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Abstract

This thesis studies the optimal design of large-scale shared mobility on demand ser-
vices (SMoDS) in urban settings. Specifically, we build upon previous work done
in the Active-Adaptive Control Lab lab on the dynamic pricing and routing of ride
sharing services. We develop and characterize a novel passenger behavioral model
based on Cumulative Prospect Theory (CPT) to more accurately represent decision
making in the presence of significant risks and uncertainty associated with SMoDS’
travel times. A comprehensive survey was designed to estimate both the mode-choice
and CPT models. The mode choice section consisted of a series of discrete choice
experiments created via factorial design, while the CPT section involved carefully
constructed lottery questions and travel choice scenarios to elicit risk preferences.
After conducting a pilot study and going through several iterations, the survey was
launched via a panel firm. Data was collected from 1000+ respondents in the Greater
Boston metro area. This was used to fully characterize the model and estimate
parameters through methods including maximum simulated likelihood estimation,
nonlinear least squares and global optimization tools. I also utilized other techniques
like regularization and transfer learning to improve the quality of results obtained.

Beyond parameter estimation, the uncertainty associated with such behavioral
models was quantified via well-established nonlinear programming methods. Sensi-
tivity and robustness analyses were performed to assess the effects of CPT model
parametrization errors on the performance of the SMoDS system and objectives like
expected revenue, average waiting times etc. These insights were used to design and
simulate a closed loop, feedback control mechanism for the SMoDS system to correct
modelling errors in real-time, achieve setpoint tracking and enable parameter estima-
tion. The scheme uses the dynamic tariff as a transactive control input to influence
the passenger’s behavior as desired. This was implemented via gradient-descent based
control schemes to update the price signals, in order to drive the (i) drive the passen-
gers’ probabilities of accepting the SMoDS ride offer towards the desired value while
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also (ii) learning the true passenger behavioral model parameters.

Thesis Supervisor: Dr. Anuradha Annaswamy
Title: Senior Research Scientist
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Chapter 1

Introduction

1.1 Shared Mobility on Demand Services (SMoDS)

In recent times, several ride sharing platforms have emerged, that offer the potential

for increased affordability, efficiency and customizability [3] [4]. There is also a grow-

ing shift away from exclusive, door-to-door ride hailing services towards ride-pooling,

which offers additional benefits including mitigating traffic congestion, reducing cu-

mulative travel times and emissions while increasing fleet utilization rates [5]. This

thesis pertains to such Shared Mobility on Demand Services (SMoDS) i.e. large-scale

pooled ridesharing systems that operate primarily in urban and suburban settings.

As can be seen in fig. 1-1, SMoDS offers a desirable balance of lower prices, medium

carrying capacities, greater convenience and flexibility. Although mass transit op-

tions are cheaper and can accommodate more passengers, these are not as convenient

or flexible due to their fixed, static routes that may not cater to all users. On the

other hand, traditional ride hailing services are more convenient since they usually

involve shorter waiting, walking and in-vehicle travel times. However, these are more

expensive compared to SMoDS. Furthermore, a short walk by the passenger to/from

the vehicle can significantly cut in-vehicle ride times in urban settings under certain

traffic conditions.

Although SMoDS do offer numerous benefits, these come at the cost of increased

uncertainty in travel times. For instance, current ride hailing services like Uber and

17



Figure 1-1: Comparison of different transport modes in terms of key performance
metrics.

Lyft often provide passengers with a finite window for arrival times at their des-

tination. In order to efficiently operate such SMoDS, we need to obtain a clear

understanding of how passengers make tradeoffs between price and travel times while

making mode choice decisions. This can then be used to plan and operate the SMoDS

system in an optimal manner so as to match supply and demand in real-time, while

also achieving desired objectives like maximizing expected revenue, minimizing aver-

age wait times, etc.

1.2 Motivation for Cumulative Prospect Theory (CPT)

Conventional Expected Utility Theory (EUT) postulates that consumers choose among

travel options based on their respective expected utilities [6]. Cumulative Prospect

Theory (CPT) is an alternative to EUT that better describes subjective human de-

cision making in the presence of uncertainty and risk [7, 8]. This is necessary in the

case of SMoDS due to the significant variability in travel times introduced by pooling

rides. The behavioral model is described by the value function 𝑉 (·) and probability
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distortion 𝜋(·) given by [1], with 𝜋(0) = 0 and 𝜋(1) = 1 by definition. These non-

linearities transform the objective utilities (𝑢) and probabilities (𝑝) of each possible

outcome to subjective values, as perceived by the passengers.

𝑉 (𝑢) =

⎧⎪⎨⎪⎩(𝑢−𝑅)𝛽
+ if 𝑢 ≥ 𝑅

−𝜆(𝑅− 𝑢)𝛽
− if 𝑢 < 𝑅

(1.1)

𝜋(𝑝) = 𝑒−(−𝑙𝑛(𝑝))𝛼 (1.2)

The CPT parameters here describe loss aversion (𝜆), diminishing sensitivity in gains

(𝛽+) and losses (𝛽_) and probability distortion (𝛼). The reference 𝑅 is the baseline

against which users compare the utilities of different prospects. These can vary across

individuals and also depending on the particular set of alternatives that the customer

is facing.

1.3 Summary of contributions

Prior work from our lab has described a comprehensive solution for the provision of

SMoDS with (1) Dynamic routing via an alternating minimization (AltMin) optimiza-

tion algorithm [9] and dynamic pricing using a passenger behavioral model based on

Cumulative Prospect Theory (CPT) [1]. This work focuses on accurately estimating

the proposed behavioral model in practical settings. Due to the lack of publicly avail-

able ride sharing data from transportation network companies (TNCs), we decided to

collect our own data. I designed a comprehensive survey to assess passengers’ travel

preferences as well as their risk attitudes relating to travel time uncertainty. These

were used to quantitatively estimate both the mode-choice and CPT models, where

we experimented with several different solution methods in an effort to improve the

quality of our results. In addition to conducting statistical tests to verify the va-

lidity and correctness of the model, a sensitivity analysis was conducted to assess

its robustness to CPT parametrization errors. These results informed our efforts to

develop a closed loop transactive control strategy to correct such errors in real time

19



using feedback and the dynamic tariff as a control input. To our knowledge, this is

the first work that establishes a methodology for estimating CPT-based behavioral

models specifically applied to pooled ride sharing services, and formulates a feedback

control mechanism based on the notion of price-based transactive control.
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Chapter 2

Literature review

2.1 Mode-choice modelling

Discrete choice experiments have long been established as a standard approach to

estimate utility functions [10]. These experiments generally aim to infer stated pref-

erences (SP) via stated choice experiments [11] in which the survey respondents are

explicitly asked to make choices between several alternatives or options. Thus, SP

data relies on what consumers say they will do in a hypothetical setting. This is

in contrast to revealed preferences (RP) which relies on existing historical and ob-

servational data on what consumers actually do in reality. Most recent mode-choice

studies have relied on SP methods since RP data may not always be available or

feasible to collect due to budget and time constraints. Furthermore, SP methods are

more useful to identify key explanatory variables, capture the effects of new attributes

and features while also satisfying statistical model assumptions (since the SP study

can be designed accordingly) [11].

Discrete choice methods have been extended to utility functions with both fixed

and random coefficients, estimated via multinomial logit models. In particular, mixed

logit models have been found to be especially useful since these allow for combinations

of both fixed and random parameters as well as flexible choices for the underlying

mixing distribution assumed for the parameter estimates [12, 13, 14]. Furthermore,

these are more realistic and require fewer restrictive assumptions compared to stan-
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dard logit models since they allow for differences in tastes and preferences across

different people [15]. Finally, mixed logit is well suited to panel data involving a

series of repeated choices, as is the case with our survey which has multiple mode

choice experiments [16].

Given its numerous relative advantages, such methods have been widely used

for mode choice studies in the transportation literature, to derive customers’ utility

functions from survey data [17, 18] and thus also forecast travel demand [19]. These

approaches based on limited amounts of survey data have shown to be reasonably

accurate and robust even in the presence of response errors such as sampling errors,

self-selection biases, inconsistent answers etc. [20]. Such state of the art discrete

choice methods are also related to studies in the transportation literature that aim

to determine the value of time (VOT) and the value of reliability (VOR) from SP

surveys of passengers [21, 22], as well as their willingness to pay for improvements

in these metrics [23]. In particular, heterogeneity in the VOT across different legs

of a trip (i.e. walking, waiting and riding/driving) are important considerations for

the design of services [24] like SMoDS while VOR can be related to the travel time

uncertainty introduced by such pooling services.

Numerous recent studies have applied such discrete choice SP methods to mobility-

on-demand applications similar to the SMoDS such as taxi cabs [25, 26], shared au-

tonomous vehicles [27, 28, 29], general Mobility as a service (MaaS) systems in urban

areas [30], ride hailing [31] and ride pooling services [32]. Other related applications

include predicting demand for clean-fuel (electric and hybrid) vehicles [33] and re-

sponsiveness to dynamic congestion pricing in cities [34]. The novelty of the current

work primarily lies in the introduction and empirical evaluation of CPT as an al-

ternative method to better understand consumers’ risk attitudes towards travel time

uncertainty and their willingness to pay for mitigating uncertainty.
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2.2 Modelling risk preferences with CPT

The standard approach to model passengers’ travel risk preferences has generally

been to quantify measures like VOR and use the utility functions of each mode

to compute their associated choice probabilities, using conventional expected util-

ity theory (EUT). However, EUT has been shown to be insufficient to accurately

predict consumer choices when there is significant uncertainty and risk involved in

both the outcomes (or events) themselves and their associated probabilities. Cu-

mulative Prospect Theory (CPT) is a framework introduced by Nobel prize-winning

behavioral economists and psychologists that has been extensively shown to better

represent decision making under uncertainty [7, 8]. It builds upon EUT by introduc-

ing additional nonlinear mappings as shown in eq. (1.1). These are necessary to model

four characteristic behaviors displayed by agents, that are irrational and subjective,

thus not accounted for under EUT [1]:

1. Framing effect: People perceive outcomes as gains and losses relative to a

specific subjective reference point 𝑅 (or baseline value) and not in absolute

terms.

2. Reflection effect: In both the gain and loss regimes, the agent’s sensitivity

diminishes as they move farther away from the reference. This implies that the

perceived value function is concave in gains and convex in losses (0 < 𝛽−, 𝛽+ <

1).

3. Loss aversion: Losses hurt much more than equivalent gains, resulting in an

asymmetric value function.

4. Probability distortion: People tend to subjectively overweight the likelihood

of occurrence of less likely, small probability events and underweight more com-

mon, large probability events (0 < 𝛼 < 1).

These effects are clearly illustrated in the plots shown in fig. 2-1 below.

CPT has widely been applied in the literature to study and describe human be-

havior in situations involving significant uncertainty. Some examples include the
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Figure 2-1: Characteristic examples of possible value function and probability weights
[1].

insurance industry, financial lotteries [35, 36, 2] and optimal portfolio selection by

investors considering both risky as well as risk-free assets [37]. Past studies have also

examined the relationships between risk attitudes towards time and money, and so-

cioeconomic indicators like household income [38]. These studies illustrate how CPT

is more accurate and versatile in its ability to capture decision making, compared

to simpler models based on just expected utility theory, loss aversion and exponen-

tial time discounting. A few recent studies have applied CPT specifically to the

transportation setting, to model the route choice behavior of drivers on highways or

freeways [39, 40] and the adoption of autonomous vehicles [28]. While [40] used real-

time traffic information and GPS records to build the CPT-based route choice model,

[39] utilized SP questionnaires presenting different scenarios to develop a structural

behavioral model. To our knowledge, CPT has not yet been applied specifically for

shared mobility services, to understand the implications of the high degree of travel

time variability. However, almost all of the papers surveyed attempt to infer risk

attitudes and estimate the CPT parameters using simplified lottery questions (for an

example see the appendix). In reality though, passengers’ risk preferences towards

monetary gains and losses may differ significantly from their perceptions of travel time

uncertainty. Furthermore, past studies like [28] used simpler model parametrizations

based on prospect theory (PT) which does not use cumulative probability weighting
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[8]. The survey developed as part of this thesis is unique in that we attempt to di-

rectly estimate travel time risk parameters using discrete mode choice games, rather

than using simplistic lottery questions as an analog.

2.3 Sensitivity and robustness analysis

There are several sources of error and uncertainty involved in the parameter estima-

tion process that need to be addressed. These include sampling errors, survey design

issues, response biases etc. Population level mode-choice models require very large

sample sizes to obtain relatively accurate distributions for utility function coefficients

and still involve some finite levels of uncertainty. Furthermore, travel preferences

of consumers are fluid and can vary significantly over time and among different in-

dividuals in a population, but surveys capture only a static snapshot for a subset.

Inaccuracies in model parameters can result in setting sub-optimal dynamic tariffs

that reduce the operational efficiency of the SMoDS, leading to decreases in revenue,

ridership and fleet utilization rates. Additionally, CPT parameters describing risk

attitudes are often specific to each user and determined from a much smaller set of

responses, thus lacking statistical properties like asymptotic normality [28]. Since

the novel aspect of this behavioral model is the incorporation of CPT and because

the parameters associated with it involve a greater deal of uncertainty compared to

the mode-specific utility functions, this work will focus on analyzing the sensitivity

only with respect to these CPT parameters. To our knowledge, CPT has not been

explored for SMoDS in the literature and neither has such a sensitivity analysis been

considered to date.

There has been significant past work conducted in analyzing the sensitivity of

parametric linear and nonlinear optimization problems. The early work in this field

analyzed the sensitivity and stability of nonlinear programs (NLP) [41, 42]. These

established the mathematical foundation including basic theorems related to the

smoothness, continuity and differentiability properties of the optimal solution and

value function [43], performing both first and second order sensitivity analyses as well
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as determining asymptotic bounds on sensitivity derivatives [44]. Several different ap-

proaches and solution techniques have also been explored, including penalty-function

methods [45], generalized perturbation approaches [46] and directional derivatives

[47]. In addition to localized analyses that focus on varying one parameter at a time,

methods for global sensitivity analysis have also been studied, often using Monte

Carlo techniques [48].

The main contribution of this paper lies in applying methods from sensitivity

and robustness analysis specifically to behavioral models based on prospect theory,

thereby developing tools to manage the significant uncertainty and estimation errors

associated with such models in the SMoDS context.
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Chapter 3

Methodology

In this chapter, we describe the methodology used for survey design, data collection,

estimation of the mode choice and CPT models, statistical testing and validation,

and the sensitivity analysis. The different sub-components of our system are shown

in fig. 3-1 below. The model proposed here provides a complete end-to-end solution for

the overall provision of SMoDS. The key performance indicator (KPI) we consider here

is the expected waiting time (EWT) for passengers over the whole SMoDS system or

region being served, which in turn depends on the passengers’ probability of accepting

the SMoDS. This acceptance probability is the main output that we would like to

predict and regulate in this study. In addition, we could also have secondary objectives

like expected revenue, total ridership, fleet utilization rates etc.
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Figure 3-1: Illustration of our complete integrated solution for the SMoDS.

3.1 Mode choice modelling

3.1.1 Specification of utility functions

In this study, we constructed a model that considered three different modes of trans-

port: Public transit, Exclusive ride hailing (similar to UberX or Lyft) and Pooled

ridesharing i.e., the SMoDS (similar to UberPool or Lyft Line). Our model was de-

veloped specifically for the Boston greater metropolitan area. Thus, there are three

possible types within the public transit mode: Bus, Subway (T) and Commuter

rail. A different probabilistic discrete choice model was fitted for each mode us-

ing random, objective utility functions, assuming utility-maximizing behavior by all

decision-makers. Here the observed utility 𝑈𝑖 of a travel alternative (or mode) 𝑖 is

comprised of two distinct parts [49]:

𝑈𝑖 = 𝑉𝑖 + 𝜖𝑖 (3.1)

1. 𝑈𝑖 is the true, observed utility of option 𝑖.

2. 𝑉𝑖 is the systematic (mean) or deterministic portion of the utility that can be
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described in terms of the attributes or features of the 𝑖𝑡ℎ alternative.

3. 𝜖𝑖 are the random error terms, i.e., the portion of the utility that’s unknown or

unobservable.

Here, we assume that the systematic utility is a function of two key trip attributes,

travel time and price. The travel time is further segmented into the times spent

on each leg of the trip: walking, waiting and in-vehicle riding times. Thus, the

deterministic mode-specific utility function is given by the following multinomial or

conditional logit (logistic regression) model:

𝑉𝑖 = 𝑎𝑤𝑎𝑙𝑘,𝑖 𝑡𝑤𝑎𝑙𝑘,𝑖 + 𝑎𝑤𝑎𝑖𝑡,𝑖 𝑡𝑤𝑎𝑖𝑡,𝑖 + 𝑎𝑟𝑖𝑑𝑒,𝑖 𝑡𝑟𝑖𝑑𝑒,𝑖 + 𝑏𝛾𝑖 + 𝐴𝑆𝐶𝑖 (3.2)

𝑖 ∈ {Public transit, Exclusive ride hailing, Ride pooling} (3.3)

where 𝑎𝑤𝑎𝑙𝑘,𝑖, 𝑎𝑤𝑎𝑖𝑡,𝑖 and 𝑎𝑟𝑖𝑑𝑒,𝑖 are the travel time coefficients while 𝑏 is the coefficient

on the tariff 𝛾𝑖 charged for that mode. Since increases in travel times and price would

cause disutility to passengers, we expect all of these coefficients to be negative in sign.

𝐴𝑆𝐶𝑖 is a bias/offset referred to as the alternative specific constant, which accounts

for all other observable trip attributes which affect its utility, other than time and

price. These could include factors like convenience, safety, carbon footprint, privacy,

other externalities etc. Formally, 𝐴𝑆𝐶 is defined as the average impact of all factors

not included in the model, similar to the constant term in linear regression [10]. An

important thing to note is that the mode choice model is estimated for the population

as a whole, i.e. the coefficients are not specific to each respondent. Thus, we obtain

a consistent estimator and the distributions for the mode choice parameters will be

approximately Gaussian, as long as the sample size is large enough (by the Central

Limit Theorem).

Since utility is a relative (and not absolute) measure of well-being, we need to

define a reference point with respect to which it is measured. For this purpose, we

set public transit as the baseline alternative for which 𝐴𝑆𝐶𝑡𝑟𝑎𝑛𝑠𝑖𝑡 = 0. Then, we

can interpret the other two 𝐴𝑆𝐶𝑠 for exclusive ride hailing and pooled ridesharing
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relative to it. Once the utilities of each of the modes are known, the probability of

choosing each mode is given by it’s respective marginal utility:

𝑃𝑟(𝑖) =
𝑒𝑉𝑖∑︀
𝑗 𝑒

𝑉𝑗
=

1

1 +
∑︀

𝑗 ̸=𝑖 𝑒
𝑉𝑗−𝑉𝑖

(3.4)

The error terms 𝜖𝑖 cannot be observed or measured. These can be represented us-

ing several possible distributions over the alternatives 𝑖 and all the individuals in the

population. Different assumptions on the distribution of error terms lead to different

kinds of logit models. The most widely used model is standard logit, which assumes

that the error terms are independent and identically distributed (i.i.d) according to

an extreme value (Gumbel) distribution across all alternatives and individuals/ob-

servations [10]. This implies that the errors and unobserved factors are uncorrelated

and also have the same variance across individuals, choices and over time. This leads

to several nice properties such as the independence from irrelevant alternatives (IIA)

which means that while deciding between any two given options 𝑖 and 𝑗, the agent

does not need to take into consideration any of the other options in the choice set:

𝑃𝑟(𝑖)

𝑃𝑟(𝑗)
=

𝑒𝑉𝑖

𝑒𝑉𝑗
= 𝑒𝑉𝑖−𝑉𝑗 (3.5)

Such a formulation allows us to directly relate the choice probabilities of each mode

to their systematic utilities:

𝑙𝑜𝑔

(︂
𝑃𝑖

1− 𝑃𝑖

)︂
= 𝑉𝑖 (3.6)

Although this considerably simplifies the analysis, it is not realistic in our setting

since the features are likely going to be correlated across different modes (or alterna-

tives) as well as for sequential choices made by the same person over time. Further-

more, standard logit is restrictive in that it enforces identical preferences across all

the respondents i.e., we would only be able to estimate the utility function coefficients

as fixed, static parameters. For these reasons, mixed logit models are preferred since

these do not require the restrictive i.i.d assumption, allowing for correlated errors

and variations in tastes across respondents. This enables us to use random parameter
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logit models, estimating distributions for the parameters rather than fixed values.

3.1.2 Logit models

If the errors and unobserved factors are assumed to be distributed jointly normal over

alternatives, respondents and time, we get the Multinomial Probit (MNP) probabilis-

tic choice model. Although Probit offers flexibility in modeling any type of correlation

pattern, its reliance on the normal distribution makes it unsuitable for most mode

choice models. For example, we know from intuition that the tariff and travel time

coefficients are negative. Assuming a normal distribution would contradict this since

it has non-zero density on both sides of zero [10]. Furthermore, MNP models offer

practical challenges for discrete choice analysis since they are less tractable and thus

harder to numerically estimate, predict and interpret results [49]. For instance, MNP

models can only be estimated by evaluating expensive, high-dimensional multivari-

ate integrals (e.g. to compute normalization factors) which causes numerical issues.

Thus, MNL models are preferred since they use Gumbel (Type I) extreme value dis-

tributions that roughly resembles normals (as seen in fig. 3-2 below) but offers several

computational benefits for maximizing the likelihood function, resulting in a closed

form model.

(a) Probability density function. (b) Probability density function.

Figure 3-2: Illustration of PDFs and CDFs for a Normal and Gumbel distribution
with identical mean and variance.

Mixed logit models are the most general form of logit since they can estimate

any type of discrete choice model following an arbitrary mixing distribution. Choice
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probabilities in mixed logit can be represented as [10]:

𝑃𝑛𝑖 =

∫︁
𝐿𝑛𝑖(𝛽)𝑓(𝛽 | 𝜃)𝑑𝛽 (3.7)

𝐿𝑛𝑖(𝛽) =
𝑒𝑉𝑖𝑡(𝛽)∑︀
𝑗 𝑒

𝑉𝑗𝑡(𝛽)
(3.8)

where 𝐿𝑛𝑖(𝛽) are the logit probabilities calculated at various values of the model

parameters 𝛽, which follow a mixture distribution specified by the density function

𝑓(𝛽 | 𝜃), generally taken to be continuous. 𝜃 represents the parameters that fully

characterize the probability density of 𝛽. I experimented with several different distri-

butions for the mode choice model, including normal, lognormal, truncated normal,

uniform and exponential distributions. The lognormal, truncated normal and expo-

nential forms are particularly useful for the travel time and price coefficients since they

always give coefficients of the same sign for every decision maker, and these parame-

ters are expected to be negative. Normal distributions are more appropriate for the

𝐴𝑆𝐶 terms since ride hailing and ride pooling could have either positive or negative

values for these relative to public transit, for which we set 𝐴𝑆𝐶𝑡𝑟𝑎𝑛𝑠𝑖𝑡 = 0 by defini-

tion. For example, for normal distributions 𝛽 𝑁(𝜇, 𝜎2) or lognormal 𝑙𝑛(𝛽) 𝑁(𝜇, 𝜎2),

the mean and standard deviation parameters 𝜃 = (𝜇, 𝜎) are estimated to describe

the mixing distribution. However, one can occasionally run into numerical estimation

issues with lognormals, when the logit probabilities become unbounded (approach

+∞ or −∞) for certain combinations of parameters. The mode choice model from

eq. (3.3) is also modified slightly to account for the fact that the survey produces

panel data with several choices made by each respondent 𝑖 at each time instant 𝑡:

𝑉𝑖𝑡 = 𝑎𝑤𝑎𝑙𝑘,𝑖 𝑡𝑤𝑎𝑙𝑘,𝑖𝑡 + 𝑎𝑤𝑎𝑖𝑡,𝑖 𝑡𝑤𝑎𝑖𝑡,𝑖𝑡 + 𝑎𝑟𝑖𝑑𝑒,𝑖 𝑡𝑟𝑖𝑑𝑒,𝑖𝑡 + 𝑏𝛾𝑖𝑡 + 𝐴𝑆𝐶𝑖𝑡 (3.9)

𝑖 ∈ {Public transit, Exclusive ride hailing, Ride pooling} (3.10)
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3.1.3 Value of time (VOT)

Once the mode-specific utility functions in eq. (3.10) are determined, we can then use

the estimated travel time and price coefficients to determine the passengers’ value

of time (VOT) spent on different modes. The value of time is defined as the extra

tariff that a person would be willing to pay or cost incurred to save an additional

unit of time, i.e., it measures the willingness to pay (WTP) for extra time savings.

