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Abstract

In recent years, people use 2D material as a building block to fabricate
all kinds of multilayer stack devices, some of which host strongly correlated
physics such as twist bilayer graphene and ABC-stack trilayer graphene. Mott
insulator and superconductivity are found in these systems, which provide a
cleaner and more controllable platform to study the strongly correlated physics
than the traditional cuprate system. As a complementary method to trans-
port measurement, which focuses on the low-frequency response, the optical
spectrum is an important way to detect the frequency-dependent response and
extract the underlying physics. In this project, we measured the optical spec-
trum on an ABC-stack trilayer graphene sample with the photocurrent method
to understand the electron behavior in these delicate structures.
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Chapter 1

Introduction

1.1 background

After the first stable 2D material, monolayer graphene, is discovered in 2004
[1], people entered the world of low-dimensional system. Unlike the quadratic
dispersion for regular 3D materials, monolayer graphene has the Dirac shape k-
E relationship with spin and valley degeneracy, which results in many exciting
physics. With the development of the 2D material family, people use them as
building blocks to make high quality samples, which can fine-tune the physical
properties. In this way, a bunch of new behaviors emerged in this system.

Superconductivity found in twisted bilayer graphene by the Jarillo-Herrero
group at MIT stirred the condensed matter physics community since it was
announced in 2018 [2][3]. This is the first example to use engineered 2D ma-
terials to explore and study correlated electron physics that used to mainly
happen in other condensed matter material systems. Since then, people use
scanning tunneling microscope (STM) to detect the electronic structures of
these strongly correlated twist bilayer-graphene samples[4][5][6][7]. However,
for another important structure, ABC stack trilayer graphene, it is hard to
study with STM because it has a top gate, which prevents scanning tips touch
the sample directly[8][9]. Our infrared optical absorption spectrum method is
suitable to measure the spectrum for this kind of structure with a top gate[10].

1.2 General idea

There are two common ways for infrared optical measurement, transmission
and reflection. Since there is no good continuous laser in the mid-infrared and
far-infrared range, we have to use a globar, a black body radiation source,
as our light source for the optical spectrum. The smallest focused spot size
from globar is about one millimeter. However, suppose we want to get a high-
quality 2D material device. In that case, we need to encapsulated graphene
into hexagonal boron nitride (hBN). This procedure limits the sample size to
around 10 x 10 micrometers. If the beam spot is much higher than the sample
size, the most signal comes from the silicon substrate rather than the sample
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itself, so the optical noise is huge. It’s very hard to get an optical spectrum
with the traditional transmission and reflection method.

For the 2D material device, we can always tune the Fermi level with the
bottom/top gate. If there is a gap in the sample, we can adjust the Fermi level
into the gap to make the whole device lie in a low carrier density insolation
state. If we shed light on our sample, photons will induce extra carriers in the
system. This carrier density is proportional to the light absorption intensity.
The idea of our photocurrent optical spectrum measurement is that we apply
a small DC bias into the sample. After the photon-induced carrier appears,
there will be a photon-induced current. This current is also proportional to
light intensity. Fourier Transform Infrared Spectrometer (FTIR) is commercial
equipment to measure infrared optical spectrum. It can produce an intensity-
modulated output beam with a Michelson interferometer, which contains two
mirrors. One is a fixed mirror, the other is a scanning mirror, output optical
power is related to scanning mirror position. We use this equipment to shed
light on the sample and collect the photocurrent signal as a function of scanning
mirror position, after fourier transformation we will get the optical spectrum.

In this thesis, I will calculate the one, two, three layers graphene’s band
structure in Chapter.2, and discuss the origin of the strongly correlated prop-
erties in trilayer graphene. In Chapter.3, I will introduce the optical spectrum
measurement and our photo-current experimental setup. In Chapter.4, I will
put the transport result from our collaborator in ref.[8][9] back to back with
our optical spectrum to interpret the data.
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Chapter 2

Theory and Calculation

In this chapter, we will calculate the band structures of monolayer graphene,
bilayer graphene and trilayer graphene. Monolayer graphene’s band structure
is relatively easier to get since it has an explicit solution, we will show the
linear dispersion near the Fermi level at the conrner of brillouin zone. For
multi-layer graphene, the inner plane has a covalent bond between C-C atoms,
and the interlayer coupling is dominated by van deer walls interaction. We
use the Linear Combination of Atomic Orbitals (LCAO) method to calculate
AB-stack bilayer graphene’s band structure and show a tunable electrical field
induced band gap near the Fermi level. ABC-stack trilayer graphene also has
electrical field induced gap, but the structure is more complicate, so we omit
the intermediate procedure and directly put the result from self-consistent
Hartree–Fock calculation.

2.1 Monolayer graphene

Monolayer graphene is part of the hexagonal crystal structure family with the
crystal system being hexagonal rather than rhombo-hedral. The primitive unit
cell is shown in Fig.2.1. Lattice constant for C-C bond is 1.42A.

Figure 2.1: Unit Cell of monolayer graphene
.

