counters with no space overheads and less coherence traffic than
shared counters. COUP also allows delayed reference counting as in Refcache without a software cache
(Section 3.7.4).

Evaluation 3.7

Methodology 3.7.1

Modeled systems: We perform microarchitectural, execution-driven simulation using zsim [224]. We
evaluate single- and multi-socket systems with up to 128 cores and a four-level cache hierarchy, shown
in Figure 3.8. Table 3.1 details the configuration of these systems. Each processor chip has 16 cores.
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Figure 3.8: Architecture of the simulated system.
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ip Cores
1–128 cores, 16 cores/processor chip, x86-64 ISA, 2.4 GHz, Nehalem-like
OOO [224]

L1 caches 32 KB, 8-way set-associative, split D/I, 4-cycle latency

L2 caches 256 KB private per-core, 8-way set-associative, inclusive, 7-cycle latency

L3 caches
32 MB, 8 banks, 16-way set-associative, inclusive, 27-cycle latency, in-cache
directory

Off-chip
network

Dancehall topology, 40-cycle point-to-point links between each processor and
L4 chip

L4 & dir chip
128 MB, 8 banks/chip, 16-way set-associative, inclusive, 35-cycle latency,
in-cache directory

Coherence MESI/MEUSI, 64 B lines, no silent drops

Main memory 4 DDR3-1600-CL10 channels per L4 chip, 64-bit bus, 2 ranks/channel

Table 3.1: Configuration of the simulated system.

Each core has private L1s and a private L2, and all cores in the chip share a banked L3 cache with an
in-cache directory. The system supports up to 8 processor chips, connected in a dancehall topology to
the same number of L4 chips. Each of these chips contains a slice of the L4 cache and global in-cache
directory, and connects to a fraction of main memory. This organization is similar to the IBM z13 [263].

We compare MESI and MEUSI (Figure 3.5). With MEUSI, each L3 and L4 bank has a reduction
unit. We perform hierarchical reductions as described in Section 3.3: on a full reduction, each L3
bank invalidates all its children, aggregates their partial updates, and sends a single response to the L4
controller.

COUP operations and data types: We add support for eight commutative-update types:
• Addition of 16, 32, and 64-bit integers, and 32 and 64-bit floating-point values.
• AND, OR, and XOR bitwise logical operations on 64-bit words.

We observe multiplication update-only operations are rare, so we do not support multiplication. We also
observe min and max are often used with scalar reduction variables (e.g., to find the extreme values of
an array). COUP would provide a negligible benefit for scalar reductions, as discussed in Section 3.6.1.
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Input set Commutative operations Sequential runtime

hist GRiN [1], 512 bins 32b int add 2720 Mcycles
spmv rma10 [75] 64b FP add 94 Mcycles

fluidanimate simlarge [31] 32b FP add 5930 Mcycles
pgrank Wikipedia (2007) [75] 64b int add 2850 Mcycles

bfs cage15 [75, 160] 64b OR 5764 Mcycles

Table 3.2: Benchmark characteristics.

Thus, we do not support min or max . Finally, we support a single word size for bitwise operations,
because this suffices to express updates to bitmaps of any size (smaller or larger).

Commutative-update instructions: We add an instruction for each supported operation and data type.
Each instruction takes two register inputs, with the address to be updated and the value to apply, and
produces no register output. We encode these instructions using x86-64 no-ops that are never emitted
by the compiler.

The x86 (TSO) memory model specifies that atomic instructions have an implicit store-load fence [230];
for consistency, we also add an implicit fence to commutative-update instructions. We implement con-
ventional atomic operations and commutative updates using a four-µop sequence: load-linked, execute
(in one of the appropriate execution ports), store-conditional, and store-load fence.

Reduction unit organization: Since functional units for the required operations are relatively simple,
we assume a 2-stage pipelined, 256-bit ALU (4× 64-bit lanes). This ALU has a throughput of one full
64-byte cache line per two clock cycles, and a latency of three clock cycles per line. We explore the
sensitivity to reduction unit throughput in Section 3.7.5.

Hardware overheads: In summary, our COUP implementation introduces modest overheads:
• Eight additional commutative-update instructions.
• Four bits per line to encode the non-exclusive operation type, either read-only or one of eight

commutative-update types (Section 3.5).
• One reduction unit per L3 and L4 bank.

Workloads: We use a set of five multithreaded benchmarks that cover the cases described in Section 3.6:
• hist is the TBB-based OpenCV [35] histogramming program (version 2.4.11).
• spmv is a sparse matrix-vector multiplication kernel, where the matrix is encoded in compressed

sparse column (CSC) format. CSC requires multiple threads to perform scattered additions to
the output vector. Other input formats, such as EBE, also cause scattered adds in matrix-vector
multiplication [9].

• fluidanimate, from the PARSEC suite [31], is a regular iterative algorithm (Section 3.6.1). We
optimize the default implementation, which uses locks to guard updates to shared cells, to use
atomic operations instead.

• pgrank is a PageRank implementation similar to the shared-memory optimized version of Satish
et al. [227].

• bfs is a parallel breadth-first search algorithm. Our implementation extends PBFS [160] with a
visited bit-vector to reduce memory traffic (Section 3.6.2), similar to state-of-the-art approaches [8,
55].
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Figure 3.9: Per-application speedups of COUP and MESI on 1–128 cores (higher is better).
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Figure 3.10: Breakdown of average memory access latency (AMAT) of COUP and MESI on 8, 32, and
128-core systems. AMAT is normalized to COUP’s at 8 cores (lower is better).

Table 3.2 details the input sets, commutative-update operations used, and sequential runtime of each
benchmark.

All the baseline benchmark implementations use atomic operations. We also compare against a
privatization-based variant of hist (implemented using TBB reductions) in Section 3.7.3, and develop
reference-counting microbenchmarks to compare COUP against SNZI and Refcache in Section 3.7.4.

We report results on 1–128 cores. We scale the number of processor and L4 chips on runs with more
cores (e.g., 1-core runs use a single processor and L4 chip, 32-core runs use two of each, and so on),
which also scales the bandwidth of the memory system and L4 capacity. To achieve statistically significant
results, we introduce small amounts of non-determinism as proposed by Alameldeen and Wood [12],
and perform enough runs to achieve 95% confidence intervals ≤1%.

3.7.2 Comparison Against Atomic Operations

Figure 3.9 compares the performance and scalability of COUP and a conventional MESI protocol. Each
graph shows results for a single application, and each line in the graph shows how performance scales
for a particular scheme (MESI or COUP) as the number of cores grows from 1 to 128 (x-axis). All speedup
numbers are relative to the runtime of the application on a single core under MESI. Higher numbers are
better.

Figure 3.9 shows that COUP always outperforms MESI, often substantially. At 128 cores, COUP

outperforms MESI by 2.4× on hist, 34% on spmv, 4.0% on fluidanimate, 2.4× on pgrank, and 20%
on bfs. Moreover, the gap between MESI and COUP often widens as the number of cores grows, showing
that COUP has better scalability than MESI.

COUP is especially beneficial for applications where shared data goes through long update-only phases.
This is the case with hist, spmv, and pgrank. In bfs, where cache lines are constantly moving between
U and S states as cores update and check the visited bit-vector (Section 3.6.2), COUP’s advantage is lower
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Figure 3.11: Speedups of hist with COUP and both core- and socket-level privatization, using small
(512) and large (16 K) numbers of bins.

but still significant. Finally, shared cells in fluidanimate experience long read-only and update-only
phases, but only a fraction of cells are shared, and shared cells see few updates from neighboring threads
on each update-only phase, so COUP provides a small speedup over MESI.

Figure 3.10 gives more insight into these results by showing the breakdown of average memory access
latency (AMAT). Each graph shows results for a single application. Each set of two bars shows results
for COUP and MESI for a given system size (8, 32, or 128 cores). The height of each bar is the average
memory access latency of all loads, stores, and instruction fetches issued from the L1s, normalized to the
AMAT that COUP achieves at 8 cores. Each bar is broken down into time spent at the L2, L3, off-chip
network, L4, coherence invalidations from the L4, and main memory. This breakdown shows critical-path
delays only (e.g., the time spent on invalidations is not the time spent on every invalidation, but the
critical-path delay that L4 requests suffer because other sharers need to be invalidated or downgraded).

Figure 3.10 shows that COUP substantially reduces AMAT over MESI. At 128 cores, COUP’s AMAT is
lower than MESI’s by 12.6× on hist, 10% on spmv, 12% on fluidanimate, 3.0× on pgrank, and 24%
on bfs. COUP mainly does this by reducing invalidations and serialization. The effect of this reduction
on the overall AMAT depends on how the application uses the memory system. For instance, COUP

nearly eliminates invalidation traffic in hist, spmv, and pgrank. In hist and pgrank, invalidations are
the dominant contributor to AMAT, so eliminating them has the largest impact. But AMAT in spmv is
dominated by L4 and main memory accesses, so the overall impact of eliminating invalidations is smaller.

Beyond reducing AMAT, COUP also lowers traffic: at 128 cores, COUP incurs lower off-chip traffic
than MESI by a factor of 20.2× on hist, 18% on spmv, 18% on fluidanimate, 4.9× on pgrank, and
20% on bfs.

Finally, even though COUP’s benefits are significant, these benchmarks execute a relatively small
fraction of commutative-update instructions: at 128 cores, commutative-update instructions are 1.0% of
all executed instructions on hist, 2.4% on spmv, 0.96% on fluidanimate, 4.9% on pgrank, and 0.40%
on bfs. Their impact is significant because, at large core counts, each atomic read-modify-write to a
contended memory location can take several hundred cycles.

Case Study: Reduction Variables 3.7.3

All baseline benchmarks use atomic operations instead of privatization. To compare COUP with software
privatization, we modify hist to make the histogram a reduction variable, and vary the number of bins
(elements) in the histogram. We evaluate both core-level privatization, where each thread has its own
variable, and socket-level privatization, where each socket has its own variable, shared and updated by
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Figure 3.12: Performance of COUP on reference counting microbenchmarks: (a, b) immediate deallocation
and (c) delayed deallocation.

all threads running in that socket using atomic operations. Socket-level privatization seeks to balance
the overheads of the fully-shared and fully-privatized implementations.

Figure 3.11 compares the performance and scalability of COUP with core-level and socket-level
privatization on hist. Figure 3.11a shows that, with a small number of bins, COUP outperforms core-
level privatization by 3% and socket-level privatization by 38%. Core-level privatization works well
in this case because each thread performs many updates to each histogram bin (128 on average), so
reduction overheads are highly amortized.

In contrast, Figure 3.11b shows that, with a large number of bins, COUP outperforms core-level
privatization by 2.5× and socket-level privatization by 51%. In this case, core-level privatization is
dominated by the cost of reductions, as each thread performs a small number of updates to each histogram
bin (2 on average).

Finally, privatization also increases footprint and adds pressure to shared caches. If we grow both
the number of bins and the image size (so the number of updates per bin and thread, and thus reduction
overheads, stay constant), we see an additional performance degradation of 9% in the core-level
privatized version when the aggregate size of all privatized histograms overflow the L3 caches, while
COUP does not suffer this degradation.

3.7.4 Case Study: Reference Counting

We use two microbenchmarks to compare COUP’s performance on reference counting against the software
techniques described in Section 3.6.2. The first microbenchmark models immediate-deallocation schemes,
and we use it to compare against a conventional atomic-based implementation and SNZI [85]. The second
microbenchmark models delayed-deallocation schemes, and we use it to compare against Refcache [61].

Immediate deallocation: In this microbenchmark, each thread performs a fixed number of increment,
decrement, and read operations over a fixed number of shared reference counters. We use 1 to 128
threads, 1 million updates per thread, and 1024 shared counters. On each iteration, a thread selects a
random counter and performs either an increment or a decrement and read.

SNZI uses binary trees with as many leaves as threads. The performance of SNZI depends on the
number of references per object—a higher number of references causes higher surpluses in leaves and
intermediate nodes, and less contention on updates. To capture this effect, we run two variants of this
benchmark. In the first variant (low count), each thread keeps only 0 or 1 references per object, while in
the second mode (high count), each thread keeps up to five references per object.
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To achieve this, in low-count mode, when a thread randomly selects an object, it will always increment
its counter if it holds no references to that object, and it will always decrement its counter if it holds one
reference. In high-count mode, threads will increment with probability 1.0, 0.7, 0.5, 0.5, 0.3, and 0.0 if
they hold 0, 1, 2, 3, 4, and 5 local references to that counter, respectively.

For updates, COUP and XADD use commutative-add and atomic fetch-and-add instructions, respec-
tively.

Figure 3.12a and Figure 3.12b show the results for these experiments. In the low-count variant
(Figure 3.12a), SNZI incurs high overhead when counts drop to zero, so both COUP and XADD outperform
SNZI (by 50% and 17% at 128 cores, respectively). By contrast, in the high-count variant (Figure 3.12b),
SNZI enjoys lower contention and outperforms COUP (by 35% at 128 cores). COUP outperforms XADD
in both cases.

We conclude that, in high-contention scenarios, COUP provides the highest performance, but in
specific scenarios, software optimizations that exploit application-specific knowledge to avoid contention
among reads and updates can outperform COUP. We also note that it may be possible to modify SNZI to
take advantage of COUP and combine the advantages of both techniques.

Delayed deallocation: In the delayed-deallocation microbenchmark, 128 threads perform increments
and decrements (but not reads) on 100,000 counters. We divide the benchmark into epochs, each with a
given number of updates per thread. When they finish an epoch, threads check whether counters are
zero, simulating delayed-deallocation periods as in Refcache [61].

Our COUP implementation updates counters with commutative-add instructions and maintains a
bitmap with a “modified” bit for each counter. The bitmap is updated with commutative-or instructions.
Between epochs, cores use ordinary loads to read the value of marked counters and check whether the
counters are zero. Refcache uses a per-thread software cache (a hash table) to maintain the deltas to
each modified counter. Threads flush this cache when they finish each epoch.

Figure 3.12c shows the performance COUP and Refcache on the delayed deallocation microbenchmark
as the number of updates per epoch (x-axis) grows from 1 to 1000 updates per thread and epoch. COUP

outperforms refcache across the range, by up to 2.3×.
We conclude that COUP primarily helps delayed-deallocation reference counting by allowing a simpler,

lower-overhead implementation to capture the low communication costs of prior software approaches
(in this case, using counters and bitmaps instead of hash tables).

Sensitivity to Reduction Unit Throughput 3.7.5

COUP is barely sensitive to reduction unit throughput. We compare the default 256-bit ALU, which
has a throughput of one cache line per 2 cycles, with a simpler, unpipelined 64-bit ALU, which has a
throughput of one line per 16 cycles. The maximum performance degradation incurred with the slower
ALU is 0.88% at 128 cores on bfs. Smaller systems incur somewhat lower worst-case degradations (e.g.,
0.76% at 64 cores).

Additional Related Work 3.8

Loosely consistent memory (LCM) [156] is a software-controlled coherence protocol built on top of
Tempest [217] that allows multiple caches to hold writable copies of the same line. These copies can
become incoherent, and software must explicitly reconcile them in a later merge phase. Unlike LCM, COUP

preserves cache coherence and transparently merges partial updates, requiring no software intervention.
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Moreover, several cache-coherence optimizations reduce the cost of updates, though that is not their
primary purpose: self-invalidations, done with either hardware predictors [159] or software protocols [57,
132], remove invalidations from the critical path; adaptive-granularity coherence schemes [152, 285, 292]
reduce both false sharing and the amount of dirty data sent on invalidations; and speculation and fast
networks can reduce the cost of atomic operations [89]. These schemes are orthogonal to COUP, which
could be used in conjunction with them to improve performance.

While we have focused on shared-memory systems, exploiting commutativity is also common with
message passing. The BlueGene/L and BlueGene/Q supercomputers feature specialized collective
networks that perform reductions completely in hardware, using ALUs embedded in network routers [13,
48]. In contrast to COUP, their main advantage is minimizing the latency of scalar or short reductions
across a very large number of nodes.

3.9 Summary

We have presented COUP, a technique that exploits commutativity to reduce the cost of updates in
cache-coherent systems. COUP extends conventional coherence protocols to allow multiple caches
to simultaneously hold update-only permission to data. We have introduced an implementation of
COUP that uses this support to accelerate single-instruction commutative updates. This implementation
requires minor hardware changes and, in return, substantially improves the performance of update-heavy
applications.

Beyond this specific implementation, a key contribution of COUP is to recognize that it is possible
to allow multiple concurrent updates without sacrificing cache coherence or relaxing the consistency
model. Thus, COUP attains performance gains without complicating the parallel programming.
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In this chapter, we present COMMTM, the commutativity-aware hardware transactional memory (HTM).
The key idea behind COMMTM is to extend the coherence protocol and conflict detection scheme to
allow multiple private caches to simultaneously hold data in a user-defined reducible state. Transactions
can use labeled memory operations to read and update these private, reducible lines locally without
triggering conflicts. When another transaction issues an operation that does not commute given the
current reducible state and label (i.e., a normal load or store or a labeled operation with a different
label), COMMTM transparently performs a user-defined reduction before serving the data. This approach
preserves transactional guarantees: semantically-commutative operations are reordered to improve
performance, but non-commutative operations cannot observe reducible lines with partial updates.

Like COUP, COMMTM modifies the coherence protocol to support new states that do not trigger
coherence actions on updates, avoiding conflicts. However, COUP does not work in a transactional
context (only for single-instruction atomic updates) and is restricted to a small set of strictly commutative
operations, i.e., those that produce the same bit pattern when reordered. Instead, COMMTM supports
the much broader range of multi-instruction, semantically commutative operations. Moreover, COMMTM
shows that there is a symbiotic relationship between semantic commutativity and speculative execution:
COMMTM relies on transactions to make commutative multi-instruction sequences atomic, so semantic
commutativity would be hard to exploit without speculative execution; and COMMTM accelerates
speculative execution much more than COUP does single-instruction commutative updates, since apart
from reducing communication, COMMTM avoids conflicts.

Specifically, we make the following contributions:

• We present a basic version of COMMTM (Section 4.2 to Section 4.6) that achieves the same precision
as software semantic locking [149, 265].

• We then extend COMMTM with gather requests (Section 4.7), which allow software to redistribute
reducible data among caches, achieving much higher concurrency in important use cases.

• We evaluate COMMTM with microbenchmarks (Section 4.9) and full TM applications (Section 4.10).
Microbenchmarks show that COMMTM scales on a variety of commutative operations, such as set
insertions, reference counting, ordered puts, and top-K insertions, which allow no concurrency in
conventional HTMs. At 128 cores, COMMTM improves full-application performance by up to 3.4×,
lowers private cache misses by up to 45%, and reduces or even eliminates transaction aborts.

We first introduce the background of software and hardware transactional memory systems. We
then present COMMTM’s programming interface and ISA, and a concrete COMMTM implementation that
extends an eager-lazy HTM baseline (Section 4.3.1). Finally, we show how to generalize COMMTM to
support other coherence protocols and HTM designs.

43
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4.1 Motivation

4.1.1 Semantic Commutativity

Semantic commutativity [265] is a broader concept than strict commutativity exploited in COUP. Seman-
tically commutative operations produce results that are semantically equivalent when reordered, even if
the concrete resulting states are different. For example, consider two consecutive insertions of different
values a and b to a set s implemented as a linked list. If s.insert(a) and s.insert(b) are reordered,
the concrete representation of these elements in set s will be different (either a or b will be in front).
Thus, these set insertions are not strictly commutative. However, since the actual order of elements in s

does not matter (a set is an unordered data structure), both representations are semantically equivalent,
and insertions into sets semantically commute. Other examples include ordered puts and top-K insertions.
Such operations are typically implemented as multiple instructions in speculative parallel systems.