In absolute terms, the VOT spent on mode 𝑖 can be calculated as the ratio between

the marginal utilities of travel time and trip cost:

𝑉 𝑂𝑇𝑖 =
𝜕𝑈𝑖

𝜕𝑡
𝜕𝑈𝑖

𝜕𝛾

=
𝑎𝑖
𝑏𝑖

(3.11)

The VOT is often presented in the literature as some proportion of the hourly wage

rate. This can be easily calculated by normalizing the price term 𝛾𝑖 in the utility

function for each respondent by their hourly wage (which would also need to be

collected in the survey). Then the VOT for mode 𝑖 is given by an 𝑎𝑖
𝑏𝑖

proportion of

their hourly wages. Past studies in the literature have estimated absolute VOT to

be $ 0.22/min for SMoDS and $ 0.77/min for UberX, and $ 0.40/min for business

travelers in the US [34]. On the other hand, [50] estimated the VOT of commute

trips to be ≈ 50− 60% of the average wage rate.

3.2 CPT model

We will now delve into the elements of the cumulative prospect theory (CPT) model in

greater detail. Firstly, CPT postulates that when presented with risk or uncertainty,

decision makers perceive outcomes by applying a nonlinear transformation on their

objective utilities. This is known as the value function which maps objective utilities

of individual outcomes to their subjective values [7].

𝑉 (𝑢) =

⎧⎪⎨⎪⎩(𝑢−𝑅)𝛽
+ if 𝑢 ≥ 𝑅

−𝜆(𝑅− 𝑢)𝛽
− if 𝑢 < 𝑅

(3.12)
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where 𝑢 is the objective utility of an uncertain prospect and 𝑅 is the reference relative

to which the person measures outcomes as being gains or losses (framing effect). In

this thesis, I experimented with several different types of reference points, as will be

outlined in section 4.2 later. 𝜆 > 1 is the loss aversion parameter while 0 < 𝛽+ < 1

and 0 < 𝛽− < 1 are the diminishing sensitivity parameters in the gain and loss

regimes.

In the discrete case, suppose the SMoDS travel option has 𝑛 possible outcomes

𝑢𝑖 ∈ R, ∀ 𝑖 ∈ {1, . . . , 𝑛} with 𝑢1 < 𝑢2 . . . < 𝑢𝑛, each occurring with probability

𝑝𝑖 ∈ (0, 1) and
∑︀𝑛

𝑖=1 𝑝𝑖 = 1. Then, under EUT, the total objective utility of this

option would simply be given by the expectation of the random variable:

𝑈 𝑜 =
𝑛∑︁

𝑖=1

𝑝𝑖𝑢𝑖 (3.13)

which results in the following objective probability of acceptance:

𝑝𝑜𝑅 =
𝑒𝑈

𝑜
𝑆𝑀𝑜𝐷𝑆∑︀

𝑖 ∈ ℐ 𝑒
𝑈𝑜
𝑖

(3.14)

where ℐ is the set of all travel alternatives available to the decision maker for the

current trip, including the SMoDS. However, under CPT, the total subjective utility

is given by a weighted average of the subjective values:

𝑈 𝑠
𝑅 =

𝑛∑︁
𝑖=1

𝑤𝑖𝑉 (𝑢𝑖) (3.15)

where 𝑤𝑖 refers to the probability weights assigned by the person to each outcome

according to their subjective perception, calculated using:

𝑤𝑖 =

⎧⎪⎨⎪⎩𝜋[𝐹𝑈(𝑢𝑖)]− 𝜋[𝐹𝑈(𝑢𝑖−1)] 𝑢𝑖 < 𝑅

𝜋[1− 𝐹𝑈(𝑢𝑖−1)]− 𝜋[1− 𝐹𝑈(𝑢𝑖)] 𝑢𝑖 ≥ 𝑅

(3.16)

where 𝐹𝑈(𝑢) is the cumulative distribution function (CDF) of the objective utility

of the uncertain prospect (SMoDS). This can be modelled as being either discrete or
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continuous, and can be extracted from historical travel data and demand patterns

[1]. 𝜋(·) is the probability weighting function due to the distortion effect, described

by the parameter 0 < 𝛼 < 1. We propose using the form for the weighting function

proposed by [51].

𝜋(𝑝) = 𝑒−(−𝑙𝑛(𝑝))𝛼 (3.17)

If 𝐹𝑈 is continuous, 𝑈 𝑠
𝑅 can be calculated in a similar fashion [1]:

𝑈 𝑠
𝑅 =

∫︁ 𝑅

−∞
𝑉 (𝑢)

𝑑

𝑑𝑢
{𝜋 [𝐹𝑈(𝑢)]} 𝑑𝑢+

∫︁ ∞

𝑅

𝑉 (𝑢)
𝑑

𝑑𝑢
{−𝜋 [1− 𝐹𝑈(𝑢)]} 𝑑𝑢 (3.18)

The subjective probability of acceptance for the SMoDS can then be computed as:

𝑝𝑠𝑅 =
𝑒𝑈

𝑠
𝑅, 𝑆𝑀𝑜𝐷𝑆∑︀
𝑖 ∈ ℐ 𝑒

𝑈𝑠
𝑅, 𝑖

(3.19)

3.3 Survey design

3.3.1 Overall information flow

Figure 3-3: Different sections of the final version of the survey.
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The survey begins by collecting information on the respondent’s current travel

behavior. This is used to customize the latter survey sections specifically to each

passenger by identifying their most commonly used current mode, preferred type of

public transit, commuting distances, current trip costs, CPT reference point (𝑅) etc.

The second section consists of several discrete choice scenarios used to estimate the

mode choice model. Here, respondents are asked to imagine hypothetical travel sce-

narios that are as similar as possible to their present daily commutes, in order to

ground them and make realistic decisions. In order to control for other effects like

weather, time of day, trip purposes etc., these were standardized across all survey

respondents. Thus, all respondents were given scenarios involving their commute to

work/school between 8-10 AM, with the weather outside being sunny and pleasant.

The third section consists of a series of scenarios where the user is asked to choose be-

tween SMoDS and their current mode of travel, in order to estimate their CPT travel

risk parameters. In the fourth section, we ask ten lottery questions to also deter-

mine their financial risk attitudes. Finally, the last sections asks a few demographic

questions to explore the heterogeneity of individual-level risk parameters across our

sample by income, age, gender, occupation etc.

We went through several iterations of the survey before arriving at this final

version. After a small initial pilot with members of our lab, we significantly altered

our discrete choice experimental design. This was followed by a soft launch to around

100 respondents from the Mechanical Engineering department at MIT. We made a

large number of changes based on feedback and preliminary results from this round.

For example, we removed driving as a mode option since there seemed to be a heavy

bias towards it among our target audience. Furthermore, we realized that it couldn’t

be fairly compared against other travel services like transit or ride sharing, and there

were some complications arising from parking costs. We also added several attention

and quality checks throughout. The third iteration of the survey was then widely

distributed in the full launch. The latest version of the survey can be found online at

https://mit.co1.qualtrics.com/jfe/form/SV_cAU6s5ZxDRO0PmC.
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3.3.2 Sample size and eligibility

The survey was restricted to the Boston designated market area (DMA) shown in

fig. 3-4, with a population of ≈ 4.8 million people. Only people between the ages of

18-65 with a valid driver’s license were allowed to complete and they had to take it

on a desktop or laptop computer. We also enforced age and gender quotas in order to

get a nationally representative sample and added in a disclaimer due to COVID-19:

Asking the respondents to answer the survey questions keeping in mind their travel

behavior before the pandemic. Finally, we restricted our respondents to those who

used ride sharing services at least a few times a month, in order to ensure that they

would be familiar and comfortable with the idea of taking SMoDS.

Figure 3-4: Map showing the Boston DMA.

We calculate the desired sample size as follows 1:

𝑁 = 𝑍2 · 𝜎(1− 𝜎)

𝑒2
(3.20)

1https://www.qualtrics.com/experience-management/research/
determine-sample-size/
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where

𝑍 = 1.96 (95% confidence level) (3.21)

𝑒 = ±3% (Margin of error) (3.22)

𝜎 = 0.5 (Conservatively assume a large standard deviation) (3.23)

This formula is valid for a large population and we get 𝑁 ≈ 1000. We enlisted

Qualtrics as our panel firm and collected 955 quality-complete responses over the

course of one month, with the average completion time being around 8 minutes.

3.3.3 Discrete choice experimental design

The mode-choice section of the survey consisted of a series of choice scenarios or games

where respondents had to choose among the three presented travel options: transit

(bus, subway or rail), exclusive ride hailing and pooled ride sharing. These scenarios

were constructed by varying the tariffs and travel times per leg (walking, waiting,

riding) for each mode, in a systematic manner. Such stated preference studies need

to be planned by carefully varying the different attributes (or features) of interest, and

their levels so as to accurately estimate the desired effects and test specific hypotheses.

The most straightforward approach is a full factorial design where each level of

each attribute is combined with all possible levels of every other attribute being

considered in the model. According to eq. (3.10), we have a total of 12 features that

can be varied, i.e., 3 travel times (walk, wait, ride) and 1 tariff, for each of the 3

modes. If we considered 3 levels (low, medium, high) for each of these, a factorial

enumeration of all these would result in a total of 312 = 531441 possible combinations

or choice situations. Obviously, designing a survey with such a large number of mode

choice scenarios is infeasible. Thus, we explored options to reduce the number of

choice situations needed.

Firstly, we assumed that travel time coefficients for walking and waiting modes

were identical across modes i.e. 𝑎𝑤𝑎𝑙𝑘,𝑖 = 𝑎𝑤𝑎𝑙𝑘 and 𝑎𝑤𝑎𝑖𝑡,𝑖 = 𝑎𝑤𝑎𝑖𝑡 ∀ 𝑖. This was done

to simplify the model and reduce the number of independent (explanatory) variables
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involved, thereby also decreasing the number of choice situations that we needed to

consider in order to fully characterize our discrete choice logit model. In reality, this

may not hold exactly since for example, time spent waiting at home for an Uber

differs markedly from waiting at a bus stop or subway station. However, we decided

to instead focus on differences in the in-vehicle travel time coefficients across modes,

since ride time often makes up bulk of the total trip duration and also contributes the

most to the overall travel time uncertainty of the SMoDS. This reduced the number

of features involved by 4. We also assumed that the disutility coefficient for tariff

was equal for all modes, i.e., 𝑏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 = 𝑏𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 = 𝑏𝑝𝑜𝑜𝑙𝑒𝑑 = 𝑏 since this study is

mainly focused on the uncertainty and disutility caused by travel times rather than

price. Moreover, the heterogeneity in travel time coefficients across modes would

still provide insights on how passengers make tradeoffs between time and price. We

further restricted ourselves to varying the prices for only the exclusive and pooled

ride sharing options in the design of our mode choice scenarios, and not transit. This

is because the costs of taking public transit are generally fixed beforehand and do not

vary with time in most cities. Thus, we no longer needed to vary 𝑡𝑟𝑖𝑑𝑒,𝑡𝑟𝑎𝑛𝑠𝑖𝑡 either

in our study. Under these assumptions, we have 7 features that need to be changed.

However, this still requires 37 = 2187 choice scenarios and it’s not practical for survey

respondents to make such a large number of decisions. In order to further narrow the

choice situations, we used a fractional factorial design.

Fractional factorial design

These involve sampling a specific subset from the complete factorials. Rather than

simply sampling in a random, clever sampling techniques can be used to achieve

certain desired properties [11]. Since our proposed utility model eq. (3.10) is linear

in all the terms (or features) and does not involve any two-way interactions or higher

order terms, we decided to use a main effects screening design. This is reasonable

since main effects generally account for around 70 − 90% of all explained variance

in most models [11]. Main effects screening designs have good statistical efficiency

properties, in terms of [52]:
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1. Orthogonality: They are generally either orthogonal or near orthogonal. An

orthogonal design is one where every pair of levels occurs equally often across

all pairs of factors.

2. Well-balanced: Balance is a measure of how close the experimental design is

to one where every attribute level occurs equally often within each factor or

feature.

The main effects screening design for the mode choice models with 7 factors (having

3 levels each) was constructed using SAS JMP Pro software 2. The resulting design

had a total of 18 choice situations and is shown in table 3.1 below.

Choice situation 𝛾𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 𝛾𝑝𝑜𝑜𝑙𝑒𝑑 𝑡𝑤𝑎𝑖𝑡 𝑡𝑤𝑎𝑙𝑘 𝑡𝑟𝑖𝑑𝑒, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑡𝑟𝑖𝑑𝑒, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 𝑡𝑟𝑖𝑑𝑒, 𝑝𝑜𝑜𝑙𝑒𝑑

1 1 1 3 1 1 1 2
2 1 1 2 3 3 1 1
3 1 3 1 2 1 3 1
4 1 3 3 1 2 3 3
5 1 2 1 3 3 2 3
6 1 2 2 2 2 2 2
7 2 1 1 1 3 3 2
8 2 3 3 2 3 2 2
9 2 1 2 2 2 3 3
10 2 3 2 1 1 2 1
11 2 2 3 3 2 1 1
12 3 2 1 2 1 1 3
13 3 2 3 2 3 3 1
14 3 3 1 3 2 1 2
15 3 1 3 3 1 2 3
16 3 2 2 3 1 3 2
17 3 1 1 1 2 2 1
18 3 3 2 1 3 1 3

Table 3.1: Factor level combinations used in main effects screening design, where the
factor levels are coded as 1 = low, 2 = medium and 3 = high.

Following this, I also excluded certain factor combinations that were unrealistic

or impossible to achieve in real-life situations e.g. situations where ride pooling was

significantly cheaper than exclusive ride hailing but also had far shorter travel times.
2https://www.jmp.com/en_us/software/predictive-analytics-software.html
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Removing other such scenarios resulted in a final set of 11 combinations of factor levels

that were used for the mode choice section of the survey. An illustrative example of

one mode choice question can be seen in fig. 3-5.

Figure 3-5: Example of mode choice scenario.

3.3.4 Design of travel risk scenarios for SMoDS

The CPT risk preference parameters were determined through the method of certainty

equivalents. A certainty equivalent (CE) is defined as the guaranteed return that

someone would accept now, rather than taking an uncertain (but potentially higher)

return in the future. Thus, it can be viewed as being analogous to a risk premium.

This can be used to elicit risk preferences when users compare the risky SMoDS option

(due to its uncertain travel times) against the mode that they currently use most

frequently. We assume that any uncertainty in the transit and exclusive ride hailing

options (due to traffic conditions, weather etc.) is negligible in comparison to the

SMoDS, where the travel times could vary significantly depending on route changes

and other passengers being added to the ride pooling trip in real time. Although the

SMoDS could still offer some time and/or cost savings, it depends on various factors

like ridership and demand patterns etc. Thus, the current mode is a certain or sure
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prospect. The respondent was asked to choose between the uncertain, risky SMoDS

and their current baseline travel method which is certain. The key idea behind this

survey section is to determine several pairs of prospects (i.e. the baseline current

mode vs SMoDS) between which the respondent is indifferent. This allows us to infer

the CE and thus set up a system of nonlinear equations with the CPT parameters

(𝛼, 𝛽+, 𝛽−, 𝜆) being the unknowns. We designed 6 such choice scenarios which

were generated randomly for each respondent, resulting in 6 nonlinear equations per

passenger in the sample. An illustrative example of one SMoDS scenario used for

CPT risk preferences, can be seen in fig. 3-6.

Figure 3-6: Example of CPT risky choice scenario for SMoDS.

Financial risk: Lottery questions

In addition to travel risk, we also added section with 10 standard lottery questions

from a prior study [2]. These are also based on a similar idea to certainty equivalents

involving two uncertain outcomes, with the 10 questions spanning various possible

outcome pairs in the pure gain (both are gains), pure loss (both are losses) and mixed

regimes (one gain and one loss). An example from the survey is shown infig. 3-7
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below.

Figure 3-7: Illustrative examples for types of lottery questions used.

This provided a benchmark or ground truth against which we could validate our

own SMoDS results, since lotteries are a well established method in the literature to

study risk attitudes. Furthermore, it would be interesting to see how the respondents’

financial risk preferences compare with their attitudes towards risk in terms of travel

times. The lottery scenarios used in our survey are shown in fig. 3-8 below.

3.4 Estimation of mode-choice model

Mixed logit models are generally estimated via maximum likelihood estimation (MLE),

which determine the population parameters from which the observed sample of data

is most likely to have been generated [11]. The idea behind MLE is to maximum the

likelihood function for the observed data that’s available. The likelihood function of

observing some data y = [𝑦1, 𝑦2, . . . 𝑦𝑛] given model parameters 𝛽 is the joint prob-

ability density function (pdf), which can be decomposed into a product of the PDFs
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Figure 3-8: Scenarios used for the lottery questions [2].

for individual observations, assuming that they were all draw independently [53]:

𝐿(𝛽) = 𝑃 (y | 𝛽) = 𝑃 (𝑦1 | 𝛽) · 𝑃 (𝑦2 | 𝛽) . . . 𝑃 (𝑦𝑛 | 𝛽) (3.24)

In the case of our mode choice data, this is the joint PDF of the observed sam-

ple of individuals, decisions and alternatives, which can be derived from the choice

probabilities [49]:

𝐿(𝛽) =
∏︁
𝑘

𝑓(𝑦𝑘 | x𝑘,𝛽) =
∏︁
∀𝑖

∏︁
∀𝑗

(𝑃𝑖𝑗(𝛽))
𝛿𝑖𝑗 (3.25)

where 𝛿𝑖𝑗 =

⎧⎪⎨⎪⎩1 if option 𝑗 is chosen by individual 𝑖

0 otherwise
(3.26)

𝑃𝑖𝑗(𝛽) =
𝑒𝑉𝑖𝑗(𝛽)∑︀
∀ 𝑘 𝑒

𝑉𝑖𝑘(𝛽)
(3.27)

where 𝑓(𝑦𝑘 | 𝛽) is the pdf for the 𝑘𝑡ℎ observation (x𝑘, 𝑦𝑘) in the sample. Here 𝑃𝑖𝑗(𝛽)

is the probability that individual 𝑖 chooses mode 𝑗 where 𝑉𝑖𝑗 is objective utility

calculated using mode 𝑗’s utility function for passenger 𝑗’s trip. Thus, it is a function

of the mode choice model parameters represented by 𝛽. We take the natural logarithm

of this since it’s easier to differentiate and has its maximum at the same point due to
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concavity. The log-likelihood function is then given by:

𝐿𝐿(𝛽) =
∑︁
∀ 𝑖

∑︁
∀ 𝑗

𝛿𝑖𝑗 𝑙𝑛(𝑃𝑖𝑗(𝛽)) (3.28)

The MLE estimator 𝛽 is given by the parameter values that maximize this log-

likelihood function, or equivalently minimize the negative of the log-likelihood. For

linear utility functions, this function has shown to be globally concave with a unique

maximum [10], which can be solved by setting the gradient to zero:

∇𝛽𝐿𝐿(𝛽) = 0 (3.29)

With linear utility functions of the form 𝑉𝑖𝑗 = 𝛽ᵀx𝑖𝑗 as in our mode choice model

(eq. (3.10)), this first order condition can be further simplified:

𝐿𝐿(𝛽) =
∑︁
∀ 𝑖

∑︁
∀ 𝑗

𝛿𝑖𝑗 𝑙𝑛(𝑃𝑖𝑗(𝛽)) (3.30)

=
∑︁
∀ 𝑖

∑︁
∀ 𝑗

𝛿𝑖𝑗 𝑙𝑛

(︂
𝑒𝛽

ᵀx𝑖𝑗∑︀
∀ 𝑘 𝑒

𝛽ᵀx𝑖𝑘

)︂
(3.31)

=
∑︁
∀ 𝑖

∑︁
∀ 𝑗

𝛿𝑖𝑗𝛽
ᵀx𝑖𝑗 −

∑︁
∀ 𝑖

∑︁
∀ 𝑗

𝛿𝑖𝑗𝑙𝑛

(︃∑︁
∀ 𝑘

𝑒𝛽
ᵀx𝑖𝑘

)︃
(3.32)

∇𝛽𝐿𝐿(𝛽) =
∑︁
∀ 𝑖

∑︁
∀ 𝑗

𝛿𝑖𝑗x𝑖𝑗 −
∑︁
∀ 𝑖

∑︁
∀ 𝑗

𝛿𝑖𝑗
∑︁
∀ 𝑘

𝑃𝑖𝑘x𝑖𝑘 (3.33)

=
∑︁
∀ 𝑖

∑︁
∀ 𝑗

𝛿𝑖𝑗x𝑖𝑗 −
∑︁
∀ 𝑖

(︃∑︁
∀ 𝑘

𝑃𝑖𝑘x𝑖𝑘

)︃∑︁
∀ 𝑗

𝛿𝑖𝑗 (3.34)

=
∑︁
∀ 𝑖

∑︁
∀ 𝑗

𝛿𝑖𝑗x𝑖𝑗 −
∑︁
∀ 𝑖

(︃∑︁
∀ 𝑘

𝑃𝑖𝑘x𝑖𝑘

)︃
(3.35)

=
∑︁
∀ 𝑖

∑︁
∀ 𝑗

(𝛿𝑖𝑗 − 𝑃𝑖𝑗)x𝑖𝑗 (3.36)

In addition to the above analytical methods, the log-likelihood function can also

be maximized numerically via a standard Newton-Raphson procedure, with the pa-
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rameter update step given by:

𝛽𝑡+1 = 𝛽𝑡 −𝐻−1
𝑡 · ∇𝛽𝐿𝐿(𝛽)

⃒⃒
𝛽𝑡

(3.37)

where 𝐻−1
𝑡 is the inverse of the Hessian matrix of second derivatives of 𝐿𝐿(𝛽) evalu-

ated using the parameters at iteration 𝑡.

𝐻𝑡 =
𝜕2𝐿𝐿(𝛽)

𝜕𝛽2

⃒⃒⃒⃒
𝛽𝑡

(3.38)

This was the method implemented for our study, using the quasi-newton algorithm

for unconstrained function minimization (fminunc) in MATLAB’s optimization tool-

box.