The lattice is defined only in two dimensions, the primitive lattice vectors
are shown in Fig.2.1, the first brillouin zone shape is shown in Fig.2.2, the high
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symmetry point K and K ′ are also labeled.
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Figure 2.2: First brillouin zone of monolayer graphene
.
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Considering the tight binding model with nearest neighbor interaction, the

Hamiltonian can be written as

ĤTB,n,n = −t
∑
ij=n.n

(a†iσbjσ +H.c.)

After the Fourier Transform, we get(
αk
βk

)
=
∑
i

exp i~k · ~R0
i

(
a†ie
−i~k·~δ1/2

b†ie
i~k·~δ1/2

)

Ĥk =

(
0 ∆k

∆∗k 0

)
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where the

∆k = −t exp

(
−ikxa

(
1 + 2 exp

(
i · 3kxa

a

)
cos

√
3

2
kya

))

Now we can solve the eigen-equation and get the eigenvalue

εk = ±|∆k| = ±t

(
1 + 4 cos

3kxa

a
cos
√

3
kya

2
+ 4 cos2

√
3

2
kya

) 1
2

At K and K ′ point, the energy is 0, which means the Fermi level lies at K
and K ′ point. Suppose ~q = ~k − ~K, we substitute this formula into energy
eigenvalue,

∆(~q) ' 2te−iKxa~q · ∇k

(
e3ikxa/2 cos

√
3

2
kya

)
~k= ~K

= h̄vF (qx + iqy)

Ĥ = h̄vF

(
0 qx + iqy

qx − iqy 0

)
= h̄vF σ̂ · ~q

So the energy eigenvalue and eigenvector is

ε(q) = ±vF |q|

ψ±(K)(q) =
1√
2

(
exp iθq/2
± exp−iθq/2

)
θq = tan−1(qx/qy)

Here we can clearly see that energy is proportional to the momentum, so it is
a linear Dirac dispersion.

2.2 Bilayer Graphene

The two coupled honeycomb lattices in bilayer graphene (BLG) are misaligned
from each other to lead to energetic stability of the bonds. The lattice con-
stant of AB-stack BLG is identical to that of monolayer.

AB-stacked bilayer graphene is a 2D crystal consisting of two layers of
Carbon atoms arranged in a hexeagonal lattice stacked at an offset to each
other. The atomic configuration for Carbon (C) is as shown, C: 1s22s22p2.The
valence electrons can be described by 2s and three 2p wavefunctions. As the
interplanar interactions between the graphene are covalent, the outermost or-
bitals for bilayer graphene, with a basis of four atoms, is 16. These can be
used to estimate the energy bands using the Linear Combination of Atomic
Orbitals (LCAO) method. The Hamiltonian matrix for this approach will be
a 16 × 16 matrix.
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Graphene has an sp2 hybridization, so the 2s orbital is mixed between
the px and py orbitals, while the pz orbital remains unhybridized. The hy-
bridized orbitals constitute the σ-bond while the unhybridized orbital makes
up the π-bond. The π-bonds hybridize to form the π and π∗ bands which are
responsible for most of graphene’s unique properties [11]. We can represent
these hybridized orbitals as a linear combination, giving the LCAO method
credence.

Figure 2.3: Monolayer graphene with the σ-bonds (black lines) and π-bonds
formed by the pz orbitals

Additionally, we could include core and unoccupied orbitals, up to the free
electron energy, to better model our bands around the Fermi energy (EF ). The
benefit of this comes from better representing a complete basis of an infinite
number of bands compared to the finite basis proposed above. Doing this
of course gives an untenable matrix to solve eigenvalues for. Adding the 1s
core orbital increases the orbital basis to 20. The addition of this orbit would
capture lower valence bands. However, has a negligible effect on those around
the EF due to the insignificant interactions between the 1s and 2s and 2p
orbits. Adding the unoccupied bands would capture bands above those of the
valence orbits but would have little effect on them due to them being empty
at room temperature.

The primitive unit cell is shown in Fig.2.4. It has the same translational
symmetry as in monolayer graphene but covers both layers and consists of four
atoms: A1 and A2 in the bottom layer, B1 overlaying A2 and B2 in the top.
The vertical layer separation is d = 3.35�A. Using the coordinate system as
shown and taking A2 to be the origin, the basis vectors are given as

~dA1 =

[
a

2
,
a
√

3

6
, 0

]

~dA2 = [0, 0, 0]

~dB1 =

[
a

2
,−a
√

3

6
, d

]
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Figure 2.4: Unit Cell of bilayer graphene [12]
.

~dB2 = [0, 0, d]

The lattice is defined only in two dimensions, and primitive lattice vectors
are also shown in Fig.2.4 and defined as
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Reciprocal lattice vectors are defined according to the rule ~ai · ~bj = 2πδij.

~b1 = 2π

(
1

a
,

1√
3a
, 0

)
~b2 = 2π

(
1

a
,− 1√

3a
, 0

)
Fig.2.5 shows the xy-plane projection of the C atom orbitals, we need to

check all interactions within a unit cell and drop the unimportant term to
simplify our calculation.

2s-2s interactions

As seen in Fig.2.6 the s-orbitals are spherically symmetric, the coupling terms
will only differ by a phase. The two s-orbitals overlap to form a σ-bond such
that 〈φs1| Ĥ |φs2〉 = Vss.