4.1.2 Transactional Memory Systems

Many software and hardware techniques, such as transactional memory (TM) or speculative multi-
threading, rely on speculative execution to parallelize programs with atomic regions. For example,
transactional memory lets programmers define transactions, regions of code that are executed atomically.
For instance, in the following function, the read-modify-write sequences of account balances are placed
in a transaction, which must appear atomic to ensure correctness.

void transfer(Account& from, Account& to, int amount) {
atomic {
to.balance += amount;
from.balance -= amount;

}
}

Speculative execution techniques run multiple atomic regions concurrently, and a conflict detection
technique flags potentially unsafe interleavings of memory accesses (e.g., in transactional memory, those
that may violate serializability). Upon a conflict, one or more regions are rolled back and reexecuted to
preserve correctness.

Ideally, conflict detection should (1) be precise, i.e., allow as many safe interleavings as possible to
maximize concurrency, and (2) incur minimal runtime costs. Software and hardware conflict detection
techniques typically satisfy one of these properties but sacrifice the other: On the one hand, software
techniques can leverage program semantics to be highly precise, but they incur high runtime overheads.
On the other hand, hardware techniques incur small overheads, but leave a great amount of concurrency
unexploited.

Software conflict detection schemes often exploit semantic commutativity [149, 150, 190, 204, 218,
265]. Most work in this area focuses on techniques that reason about operations to abstract data types.
Prior work has proposed a wide variety of conflict detection implementations [110, 149, 204, 218, 265].
Not all commutativity-aware conflict detection schemes are equally precise: simple and general-purpose
techniques, such as semantic locking [149, 218, 265], flag some semantically-commutative operations as
conflicts, while more sophisticated schemes, like gatekeepers [149], incur fewer conflicts but have higher
overheads and are often specific to particular patterns.

Specifically, semantic locking [218, 265], also known as abstract locking, generalizes read-write
locking schemes (e.g., two-phase locking): transactions can acquire a lock protecting a particular
object in one of a number of modes; multiple semantically-commutative methods acquire the lock in a
compatible mode, and can proceed concurrently. For instance, the deposit operations to the same account
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are commutative. Therefore, multiple deposit operations can hold the lock of the account in addition
mode at the same time, and can proceed concurrently without blocking one another. Semantic locking
requires additional synchronization on the actual accesses to shared data, e.g., logging or reductions.
However, such software techniques incur high runtime overheads (e.g. 2-6× in software TM [41]).

Hardware can implement speculative execution at minimal costs by reusing many existing com-
ponents: private caches to buffer speculative data, and the coherence protocol to detect conflicting
speculative accesses. In fact, after an intensive period of research [43, 104, 111, 179, 211, 212], hardware
transactional memory has been quickly adopted in commercial processors [189, 261]. Likewise, hardware
already has much of the functionality that is necessary to support commutativity. However, exploit-
ing commutativity in hardware conflict detection is still challenging because conventional coherence
protocols can reason about only reads and writes. Therefore, commutative updates to the same data,
e.g. deposits to the same account, trigger unnecessary conflicts, as shown in Figure 1.2a. This lack of
precision can significantly limit concurrency, to the point that prior work finds that commutativity-aware
software TM (STM) outperforms hardware TM (HTM) despite its higher overhead [149, 150].

COMMTM bridges the gap between software and hardware and solves this precision-overhead
dichotomy. By extending the coherence protocol and the conflict detection scheme, COMMTM provides
commutativity support for hardware speculation, and avoids the overheads of software techniques.

COMMTM Programming Interface and ISA 4.2

COMMTM requires simple program changes to exploit commutativity: defining a reducible state to avoid
conflicts among commutative operations, using labeled memory accesses to perform each commutative
operation within a transaction, and implementing user-defined reduction handlers to merge partial updates
to the data.

In this section, we use a very simple example to introduce COMMTM’s API: concurrent increments to
a shared counter. Counter increments are both strictly and semantically commutative; we later show
how COMMTM also supports more involved operations that are semantically commutative but not strictly
commutative, such as top-K insertions. Figure 1.2 shows how COMMTM allows multiple transactions to
increment the same counter concurrently without triggering conflicts.

User-defined reducible state and labels: COMMTM extends the conventional exclusive and shared
read-only states with a reducible state. Lines in this reducible state must be tagged with a label. The
architecture supports a limited number of labels (e.g., 8). The program should allocate a different label
for each set of commutative operations; we discuss how to multiplex these labels in Section 4.5. Each
label has an associated, user-defined identity value, which may be used to initialize cache lines that enter
the reducible state. For example, to implement commutative addition, we allocate one label, ADD, to
represent deltas to shared counters, and set its identity value to zero.

Labeled load and store instructions: To let the program denote what memory accesses form a com-
mutative operation, COMMTM introduces labeled memory instructions. A labeled load or store simply
includes the label of its desired reducible state, but is otherwise identical to a normal memory operation.
For instance, commutative addition can be implemented as follows:
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void add(int* counter, int delta) {
tx_begin();
int localValue = load[ADD](counter);
int newLocalValue = localValue + delta;
store[ADD](counter, newLocalValue);
tx_end();

}

load[ADD] and store[ADD] inform the memory system that it may grant reducible permission with
the ADD label to multiple caches. This way, multiple transactions can perform commutative additions
locally and concurrently. Note that this sequence is performed within a transaction to guarantee its
atomicity (this code may also be called from another transaction, in which case it is handled as a
conventional nested transaction [180]).

User-defined reductions: Finally, COMMTM requires the program to specify a per-label reduction
handler that merges reducible-state cache lines. This function takes the address of the cache line and the
data from a reducible cache line to merge into it. For example, the reduction operation for addition is:

void add_reduce(int* counterLine, int[] deltas) {
for (int i = 0; i < intsPerCacheLine; i++) {
int v = load[ADD](counterLine[i]);
int nv = v + deltas[i];
store[ADD](counterLine[i], nv);

}
}

Unlike multi-instruction commutative operations done through labeled loads and stores, reduction
handlers are not transactional. Moreover, to ease their implementation, we restrict the types of accesses
they can make. Specifically, while reduction handlers can access arbitrary data with read-only and
exclusive permissions, they should not trigger additional reductions (i.e., they cannot access other lines
in reducible state).

4.3 COMMTM Implementation

4.3.1 Eager-Lazy HTM Baseline

To make our discussion concrete, we present COMMTM in the context of a specific eager-lazy HTM
baseline. We simulate an HTM with eager conflict detection and lazy (buffer-based) version management,
as in LTM [15] and Intel’s TSX [277]. We assume a multicore system with per-core private L1s and L2s,
and a shared L3, as shown in Figure 4.1. Cores buffer speculatively-updated data in the L1 cache; the
L2 has non-speculative data only. Evicting the speculative data in L1s causes the transaction to abort.
The HTM uses the coherence protocol to detect conflicts eagerly. Transactions are timestamped, and
timestamps are used for conflict resolution [179]: on a conflict, the earlier transaction wins, and aborted
transactions use randomized backoff to avoid livelock. This conflict resolution scheme frees eager-lazy
HTMs from common pathologies [34].

4.3.2 Coherence protocol

COMMTM extends the coherence protocol with an additional state, user-defined reducible (U). For example,
Figure 4.2 shows how COMMTM extends MSI with the U state. Lines enter U in response to labeled loads
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Figure 4.2: State-transition diagrams of MSI and CommTM protocols. For clarity, diagrams omit actions
that do not cause a transition (e.g., R requests in S).

and stores, and leave U through reductions. Each U-state line is labeled with the type of reducible data it
contains (e.g., ADD). Lines in U can satisfy loads and stores whose label matches the line’s.

Other states in the original protocol retain similar functionality. For example, in Figure 4.2, M can
satisfy all memory requests (conventional and labeled), S can only satisfy conventional loads, and I
cannot satisfy any requests. In the rest of the section we will show how lines transition among these
states in detail.

COMMTM’s U state is similar to COUP’s update-only state. The transition diagram shown in Figure 4.2
is similar to that of the COUP-extended MUSI protocol shown in Figure 3.3. The major difference is the
transition from U state on a read (R): COUP transitions to S state with a reduction performed by the
reduction unit, while COMMTM transitions to M state as the reduction is performed by the requesting
core. COMMTM requires substantially different support from COUP in nearly all other aspects: whereas
COUP requires new update-only instructions for each commutative operation, COMMTM allows programs
to implement arbitrary commutative operations, exploiting transactional memory to make them atomic;
whereas COUP implements fixed-function reduction units, COMMTM allows arbitrary reduction functions;
and whereas COUP focuses on reducing communication in a non-transactional context, COMMTM reduces
both transactional conflicts and communication.



4.3. COMMTM IMPLEMENTATION 48

Sharer permissions  (Ex: exclusive; 

ShU: reducible) 
A: 3 A: 20 Private 

caches 
Modified User-defined 

reducible 

Shared 
cache 

A: ShU{1,2}: -- 

Address Sharers 

Legend 

L2 

load[ADD](A) 

Shared cache 

A: 24 

Shared cache 

A: ShU{0}: -- 

A: 24 

Initial state 

Final state 

T
im

e
 

L2 

L1 L1 

Core 0 Core 1 

L2 L2 

L1 L1 

Core 0 Core 1 

A: 24 

(a) No other sharers

L2 

load[ADD](A) 

Shared cache 

A: Ex{1}: --  

A: 24 

Shared cache 

A: ShU{0,1}: -- 

A: 0 

Initial state 

Final state 

L2 

L1 L1 

Core 0 Core 1 

L2 L2 

L1 L1 

Core 0 Core 1 

A: 0 

A: 24 

(b) Downgrade from M to U

Figure 4.3: Serving labeled memory accesses: (a) the first GETU requester obtains the data; and (b)
another cache with the line in M is downgraded to U and retains the data, while the requester initializes
the line with the identity value. Each diagram shows the initial and final states in the shared and private
caches.

4.3.3 Transactional execution

Labeled memory operations within transactions cause lines to enter the U state. We first discuss of
permissions change in the absence of transactional conflicts, then explain how conflict detection changes.

On a labeled request to a line with invalid or read-only permissions, the cache issues a GETU request
and receives the line in U. There are five possible cases:

1. If no other private cache has the line, the directory serves the data directly, as shown in Figure 4.3a.
2. If there are one or more sharers in S, the directory invalidates them, then serves the data.
3. If there are one or more sharers in U with a different label from the request’s, the directory asks

them to forward the data to the requesting core, which performs a reduction to produce the data.
Reductions are discussed in detail in Section 4.3.4.

4. If there are one or more sharers in U with the same label, the directory grants U permission, but
does not serve any data.

5. If there is an exclusive sharer in M, the directory downgrades that line to U and grants U to the
requester without serving any data, as shown in Figure 4.3b.

In cases 1–3, the requester receives both U permission and the data; in cases 4 and 5, the requester does
not receive any data, and instead initializes its local line with the user-defined identity element (e.g.,
zeros for ADD). Labeled operations must be aware that data may be scattered across multiple caches. In
all cases, COMMTM preserves a key invariant: reducing the private versions of the line produces the right
readable value.
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is speculatively read or written (using the state and label to infer whether from labeled or unlabeled
instructions). Upon commit, spec-R/W bits are reset to zero. Before being written by another transaction,
dirty U-state lines are written back to the L2.

Speculative value management: Value management for lines in U that are modified is nearly identical
to that of lines in M. Figure 4.4 shows how a line in U is read, modified, and, in the absence of conflicts,
committed: 1 Both normal and labeled writes are buffered in the L1 cache, and non-speculative values
are stored in the private L2. 2 When the transaction commits, all dirty lines in the L1 are marked as
non-speculative. 3 Before a dirty line in the L1 is speculatively written by a new transaction, its value is
forwarded to the L2. Thus, if the transaction is aborted, its speculative updates to data in both M and U
can be safely discarded, as the L2 contains the correct value.

Conflict detection and resolution: COMMTM leverages the coherence protocol to detect conflicts. In
our baseline, conflicts are triggered by invalidation and downgrade requests to lines read or modified
by the current transaction (i.e., lines in the transaction’s read- or write-sets). Similarly, in COMMTM,
invalidations to lines that have received a labeled operation from the current transaction trigger a conflict.
We call this set of lines transaction’s labeled set. We leverage the existing L1’s status bits to track the
labeled set, as shown in Figure 4.4.

COMMTM is orthogonal to the conflict resolution protocol. We leverage our baseline’s timestamp-
based resolution approach: each transaction is assigned an unique timestamp, and requests from each
transaction include its timestamp. On an invalidation to a line in the transaction’s read, write, or labeled
set, the core compares its transaction’s timestamp and the requester’s. If the receiving transaction is
younger (i.e., has a higher timestamp), it honors the invalidation request and aborts; if it is older than
the requester, it replies with a NACK, which causes the requester to abort. Figure 4.5 shows both of these
cases in detail for a line in the labeled set.

Reductions 4.3.4

COMMTM performs reductions transparently to satisfy non-commutative requests. There is a wide range
of implementation choices for reductions, as well as important considerations for deadlock avoidance.

We choose to perform reductions at the core that issues the reduction-triggering request. Specifically,
each core features a shadow hardware thread dedicated to perform reductions. Figure 4.6 shows the
steps of a reduction in detail: 1 When the directory receives a reduction-triggering request, it sends
invalidation requests to all the cores with U-state permissions. 2 Each of the cores receiving the
invalidation forwards the line to the requester. 3 When each forwarded line arrives at the requester, the
shadow thread runs the reduction handler, which merges it with the current line (if the requester does
not have the line in U yet, it transitions to U on the first forwarded line it receives). 4 After all lines
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have been received and reduced, the requester transitions to M, 4 notifies the directory, and 5 serves
the original request.

Dedicating a helper hardware context to reductions ensures that they are performed quickly, but
adds implementation cost. Alternatively, we could handle reductions through user-level interrupts of the
main thread [170, 225, 270], or use a low-performance helper core [17, 51].

NACKed reductions: When a reduction happens to a line that has been speculatively updated by a
transaction, the core receiving the invalidation may NACK the request, as shown in Figure 4.5b. In
this case, the requesting core still reduces the values it receives, but aborts its transaction afterwards,
retaining its data in the U state. When re-executed, the transaction will retry the reduction, and will
eventually succeed thanks to timestamp-based conflict resolution.

For simplicity, non-speculative requests have no timestamp and cannot be NACKed. Finally, even
though the request they seek to serve may come from within a transaction, reductions are not speculative:
reduction handlers always operate on non-speculative data, and have no atomicity guarantees. Trans-
actional reductions would be more complex, and they are unnecessary in all the use cases we study
(Section 4.9 and Section 4.10).

Deadlock avoidance: Because the memory request that triggers the reduction blocks until the reduction
is done, and reduction handlers may themselves issue memory accesses, there are subtle corner cases
that may lead to deadlock and must be addressed. First, as mentioned in Section 4.2, we enforce
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that reduction handlers cannot trigger reductions themselves (this restriction is easy to satisfy in all
the reduction handlers we study). Second, to avoid a protocol deadlock caused by reductions, we
dedicate an extra virtual network for forwarded U-state data. This adds moderate buffering requirement
to on-chip network routers [200], which must already support 3-6 virtual networks in conventional
protocols [32, 184, 232]. Third, we reserve a way in all cache levels for data with permissions other than
U. Misses from reductions always fill data in that way, which ensures that they will not evict data in U,
which would necessitate a reduction.

With these provisos, memory accesses caused by reductions cannot cause a cyclic dependence with
the access they are blocking, avoiding deadlock. We should note that both the corner cases and the
deadlock-avoidance strategies we adopt are similar to those in architectures with hardware support for
active messages, where these topics are well studied [5, 170, 225, 259] (a forward response triggered by
a reduction is similar to an active message).

Handling unlabeled operations to speculatively-modified labeled data: Finally, COMMTM must
handle a transaction that accesses the same data through labeled and unlabeled operations (e.g., it
first adds a value to a shared counter, and then reads it). Suppose that an unlabeled access to data
in U causes a reduction (i.e., if the core’s U-state line was not the only one in the system). If the
data was speculatively modified by our own transaction, we cannot simply incorporate this data to the
reduction, as the transaction may abort, leaving COMMTM unable to reconstruct the non-speculative
value of the data. For simplicity, in this case we abort the transaction and perform the reduction with
the non-speculative state, re-fetched from the core’s L2. When restarted, labeled loads and stores are
performed as conventional loads and stores, so the transaction does not encounter this case again.
Though we could avoid this abort through more sophisticated schemes (e.g., performing speculative and
non-speculative reductions), we do not observe this behavior in any of our use cases.
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4.3.5 Evictions

Evictions of lines in U from private caches are handled as follows: if no other private caches have U
permissions for the line apart from the one that initiates the eviction, the directory treats this as a normal
dirty writeback. When there are other sharers, the directory forwards the data to one of the sharers,
chosen at random, which reduces it with its local line. If the chosen core is performing a transaction
that touches this data, for simplicity, the transaction is aborted. Finally, evictions of lines in U from the
shared cache cause a reduction at one of the cores sharing the line. Since the last-level cache is inclusive,
this eviction aborts all transactions that have accessed the line.

4.4 Putting it all Together: Overheads

In summary, our COMMTM implementation introduces moderate hardware overheads:
• Labeled load and store instructions in ISA and cores.
• Cache at all levels need to store per-tag label bits. Supporting eight labels requires 3 bits/line,

introducing 0.6% area overhead for caches with 64-byte lines.
• Extended coherence protocol and cache controllers. While we have not verified COMMTM’s protocol

extensions, they are similar to COUP’s, which has reasonable verification complexity (requiring
only 1–5 transient states by merging S and U)

• One extra virtual network for forwarded U data, which adds few KBs of router buffers across the
system [73].

• One shadow hardware thread per core to perform reductions. In principle, this is the most expensive
addition (an extra thread increases core area by about 5% [113]). However, commercial processors
already support multiple hardware threads, and the shadow thread can be used as a normal thread
if the application does not benefit from COMMTM.

4.5 Generalizing COMMTM

COMMTM can be applied to other contexts beyond our particular implementation.

Other protocols: While we have used MSI for simplicity, COMMTM can easily extend other invalidation-
based protocols, such as MESI or MOESI, with the U state. In fact, we use and extend MESI in our
evaluation.

Multiplexing labels: Large applications with many data types may have more semantically-commutative
operations than hardware provides. In this case, we can assign the same label to two or more operations
under two conditions. First, it should not be possible for both commutative operations to access the
same data. There are many cases where this is naturally guaranteed, for instance, on operations on
different types (e.g., insertions into sets and lists). Second, U-state lines need to have enough information
(e.g., the data structure’s type) to allow reduction handlers to perform the right operation. This allows
COMMTM to scale to large applications with a small number of labels in hardware.

Lazy conflict detection: While we focus on eager conflict detection, COMMTM applies to HTMs with
lazy (commit-time) conflict detection, such as TCC [44, 104] or Bulk [43, 205]. This would simply
require acquiring lines in S or U without restrictions (triggering non-speculative reductions if needed,
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but without flagging conflicts), holding speculative updates (both commutative and non-commutative),
and making them public when the transaction commits. Commits then abort all executing transactions
with non-commutative updates. For example, a transaction that triggers a reduction and then commits
would abort all transactions that accessed the line while in U, but transactions that read and update the
line while in U would not abort each other.

Other contexts: COMMTM’s techniques could be used in other contexts beyond TM where speculative
execution is required, e.g., thread-level speculation.

COMMTM vs Semantic Locking 4.6

Just as eager conflict detection is the hardware counterpart to two-phase locking [18, 112], COMMTM as
described so far is the hardware counterpart to semantic locking (Section 4.1). In semantic locking, each
lock has a number of modes, and transactions try to acquire the lock in a given mode. Multiple transactions
can acquire the lock in the same mode, accessing and updating the data it protects concurrently [149]
(with some other synchronization to arbitrate low-level accesses, e.g., logging updates and performing
reductions later). An attempt to acquire the lock in a different mode triggers a conflict. Each label in
COMMTM can be seen as a locking mode, and just like reads and writes implicitly acquire read and write
locks to the cache line, labeled accesses implicitly acquire the lock in the mode specified by the label,
triggering conflicts if needed. Furthermore, COMMTM is architected to reduce communication by holding
commutative updates to the line in private caches.