3.4.1 Maximum simulated likelihood estimation

Standard maximum likelihood estimation requires the use of the exact probabilities

of occurrence of the observed choice 𝑃𝑖𝑗. These choice probabilities in mixed logit

models involve high dimensional integrals (e.g. to compute the normalization factor)

which cannot be analytically or exactly solved. Thus, the exact PDFs and log like-

lihood function do not have a closed form solution in such cases, and must instead

be approximately numerically. Moreover, in practical situations it may not be possi-

ble to compute this accurately for finite sample sizes with only a limited number of

observations being available. MLE estimators on such smaller sample sizes may not

have desirable statistical properties like consistency, efficiency or asymptotic normal-

ity [10]. An alternative approach that is preferred in such cases is maximum simulated

likelihood estimation (MSL), where the integral for choice probabilities are calculated

via simulation by random draws from the specified mixing distribution [54]. This

follows the same procedure as MLE, with the only difference being that simulated

probabilities are used instead of the exact ones, resulting in a simulated log likelihood

function:

𝑆𝐿𝐿(𝛽) =
∑︁
∀ 𝑘

𝑙𝑛 𝑓(𝛽 | x𝑘, 𝑦𝑘) =
∑︁
∀ 𝑖

∑︁
∀ 𝑗

𝛿𝑖𝑗 𝑙𝑛(𝑃𝑖𝑗(𝛽)) (3.39)
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where (x𝑘, 𝑦𝑘) are the data (input features) and observations in the sample for passen-

gers 𝑖 and alternatives 𝑗, while 𝑃 (𝛽) are the simulated approximations to the true,

exact probabilities 𝑃 (𝛽). 𝑓(𝑦𝑘|x𝑘,𝛽), the simulated approximations to the exact

PDFs 𝑓(𝑦𝑘|x𝑘,𝛽) are obtained by taking a large number of repeated, random draws

of the model parameters from the specified mixing distribution of 𝛽, for each person

(decision maker) in the sample. For a simulation using 𝑅 draws, this is given by:

𝑓(𝑦𝑘 | x𝑘,𝛽) =
1

𝑆

𝑆∑︁
𝑠=1

𝑔(𝑦𝑖 | x𝑖,𝛽, 𝑤
(𝑠)) (3.40)

where 𝑔(·) is the conditional density computed using the drawn simulations 𝑤(𝑠) from

the mixing distribution. Thus, the MSL estimators describing the optimal mixing

distribution for the parameters are obtained by maximizing this simulated log likeli-

hood:

𝛽 = argmax
𝛽

1

𝑁

𝑁∑︁
𝑖=1

𝑆𝐿𝐿(𝛽 | 𝑦𝑖,x𝑖,w𝑖) (3.41)

= argmax
𝛽

1

𝑁

𝑁∑︁
𝑖=1

𝑓(𝑦𝑘 | x𝑘,𝛽) (3.42)

In addition to offering computational benefits, MSL also has nice statistical prop-

erties which make it preferable to other simulated-assisted estimation methods such as

the method of simulated moments (MSM) and the method of simulated scores (MSS)

[10]. When the number of simulations or draws 𝑅 (per respondent) rises faster than
√
𝑁 , where 𝑁 is the number of observations (samples), then the MSL estimator can

be shown to be consistent, asymptotically normal, efficient and equivalent to exact

MLE. Thus, as 𝑁 → ∞ and 𝑅 → ∞, we need
√
𝑁/𝑅 → 0. However, MSL is incon-

sistent if 𝑅 is held constant (even with increasing sample size) and if 𝑅 increases at a

slower rate relative to
√
𝑁 , then it is consistent but not asymptotically normal [10].

The software developed by Kenneth Train was used as a starting point to perform

the MSL estimation 3.

3https://eml.berkeley.edu/~train/software.html

47

https://eml.berkeley.edu/~train/software.html


3.4.2 Validation of mode choice results

The estimated mode choice parameters were validated using several methods.

Hypothesis testing

Firstly, a standard one-sample, asymptotic 𝑡-test was performed under the null hy-

pothesis that the mean values of all parameters are equal to zero:

𝑡 =
𝜇̂− 𝜇0

𝑆𝐸
(3.43)

where 𝜇̂ is the estimated parameter mean (of the chosen mixing distribution) and the

hypothesized mean 𝜇0 = 0. 𝑆𝐸 is the standard error and 𝑛 is the total number of

respondents in the sample. Since the two sample sets being compared are identical,

we use a paired or dependent (correlated) t-test with 𝑛 − 1 degrees of freedom 4.

The value of this 𝑡-statistic is used to measure the significance of the corresponding

regressor - whether these coefficient means are away from zero in a statistically signif-

icant manner. If the p-values are sufficiently small (or equivalently, the 𝑡-values are

sufficiently large) at the desired confidence level, we can reject this null hypothesis,

indicating that the estimated main effects are significant. For example, if |𝑡| > 1.96,

we can have 95% or greater confidence that the mean is significantly different from

zero [11].

Since the sample size is quite large (𝑛 = 955) we can also use a Z-test, which is

often more convenient than the Student’s t-test. Here, the assumption is that the

test statistic can be approximated by a normal distribution under the null hypothesis.

This approximation is reasonable in our case due to the central limit theorem. We can

thus perform a two-tailed Z-test to test the alternative hypothesis that the parameter

estimate means are non zeros (i.e. 𝜇0 ̸= 0) by computing the Z-score:

𝑍 =
𝜇̂− 𝜇0

𝑠
=

𝜇̂

𝜎/
√
𝑛

(3.44)

4https://www.investopedia.com/terms/t/t-test.asp
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where the sample variance 𝜎2 is substituted in place of the population variance, which

is unknown. The variance 𝜎2 and standard errors for the parameters can be readily

computed as part of the estimation process by inverting the Hessian matrix of the

log-likelihood function at its optimal, maximizing value (𝐿*). This gives the variance-

covariance matrix of the MLE estimates, with the 𝜎2 values given by the diagonal

elements.

Likelihood ratio test

The likelihood ratio index is another useful measure of the goodness of fit of discrete

choice models, to the observed data. It compares how much better a model with the

optimal estimated MLE parameters performs, when compared to one where all the

parameters (coefficients and constant terms) are set to zero. It is defined as:

𝜌 = 1− 𝐿𝐿(𝛽)

𝐿𝐿(0)
(3.45)

where 𝐿𝐿(𝛽) and 𝐿𝐿(0) are the values of the log likelihood function evaluated at the

estimated parameters and at zero, respectively. The likelihood ratio index (0 ≤ 𝜌 ≤ 1)

ranges from 0 when the MLE parameter estimates do not perform any better than

all parameters being zero, to 1 when the estimated model perfectly predict the mode

choices of all passengers in the sample [10]. Thus, for models that are estimated on

identical samples of data and using the same choice set, we can conclude that the

parameters with higher 𝜌 (i.e., closer to 1) has a better fit.

3.5 CPT model estimation

3.5.1 Data pre-processing

Prior to estimation, the data was processed in order to screen out potentially erro-

neous respondents from the final data set. This was necessary because in spite of

the quality and attention checks incorporated in the survey, it became evident that
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some respondents either fully understand the questions or did not put enough effort

into giving thoughtful responses. We used the responses to the financial risk lottery

questions from fig. 3-8 in order to remove the invalid responses and prevent them from

corrupting the estimates. In order to deem responses as valid, we used the procedure

outlined in a previous study [2] to see if they satisfied basic axioms of rational choice:

1. Internal validity: This is violated if the certainty equivalent (CE) of a lottery

is chosen to be less than the smallest possible outcome or larger than the largest

possible outcome. In our survey design, such errors are automatically avoided

by enforcing lower/upper limits on the slider bar used.

2. Monotonicity of probabilities: For pairs of lotteries that have the same

outcomes but assign different probabilities, the CE of the lottery with better

winning chances should be higher (or at least equal). Thus, the lotteries of

interest from fig. 3-8 are 2, 3 and 5.

3. Monotonicity of outcomes: For pairs of lotteries that have the same proba-

bilities but different associated outcomes, the CE of the lottery with the better

expected outcome should be higher (or at least equal). Thus, the lotteries of

interest here are 7 and 8.

If any one of these conditions does not hold true, first-order stochastic dominance is

violated. Then, the individualized CPT risk parameters were only estimated for the

subset of respondents who satisfied all three of the above conditions.

3.5.2 Detection of CPT-like behaviors

Before quantitatively estimating the model parameters, a qualitative analysis was

performed to see if the respondents actually exhibited CPT-like behaviors that cannot

be explained by expected utility theory (EUT) alone. This was also done using their

answers to the lottery questions, following a similar approach to [2].
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Reflection effect

This effect refers to the person being risk-averse in gains and risk-seeking in the losses

regime, leading to a convex-concave structure for the value function 𝑉 (·). This effect

can be tested by comparing symmetric gain and loss lotteries, such as questions 2 and

8 from fig. 3-8. These have the same probabilities and magnitudes for both outcomes

but lottery 2 is a pure gain scenario while lottery 8 is pure losses. Thus, respondents

who were found to be risk averse in lottery 2 but behaved in a risk seeking manner

in lottery 8, were considered to be displaying the reflection effect. In our specific

scenario, this implies that the maximum amount the respondent was willing to pay

to either (i) play the gain lottery or (ii) not participate in the loss lottery, was less

than the lottery’s expected value or mean outcome of $60.

Probability distortion effect

Finally, we explore whether the respondents’ actually show probability distortion,

which is the probably the most novel aspect of CPT and PT based models. For this

study, we focus on probability weighting effects in the gain regime since 6 out of

the 10 lottery questions were gains, but similar analyses can also be conducted for

losses. The following procedure from [55] was used to detect over weighting of small

probabilities at an individual level, by studying the lotteries 2, 3 and 5 from fig. 3-8.

Given two lotteries A and B, both with binary outcomes 0 and 𝑋 > 0. A provides

a payoff of $X with a probability of 𝑝𝐴 while B does so with probability 𝑝𝐵. Let’s

suppose that the survey respondent can be described by CPT but does not distort

probabilities, i.e., they only have the reflection effect. Then, by definition of the

certainty equivalent (𝐶𝐸), the user is indifferent between a guaranteed payoff of 𝐶𝐸
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(i.e. with probability 1) versus the expected payoff from the lottery:

𝑉 (𝐶𝐸𝐴) = 𝑝𝐴𝑉 (𝑋), 𝑉 (𝐶𝐸𝐵) = 𝑝𝐵𝑉 (𝑋)

=⇒ 𝑉 (𝐶𝐸𝐴)

𝑝𝐴
=

𝑉 (𝐶𝐸𝐵)

𝑝𝐵
= 𝑉 (𝑋)

=⇒ 𝑉 (𝐶𝐸𝐴)

𝑉 (𝐶𝐸𝐴)
=

𝑝𝐴
𝑝𝐵

Thus, without probability weighting, we would expect the ratio of the certainty equiv-

alences for such lottery pairs to be a fixed value. If this is not the case, it indicates

that the respondent has at least some degree of probability weighting. Specifically,

for the lotteries under consideration, we have 𝑋 = $100, 𝑝2 = 0.6, 𝑝3 = 0.9 and

𝑝5 = 0.1. Thus, probability overweighting occurs if one or more the below conditions

are satisfied:

𝑉 (𝐶𝐸5)

𝑉 (𝐶𝐸2)
>

𝑝5
𝑝2

=
1

6
=⇒ Overweighting between 10 and 60% probability (3.46)

𝑉 (𝐶𝐸2)

𝑉 (𝐶𝐸3)
>

𝑝2
𝑝3

=
2

3
=⇒ Overweighting between 60 and 90% probability (3.47)

𝑉 (𝐶𝐸5)

𝑉 (𝐶𝐸3)
>

𝑝5
𝑝3

=
1

9
=⇒ Overweighting between 10 and 90% probability (3.48)

Loss aversion

Although risk averse behavior is also one of the features of conventional utility theory,

the extent of it observed in situations with uncertainty (such as lotteries and SMoDS)

can often not be justified with even fairly high levels of loss aversion in EUT model

[2]. By inspecting the responses to lotteries 9 and 10 where both losses (outcome A)

and gains (outcome B) are equally likely, a large value of the the ratio 𝐴/𝐵 (i.e. sig-

nificantly higher than 1) implies that the respondents require proportionately much

higher gain outcomes to compensate for losses even they both occur with equal prob-

ability. Thus, prospect theory is likely a more accurate and realistic representation

of such high degrees of loss aversion in the their preferences.
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3.5.3 Quantitative estimation of parameters

We now proceed to determine the individual level CPT parameters that describe the

risk preferences of each individual in the sample. Note that only valid responses as

determined in section 3.5.1 were used for this analysis. The survey questions in the

travel risk section determine, for each respondent, several pairs of prospects (i.e. their

baseline current travel mode vs. the SMoDS) between which they are indifferent, by

eliciting the certainty equivalent. This allows us to equate the subjective utilities

derived from both alternatives and the resulting nonlinear system can be solved to

estimate the model parameters.

The true certainty equivalent of the respondent can be computed using their an-

swers 𝑢𝑠𝑢𝑟𝑣𝑒𝑦 as shown in the example questions from fig. 3-6 and fig. 3-7:

𝐶𝐸𝑡𝑟𝑢𝑒 = 𝑈 𝑠
𝑅, 𝑆𝑀𝑜𝐷𝑆 = 𝑉 (𝑢𝑠𝑢𝑟𝑣𝑒𝑦) (3.49)

Since the user is indifferent between the certain alternative (denoted as 𝐴) and the

SMoDS at this point, and if they do indeed follow the proposed CPT model, we would

expect this to be equal to the subjective utility offered by SMoDS. This can be viewed

as the predicted certainty equivalent for that respondent:

𝐶𝐸𝑝𝑟𝑒𝑑 = 𝑈 𝑠
𝑅, 𝐴 = ̂︀𝑈 𝑠

𝑅, 𝑆𝑀𝑜𝐷𝑆 (3.50)

= 𝑤1𝑉 (𝑢1) + 𝑤2𝑉 (𝑢2) (3.51)

where we applied the CPT model equations as described in eq. (3.12) - eq. (3.17),

which have simplified considerably here since these survey scenarios only consider two

alternatives and the SMoDS is assumed to have only two possible outcomes 𝑢1 and

𝑢2 (i.e., a Bernoulli distribution) as shown in fig. 3-6. The error or residual for the 𝑖𝑡ℎ

scenario is then defined as the difference between the predicted certainty equivalent
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and the actual value determined from the survey:

𝑒𝑖 = (𝐶𝐸𝑡𝑟𝑢𝑒)𝑖 − (𝐶𝐸𝑝𝑟𝑒𝑑)𝑖 =
(︀
𝑈 𝑠
𝑅, 𝑆𝑀𝑜𝐷𝑆

)︀
𝑖
−
(︀̂︀𝑈 𝑠

𝑅, 𝑆𝑀𝑜𝐷𝑆

)︀
𝑖

(3.52)

= 𝑓𝑖(𝛼, 𝛽
+, 𝛽−, 𝜆) (3.53)

Each of the six scenarios results in an error equation as in eq. (3.53), producing

a nonlinear system for each respondent with the unknowns being the four CPT pa-

rameters of interest. The exact form of the equations will depend on several factors

specific to each scenario such as the choice of reference 𝑅, the CDF 𝐹𝑈(𝑢) of the

SMoDS’ travel times and objective utilities, etc. To see an example of the complex

nonlinearities involved, consider a simplified special case with only two outcomes for

the SMoDS: one gain and one loss i.e., (𝑢1, 𝑢2) ∼ (𝑝, 1 − 𝑝) with 𝑢1 < 𝑢2. Further,

assume that we use the expected value of the SMoDS as our reference:

𝑅 = 𝑝𝑢1 + (1− 𝑝)𝑢2 =⇒ 𝑢1 < 𝑅 < 𝑢2 (3.54)

Finally suppose that the objective utility of the user’s response 𝑢𝑠𝑢𝑟𝑣𝑒𝑦 > 𝑅, thus

perceived as a gain and this is a certain prospect. Then, the nonlinear equations for

this scenario are:

𝑤1 = 𝜋(𝐹𝑈(𝑢1)) = 𝜋(𝑝) = 𝑒−[−𝑙𝑛(𝑝)]𝛼 (3.55)

𝑤2 = 𝜋(1− 𝐹𝑈(𝑢1))− 𝜋(1− 𝐹𝑈(𝑢2)) = 𝜋
(︀
1− 𝑒−[−𝑙𝑛(𝑝)]𝛼

)︀
(3.56)

= 𝑒−[−𝑙𝑛(1−𝑒−[−𝑙𝑛(𝑝)]𝛼)]
𝛼

(3.57)

𝑈 𝑠
𝑅 = (𝑢𝑠𝑢𝑟𝑣𝑒𝑦 −𝑅)𝛽

+

(3.58)̂︀𝑈 𝑠
𝑅 = −𝜆𝑒−[−𝑙𝑛(𝑝)]𝛼(𝑅− 𝑢1)

𝛽−
+ 𝑒−[−𝑙𝑛(1−𝑒−[−𝑙𝑛(𝑝)]𝛼)]

𝛼

(𝑢2 −𝑅)𝛽
+

(3.59)

The nonlinear error equations can be similarly derived for the lottery questions as

well, using the survey responses to the constructed scenarios as illustrated in fig. 3-7.

This results in a analogous nonlinear system in four unknown, but having 10 equations

per respondent. In the case of the travel scenarios for the SMoDS, it is not obvious
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what the correct reference point 𝑅 should be and this could vary depending on the

respondent as well as the trip characteristics. Thus, we have flexibility in the choice

of 𝑅. However, in the case of the lottery questions, 𝑅 = $ 0 (i.e. neither gain nor

loss) is the natural reference choice that also makes intuitive sense. Furthermore, the

lottery survey responses and monetary gains/losses can directly be used as a measure

of objective utility without requiring any intermediate transformations. However, for

the travel questions, the answers need to first be converted to utilities using the mode-

specific utility functions. For example, if the survey question ask for the in-vehicle

ride time of public transit 𝑋 (min) at certainty equivalence as in fig. 3-6, then the

utility corresponding to the response is given by:

𝑢𝑠𝑢𝑟𝑣𝑒𝑦 = 𝑎𝑤𝑎𝑙𝑘, 𝑡𝑟 𝑡𝑤𝑎𝑙𝑘, 𝑡𝑟 + 𝑎𝑤𝑎𝑖𝑡, 𝑡𝑟 𝑡𝑤𝑎𝑖𝑡, 𝑡𝑟 + 𝑎𝑟𝑖𝑑𝑒, 𝑡𝑟 𝑋 + 𝑏𝛾𝑡𝑟 + 𝐴𝑆𝐶𝑡𝑟 (3.60)

Nonlinear least squares

After setting up the nonlinear system as in eq. (3.53) for each passenger, we can

estimate the individual-level CPT parameters by minimizing the error (i.e. the sum

of squared residuals) across all the scenarios considered subject to the upper and lower

bound constraints on the risk parameters. This can be formulated as a constrained

optimization problem for passenger 𝑗 in the sample:

min
𝛼𝑗 , 𝛽

+
𝑗 , 𝛽−

𝑗 , 𝜆𝑗

‖e𝑗‖22 =
∑︁
∀ 𝑖

(︀
𝑓𝑖(𝛼, 𝛽

+, 𝛽−, 𝜆)
)︀2 (3.61)

s.t. 0 < 𝛼, 𝛽+, 𝛽− < 1, 𝜆 > 1 (3.62)

where e𝑗 is the vector of error equations across all the questions for respondent 𝑗.

The index 𝑖 loops over all 6 scenarios per respondent for the travel scenarios, and

over all 10 questions for the lotteries. This is an example of a nonlinear least squares

data-fitting problem and can be efficiently solved using the lsqnonlin function from

MATLAB’s optimization toolbox. However, it does not guarantee global convergence.

Thus, I adjusted several hyperparameters of this solver in order to avoid getting stuck

at local minima, as detailed in section 4.2.4. I also tried a few other methods to solve
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the above minimization problem.

• Grid search: An exhaustive grid search was performed over the entire parameter

space being considered, i.e. 𝛼, 𝛽+, 𝛽− ∈ (0, 1) and 𝜆 ∈ (1, 100). Even with a

very fine grid spacing, we were not able to reduce the squared norm of the

estimation significantly below the values obtained by nonlinear least squares.

Furthermore, this brute-force method if much more computationally expensive

and takes far longer to complete.

• Multidimensional Newton’s method: This root-finding method was also imple-

mented to solve the nonlinear system. However, it is much slower to converge,

mainly due to the expensive step of computing the Jacobian matrix at each

iteration. Furthermore, the algorithm also fails if the Jacobian is close to being

singular near the desired solution.

• Local solvers: Other local MATLAB solvers like fmincon (for minimizing con-

strained nonlinear multivariable functions) provided either comparable or infe-

rior results to lsqnonlin.

• Global solvers: I experimented with several solvers from MATLAB’s Global Op-

timization toolbox, such as global search, multiple starting point search, particle

swarm optimization, genetic (evolutionary) and pattern search algorithms. Our

objective function is highly nonlinear, non convex and also likely to be non

smooth in the variable space of the CPT parameters. For minimizing such

functions subject to bound constraints, the genetic, particle swarm and direct

pattern search algorithms are generally expected to be most well-suited to reach

a single global solution. However, these were found to be much slower to run

than nonlinear least squares, especially when extended to the full sample of 955

respondents. Although these do theoretically guarantee convergence to global

minima, the results obtained were not significantly any better than those from

lsqnonlin in terms of reducing the squared prediction error in the certainty

equivalents. In fact in some cases, the results obtained by these solvers were
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even worse than those obtained using lsqnonlin, in terms of the distributions

of CPT parameters across the sample. Thus, the marginal improvements in

the quality of results (if any) were outweighed by the increased computational

burden.

Thus, going forward, I primarily decided to use the nonlinear least squares solver

instead of any of the alternative methods listed above. It offered a good balance

between good quality of results, relatively low estimation errors and faster runtimes.

A pictorial summary of our overall estimation process, going from raw survey data to

final mode choice utility functions and CPT parameters, is shown in fig. 3-9.

Figure 3-9: Illustration of our proposed estimation process for the SMoDS CPT
model.

3.6 Parallelization and high performance computing

During both the mode choice and CPT model estimation steps, I conducted a large

number of computational experiments to optimize various design choices and hy-

perparameters. Since both the maximum simulated likelihood and nonlinear least
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squares tasks involve relatively high computational effort, I also attempted to use

parallel and high performance computing techniques in order to efficiently perform

these parameter sweep tasks. As a starting point, I modified my programs to be able

to run in parallel on multiple cores (or workers). For the mode choice task, I executed

independent MSL estimation iterations in parallel each using different hyperparame-

ters such as the number of draws or simulations used, types of random draws made,

mixing distributions and starting values for the simulations. In addition, the solver

settings used for unconstrained minimization of the negative log-likelihood function

were set to compute the loss gradients in parallel.

For the CPT estimation task, I was able to parallelize the nonlinear least squares

estimation over all the respondents in the sample since these are all independent

programs using different data to obtain estimates specific to each passenger. Further-

more, the gradient computations in lsqnonlin could also be parallelized similar to

above. Finally, I was able to also use parallel computing to more quickly run an outer

loop where we modified certain hyperparameters such as the regularization term used

in the nonlinear optimization.