2s-2pi interactions

The s-p interactions are attributed to the 2s and 2pi orbitals. Since the pi
orbitals have polarity associated to them, the interactions will have a sign and
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Figure 2.5: A 2D view of the lattice with the s, px, and py orbitals

Figure 2.6: s-s orbital interactions

Figure 2.7: s-p1 interaction

Figure 2.8: p1-p2 interaction

a phase dependence. Two vectors ~d and ~b1 represent the unit vector from one
carbon atom to the other carbon atom and the unit vector from the negative to
positive lobe of the pi-orbital, respectively. Generally, 〈φs| Ĥ |φpi〉 = Vsp(~d · ~b1).
See fig. 2.7 for the diagram of the s-p interaction.
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2pi-2pj interactions

The p-p interactions are attributed to the 2pi orbitals. Three vectors ~d, ~b1,
and ~b2 represent the unit vector from one carbon atom to the other carbon
atom, the unit vectors from the negative to positive lobe of the pi-orbital (~b1),

and pj-orbital (~b2), respectively. However, this interaction will have two com-

ponents depending on how the orbitals are aligned. Generally, 〈φpi | Ĥ
∣∣φpj〉 =

Vppσ(~d · ~b1) · (~d · ~b2) + Vppπ[~b1 − ~d(~b1 · ~d)] · [~b2 − ~d(~b2 · ~d)]. See fig. 2.8 for
the diagram of the p-p interaction. Finally, note that due to the uniformity
of the graphene lattice, and all the atoms in the basis being C, the LCAO

approximation allows for
〈
φA12s ( ~RA)

∣∣∣ Ĥ ∣∣∣φA22px( ~RB

〉
=
〈
φA22s ( ~RA)

∣∣∣ Ĥ ∣∣∣φA12px( ~RB

〉
and

〈
φA12s ( ~RA)

∣∣∣ Ĥ ∣∣∣φA12s ( ~RA

〉
=
〈
φA12s ( ~RB)

∣∣∣ Ĥ ∣∣∣φA12s ( ~RB

〉
. After solving the full

16x16 Hamiltonian, we get the band structure like shown in Fig.2.9. How-
ever, the Hamiltonian for AB graphene can be reduced to capture the just the
π-bands which are closest to the Fermi level and the Dirac point. As shown
below, all the pz orbitals columns are gathered and the Vsp terms are taken to
be 0. Shown in fig. 2.10 is the band structure for M -Γ-K-M-Γ.

Figure 2.9: The full band structure using the LCAO method

|φA1,pz〉 |φA2,pz〉 |φB1,pz〉 |φB2,pz〉


Ep Vppπg0 0 Vsp 0
Vppπg

∗
0 Ep 0 Vppσ

0 Vsp 0 Ep Vppπg6
0 Vppσ Vppπg

∗
6 Ep

Using this reduced Hamiltonian, we show a surface plot for a range of
(kx, ky) coordinates in k-space, as shown in Fig. 2.11 for the bands closest
to the Fermi energy. The wavefunctions closest to the Fermi energy are only
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Figure 2.10: The reduced band structure from M-Γ-K-M-Γ

given by the pz orbitals of the A1 and B1 atoms. Thus transport is dominated
by the pz electrons of those two atoms which don’t have out of plane orbital
overlaps.

ΨV B(r) = φB1,pz(r)

ΨCB(r) = φA1,pz(r)

The other two bands are linear combination of the pz orbitals of A2 and B2

which have the out of plane interaction and are further from the Fermi level.
The highest energy level is when the two atoms have wavefunctions which are
out of phase.

Ψh′(r) =
1√
2

(
φA2,pz(r) + φB2,pz(r)

)
Ψe′(r) =

1√
2

(
φA2,pz(r)− φB2,pz(r)

)

Figure 2.11: Surface plots of conduction and valence bands, including the six
Dirac points

13



Figure 2.12: |E|-k contour plot, showing the six Dirac ’pockets’

Tunable Bilayer Graphene Band Structure

One of the reasons that make bilayer graphene an interesting material is that it
has a tunable bandgap. First reported in Nature in June 2009, Yuanbo Zhang
and coworkers, experimentally demonstrated this phenomena. They used a top
and bottom gate to tune the displacement field in each of the graphene layers,
which allows for electron or hole doping depending on the applied bias. See fig.
2.13 for a schematic. For our LCAO model, we also demonstrate this tunable
bandgap by changing the top two Ep in the reduced Hamiltonian to control
the Fermi energy of the top layer and the bottom two Ep to control the bottom
layer. Choosing |Ep| = 0.2 eV, we get a gap opening of 175 meV; |Ep| = 0.4
eV, we get a gap opening of 260 meV; and |Ep| = 1.0 eV, we get a gap opening
of 335 meV. See fig. 2.14. With low |Ep|, there is small band bending at the
Dirac point, when |Ep| is increased, the gap becomes larger and the curvature
of the bands starts to become wider. The largest bandgap observed in the
paper was 250 meV. They also performed and provided a comparison of their
experimental data and theoretical predictions seen in fig. 2.15. Our model is
equivalent to the unscreened tight-binding as we change the |Ep|, we obtain
a linear change in the bandgap. In self-consistent tight-binding, additional
variables are added by considering many other nearest neighbors in and out of
plane.
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Figure 2.13: Sketch showing how gating of the bilayer induces top (Dt) and
bottom (Db) electrical displacement fields. The left band stucture shows the
electronic structure of a pristine bilayer has zero bandgap. On the right, upon
gating, the displacement fields induces a non-zero bandgap ∆ [13]