Avoiding Needless Reductions with Gather Requests 4.7

While semantic locking is general, not all semantically-commutative operations are amenable to semantic
locking, and more sophisticated software conflict detectors allow more operations to commute [149].
Similarly, we now extend COMMTM to allow more concurrency than semantic locking. The key idea is
that many operations are conditionally commutative: they only commute when the reducible data they
operate on meets some conditions. With COMMTM as presented so far, these conditions require normal
reads, resulting in frequent reductions that limit concurrency. To solve this problem, we introduce gather
requests, which allow moving partial updates to the same data across different private caches without
leaving the reducible state.

Motivation: Consider a bounded non-negative counter that supports increment and decrement opera-
tions. increment always succeeds, but decrement returns a failure when the initial value of the counter
is already zero. increment always commutes, but decrement only commutes if the counter has a positive
value. Bounded counters have many use cases, such as reference counting and resizable data structures.

In COMMTM, we can exploit the fact that if the local value is positive, the global value must be
positive. In this case, decrement can safely decrement the local value. However, if the local value is
zero, decrement must perform a reduction to check whether the value has reached zero, as shown in
this implementation:
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initiates a gather to satisfy a local decrement. User-defined splitters at other cores donate part of their
local deltas to core 2. For instance, core 3 splits its initial value, 16, into 12, which it retains, and 4,
which it donates.

bool decrement(int* counter) {
tx_begin();
int value = load[ADD](counter);
if (value == 0) { // trigger a reduction
if (load(counter) == 0) {
tx_end();
return false;

}
}
store[ADD](counter, value - 1);
tx_end();
return true;

}

With frequent decrements, reductions will serialize execution even when the actual value of the
counter is far greater than zero. Gather requests avoid this by allowing programs to observe partial
updates in other caches and redistribute them without leaving U.

Gather requests: Figure 4.7 depicts the steps of a gather request in detail. Gather requests are initiated
by a new instruction, load_gather, which is similar to a labeled load. If the requester’s line is in U,
load_gather issues a gather request to the directory and reduces forwarded data from other sharers
before returning the value.

The directory forwards the gather request to each (U-state) sharer. The core executes a user-defined
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splitter, a function analogous to a reduction handler, that inspects its local value and sends a part of it to
the requester. In our implementation, the directory forwards the number of sharers in gather requests,
which splitters can use to rebalance the data appropriately.

Splitters reuse all the machinery of reduction handlers: they run on the shadow thread, are non-
speculative, and split requests may trigger conflicts if their address was speculatively accessed.

Our bounded counter example can use gather requests as follows. First, we modify the decrement

operation to use load_gather:

bool decrement(int* counter) {
tx_begin();
int value = load[ADD](counter);
if (value == 0) {
value = load_gather[ADD](counter);
if (value == 0)
if (load(counter) == 0) {
tx_end();
return false;

}
}
store[ADD](counter, value - 1);
tx_end();
return true;

}

Second, we implement a user-defined splitter that gives a fraction 1/numSharers of its counter
values, which, over time, will maintain a balanced distribution of values:

void add_split(int* counterLine, int* fwdLine, int numSharers) {
for (int i = 0; i < intsPerCacheLine; i++) {
int value = load[ADD](counterLine[i]);
int donation = ceil(v / numSharers);
fwdLine[i] = donation;
store[ADD](counterLine[i], v - donation);

}
}

Figure 4.7 shows how a gather request rebalances the data and allows a decrement operation to
proceed while maintaining lines in U. Note how, after the gather request, the requester’s local value (9)
allows it to perform successive decrements locally. In general, we observe that, although gather requests
incur global traffic and may cause conflicts, they are rare, so their cost is amortized across multiple
operations.

There are many options to enhance the expressiveness of gather operations. For example, we could
enhance load_gather to query a subset of sharers, or to provide user-defined arguments to splitters.
However, we have not found a need for these mechanisms for the operations we evaluate. We leave an
in-depth exploration of these and other mechanisms to enhance COMMTM’s precision to future work.

Experimental Methodology 4.8

As in Chapter 3, we perform microarchitectural, execution-driven simulation using zsim. We evaluate
a 16-tile CMP with 128 simple cores and a three-level memory hierarchy, shown in Figure 4.1, with
parameters given in Table 4.1. Each core has private L1s and a private L2, and all cores share a banked
L3 cache with an in-cache directory.
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Cores 128 cores, x86-64 ISA, 2.4 GHz, IPC-1 except on L1 misses

L1 caches 32 KB, private per-core, 8-way set-associative, split D/I

L2 caches 128 KB, private per-core, 8-way set-associative, inclusive, 6-cycle latency

L3 cache
64 MB, fully shared, 16 4 MB banks, 16-way set-associative, inclusive, 15-cycle
bank latency, in-cache directory

Coherence MESI/COMMTM, 64 B lines, no silent drops

NoC 4×4 mesh, 2-cycle routers, 1-cycle 256-bit links

Main mem 4 controllers, 136-cycle latency

Table 4.1: Configuration of the simulated system.
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Figure 4.8: Speedup of counter microbench-
marks.

1 32 64 96 128
Threads

0

1

2

3

4

5

6

7

S
pe

ed
up

CommTM w/ gather
CommTM w/o gather
Baseline

Figure 4.9: Speedup of reference-counting mi-
crobenchmark.

We compare the baseline HTM and COMMTM. Both HTMs use Intel TSX [277] as the programming
interface, but do not use the software fallback path, which the conflict resolution protocol makes
unnecessary. We add encodings for labeled_load, labeled_store, and load_gather, with labels
embedded in the instructions.

We evaluate COMMTM under microbenchmarks (introduced in Section 4.9) and full-blown TM
applications (discussed in Section 4.10). We run each benchmark to completion, and report results
for its parallel region. To achieve statistically significant results, we introduce small amounts of non-
determinism [12], and perform enough runs to achieve 95% confidence intervals ≤ 1% on all results.

4.9 COMMTM on Microbenchmarks

We use microbenchmarks to explore COMMTM’s capabilities and its impact on update-heavy operations.

Counter increments: In this microbenchmark, threads perform 10 million increments to a single counter,
implemented as presented in Section 4.3. Figure 4.8 shows that COMMTM achieves linear scalability,
while the baseline HTM serializes all transactions. While counters are our simplest case, prior work
reports that counter updates are a major cause of aborts in real applications [63, 221].
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Figure 4.10: A linked-list descriptor contains its head and tail pointers, and can be shared in U states by
multiple caches. Each U-state copy represents a partial linked list. A reduction merges all partial lists
and generate the resulting descriptor, and a split divides the partial list into two: one only containing
the previous head element and the other containing the rest.

Reference counting: We implement a reference counter using the non-negative bounded counter
described in Section 4.7, with and without gather requests. Threads acquire and release 1 million
references in total, incrementing and decrementing the counter. Each thread starts with three references
to the object and holds up to five references. Threads behave probabilistically: each thread increments
the counter with probability 1.0, 0.7, 0.5, 0.5, 0.3, and 0.0 if it holds 0, 1, 2, 3, 4, and 5 local references,
respectively, and decrements it otherwise. Figure 4.9 shows that the baseline HTM achieves no speedup,
and COMMTM without gather requests provides some speedup with few threads, but frequent reductions
caused by threads having zero in their U-state line result in serialized transactions. By contrast, COMMTM
with gather requests scales to 3.7× at 128 threads. The sub-linear scalability is due to more frequent
gather requests and splits at high thread counts.

Linked lists: In this microbenchmark, threads enqueue and dequeue elements from a singly-linked list.
When order is unimportant (e.g., if the list is used as a set, a hash table bucket, or a work-sharing queue),
these operations are semantically (but not strictly) commutative. Figure 4.10a shows how COMMTM
makes these operations concurrent. Only the descriptor of a linked list, which contains its head and tail
pointers, is accessed with labeled loads and stores (accesses to elements use normal loads and stores).
This way, each reducible, local descriptor has its own tail pointer, and threads can enqueue/dequeue
elements locally. Figure 4.10a shows how the user-defined reduction handler merges two linked-list
descriptors. Dequeues use load_gather if their local descriptor is empty, and each splitter donates the
head element of its local list, as shown in Figure 4.10b.

Figure 4.11 compares the baseline HTM and COMMTM. In the baseline HTM, to avoid false sharing,
head and tail pointers are allocated on different cache lines. Threads perform 10 million operations: all
enqueues in Figure 4.11a, or 50% enqueues and 50% dequeues (randomly interleaved) in Figure 4.11b.
The baseline HTM scales poorly in both cases, while COMMTM scales near-linearly on enqueues, and by
55× on mixed enqueues/dequeues (limited again by frequent gathers).

Ordered puts: Ordered puts or priority updates are frequent in databases [190] and are key in challenging
parallel algorithms [233]. This semantically-commutative operation replaces an existing key-value pair
with a new input pair if the new pair has a lower key. In COMMTM, we simply access the key-value
pair with a labeled accesses, and define a reduction handler that merges key-value pairs by keeping the
lowest one. Threads perform 10 million ordered puts using randomly-generated 64-bit keys and values.
These fit within a cache line, but arbitrarily large key-value pairs are possible by using indirection (i.e.,
keeping pointers to the key and value in the reducible line). Figure 4.13a shows that COMMTM scales
near-linearly, while the baseline is 3.8× slower (in this case, the baseline scales to 31× because only
smaller keys cause conflicting writes).
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Figure 4.11: Speedup of linked list microbenchmark under baseline HTM and COMMTM.
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Figure 4.12: A top-K set descriptor with K = 100.

Top-K: A top-K set, common in databases, contains the K highest elements of a set [190]. We implement
insertions to a top-K set similarly to the linked-list: a descriptor contains a pointer to the top-K data
(stored as a heap), and only the descriptor uses reducible states. Threads build up local top-K heaps, and
reads trigger a reduction that merges all local heaps, as shown in Figure 4.12.

Figure 4.13b shows the performance of inserting 10 million elements to a top-1000 set. While
the baseline HTM suffers significant serialization introduced by unnecessary read-write dependencies,
COMMTM scales top-K set insertions linearly, yielding 124× speedup at 128 threads.

4.10 COMMTM on Full Applications

We evaluate COMMTM on several TM benchmarks: boruvka [149], and genome, kmeans, ssca2, and
vacation from STAMP [178]. Table 4.2 details their input sets and main characteristics. boruvka

computes the minimum spanning tree of a graph. It utilizes several commutative operations: OPUT to
record the minimum-weight edges connecting separate graph components, MIN to union two components,
MAX to mark edges added to the minimum spanning tree, and ADD to calculate the weight of the resulting
tree. kmeans performs commutative additions to shared cluster centroids. ssca2 spends little time
in commutative updates to shared, global graph metadata. We compile genome and vacation with
resizable hash tables (similar to Blundell el al.[33]), which use conditionally-commutative updates to a
bounded counter to determine when to resize.

Figure 4.14 compares the performance and scalability of COMMTM and the baseline HTM. Each graph
shows the speedups of the baseline HTM and COMMTM for a single application from 1–128 threads
(x-axis). As before, all speedups are relative to the performance of a sequential execution in the baseline
HTM. Figure 4.14 shows that COMMTM always outperforms baseline HTM, often significantly. At 128
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Figure 4.13: Speedups of (a) an ordered put benchmark, and (b) a top-K insertion benchmark.

Input set Uses gather? Commutative operations

boruvka usroads [75] 7

Updating min-weight edges (64b-key OPUT)
Unioning components (64b MIN)

Marking edges (64b MAX)
Calculating weight of MST (64b ADD)

kmeans
-m15 -n15 -t0.05 -i

random-n16384-d24-c16 [178] 7
Updating cluster centers
(32b ADD, 32b FP ADD)

ssca2 -s16 -i1.0 -u1.0 -l9 -p9 [178] 7
Modifying global information for a graph

(32b ADD)

genome -g4096 -s64 -n640000 [178] 3
Remaining-space counter of a resizable hash table

(bounded 64b ADD)

vacation -n4 -q60 -u90 -r32768 -t8192 [178] 3
Remaining-space counter of a resizable hash table

(bounded 64b ADD)

Table 4.2: Benchmark characteristics.

threads, COMMTM outperforms the baseline by 35% on boruvka, 3.4× on kmeans, 0.2% on ssca2, 3.0×
on genome, and 45% on vacation. Moreover, the gap between baseline HTM and COMMTM often widens
as the number of threads grows, demonstrating the better scalability of COMMTM.

COMMTM is especially beneficial on update-heavy applications. For instance, kmeans introduces a
large number of commutative updates within transactions. With conventional HTMs, these updates
must be serialized. Thus, as the number of threads increases, serialized updates bottleneck the whole
application. COMMTM, however, makes these updates local and concurrent, achieving significant speedup.
As the update contention decreases, the benefit of COMMTM decreases. For applications such as ssca2,
where there is little concurrent modification to shared data, COMMTM yields a negligible improvement
over the baseline HTM.

Figure 4.15 gives more insight into these results by showing the breakdown of total cycles spent by
all threads for each application. Each cycle is either non-transactional or transactional, and transactional
cycles are divided into useful (committed) and wasted (aborted) cycles. Each graph shows the breakdown
of cycles for both COMMTM and the baseline HTM on 8, 32, and 128 threads for a single application.
Cycles are normalized to the baseline’s at 8 threads. Lower bars are better.
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Figure 4.14: Per-application speedups of COMMTM and baseline HTM on 1–128 threads (higher is
better).
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Figure 4.15: Breakdown of total cycles for COMMTM and baseline HTM for 8, 32, and 128 threads (lower
is better).
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Figure 4.16: Breakdown of wasted cycles for COMMTM and baseline HTM for 8, 32, and 128 threads
(lower is better).

Figure 4.15 shows that COMMTM substantially reduces wasted transactional cycles. At 128 threads,
COMMTM’s wasted cycles is lower than the baseline’s by 25× on kmeans, 6.6% on ssca2. 8.3× on genome,
and 2.6× on vacation. In boruvka, COMMTM eliminates all aborts and hence eliminates all wasted
transactional cycles.

The breakdown of total cycles explains why COMMTM has little impact on performance of ssca2:
contention is rare and therefore only a small fraction of cycles are spent on aborted transactions.

Figure 4.16 further details the cause of wasted cycles. In the baseline HTM, wasted cycles are
almost always caused by read-after-write dependency violations. For applications with ample semantic
commutativity, such as boruvka and kmeans, most of these dependencies are superfluous and COMMTM
avoids them entirely.

Beyond improving concurrency, COMMTM also reduces traffic, as applications with significant data
reuse benefit substantially from buffering updates in private caches. Figure 4.17 shows the breakdown
of GET requests between L2s and L3 for boruvka and kmeans, the two applications with a significant
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Figure 4.17: Breakdown of total number of GET requests between L2s and L3 for COMMTM and conven-
tional HTM on 8, 32 and 128 threads (lower is better).

reduction in traffic. At 128 threads, COMMTM reduces L3 GET requests by 13% on boruvka and 45%
on kmeans. This also explains why non-transactional cycles are lower in Figure 4.15 (15% lower on
boruvka and 48% on kmeans).

Finally, though COMMTM improves performance significantly, labeled memory operations are rela-
tively rare. At 128 threads, the fraction of all labeled instructions, including labeled loads, stores and
gather requests, over all executed instructions are 0.13% on boruvka, 1.2% on kmeans, 0.000059%
on ssca2, 0.042% on genome, and 0.057% on vacation. Though rare, their impact is substantial: on
conventional HTMs, these operations cause conflicts that abort whole transactions, which include many
other (conventional) instructions, wasting a large amount of cycles.

Additional Related Work 4.11

Prior work in hardware speculation, especially HTM, has proposed a wide set of techniques to reduce
the number of conflicts and their impact. These techniques are orthogonal to COMMTM, as they do not
leverage commutativity, and detect conflicts through reads and writes.

Several HTMs, such as DATM [213], SONTM [18], Wait-n-GoTM [119], and OmniOrder [206], reduce
aborts by letting transactions continue execution after they conflict and trying to commit them in the
order imposed by the data dependence that caused the conflict. These designs can substantially improve
performance when dependences are acyclic, but semantically-commutative updates often consist of
read-modify-write chains that cause cyclic dependencies.

SI-TM [164] relaxes serializability and implements snapshot isolation, which only flags write-write
dependences as conflicts. SI-TM, like other schemes that weaken serializability [4, 235], can allow more
concurrency on reads and writes to the same data but requires programs to be rewritten to work under a
less intuitive concurrency model. SI-TM also relies on an expensive multiversioned main memory. Finally,
SI-TM also cannot handle conflicting read-modify-write operations, which cause write-write conflicts
(e.g., unlike COMMTM, SI-TM bottlenecks on kmeans [164]).

Other techniques focus on reducing the cost of mispeculation. ReSlice [226] reexecutes only the
conflicting load and its dependent instructions, and RetCon [33] performs symbolic reexecution of
simple, conflicting auxiliary updates (e.g., updates to shared counters that are not used elsewhere in
the transaction). Unlike these schemes, COMMTM does not trigger conflicts to begin with, avoiding
superfluous communication and serialization. COMMTM is also much cheaper than ReSlice and allows a
broader range of operations than RetCon.
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Finally, open-nested transactions [180, 181] can provide some of the benefits of commutativity.
Unlike conventional (closed) nested transactions, which remain speculative until their parent commits,
open-nested transactions commit when they end, and specify an abort handler to undo their effects
if their parent later aborts. While open-nested transactions make their parents less vulnerable, the
nested transactions still suffer from conflicts and serialization. By contrast, COMMTM can support truly
concurrent and communication-free updates to the same data. Moreover, open nesting is only practical
when operations are easy to undo, which commutative operations may lack (e.g., top-K in Section 4.9).

4.12 Summary

We have presented COMMTM, an HTM that exploits semantic commutativity to allow multiple transactions
updating shared data concurrently and without conflicts. COMMTM extends the coherence protocol
and the conflict detection scheme and preserves transactional guarantees. Moreover, COMMTM’s basic
scheme allows as much concurrency as semantic locking. Gather requests allow COMMTM to reduce
conflicts even further.

COMMTM bridges the precision-overhead dichotomy of hardware vs software conflict detection: As
a result, COMMTM scales many operations that serialize in conventional HTMs, such as set insertions,
reference counting, and top-K insertions, while retaining the low overhead of HTMs. At 128 cores,
COMMTM outperforms an eager-lazy HTM by up to 3.4× and reduces or even eliminates aborts.
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In this chapter, to address the inefficiency of small fragments, we propose HTA. Whereas COUP and
COMMTM provide general architectural support for commutative updates, HTA is tailored to a specific
data structure: hash tables.

Hash tables are widely used, but they are inefficient in current systems: they use core resources
poorly and suffer from limited spatial locality in caches. HTA is a technique that accelerates hash
table operations through a combination of expressive ISA extensions and simple hardware changes
(Section 5.2). HTA adopts a hash table format that leverages the associative nature of caches. HTA
introduces new instructions to perform hash table lookups and updates. These instructions are designed
to leverage existing core structures and prediction mechanisms. For example, hash table lookups have
branch semantics and thus leverage the core’s branch predictors to avoid control-flow stalls. With a
simple HTA function unit, these instructions consume far fewer pipeline resources than conventional
hash table operations, allowing more instruction-level and memory-level parallelism to be exploited.
HTA accelerates most hash table operations, leaving rare cases to a software path that allows overflowing
to conventional software hash tables.

We present two implementations of HTA, FLAT-HTA (Section 5.3) and HIERARCHICAL-HTA (Sec-
tion 5.4). Both implementations introduce simple changes to cores to reduce runtime overheads.
FLAT-HTA adopts a simple, hierarchy-oblivious layout that works well for hash tables with uniform
reuse. HIERARCHICAL-HTA adopts a multi-level, hierarchy-aware layout that lets fast caches hold more
frequently accessed key-value pairs, improving spatial locality when hash tables have mixed reuse.
HIERARCHICAL-HTA requires changing cache controllers and provides modest benefits over FLAT-HTA.
These implementations do not reserve space in caches. Instead, they dynamically share cache capacity
with non-HTA data.