I then tested its performance both with and without enabling parallelization on

my local machine - a Dell XPS 15 9560 laptop with a 2.8GHz Intel Core i7-7700HQ

(3.8GHz boost) having 4 cores and 8 threads, alongside an Nvidia GTX 1050 GPU

with 4GB RAM. This was done seamlessly using MATLAB’s parallel computing tool-

box. After verifying that a speedup was in fact obtained, I submitted these high-

throughput computing tasks as batch jobs to the MIT Supercloud5, a remote HPC

cluster operated by the MIT Lincoln Laboratory [56]. The code had to be slightly

modified to run on this cluster since it uses pMatlab, an MPI-based parallel toolbox

for multicore and multinode systems 6.

5https://supercloud.mit.edu/
6https://www.mit.edu/~kepner/pMatlab/
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3.7 Sensitivity and robustness analysis of CPT model

3.7.1 Problem formulation

This study will focus on a single passenger taking a trip using the SMoDS. Without

loss of generality, we consider a case where the passenger chooses between only two

modes of transport: the uncertain SMoDS 𝑠𝑚 against a baseline travel alternative 𝐴

(e.g. public transit, driving or exclusive door-to-door ridesharing) that can be treated

as a certain prospect, offering a fixed objective utility 𝑢𝑜.

The objective utility of a trip with a certain travel option is calculated using a

linear multinomial logit choice mode, based on the travel times spent on each leg,

tariff 𝛾 and the alternative-specific constant (ASC) 𝑐 of the service:

𝑢 = aᵀ t+ 𝑏𝛾 + 𝑐 (3.63)

= 𝑥+ 𝑏𝛾 (3.64)

where t = [𝑡𝑤𝑎𝑙𝑘, 𝑡𝑤𝑎𝑖𝑡, 𝑡𝑟𝑖𝑑𝑒]
ᵀ denote the walking, waiting, and riding times, respec-

tively and a = [𝑎𝑤𝑎𝑙𝑘, 𝑎𝑤𝑎𝑖𝑡, 𝑎𝑟𝑖𝑑𝑒]
ᵀ are the travel time coefficients for each leg. Here,

𝑥 is used to compactly represent the component of objective utility due to all travel

times on different legs combined along with the ASC of the travel mode. The coeffi-

cients on travel times (a) and tariff (𝑏) are negative since these represent disutilities

to the consumer, while 𝑐 can be either positive or negative depending on the charac-

teristics of the given travel option.

For simplicity, for any given ride offer, the possible outcomes with the SMoDS are

modelled as following a Bernoulli distribution, i.e., it is assumed to have only two

possible travel time outcomes t and t (t ≤ t) having corresponding utilities 𝑢 and 𝑢

(𝑢 ≤ 𝑢), occurring with probabilities of 𝑝 ∈ [0, 1] and 1− 𝑝 respectively. This choice

of distribution is a reasonable starting point and makes the problem more tractable.

Moreover, accurately estimating probability distributions for travel times expected

by each passenger would require a very large number of draws for each respondent

in the population. Thus, any distribution fitted using data from a reasonably large
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sample size will still involve some finite error.

We also assume that both outcomes offer the same price since most rideshar-

ing services guarantee trip tariff at the time of ride offer. The analysis we present

below can readily be extended to situations with multiple travel alternatives. This

framework can also be applied to model more complex probability distributions for

SMoDS travel times, having more than two outcomes. These include both continuous

(e.g. Gaussian, extreme value) and discrete (e.g. Poisson) distributions. The specific

assumptions made here are primarily for simplicity and tractability while deriving

analytical results, the broader insights and trends also hold for more general cases.

The utilities of the SMoDS and alternative are then given by:

𝑢 = aᵀ
𝑠𝑚 t+ 𝑏𝑠𝑚𝛾𝑠𝑚 + 𝑐𝑠𝑚 = 𝑥+ 𝑏𝛾 (3.65)

𝑢 = aᵀ
𝑠𝑚 t+ 𝑏𝑠𝑚𝛾𝑠𝑚 + 𝑐𝑠𝑚 = 𝑥+ 𝑏𝛾 (3.66)

𝑢𝑜 = aᵀ
𝑜 t𝑜 + 𝑏𝑜𝛾𝑜 + 𝑐𝑜 (3.67)

If 𝑢𝑜 ≤ 𝑢, the customer would always choose the SMoDS since it offers strictly better

outcomes and conversely if 𝑢𝑜 ≥ 𝑢, they would always choose option 𝐴. Thus, the

only cases considered are where 𝑢 ≤ 𝑢𝑜 ≤ 𝑢 are considered (note: 𝑢𝑜 can still be

either a gain or loss) such that the consumer’s choice (of accepting or rejecting the

SMoDS ride offer) is non-trivial. Given that the SMoDS outcomes follow a Bernoulli

distribution, its cumulative distribution function (CDF) is defined on the support

[𝑢, 𝑢]:

𝐹𝑈(𝑢) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if 𝑢 < 𝑢

𝑝 if 𝑢 ≤ 𝑢 < 𝑢

1 if 𝑢 ≥ 𝑢

(3.68)

3.7.2 CPT model overview

The study focuses on analyzing the model’s sensitivity to the CPT model parameters

as follows. The reader is referred to [1] for more details regarding the CPT based

passenger behavioral model in the SMoDS context:
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1. CPT parameters: It assumed for simplicity that 𝛽+ = 𝛽− = 𝛽 i.e. the

passenger displays similar reductions in sensitivity while moving away from the

reference value, in both the gain and loss regime. The sensitivity with respect

to these parameters is computed in the standard sense by allowing continuous

variations in their values.

2. Reference (𝑅): Treated as a hyper-parameter and case studies using a few

different reference types are considered:

• Static: Fixed for each customer, independent of the SMoDS ride offer.

This could be set as the objective utility of the most frequently used travel

alternative (excluding SMoDS) i.e. 𝑅 = 𝑢𝑜.

• Dynamic: 𝑅 depends on the uncertain prospect itself i.e. it varies with

the SMoDS offer. Some examples considered here are:

– Expected utility of SMoDS

𝑅 = 𝑝𝑢+ (1− 𝑝)𝑢 (3.69)

– Best (𝑅 = 𝑢) or worst-case (𝑅 = 𝑢) utilities corresponding to the

shortest (t) and longest (t) travel times, respectively.

3. Probability distributions: These are the probabilistic distributions of ex-

pected travel times spent on different legs (i.e. walking, waiting and riding), as

perceived by the users themselves. In the current study, we model the objective

utility of the SMoDS as a binary random variable. Thus, this distribution can

be varied by altering the parameter 𝑝 which is the probability of the worst-case

SMoDS outcome (𝑢) occurring.
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The subjective utilities of the SMoDS (i.e. 𝑈 𝑠
𝑅) and 𝐴 (i.e. 𝐴𝑅

𝑠 ) can then be calculated

as:

𝐴𝑠
𝑅 = 𝜋(1) · 𝑉 (𝑢𝑜) = 𝑉 (𝑢𝑜) (3.70)

𝑈 𝑠
𝑅 = 𝑤1 · 𝑉 (𝑢) + 𝑤2 · 𝑉 (𝑢) (3.71)

where 𝑤1 and 𝑤2 are subjective probability weights calculated using:

𝑤𝑖 =

⎧⎪⎨⎪⎩𝜋[𝐹𝑈(𝑢𝑖)]− 𝜋[𝐹𝑈(𝑢𝑖−1)] 𝑢𝑖 < 𝑅

𝜋[1− 𝐹𝑈(𝑢𝑖−1)]− 𝜋[1− 𝐹𝑈(𝑢𝑖)] 𝑢𝑖 ≥ 𝑅

(3.72)

where 𝑢1 = 𝑢 ≤ 𝑢2 = 𝑢 and 𝐹𝑈(·) is the cumulative distribution function (CDF) of

the SMoDS utility. The subjective probability of acceptance can be calculated using:

𝑝𝑅𝑠 (𝛾; 𝜃) =
𝑒𝑈

𝑠
𝑅

𝑒𝑈
𝑠
𝑅 + 𝑒𝐴

𝑠
𝑅

(3.73)

where 𝜃 = [𝛼, 𝛽, 𝜆, 𝑝, 𝑅]ᵀ consists of all the parameters of interest, assembled to-

gether. From eq. (1.1) and equations (3.64)-(3.73), it is easy to see that 𝑝𝑅𝑠 , the main

output of the CPT-based passenger behavioral model is a function of the SMoDS

tariff 𝛾 parametrized by 𝜃. In the following, we will evaluate this model’s sensitivity

with respect to these key parameters by formulating the problem as one of nonlinear

optimization.

3.7.3 Optimization

The dynamic tariff 𝛾 is set by solving a constrained, nonlinear parametric optimiza-

tion problem. We can consider several possible objective functions. For example,

maximizing expected ridership for the fleet would be equivalent to directly maximiz-

ing acceptance probability 𝑝𝑅𝑠 itself. If we maximize expected revenue, the below NLP
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results:

min
𝛾

− 𝑓(𝛾; 𝜃) , −𝛾 · 𝑝𝑅𝑠 (𝛾; 𝜃) (3.74)

s.t. 𝑔1: 𝛾 − 𝛾 ≤ 0 (3.75)

𝑔2: 𝛾 − 𝛾 ≤ 0 (3.76)

eq. (3.74) reflects the expected revenue because the revenue per passenger per trip is 𝛾

with a probability 𝑝𝑠𝑅 and 0 with probability 1−𝑝𝑠𝑅. Yet another option is to perform

a weighted multiobjective optimization considering multiple objectives like revenue,

ridership and utilization. The sensitivity analysis is then aimed at understanding how

changes in parameters affect the optimal dynamic tariff 𝛾* and value of the objective

function 𝑓(𝛾; 𝜃), where 𝛾 is the decision variable and 𝜃 represents all the model

parameters. Note that the constraints in eq. (3.75) and eq. (3.76) only include upper

and lower bound on the dynamic tariff charged such that it is within a reasonable

range, i.e., 𝛾 ∈ [𝛾, 𝛾]. All other constraints related to travel times have already been

accounted for by the routing algorithm in generating the SMoDS ride offer and its

possible outcomes. In practice, the lower bound could be the minimum break-even

price per trip and the upper bound could be some sensible limit e.g. SMoDS tariff

cannot be higher than that of exclusive ridesharing.

3.7.4 Optimality conditions

In the following, subscripts indicate partial derivatives w.r.t. that variable. The

Lagrangian dual for the NLP formulated in eq. (3.74)-(3.76) is [57]:

ℒ(𝛾; 𝜃) = −𝑓(𝛾; 𝜃) + 𝜇1 · (𝛾 − 𝛾) + 𝜇2 · (𝛾 − 𝛾) (3.77)

The Karush-Kuhn-Tucker (KKT) conditions for the optimal point 𝛾* are:
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1𝑠𝑡 order necessary conditions

𝜕ℒ
𝜕𝛾

= −𝑓𝛾(𝛾
*; 𝜃) + 𝜇*

1 − 𝜇*
2 = 0 (3.78)

Complementary slackness conditions

𝜇*
1 · (𝛾* − 𝛾) = 0 , 𝜇*

2 · (𝛾 − 𝛾*) = 0 (3.79)

Primal problem feasibility

𝜇*
1 , 𝜇

*
2 ≥ 0 (3.80)

If one of the constraints 𝑔𝑖 is active at the nominal optimum, then its corresponding

multiplier 𝜇𝑖 > 0 by strict complementarity, and if inactive, then 𝜇𝑖 = 0. In addition

to the above necessary conditions, the following Strong 2𝑛𝑑 Order Sufficient Condition

(SSC) guarantees that 𝛾* is a local minimum of the NLP, even if it is non-convex. The

Hessian of the Lagrangian must be positive definite on the null space of the Jacobian

of active constraints 𝑔𝑎 [58]:

𝜈ᵀ ℒ𝛾𝛾 𝜈 > 0 ∀ 𝜈 ̸= 0 s.t. 𝑔1𝛾 𝜈 = 0 or 𝑔2𝛾 𝜈 = 0 (3.81)

Since at most one constraint can be active, this implies that either 𝜈 = 0 or −𝜈 =

0 and thus the SSC holds automatically if either the lower (eq. (3.75)) or upper

(eq. (3.76)) bound is active. If neither constraint is active, then the SSC requires

positive definiteness of ℒ𝛾𝛾 = −𝑓𝛾𝛾 over all possible values of 𝛾 in the domain. It

can be shown that the objective function 𝑓(𝛾; 𝜃) is concave in 𝛾 as long as a specific

condition holds on the parameters, price and travel times. For instance, if 𝑅 = 𝑢,

this condition turns out to be:

𝑒−𝜆(𝑢−𝑢0)𝛽
(︁
𝑒−𝑒−𝜆(𝑢−𝑢)𝛽(−𝑙𝑛(𝑝))𝛼

+ 𝛾𝜆𝛽𝑏𝑠𝑚(𝑢− 𝑢0)
𝛽−1
)︁

≤ −
(︁
𝑒−𝑒−𝜆(𝑢−𝑢)𝛽(−𝑙𝑛(𝑝))𝛼

)︁2
(3.82)
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This implies ℒ𝛾𝛾 ≥ 0 and the NLP reduces to a convex optimization problem for

which KKT conditions are sufficient for both local and global minima.

3.7.5 Local sensitivity analysis

Suppose the nominal problem with assumed parameters 𝜃0 has optimal tariff 𝛾*
0 and

optimal objective value 𝑓(𝛾*
0 ; 𝜃0) = 𝑓 *

0 . If the actual parameters turn out to be 𝜃, we

consider how this impacts the optimal tariff and optimal objective for the perturbed

problem. Here, we consider cases where only one of the parameters is perturbed

at a time while keeping the others fixed. This doesn’t account for how interactions

between parameters may influence the objective function. Local sensitivity analysis

considers relatively small perturbations or uncertainties in the parameters for which

the active set remains constant. Following [58], local sensitivity differentials can be

derived analytically in the neighbourhood of the nominal optimum operating point

(𝛾*
0 ,𝜃0), considering variations in a single parameter 𝜃:

⎡⎣ 𝑑𝛾*

𝑑𝜃

𝑑𝜇𝑎

𝑑𝜃

⎤⎦ = −

⎡⎣ℒ𝛾𝛾 𝑔𝑎ᵀ

𝑔𝑎 0

⎤⎦−1 ⎡⎣ℒ𝛾𝜃

𝑔𝑎

⎤⎦ (3.83)

where all the quantities are evaluated at the nominal values 𝛾*
0 , 𝜃0 and 𝜇𝑎

0. This gives

us local sensitivity derivatives of both the optimal solution 𝛾*(𝜃) and multipliers 𝜇𝑎

corresponding to inequality constraints 𝑔𝑎 active at the nominal optimum. Further-

more, 𝑑𝜇𝑖𝑛𝑎

𝑑𝜃
= 0 for all inactive constraint multipliers. If neither 𝑔1 nor 𝑔2 is active,

we get:

𝑑𝛾*

𝑑𝜃
= −ℒ−1

𝛾𝛾ℒ𝛾𝜃 (3.84)

The 1𝑠𝑡 order sensitivity of the optimal objective yields [58]:

𝑑𝑓 *

𝑑𝜃
(𝛾(𝜃); 𝜃)|𝜃=𝜃0 = ℒ𝜃(𝛾

*
0 , 𝜇

𝑎
0, 𝜃0) (3.85)
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3.7.6 Real-time approximations by Taylor expansions

We can also approximate the perturbed optimal solution 𝛾*(𝜃) and objective function

𝑓 * in the neighbourhood of the nominal optimum, using 1𝑠𝑡 order Taylor expansions

about this operating point:

𝛾*(𝜃) = 𝛾*
0 +

𝑑𝛾*

𝑑𝜃
(𝜃0)(𝜃 − 𝜃0) (3.86)

𝑓 *(𝜃) = 𝑓 *
0 +

𝑑𝑓 *

𝑑𝜃
(𝜃0)(𝜃 − 𝜃0) (3.87)

We can measure the quality of this approximation by comparing it with the 2𝑛𝑑 order

expansion [58]:

𝑓 *(𝜃) = 𝑓 *
0 +

𝑑𝑓 *

𝑑𝜃
(𝜃0)(𝜃 − 𝜃0) +

𝑑2𝑓 *

𝑑𝜃2
(𝜃0)(𝜃 − 𝜃0)

2

𝑑2𝑓 *

𝑑𝜃2
(𝜃0) = ℒ𝛾𝛾(𝜃0)

(︂
𝑑𝛾*

𝑑𝜃
(𝜃0)

)︂2

+ 2ℒ𝛾𝜃
𝑑𝛾*

𝑑𝜃
(𝜃0) + ℒ𝜃𝜃 (3.88)

3.7.7 Prediction of local domain

The analysis in section 3.7.5 assumes that the perturbation does not alter the set of

active constraints. We can estimate the largest allowable magnitude of such param-

eter changes that still preserves the active set. 1𝑠𝑡 order estimates for the Lagrange

multipliers are used to determine when their corresponding constraints become either

slack or tight, as in eq. (3.89) and eq. (3.90) respectively.

1. When a constraint leaves the active set, its non-zero multiplier becomes zero:

𝜇𝑎(𝜃) ≈ 𝜇𝑎(𝜃0) +
𝑑𝜇𝑎

𝑑𝜃
(𝜃0)(𝜃 − 𝜃0) = 0

(𝜃 − 𝜃0)𝑚𝑎𝑥 = 𝛥𝜃𝑚𝑎𝑥 = − 𝜇𝑎(𝜃0)
𝑑𝜇𝑎

𝑑𝜃
(𝜃0)

(3.89)
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2. When a constraint enters the active set, it becomes tight and equal to zero.

𝑔𝑖𝑛𝑎(𝛾; 𝜃) ≈ 𝑔𝑖𝑛𝑎(𝛾
*
0 ; 𝜃0) +

𝑑𝑔𝑖𝑛𝑎
𝑑𝜃

(𝛾*
0 , 𝜃0)(𝜃 − 𝜃0) = 0

(𝜃 − 𝜃0)𝑚𝑎𝑥 = 𝛥𝜃𝑚𝑎𝑥 = − 𝑔𝑖𝑛𝑎(𝛾0; 𝜃0)
𝑑𝑔𝑖𝑛𝑎

𝑑𝜃
(𝛾0; 𝜃0)

(3.90)

3.7.8 Global sensitivity analysis

Global methods study the effects of varying multiple parameters simultaneously and

relatively larger perturbations that cause the active set to change. In our CPT be-

havioral model, this could mean large errors in parameters or fundamentally misclas-

sifying users, for example, assuming a given passenger to be loss averse (𝜆 > 1) when

in fact they are not (𝜆 < 1). It is generally not possible to obtain explicit sensitivity

derivatives at such points. However, an iterative scheme can be used to calculate

directional derivatives for the optimal tariff and value function [58, 59]:

1. Calculate the initial optimum (𝛾*, 𝜇𝑎) and sensitivity differentials
(︀
𝑑𝛾*

𝑑𝜃
, 𝑑𝜇

𝑎

𝑑𝜃

)︀
at

the nominal value 𝜃0 = 𝜃10.

2. Compute the local domain as in section 3.7.7 and the perturbed parameter 𝜃20

that disturbs the active set.

3. Calculate sensitivity differentials at 𝜃20 and update the active set to calculate

1𝑠𝑡 order changes:

𝛥𝛾* =
𝑑𝛾*

𝑑𝜃
(𝜃10)(𝜃

2
0 − 𝜃10) +

𝑑𝛾*

𝑑𝜃
(𝜃20)(𝜃 − 𝜃20) (3.91)

𝛥𝜇𝑎 =
𝑑𝜇𝑎

𝑑𝜃
(𝜃10)(𝜃

2
0 − 𝜃10) +

𝑑𝜇𝑎

𝑑𝜃
(𝜃20)(𝜃 − 𝜃20) (3.92)

4. Compute new optimal solutions and multipliers, as well as 1𝑠𝑡 and 2𝑛𝑑 order

approximations of 𝑓 *.

5. Repeat steps (1)-(4) whenever the active set is detected to change with incre-

mentally larger perturbations.
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Thus, while local sensitivity analysis constructs a linear approximation around the

nominal operating point, the global sensitivity analysis creates a piecewise linear

approximation with discontinuities at points where the active set changes.

3.7.9 Mismatch loss

Parameter estimation errors cause losses in the objective function, resulting from a

mismatch between parameters assumed while designing the dynamic price (̃︀𝜃) versus

the true but unknown, behavioral model of passengers (𝜃𝑡𝑟𝑢𝑒).

𝛥𝑓 = 𝑓(𝛾*
𝑡𝑟𝑢𝑒; 𝜃𝑡𝑟𝑢𝑒)− 𝑓(̃︀𝛾*; 𝜃𝑡𝑟𝑢𝑒) (3.93)

𝛾*
𝑡𝑟𝑢𝑒 = argmax

𝛾
𝑓(𝛾; 𝜃𝑡𝑟𝑢𝑒) (3.94)

̃︀𝛾* = 𝛾*(̃︀𝜃) = argmax
𝛾

𝑓(𝛾; ̃︀𝜃) (3.95)

which implies that 𝑓(𝛾*
𝑡𝑟𝑢𝑒; 𝜃𝑡𝑟𝑢𝑒) ≥ 𝑓(̃︀𝛾*; 𝜃𝑡𝑟𝑢𝑒).

3.7.10 Numerical simulations

Several assumptions need to be made to obtain reasonably accurate analytical solu-

tions, for e.g, regarding the largest magnitude of allowed perturbations for a localized

analysis to be valid, accounting for possible changes in the active set (section 3.7.7),

checking curvature and convexity (eq. (3.82)) etc. These can be quite restrictive es-

pecially if we wish to consider larger perturbations and uncertainties in parameters.

However, when the above mentioned assumptions do hold, analytical methods can be

advantageous and much faster since most of the calculations can be done offline.

In addition, numerical approaches can also be used. The updated optimal solu-

tions, value functions and mismatch losses can be computed using solvers in MAT-

LAB’s Global Optimization Toolbox, such as Global Search - which provides fast,

proven quadratic convergence to local optima for such smooth problems using gradient-

based methods. Results can be obtained by artificially constructing sensible travel

scenarios (for both the SMoDS and the alternative) and repeatedly solving the NLP
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in eq. (3.74)-(3.76) under both nominal and perturbed conditions. Numerical results

can be applied more generally and provide a benchmark against which we can measure

the accuracy of analytical approximations. On the other hand, such simulation-based

methods are much more computationally expensive. This brute-force method is fea-

sible here since the problem size and associated computational burden are relatively

small. However, it may not be practical for larger, higher dimensional problems with

more constraints. Furthermore, such solvers generally do not provide proven, theoret-

ical guarantees for convergence to global optima. In our simulations, the termination

criteria were tweaked to reach globally optimally solutions.
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Chapter 4

Results and Discussion

4.1 Mode choice model results

4.1.1 Maximum simulated likelihood (MSL) estimation

The initial baseline results for the mode choice parameters, using both fixed and

random coefficients are shown in table 4.1 and table 4.2, respectively. The likeli-

hood ratio index was computed as explained in section 3.4.2, using the log-likelihood

value at convergence and the log-likelihood when all the model parameters are set

to zero which was estimated as ≈ −1.1541 × 104. The random parameters model

presented here in table 4.2 were obtained using a normal mixing distributions for all

the parameters, with 𝑁 = 500 modified Latin hypercube draws.
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Parameter Estimate Standard error (SE)

𝑎𝑤𝑎𝑙𝑘 -0.0220 0.0008

𝑎𝑤𝑎𝑖𝑡 0.0089 0.0067

𝑎𝑟𝑖𝑑𝑒, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 -0.0027 0.0004

𝑎𝑟𝑖𝑑𝑒, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 -0.0058 0.0007

𝑎𝑟𝑖𝑑𝑒, 𝑝𝑜𝑜𝑙𝑒𝑑 -0.0053 0.0004

𝑏 -0.0060 0.0011

𝐴𝑆𝐶𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 -1.0960 0.0382

𝐴𝑆𝐶𝑝𝑜𝑜𝑙𝑒𝑑 -1.2601 0.0423

Log-likelihood value at convergence -1.0126 ×104

Likelihood ratio index 𝜌 0.1225

Table 4.1: Results for mode choice utility functions estimated using fixed parameters
for all the coefficients.