Figure 2.14: The band structure of bilayer graphene at (from left to right)
|Ep| = 0.2 eV, |Ep| = 0.4 eV, and |Ep| = 1.0 eV

Figure 2.15: A comparison of experimental data and theoretical models from
[13] showing the bandgap dependence on displacement field
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2.3 Trilayer Graphene

Why do we want to add one more layer on BLG? Because we want to search
the strongly correlated physics in graphene system. The competition between
the bandwidth (W) and the Coulomb repulsion energy (U) is a well-known ex-
planation of the mott insulator. Bandwidth has a positive correlation with the
kinetic energy gain of an electron via hopping to the neighbor sites, the more
kinetic energy gain, the easier to delocalize an electron’s wave function. If the
neighbor site also has electrons, there will be coulomb energy to repulse the new
electron, this mechanism tend to make electrons localized. The regular band
theory will not include Coulomb energy because they only consider electron
and lattice interaction rather than the interaction between electrons, which is
called single electron assumption. If electron density is high enough, electrons
will screen each other to reduce the effective Coulomb energy. If we reduce the
density of electrons, although the average distance is larger, the screen effect
is weaker, so the overall effect results in the increase of the Coulomb energy. If
Coulomb repulsion energy is well larger than bandwidth, electrons localized,
and the material is in an insulating state called mott insulator.

Monolayer graphene has linear dispersion near the Fermi level, bilayer
graphene changes to quadratic dispersion, a pretty natural question is that
”will the trilayer graphene be even flatter?” The answer is true. In this case,
we apply an electrical field to open a gap, which can further press the band to
be flatter. Moreover, we can align the bottom layer graphene with the hBN
substrate to create a morie superlattice, this method can open a moire gap
and dilute the local electron density. In this way, we can push the physical
property of TLG system into strongly correlated domain. Now let’s have the
quantitatively examine of bandwidth and Coulomb repulsion energy.

For the ABC-TLG/hBN heterostructure with an LM = 15nm moiré super-
lattice, the single-particle bandstructure of the heterostructure is described by
the Hamiltonian H = HABC +VM , where HABC is the ABC-TLG Hamiltonian
under a weak vertical electrical field, and VM describes the effective potential
acting on ABC-TLG from the moiré superlattice. The low-energy electronic
structure of the ABC-TLG can be captured by an effective two-component
Hamiltonian in the K valley that describes hopping between the A atom in the
top graphene layer and the C atom in the bottom graphene layer[8]:

HABC =
v30
t21

(
0 (π+)3

π3 0

)
+

(
2v0v3p

2

t1
+ t2

)
σ1

+

(
2v0v4p

2

t1
−∆′

)
I

+

(
3v20p

2

t21
− 1

)
∆′′I −∆σ3

where π = px + ipy, p is the electron momentum, U = 2∆ is the electron
energy difference between the top and bottom layer due to the vertical elec-
trical field. vi =

√
2
2
ati/h̄, a = 2.46A is the carbon–carbon lattice constant,
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∆′ = 0.00122eV , ∆′′ = −0.0095eV and t0, t1, t2, t3 and t4 are tight binding pa-
rameters in ABC-TLG obtained from local density approximation (LDA) ab
initio calculations with values of 2.62, 0.358, 0.0083, 0.293 and 0.144eV , respec-
tively[8]. The dispersion plot with different U value (from -200mV to 150mV)
are attached in Fig.2.16 and Fig.2.17, the negative U means the external elec-
trical field is applied from an opposite direction.

Figure 2.16: Band structure of TLG with external electrical field, U =
[−2000meV,−20meV ]

Figure 2.17: Band structure of TLG with external electrical field, U =
[0meV, 150meV ]

From the band structure plots, we can learn the following things. (a)
the band gap at charge neutral point is proportional (equivalent) to U for
ABC-TLG. (b) Bandwidth will decrease as the U increase until U is so big
(> 100meV ) that distorts flat band, as shown in Fig.2.18
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(c) At U = 20meV , We observe that the first hole miniband is strongly
suppressed by the vertical field and has W ≈ 13meV .The on-site Coulomb
repulsion energy can be estimated by U ≈ e2

4πε0εLM
, For LM = 15nm and an

hBN dielectric constant ε = 4, U is ∼ 25meV , which is larger than the value
of W [8]. This dominating on-site Coulomb repulsion naturally leads to Mott
insulator states in the isolated hole mini-band when there are one or two holes
per site, that is, at 1/4 and 1/2 filling of the band.