We evaluate HTA on hash table-intensive benchmarks and use it to accelerate memoization, a technique
that caches the results of repetitive computations, allowing the program to skip them (Section 5.5). FLAT-
HTA accelerates hash table-intensive applications by up to 2×, while HIERARCHICAL-HTA outperforms FLAT-
HTA by up to 35%. Moreover, HTA outperforms software memoization by 2× and achieves comparable
performance to conventional hardware memoization but without the need for specialized on-chip storage.

Motivation 5.1

Hash Tables 5.1.1

Hash tables are unordered associative containers. They hold key-value pairs and support three operations:
lookups to retrieve the data associated with a particular key, and insertions and deletions to add or remove
key-value pairs. Hash tables perform these operations with amortized constant-time complexity. They are

63
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Figure 5.1: Execution time and cycle breakdown of three hash table microbenchmarks using three hash
table implementations: libstdc++’s C++11 Unordered map, Google’s Dense hash map, and Flat-HTA.

heavily used in many domains, like databases [144], key-value stores [158, 161, 162], networking [240],
genomics [175], and memoization [177, 245].

A hash table is typically implemented using an array to hold key-value pairs, which is indexed by
a hash of the key. A collision happens when multiple key-value pairs map to the same array index.
Collisions become more common as array utilization grows. To support high utilization, hash tables
include a collision resolution strategy, such as probing additional locations, and resize the table when its
utilization reaches a certain threshold.

Implementations vary in several aspects, like hash function selection, collision resolution, and resizing
mechanisms. Simple hash functions such as XOR-folding and bit selection [120] are fast but are prone to
hotspots, while more complex hash functions such as universal hashing [40] distribute key-value pairs
more uniformly but incur more overheads. Basic collision resolution strategies include chaining and
open addressing [172]. Upon a collision, chaining appends the new key-value pair to the existing ones,
forming a linked list, while open addressing probes other positions in the hash table. Resizing can be
performed all-at-once or incrementally.

There is a wide range of hash table implementations with different algorithmic tradeoffs, e.g., trading
space efficiency for lookup efficiency [195]. For instance, Cuckoo hashing [195] improves space efficiency
and worst-case lookup performance at the cost of increasing average-case lookup complexity. Its variants
further focus on either reducing the memory accesses per lookup [36] or improving locality [88].

5.1.2 Hash table performance analysis

Despite the wide range of hash table implementations, we observe that state-of-the-art designs suffer
from two issues: poor core utilization and poor spatial locality:

1. Poor core utilization adds overheads that limit the performance of many hash table-intensive
applications [144]. To analyze the causes of high overheads, we evaluate three common hash table
operations under different hash table implementations using detailed simulation (see Section 5.6 for
methodology details). We use two state-of-the-art software baselines, libstdc++’s C++11 unordered_-

map and Google’s dense_hash_map, as well as FLAT-HTA.
Figure 5.1 compares the execution time (lower is better) of each implementation under three cases:

(a) lookups, (b) updates, and (c) insertions. In (a) and (b), each hash table is initialized with 1 million
randomly generated key-value pairs, and has a footprint of about 64 MB. Then, the program performs
back-to-back lookups or updates to existing, randomly chosen keys. In (c), each hash table starts empty
and 1 million distinct, randomly chosen key-value pairs are inserted into it. Over time, the hash table
grows to accommodate the inserted pairs.
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Figure 5.2: Execution time and cycle breakdown of the mixed-reuse microbenchmark for the previous
hash tables and Hierarchical-HTA.

Figure 5.1 breaks down execution time into the cycles cores spend on different activities, following
the CPI stack methodology [87]. Specifically, each bar shows the cycles cores spend (i) issuing committed
instructions; (ii) executing wrong-path instructions due to a branch misprediction; (iii) stalled (i.e.,
unable to issue) due to the frontend (fetch or decode); and (iv) stalled due to different backend events:
functional units, L1 cache, L2 cache, LLC, or main memory.

Figure 5.1 reveals two key sources of overhead in software hash tables: hard-to-predict branches
and underutilized backend parallelism.

First, Figure 5.1 shows that hard-to-predict branches in hash table probing add many cycles: up
to 74% of cycles are spent on wrong-path execution. This is because, in both unordered_map and
dense_hash_map, such branches direct the control flow to either the end of an operation or another hash
table probing. These branches depend on data loaded from memory, so they take a long time to resolve
and are challenging for branch predictors.

Second, hash table operations make poor use of backend resources to exploit instruction-level and
memory-level parallelism. Each hash table operation takes a sequence of instructions including hash
calculation, memory accesses, comparisons, and branches. These instructions occupy tens to hundreds of
micro-op (µop) slots, comparable to the reorder buffer size. As shown in Figure 5.1, this limits memory-
level parallelism significantly: most backend stalls are spent waiting for main memory responses, and
the reorder buffer does not have enough resources to overlap multiple misses.

FLAT-HTA effectively reduces these overheads and improves performance by up to 2.5×. First, its
design avoids hard-to-predict branches, reducing or even eliminating wrong-path execution. Second,
each hash table operation takes far fewer µop slots, improving memory-level parallelism and reducing
backend stalls by up to 5.6×.

2. Poor spatial locality is the other issue in software hash tables [36]. Hash tables spread key-value
pairs uniformly across the table’s allocated memory. This hinders spatial locality, as the neighboring
pairs of a frequently-accessed pair are usually not frequently accessed. This wastes a significant portion
of cache capacity.

To illustrate this, we design a microbenchmark similar to the previous ones. First, we size the hash
tables to occupy 256 MB and pre-insert 1 million key-value pairs. By sizing the hash tables to 256 MB
instead of their natural 64 MB, we keep hash table load artificially low to reduce branch mispredictions
in the software versions (at this low load, the first probe almost always succeeds). This is, however,
space-inefficient. Then, the benchmark performs a series of dependent lookups to a subset of 8,000 keys.

Figure 5.2 shows the execution time and cycle breakdown for the previous hash table implementations
plus HIERARCHICAL-HTA. Since there are no branch mispredictions and lookups depend on each other, the
benchmark has limited parallelism. As a result, FLAT-HTA outperforms the best software implementation
by only 1%, as it spends 80% of cycles waiting for LLC responses.
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By contrast, by adopting a multi-level hierarchy-aware hash table layout, HIERARCHICAL-HTA densely
packs frequently accessed key-value pairs in lower-level caches, and therefore reduces misses. As shown in
Figure 5.2, HIERARCHICAL-HTA serves most of the lookups from the L2 instead of the LLC, outperforming
FLAT-HTA by 84%.

5.1.3 Prior work in accelerating hash tables

Prior work has introduced hardware support to reduce hash table overheads. In databases, prior
work [106, 144] leverages the inter-key parallelism of database operators such as join to exploit data-level
parallelism. These techniques optimize the throughput but not the latency of hash table accesses.

Near-memory [166] and near-storage acceleration [249, 273] bypass the cache hierarchy entirely,
and are a sensible choice when operating on large hash tables with no locality. They do avoid the spatial
locality problems of caching hash tables. However, they incur high latency and work poorly when hash
table accesses have locality.

Other hardware techniques introduce specialized hardware units for hashing and comparisons instead
of using the processor pipeline, and allocate dedicated on-chip storage for hash tables. They are typically
specialized for applications such as PHP processing [96] and distributed key-value stores [46, 162]. Like
HTA, these techniques do reduce the latency of hash table operations. Unlike HTA, these techniques
introduce large storage structures that rival or exceed the area of the L1 cache. For example, Da Costa et
al.’s proposal to accelerate memoization [71] consumes 98 KB. However, not all applications can benefit
from this storage. In these cases, this dedicated storage not only wastes area that could otherwise be
devoted to caches, but also hurts energy consumption [58].

By contrast, HTA is general and optimizes both the throughput and the latency of hash table operations.
HTA avoids specialized on-chip storage by storing hash tables in caches, so they share scarce on-chip
memory capacity with other program data.

5.1.4 Memoization

Memoization is a technique to improve performance and energy efficiency. Memoization caches the
results of repetitive computations, allowing the program to skip them. Memoized computations must be
pure and depend on few, repetitive inputs. Memoization is the cornerstone of many important algorithms,
such as dynamic programming, and is widely used in many languages [173, 174], especially functional
ones. It was first introduced by Michie in 1968 [177]. Since then, it has been implemented using software
and hardware, but both have significant drawbacks, which we address with HTA.

Software memoization relies on hash tables to memoize input-output pairs. The high runtime
overheads of hash tables hamper software memoization significantly. As we later show, many memoizable
functions are merely 20 to 150 instructions long, comparable to or even cheaper than hash table
lookups. Memoizing them is harmful. For example, Citron and Feitelson [60] show that software
memoization incurs significant overheads on short functions: when memoizing mathematical functions
indiscriminately, software memoization incurs a 7% performance loss, while a hardware approach yields
a 10% improvement. To avoid poor performance, software schemes must apply memoization selectively,
relying on a careful cost-benefit analysis of memoizable regions, done by either compilers [82, 245],
profiling tools [78], or programmers [246].

Prior work has proposed hardware support to accelerate memoization [60, 245, 253], and thus can
unlock more memoization potential. Much prior work on hardware memoization focuses on automating
the detection of memoizable regions at various granularities [71, 117, 237, 253], while others rely on ISA
and program changes to select memoizable regions [60, 64, 245]. However, all prior hardware techniques
require dedicated storage for memoization tables. Such tables require similar or even larger sizes than
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Figure 5.3: Overview of HTA implementations.

L1 caches. Therefore, they incur significant area and energy overheads [58], especially for programs that
cannot exploit memoization.

Other prior work has proposed architectural [254] or runtime [220] support to track implicit in-
puts/outputs of memoized functions, enabling memoizing impure functions. This is orthogonal to the
acceleration of hash tables, which is the focus of our work. HTA could be easily combined with them.

HTA Hardware/Software Interface 5.2

HTA is a Hash Table Acceleration technique. HTA handles most hash table accesses in hardware, and
leaves rare cases such as overflows and table resizing to a slow software path. HTA introduces two key
software-visible features to accelerate hash table operations in hardware.

First, HTA adopts a format for hash tables that exploits the characteristics of caches to make lookups
and updates fast. HTA stores hash tables in cacheable memory. This avoids the large costs of specialized
hardware caches used by prior hardware techniques. HTA does not statically partition cache capacity
between hash table data and normal program data. Instead, both types of data are managed by the
unified cache replacement policy, and share cache capacity dynamically based on access patterns.

Second, HTA introduces hash table instructions for lookups and updates that are amenable to a
fast and simple implementation. Whereas software hash table lookups use multiple instructions and
hard-to-predict branches, HTA hash table lookups are done through a single instruction with branch
semantics. The outcome of a lookup (resolved or not) can be predicted accurately by the core’s existing
branch predictors, avoiding most control-flow stalls.

Figure 5.3 gives an overview of how both HTA implementations, FLAT-HTA and HIERARCHICAL-HTA,
use these features. FLAT-HTA (Figure 5.3a) stores key-value pairs across an HTA table and a software
hash table. The HTA table is stored in cacheable memory, and may be spread across multiple caches or
main memory. The HTA table is sized to hold most key-value pairs, and the software hash table is used
as a victim cache, to hold pairs that overflow the HTA table.

HIERARCHICAL-HTA (Figure 5.3b) extends FLAT-HTA by letting cache levels retain individual key-value
pairs rather than cache lines. Specifically, they cache key-value pairs of the HTA table in small, cache-
level-specific regions called HTA stashes. A pair that overflows an HTA stash is handled by the next level.
This improves spatial locality at intermediate caches levels, as their lines fill up with frequently-accessed
pairs. However, HIERARCHICAL-HTA does not improve spatial locality at the last-level cache (doing so
would complicate the interface with main memory), so its benefits over FLAT-HTA are modest. Figure 5.3b
shows an example of HIERARCHICAL-HTA with one HTA stash pinned to the L1.

We now describe the ISA changes common to FLAT-HTA and HIERARCHICAL-HTA, then describe their
implementations.
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Figure 5.4: HTA table format.

5.2.1 HTA hash table format

The HTA table is stored in a contiguous, fixed-size region of memory, as shown in Figure 5.4.
HTA uses a storage format designed to leverage the characteristics of caches. Each cache line stores

a fixed number of key-value pairs. For example, Figure 5.4 shows the format of a 64-byte cache line for
a hash table with 128-bit keys and 64-bit values. A given entry can map to a single cache line, but can
be stored in any position within the line. A lookup thus requires hashing the input data to produce a
cache line index, fetching the line at that index (as shown in Figure 5.4), and comparing all keys in the
line. This design requires accessing a single cache line, but retains associativity within a line to reduce
collisions. To avoid the need for valid bits, HTA initializes each line’s entries with invalid key values,
which are simply keys that hash to a different line.

HTA leaves collision resolution to software. Specifically, there may be overflowed key-value pairs
that cannot be stored in a line due to capacity constraints. These overflowed pairs are handled by the
software path, which stores them in the software hash table.

5.2.2 HTA ISA extensions

HTA stores a small number of HTA table descriptors in architectural registers. Each descriptor holds the
table’s starting address and its size. Our implementations support four HTA table descriptors. If the
program uses more than four hash tables, it should manage their descriptors accordingly, loading them
into registers before operating on the hash table.

HTA adds four instructions to perform hash table operations: hta_lookup, hta_update, hta_swap,
and hta_delete. These instructions have branch semantics. Figure 5.5 and Figure 5.6 show sample
code that uses them to implement single-threaded lookups and insertions. (Section 5.3.4 describes how
these instructions are used to implement thread-safe hash tables for multithreaded applications.)

1. hta_lookup performs a lookup in the HTA hash table whose descriptor is specified by table_id.
hta_lookup supports keys with up to four integer or floating-point words and a single integer or floating-
point value, all stored in registers. As shown in Figure 5.5, hta_lookup stores the number of integer and
floating-point key registers, and the core decodes them to a fixed set of registers. We choose the same
register mappings as the ISA’s calling convention. For instance, in x86-64, num_int_keys = 2 means
that the 64-bit values in registers rdi and rsi are used as a 128-bit key. Similarly, the is_int_value
indicates whether the value is integer or floating-point. In x86-64, either rax or xmm0 is used accordingly.
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lookup: hta_lookup 0,  1,  0,  3, done

call swLookup

done: …

# of fp keys table_id

# of int keys is_int_value target

Figure 5.5: Example showing how hta_lookup is used to implement a singled-threaded hash table
lookup.

insert: hta_swap 0,  1,  0,  3, done

call swHandleInsert

done: …

Figure 5.6: Example showing how hta_swap is used to implement a single-threaded hash table insertion.

If the lookup is resolved, i.e., the key is found or the line is not full, hta_lookup acts as a taken
branch. It jumps to the target PC encoded in the instruction (in PC-relative format), sets the overflow
flag to indicate whether the lookup succeeds, and also updates the result register with the corresponding
value. If the lookup is not resolved, i.e., the key is not found and the line is full, hta_lookup acts as a
non-taken branch, and continues to execute the next instruction.

2. hta_update is used to update the HTA hash table. Like hta_lookup, hta_update encodes the key
and value registers, and the table id. If the key is found or the line is not full, hta_update updates the
pair in the cache line and jumps to the target PC. Otherwise, if the key is not found and the line is
already full, hta_update does not modify anything and continues to execute the next instruction.

3. hta_swap attempts to insert a pair more aggressively than hta_update. Similar to hta_update,
hta_swap encodes the key and value registers, and the table id. Upon a hta_swap, if the key is found or
the line is not full, hta_swap performs the same operations as hta_update: it updates the pair in the
cache line and jumps to the target PC. However, if the key is not found and the line is full, hta_swap
selects a victim pair randomly to make space for the update. The victim’s key and value are placed in
registers and hta_swap acts as a non-taken branch, letting the software path finish the update, e.g., by
inserting the victim pair to the software hash table. Such distinction between hta_update and hta_swap

is useful for thread-safe hash tables (Section 5.3.4).

4. hta_delete removes a key-value pair with a matching key. Its format is identical to hta_lookup.
If the key is found, it is replaced with a special deleted key, and the instruction acts as a taken branch.
Otherwise, hta_delete acts as a non-taken branch to take the software path.

Deleted key values must be different from invalid key values, as hta_lookup should not interpret a
deleted key as empty space (so that lookups do not miss pairs that overflowed to the software table),
but hta_update and hta_swap should interpret a deleted key as empty space. In all, HTA uses four
pre-specified key values: it chooses two small key values that do not map to line 0 as line 0’s invalid and
deleted key values, and two small key values that map to line 0 as the invalid and deleted key values for
all other lines.
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Figure 5.7: HTA core pipeline changes.

Single-threaded lookups: Figure 5.5 shows the implementation of a hash table lookup with HTA
instructions. The lookup begins with the hta_lookup instruction. A resolved hta_lookup jumps to done

and continues program execution. Otherwise, the program goes through the software path to perform a
lookup in the software hash table. In this way, the HTA hash table behaves as an exclusive cache of the
conventional software hash table, allowing most of the accesses to be handled quickly. The software
path is rarely executed, and therefore introduces little performance impact.

Single-threaded insertions: Similarly, Figure 5.6 illustrates how to implement an insertion with HTA (if
a pair with the same key already exists, an insertion updates its value). Either hta_swap or hta_update
can be used. A resolved hta_swap instruction jumps to done, skipping the software path. An unresolved
hta_swap runs through the software path, which (i) inserts the victim pair to the software hash table,
and (ii) checks whether the software hash table has a pair with the same key as the newly inserted pair,
and removes it if so, as this old, overflowed pair is now stale.

5.2.3 ISA design alternatives

We have designed the HTA ISA to integrate well in x86 processors: HTA instructions are encoded in
a compact format and are decoded into multiple µops upon execution (Section 5.3.1). An alternative
RISC-style implementation is also possible, e.g., by exposing the different µops as instructions. However,
this design choice is not important: as shown in Figure 5.1 and Figure 5.2, the time spent on frontend
stalls and issuing µops is negligible, so using CISC- vs. RISC-style instructions would not significantly
change the results. The key benefit of HTA is to reduce wrong-path execution and backend stalls.

5.3 FLAT-HTA Implementation

As shown in Figure 5.3a, FLAT-HTA uses a single-level HTA table stored in cacheable memory. FLAT-HTA
substantially reduces overheads over software hash tables, but still suffers from poor spatial locality.

5.3.1 Core pipeline changes

FLAT-HTA requires simple changes to cores, shown in Figure 5.7. We add a simple functional unit that
executes lookup, update, swap, and delete instructions. This unit is fed the values of key registers,
possibly over multiple cycles, as well as the table id.

For an hta_lookup instruction, the unit first hashes the input values and table size to find the line
index. We restrict the system to use power-of-2 sizes for each HTA table. We use the x86 CRC32
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Circuit Address calculation Line comparison Total
Area(µm2) 6,173 9,176 15,349

Area(%core) 0.022 0.033 0.055

Table 5.1: Area of the HTA functional unit on a 45 nm process.

instruction to compute the hash value; other ISAs could implement CRC or a different cheap hash [120].
We find that CRC produces good distributions in practice.

After hashing, the HTA functional unit loads the appropriate cache line, compares all the keys,
and outputs whether the the software path can be skipped, whether there’s a match, as well as the
corresponding result if so. hta_update and hta_swap are similar, but the functional unit also takes the
value to update, and stores the pair in the appropriate line. hta_delete is also similar, but does not
return a value.

HTA leverages existing core mechanisms to improve performance. We integrate these instructions
into an out-of-order, superscalar x86-64 core similar to Intel’s Haswell (see Section 5.6). The frontend
treats HTA instructions as branches. This way, HTA instructions leverage the existing branch target buffer
and branch predictor to predict whether the code following each instruction can be skipped. Thus, the
core overlaps the execution of lookups and updates with either the execution of the software path (if a
resolution is not predicted) or its continuation (if a resolution is predicted). We find that this effectively
hides the latency of HTA instructions.