Parameter Mean 𝜇 SE SD 𝜎 SE

𝑎𝑤𝑎𝑙𝑘 -0.0586 0.0053 -0.1412 0.0079

𝑎𝑤𝑎𝑖𝑡 0.0113 0.0182 0.1491 0.0356

𝑎𝑟𝑖𝑑𝑒, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 -0.0105 0.0013 0.0284 0.0017

𝑎𝑟𝑖𝑑𝑒, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 -0.0086 0.0014 -0.0058 0.0010

𝑎𝑟𝑖𝑑𝑒, 𝑝𝑜𝑜𝑙𝑒𝑑 -0.0186 0.0013 -0.0095 0.0007

𝑏 -0.0518 0.0050 0.0597 0.0042

𝐴𝑆𝐶𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 -2.5926 0.1800 2.3034 0.1558

𝐴𝑆𝐶𝑝𝑜𝑜𝑙𝑒𝑑 -2.2230 0.1497 1.8175 0.1530

Log-likelihood value at convergence −6.5350× 103

Likelihood ratio index 𝜌 0.4338

Table 4.2: Mode choice utility functions estimated using random (normal) distribu-
tions for all coefficients.
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Fixed vs. Random coefficients

Even from these initial results, we see that the random parameters model performs

much better than the one with all fixed coefficients. This is evident since the random

logit model has a significantly higher likelihood ratio index (𝜌 is close to 1) as well as

the higher log-likelihood value at convergence. Thus, all of the subsequent analysis

focuses on models where are all the parameters are allowed to belong to random

distributions since fixed coefficients are inadequate to capture the variation in our

sample well. It’s important to note that all of the estimates presented are relative to

setting the alternative specific constant of public transit as zero, i.e. 𝐴𝑆𝐶𝑡𝑟𝑎𝑛𝑠𝑖𝑡 = 0.

Thus, it is the relative values of the terms and utilities that we should pay attention

to, rather than their absolute magnitudes.

The tariff coefficient and all of the travel time coefficients except that for waiting

time are negative, as expected since passengers suffer a disutility from losing either

time or money. However, the coefficient on waiting time has a positive mean value.

This non-intuitive sign of 𝑎𝑤𝑎𝑖𝑡 may be due to some of the simplifying assumptions

we made, e.g. implicitly taking the disutility caused by waiting to be the same across

different modes. Other possible reasons for this inconsistency could be to sampling

or respondent biases, incorrect or inaccurate responses, other types of survey errors

etc. Furthermore, the high standard deviation associated with this term implies that

it still has non-zero probability density in the negative range, for a sizeable portion

of respondents.

Another surprising observation is that the mean values of the constant terms

(𝐴𝑆𝐶) for both exclusive ride hailing and pooled ride sharing options are negative.

This seems to imply that these modes offer less utility than transit, if we exclude

price and time from consideration. This may be due to factors like the traffic con-

gestion, increased carbon emissions, safety or privacy concerns etc. associated with

ride sharing options, which may outweigh their other benefits like convenience and

comfort. However, the standard deviation for these terms is also very large, indicating

that there is a great deal of heterogeneity in how passengers perceive these external

73



factors apart from travel time and price.

4.1.2 Value of time (VOT) insights

Trip leg or mode VOT (in $/h)

Walking 67.8702

Waiting 13.1480

Transit ride 12.1703

Exclusive ride hailing 9.9466

Pooled ride sharing 21.5549

Table 4.3: Value of time spent on different modes, obtained from the random pa-
rameters logit model.

The value of time spent on different transport modes and trip legs can be calculated

from the mean values of the estimated utility function coefficients from table 4.2,

using the method described in section 3.1.3. We find that the orders of magnitude of

the VOT values are comparable to the average hourly wage of ≈ $32.40 in the Boston-

Cambridge-Nashua metro area1. Furthermore, the relative trends also generally make

intuitive sense. A higher value of time indicates that the passenger is willing to pay

more to reduce the time spent on that leg. Thus, a higher VOT implies that the mode

causes more disutility to them. Thus, it makes sense that respondents find walking

to be more cumbersome than waiting, which in turn causes greater inconvenience

compared to riding or in-vehicle travel time. Exclusive door-to-door ride hailing is

more convenient for users than both pooled ridesharing and public transit. The only

trend that’s a bit surprising is that transit has a lower VOT than ride pooling. This

could perhaps be due to the extra uncertainty in travel times and risk of delayed

arrival associated with pooling.

1https://www.bls.gov/regions/new-england/news-release/occupationalemploymentandwages_
boston.htm
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4.1.3 Statistical significance of mode choice model

Parameter mean t-stat p-value Z-score p-value

𝑎𝑤𝑎𝑙𝑘 -11.0141 0.0000 12.8238 2.000

𝑎𝑤𝑎𝑖𝑡 0.6244 0.7338 2.3518 1.9813

𝑎𝑟𝑖𝑑𝑒, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 -7.9241 0.0000 -11.4393 0.0000

𝑎𝑟𝑖𝑑𝑒, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 -6.1996 0.0000 45.7569 2.0000

𝑎𝑟𝑖𝑑𝑒, 𝑝𝑜𝑜𝑙𝑒𝑑 -14.2325 0.0000 60.7051 2.0000

𝑏 -10.4452 0.0000 -26.8046 0.0000

𝐴𝑆𝐶𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 -14.4046 0.0000 -34.7825 0.0000

𝐴𝑆𝐶𝑝𝑜𝑜𝑙𝑒𝑑 -14.8511 0.0000 -37.7979 0.0000

Table 4.4: Results from conducting a hypothesis test on the mean values using the
Student’s t-distribution, for the statistical significance of the coefficients estimated
by MSL.

We find that all of the estimates are statistically significant at the 5% significance

level but at the 1% level, the null hypothesis cannot be rejected for some of the

parameters. The p-values for the Z and t-test statistics are also very similar, which

makes sense given that our sample size is relatively large.
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4.1.4 Effects of MSL hyperparameters

Number of draws or simulation runs

Figure 4-1: Variation of converged log-likelihood and likelihood ratio index with the
number of random draws used.

We find that the value of the log likelihood function at convergence and consequently

the likelihood ratio index, both increase with a larger number of simulated draws

as seen in fig. 4-1, thus resulting in a more accurate model which better explains or

predicts the observed data. The increase is very steep in going from 10 to around 200

draws, after which the values tend to plateau and only rise marginally with further

increases in draws. This indicates that the simulating more random draws offers

diminishing returns after a certain point. Thus, in this case, 𝑁 = 200 draws would

provide an optimal balance of (i) producing a model with sufficiently high predictive

power and (ii) lower runtimes and computational burden.
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Figure 4-2: Average variance in the mode choice parameter versus number of simula-
tions.

In general, we find that increasing the number of random draws reduces the sim-

ulation variance [54] as seen in fig. 4-2 where we performed a moving average on the

data in order to show this trend more clearly. However, for certain draw types like

standard Halton draws, the trend is not quite monotonic and the variance may even

increase with the number of draws. This may be due to random variations from one

run to the next, more definitive results could potentially be obtained by averaging

over a large number of repeated trials. On the other hand, the average standard

error of the estimated parameters increases slightly with more random draws, as seen

infig. 4-3.
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Figure 4-3: Variation in the average standard with the number of random draws
used.

However, if the number of draws is too large relative to the sample size, we run into

the issue of ‘exploding parameters’ which causes the standard errors to become very

large and approach ∞, thus producing results that are no longer physically meaningful

or accurate. This problem has been documented in past studies as well [60]. In our

case, this is observed when the number of random draws 𝑁𝑑𝑟𝑎𝑤𝑠 gets larger than

≈ 1000, although the exact threshold also depends on other factors like the mixing

distribution used, types of random draws taken and parameter initializations etc. On

the other hand, if the number of draws is too small, we get very large standard errors

and the Hessian of the log-likelihood may also become singular.

Type of draws used

I experimented with several different types of random draws such as:

1. Pseudo-random draws

2. Standard Halton draws

3. Shifted and shuffled Halton draws

4. Shifted and shuffled modified Latin hypercube sampling

It was found that the choice of draw only marginally affected the parameter esti-

mates obtained. However, more sophisticated sampling techniques like (3) and (4)
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do produce slightly better results (for the same number of draws) in terms of higher

log-likelihoods at convergence, lower simulation variance and lower standard errors.

This is because the sequences generated by such draws are closer to being truly ran-

dom samples compared to standard draws. This implies that the simulation variance

or error in the estimated parameters is lower when using such methods compared to

pseudo-random draws, for the same number of runs. Thus, using Halton or Latin

hypercube draws can significantly cut down the number of simulations needed and

run times for MSL [54].

The difference is more apparent when using a small number of draws. For exam-

ples, in figures 4-1, 4-2 and 4-3, we see that for smaller values of 𝑁 , Halton and Latin

hypercube draws generally provide better results (i.e. higher likelihood ratio index

𝜌, lower variance 𝜎2 and lower standard error) than pseudo random draws using the

same 𝑁 . However, as 𝑁 gets larger, the type of draw becomes less influential and all

four sampling methods are comparable.

Type of assumed underlying distribution for parameters

There are several different possible choices for the mixing distributions of random

parameters, such as:

• Normal or Gaussian: The parameter 𝛽 ∼ 𝒩 (𝜇, 𝜎2) with mean 𝜇 and standard

deviation 𝜎 being estimated by MSL.

• Log normal: The model coefficients are 𝑒𝛽 where 𝛽 ∼ 𝒩 (𝜇, 𝜎2), with 𝜇 and 𝜎

being estimated.

• Truncated normal: A normal distribution where the probability share below

zero is massed at zero, i.e. the parameters are given by 𝑚𝑎𝑥(0, 𝛽) where 𝛽 ∼

𝒩 (𝜇, 𝜎2), with 𝜇 and 𝜎 being estimated.

• Bounded Johnson’s 𝑆𝐵 distribution: The parameters are given by 𝑒𝛽

1+𝑒𝛽

where 𝛽 ∼ 𝒩 (𝜇, 𝜎2), with 𝜇 and 𝜎 being estimated. Note that this always

produces values between 0 and 1.
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• Triangular: Parameters are distributed according to 𝛽 ∼ 𝜇 + 𝑡𝜎 where 𝑡 is

a piecewise linear, triangular function between -1 and 1 and the mean 𝜇 and

spread 𝜎 are estimated.

From intuition, we always expect the coefficients on the price and travel time terms

to be negative since they cause disutility to passengers. Thus, the truncated normal,

log normal or 𝑆𝐵 distributions should theoretically be good choice for these disutility

coefficients since these always output parameter estimates of the same sign. However,

the objective loss function (i.e. the negative log-likelihood) sometimes becomes un-

bounded or undefined (i.e. → ±∞) at certain points for these mixing distributions,

depending on the other hyperparameters used for the MSL estimation. This caused

practical issues while minimizing the objective and frequently resulted in errors dur-

ing the estimation process. Moreover, these distributions also sometimes resulted in

spurious results that didn’t agree well with intuition. For example, table 4.5 shows

results obtained using a truncated normal mixing distribution for the travel time and

tariff coefficients and a normal distribution over the alternative specific constants,

using 𝑁 = 500 modified Latin hypercube draws. As we can see, the coefficient on

price is much smaller in magnitude than the travel time coefficients. This results in

grossly overestimated VOT estimates across all modes, around 5-10 times higher than

the average hourly wage. This leads us to have lower confidence in these estimates in

spite of the likelihood ratio being quite high.

Thus, I avoided these distribution types and restricted myself to mainly using

normal distributions during the estimation process and also while experimenting with

different combinations of other hyperparameters. A normal distribution was also

assumed for the constant bias terms (i.e., the ASCs) since the exclusive ride hailing

and ride pooling modes could offer either positive or negative utilities relative to

public transit.
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Parameter Mean 𝜇𝛽 SE SD 𝜎𝛽 SE

Truncated normal ∼ −𝑚𝑎𝑥(0, 𝛽 ∼ 𝒩 (𝜇, 𝜎2))

𝑎𝑤𝑎𝑙𝑘 -0.3017 0.0354 0.5757 0.0618

𝑎𝑤𝑎𝑖𝑡 0.7712 0.0000 0.2547 0.0000

𝑎𝑟𝑖𝑑𝑒, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 -0.4802 0.0739 1.0103 0.1440

𝑎𝑟𝑖𝑑𝑒, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 -0.0552 0.0119 0.3639 0.0285

𝑎𝑟𝑖𝑑𝑒, 𝑝𝑜𝑜𝑙𝑒𝑑 0.0540 0.0057 0.2621 0.0395

𝑏 -0.0100 0.0086 1.2641 0.1585

Normal 𝛽 ∼ 𝒩 (𝜇, 𝜎2)

𝐴𝑆𝐶𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 -0.0584 0.0831 0.1451 0.0000

𝐴𝑆𝐶𝑝𝑜𝑜𝑙𝑒𝑑 -0.3485 0.0817 0.2181 0.0000

Log-likelihood value at convergence −6.5808× 103

Likelihood ratio index 𝜌 0.4298

Table 4.5: Mode choice utility functions estimated using truncated normal distribu-
tions for the price and travel time coefficients.

All these results seem to indicate that normal mixing distributions are most appro-

priate for all of the parameters in our mode choice model. This also agrees with the

theory behind mixed logit and maximum simulated likelihood since MSL estimators

are approximately asymptotically normal for large enough sample sizes [10].

Starting parameter values for the simulation

During MSL estimation, we have the freedom to set the initial values for the sim-

ulations or random draws. These correspond to the starting means and standard

deviations for random coefficients, and starting magnitudes for fixed coefficients. I

experimented with several different initializations but found that the model parame-

ters estimated through MSL are largely invariant with respect to these, which agrees

with intuition.

81



However, the estimation process overall is quite sensitive to the combinations of

the different parameters described above, that are used. Under certain combinations,

the objective function became unbounded or failed to converge, and it often wasn’t

clear which hyperparameter caused the issue. This made the tuning of these multiple

hyperparameters more challenging.

4.2 CPT model estimation results

4.2.1 Validity of responses

During the pre-processing step as described in section 3.5.1, the responses that vio-

lated first order stochastic dominance were screened out. It was found that ≈ 66.53%

of the total responses (i.e. 𝑛 ≈ 664 respondents) were valid. All of the subsequent

analysis and results presented below used only this valid subset of the data. For-

tunately, the current survey still provides a large enough sample of respondents to

obtain meaningful estimates and observe some heterogeneity in the results. However,

future iterations of the survey could enforce more quality checks early on in the sur-

vey to prevent invalid respondents from proceeding further. For example, it may be

possible to incorporate tests for validity similar to those described in section 3.5.2

within the survey itself to filter out such respondents in real time, albeit at the cost

of increased complexities and effort needed in coding up the survey logic and design.

4.2.2 Detection of CPT effects

From table 4.6, we see that the valid responses clearly display CPT effects. The

reflection or framing effect is shown by nearly all the valid respondents, indicating

that our proposed value function is likely an accurate descriptor of how the passengers

perceive their gains and losses. The probability weighting effect is not as dominant but

it is still quite significant. We find that majority of them (> 72%) show at least some

overweighting of probabilities and it is also most common in the lower probability

ranges (between 10 − 60%). This agrees with CPT theory since ti postulates that
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people tend to overestimate the likelihood of rare events. The relatively large value

of the mean gain/loss ratio (> 1) in the mixed lotteries indicates a significant degree

of loss aversion among the surveyed passengers. However, the median value is quite

close to 1 indicating that loss aversion may not be as prevalent for a sizeable portion

of the passengers sampled in this study.

CPT effect tested % of valid responses

Reflection effect 95.03

Probability overweighting between

10% and 60% probability 62.56 %

60% and 90% probability 40.51 %

10% and 90% probability 51.05 %

Any probability weighting 72.44 %

Mean gain/loss ratio for mixed outcome lotteries 3.7254

Median gain/loss ratio for mixed outcome lotteries 1.0250

Table 4.6: Summary of key CPT effects observed.

4.2.3 Initial results for CPT model parameters

We first attempted to estimate the originally proposed CPT model having four param-

eters and the weighting function as given by eq. (3.17). We experimented with both

the Levenberg-Marquardt and Trust-region-reflective algorithms, to approximately

solve the nonlinear least squares problem in MATLAB. Both of these methods gave

comparable results and are interchangeable for the purposes of this study.

Financial risk CPT parameters

As can be seen from the scatter plots in fig. 4-4 and the histograms in fig. 4-6,

the financial risk parameters estimated from the lottery questions have a very poor

distribution. For a large number of parameters, all four CPT parameters tend to go
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towards either their upper or lower bounds. This is especially noticeable in the case

of the loss aversion parameter 𝜆 which stays at the lower bound of 1 for almost all the

respondents, which directly contradicts our observations in table 4.6 that indicate our

respondents do display significant loss aversion. Although the results do look slightly

better for the other three parameters, there is clearly a lot of room for improvement.

This is also evident in fig. 4-5, which shows relatively large estimation errors for a

large portion of respondents.

Figure 4-4: Scatter plots showing the poor distribution of financial CPT parameters
across all the valid respondents.
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Figure 4-5: Scatter plot showing the squared norm of the CPT-lottery estimation
errors for each of the valid respondents in the sample

Figure 4-6: Histograms showing the skewed distribution of financial CPT parameters
across all the valid respondents.
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Travel risk CPT parameters for SMoDS

Figure 4-7: Scatter plots showing the poor distribution of travel CPT parameters
across all the valid respondents.

Figure 4-8: Scatter plot showing the squared norm of the CPT-SMoDS estimation
errors for each of the valid respondents in the sample.
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Figure 4-9: Histograms showing the skewed distribution of travel CPT parameters
across all the valid respondents.

Similarly, the distribution of CPT parameter estimates for the SMoDS scenarios were

also quite skewed and not very meaningful since most of the values either stay close

to their initializations or go towards the bounds. This inferior distribution of both

the travel and financial CPT risk parameters can also be inferred from table 4.7.

Type Lotteries SMoDS

CPT parameter 𝛼 𝛽+ 𝛽− 𝜆 𝛼 𝛽+ 𝛽− 𝜆

Mean 0.7584 0.0774 0.0715 1.0077 0.2392 0.6448 0.0841 1.0989

Median 1.000 0.0745 10−6 1.0000 0.2696 0.5000 10−7 1.0000

Standard deviation 0.3257 0.0827 0.0917 0.0537 0.2533 0.3077 0.2290 0.5477

Table 4.7: Summary statistics for initial CPT parameter estimates.
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4.2.4 Troubleshooting efforts

There may be several reasons behind the poor results obtained initially for the CPT

estimates. Thus, I ran numerous computational experiments to diagnose what these

issues might be. This in turn guided my attempts to resolve some of these problems

and obtain better results for the CPT parameters.

Solvers, numerical settings and hyperparameters

Firstly, the nonlinear least squares solver as well as most other constrained optimiza-

tion algorithms in MATLAB are often prone to local minima. This may cause it to

prematurely converge to solutions that aren’t globally optimal. In fact, many of the

global optimization toolbox solvers in MATLAB actually use multiple local solvers

to try and reach global optima. In order to prevent the algorithm from getting stuck

at local extrema, I experimented with different solution techniques and also tweaked

numerous settings within these solvers away from their default values. These include

various tolerances like the optimality and function tolerances used to determine con-

vergence and stopping criteria. Since the objective function was sometimes found to

be insensitive to small parameter changes, I increased the finite difference step size 𝛿

from 10−8 to 10−3. Too small values of 𝛿 may incorrectly result in the estimated gra-

dients being zero and cause convergence to local minima. Thus, I also increased the

minimum change in variables needed to compute finite difference derivatives from 0 to

10−3. In order to improve accuracy from 1𝑠𝑡 to 2𝑛𝑑 order, the finite difference method

was changed from forward to central differences. Finally, I significantly increased the

upper limits on the allowed number of iterations and function evaluations, to prevent

the solver from stopping prematurely. Tweaking all of these settings resulted in some

marginal improvements in the quality of results, giving a slightly better parameter

distribution over the respondents.
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Modifying model assumptions

Another avenue we explored was altering some of our modelling assumptions and

trying out other alternative parametric forms for the CPT model that have been

proposed in the literature. In addition to Prelec’s probability weighting function

eq. (3.17) that we proposed in our original model [51], we examined another form for

the weighting function that has been widely used in past studies [61, 62] including

some applicationsin the transportation space [39, 40]:

𝜋̃(𝑝) =
𝑝𝛼

(𝑝𝛼 + (1− 𝑝)𝛼)
1
𝛼

(4.1)

We found that both the original and modified weighting functions produce similar

results, although the above form in eq. (4.1) does prove to better suited for analytical

tractability due to its simpler parametrization when compared to to eq. (3.17).

In order to better fit the model to the data, we also allowed for different probability

distortion parameters in the loss and gain regimes, i.e. 𝛼+ and 𝛼− rather than simply

𝛼. Intuitively, this approach is reasonable since once would anticipate people to

weight the likelihood of outcomes differently depending on whether they’re losses or

gains. Thus, both our original and modified weighting functions now become:

𝜋±(𝑝) = 𝑒−(−𝑙𝑛(𝑝))𝛼± (4.2)

𝜋̃±(𝑝) =
𝑝𝛼±

(𝑝𝛼± + (1− 𝑝)𝛼±)
1

𝛼±

(4.3)

As expected, increasing the number of model parameters from four to five does allow

for better fit of the nonlinear model to the survey data and results in lower estimation

errors overall, due to the higher dimensionality.

Rescaling and normalization

Optimization routines can sometimes output sub-optimal or even incorrect results if

the variables involved (i.e. the inputs to the objective function) are on very different

scales, resulting in a poorly posed or ill-conditioned problem. For example, in our
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case with the extended 5-parameter CPT model, four of the risk parameters always

lie between zero and one (0 < 𝛼+, 𝛼−, 𝛽+, 𝛽− < 1) while the loss aversion parameter is

always greater than 1 by definition (𝜆 > 1). Thus, I rescaled 𝜆 to also lie in a similar

range i.e. ∈ (0.01, 1] and accordingly also made changes to the objective function

computations.

Furthermore, taking inspiration from [2], I decided to normalize the estimation

errors or residuals in order to comparable across different scenarios that may differ

greatly in their outcomes. Without such normalization, it may not be possible to

meaningfully compare two risk scenarios whose respective outcomes are very different

in their scales or magnitudes. Before normalization, the error for both the SMoDS

and lottery scenarios is defined as the difference between the certainty equivalent

predicted by our CPT model and the actual certainty equivalent value elicited from

the survey response. For the financial CPT parameters using the lottery questions,

two different normalization factors were considered:

1. Normalize the error for each question as the proportion of the above mentioned

difference and the maximum monetary outcome possible in that lottery. Thus

the normalized error is given by:

𝑒𝑛 =
𝐶𝐸𝑡𝑟𝑢𝑒 − 𝐶𝐸𝑝𝑟𝑒𝑑

𝑚𝑎𝑥{|𝑢1|, |𝑢2|}
(4.4)

=
𝑈 𝑠
𝑅 − ̂︀𝑈 𝑠

𝑅

𝑚𝑎𝑥{|𝑢1|, |𝑢2|}
(4.5)

where 𝑢1 and 𝑢2 are the utilities (i.e. monetary gains or losses) corresponding

to the possible outcomes of that lottery.