Figure 2.18: U dependent plot of band gap ∆ and bandwidth W
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Chapter 3

Experiment and Equipment

3.1 Optical absorption spectrum

Light-matter interaction play an important role in both fundamental physics
and applications, so optical spectroscopy is an useful method to detect the
physical properties in the material. Electron-photon scattering is essentially
the response to an AC electrical field with a frequency ω. The optical spectrum
can provide information about frequency-dependent response to the external
field, it is different from the transport measurement, which shows the response
to a low-frequency (static) external field. Both transport and optical spec-
troscopy require the external field to be weak to keep the perturbation theory
valid and prevent the nonlinear effect.

In this section, we only consider single electron-photon scattering process.
Both energy and momentum are conserved in this case.

Ei,e + h̄ωi = Ef,e + h̄ωf

~pi,e + h̄~ki = ~pf,e + h̄~kf

Where i and f is on behalf of initial and final state. Since the speed of light
c is much higher than the speed of electrons in the material, within the low
energy regime, we can always assume h̄|~k| � ~pe, the h̄~ki and h̄~kf term can be
neglected. The optical absorption is an electron absorb a photon and transit
to a higher energy level. The electron’s optical transition always happens at
the same momentum.

Ei,e + h̄ω = Ef,e

~pi,e = ~pf,e

Absorption efficiency depends on the interaction formula, Fermi level and the
band structure. It follows the Fermi golden rule.

γ =
2π

h̄
|V |2ρ

V =
〈
φi

∣∣∣Ĥint

∣∣∣φf〉
19



ρ = f(Ei)(1− f(Ef ))

where γ is the transition probability per unit time, V is the interaction strength
between initial and final state, Ĥint is the interaction Hamiltonian, φi and φf
are wave functions of initial and final state, ρ is the joint density of state,
f(E) = 1

1+exp
E−µ
kT

is the Fermi-Dirac distribution, µ is chemical potential, in

the most low temperature case, µ is equal to EF .
Transition probability is proportional to the joint density means that the

optical transition is allowed only when the initial state has one electron and
the final states is empty, this is a result of Pauli repulsion principle.

An example for monolayer graphene absorption in visible range is shown
in Fig.3.1[14].

Figure 3.1: Gate-tunable interband transitions in graphene: (a) an illustration
of interband transitions in hole-doped graphene. Optical transitions at photon
energies greater than 2εF are allowed, while those at energies below 2εF are
blocked. (b) the gate-induced change of transmission in hole-doped graphene
as a function of gate voltage Vg. The values of the gate voltage referenced to
that for charge neutrality, Vg−VCNP , for the curves -0.75, -1.75, -2.75 and -3.5
eV, from left to right. consistent[14]

3.2 Fourier Transform Infrared Spectrometer

Fourier Transform Infrared Spectrometer (FTIR) is a commercial product to
measure the optical absorption spectrum in the infrared range. It includes the
light source, interferometer and detector.

Light source

FTIR use globar as the light source. Globar is a black body radiator with
∼ 1500K surface temperature. The blackbody radiation spectrum is shown in
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Fig.3.2, from that we know 1500K radiation has peaks on near-infrared(NIR),
covers the mid-infrared)(MIR and has a tail on far-infrared(FIR). Our research
interest focus on FIR range, so we need a low-pass filter to filter out high energy
photon to prevent the heating and photo-doping effect. Moreover, the short
of intensity at FIR range limit the application of FTIR in low energy system,
the signal is too weak to extract from noise.

Figure 3.2: Black body radiation spectrum with different surface temperatures.

Interferometer

The structure of FTIR is shown in Fig.3.3, we don’t use any lens in the beam
path because the transmission and chromatic aberration are unsatisfactory for
lens in IR range. Light from globar is collimated by a parabolic mirror, and
then enter the interferometer. The beam is splitted by the beam splitter and
reflect by two mirrors. One mirror is fixed, the other one is movable. The
reflected beams recombine at beam splitter and go to the output port. The
output beam is the interference of the beam from two benches, so its intensity
is modulated by the optical distance difference of the two benches.

For transmission setup, the output collimate beam is focused on sample
and then reach the detector finally. We normalize the spectrum with sample
by the spectrum without sample to remove the systematic spectrum shape
such as the spectrum of light source, beam splitter and detector.
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Figure 3.3: The sketch of FTIR.

Interferogram and spectrum

Now let’s discuss about how to get a spectrum from FTIR. Fig.3.4 shows the
optical beam path of the Michelsons interferometer.

Figure 3.4: The beam path of Michelsons interferometer.

We assume l0 is the arm length of the fixed mirror, l1 is the arm length of
the translating mirror. The output intensity at wave vector k is a function of
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l1,

Ioutput(k, l1) = EE∗ ∝
∣∣eiωt+ikl1 + eiωt+ikl0

∣∣2
= 2 + 2 cos k(l − l0)

The detector can only detect the total optical intensity,

I(l) =

∫
[2 + 2 cos k(l − l0)]φ(k)dk

I(l) is the interferogram collected by the detector, and φ(k) is the spectrum
we want to get. Fig.3.5 shows an example of the interferogram.

Figure 3.5: Example: an interferogram of a bare MCT dector.

After the fourier transform, we get

φ(k) =

∫
I(l) cos(kl)dl

Fig.3.6 shows the corresponding spectrum of the interferogram of Fig.3.5.
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Figure 3.6: Example: The fourier transform of the interferogram, it is the
spectrum corresponding to the bare MCT dector.