In our implementation, the backend executes hta_lookup using multiple RISC µops. The decoder
produces one or more µops that feed each input register to the HTA functional unit, an HTA µop that
instructs the functional unit to start, a branch-resolution µop, and, if the lookup is predicted to be
resolved, a µop to move the lookup result into its destination register. The other instructions use a similar
implementation.

Hardware costs 5.3.2

We implement the HTA functional unit in RTL and synthesize it using yosys [269] and the 45 nm
FreePDK45 standard cell library [143]. The functional unit meets a target 3 GHz frequency. The address
calculation circuit mainly consists of a 64-bit adder, 64 AND gates, and registers to store the four HTA
table descriptors. The line comparison circuit includes comparators to search for a given key and an
empty slot in parallel. Table 5.1 reports the area consumed by these components. Overall, the functional
unit takes just 0.055% of the area of a Nehalem core [86], which was manufactured in a 45 nm process
as well. Thus, HTA’s area overheads are negligible.

Software path 5.3.3

The software path performs lookups and updates to a conventional software hash table. It handles the
rare overflowed accesses to HTA. Besides, the software path also resizes the HTA table dynamically. The
resizing algorithm HTA adopts is based on comparing the fraction of HTA accesses that take the software
path with a threshold (e.g., 1%). If the fraction is above the threshold, the software path doubles the size
of the HTA table and reinserts all existing elements in both the HTA table and the software hash table.

To keep track of this fraction, each HTA table is assigned a counter that is stored in memory at one
word above its starting address. The counter is incremented rarely (every 100 HTA accesses in our
implementation), and hence approximately monitors the number of HTA accesses of the table.

The software path also maintains a counter recording the number of software path invocations. The
software path uses these counters to calculate the fraction of accesses that overflow, and decides whether
to resize the HTA table.
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lookup: hta_lookup 0,  1,  0,  3, done
call swLockLine
hta_lookup 0,  1,  0,  3, release 
call swLookup

release: call swUnlockLine
done: …

Figure 5.8: Example showing how hta_lookup is used to implement a thread-safe hash table lookup.
The software path uses fine-grain locks.

insert: hta_update 0,  1,  0,  3, done
call swLockLine
hta_swap 0,  1,  0,  3, release 
call swHandleInsert

release: call swUnlockLine
done: …

Figure 5.9: Example showing how HTA instructions are used to implement a thread-safe insert. The
software path uses fine-grain locks.

5.3.4 Parallel hash table implementation

With multiple threads, the simple hash table operations shown in Figure 5.5 and Figure 5.6 need some
refinement to be thread-safe. We leverage that HTA instructions are atomic (cores already have the
machinery to ensure this for all instructions, such as line locking or verification loads). This guarantees
the atomicity of operations that do not invoke the software path.

If the software path is invoked, a synchronization strategy is needed to guarantee atomicity. We
use fine-grain locks, each of which protects a few lines (four in our implementation). However, HTA is
orthogonal to the synchronization technique used by the software path, and can use other techniques.
For example, it could be combined with transactional memory.

Thread-safe lookups: Figure 5.8 shows our thread-safe implementation of lookups. The software path
involves acquiring the line’s lock; executing the hta_lookup instruction again; if needed, accessing the
software hash table; and finally releasing the lock. hta_lookup must be invoked again after locking to
avoid races with insertions.

Thread-safe insertions: Figure 5.9 shows code for thread-safe updates. This code shows why hta_-

update and hta_swap are both needed: hta_update does not modify HTA table state if the software
path is invoked. This is important to avoid races: by using hta_swap only after locking, all modifications
are properly synchronized.

5.4 HIERARCHICAL-HTA Implementation

HIERARCHICAL-HTA extends FLAT-HTA to cache individual key-value pairs of the HTA table in cache-
specific regions called HTA stashes (Figure 5.3b). A stash’s lines can only be stored in a specific cache
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Figure 5.10: HTA stash format.

level. Stashes do not reserve any capacity in their cache (i.e., they do not partition the cache). Instead,
similar to FLAT-HTA, each stash shares capacity with normal program data, and the actual capacity a
stash consumes depends on the workload’s access pattern.

This hierarchy-aware layout improves spatial locality on intermediate cache levels, improving cache
utilization and reducing misses. Whereas FLAT-HTA only requires changes to the core, HIERARCHICAL-HTA
also modifies cache controllers so that they can fetch and serve key-value pairs rather than cache lines.
However, HIERARCHICAL-HTA does not improve spatial locality at the LLC, as making the LLC manage
key-value pairs rather than lines would complicate the interface main memory (which is optimized for
wide transfers). Therefore, HIERARCHICAL-HTA yields only modest gains over FLAT-HTA.

HTA table restrictions: For simplicity, we introduce some restrictions on the backing HTA table: it must
be in a contiguous region of physical memory, must be power-of-two sized, and must be size-aligned.
(FLAT-HTA tables live in pageable virtual memory so they do not have these restrictions.) These restrictions
let us operate on physical addresses, avoiding the need for TLBs on caches, and simplify addressing.

HTA stash format: Figure 5.10 shows an example layout of an HTA stash and its corresponding HTA
table. For simplicity, each HTA stash uses a contiguous range of 2K cache lines. 2K can be greater than
the number of lines in the cache that the stash lives in. Suppose the HTA table is 2M lines large. Then,
given the HTA table address of a particular key, its HTA stash address is computed by zeroing the highest
M − K bits of its offset within the HTA table. Key-value pairs will map to line X in the HTA stash if they
map to lines X , X + 2K , X + 2 · 2K , ..., X + (2M − 2M−K) in the HTA table.

Cache controllers store some information about each of their HTA stashes: the starting address
and size of their corresponding HTA table, and the key-value pair format. This limits the number of
HIERARCHICAL-HTA hash tables that each cache may hold (to four hash tables in our implementation).

Per-pair management: Cache controllers are extended to manipulate and communicate individual
key-value pairs within each level: they perform shared fetches (GETS), exclusive fetches (GETX), and
dirty writebacks (PUTX) on key-value pairs, analogous to the usual requests for line fetches and evictions
in conventional caches. Each HTA operation checks the hash table’s HTA stashes in sequence, and the
next-level HTA stash (and eventually the HTA table) is accessed only when the current stash cannot
resolve the operation.
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Figure 5.11: Pair-grain memory ops in HIERARCHICAL-HTA.

Figure 5.11 illustrates HIERARCHICAL-HTA’s operation on a system with a two-level cache hierarchy
and an L1-pinned HTA stash. Suppose the L1 starts empty. An hta_lookup triggers a GETS request with
the key and HTA table line from the L1, as shown in Figure 5.11a. The L2 accesses the right HTA table
line (fetching it from memory if needed), and responds with its associated value. The L1 allocates space
for the HTA stash line and installs the key-value pair there.

The HTA table is inclusive of HTA stashes. Updates are similar to lookups but issue GETX (exclusive)
requests. On an update, if the HTA table does not have a pair with the same key, the pair is first inserted
into the HTA table.

Caches can evict HTA stash lines as shown in Figure 5.11b. Individual key-value pairs are written
back if the line is marked as modified, and are simply dropped if the line is clean.

Overflows: Overflows in an HTA stash are transparent to software: the cache evicts a randomly-chosen
pair to the next level to make space for a new one. Overflows in the HTA table are treated the same way
as in FLAT-HTA, by invoking the software fallback path for updates. Note that, since the HTA table is
inclusive of HTA stashes, overflows or evictions in HTA stashes never cause HTA table overflows.

Coherence: Finally, we maintain coherence conservatively. Coherence is tracked at the shared last-level
cache, for each line in the HTA table. When an LLC line in the HTA table is evicted, or when the line is
shared and an exclusive request is received, all the sharers of the line are sent invalidations. At smaller
caches that contain HTA stashes, an exclusive request (due to an update) that falls on an HTA stash line
with shared permission (due to lookups) causes the pairs in the line to be dropped. These policies let
us reuse line-level coherence metadata, though they are less precise than if we performed pair-by-pair
coherence.

5.5 HTA-Accelerated Memoization

Memoization improves performance and saves energy by caching and reusing the outputs of repetitive
computations. As discussed in Section 5.1.4, prior software and hardware memoization techniques have
significant drawbacks. Software memoization suffers from high runtime overheads, and is thus limited to
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memo_exp: hta_lookup 0,  1,  0,  3, done
call exp
hta_swap 0,  1,  0,  3, done

done: …

Figure 5.12: Example showing how HTA instructions are used to memoize the exp() function.

long computations. Prior hardware techniques achieve low overheads and can memoize short functions,
but they rely on large, special-purpose memoization caches that waste significant area and energy.

We leverage HTA to accelerate memoization cheaply, matching the performance of prior hardware
memoization techniques without dedicated on-chip storage.

Memoization tables are allocated for memoizable functions. Each memoization table is a hash table
that stores arguments as the key and return values as the value. Since memoization tables are small,
we use FLAT-HTA to implement them. These FLAT-HTA tables do not have conventional software paths
that manipulate software hash tables. Instead, on an HTA table miss the software path simply calls the
memoizable function. This is a good tradeoff: executing the short function is cheaper than a software
hash table lookup.

Memoization operations are implemented using HTA instructions. Figure 5.12 shows example code
that leverages HTA instructions to memoize a single-argument, single-result function (exp). We place
an hta_lookup before the call to the memoized function. If the key is found, then the corresponding
value is returned in the return value register and the function call is skipped. Otherwise, the function is
executed and its result is memoized using hta_swap.

Since memoization tables do not grow to accommodate extra items, insertions simply replace one
of the line’s entries. As a result, there is no software path for hta_swap (i.e., target equals next PC),
because the victim pair is simply dropped. This does not affect the correctness of the program. This is the
right tradeoff when memoizing short functions; longer functions could use a full-blown HTA-accelerated
hash table.

Exploiting memoizable regions: We have developed a pintool [169] to identify memoizable (i.e., pure)
functions [286]. A function is defined as memoizable if it satisfies two conditions. First, its memory reads
are either to read-only data or to its stack. Second, its memory writes are restricted to its own stack.
Then, we manually added hta_lookup and hta_swap instructions to these functions’ callsites. Due to its
low overheads, HTA does not need to perform selective memoization based on cost-benefit analysis as in
software techniques. Therefore, we memoize every function that our tool identifies as memoizable. We
memoize both application and standard-library functions.

Methodology 5.6

We perform microarchitectural, execution-driven simulation using zsim [224]. We evaluate 1-core and
16-core chips with parameters shown in Table 5.2. These systems use out-of-order cores modeled after
Haswell, and a 3-level cache hierarchy with a shared, inclusive LLC that has 2 MB per core.

Our HTA implementation includes registers for four HTA table descriptors. HTA instructions incur the
cost of a cache-line load/store (in two 256-bit accesses), plus one cycle to perform key comparisons. We
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Core
x86-64 ISA, 3.0 GHz, Haswell-like OOO: 16B-wide ifetch, 2-level bpred with
2 K×18-bit BHSRs + 4 K×2-bit PHT, 4+1+1+1 decoders, 6 execution ports,
4-wide commit

L1 cache 32 KB, 4-way set-associative, 3-cycle latency, split D/I
L2 cache 256 KB, 8-way set-associative, 7-cycle latency, inclusive
L3 cache 2 MB per core, 16-way set-associative, 15-cycle latency, inclusive

Main mem DDR3-1600, 4 channels (16 cores) or 1 channel (1 core)

Table 5.2: Configuration of the simulated system.

# of hta_
Baseline # of hta_ swaps &

Input set hash table lookups updates

bfcounter ENCSR687ZCM.fastq [251] C++11 0 26960049
lzw the Bible unordered_map 4364173 765632

hashjoin
–r-size=16777216 –s-size 268435456 23335399
=268435456 –skew=1.5 Google

ycsb-read -z0.6 -r1.0 -w0.0 dense_hash_map 95998531 0
ycsb-write -z0.6 -r0.0 -w1.0 0 95998531

Table 5.3: Hash table benchmark characteristics.

model an L1 that supports wide accesses (256 bits per cycle), which is common due to SIMD instructions
(e.g., 256-bit AVX). We encode hta_lookup, hta_update, hta_swap, and hta_delete using x86-64
no-ops that are never emitted by the compiler.

We evaluate HTA using two sets of workloads: one set uses hash tables as a key part of their
implementation, and the other set leverages memoization to improve performance. To achieve statistically
significant results, we introduce small amounts of non-determinism [12], and perform enough runs to
achieve 95% confidence intervals ≤ 1% on all results.

5.6.1 Hash table workloads

We analyze four applications that use hash tables heavily:
• bfcounter [175] is a memory-efficient software to count k-mers in DNA sequence data, which

is essential for many methods in bioinformatics, including genome and transcriptome assembly.
bfcounter uses a heavily-updated hash table to hold k-mers. We use a DNA sequence from
ENCODE [251] as the input.

• lzw is a text compression benchmark based on the LZW algorithm [266], a widely-used lossless
data compression technique. A hash table is used to hold the dictionary. We use the Bible as the
input text file.

• hashjoin [24] is a single-threaded implementation of the hash join algorithm. hashjoin joins
two synthetic tables. There are two phases in the program: in the first phase, the inner table is
scanned to build a hash table; and then in the second phase, the outer table is scanned while the
hash table is probed to produce output tuples.

• ycsb [65] is an implementation of Yahoo! Cloud Serving Benchmark that runs on DBx1000 [279].
Hash tables are used for hash indexes. We evaluate ycsb with two configurations: 100% read
queries and 100% write queries.

Table 5.3 details these applications and their characteristics.
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Memoization
Benchmark Input Memoizable table per

Lang. suite Set functions function

bwaves Fortran SPECCPU2006 ref slowpow, pow, halfulp, exp1 32 KB
bscholes C++ PARSEC native CDNF, exp, logf 32 KB

equake C SPECOMP2001 ref phi0, phi1, phi2 4 KB
water C SPLASH2 1061208 exp 32 KB

bf semphy C++ BioParallel 220 suffStatGlobalHomPos::get 4 KB
nab C SPECOMP2012 ref exp, slowexp_avx 2 KB

Table 5.4: Memoization benchmark characteristics.

We modify each application to support multiple hash table implementations (using template metapro-
gramming to do so without runtime overheads). We compare the following implementations:

• Baseline: Because no single hash table design works best for all applications, we use the best of
libstdc++’s C++11 unordered_map and Google’s dense_hash_map as the baseline implementa-
tion. The best of both either matches or outperforms the application’s existing hash tables.

• FLAT-HTA and HIERARCHICAL-HTA: To evaluate HTA, we use a hash table implementation with
HTA hash tables accessed through hta_lookup/update/swap/delete instructions. The HTA hash
table starts empty and is resized as elements are inserted. Specifically, if the fraction of software
path invocations over total HTA accesses is above 1%, the size of HTA table is doubled. This
involves allocating a new HTA table that is twice as large, then inserting all the pairs in both the
previous HTA table and the software hash table into the new HTA table. For each application, HTA
uses the same software hash table as the baseline. Since HTA rarely uses the software hash table,
its performance is insensitive to the choice of software hash table.

• HTA-SW: To further analyze HTA and illustrate where performance differences comes from, we
implement a software scheme, HTA-SW, that implements the same algorithm as HTA but without
any hardware support. HTA-SW uses the same table format, the same software hash tables, and the
same resizing algorithm. HTA-SW does not rely on any hardware support: all the steps in hash table
operations, including hashing, key comparison, memory accesses, and branches, are implemented
purely in software. HTA-SW stores the keys within a cache line in a contiguous format, so that
comparisons can be implemented with SIMD load and comparison instructions [293]. Specifically,
we use Intel AVX vector load, compare, and mask instructions to exploit the parallelism in key
lookups.

We fast-forward each application to skip initialization (e.g., data loading in ycsb) and simulate them
to completion.

Memoization workloads 5.6.2

We analyze programs from six benchmark suites and choose one application with high memoization
potential from each suite. Table 5.4 details these applications and their characteristics. For each
application, we use the same memoization table size for all memoized functions. We report the table
size that yields the best performance. Section 5.7.5 provides more insight on the effect of table size.

We fast-forward each application for 50 billion instructions. We instrument each program with
heartbeats that report application-level progress (e.g., when each timestep or transaction finishes), and
run it for as many heartbeats as the baseline system (without memoization) completes in 5 billion
instructions. This lets us compare the same amount of work across schemes, since memoization changes
the instructions executed.
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Figure 5.13: Speedups of FLAT-HTA and HTA-SW over the software baseline on single-threaded apps.
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Figure 5.14: Cycle breakdowns for the Baseline, HTA-SW, and Flat-HTA.

5.7 Evaluation

5.7.1 HTA on single-threaded applications

Figure 5.13 compares the performance of the baseline, HTA-SW, and FLAT-HTA. FLAT-HTA outperforms
the baseline by 24% on bfcounter, 70% on lzw, 2.0× on hashjoin, 23% on ycsb-read, and 69% on
ycsb-write. Figure 5.14 shows the breakdown of core cycles following the same format as Section 5.1.2,
and shows the same trends. bfcounter and lzw benefit mainly from reduced mispredicted branches,
while hashjoin and ycsb gain mostly from better backend parallelism.

Figure 5.13 also shows that FLAT-HTA outperforms HTA-SW substantially, by 6.3% on bfcounter,
7.4% on lzw, 2.1× on hashjoin, 28% on ycsb-read, and 73% on ycsb-write. Figure 5.14 shows
these benefits stem from reduced wrong-path execution and backend stalls. Specifically, though FLAT-
HTA incurs the same cache misses as HTA-SW, applications with abundant operation-level parallelism,
like hashjoin and ycsb, benefit from HTA significantly by using the reorder buffer better: since each
hash table operation uses far fewer µops, more operations are overlapped, reducing backend stalls.
ycsb-write benefits more than ycsb-read because FLAT-HTA improves updates more than lookups (as
Section 5.1.2 showed).

Moreover, HTA-SW does not consistently improve performance. HTA-SW outperforms the baseline
substantially on bfcounter and lzw, by 17% and 58% respectively, showing that the HTA design can
sometimes outperform state-of-the-art hash tables even when implemented entirely in software. However,
HTA-SW causes small performance degradations (up to 6%) on hashjoin, ycsb-read and ycsb-write.
On these applications, the performance improvement of FLAT-HTA comes from hardware acceleration.
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Baseline FLAT-HTA and HTA-SW
Type Table HTA table Software path

bfcounter unordered 275 MB 512 MB 2 MB
lzw _map 8 MB 16 MB 117 KB

hashjoin dense 512 MB 256 MB 512 B
ycsb-read _hash 512 MB 256 MB 0 B

ycsb-write _map 512 MB 256 MB 0 B

Table 5.5: Memory usage of the baseline and FLAT-HTA.
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Figure 5.15: Speedups of FLAT-HTA and the baseline on ycsb when scaling from 1 to 16 cores. Speedups
are relative to the single-threaded baseline.

Beyond performance, space efficiency is an important consideration for hash tables. Table 5.5 reports
the memory consumption of the different implementations. HTA-SW uses the same memory layout as
FLAT-HTA, and hence has exactly the same memory consumption. Overall, results show that HTA does
not cause undue storage overheads—there are differences of 2× in all cases, but note that hash tables
grow exponentially over time and small differences in resizing thresholds can cause 2× size differences.
On bfcounter and lzw, which use unordered_map as the baseline, the FLAT-HTA table is 2× larger than
the baseline’s. On hashjoin and ycsb, which use dense_hash_map as the baseline, the FLAT-HTA table
is 2× smaller than the baseline’s.

HTA on multithreaded applications 5.7.2

We now evaluate FLAT-HTA on multithreaded applications. Since bfcounter, lzw, and hashjoin are
single-threaded, we use the multithreaded implementations of ycsb-read and ycsb-write.