2. Normalize the error in the certainty equivalent by the true certainty equivalent

derived from the survey. The normalized error here is:

𝑒𝑛 =
𝐶𝐸𝑡𝑟𝑢𝑒 − 𝐶𝐸𝑝𝑟𝑒𝑑

𝐶𝐸𝑡𝑟𝑢𝑒

(4.6)

=
𝑈 𝑠
𝑅 − ̂︀𝑈 𝑠

𝑅

𝑈 𝑠
𝑅

(4.7)
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Both of these normalizations are reasonable approaches, although option 2 is more

intuitive. However, option 1 has also been shown to produce good results in past

studies. For the SMoDS travel scenarios, only one normalization procedure was ex-

plored. The error for each scenario was divided by the true certainty equivalent from

the survey, i.e. the same as option 2 from above.

Figure 4-10: Box plots showing the distribution of estimation errors across respon-
dents for the lottery questions, under four distinct approaches.

In fig. 4-10, we compare the estimation errors for determining financial CPT pa-

rameters from the lottery questions, under four different combinations of normaliza-

tion factors and probability weighting functions. The four cases considered are:

1. Using the modified weighting function from eq. (4.3) and normalizing estimation

errors by the maximum outcome of each lottery as in eq. (4.5).

2. Using the modified weighting function from eq. (4.3) and normalizing estimation
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errors by the true certainty equivalent of each lottery as in eq. (4.7).

3. Using the original Prelec weighting function from eq. (4.3) and normalizing

estimation errors by the maximum outcome of each lottery as in eq. (4.5).

4. Using the original Prelec weighting function from eq. (4.3) and normalizing

estimation errors by the true certainty equivalent of each lottery as in eq. (4.7).

On each box, the central notched mark indicates the median value while the bottom

and top edges of the box indicate the 25th and 75th percentiles, respectively. The

whiskers extend to the most extreme data points that are not considered outliers and

the outliers are plotted individually using the ‘+’ symbols. As we can see clearly

from fig. 4-10, case 4 has a much higher median error than the other 3 cases. Case 1

has the lowest median error of all and the smallest spread but with a large number

of outlier respondents for whom the error is very large. Similarly, case 3 has a lower

median error than case 2 but also has many more extreme outliers. Thus, case 2 is

likely the best approach to minimize errors relatively uniformly across all respondents

in our sample.

Random draws for mode choice coefficients

Initially, for simplicity, the CPT estimation was performed assuming all coefficients

in the mode choice model to be fixed. Thus, we just used the mean values for each

parameter and did not allow variation among respondents. Later on, this assumption

was relaxed and we used random parameter mode choice models to determine the

CPT parameters. For each respondent in the sample, their mode choice parameters

were randomly drawn from mixing distributions (in our case, normal) specified by

the mean and variance estimated previously. Allowing for such heterogeneity among

passengers is much more realistic and also produces better results.

Transfer learning

One of the main challenges with estimating SMoDS CPT parameters lies in determin-

ing the true reference point 𝑅 for the travel scenarios. However, this is not an issue

92



for the lottery scenarios since 𝑅 = $0 (i.e. no loss or gain of money) is unambiguously

the correct reference point, regardless of the respondent or outcomes being consid-

ered. This makes the CPT estimation process for the lotteries more straightforward.

Thus, we tried to use the idea of ‘transfer learning’ from the lottery data, in order to

leverage the relative simplicity of the lottery questions relative to the SMoDS mode

choice scenarios. The process used was as follows:

1. Use the financial CPT parameters estimated from the lottery questions to first

determine the reference for each of the travel scenarios, where 𝑅 is taken to be

the only unknown variable. Either a static or dynamic reference can be used.

2. Then taking these values of 𝑅 as given, rerun the estimation process on the

travel scenarios and determine the CPT parameters for the SMoDS, taking

𝛼+, 𝛼−, 𝛽+, 𝛽− and 𝜆 as unknowns in this step.

Although this approach seems promising, implementing this procedure actually pro-

duced no visible improvement in the results for the SMoDS CPT parameters. Fur-

thermore, it implicitly assumes that CPT risk attitudes and parameters are similar

for both financial and travel-related outcomes, which may not always be the case.

Regularization

Finally, we considered regularizing the nonlinear least squares minimization problem

(eq. (3.62)) in order to tackle the issue of parameter estimates tending to move to-

wards either the specified upper or lower bound constraints. We implemented explicit

regularization by adding 𝐿2-norm penalty terms to the original loss function, similar

to the Lagrangian while performing ridge regression or Tikhonov regularization for

linear least squares. Thus, solutions that were too close to either limit were penalized

equally:

min
𝛩

‖e𝑛 (𝛩) ‖22 + 𝜈1‖𝛩 −𝛩‖22 + 𝜈2‖𝛩 −𝛩‖22 (4.8)

s.t. 0 < 𝛼+, 𝛼−, 𝛽+, 𝛽− < 1, 𝜆 > 1 (4.9)
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where 𝛩 = [𝛼+, 𝛼−, 𝛽+, 𝛽−, 𝜆]ᵀ, while 𝛩 and 𝛩 represent the enforced upper and

lower limits. e𝑛 (𝛩) represents the normalized error vector across all scenarios, for

each respondent. Note that in the current implementation, we set the regulariza-

tion hyperparameters on both terms as equal due to the symmetry in the problem

statement i.e., 𝜈1 = 𝜈2 = 𝜈.

We found that adding such regularization to the objective does in fact improve

the distribution of CPT parameter estimates for both the lotteries and SMoDS. In

general, stronger regularization i.e. higher 𝜈 produce better distributions of CPT

parameters. However, adding these penalty terms is a form of artificial bias. Thus,

too much bias can result in models that are no longer as accurate in terms of their

ability to predict the user’s choices. This is similar to the bias-variance tradeoff

encountered in supervised machine learning [63]. Thus, we need to carefully tune this

hyperparameter through leave-one-out cross-validation to select the optimal 𝜈. This

can be done by repeatedly training the model parameters on a subset of the responses

(for each respondent) and then evaluating the resulting model’s predictions (of the

certainty equivalent) using the remaining responses. The regularization parameter

can then be determined using a uniform grid search to minimize this test error, while

also taking into consideration the distribution of CPT parameters.
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(a) Errors including regularization penalties
and with 𝑅 = dynamic 𝑢0.

(b) 𝜈-Adjusted estimation errors and using
𝑅 = dynamic 𝑢0.

(c) Errors including regularization penalties
and with 𝑅 = dynamic 𝑆𝑀𝑜𝐷𝑆.

(d) 𝜈-Adjusted estimation errors and using
𝑅 = dynamic 𝑆𝑀𝑜𝐷𝑆.

Figure 4-11: Box plots showing the distribution of squared estimation error norms
in the lottery CPT parameters across all valid respondents, for various regularization
parameter values.

The plots in fig. 4-11 show both the raw and 𝜈-adjusted estimation error dis-

tributions for various values of 𝜈. The raw errors also include the contributions of

the two squared 𝐿2 norm penalty terms from eq. (4.9), while these were removed in

the 𝜈-adjusted values in order to isolate the errors arising from only the certainty

equivalent prediction. As expected, we see that the raw error increases monotonically

with increasing 𝜈. However, the increases in the adjusted estimation errors are much

smaller and more gradual. This implies that we can regularize the problem at least

moderately in order to improve the distribution of parameter estimates, without sig-

nificantly affecting the accuracy of the resulting model. It seems that a value of 𝜈
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between ≈ 0.5− 2 causes relatively small increases in the estimation error. Further-

more, these plots also show that 𝑅 = dynamic 𝑆𝑀𝑜𝐷𝑆 (expected utility of the two

SMoDS outcomes) is a more accurate reference point since the median errors with

𝑅 = dynamic 𝑢0 (objective utility of current baseline travel alternative) are much

larger. The estimation errors when using static reference types were even larger and

thus are not included here for conciseness. In contrast to the dynamic reference points

which depend on the specific passenger as well as the current travel scenario under

consideration, static references are objective utilities calculated using average-case

prices and travel times per-mile. These vary for different passengers in the sample

but do not depend on the specific trip attributes of the current travel scenario.

4.2.5 Improved results

Through the incremental improvements obtained by using the troubleshooting steps

described above, the distributions of the financial CPT parameter estimates are

greatly improved. In fact, we obtain satisfactory results for the lottery games, even

without applying any regularization i.e. with 𝜈 = 0. The scatter plots in fig. 4-12

and histograms in fig. 4-13 clearly show a much more heterogeneous and realistic dis-

tribution of parameters in the sample, while still keep the estimation error relatively

low. These results were obtained using the modified weighting function, but estimates

using the original weighting function were also decently good.
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Figure 4-12: Scatter plots showing the distribution of financial CPT parameters and
squared norm of estimation errors across all valid respondents, without any regular-
ization.

Figure 4-13: Histograms showing the distribution of financial CPT parameters across
all the valid respondents, without any regularization.

The distributions of the SMoDS CPT parameters are also better now, but the

improvement isn’t quite as significant. This indicates that in spite of all our efforts

above, there still remain some underlying issues with the travel risk scenarios and
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the corresponding CPT model estimation for the SMoDS. We obtain decently good

distributions for 𝛼+ and 𝛽−. However, even with a relatively high regularization

penalty of 𝜈 = 2, the estimates for 𝛼−, 𝛽+ and 𝜆 still noticeably tend to be skewed

towards either the bounds or remain close to their initial values (0.5 for 𝛼+, 𝛼−, 𝛽+,

𝛽− and 50 for 𝜆).

Figure 4-14: Scatter plots showing the distribution of travel CPT parameters and
squared norm of (unadjusted) estimation errors across all valid respondents, using
regularization with 𝜈 = 1.5, 𝑅 = dynamic 𝑆𝑀𝑜𝐷𝑆 and the original weighting func-
tion.
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Figure 4-15: Histograms showing the distributions of SMoDS CPT parameters across
all the valid respondents, without any regularization.

𝛼+ 𝛼− 𝛽+ 𝛽− 𝜆 Squared error norm

Mean 0.4456 0.1315 0.2166 0.3550 20.0494 0.8625

Median 0.4124 0.1320 0.2188 0.3649 11.8715 0.8439

SD 0.1828 0.0448 0.0985 0.1906 25.8554 0.3605

Table 4.8: Summary statistics for final lottery CPT parameter estimates.

𝛼+ 𝛼− 𝛽+ 𝛽− 𝜆 Squared error norm (adjusted)

Mean 0.4390 0.4653 0.1721 0.6664 5.3998 3.4915

Median 0.4607 0.5054 10−5 0.6930 1.0000 3.4599

SD 0.1333 0.1130 0.2438 0.1922 11.4421 1.1016

Table 4.9: Summary statistics for final travel CPT parameter estimates.
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4.2.6 Pending issues with SMoDS CPT parameters

Effect of reference point

One of the key challenges that arises with the estimation of travel CPT parameters is

in the accurate determination of the reference utility 𝑅 for each passenger and trip.

This appears to be the dominant factor influencing both estimation residuals and the

quality of parameter distributions. While the choice of reference is quite obvious and

intuitive in the case of the lottery questions (𝑅 = $0), this is not the case for the

SMoDS travel scenarios. Here, the reference function is essentially unknown and likely

not unique. The reference points could vary for each passenger in the population and

also depending on the specific scenario and trip attributes under consideration. Our

initial hypothesis was that we could reasonably approximate this quantity using a

heuristics-based approach. In our experiments, we tried several different heuristics

for both static and dynamic references, based on the objective utilities of either the

SMoDS or the user’s baseline travel alternative (i.e. the certain prospect). As we saw

in fig. 4-11, the estimation errors can vary quite significantly depending on the value

of 𝑅 that’s assumed. Thus, if our choice of 𝑅 differs from the true value by a large

margin, then the estimation errors remain large regardless of the values assumed by

the CPT parameters. This would make the estimation process largely insensitive to

the other parameters, causing the observed behavior where estimates either stay at

their initializations or stick to the bounds of the interval.

In general, we found that dynamic references are more realistic and intuitive.

These produce better parameter estimates and have lower residuals compared to

static reference points. However, how each passenger dynamically computes their

reference is still unclear. We obtained the lowest errors while using the expected

utility of the SMoDS as our reference. However, even the residuals in this case are

relatively large with a median value of ≈ 3 for 𝜈 = 0 as seen in fig. 4-11. This is in

contrast to the financial parameters where the estimation error norms are close to 1

as seen from fig. 4-12.

Thus, we also experimented with an alternative approach for calculating 𝑅. Rather
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than assuming a heuristic, we also included 𝑅 itself as a variable (along with the CPT

parameters) in the nonlinear least squares optimization problem. Thus, we now have

6 unknowns that are estimated using 6 nonlinear equations, per respondent. We

found that optimizing 𝑅 separately for each passenger did help reduce the estimation

errors to nearly 0 for all respondents. However, it did not improve the distributions

of the CPT parameter estimates. In fact, the results actually got worse for a large

portion of respondents. This is likely because optimizing 𝑅 in this manner results in

severe overfitting of the model to the training data. Thus, driving the estimation error

to 0 in this manner does not necessarily lead to better, more meaningful parameter

estimates. Another caveat with this approach is that it can only be used to model

a static reference i.e. it implicitly assumes a single value of 𝑅 for each passenger,

that’s shared across all 6 of the travel scenarios they face. Thus, for many respon-

dents, the minimization routine may set 𝑅 in such a way that the user perceives all

of their travel scenarios as either pure gains (or losses). This would make their model

insensitive to parameters in the other loss (or gain) regime. We cannot implement

dynamic references (where 𝑅 varies for both respondents and for each scenario) since

this would result in 11 unknowns per respondent, which cannot be reliably estimated

using only 6 equations

4.2.7 Data quality challenges

I ran some computational experiments to diagnose root causes for why the distribution

of CPT travel parameters remains quite skewed. After making several adjustments

as outlined in section 4.2.4, we are able to obtain good results for financial CPT

parameter estimates. This confirms that our data processing, analysis and estimation

procedures are technically sound. These findings point towards potential issues with

the data used to estimate the SMoDS CPT parameters.

I tested two different hypotheses computationally using the responses to the lottery

questions, to see if the issue was with either the quantity or quality of data collected,

or both. Both of these tests used the lottery data and its associated financial CPT

parameters as the ‘ground truth’:
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1. Quantity issue: The inferior results for the travel parameters are due to insuf-

ficient amount of data (i.e. the number of equations) available for estimation.

The SMoDS parameters are obtained using only 6 equations or SMoDS choice

scenarios, whereas the lottery parameters use 10 equations. In order to test

this hypothesis, I reran the CPT lottery estimation using fewer equations i.e. 6

equations instead of the 10 originally used, to see if this would produce worse

results. I randomly selected a subset of the scenarios to be used for the non-

linear least squares estimation process and these same 6 survey questions were

used for all the respondents.

2. Quality issue: The inferior results are due to poor, sub-optimal design of the

choice scenarios that caused incorrect or inaccurate responses, in particular as

they relate to the reference point 𝑅. I tested this hypothesis by rerunning the

CPT lottery estimation by optimizing 𝑅 specifically for each respondent, rather

than using 𝑅 = $0 as a heuristic.

From test 1, I found that what mattered was not necessarily the number of scenar-

ios used, but rather the types of scenarios considered. The estimation errors swung

considerably depending on which 6 scenarios were used. From the plots in fig. 4-16,

we see that in general, the errors are still close to zero for nearly all the respondents

even though only six equations were used. However, the exact distributions and range

of error magnitudes obtained depend quite heavily on which subset of 6 lottery sce-

narios are chosen. Thus, we may deduce from this that it is the quality of data that

matters more than the quantity, i.e. including more questions or choice games in

the CPT-SMoDS risk section of the survey would not have necessarily led to better

results.
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(a) Using lotteries 𝒮 =
{1, 2, 5, 8, 9, 10}

(b) Using lotteries 𝒮 =
{1, 4, 5, 6, 7, 9}

(c) Using lotteries 𝒮 =
{1, 4, 5, 6, 8, 10}

Figure 4-16: Testing hypothesis 1: Effects of lottery scenarios selected for estimation,
on the resulting errors in parameters.

From test 2, we found that empirically optimizing the reference point 𝑅 separately

for each individual respondent in the sample instead of directly setting 𝑅 = $0, still

produces reasonably good results in terms of both low estimation errors and decent

distributions of parameter estimates, as seen in fig. 4-17. Furthermore, it turns out

that even when the reference is included as an optimization variable, the estimated 𝑅

values are still quite close to $ 0. This indicates that the lottery survey scenarios are

still able to infer the respondents’ true reference reasonably accurately and output

meaningful parameter estimates, even without the valuable prior information that 𝑅

should intuitively equal 0.
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Figure 4-17: Histograms showing the distribution of financial CPT parameters and
of the self-optimized reference points 𝑅 for each passenger, when testing hypothesis
2.

Another challenge I faced in this study was the lack of any ‘ground truth’ data that

I could compare my results and parameter estimates against, especially for the SMoDS

choice scenarios. It would have been very helpful to have some actual empirical data

for customer decision making for pooled ridesharing, that I could use to explicitly test

the accuracy of my CPT model’s predictions and compare their choice probabilities.

However, ridesharing firms like Uber and Lyft are notoriously secretive about their

pricing algorithms and it was thus impossible to get access to such data from the field.

Thus, our only viable option for the estimation steps was to collect data ourselves via

this survey, and generate synthetic data via simulations for the sensitivity-robustness

analyses (section 3.7) and feedback control steps (chapter 5). Unlike with the mode

choice coefficient estimates, we also can’t check the statistical significance of these

CPT parameter estimates via hypothesis testing due to the small sample size (𝑛 = 6)

of survey responses used per respondent. Neither is it possible to get their standard

errors via bootstrapping since each of these are individual specific and not population-

wide parameters.
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4.2.8 Guidelines for future survey design

Put together, our experimental results testing both the hypotheses indicate that there

are potentially some underlying flaws in the design of the risky SMoDS choice sce-

narios, i.e. the survey section dealing with travel CPT parameters. As a result, these

questions weren’t able to elicit the passengers’ risk preferences to a high degree of

accuracy. There remain some technical barriers in designing such mode choice scenar-

ios to aid prospect-theoretic modelling of travel risk attitudes. Constructing surveys

involving questions like the SMoDS travel risk scenarios is much more involved and

complex, compared to the much simpler lottery questions used for financial risk.

For instance, in the case of lotteries, it is inherently obvious whether a particular

monetary outcome is a gain or loss. However, whether certain trip characteristics (like

travel times, tariffs etc.) corresponds to gains or losses depends on a host of external

factors such as the mode-specific utility functions, environmental considerations and

the specific passenger’s true reference point, which remains unknown. Accounting for

all of these features and enumerating all the possibilities while designing such choice

experiments proves to be very cumbersome. This requires the travel scenarios pre-

sented to be highly customized in real time for each user, while also being dependent

on their responses to preceding questions. Nevertheless, implementing such surveys

that more systematically cover all possible combinations of gains/losses/mixed out-

comes, could produce better quality data which in turn would give better results for

the travel CPT parameters.

Future iterations of the survey could include a few additional survey sections.

One section would construct augmented discrete choice scenarios similar to our mode

choice questions (section 3.3.3) but also incorporating uncertainty in the outcomes of

the SMoDS (similar to section 3.3.4). This would allow us to directly compare the

predicted and true choice probabilities, thus giving us a reliable metric for the CPT

model’s goodness of fit. This would increase our confidence in our model’s predictive

power, rather than relying only on the estimation errors. It would also be useful to

create a section with new types of questions aimed solely at precisely determining
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the reference for each passenger and trip, instead of having to resort to an arbitrary

heuristic. However, even with highly sophisticated and expertly designed surveys,

one must accept that there is always going to be some finite amount of human error

that can’t be avoided. This could be due to several factors like the respondent not

understanding the question well enough, accidentally mixing up numbers while filling

out their responses etc. [2].

4.2.9 Demographic heterogeneity in risk preferences

We were also able to leverage the anonymized demographic data that we collected

as part of the survey, to examine how these correlated with the respondents’ CPT

parameters and general attitudes towards uncertainty and risk. Since the distribu-

tions were superior for the financial CPT parameter estimates, these results were

generated using the lottery data. The box plots are helpful to concisely display the

various summary statistics for each sub-group. Simultaneously, swarm scatter charts

can provide deeper insights into demographic trends by visualizing the underlying

parameter distributions for each sub-group within the population. Thus, both types

of graphs have been provided here.

4.2.10 Variation of risk attitudes with gender

We observe that there are noticeable differences in risk preferences between males

and females. Note that we can’t reliably comment on the trends for non-binary

respondents since a very small number of people identified as belonging to that group.

Although the median values tend to be quite similar for both men and women across

all five parameters in fig. 4-18, there are other discrepancies that are quite significant.

I general, we see that men to exhibit more spread in their risk parameters as seen

in fig. 4-19, with a larger inter quartile range and more extreme points. Women on

average have higher values of 𝛼−, 𝛽+ and 𝜆, indicating that they tend to over or

under-weight losses more, are relatively more sensitive to incremental gains and are

more risk averse than men. On the other hand, men tend to over or underestimate
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gains more and are more sensitive to incremental losses below their point of reference.

Figure 4-18: Box plots showing the variation in CPT parameters by gender.

Figure 4-19: Swarm scatter charts showing the variation in CPT parameters by
gender.

4.2.11 Variation of risk attitudes with income

Unlike with gender, there aren’t as many conclusive or clear trends that we can

deduce immediately, in risk preferences by gross annual income. One observation
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from fig. 4-22 is that in general, medium-to-high income brackets tend to display

more variation in their risk parameters across individuals when compared to lower

income respondents. Looking at fig. 4-21, we notice that the all of the risk parameters

seem to have a somewhat bimodal distribution with income, with their values reaching

peaks or troughs either near the middle or towards the extreme ends of the income

spectrum. Thus, there do not appear to be many decisive patterns that we can infer.

However, it is interesting to note that richer respondents are likely to be more

loss averse. Another important insight we obtain from the swarm plots is that our

data set seems to be skewed towards higher incomes, with a disproportionately large

number of respondents belong to the $100-150,000 bracket in particular. We only

enforced quotas for gender and age in our survey but it may be worthwhile to impose

income quotas as well in future iterations to obtain a more representative sample.

Figure 4-20: Variations in CPT parameters by income.
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Figure 4-21: Swarm scatter charts showing the variation in CPT parameters by
income.

4.2.12 Variation of risk attitudes with age

Similar to what we see with gender, there are some trends in CPT parameters with

respect to age that do stand out in fig. 4-22. For example, older age groups show

larger spread in their risk attitudes and more extreme variations among different

respondents. Younger age groups are less loss averse (with lower 𝜆) and are willing to

tolerate higher levels of risk, which agrees with common beliefs as well. The trends in

probability distortion parameters is a bit uneven across age groups, but older groups

in general do seem to either over or under-weight the likelihood of gains and losses

more (i.e. they tend to have higher values for both 𝛼+ and 𝛼−). Also, older age groups

on average seem to have lower values for both 𝛽+ and 𝛽−, implying that they are less

sensitive to either incremental gains or losses away from their reference baseline.
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Figure 4-22: Variations in CPT parameters by age.