3.3 Photocurrent measurement

Figure 3.7: Sketch of the interband transition in BLG, when Fermi level lies
in the gap.
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Figure 3.8: The photon-induced carrier is collected by the electrode fabricated
on the sample.

3.4 Cryostat and probe

We use a low temperature, high field superconductor magnet cryostat for this
optical spectrum measurement, in this work we don’t need high magnetic field,
but we can carry out high field magneto-optical measurement in this system.
Our cryostat utilizes the variable temperature insert (VTI) design, the magnet
and VTI are buried in the liquid helium environment. VTI’s inside sample
space is separated by a vacuum jacket from the the liquid helium environment,
typically the vacuum jacket is pumped down to 1E-5 mbar to maintain the
thermal isolation. A capillary tube connects the inside and outside space of
the VTI, we can pump the sample space to suck the helium from the outside
to cool down the sample space, a needle valve is installed on the end of this
capillary tube to apply a precise control of helium flow. A heater is attached
to the bottom of the VTI to heat it up, in this way, we can control the VTI’s
temperature, that’s why it is called variable temperature insert. Liquid helium
evaporation temperature is 4.2K, if we pump the liquid helium, the helium
drop will evaporate in the sample space and take out more heat, so the lowest
temperature in our system is around 1.2K.

Typically the cryostat is designed for transport measurement, which only
requires electrical connections. But we have to guide the IR beam to focus
on the sample in the optical experiment, so we designed a special probe to
meet the requirement. We utilize a copper tube as the main part of our probe,
the inner surface of this copper tube is polished to guide the beam. Although
copper has a higher thermal conductivity compared to 304 stainless steel, which
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Figure 3.9: Overview of our cryostat.

could result in a higher base temperature at sample space, we choose copper
because it has a higher reflectively to get a stronger light power on the sample.
On top of the probe we cap it with a diamond window to seal the vacuum,
diamond has uniform transparency in IR range, it is suitable for all-purpose
measurement. On the side we put two 19-pin military connectors and a valve
to make the electrical wiring and vacuum pumping port. Since the lens in
IR range is limited by the material, we can’t find broadband, low chromatic
aberration lens that works at low temperature, we use a reflective Winston
cone to focus IR beam down to around 1mm spot on the sample.
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Chapter 4

Experimental result

4.1 Transport data of ABC-TLG

In this section, I will introduce the transport data of TLG from our collabo-
rators in ref.[9]. In our project, we measured the same sample as in ref.[9].

Figure 4.1: Schematic cross-sectional view of the device.[8]

In this device, ABC-TLG is encapsulated by two hBN layers, this sandwich
structure lies on a SiO2/Si chip, SiO2 thickness is around 290nm, Silicon serves
as the bottom gate. Gold electrodes is deposited on the side of the device to
make a good contact to TLG layer. A NiCr gate layer is capped on the top
of the device, NiCr is an IR transparent material so it will not block our IR
beam coming from the top.

The bottom layer of ABC-TLG is aligned with the top layer of the bottom
hBN to form the moiré superlattice as shown in Fig.4.2. This superlattice is a
triangular lattice with the moiré wavelength around 15nm in this device. Due
to the spin and valley degeneracy, each site can host at most 4 electrons(or
holes) in one band. We can tune both the filling factor and the displacement
field with top and bottom gates.

When the filling factor of the mini-band is 1/2, each superlattice site con-
tains two electrons(or holes) as shown in Fig.4.3, the on-site coulomb repulsion
U prevents them from hopping to each other, this insulation state is called mott
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Figure 4.2: Schematic of ABC-TLG/hBN moiré superlattice. Gray dots are
the bottom graphene layer atoms, while the red and blue dots are the atoms
of the top hBN layer.[8]

Figure 4.3: In the Mott insulating state at half filling, each superlattice site
contains two electrons(or holes) and they are separated by the dominating
Coulomb repulsion.

insulation state. From the DOS plot, the conduction band is a continuous band
when filling factor is 0. When we tune the Fermi level to 1/4 and 1/2 filling,
extra mott gap is induced since an electron need more energy to compensate
the coulomb energy cost as shown in Fig.4.4.

Fig.4.5 shows the 2D color plot of the Rxx as a function of top gate voltage
Vt and bottom gate voltage Vb at 5K temperature. x and y axis are re-scaled
to align the constant carrier density n to diagonal direction and constant dis-
placement field D to off-diagonal direction. We can clearly see that there are
two extra resistance peaks show up corresponding to the 1/2 and 1/4 filling
factor with a relative big displacement field. The appearance of 1/2 and 1/4
filling peak indicate that the displacement field induced gap can suppress the
valance band width to enhance the strongly correlated physics. the A weaker
line lies at the bottom left of the plot is the full filling peak of mini-band.

28



Figure 4.4: Two band model of mott insulator. When the Fermi level lies in
the full filling position, sample behaves like a normal insulator. When we turn
the Fermi level into the 1/2 and 1/4 filling factor, on-site coulomb repulsion
dominate the properties, a strong correlated gap is induced in the conduction
band.