As shown by Figure 5.15, at 16 cores, FLAT-HTA outperforms the baseline by 33% on ycsb-read and
by 3.5× on ycsb-write. These speedups are higher than in the serial version (23% and 69%) because
most HTA operations are performed without acquiring locks.

HTA with hierarchy-aware layout 5.7.3

We now compare the performance of FLAT-HTA and HIERARCHICAL-HTA. In this experiment, HIERARCHICAL-
HTA uses a 32 KB HTA stash pinned to the L1 cache, followed by a 256 KB HTA stash pinned to the L2
cache. The HTA table is cached in the LLC.
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Figure 5.16: Speedups of HIERARCHICAL-HTA over FLAT-HTA.
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Figure 5.17: Speedups of HTA and baseline when running a SPEC OMP2012 app and ycsb simultaneously.

Figure 5.16 compares the performance of both schemes. On ycsb-read and ycsb-write, where key-
value pairs have mixed reuse, HIERARCHICAL-HTA reduces L2 misses by 4.1× and 3.9×, respectively. This
happens because HIERARCHICAL-HTA lets the L1 and L2 hold densely-packed pairs. This miss reduction
translates to a 35% performance improvement for ycsb-read. However, ycsb-write attains the same
performance because FLAT-HTA completely hides the latency of updates by exploiting memory-level
parallelism (as we saw in Section 5.1.2). Finally, the other three applications do not exhibit mixed reuse,
so HIERARCHICAL-HTA does not significantly improve performance over FLAT-HTA.

5.7.4 HTA on multiprogrammed workloads

We evaluate FLAT-HTA’s impact on co-running applications by running and 8-thread ycsb and an 8-thread
SPEC OMP2012 application simultaneously on the 16-core system. Threads of both applications are
pinned to cores.

Figure 5.17 summarizes the performance impact of FLAT-HTA. The performance of all SPEC OMP2012
applications except kdtree and md is not affected by replacing the baseline hash table with FLAT-HTA (as
shown in the others bar groups). kdtree, the most cache-sensitive application, shows that HTA causes
less interference than the default hash table.

First, when co-running with ycsb-read, using FLAT-HTA causes kdtree’s performance to improve by
11%, even though FLAT-HTA accelerates ycsb-read by 20%, which is therefore performing hash table
operations faster. Figure 5.18a gives more insight into this result by reporting the changes in L3 misses
per kiloinstruction (MPKI) for both ycsb and kdtree without and with FLAT-HTA. Despite the higher rate
of operations in ycsb-read, its MPKI is lower, which leaves more L3 capacity and memory bandwidth
for kdtree.
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Figure 5.18: L3 MPKI when running kdtree and ycsb.
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Figure 5.19: Speedups of HTA-based memoization over the baseline that does not use memoization.

Second, when co-running with ycsb-write, using FLAT-HTA causes kdtree’s performance to drop
by 15% due to increased cache capacity contention. However, note that ycsb-write is 4.2× faster
with FLAT-HTA, so it performs hash table operations much faster than the baseline. Figure 5.18b shows
that both ycsb-write versions incur a similar L3 MPKI. Overall, these results show that HTA does not
introduce undue L3 and main memory memory pressure.

HTA on memoization 5.7.5

We leverage HTA for memoization, and compare its performance with the baseline implementation and
both conventional hardware and software memoization techniques.

HTA vs. baseline: Figure 5.19 compares the performance of HTA-based memoization over the baseline
benchmarks, which do not perform memoization. HTA improves performance substantially, by 16× on
bwaves, 7.5× on bscholes, 56% on equake, 27% on water, 17% on semphy, and 4% on nab.

Table 5.6 provides more details into these results by reporting per-function statistics. For example, in
bwaves, memoizing the pow function provides most of the benefits. pow takes thousands of instructions
to calculate x y if x is close to 1 and y is around 0.75, which is common in bwaves. Memoizing pow

contributes to 99.9% of the instruction reduction in bwaves.
Beyond reducing execution time, HTA reduces the number of L1 cache accesses significantly, as

shown in Figure 5.20a: L1 access reductions range from 9% on nab to 97% on bwaves. This happens
because the L1 accesses saved through memoization hits exceed the additional L1 accesses incurred by
memoization operations. Moreover, HTA does not incur much extra capacity contention in L1 caches.
Figure 5.20b shows that HTA increases L1 data cache misses by less than 5% overall. One exception
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Function Instrs per func call # of hta_lookups Hit rate

bwaves

slowpow 485160 579 48.0%
pow 12947 371813 96.3%

halfulp 77 301 1.3%
exp1 28 14443 21.7%

bscholes
CDNF 193 15547145 99.6%
exp 115 7840164 100.0%
logf 56 7773573 100.0%

equake
phi0 119 7953687 100.0%
phi1 123 7953687 100.0%
phi2 118 7953687 100.0%

water exp 116 7806240 100.0%

semphy get 19 67123200 94.6%

nab
exp 81 29150496 49.6%

slowexp_avx 14756 0 N/A

Table 5.6: Per-function breakdown of hta_lookups.
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Figure 5.20: L1 data cache accesses and misses of HTA-based memoization relative to those of the
baseline (without memoization).

is bscholes, which incurs 84% more L1 misses on HTA. However, this is not significant, because the
baseline’s L1 miss rate is only 0.2%. In fact, such misses bring in valuable memoization data that in
the end improve performance by 7.5×. On equake, HTA even reduces L1 data misses by 30%, as the
functions it memoizes have a larger data footprint than their memoization tables.

HTA vs. conventional hardware memoization: We implement a conventional hardware memoization
technique that leverages HTA’s ISA and pipeline changes, but uses a dedicated storage buffer like prior
work [49, 253] instead of using the memory system to store memoization tables. Beyond its large
hardware cost, the key problem of conventional hardware memoization is its lack of flexibility: a
too-large memoization buffer wastes area and energy, while a too-small memoization buffer sacrifices
memoization potential.

Figure 5.21 quantifies this issue by showing the performance of hardware memoization across a range
of memoization buffer sizes: 1, 4, 16, and 64 KB. The buffer is associative, and entries are dynamically
shared among all memoized functions. We optimistically model a 1-cycle buffer access latency.
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Figure 5.21: Per-application speedups of HTA and conventional hardware memoization with different
dedicated buffer sizes (in KB).
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Figure 5.22: Per-application speedups of HTA and software memoization with per-function direct-mapped
hash tables.

Figure 5.21 shows that applications are quite sensitive to memoization buffer size: 1 KB is sufficient
for equake and nab, while water and semphy prefer at least 4 KB, and bwaves and bscholes prefer at
least 64 KB. Smaller buffers than needed by the application result in increased memoization misses and
sacrifice much of the speedup of memoization.

Finally, Figure 5.21 shows that HTA matches hardware memoization with a dedicated storage size
of 64 KB on all applications. This is achieved even though HTA does not require any dedicated storage,
saving significant area and energy. The tradeoff is that storing memoization tables in memory causes
longer lookup latencies than using a dedicated buffer. However, these lookup latencies are small, as they
mostly hit on the L1 or L2, and branch prediction effectively hides this latency most of the time.

HTA vs. software memoization: We implement software memoization using function wrappers similar
to Suresh et al. [246]. Per-function memoization tables are implemented as fixed-size, direct- mapped
hash tables, accessed before calling the function and updated after a memoization miss.

Figure 5.22 compares the performance of HTA and software memoization. HTA outperforms software
memoization by 85% on bscholes, 14% on equake, 7% on water, 2× on semphy, and 34% on nab.
HTA outperforms software memoization due to its low overheads. For example, semphy’s memoizable
function runs for 19 instructions on average, too short for software memoization. As a result, software
memoization is 41% slower than the baseline. This explains why software memoization needs a careful
cost-benefit analysis to avoid performance degradation. By contrast, HTA improves performance by 17%
on semphy, outperforming software memoization by 2×. Similarly, software memoization makes nab
23% slower, while HTA improves performance by 4%.
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5.8 Summary

We have introduced HTA, a technique that leverages caches to accelerate hash tables. HTA introduces a
table format that exploits the principle: making the common case fast: most hash table operations are
accelerated with simple hardware, while rare cases are left to a software path.

We have presented two implementations of HTA: FLAT-HTA requires minor changes to cores to reduce
runtime overheads, while HIERARCHICAL-HTA requires more modification to caches to further improve
spatial locality.

Finally, we have shown that HTA bridges the gap between hardware and software memoization:
FLAT-HTA outperforms software memoization by up to 2×, and matches the performance of conventional
hardware techniques, but avoids the overheads of large dedicated buffers.
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In this chapter, we present a solution for dependent reads with irregular data reuse. Instead of proposing
a general technique, the solution is tailored to a specific application: sparse-matrix sparse-matrix
multiplication (SPMSPM).

SPMSPM is at the heart of a wide range of scientific and machine learning applications. SPMSPM is
inefficient on general-purpose architectures, making accelerators attractive. However, prior SPMSPM
accelerators use inner- or outer-product dataflows that suffer poor input or output reuse, leading to high
traffic and poor performance. These prior accelerators have not explored Gustavson’s algorithm, an
alternative SPMSPM dataflow that does not suffer from these problems but features irregular memory
access patterns that prior accelerators do not support.

We present GAMMA, the Gustavson-Algorithm Matrix-Multiplication Accelerator. GAMMA combines
three key features:

• GAMMA uses simple processing elements (PEs) that linearly combine sparse input rows to produce
each output row. PEs implement high-radix mergers that combine many input rows (e.g., 64 in our
design) in a single pass, reducing work and memory accesses. Instead of expensive high-throughput
mergers as in prior work [291], GAMMA uses simple scalar mergers, and relies on Gustavson’s
row-level parallelism to achieve high throughput efficiently, using tens of PEs to perform many
combinations in parallel. Thus, GAMMA concurrently processes thousands of compressed sparse
fibers, variable-sized rows from inputs or partial outputs.

• GAMMA uses a novel storage structure, FIBERCACHE, to efficiently buffer the thousands of fibers
required by PEs. FIBERCACHE is organized as a cache to capture Gustavson’s irregular reuse
patterns. However, FIBERCACHE is managed explicitly, like a large collection of buffers, to fetch
missing fibers ahead of time and avoid PE stalls. This saves megabytes of dedicated on-chip buffers.

• GAMMA dynamically schedules work among PEs to ensure high utilization and minimize memory
traffic despite the irregular nature of Gustavson’s algorithm.

While Gustavson’s algorithm is an improvement over other dataflows, it still incurs excessive traffic
on some inputs. To address this issue, we propose a preprocessing technique (Section 6.3). that combines
row reordering and selective tiling of one matrix input. Preprocessing improves GAMMA’s performance
and avoids pathologies across the full range of inputs.

In summary, we make the following contributions:
• We show that prior SPMSPM accelerators have missed a key dataflow, Gustavson’s, which is often

more efficient but has less regular access patterns than previously used dataflows.
• We build GAMMA, a novel SPMSPM accelerator that combines specialized PEs, a novel cache-based

structure to capture Gustavson’s irregular reuse, and dynamic scheduling to achieve high utilization
despite irregularity.

• We propose preprocessing techniques that boost GAMMA’s effectiveness and avoid Gustavson’s
pathologies.
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Figure 6.1: Compressed sparse matrix formats.

• We evaluate GAMMA under a broad range of matrices, showing large performance gains and
memory traffic reductions over prior systems, as well as higher versatility.

6.1 Motivation

6.1.1 SPMSPM

Sparse matrix-sparse matrix multiplication (SPMSPM) is widely used in deep learning inference [105, 199,
267], linear algebra [29, 140, 274], and graph analytics [93, 136] (including BFS [93], maximum match-
ing [210], cycle detection [283], triangle counting [20], clustering [256], and all-pair shortest paths [47]).
It is also a key building block for many other workloads, such as parsing [202], searching [129], and
optimization [130].

We first describe the data structures used by SPMSPM and the basic SPMSPM dataflows; then, we
review prior accelerators, the optimizations they introduce, and their limitations, motivating the need
for a Gustavson-based accelerator.

6.1.2 Compressed sparse data structures

SPMSPM operates on compressed sparse data structures, i.e., structures where only nonzero values are
represented. Figure 6.1 shows a sparse matrix encoded in two commonly used formats, compressed
sparse row (CSR) and compressed sparse column (CSC). In CSR, rows are stored in a compressed format:
each row is an ordered list of coordinates (in this case, column indexes) and nonzero values, stored
contiguously. Indexing into a particular row is achieved through the offsets array, which stores the
starting position of each row. CSC is analogous to CSR, but stores the matrix by compressed columns. In
general, we call each compressed row or column a fiber, represented by a list of coordinates and values,
sorted by coordinate.

Compressed sparse data structures introduce two challenges. First, certain kinds of traversals are
more efficient than others. These efficient traversals are called concordant traversals [248]. For example,
a CSR matrix can be traversed row by row, but traversing it by columns or accessing elements at random
coordinates is inefficient. Thus, to be efficient, different SPMSPM dataflows impose different constraints
on the preferred representation of input and output matrices. Second, SPMSPM relies on indirect accesses
(through the offsets array) to variable-sized fibers, and requires combining or intersecting those fibers.
These operations are inefficient on CPUs and GPUs.
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Figure 6.2: Comparison of basic SPMSPM dataflows.

SPMSPM dataflows 6.1.3

Figure 6.2 shows the three basic dataflows for SPMSPM: inner-product, outer-product, and Gustavson.
Figure 6.2 also shows the abstract loop nest corresponding to each dataflow (for simplicity, these loop
nests assume dense matrices; with compressed sparse matrices, operations are more complex). SPMSPM
computes CM xN = AM xK × BK xN using a triply-nested loop that iterates over A’s and B’s independent
dimensions, M and N , and co-iterates over their shared dimension, K . The dataflow is determined by the
level of this co-iteration: in inner-product, co-iteration happens at the innermost loop; in outer-product,
at the outermost loop; and in Gustavson’s at the middle loop.1

Inner-product is an output-stationary2 dataflow: it computes the output matrix one element at a
time, simultaneously traversing (i.e., co-iterating) rows (m) of A and columns (n) of B. This achieves
good output reuse, but poor reuse of the inputs. Since A and B are sparse, this traversal requires an
intersection, as only nonzeros with matching k coordinates contribute towards the output. Inner-product
is relatively efficient when input matrices are nearly dense. But with highly sparse matrices, inner-product
is dominated by the cost of intersections, which are inefficient because all elements of the rows and

1While Figure 6.2 shows 3 loop nest orders, there are 6 possible orders. The remaining 3 stem from swapping the M and N
loops; this merely switches the dimensions in which inputs are traversed, but results in an otherwise identical dataflow. For
example, Figure 6.2 shows an inner-product dataflow where A is traversed by rows and B by columns; swapping the outer two
loops results in an inner-product dataflow where A is traversed by columns and B by rows.

2We use the *-stationary terminology from [54].
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columns must be traversed, even though there are few effectual intersections, i.e., cases where both
elements are nonzero. For example, in Figure 6.2, intersecting row A1 and column B2 is completely
ineffectual, as they have no nonzeros with the same coordinate.

Outer-product, by contrast, is an input-stationary dataflow: it computes the output one partial matrix
at a time, traversing each column of A (k) and row of B (k) once and computing a full M × N matrix
that incorporates all their contributions in the output. Then, all K partial output matrices are combined
to produce the final output matrix. Outer-product achieves good reuse of input matrices. Additionally,
outer-product avoids inner-product’s inefficiencies of ineffectual intersections: each co-iteration of
column m of A and row n of B is ineffectual only when either is all-zeros, which is unlikely. However,
outer-product is limited by poor output reuse: the combined size of the partial output matrices is often
much larger than the final output, so they cause significant traffic. Moreover, combining these partial
output matrices is a complex operation.

Gustavson, finally, is a row-stationary dataflow: it computes the output matrix one row at a time, by
traversing a row of A (m) and scaling and reducing, i.e., linearly combining, the rows of B (k) for which
the row of A has nonzero coordinates. Specifically, given a row Ai with nonzeros ai j, output row Ci is
produced by linearly combining B’s rows B j, i.e., Ci =

∑

j ai jB j. Gustavson is more efficient because it
avoids the extremes of inner- and outer-product dataflows. While Gustavson does not get as much reuse
of a single value as either inner- or outer-product dataflows, it gets reuse of modestly sized rows. Unlike
outer-product, Gustavson requires combining partial output rows rather than partial output matrices, a
simpler operation on much smaller intermediates that more easily fit on-chip; and unlike inner-product,
Gustavson avoids ineffectual intersections and poor input reuse.

Finally, Gustavson has an additional advantage over the other dataflows: its inputs and outputs
are all in a consistent format, CSR.3 By contrast, inner- or outer-product require one input to be in
CSR and the other in CSC, to support efficient concordant traversals by rows and columns. We do not
evaluate this issue further, but for compound operations (e.g., matrix exponentiation), having different
formats requires expensive operand transformations, e.g., converting CSC to CSR, that rival the cost of
accelerated SPMSPM [59].

6.1.4 SPMSPM accelerators

Despite the advantages of Gustavson’s algorithm, prior SPMSPM accelerators have focused on inner- and
outer-product dataflows, seeking to maximize reuse of one operand. These designs incorporate different
optimizations over the basic dataflow they adopt to mitigate its inefficiencies.

Accelerators like UCNN [109] and SIGMA [207] implement inner-product SPMSPM, These designs
are built around hardware support to accelerate intersections: UCNN traverses compressed sparse data
structures, while SIGMA uses a hardware-friendly bitmap-based fiber representation to further accelerate
intersections. To counter poor input reuse, some designs also tile input matrices [107] to fit on-chip.
While these designs achieve much higher throughput than CPUs and GPUs when matrices are relatively
dense (as is typical in e.g. deep learning inference), they suffer from the algorithmic inefficiencies of
ineffectual intersections on sparse matrices.

By contrast, accelerators including OuterSPACE [196], SpArch [291], and SCNN [199] implement
an outer-product dataflow, and take different approaches to mitigate its inefficiencies. To reduce merge
complexity, OuterSPACE divides partial output matrices in rows, then merges rows individually. However,

3Or CSC in the alternative Gustavson dataflow; see footnote 1.
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Figure 6.3: Off-chip traffic of tiled inner-product (IP), OuterSPACE (OS), SpArch (S), and GAMMA

without/with preprocessing (G/GP).

OuterSPACE produces a large amount of off-chip traffic due to partial outputs, which do not fit on-chip.
SpArch, by contrast, is built around a very complex high-throughput, high-radix merger that can merge
up to 64 partial matrices per pass, and two main techniques to use this merger well: pipelining the
production of the partial output matrices and merging to avoid spilling them off-chip, and employing a
matrix condensing technique that reduces the number and size of partial output matrices. Scaling up
SpArch is inefficient because its throughput is bottlenecked by the merger, and scaling up the merger’s
throughput incurs quadratic area and energy costs. Instead, GAMMA achieves high throughput with
linear cost by performing many independent merges in parallel. On highly sparse matrices, SpArch often
achieves nearly perfect off-chip traffic because it can produce fewer than 64 partial output matrices;
however, on large or less-sparse matrices, SpArch incurs high output traffic as it needs to spill many
partial outputs off-chip. SpArch’s matrix condensing technique also sacrifices reuse of the B matrix,
which can add significant traffic.

Finally, some prior work adopts a hybrid of inner- and outer-product: ExTensor [108] is a flexible
accelerator for tensor algebra that combines outer-product at the chip level, and inner-product with
individual PEs. This approach requires tiling to be used well, and though this hierarchical design
eliminates more ineffectual work than a pure inner-product design (by skipping entire ineffectual tiles
when possible), it still suffers from the drawbacks of the dataflows it adopts.