Figure 4-23: Swarm scatter charts showing the variation in CPT parameters by age.

4.2.13 Correlations between different CPT parameters

We examined pairwise correlations between all the CPT parameters, among all the

valid respondents. The matrix in fig. 4-24 show the 2D scatter plots between each

pair or parameters as well as their linear least squares regression lines. The slope of
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these lines are also shown and correspond to the value of Pearson’s linear correlation

coefficient between the pair of parameters.

Figure 4-24: Correlation matrix between different pairs of CPT risk parameters.

Recall that higher values of these CPT parameters generally indicate a greater

degree of irrationality since these deviate from traditional EUT behavior. Thus intu-

itively, one would accept that the parameters in the gain regime (𝛼+, 𝛽+) would be

positively correlated with one another and the same should be true for loss regime

parameters (𝛼−, 𝛽−, 𝜆). However, what we find from fig. 4-24 is that this holds true

in our sample only for the pair 𝜆 and 𝛽−. This makes sense since people who are

more sensitive to additional losses also tend to be more risk averse. But the opposite

trend is true for all the other pairs i.e. (i) 𝛼+ is negatively correlated with 𝛽+, (ii) 𝛼−

is negatively correlated to both 𝛽− and 𝜆. Trend (i) implies that people who have a

more distorted view of the likelihood of occurrence of gains tend to be less sensitive
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to such gradational gains. Similarly, trend (ii) implies that people who have a more

distorted view of the likelihood of occurrence of losses tend to be less sensitive to

gradational losses and also less risk averse. Although these trends seem surprising at

first, they actually do make intuitive sense upon closer inspection. Finally 𝛼+ and

𝛼− are negatively correlated, thus meaning that probability distortion in gains tends

to be more or less balanced by that in losses.

4.3 Results from sensitivity and robustness analyses

4.3.1 Key insights from representative scenarios

Both analytical and numerical results were obtained for more than 100 randomly

generated travel scenarios. These were created by varying 𝑢0, 𝑥, 𝑥, 𝑏𝑠𝑚, 𝛾, 𝛾 while

ensuring that the resulting choice set was valid and involved fair comparisons between

the uncertain SMoDS and the certain alternative travel option. The objective utili-

ties of the SMoDS and alternative can take positive or negative values according to

eq. (3.65). The sensitivity analysis was performed for each of these scenarios using

nominal parameter values 𝛼0 = 0.82, 𝛽0 = 0.8 and 𝜆0 = 2.25 estimated in [1]. The

probability of the worst-case SMoDS outcomes was set as 𝑝0 = 0.75. In order to com-

pute the mismatch loss, the passenger’s true behavioral parameters were set equal to

their initial values at the nominal optimum, i.e., 𝜃𝑡𝑟𝑢𝑒 = 𝜃0 in eq. (3.93). All five of

these model parameters are then varied by as much as ±20%. Only five select sce-

narios are presented here to show some distinct behaviors and trends, as summarized

in table 4.10. For all scenarios, the best-case SMoDS outcome was used as reference,

i.e., 𝑅 = 𝑢. In this case, both the alternative 𝐴 and the worst case SMoDS outcome

are perceived as losses by the passenger. The acceptance probability can then be

derived using eq. (1.1) and equations (3.64)-(3.73):
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𝐴𝑠
𝑅 = 𝑉 (𝑢0) = −𝜆(𝑢− 𝑢0)

𝛽 (4.10)

𝑈 𝑠
𝑅 = 𝜋(𝑝)𝑉 (𝑢) = −𝜆𝑒−(−𝑙𝑛(𝑝))𝛼(𝑢− 𝑢)𝛽 (4.11)

𝑓 = 𝛾𝑝𝑠𝑅 =
𝛾

1 + 𝑒𝜆(𝑒
−(−𝑙𝑛(𝑝))𝛼 (𝑥−𝑥)𝛽−(𝑥+𝑏𝛾−𝑢0)𝛽)

(4.12)

Table 4.10: Selected representative scenarios.

Scenario 𝑢0[−] 𝑏𝑠𝑚[$
−1] 𝛾[$] 𝛾[$] 𝑥[−] 𝑥[−]

𝑆1 8.17 -0.14 4.66 8.41 2.46 15.45

𝑆2 -7.62 -0.08 2.04 19.26 -8.67 -5.15

𝑆3 -2.54 -0.72 4.12 12.99 0.32 10.98

𝑆4 9.51 -0.40 1.11 13.49 1.06 24.36

𝑆5 9.55 -0.04 4.24 7.92 4.41 12.92

Table 4.11: Sensitivity differentials of the optimal solution and value function near the
nominal operating point, all evaluated at their respective nominal parameter values.

Scenario 𝑑𝛾*

𝑑𝛼
𝑑𝛾*

𝑑𝛽
𝑑𝛾*

𝑑𝜆
𝑑𝛾*

𝑑𝑝
𝑑𝑓*

𝑑𝛼
𝑑𝑓*

𝑑𝛽
𝑑𝑓*

𝑑𝜆
𝑑𝑓*

𝑑𝑝

𝑆1 -2.8 -24.1 -2.9 -8.7 2.9 6.9 0.5 8.9

𝑆2 -3.9 -20.8 -4.2 -12.1 4.3 8.4 0.9 12.9

𝑆3 -4.5 -3.1 0.2 -13.8 4.6 -0.8 -0.7 14.1

𝑆4 -4.3 -15.7 -1.3 -13.3 4.4 6.9 0.3 13.5

𝑆5 -27.7 -99.7 -12.2 -84.5 1.2 3.8 0.4 3.6
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Table 4.12: Valid domain for local sensitivity analysis (in %).

Scenario |𝛥𝛼𝑚𝑎𝑥| |𝛥𝛽𝑚𝑎𝑥| |𝛥𝜆𝑚𝑎𝑥| |𝛥𝑝𝑚𝑎𝑥|

𝑆1 71.7 8.7 24.6 25.7

𝑆2 250.8 48.9 85.6 89.9

𝑆3 88.8 131.9 706.9 31.8

𝑆4 51.9 14.8 63.5 18.6

𝑆5 3× 10−6 10−6 3× 10−6 10−6

The plots in fig. 4-25 display variations in the optimal tariff, objective function

value (maximum expected revenue) and mismatch loss for scenario 𝑆1. The varia-

tions in optimal solution and mismatch loss sometimes become flat w.r.t. to certain

parameters as seen with 𝛽 and 𝑝 in fig. 4-25. This happens because 𝛾* hits either

the lower or upper bound and doesn’t change further unless the active set changes

yet again due to even larger perturbations. We now present three major implications

from analyzing these scenarios.

(a) Variation in optimal solu-
tion 𝛾* (SMoDS tariff).

(b) Variation in optimal ob-
jective 𝑓* (maximum expected
revenue).

(c) Variation in mismatch
loss 𝛥𝑓 .

Figure 4-25: Sensitivity results for 𝑆1.
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(a) Variation in optimal solution. (b) Variation in optimal objective.

Figure 4-26: Sensitivity results for 𝑆3.

General sensitivity trends for different parameters

Across all the scenarios studied, the optimal solution was found to be monotoni-

cally decreasing with respect to both 𝛼 and 𝑝. This makes intuitive sense since as 𝑝

increases, the likelihood of the best-case outcome decreases while the worst-case out-

come becomes more likely. This makes the SMoDS relatively less attractive compared

to the certain alternative 𝐴 and thus the optimal SMoDS tariff 𝛾* must be reduced

accordingly for it to remain competitive. Similarly, an increase in 𝛼 indicates weaker

probability distortion (i.e. under weighting high probability events and over weighting

low probability events). Thus, as 𝛼 increases, the user underestimates the likelihood

of the more likely, worst-case outcome occurring to a lesser extent or equivalently

overestimates the rarer, best-case outcome less. This reduces the SMoDS’ relative

attractiveness as well as 𝛾*. The opposite (monotonically increasing) trend would be

observed with respect to 𝛼 if best-case SMoDS outcome occurred with higher prob-

ability instead of the worst-case outcome, i.e., if 𝑝 < 0.5. This was verified by also

testing a few scenarios with 𝑝0 = 0.25 instead of 𝑝0 = 0.75, one of which is shown in

fig. 4-27.
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(a) Variation in optimal solution (SMoDS tariff).

(b) Variation in optimal objective (expected revenue).

Figure 4-27: Sensitivity results for 𝑆6 with 𝑝 = 0.25.

The variations in optimal objective are less straightforward to predict. Since

𝑓 *(𝛾*; 𝜃) = 𝛾* · 𝑝𝑠𝑅(𝛾*; 𝜃) and 𝑝𝑠𝑅 is strictly monotonically decreasing in 𝛾 [1], the
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variation in expected revenue due to parameter changes will depend on how much

the acceptance probability rises in response to a fall in 𝛾* and vice versa.

High degree of scenario specificity

Although we can make some broad statements about trends w.r.t. 𝛼 and 𝑝, the same

cannot be said for other parameters. Changes in 𝛼 and 𝑝 only affect the subjective

utility of the SMoDS but variations in 𝛽 and 𝜆 affect both the SMoDS as well as the

alternative (eq. (4.12)). Thus, either a monotonically increasing or decreasing trend

could be obtained depending on the relative magnitudes of 𝑒−(−𝑙𝑛(𝑝))𝛼(𝑥 − 𝑥)𝛽 and

(𝑥 + 𝑏𝛾* − 𝑢0)
𝛽 in eq. (4.12). In other words, the behavior of the optimal solution

in response to parameter perturbations depends on (1) the spread between the two

possible SMoDS outcomes and (2) how this compares with the alternative. For in-

stance, if 𝑒−(−𝑙𝑛(𝑝))𝛼(𝑥− 𝑥)𝛽 > (𝑥+ 𝑏𝛾* − 𝑢0)
𝛽 =⇒ 𝑈 𝑠

𝑅 < 𝐴𝑠
𝑅 < 0, i.e., the passenger

perceives the worst-case SMoDS outcome as a greater loss (lower subjective utility)

than the alternative. An increase in 𝜆 would make the user more averse to losses and

thus persuade them away from the SMoDS in favor of the alternative. This reduces

the relative attractiveness of SMoDS, causing 𝛾* to fall. The opposite effect occurs if

𝑒−(−𝑙𝑛(𝑝))𝛼(𝑥−𝑥)𝛽 < (𝑥+ 𝑏𝛾*−𝑢0)
𝛽 and the optimal tariff 𝛾* increases monotonically

with 𝜆, as seen for scenario 𝑆3 in fig. 4-26.
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(a) Variation in optimal solution. (b) Variation in optimal objective.

(c) Variation in mismatch loss.

Figure 4-28: Sensitivity results for 𝑆2.

Similarly, across a vast majority of the scenarios studied, 𝛾* was found to be

decreasing with 𝛽. This agrees with intuition since 0 < 𝛽 < 1 describes the rate at

which sensitivity (to both losses and gains) decreases as the outcome moves farther

away from the reference. Thus, as 𝛽 increases, the passenger becomes relatively more

sensitive to losses even away from 𝑅 = 𝑢. Since 𝑢 ≤ 𝑢0 ≤ 𝑢, the passenger is now

hurt more by the worst-case SMoDS outcome than before because the diminishing

sensitivity effect is less influential. Thus, the optimal tariff 𝛾* decreases to compensate

for this.

Furthermore, although we can sometimes predict the general direction of the vari-

ation as in section 4.3.1, the exact nature of the trend observed, i.e., the magnitude

and rate of resulting changes, depends significantly upon the specific choice set and
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travel scenario under consideration. These are determined by the objective utility

of the certain alternative (𝑢0), travel time outcomes possible with the SMoDS (𝑥,

𝑥), disutility associated with the SMoDS tariff (𝑏𝑠𝑚) and the bounds placed on the

dynamic price ([𝛾, 𝛾]). Even after experimenting with a large number of randomized

scenarios, we were unable to obtain very specific scenario-agnostic insights that could

be generalized. This is likely a consequence of the strongly nonlinear nature of the

objective function. Thus, we concluded that the exact nature of variations in the

optimal solution, value function and mismatch loss are determined to a large extent

by the particular characteristics of each family of scenarios. In addition, the trends

observed are likely to be affected by the reference level (𝑅) used as well as the nom-

inal values of the CPT parameters. For instance, we obtain almost linear variations

for travel scenario 𝑆2 in fig. 4-28, which is quite different from the behavior seen

for 𝑆1 in fig. 4-25. The relative sensitivities w.r.t. to each parameter can also vary

quite significantly depending on the specific travel scenario as well as the nominal

parameters, as indicated by the sensitivity differentials in table 4.11.

Robustness under certain scenarios

The local sensitivity domain was found to be quite large for most combinations of

nominal parameters and travel scenarios, as shown by 𝑆1-𝑆4 in table 4.12. This im-

plies that a relatively large perturbation in parameters is needed to alter the nominal

active set. Such a property can be exploited to set more robust dynamic tariffs. If

the ride offer and travel scenarios can be designed such that the optimal tariff is at

either the upper (𝛾) or lower (𝛾) bound, then 𝛾* would remain unchanged even with

large errors or misconceptions in the parameter values assumed for the passenger.

Although we assumed the tariff bounds to be exogenous to the travel scenarios in this

study, the choice of this set [𝛾, 𝛾] will likely involve another optimization problem in

itself. In practical applications, the bounds specified on the tariff would be deter-

mined depending on the given scenario and would need to be updated for each new

passenger and trip. This aspect will be looked into further as part of future work.
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4.3.2 Comparison of numerical results and analytical solutions

In general, for a majority of the scenarios considered, linearized approximations using

1𝑠𝑡 order Taylor expansions provide a reasonable estimate of the optimal solution for

small local perturbations (e.g. ±20%) in the neighbourhood of the nominal parameter

value. The analytical solutions obtained using a local sensitivity analysis, for both

the optimal tariff and value function are very close to the exact values obtained

numerically through repeated optimization, with < 0.5% error for most scenarios.

However, larger discrepancies were obtained for a small subset of scenarios. For each

of these scenarios, at least one of the following conditions was found to be true:

1. The variations in optimal tariff and optimal objective are clearly nonlinear and

display significant curvature even for small perturbations from the nominal pa-

rameter values. In such cases, the error in the 1𝑠𝑡 order linear approximation of

the optimal solution is no longer negligible, as can be seen for parameter 𝛽 and

𝑝 in fig. 4-29a. However, for most of the scenarios, we observe close to linear

variations in optimal objective for small to moderate perturbations. This makes

intuitive sense since all four parameters (𝛼, 𝛽, 𝜆 and 𝑝) are of the order of 1.

Thus, the magnitude of deviations 𝛥𝜃 = 𝜃−𝜃0 < 1 for small to medium pertur-

bations, implying that the 2𝑛𝑑 and higher order terms in eq. (3.88) can usually be

ignored for scenarios where curvature is not important i.e. 𝑑2𝑓*

𝑑𝜃2
(𝜃0) << 𝑑𝑓*

𝑑𝜃
(𝜃0).

2. The local domain (𝛥𝜃𝑚𝑎𝑥) is very small as for scenario 𝑆5 in table 4.12, imply-

ing that even a slight perturbation in the parameter would change the active

constraint set. This makes the optimal solution more sensitive to parameter

uncertainty since 𝛾* either (1) switches between the two bounds, (2) hits one

of the bounds from the interior of [𝛾, 𝛾] or (3) leaves one of the bounds for

the interior of the set. This causes stronger nonlinear behavior in the optimal

value function too and makes a local analysis insufficient, as seen for 𝛽 and 𝑝

in fig. 4-29b.
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For such cases, a global analytical method like that described in section 3.7.8

could be used instead to obtain more accurate analytical solutions through better,

piecewise linear approximations for the optimal tariff.

(a) Optimal price variation in 𝑆4. (b) Optimal objective variation in 𝑆5.

Figure 4-29: Analytical (local) vs numerical results.
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Chapter 5

Towards transactive control

5.1 Background and motivation

After estimating and calibrating the CPT model, we then proceeded to assess the sen-

sitivity and robustness of the SMoDS system to the uncertainty involved in the various

risk parameters. We observed that such parametric uncertainty can significantly im-

pact the key performance indicators (KPIs) of the SMoDS. This chapter builds upon

these insights to explore how we can improve the robustness of the system using feed-

back control schemes. In particular, we describe our preliminary efforts at using a

few different control methods to respond to, and rectify CPT model parametrization

errors.

Using eq. (3.13)-eq. (3.19), we can derive that the probability of acceptance of the

SMoDS is a strictly monotonically decreasing function 𝑓(·) of the dynamic tariff 𝛾

[1]:

𝑝𝑠𝑅 = 𝑓(𝛾;𝛩,𝑅) = 𝑓(𝛾;𝛼+, 𝛼−, 𝛽+, 𝛽−, 𝜆, 𝑅)

where 𝛩 = [𝛼+, 𝛼−, 𝛽+, 𝛽−, 𝜆] represents all five CPT parameters with some level

of associated uncertainty. For the purposes of this study, we assume that the true

reference point 𝑅 is known with zero uncertainty. The goal of the SMoDS operator
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or server is to optimize the collective performance across the entire SMoDS platform

serving a particular region. The main performance metric we consider here is the

average estimated waiting time (𝐸𝑊𝑇 ) which needs to be regulated around a specific

desired value 𝐸𝑊𝑇 * in order to balance real time demand and supply for ride sharing

services. Thus, the optimal 𝐸𝑊𝑇 *(𝑡) varies with time depending on travel demand,

traffic conditions, weather etc. Previous work in our lab has developed an approximate

dynamic programming or reinforcement learning based algorithm to derive the desired

acceptance probability 𝑝*(𝑡) needed for 𝐸𝑊𝑇 (𝑡) → 𝐸𝑊𝑇 *(𝑡) [64]. The goal of this

work is as follows: Given the value of 𝐸𝑊𝑇 *(𝑡) and consequently the desired 𝑝*(𝑡) that

needs to maintained at each time period 𝑡, we aim to regulate the actual probability

of acceptance 𝑝𝑠𝑅(𝑡) such that it approaches and stays near this setpoint.

For this purpose, we can treat the SMoDS as a closed loop system as shown in

fig. 5-1, by integrating all the individual modules such as (i) dynamic routing via

alternating minimization, (ii) computing 𝑝* from 𝐸𝑊𝑇 * via reinforcement learning

and (iii) dynamic pricing via CPT. Analogous to traditional feedback control theory,

we can treat the plant to be the SMoDS passenger requesting a ride while the dy-

namic tariff 𝛾 is the primary control input into the system. The plant is described

by our nonlinear CPT passenger behavioral model parametrized by the parameters

𝛩. The true plant model is not known, but we assume that both the true and es-

timated models share the same functional form 𝑓(·). They differ only in terms of

their parametrizations, with the estimated model parameters being ̂︀𝛩 and the true

parameters represented by 𝛩*. If the true behavioral parameters were known for each

passenger being served, we could simply invert the CPT model to readily determine

the optimal dynamic price 𝛾* = 𝑓−1(𝑝*) needed to achieve the equilibrium probability

of acceptance 𝑝*, which can be viewed as the reference or setpoint. However, since 𝛩*

is not known apriori, we need to consider alternative approaches to update 𝛾 in real

time such that it approaches 𝛾* and 𝑝𝑠𝑅 → 𝑝*. Since the SMoDS server has access to

the accept/reject decisions for all the passengers and trips at each time instant, these

can be used to calculate the actual acceptance probabilities at each time step, as well
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as the reference errors 𝑝* − 𝑝𝑠𝑅. These output errors serve as feedback signals and an

appropriately designed controller can then compute the new dynamic tariffs for each

ride-offer in the next time step.

Figure 5-1: The closed loop SMoDS system, using CPT parameter updates as the
feedback signal. The indices 𝑖, 𝑗 and 𝑘 correspond to the passengers, trip requests
(or equivalently ride offers) and negotiation (or feedback) iterations, respectively.

Ideally, our control scheme would achieve all of the following objectives:

1. Achieve good tracking of the reference over time, i.e., (𝑝𝑠𝑅)𝑖𝑗 → 𝑝* for all relevant

passengers 𝑖 and trip requests (or ride offers) 𝑗.

2. Convergence to the true model parameters for each passenger with time i.e.,̂︀𝛩𝑖(𝑡) → 𝛩*
𝑖 (𝑡) for all passengers 𝑖. Note that in addition to modelling un-

certainty, another reason that these parameters may differ from their assumed

values is because people’s risk preferences often vary with time and depending

on the specific circumstances at hand.

subject to several possible constraints:

• Achieve convergence (in both 1. and 2. above) in as few iterations or time

steps 𝑘 as possible. This constraint is needed to (i) prevent passengers from

experiencing decision fatigue and (ii) ensure that the feedback mechanism and

negotiation process itself don’t markedly increase waiting times.
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• Budgetary and fiduciary constraints of the SMoDS provider, which may be

a profit-maximizing entity aiming to increase the expected revenue from the

service.

• Other constraints such as serving a certain minimum ridership level, limits of

trip duration, etc.

For this problem, we attempt to achieve both objectives but for simplicity, we

largely focus on the 1st constraint of minimizing the number of iterations to attain

fast convergence.

5.2 Brief literature survey

Feedback control has been applied to several problems similar to the SMoDS. These

include transactive control using dynamic toll pricing [65, 66], adaptive pricing con-

trol for EVs [67], congestion pricing via optimal control [68] and threshold-based

distributed control for road pricing [69]. Outside the transportation domain, it has

been used to compute and update consumer preferences, trust and reputation scores

for online shopping and e-commerce settings [70, 71]. In this study, we seek to use

the notion of transactive control which utilizes variable price signals to influence the

behavior of decision makers, as opposed to directly controlling the ‘actuator’.

In terms of theoretical foundations, several different approaches have been sug-

gested for feedback control of nonlinear systems, which are generally represented as:

𝑥̇ = 𝑓(𝑥, 𝑢) (5.1)

𝑦 = 𝑔(𝑥) (5.2)

where 𝑥 is the system’s state, 𝑢 is the control input and 𝑦 is the measured output.

In particular, the sub-fields of adaptive and robust control focus on controlling sys-

tems where the plant model 𝑓 is uncertain. Adaptive control focuses on dual goals of

both reference tracking and parameter convergence, as is the case with our problem
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[72]. These are generally based on the parameter perturbation method [73] and its

variants include direct adaptive fuzzy control [74, 75], model reference adaptive con-

trol (MRAC) [76] and extremum seeking control (ESC) [77]. In particular, ESC is a

perturbation-based approach used for adaptive control of hard to model continuous

or discrete time systems [78]. It is of special interest here since it seeks to minimize

(i.e. reach an extremum of) some objective or loss function, using input perturbation

signals. Thus, it is a popular tool used for real-time, model-free, online optimization

and learning the true model parameters of dynamic systems. The scheme approxi-

mates the gradient of the objective function by passing its output through a high-pass

filter and then multiplying it by the perturbation signal used. Sometimes, this is also

followed by a low-pass filter in order to attenuate effects of any measurement noise in

the gradient signal, as seen in section 5.2 below where a sinusoidal input perturbation

is used.
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(a) Components of a general extremum seeking scheme [79].

(b) Illustrative example of an extremum seeking controller [79].

Some other common approaches for nonlinear control include [80]:

1. Jacobian linearization of the dynamic system about one or more operating

points.

2. Feedback linearization wherein the nonlinear system is transformed to an equiv-

alent linear system using a change of variables.