Figure 4.5: Two-dimensional color plot of Rxx as a function of Vt and Vb at
T = 5 K. [9]
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Figure 4.6: Rxx as a function of carrier density shows prominent Mott insu-
lating states at 1/4 and 1/2 fillings with D =-0.4 V/nm at T = 5 K. [9]

4.2 Optical spectrum

4.2.1 Interband optical transitions at zero doping

At zero doping level, we observed strong optical absorption peak result from
the van Hove singularities(vHS) of joint density of states(DOS).

In Fig.4.7, we calculated the band structure with six-band model of ABC-
TLG. The dash line shows a gap-less band structure without an external dis-
placement field, while the solid line shows a gaped band structure with the
potential difference ∆ between the top and bottom graphene layers. In the
later case we can find that the first valance band is separated from all other
bands resulting in a flat band which hosts strongly correlated physics when
doped[8][15][16]. The band gap is slightly smaller than the potential difference
∆ due to the potential energy asymmetry.

There are total of four possible optical transition within our interested
energy range at zero doping level. I1 is the transition from the first valance
band to the first conduction band, which dominate the spectra because of
the van Hove singularities(vHS) of joint density of states(DOS). When both
conduction and valence bands are relatively flat as in our bandgap-opened
TLG, the experimentally observed peak width serves as a good indicator of the
single-particle bandwidth W. I2 is the optical transition from the first valance
band to the second conduction band, I3 is the optical transition from the second
valance band to the first conduction band, and I4 is the optical transition
from the second valance band to the second conduction band. Fig.4.8 shows
the comparison between the calculated optical spectra and the experimental
result. In the bottom panel, the calculated spectra at ∆ = −87mV from
different optical transitions are color-matched labeled corresponding to the
color arrow in Fig.4.7, the black dashed curve is the sum of these four spectra.
In the experimental data atD = −0.71V/nm, the main peak appears at around
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72meV, a second broader peak shows up at around 95meV, which is consistent
to the calculation result. Another sharp peak at around 102meV is due to
the interlayer electron phonon coupling between hBN substrate and graphene,
which is beyond the scope of this work and will be discussed elsewhere.

Figure 4.7: The calculation of the ABC-TLG band structure with six band
model. The dashed line shows the dispersion without external displacement
field, while the solid line shows the dispersion with a potential energy difference
∆ between the top and the bottom layers of TLG.

Fig.4.9 shows the photocurrent spectra of TLG at different displacement
field D, the charge density is fixed at zero by applying two opposite gate voltage
at top and bottom gates. At D = −0.38V/nm, the photocurrent spectra has a
broad peak at around 35meV. Because the band structure is dispersive at small
displacement field, its full width at half-maximum (FWHM) is around 20 meV.
As we increase the displacement field D from −0.38V/nm to −0.55V/nm and
−0.71V/nm, this main peak turns to be sharper and moves to higher energy.
Finally the peak width can reach as low as 5meV. At the opposite D direction,
we observed a broad peak at D = 0.33nm/V , this peak becomes as sharp as
7meV at D = 0.49V/nm, and finally broadens again at D = 0.66V/nm, which
shows a non-monotonic change of the peak width. The evolution of optical
transition peak width largely reflected that of the single particle bandwidth W
of the highest valence band. At the mean time, the second peak corresponding
to I3 and I4 gradually emerges at both D directions.

Fig.4.10 is a 2D optical spectra color plot with a continuous D, it is more
clear to trace the features evolution. Dashed lines indicate the position of the
corresponding spectra in Fig.4.9 with the same color. We calculated optical
conductivity spectra of the same device as a function of continuously tuned
D, as shown in Fig.4.11. By aligning the lowest energy peak position in both
experimental photocurrent spectrum and calculated optical conductivity spec-
trum, we established the relationship between D and ∆. In this way, we can
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Figure 4.8: Comparison of the experimental and calculated spectra. Upper
panel is the experimental spectra at D = −0.71nm/V . Lower panel plot the
calculated spectra of the optical transition I1, I2, I3, I4 in Fig.4.7, respectively.
The overall spectra is plotted with dashed line.

Figure 4.9: Photocurrent optical transition spectra at different displacement
field D.
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mark the corresponding experimental data region in Fig.4.11 with two white
blocks. Major features and trends in Fig.4.10 agree with the result in the cal-
culation as shown in Fig.4.11 pretty well. The blueshift of the I1-dominated
optical transition peak indicates the opening of the bandgap. At the same
time, thebandwidth of relevant moiré bands continually evolves.

Figure 4.10: 2D color plot of the photocurrent spectra with continuous D.

In our data, we also oberved that with the same |∆|, the peak width for
positive ∆ is slightly broader than negative side as shown in Fig.4.12, this
indicates that the negative side has a stronger correlation effect and agree
with the transport data result[9].
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Figure 4.11: 2D color plot of the calculated spectra with continuous D, two
white blocks indicate the corresponding region shown in the experimental 2D
plot 4.10.