Despite these optimizations, prior SPMSPM accelerators are saddled by the fundamental inefficiencies
of the dataflows they adopt. Figure 6.3 shows this by comparing the memory traffic of different
accelerators when squaring (multiplying by itself) two representative sparse matrices: gupta2 (49 MB,
density 1× 10−3), which is relatively dense, and web-Google (58 MB, density 6× 10−6), which is highly
sparse. We compare five accelerators with similar hardware budgets (see Section 6.4 for methodology
details): (1) IP uses an inner-product dataflow with optimally tiled input matrices; (2) OS is OuterSPACE;
(3) S is SpArch; (4) G is GAMMA without preprocessing; and (5) G+P is GAMMA with preprocessing.
Each bar shows traffic normalized to compulsory traffic (i.e., the traffic all designs would incur with
unbounded on-chip memory, equivalent to reading the inputs and writing the output matrix). Traffic is
broken down by data structure: reads of A and B, writes of the final output C , and writes and reads of
partial outputs.

Figure 6.3 shows that, despite their optimizations, prior accelerators have significant drawbacks:
IP works reasonably well on the denser matrix, but is inefficient on the sparser one because of many
sparse tiles resulting from the hard-to-predict distribution of nonzeros. OuterSPACE suffers from partial
outputs, while SpArch incurs less traffic on partial outputs, but more on matrix B. They both perform
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Figure 6.5: Example showing GAMMA’s operation.

well on the sparser matrix, but not on the denser one. Even without preprocessing, GAMMA outperforms
them all solely by virtue of using Gustavson’s dataflow. But GAMMA supports matrix tiling and reordering
techniques like prior work, as we will see in Section 6.3. With these preprocessing techniques, GAMMA

achieves even larger traffic reductions. Finally, since SPMSPM is memory-bound, this lower bandwidth
translates to higher performance (Section 6.5).

6.2 GAMMA

Figure 6.4 shows an overview of GAMMA. GAMMA consists of multiple processing elements (PEs) that
linearly combine sparse fibers; a scheduler that adaptively distributes work across PEs; and a FIBERCACHE

that captures irregular reuse of fibers.
Figure 6.5 illustrates GAMMA’s operation through a simple example that shows how the first few

elements of an output row are produced. GAMMA always operates on fibers, i.e., streams of nonzero
values and their coordinates sorted by coordinate. First, the scheduler fetches matrix A’s rows and
dispatches them to PEs. Each PE then computes a linear combination of rows of B to produce a row
of output C . For example, in Figure 6.5, the scheduler dispatches row A1 to PE 0. Row A1 has only
two nonzeros, at coordinates 3 and 5. Therefore, PE 0 linearly combines rows B3 and B5. Figure 6.5
shows how the first few elements of each row are combined. First, the B3 and B5 fibers are streamed
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from the FIBERCACHE. (The FIBERCACHE retains these fibers, so subsequent uses do not incur off-chip
traffic.) Then, these fibers are merged into a single fiber, with elements ordered by their shared (column,
i.e., N -dimension) coordinate. Each element in the merged fiber is then scaled by the coefficient of A’s
row corresponding to the fiber element’s row (K) coordinate. Finally, consecutive values with the same
column (N) coordinate are summed up, producing the output fiber. Figure 6.5 shows the values of these
intermediate fibers needed to produce the first three elements of output row C1.

GAMMA PEs have a bounded radix, R: PEs can linearly combine up to R input fibers in a single pass
(though Figure 6.5 illustrates the combination of only two fibers, GAMMA PEs have a higher radix, 64
in our implementation). When a row of A has more than R nonzeros, the scheduler breaks the linear
combination into multiple rounds. For example, with R= 64, processing a row of A with 256 nonzeros
would be done using four 64-way linear combinations followed by a 4-way linear combination. Each of
the initial linear combinations produces a partial output fiber, which is then consumed by the final linear
combination. The FIBERCACHE buffers these partial output fibers, avoiding off-chip traffic when possible.

GAMMA PEs use high-radix, modest-throughput mergers: PEs have two key design parameters: radix,
i.e., how many input fibers they can take; and throughput, i.e., how many input and output elements
they can consume and produce per cycle. These parameters are given by the radix and throughput of the
PE’s hardware merger, which takes R input fibers and produces a single output fiber with all the elements
of all the input fibers, sorted by their coordinates. Radix and throughput choices have a substantial
impact on PE and system efficiency, and on memory system design, so we discuss them first.

Implementing high-radix merges is cheap: merger area grows linearly with radix. A high radix in
turn makes computation more efficient: it allows many linear combinations to be done in a single pass,
and increasing the radix reduces the number of merge rounds and partial output fibers needed. For
example, linearly combining 4096 fibers with radix-64 PEs would require 65 PE invocations in a depth-2
tree; using radix-2 PEs would require 4095 PE invocations in a depth-12 tree. The radix-64 PEs would
produce one partial output fiber, whereas the radix-2 PEs would produce 11, increasing FIBERCACHE

traffic by about an order of magnitude.4

Since higher radix mergers are larger, there is a tradeoff between the size and power cost of the
merger and both PE performance (measured in number of passes required) and FIBERCACHE traffic
(due to partial output fibers). With current technology, the sweet spot balancing overall PE cost and
performance occurs around R= 64.

Another consideration is the throughput of the merger. High-throughput mergers is costly: merger
area and energy grow quadratically with throughput, as producing N output elements per cycle requires
the merger to consume up to N elements from a single input, and up to N2 comparisons. Thus, GAMMA

uses simple pipelined merge units that produce one output and consume one input per cycle, and achieves
high throughput by doing many independent linear combinations in parallel, e.g., by using multiple PEs
to process distinct rows of A.

This design tradeoff stands in contrast to SpArch [291], the SPMSPM accelerator that comes closest to
GAMMA’s efficiency. Because SpArch merges partial output matrices rather than fibers, it cannot exploit
row-level parallelism, and implements a single high-throughput merger that dominates area and limits
throughput. GAMMA and SpArch both implement radix-64 mergers, but while in GAMMA each PE’s
merger is about the same area as its floating-point multiplier, SpArch spends 38× more area on the
merger than on multipliers.

4In highly sparse matrices, fibers rarely have matching coordinates, so the size of the linear combination of R fibers is close
to the sum of the size of the partial output fibers (whereas for dense fibers, the final output would be a factor of R smaller).
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Figure 6.6: GAMMA’s PE architecture.

GAMMA’s on-chip storage captures irregular reuse across many fibers: Although GAMMA’s PEs are
efficient, the combination of high-radix and many PEs to achieve high throughput means that GAMMA’s
memory system must support efficient accesses to a large number of concurrent fibers. For example, a
system using 32 radix-64 PEs can fetch 2048 input fibers concurrently. GAMMA relies on a novel on-chip
storage idiom, FIBERCACHE, to support the irregular reuse patterns of Gustavson’s algorithm efficiently.
FIBERCACHE takes two key design decisions: sharing a single structure for all fibers that may have reuse,
and combining caching and explicit decoupled data orchestration [201] to avoid large fetch buffers.

GAMMA processes four types of fibers: rows of A and B, and partial and final output rows of C. Rows
of A and final output rows of C have no reuse, so they are streamed from/to main memory. Rows of B
and partial output rows of C have reuse, but different access patterns: rows of B are read-only and are
accessed potentially multiple times (depending on A’s nonzeros), whereas partial output fibers, which
need to be further merged to produce a final output row, are produced and consumed by PEs, typically
within a short period of time. The FIBERCACHE buffers both types of fibers within a single structure,
instead of having separate buffers for inputs and outputs. Sharing capacity across fiber types helps
because different matrices demand a widely varying share of footprint for partial outputs, but requires
careful management to maximize reuse.

FIBERCACHE is organized as a highly banked cache, which allows it to flexibly share its capacity among
many fibers or fiber fragments. However, FIBERCACHE is managed using the explicit data orchestration
idioms common in accelerators [201]: the fibers needed by each PE are fetched ahead of time, so that
when the PE reads each input fiber element, it is served from the FIBERCACHE. This avoids PE stalls and
lets the FIBERCACHE pull double duty as a latency-decoupling buffer. This feature is important because,
due to the large number of concurrent fibers processed, implementing such buffering separately would be
inefficient: with 32 radix-64 PEs and an 80 ns main memory, implementing these buffers would require
about 2 MB of storage, a large fraction of the 3 MB FIBERCACHE we implement.

6.2.1 Processing element

Figure 6.6 details the design of GAMMA’s PE. The PE linearly combines up to R fibers incrementally.
Operation begins with a request from the scheduler, which streams up to R input fiber descriptors: for
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each input, the scheduler specifies its starting location, size, and a scaling factor. If the input fiber
is a row of B, Bk, the scaling factor is value amk; otherwise, the input fiber is a previously generated
partial output, and its scaling factor is 1.0. The PE stores scaling factors in a register file, and input fiber
locations in the fiber fetcher.

The fiber fetcher then begins streaming input fibers from the FIBERCACHE. The read elements are
streamed into two sets of circular buffers: coordinates (N) are staged as inputs to the high-radix merger,
while values are buffered separately. Each set has R buffers, one of each way of the merger. Since the
FIBERCACHE ensures low access latency, these buffers are small and incur low overheads.

The merger consumes the minimum coordinate (N) among the heads of its R input buffers, and
outputs the coordinate together with its way index, i.e., a value between 0 and R−1 that identifies which
input fiber this coordinate came from.

The way index is used to read both the corresponding value from the value buffer and the scaling
factor. The PE then multiplies these values. Finally, the coordinate and value are processed by an
accumulator that buffers and sums up the values of same-coordinate inputs. If the accumulator receives
an input with a different coordinate, it emits the currently buffered element, which is part of the output
fiber.

Figure 6.7 shows the implementation of the merger. The merger is organized as a balanced binary tree
of simple compute units. Each unit has an integer comparator for coordinates, and merges coordinate
streams incrementally. This design achieves a small area cost, e.g., 67% of a 64-bit floating point
multiplier for a radix of 64, and achieves an adequately high frequency.

Unlike prior mergers [222, 291] with throughputs that are high on average but are very sensitive to
coordinate distribution, GAMMA’s merger maintains a constant 1-element-per-cycle throughput. Thus,
in steady state, the PE consumes one input fiber element per cycle and performs one scaling operation.
This achieves high utilization of its most expensive components, the multiplier and the merger.
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6.2.2 FIBERCACHE

Figure 6.8 shows the FIBERCACHE design and interface. FIBERCACHE builds upon a cache: it has data
and tag arrays, organizes data in lines, and uses a replacement policy tailored to fiber access patterns.
But FIBERCACHE has two key distinct features. First, FIBERCACHE extends the usual read-write access
interface with primitives that manage data movement more explicitly: fetch and consume. fetch

enables decoupled data orchestration by fetching data from memory ahead of execution. Second, to
ensure that read’s hit in most cases, FIBERCACHE ensures that fetched data is unlikely to be evicted. This
is achieved through the replacement policy. This effectively turns a dynamic portion of FIBERCACHE into
buffer-like storage, but without the high overheads of separate, statically sized buffers.

Reading rows of B that are not cached incurs a long latency, stalling the PE and hurting performance.
FIBERCACHE addresses this issue by decoupling PE data accesses into two steps: fetch and read. A
fetch request is sent ahead of execution and places the data into the FIBERCACHE, accessing main
memory if needed, and a read request directs the actual data movement from FIBERCACHE to the PE.
This decouples the accesses to memory and the computation on PEs.

Unlike speculative prefetching, a fetch is non-speculative: the data accessed by a fetch is guaranteed
to have a short reuse distance. FIBERCACHE exploits this property through the replacement policy.
FIBERCACHE assigns each line a priority in replacement. The priority is managed as a counter: e.g.,
a 5-bit counter for 32 PEs. A fetch request increments the priority, while a read request decrements
it. Lower-priority lines are selected for eviction. This guarantees that most read’s hit in the cache;
effectively, the priority is a soft lock on lines that are about to be used. FIBERCACHE uses simple 2-bit
SRRIP [121] to break ties among same-priority lines.

Reading and writing partial outputs use the other two primitive requests: write and consume. Both
write and consume exploit the fact that partial output fibers need not be backed up by memory. Upon
a write, FIBERCACHE allocates a line without fetching it from memory, updates the data, and sets a
dirty bit. A consume is similar to a read, but instead of retaining the line after the access, FIBERCACHE

invalidates the line, without writing it back even though it is dirty.

Banks and interconnect: Since FIBERCACHE must accommodate concurrent accesses from multiple PEs,
we use a highly banked design (e.g., 48 banks for 32 PEs). Banks are connected with PEs and memory
controllers using crossbars.
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empty B fibers

Partial output fibers

Output fiber

Figure 6.9: Example schedule tree (balanced and top-full) to combine 18 input fibers on PEs with radix
3.

Scheduler 6.2.3

The scheduler assigns compute tasks to PEs to ensure high utilization and minimize memory traffic.

From A to tasks: The scheduler assigns work by traversing the rows of A. Each row of A with fewer
nonzeros than the PE radix results in a single task that produces the corresponding output row and
writes it directly to main memory.

When a row of A has more nonzeros N than the PE radix R, the scheduler produces a task tree that
performs an radix-N linear combination in multiple radix-R steps. Figure 6.9 shows an example of a task
tree that combines 18 fibers using radix-3 mergers. Each node represents a fiber: the root is the output;
leaves are rows of B; and intermediate nodes are the partial output fibers. Edges denote which input
fibers (children) contribute to a partial or final output fiber (parent).

The scheduler produces a balanced, top-full tree. Balance improves merge efficiency: in the common
case, the rows of B have similar nonzeros, so a balanced tree results in similarly sized input fibers at
each tree level. This is more efficient than a linear tree, which would build an overlong fiber. Moreover,
a balanced tree enables more PEs to work on the same row in parallel. (SpArch [291] uses more
sophisticated dynamic selection of merge inputs based on their lengths; this is helpful in SpArch because
it purposefully constructs uneven partial output matrices, but does not help in GAMMA). Top-fullness
keeps footprints of partial output fibers low: by keeping the radix of the top levels full, and allowing
only the lowest level to have empty input fibers, partial fibers are kept small, reducing the pressure on
FIBERCACHE storage.

Mapping tasks to PEs: The scheduler dynamically maps tasks to PEs: when a PE becomes ready to
receive a new task, the scheduler assigns is the next available one. Tasks are prioritized for execution in
row order, to produce the output in an ordered fashion. For multi-task rows, the scheduler follows a
dataflow (i.e., data-driven) schedule: it schedules as many leaf tasks from a single row as needed to fill
PEs, and schedules each higher-level task as soon as its input fibers become available. The scheduler
prioritizes higher-level tasks over lower-level ones to reduce the footprint of partial outputs.

Staging tasks and data: To avoid stalls when starting up a linear combination, PEs can accept a new
task while processing the existing one. When a PE receives a new task, it starts staging its data into its
merge buffers, so that it can switch from processing the old task to the new task in a single cycle.
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6.2.4 Memory management

Prior to the execution, matrices A and B are loaded into memory, and a sufficiently wide range of address
space is allocated for C and partial output fibers.

Since the lengths of partial output fibers are unknown ahead of time, GAMMA allocates and deallocates
them dynamically. Upon scheduling a merge that produces a partial output fiber, the scheduler estimates
the number of nonzeros of the fiber conservatively, by using the sum of the numbers of nonzeros in all its
input fibers. The scheduler then assigns and records the address range of the partial output fiber. This
space is only used if the FIBERCACHE needs to evict a partial output, a rare occurrence. The scheduler
deallocates the memory when the partial output fiber is consumed. The number of partial outputs is
limited to twice the number of PEs, so this dynamic memory management requires negligible on-chip
memory.

6.3 Preprocessing for GAMMA

Though Gustavson is a more efficient dataflow than inner- and outer-product, it can incur high traffic.
Consider Gustavson on dense operands: processing each row of A requires a complete traversal of every
row of B, and results in high memory traffic. This phenomenon is mitigated for sparse operands, because
processing a sparse row of A only touches a subset of rows of B, and reuse across those subsets makes
the FIBERCACHE effective. Specifically, rows of B enjoy reuse in the FIBERCACHE when multiple nonzeros
in A with the same column coordinate appear in nearby rows of A. However, there are two reasons this
may not happen: either nearby rows of A contain largely disjoint sets of column coordinates (the matrix
lacks structure), so there is minimal reuse of rows of B; or a single row of A has many nonzeros, which
requires many rows of B, thrashing the FIBERCACHE.

Prior work has addressed improving such problematic memory access patterns in sparse matrices
and graphs using preprocessing techniques like tiling and reordering [116, 124, 203]. Similarly, GAMMA,
like prior accelerators, can exploit preprocessing techniques tailored to its memory system and dataflow
to further reduce data movement.

To improve data reference behavior, we design two preprocessing techniques for rows of A. Affinity-
based row-reordering targets disparate adjacent rows of A by reordering rows so that similar rows are
processed consecutively. Selective coordinate-space tiling breaks (only) dense rows of A into subrows
to avoid thrashing, and is applied before row-reordering to extract affinity among the subrows. Both
techniques can be implemented by either relying on auxiliary data for indirections or by modifying the
memory layout of A. These techniques improve the reuse of sets of rows of B, achieving better versatility
and efficiency.

6.3.1 Affinity-based row reordering

Problem definition: We use a score function S(i, j) to represent the affinity of two rows Ai and A j.
S(i, j) is the number of coordinates for which both Ai and A j have a nonzero value.

Because on-chip storage can hold rows of B corresponding to several rows of A, we are interested in
maximizing the affinity of a row with the previous W adjacent rows:

α(i) =
i−1
∑

j=max(0,i−W )

S(i, j) (6.1)
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Algorithm 1: Affinity-based row reordering.
Result: Permutation P of row indices
for r ∈ rows do Q.insert(r, 0);
select some r to start, P[0]← r, Q.remove(r);
for i ∈ [1, M) do

for u ∈ column coords of row P[i − 1] do
for r ∈ row coords of column u do

if r ∈Q then Q.incKey(r);
if i >W then

for u ∈ column coords of row P[i −W − 1] do
for r ∈ row coords of column u do

if r ∈Q then Q.decKey(r);
P[i]←Q.pop();

We set the window size W to capture the number of rows of B that fit in the FIBERCACHE on average:

W =
max nnz in FIBERCACHE

nnz per rowA · nnz per rowB
(6.2)

The goal of the algorithm is to find a proper permutation of rows to maximize the affinity of the whole
matrix, which we call α:

α=
M−1
∑

i=1

α(i) =
M−1
∑

i=1

i−1
∑

j=max(0,i−W )

S(i, j) (6.3)

Algorithm: Algorithm 1 shows the pseudocode for the affinity-based reordering algorithm. This algorithm
is greedy and uses a priority queue (Q) to efficiently find the row with highest affinity. The algorithm
produces a permutation P of A’s rows.

Selective coordinate-space tiling 6.3.2

Tiling improves input reuse (as each input tile is sized to fit on-chip) at the expense of additional
intermediate outputs that must be merged. Tiling dense matrices is nearly always a good tradeoff [52, 198]
because each input contributes to many outputs, and tiling introduces a large gain in input locality for a
few extra fetches of intermediate outputs. However, this no longer holds with sparse matrices, because
output traffic often dominates. In other words, tiling sparse rows may reduce traffic to B but produce
many partial output fibers that must be spilled off-chip and then brought back to be merged.

Therefore, we apply tiling selectively, only to extremely dense rows of A. Specifically, we split rows
of A whose footprint to hold rows of B is estimated to be above 25% of the FIBERCACHE capacity (the
estimated footprint is the length of A’s row times the average number of nonzeros per row of B). Each
subrow resulting from this split contributes to a partial output fiber that must be combined eventually.
Because these partial output fibers are not accessed close in time, they are likely to be spilled. To
ensure that the partial output fibers generated by subrows can be combined in just one round, we use
the merger’s radix R as the tiling factor, i.e., the number of subrows. Rather than splitting rows into
evenly-sized subrows, we perform coordinate-space tiling [248]: we split evenly in coordinate space, so if
column coordinates are in the range [0, K), we create up to R subrows with the ith subrow having the
nonzeros within an even subrange [iK/R, (i + 1)K/R). Experimentally, we find this creates subrows with
higher affinity, improving performance. In large matrices, the resulting subrows may still be large, so
this process is repeated recursively.
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PEs 32 radix-64 PEs; 1 GHz

FIBERCACHE 3 MB, 48 banks, 16-way set-associative

Crossbars 48×48 and 48×16, swizzle-switch based

Main memory 128 GB/s, 16 64-bit HBM channels, 8 GB/s/channel

Table 6.1: Configuration of the evaluated GAMMA system.