4.2.2 Optical transitions in the mott phase

According to our calculation, as the band gap was opened by the gate dis-
placement field, the bandwidth W was suppressed and eventually approached
around 12 meV, which is smaller than the estimated on-site Coulomb repulsion
energy U = e2

4πε0εlM
≈ 25meV (lM = 15nm is the moiré superlattice constant

and ε = 4 is the dielectric constant of hBN). This makes correlation effects
possible when the sample is gated to partial doping level. In this section we
focus on the optical transitions in the strongly correlated insulating state when
the flat valence band is doped.

As we discussed in the previous section, at half-filling of the flat mini-
valence band (v = −1/2), a correlated insulating state is formed as indicated
by a resistance peak. Fig.4.13 shows the photocurrent spectrum at zero filling
of this valance band at D = −0.44V/nm, there is a resonance peak at 45 meV
with a 13meV FWHM, it’s corresponding to the interband transition I1 as
indicated by the inset.

We examine the spectrum at a similar displacement field D = −0.42V/nm
with v = −1/2, the photocurrent spectrum is dramatically changed as shown
in Fig.4.14. We observed a new strong optical resonance peak centered at
around 18 meV. This energy is well below the bandgap energy in Fig.4.13, yet
it is bigger than the DOS peak width of the flat valence band. The FWHM of
this new peak is around 18 meV, which is significantly broader than the peak
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Figure 4.12: Comparison between the spectra of the positive and negative ∆
at different |∆| conditions. The positive spectra is always broader then the
negative one.
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Figure 4.13: The photocurrent spectrum taken at D = −0.44V/nm, v =
0. The spectrum is dominated by a sharp peak at around 45 meV, which
corresponds to the interband optical transition I1 as illustrated by the inset.

Figure 4.14: The photocurrent spectrum taken at D = −0.42V/nm, v = −1/2.
a broad peak at around 18 meV emerges while the I1-dominated peak merges
into the background. This low energy peak corresponds to optical transition
across the Mott gap as illustrated by the left inset. The final state of such
optical excitation contains a hole at one site and an extra electron at another
site in the triangular moiré superlattice as illustrated in the right inset.
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width in Fig.4.13. At the same time, the interband transition I1-dominated
peak is merged into the broad background.

These observations at v = 1/2 all indicate that the picture is much more
complicated than in a doped trivial band insulator, in which the electron corre-
lation effects can be neglected. For a half-doped single-band Hubbard model,
theoretical calculations[17][18][19] predicted a broad peak in optical conduc-
tivity spectrum centering at around on-site Coulomb repulsion energy U. Such
features have been observed by optical spectroscopy experiments in conven-
tional strongly correlated materials[20][18]. We believe the strong peak at 18
meV in Fig.4.14 indicates formation of upper and lower Hubbard bands, with
an optical transition across the Mott gap as illustrated by the inset of Fig.4.14,
with the following 3 points.

1. In the final state of this optical excitation, a hole is created at one site
while an extra electron is hopped to the neighbor site on the triangular moiré
superlattice of TLG/hBN. For the moiré superlattice in our device, the onsite
Coulomb repulsion energy U can be estimated by e2

4πε0εlM
≈ 25meV [21]. This

energy is close to the peak position of 18 meV in Fig.4.14 and bigger than the
calculated single particle bandwidth of around 22 meV, which satisfying the
condition of forming upper and lower Hubbard bands.

2. The second evidence of correlation effects is the dramatic broadening
of the low energy peak. The FWMH of 18 meV is several times bigger than
expected from simple uncorrelated band picture: without correlation, one ex-
pects a peak width of around 6.5 meV as deferred from experiment, and around
3.5 meV from calculation for the split bands (taking half of corresponding peak
widths at v = 0).

3. The interband transition from the lower Hubbard band to the lowest
conduction mini band (illustrated by the dashed arrow in the inset of Fig.4.14)
can hardly be identified from the broad continuous background. It is likely that
the DOS distribution of the lowest conduction band, which is remote to the
flat valence band, also gets dramatically broadened and prevents an easy iden-
tification of the transition from the experimental spectrum. The broadening
of both the flat band and remote band are similar to what happens in magic
angle twist bilayer graphene(MATBLG)[7][4][6], implying strong correlation
effects to play a key role.
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Chapter 5

Conclusion

In this thesis, we provide spectroscopy evidence of the electron correlation
effects in ABC-TLG/hBN morié superlattice. From the experimental data,
we can extract the energy scales for the relevant parameters in the Hubbard
model, which form the basis of accurate theoretical modeling and understand-
ing of both observed[8][9] and predicted correlated ground states[21][22][23][24]
in this moiré superlattice. Especially, we obtained the first optical spectrum
in the Mott insulator states of all moiré superlattice systems. These obser-
vations open up opportunities to explore its doping and temperature depen-
dence, sum rules of optical conductivity[25][18], and bound excitons of holon
and doublon[24],[25]—all calling for further systematic study and theoretical
calculations. On the other hand, the FTIR photocurrent spectroscopy tech-
nique employed here can be readily generalized to other (dual-)gated 2D moiré
superlattice devices such as MATBLG, twisted double bilayer graphene, homo-
and hetero-bilayers of transition metal dichalcogenides for better understand-
ing of correlated electron physics in this designer material platform.
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