Area (mm2) PE component Area (mm2) % PE

32 PEs 2.8 Merger 0.025 29%
Scheduler 0.11 FP Mul 0.037 43%

FIBERCACHE 22.6 FP Add 0.007 8%
Crossbars 3.1 Others 0.018 20%

Total 28.6 PE total 0.087 100%

Table 6.2: Area breakdown of GAMMA (left) and one PE (right).

6.4 Methodology

System: We evaluate a GAMMA system sized to make good use of high-bandwidth memory and consume
similar levels of resources compared to prior accelerators [196, 291], in order to make fair comparisons.
Our system has 32 radix-64 PEs, a 3 MB FIBERCACHE, and a 128 GB/s High-Bandwidth Memory (HBM)
interface. The system runs at 1 GHz. Table 6.1 details the system’s parameters. We built a cycle-accurate
simulator to evaluate GAMMA’s performance and resource utilization.

We measure GAMMA’s area by writing RTL for the PEs and scheduler. We then synthesize this logic
using yosys [269] and the 45 nm FreePDK45 standard cell library [143]. We use CACTI 7.0 [23] to model
the FIBERCACHE at 45 nm. We model the same swizzle-switch networks [229] as in prior work [196].
Table 6.2 shows GAMMA’s area breakdown, which we contrast with prior work in Section 6.5.

Baselines: We compare GAMMA with two state-of-the-art accelerators, OuterSPACE and SpArch. We
built detailed memory traffic models for OuterSPACE and SpArch to understand their key operational
differences. We use the same approach as prior work [291] to compare end-to-end performance, by
using the same set of matrices used in their evaluations.

We also compare GAMMA against the multicore SPMSPM implementation from Intel MKL [262] (mkl_-
sparse_spmm function), running on a 4-core, 8-thread Skylake Xeon E3-1240 v5, with two DDR4-2400
channels. We do not include GPU results because existing GPU SPMSPM implementations perform
similarly to MKL on CPUs [291].

Inputs: We use two sets of matrices in the evaluation. First, the Common set of matrices is the set used in
the evaluations of OuterSPACE and SpArch. We use the Common set for direct performance comparisons
with these accelerators. However, the Common set covers only a fraction of the space of possible inputs:
these matrices are square, and most are very sparse, with a maximum mean of 26 nonzeros per row.
This is not representative of other commonly used matrices, and masks the inefficiencies of outer-product
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Matrix Nnz/row Rows Cols

NotreDame_actors 3.75 392,400 127,823
relat8 3.86 345,688 12,347

Maragal_7 25.63 46,845 26,564
degme 43.81 185,501 659,415

EternityII_Etilde 116.42 10,054 204,304
nemsemm1 267.17 3,945 75,352

Matrix (Square) Nnz/row Rows Matrix (Square) Nnz/row Rows

gupta2 68.45 62,064 x104 80.4 108,384
vsp_bcsstk30_500 69.12 58,348 m_t1 99.96 97,578

Ge87H76 69.85 112,985 ship_001 111.58 34,920
raefsky3 70.22 21,200 msc10848 113.36 10,848
sme3Db 71.6 29,067 opt1 124.97 15,449

Ge99H100 74.8 112,985 ramage02 170.31 16,830

Table 6.3: Characteristics of the extended set of matrices.
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Figure 6.10: Gmean speedup vs. MKL on common set for OuterSPACE (OS), SpArch (S), and GAMMA

without and with preprocessing (G/GP).

designs. To evaluate the designs with a broader range of inputs, we construct the Extended set of matrices,
which includes 18 matrices from SuiteSparse Matrix Collection [146]. Table 6.3 lists these matrices,
which include non-square and square matrices with a wider range of sparsities and sizes. We evaluate
A× A for square matrices (like prior work), and A× AT for non-square matrices.

Evaluation 6.5

Performance on Common-set matrices 6.5.1

Figure 6.10 reports the performance of all accelerators on common-set matrices. Each bar shows the
gmean speedup over our software baseline, MKL. Note that common-set matrices are highly sparse
and thus well suited for OuterSPACE and SpArch. On these matrices, GAMMA (with preprocessing)
is gmean 2.1× faster than SpArch, 7.7× faster than OuterSPACE, and 38× faster than MKL. Even
without preprocessing, which makes GAMMA gmean 16% faster, GAMMA outperforms SpArch by 1.84×,
OuterSPACE by 6.6×, and MKL by 33×.

Figure 6.11 further shows the per-matrix speedups of GAMMA (with preprocessing) over MKL. GAMMA

outperforms MKL by up to 184×.
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Figure 6.11: Speedups of
GAMMA over MKL on the
common set.
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Figure 6.12: Off-chip traffic on common-set matrices of OuterSPACE (O),
SpArch(S), and GAMMA without/with preprocessing (G/GP) (lower is better).
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Figure 6.13: Memory bandwidth utilization on common-set matrices of GAMMA without and with
preprocessing (G/GP).

Figure 6.12 and Figure 6.13 explain how GAMMA outperforms SpArch, and OuterSPACE: through a
combination of reducing memory traffic and improving memory bandwidth utilization.

Figure 6.12 reports the memory traffic of OuterSPACE, SpArch, and GAMMA without and with
preprocessing. Each group of bars shows results for one matrix. Traffic is normalized to the compulsory
traffic, which would be incurred with unbounded on-chip storage: fetching A, the needed rows of B, and
writing C . Each bar is broken down into four categories: reads of A or B, writes of C , and reads and
writes of partial outputs.

Figure 6.12 shows that GAMMA incurs close-to-optimal traffic: across all inputs, it is only 7% higher
than compulsory (i.e., minimum) traffic with preprocessing, and 26% higher without preprocessing. By
contrast, SpArch is 59% higher, and OuterSPACE is 4× higher. OuterSPACE suffers writes and reads
to partial matrices. SpArch reduces partial output traffic over OuterSPACE, but incurs high traffic on
B for two reasons. First, to reduce partial output traffic, SpArch preprocesses A to produce a schedule
that worsens the access pattern to B. Second, SpArch splits its storage resources across data types (e.g.,
merge and prefetch buffers), leaving only part of its on-chip storage (around half a megabyte) to exploit
reuse of B. By contrast, GAMMA’s shared FIBERCACHE allows B’s rows to use more on-chip storage when
beneficial. Because GAMMA’s partial outputs are rows, it has negligible partial output traffic, and its main
overhead comes from imperfect reuse of B.

Figure 6.13 further illustrates how memory bandwidth translates to performance. Because GAMMA’s
PEs achieve very high throughput (processing inputs and outputs at a peak rate of 768 GB/s) and
Gustavson’s algorithm does not have compute-bound execution phases, GAMMA almost always saturates
the available 128 GB/s memory bandwidth. By contrast, OuterSPACE and SpArch suffer from the compute
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Figure 6.14: Speedups of
GAMMA over MKL on the
extended set.
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bottleneck of merging all the partial matrices, and hence achieve lower bandwidth utilizations of 48.3%
and 68.6%, respectively, on the same matrices. GAMMA’s higher performance stems from its lower
memory traffic and higher bandwidth utilization.

Performance on Extended-set matrices 6.5.2

To further evaluate the versatility of GAMMA, we use the extended set of matrices, which includes
non-square matrices and square matrices more diverse than the common set (Section 6.4)

Figure 6.14 shows the speedups of GAMMA (with preprocessing) over MKL. By exploiting hardware
specialization, GAMMA outperforms MKL by gmean 17× and by up to 50×.

Figure 6.15 compares GAMMA with SpArch and OuterSPACE. The off-chip traffic of SpArch and
OuterSPACE are are 3× and 14× greater than GAMMA, respectively. This difference is much larger than
that in Figure 6.12, because the extended set includes matrices that are denser and have more nonzeros
per row. Outer-product struggles on these matrices, as it suffers the excessive memory traffic caused
by writing and reading partial output matrices. For instance, on matrices that are relatively dense,
such as msc10848 and ramage02, such memory traffic is dominant, reaching 54× over compulsory in
OuterSPACE.

Effectiveness of GAMMA preprocessing 6.5.3

Preprocessing improves the performance of GAMMA by 18% on average. Figure 6.16 further illustrates the
effects of affinity-based row reordering and selective coordinate-space tiling in two cases. Affinity-based
row reordering improves the reuse of B. For instance, it contributes to a 6× reduction of traffic on
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sme3Db. As Section 6.3.2 explained, tiling all rows of A (+T in Figure 6.16) may hurt: it does little
harm to Maragal_7 but causes 13× extra traffic on sme3Db due to excessive partial outputs. This is why
GAMMA selectively tiles long rows only. Selective coordinate-space tiling reduces traffic of B drastically
by tiling dense rows (e.g, on Maragal_7), and also avoids performance pathologies by not tiling sparse
rows (e.g., on sme3Db).

6.5.4 GAMMA area analysis

As shown in Table 6.2, the total area of GAMMA is 28.6 mm2, synthesized with a 45 nm standard cell
library. Scaled down to 40 nm, GAMMA’s area is 22.6 mm2, smaller than the 28.5 mm2 of SpArch at 40 nm
and the 87 mm2 of OuterSPACE at 32 nm. The vast majority of area is used by the FIBERCACHE. This is a
good tradeoff for SPMSPM, since the key bottleneck is memory traffic and data movement. The PEs are
simple, taking 10% of chip area, and the merger and multiplier are its main components. By contrast,
SpArch and OuterSPACE spend far more area on compute resources, e.g., 60% on SpArch’s merger.

6.6 Additional Related Work

Much prior work has proposed optimized CPU and GPU implementations for SPMSPM, e.g., using
autotuning [260], input characteristics [272], or code generation [140] to pick a well-performing SPMSPM
implementation. Intel’s MKL [262], which we use in our evaluation, is generally the fastest, or close to
the fastest, across input matrices [272]. Although GPUs have higher compute and memory bandwidth
than CPUs, SPMSPM is a poor match to the regular data parallelism supported in current GPUs, so GPU
frameworks [74, 165, 191] achieve similar SPMSPM performance to CPUs [272, 291].

Most CPU and GPU implementations follow Gustavson’s dataflow; variants differ in how they merge
rows of B, e.g., using sparse accumulators [92, 139], bitmaps [128], hash tables [188, 191], or heaps [19]
to hold outputs. This algorithmic diversity arises because merging fibers is a very expensive operation
in general-purpose architectures. At a high level, heaps are space-efficient but very slow, and the
other data structures trade lower compute for higher space costs. GAMMA’s high-radix merges are both
space-efficient and make merges very cheap, avoiding this dichotomy.

As explained in Section 6.1.4, to the best of our knowledge, accelerators earlier than GAMMA did
not exploit Gustavson’s dataflow. However, MatRaptor [242], which is concurrent with GAMMA, does
exploit Gustavson’s dataflow. Nonetheless, MatRaptor and GAMMA are very different: MatRaptor does
not exploit the reuse of B fibers: it streams such fibers from DRAM and uses them once. By contrast,
GAMMA exploits the reuse of B fibers with FIBERCACHE. This adds area costs, but since reusing B fibers is
the key way by which Gustavson’s dataflow minimizes traffic, GAMMA improves performance significantly.
Consequently, on the common-set matrices, MatRaptor outperforms OuterSPACE by only 1.8× [242],
worse than SpArch’s improvement over OuterSPACE (3.6×), while GAMMA outperforms OuterSPACE by
6.6× even without preprocessing.

Preprocessing of sparse matrices [56, 70, 80, 264] has been studied extensively. Matrix preprocessing
on CPUs and GPUs typically targets creating dense tiles [203] to reduce irregularity of partial outputs,
disjoint tiles [25] to minimize communication, or balanced tiles [116, 124] to ease load balancing. These
techniques differ from GAMMA’s: our goal is to improve the locality of B, whereas CPUs and GPUs lack
high-radix mergers and have more on-chip storage, making B’s locality a less pressing concern.
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Summary 6.7

SPMSPM is the basic building block of many emerging sparse applications, so it is crucial to accelerate
it. However, prior SPMSPM accelerators use inefficient inner- and outer-product dataflows, and miss
Gustavson’s more efficient dataflow.

We have presented GAMMA, an SPMSPM accelerator that leverages Gustavson’s algorithm. GAMMA

uses dynamically scheduled PEs with efficient high-radix mergers and performs many merges in parallel
to achieve high throughput, reducing merger area by about 40× over prior work [291]. GAMMA uses
a novel on-chip storage structure, FIBERCACHE, which supports Gustavson’s irregular reuse patterns
and streams thousands of concurrent sparse fibers with explicitly decoupled data movement. We also
devise new preprocessing algorithms that boost GAMMA’s efficiency and versatility. As a result, GAMMA

outperforms prior accelerators by gmean 2.1×, and reduces memory traffic by 2.2× on average and by
up to 13×.
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Conclusion 7

This thesis has presented novel techniques to extend memory system semantics to accelerate challenging
irregular applications. These techniques are tailored to different degrees: COUP and COMMTM are
general support for exploiting commutativity to reduce traffic and serialization, while HTA and GAMMA

address issues for a specific data structure, hash table, and a specific application, SPMSPM, respectively.
In particular, we have presented the following contributions:

• COUP is a general technique that extends coherence protocols to allow local and concurrent single-
instruction commutative updates. Specifically, COUP decouples read and write permissions, and
introduces commutative-update primitive operations, in addition to reads and writes. With COUP,
multiple caches can acquire a line with update-only permission, and satisfy commutative-update
requests locally, buffering and coalescing updates. On a read request, the coherence protocol
gathers all the local updates and reduces them to produce the correct value before granting read
permission.
COUP integrates seamlessly into existing coherence protocols, requires inexpensive hardware,
preserves coherence and does not affect the memory consistency model. Simulation results on a
128-core system show that COUP accelerates update-heavy applications by up to 2.4×. Meanwhile,
COUP lowers traffic by up to 20× and reduces memory access latency by up to 12×.

• COMMTM is a hardware transactional memory that exploits semantic commutativity to avoid
conflicts that limit scalability in prior hardware speculation techniques. COMMTM extends the
coherence protocol and conflict detection scheme to allow multiple cores to perform an unlim-
ited number of user-defined multi-instruction commutative operations concurrently and without
conflicts. COMMTM preserves transactional guarantees: COMMTM triggers reductions when non-
commutative operations access the same data as commutative ones, so they never observe any
partial state or out-of-order updates. We have shown that COMMTM’s basic scheme allows as
much concurrency as semantic locking, and gather requests allow COMMTM to reduce even more
conflicts.
COMMTM bridges the precision-overhead dichotomy of hardware vs software conflict detection. In
return, COMMTM scales many operations that serialize in conventional HTMs, while retaining the
low overhead of HTMs. As a result, at 128 cores, COMMTM outperforms an eager-lazy HTM by up
to 3.4× and reduces or even eliminates aborts.

• HTA is a technique that leverages caches to accelerate hash tables. HTA introduces simple ISA
extensions and hardware changes to address the high runtime overheads and the poor spatial
locality of conventional hash table implementations. HTA adopts a hash table format that exploits
the characteristics of caches. HTA uses new instructions that leverage existing core structures to
accelerate hash table lookups and updates.
We have presented two implementations of HTA: FLAT-HTA and HIERARCHICAL-HTA. FLAT-HTA
adopts a simple, hierarchy-oblivious memory layout and reduces runtime overheads through simple
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changes to cores. HIERARCHICAL-HTA uses a multi-level hierarchy-aware layout and requires
modifications in caches to further improve spatial locality.
As a result, FLAT-HTA outperforms state-of-the-art implementations of hash-table-intensive appli-
cations by up to 2×, while HIERARCHICAL-HTA outperforms FLAT-HTA by up to 35%. Finally, we
have shown that HTA bridges the gap between hardware and software memoization: FLAT-HTA
outperforms software memoization by up to 2×, and matches the performance of conventional
hardware techniques, but avoids the overheads of large dedicated buffers.

• GAMMA is an SPMSPM accelerator that leverages Gustavson’s algorithm. GAMMA uses dynamically
scheduled PEs with efficient high-radix mergers and performs many merges in parallel to achieve
high throughput, reducing merger area by about 40× over prior work [291]. GAMMA uses a novel
on-chip storage structure, FIBERCACHE, which supports Gustavson’s irregular reuse patterns and
streams thousands of concurrent sparse fibers with explicitly decoupled data movement. GAMMA

features a dynamic scheduling algorithm to achieve high utilization despite irregularity. We also
devise new preprocessing algorithms that boost GAMMA’s efficiency and versatility.
GAMMA is an example of efficient algorithmic implementation enabled by novel architectural
support. FIBERCACHE combines the features of buffers and caches, and decouples memory accesses
and reads. This allows dependent reads to be processed in a decoupled fashion, and thus enables
a specialized hardware implementation of Gustavson’s dataflow.
As a result, GAMMA outperforms prior accelerators by gmean 2.1×, and reduces memory traffic by
2.1× on average and by up to 13×.

These contributions demonstrate that it is possible to extend the memory system semantics with
reasonable extra complexity.

7.1 Future Work

This thesis opens exciting avenues for future research. It is promising to combine and generalize the
introduced techniques to further improve the performance and the generalizability of the system.

Combining these techniques is promising, as many challenging access patterns often coexist in the
same irregular application. One such example is to combine GAMMA and COUP in an accelerator. While
GAMMA focuses on the data-dependent gather reads, scatter commutative updates are the other side of
SPMSPM [107], which can leverage COUP to reduce their costs. Such a tradeoff between gather reads
and scatter updates has been studied extensively in graph analytics [30, 98, 290]. Architectural support
may change the tradeoff significantly and may enable new data representations and compute schedules
to improve performance. For example, recent work like PHI [186] and CCache [22], combines COUP’s
insight of exploiting commutativity with an improved data representation to achieve better performance.

Applying these techniques to other architectures: Though COUP, COMMTM, and HTA are proposed for
general-purpose multicores, systems such as GPUs, accelerators, and heterogeneous systems, may benefit
from similar architectural support. For instance, though COMMTM is built on hardware transactional
memory, the idea of exploiting commutativity to reduce conflicts can be applied to other systems that
exploit speculative parallelism [123, 238]. Similarly, GAMMA is a specialized accelerator for SPMSPM,
but its key insight, extending caches to benefit from decoupled execution, may be applicable to general-
purpose computing.
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Generalizing these techniques: There are many other useful properties of operations, data structures,
and applications that can be exploited by the architecture. For example, HTA may be extended to
accelerate trees, which suffer from the issues caused by small fragments similar to hash tables, and hence
may benefit from a flexible memory layout and simple hardware acceleration. GAMMA may be extended
to support applications that are beyond the typical SPMSPM. For instance, deep learning workloads
consist of mostly tensor/matrix multiplications with characteristics that can be further exploited: they
tend to introduce windows and bidirectional passes, and typically process sparse tensors/matrices with
structure and higher density. Intersections and unions on data structures that are compressed to formats
other than ordered coordinate-value lists, e.g, run-length encoding, may also incur dependent reads with
irregular reuse, and hence may benefit from similar architectural support to GAMMA.

These techniques enable other promising research directions as well. For instance, since GAMMA

demonstrates in practice the superiority of Gustavson’s dataflow on a wide range of matrices, it would
be insightful to develop an analytical model for selecting the optimal SPMSPM dataflows for any input
matrices. Even with HTA, there are still more opportunities for memoization, e.g., at sub-function
granularity, in domain-specific accelerators, or with compiler-based automation. We leave all these
explorations to future work.
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