3. Gain scheduling where the system’s operational domain into several distinct

sub-regions and the system can be approximated as being linear (with different

properties) within each of these.

4. Lyapunov and K-function based methods such as (i) Lyapunov redesign wherein
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the system is stabilized using a state feedback controller designed using its

Lyapunov function and (ii) sliding mode control which applies discontinuous

control signals.

However, our closed loop, SMoDS system differs quite significantly from the sys-

tems usually modelled using the above approaches. Firstly, our system or plant (i.e.

the passenger or decision maker) is not modelled as having any internal state or

dynamics and there is thus no explicit governing differential equation. Instead, we

are only interested concerned with regulating the system’s output (𝑝𝑠𝑅) to track 𝑝*.

Furthermore, many of these methods have largely been applied to linear or linearized

systems, usually under some idealized assumptions. In contrast, our CPT plant model

𝑓(𝛾;𝛩) is highly nonlinear and complex. This makes it challenging to linearize and

intractable to apply other involved analytical techniques. Finally, since the reference

trajectory is known in our case, the exact form of the objective function can be com-

puted here, which is not the case with methods like ESC. This leads us to gradient

descent based control methods, which is the approach we ended up applying for this

work. Such methods couple optimization problems with feedback, deriving control

laws using gradient descent updates [81]. They have been long applied to optimize

performance functions and control nonlinear systems for end goals such as output

tracking [82, 83]. Feedback-based methods using gradient sampling [84], primal-dual

algorithms [85] and discretized gradient flows [86] have achieved good convergence

properties even for nonconvex and non-smooth problems.

5.3 Design of feedback controller

As explained earlier, we close the loop in the SMoDS system shown in fig. 3-1 by

feeding back the error between the actual and desired acceptance probabilities, as

illustrated in fig. 5-1. The goal of the feedback control loop can be formulated as an
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equivalent optimization problem:

min
𝛾, ̂︀𝛩 𝐸

(︁
𝛾, ̂︀𝛩)︁ = | 𝑝𝑠𝑅(𝛾; ̂︀𝛩)− 𝑝* | (5.3)

s.t. 𝛾 ≤ 𝛾 ≤ 𝛾 (5.4)̂︀𝛩 ≤ ̂︀𝛩 ≤ ̂︀𝛩 (5.5)

For our purposes, minimizing the absolute error above is equivalent to instead mini-

mizing the squared 𝐿2 norm objective function instead:

𝐿
(︁
𝛾, ̂︀𝛩)︁ =

1

2

⃦⃦⃦
p𝑠
𝑅(𝛾; ̂︀𝛩)− p*

⃦⃦⃦2
2

(5.6)

While considering a single passenger trip pair, this reduces to:

𝐿
(︁
𝛾𝑘
𝑖𝑗, ̂︀𝛩𝑖

)︁
=

1

2

(︁
𝑝𝑠𝑅

(︁
𝛾𝑘
𝑖𝑗; ̂︀𝛩𝑖

)︁
− 𝑝*(𝑡)

)︁2
(5.7)

which is convex if the plant model function 𝑝𝑠𝑅(𝛾;
̂︀𝛩) = 𝑓 is convex in both the

input 𝛾 and parameters 𝛩. However, note that convexity of 𝑓 is not guaranteed - it

can be convex, convex and neither convex nor concave, depending on various factors

like the reference 𝑅 used, domain of possible values assumed by the CPT parameters

and the range of allowed tariffs. We assumed that the desired acceptance probability

𝑝* for the overall system changes on much slower timescales (if at all) compared to

the time intervals between negotiation iterations since the server samples decisions

very frequently (say every 30-60 s).

We propose the use of gradient descent based feedback control to repeatedly the

dynamic tariff at each iteration or time step 𝑘. This is done for every passenger-trip

pair (𝑖, 𝑗). The idea then is that passengers and the SMoDS server will engage in

several rounds of back-and-forth negotiation iterations where the server provides a

ride offer and the user either accepts or rejects it. If the user accepts, they leave

the current pool of passengers being considered by the controlller. If the ride offer is
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rejected, the server uses the feedback controller to compute the updated price for the

next ride offer at iteration 𝑘+1. This process continues for each passenger-trip request

pair until the passenger either accepts the offers or leaves the SMoDS platform, with

the goal being to achieve ride acceptance in as few rounds as possible. A centralized

controller will be implemented for each SMoDS hub or server operating in a particular

neighbourhood or region. This server samples all the ride offer decisions made by

passengers within its purview at each iteration. These are then used to accordingly

update the actual probability of acceptance. Thus, the goal of the controller sited at

each each server is to have the average acceptance probability over its entire region

or scope, approach the desired value 𝑝* and also track time-varying references 𝑝*(𝑡).

Such a program can easily be implemented through platforms similar to those used

by ride sharing apps today, keeping track of a customized CPT model unique to

each rider. Broadly, there are two possible paradigms for such gradient-descent based

control, when applied to our SMoDS problem.

5.3.1 Directly using tariff as control input

The first strategy varies the dynamic tariff ˆ𝑔𝑎𝑚𝑚𝑎 directly as the control input to

influence the acceptance probability. This is a relatively easier approach and more

intuitive since we can leverage the strictly monotonic relationship between 𝑝𝑠𝑅 and

𝛾, the acceptance probability monotonically decreases with increasing price. Thus,

we can readily come up with naive update rule as follows for passenger 𝑖, trip 𝑗 at

iteration 𝑘:

If (𝑝𝑠𝑅)
𝑘
𝑖𝑗 < 𝑝*(𝑡) =⇒ 𝑒𝑘𝑖𝑗 = 𝑝* − ((𝑝𝑠𝑅)

𝑘
𝑖𝑗 > 0 =⇒ Lower 𝛾 to increase (𝑝𝑠𝑅)

𝑘
𝑖𝑗 (5.8)

If (𝑝𝑠𝑅)
𝑘
𝑖𝑗 > 𝑝*(𝑡) =⇒ 𝑒𝑘𝑖𝑗 = 𝑝* − ((𝑝𝑠𝑅)

𝑘
𝑖𝑗 < 0 =⇒ Raise 𝛾 to decrease (𝑝𝑠𝑅)

𝑘
𝑖𝑗 (5.9)

𝛾𝑘+1 = 𝛾 − 𝐶𝑒𝑘 (5.10)

where 𝐶 is the step size or proportionality gain that needs to be tuned. However,

such a simple proportional control scheme is not expected to generalize well since
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our SMoDS is highly nonlinear as shown earlier. For a specific example of what

the acceptance probability function might look like, see eq. (4.12). Thus, we also

formulate a direct gradient descent based control scheme.

When a new passenger-trip pair is added to the pool, the CPT model is inverted

using the current 𝑝* value to set the initial price at the 1𝑠𝑡 iteration 𝑘 = 1. This

functional inverse is used to determine the tariff only when either the setpoint 𝑝*(𝑡)

changes or a new passenger-ride pair joins the sample. Otherwise, in subsequent

iterations, the tariff is updated using gradient descent to minimize our squared error

norm or loss function:

𝛾̂𝑘+1 = 𝛾̂𝑘 − 𝜂𝑘
𝜕𝐿

𝜕𝛾

⃒⃒⃒⃒
𝛾̂𝑘

(5.11)

𝜕𝐿

𝜕𝛾
=

1

2

𝜕
⃦⃦⃦
p𝑠
𝑅(𝛾;

̂︀𝛩)− p*
⃦⃦⃦2
2

𝜕𝛾
=

1

2

𝜕 (p𝑠
𝑅 − p*)ᵀ (p𝑠

𝑅 − p*)

𝜕𝛾
(5.12)

=
1

2

𝜕 (p𝑠
𝑅 − p*)ᵀ (p𝑠

𝑅 − p*)

𝜕p𝑠
𝑅

· 𝜕p
𝑠
𝑅

𝜕𝛾
= (p𝑠

𝑅 − p*)∇𝛾p𝑠
𝑅 (5.13)

where we have applied the chain rule and used the fact that p* is a constant vector

between iterations (but may change over longer time periods). Note that 𝛾 and p𝑠
𝑅

are vectors of tariffs and acceptance probabilities spanning all the passenger-trip pairs

at that iteration. The step size or learning rate 𝜂𝑘 can either be fixed or vary with

each iteration. Since the server has access to the passenger decisions at each iteration,

the resulting iteration errors can be used to approximately compute the gradients of

the acceptance probability with respect to the tariff, using a simple first order finite

difference scheme:

∇𝛾p𝑠
𝑅

⃒⃒
𝑘
=

𝜕p𝑠
𝑅

𝛾̂𝑘

⃒⃒⃒⃒
𝛾̂𝑘

≈ 𝛥p𝑠
𝑅

𝛥𝛾

⃒⃒⃒⃒
𝛾̂𝑘

=
(p𝑠

𝑅)
𝑘 − (p𝑠

𝑅)
𝑘−1

𝛾̂𝑘 − 𝛾̂𝑘−1
(5.14)

While this method is relatively straightforward to implement, it does suffer from some

limitations. Namely, such a scheme does not allow us to learn the true behavioral

model of the passenger since there isn’t a clear way to infer the CPT parameters 𝛩
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based on how 𝑝𝑠𝑅 changes in response to tariff updates.

5.3.2 Indirect control by updating the CPT parameters

As an alternative approach to updating the tariff directly, one can instead update

the five CPT parameters contained in ̂︀𝛩 at each iteration and for all the passengers

currently in the pool. This is the closed loop workflow illustrated in fig. 5-1. These

updated parameter values in turn also update the tariff at the next iteration, through

the CPT model 𝑓(·). Similar to adaptive control, the key advantage of this method

is that with a well-designed controller, both our goals of reference tracking (driving

the racking error to zero) and parameter estimation can theoretically be achieved. In

other words, with enough iterations, we can attain convergence of both the output

𝑝𝑠𝑅 → 𝑝* as well the true behavioral model parameters 𝛩̂ → 𝛩*. The caveat is that

it is more challenging to construct, implement and analyze the properties of this

controller due to the complex, nonlinear and non-monotonic relationships between

𝑝𝑠𝑅 and each of the CPT parameters.

The algorithmic workflow is similar to that used in section 5.3.1 since we again

use a gradient descent based update scheme:

𝛩̂𝑘+1 = 𝛩̂𝑘 − 𝜂𝑘
𝜕𝐿

𝜕𝛩

⃒⃒⃒⃒
𝛩̂𝑘

(5.15)

𝜕𝐿

𝜕𝛩

⃒⃒⃒⃒
𝛩̂𝑘

= (p𝑠
𝑅 − p*)∇𝛩p𝑠

𝑅 (5.16)

∇𝛩p𝑠
𝑅 =

(p𝑠
𝑅)

𝑘 − (p𝑠
𝑅)

𝑘−1

𝛩̂𝑘 − 𝛩̂𝑘−1
(5.17)

One important difference from the previous scheme is that here, the CPT model is

inverted using the updated parameters to update the tariff at every iteration, not

just at 𝑘 = 1:

𝛾̂𝑘+1 = 𝑓−1
(︁
p*; 𝛩̂𝑘+1

)︁
(5.18)
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5.3.3 Learning rate considerations

If the CPT-based plant model 𝑓 is convex in 𝛾, then the 1𝑠𝑡 method from section 5.3.1

is guaranteed to converge to unique globally optimal solutions that minimize the

error in the acceptance probability. Similarly, if 𝑓 is convex in each of the CPT

parameters 𝛩 = [𝛼+, 𝛼−, 𝛽+, 𝛽−, 𝜆], the 2𝑛𝑑 method from section 5.3.2 has guaranteed

global convergence. However, the plant model may sometimes be nonconvex for

certain passengers or trips depending on the specific combinations of tariff values,

CPT parameters and reference points used. In such cases, we cannot provide any

robust theoretical guarantees for guarantees for global convergence. Although such

batch gradient descent-based methods will converge to local minima, these may not

be global minimizers of the objective [87].

In order to increase the speed of convergence, improve stability and prevent the

controller from getting stuck at local minima, we experimented with several different

learning rates or step sizes. The initial implementation was vanilla gradient descent

using a fixed step size 𝜂𝑘 = 𝜂 ∀ 𝑘, and tuning was done via trial and error. However,

it was observed that learning often stagnates after a few iterations resulting in a

relatively large steady state error for the output. Furthermore, stochastic gradient

descent (SGD) is not well-suited to this application since it would cause large, random

fluctuations in the objective function. This is because it updates parameters more

frequently with higher variance. However, we would ideally like to avoid such erratic

swings in tariffs and acceptance probabilities, from one iteration to the next. Thus,

we implemented a few different learning rate schedules as well as adaptive learning

rates [87]:

• Inverse time decay: These are schedules which modify the learning rate at

each iteration 𝑘 based on the previous iteration’s learning rate.

𝜂𝑘 =
𝜂0

1 + 𝑑𝑘
(5.19)

where 𝜂0 is the initial learning rate at 𝑘 = 1 and 𝑑 is the decay factor.
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• Exponential decay: This schedule changes the learning rate at each iteration

to follow a decaying exponential curve.

𝜂𝑘 = 𝜂0𝑒
−𝑑𝑘 (5.20)

where 𝜂0 is the initial learning rate and 𝑑 is the decay hyperparameter.

• Step decay: This schedule drops the learning rate by a fixed factor 𝑑 after

every 𝑛 iterations or epochs.

𝜂𝑘 = 𝜂0𝑑
⌊( 𝑘

𝑛)⌋ (5.21)

• Momentum: This is a method that dampens the oscillations associated with

SGD and accelerates its descent in the desired direction. It computes the next

update step as a linear combination of the current gradient and the previous

iteration’s update.

𝛥𝑘 = 𝛼𝛥𝑘−1 + 𝜂∇𝜃𝐿(𝜃𝑘−1) (5.22)

𝜃𝑘 = 𝜃𝑘−1 −𝛥𝑘 (5.23)

where 𝜃 is the variable of interest that we’re optimizing with respect to, i.e.,

either 𝛩 or 𝛾. The momentum term 𝛼 is usually set equal to 0.9 or a value close

to that.

• Nesterov acceleration: This is an anticipatory method that looks ahead and

computes the update using the gradient relative to the approximate parameter

values in the next time step, rather than w.r.t the current parameters. This

prevents the algorithm from moving too quickly, increases the responsiveness
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and improved performance.

𝛥𝑘 = 𝛼𝛥𝑘−1 + 𝜂∇𝜃𝐿(𝜃𝑘−1 − 𝛼𝛥𝑘−1) (5.24)

𝜃𝑘 = 𝜃𝑘−1 −𝛥𝑘 (5.25)

Finally, in order to improve convergence properties, norm clipping was performed

by normalizing the gradient updates by their vector 𝐿2 norms at each iteration.

5.4 Numerical simulation results

The numerical simulation to emulate the closed loop SMoDS system was set up in a

manner similar to that described in section 3.7. However, several of the assumptions

made earlier (for analytical tractability) have been relaxed here to model more general

scenarios. In particular, we allow several different types of reference points 𝑅 and also

scale up the setup to multiple passengers and rides. We show some preliminary results

applying our control to several randomly generated travel situations for a sample size

or pool of 𝑁 = 500 passenger-trip pairs. The acceptance probabilities for all the

passengers were initialized by adding random Gaussian noise to the desired value 𝑝*.

A large number of trials were conducted using different types of learning rates and

multiple combinations of hyperparameters such as the initial step size, decay factor,

iterations per step decay, momentum factor etc. For conciseness, only a few selected

results are included below to illustrate some of the key trends.
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(a) Plot of desired vs actual probabilities of
acceptance, averaged over the whole sample.

(b) Plot of the mean absolute error and the
vector 𝐿2 norm of error.

Figure 5-3: Direct tariff-based control strategy using adaptive gradient descent with
momentum, 𝛼 = 0.8, 𝜂 = 0.1.

(a) Plot of desired vs actual probabilities of
acceptance, averaged over the whole sample.

(b) Plot of the mean absolute error and the
vector 𝐿2 norm of error.

Figure 5-4: Direct tariff-based control strategy using adaptive gradient descent with
momentum, 𝛼 = 0.9, 𝜂 = 0.4.
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(a) Plot of desired vs actual probabilities of
acceptance, averaged over the whole sample.

(b) Plot of the mean absolute error and the
vector 𝐿2 norm of error.

Figure 5-5: Direct tariff-based control strategy using adaptive gradient descent with
momentum, 𝛼 = 0.9, 𝜂 = 0.1.

(a) Plot of desired vs actual probabilities of
acceptance, averaged over the whole sample.

(b) Plot of the mean absolute error and the
vector 𝐿2 norm of error.

Figure 5-6: Direct tariff-based control strategy using gradient descent with fixed step
size 𝜂 = 0.2.

We find that the performance of the controller is quite sensitive to the hyperpa-

rameters used. Furthermore, the behavior was found to fluctuate quite drastically

between runs depending on (i) attributes of the trips sampled as well as (ii) ini-

tializations of the parameters and acceptance probabilities. For several trials, the

controller performed reasonably well in terms of tracking the reference and gradually

reducing the error as 𝑝𝑠𝑅 approaches the setpoint 𝑝*, as seen in fig. 5-3 and fig. 5-4.
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However, the learning does stagnate eventually, resulting in a non-zero steady state

error. Even with adaptive methods using momentum and Nesterov acceleration, this

decay in learning was observed. For certain hyperparameters, I was able to reduce

the steady state error significantly, but never quite drive it to zero altogether.

However, for certain other scenarios, the control performed poorly in that the

acceptance probabilities did not change much at all or they moved opposite to the

desired direction, thus increasing the error even further. In some of these situations,

this behavior was caused by local concavities in the plant model function 𝑓(·) and

it could be rectified by simply negating the gradient updates. However, in other

situations, this modification did not resolve the issue either as can be seen in fig. 5-5

and fig. 5-6.

In addition, for a few cases, the controller exhibits some undesirable and non-

intuitive behaviors like oscillations or sudden step changes, like those seen in fig. 5-7

and fig. 5-8.

(a) Plot of desired vs actual probabilities of
acceptance, averaged over the whole sample.

(b) Plot of the mean absolute error and the
vector 𝐿2 norm of error.

Figure 5-7: Direct tariff-based control strategy using gradient descent with fixed step
size 𝜂 = 0.4.
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(a) Plot of desired vs actual probabilities of
acceptance, averaged over the whole sample.

(b) Plot of the mean absolute error and the
vector 𝐿2 norm of error.

Figure 5-8: Direct tariff-based control strategy using Nesterov accelerated gradient
descent with 𝛼 = 0.9 and 𝜂 = 0.1.

Finally, fig. 5-9 compares fixed step sizes against various learning rate schedules.

In this case, the decays cause the scheduled methods to actually converge slower while

the fixed learning rate is still able to escape gradient plateaus. This highlights one of

the main challenges with scheduling step sizes since since they need to be carefully

tuned and customized for each data set and training task.

(a) Plot of desired vs actual probabilities of
acceptance, averaged over the whole sample.

(b) Plot of the mean absolute error and the
vector 𝐿2 norm of error.

Figure 5-9: Comparison of fixed step size and various learning rate schedules for
gradient descent with fixed step size 𝜂 = 0.3, 𝑑 = 0.005 and step decay after every 5
iterations.
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5.5 Challenges and ideas for potential improvement

Even after implementing several different approaches to compute the gradient-based

tariff and/or CPT parameter updates, and trying out different fixed, scheduled and

adaptive learning rates, the performance of the controller is still quite far from op-

timal. In particular, the learning tends to stagnate after a few iterations even with

methods using momentum and Nesterov acceleration, resulting in quite large steady

state errors from the setpoint that cannot be fully eliminated. Furthermore, the be-

havior of the gradient descent based controller is quite erratic and varies significantly

from one run to the next. Since the scenarios used in our trials were randomized, it

is likely that certain trials had well-behaved or even convex plant models 𝑓(·) while

other trials ended up having highly nonsmooth and nonconvex functions that prove

challenging to minimize effectively.

Thus, the unresolved issues with our controller can largely be attributed to the

possible non-convexity and non-smoothness of our CPT model for certain hyperpa-

rameter values, causing the objective function to have a large number of suboptimal

local minima and possibly saddle points as well. This in turn causes the controller

to often get trapped at these points and prevents it from reaching solutions that are

truly globally optimal. Saddle points are especially hard to escape since the gra-

dients around such points are nearly zero in all dimensions [88]. Another practical

challenge while tuning the control loop parameters is that the simulations are quite

computationally intensive with long runtimes. This is mainly because computing the

functional inverse of the CPT model over all passenger-trip pairs is an expensive step.

A promising approach to take this forward and resolve some of these challenges is

by further examining the learning rate used. In addition to the adaptive step sizes and

schedules implemented here, there are several other even more sophisticated gradient

descent optimization algorithms such as Adagrad, Adadelta, RMSProp and Adam.

These are variants that adapt or customize learning rates to each parameter (or vari-

able), rather than applying the same learning rate for all the parameter updates. In
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our case, this could translate to customizing learning rates specific to each passenger-

trip pair in algorithm I section 5.3.1 or having different learning rates for each for each

of the five CPT parameters in algorithm II section 5.3.2. Adadelta and RMSProp are

essentially extensions of Adagrad that seek to avoid its issue of rapidly diminishing

learning rates [87].

There are also several other simplifications and assumptions that we made while

constructing our CPT model and travel scenarios for the SMoDS. The difficulties we

run into here may also be because some of these are unrealistic, infeasible or invalid

in physical settings. For instance, our controller synthesis for both approaches I and

II implicity assumes that the CPT model 𝑓 is always an invertible bijective mapping

from tariffs 𝛾 to subjective acceptance probabilities 𝑝𝑠𝑅. It is not hard to conceive of

situations where this is not true - for certain combinations of 𝑅 and 𝛩 there could in

fact be multiple dynamic prices that result in the same probability of acceptance.

Finally, after obtaining satisfactory performance with a fixed reference, it would

also be interesting to test whether the controller can reasonably track a time-varying

setpoint 𝑝*(𝑡) over an extended time horizon, like that shown in fig. 5-10.

Figure 5-10: Desired probability of acceptance changing over time for the SMoDS.
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Chapter 6

Conclusion and future work

In this study, we developed, implemented and analyzed methods to to fully charac-

terize a novel, end-to-end solution for providing Shared Mobility on Demand Services

(SMoDS), and subsequently used this to develop a transactive control framework to

regulate ride sharing demand and traffic conditions in urban areas. In order to do so,

a comprehensive survey was designed and launched at scale in the field. The survey

design borrowed methods from several fields like discrete choice modelling, factorial

experiment design, maximum likelihood estimation theory and cognitive psychology.

The resulting data was used to first build the random utility functions for each mode

using maximum simulated likelihood estimation. The resulting mode choice model

was validated and shown to have high explanatory power. The parameters obtained

here agreed with literature and also shed interesting insights on the value of time

spent on different modes and legs, as perceived by passengers.

Secondly, the survey responses and the mode choice models were used to fit a new

passenger behavioral model based on Cumulative Prospect theory, and used for real-

time, dynamic pricing of such pooled ridesharing services. This was done using the

method of certainty equivalents and non linear least squares. Numerous statistical

and numerical techniques were applied in attempts to troubleshoot several estima-

tion challenges and eventually obtain more accurate and meaningful distributions of

parameter estimates across our sample of respondents. Some of the techniques ex-
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perimented with include regularization, transfer learning, global optimization tools

etc.

Thirdly, an extensive sensitivity and robustness analysis was conducted to assess

the effects of modelling and parametrization errors on system performance and key

objectives. This was done by applying tools from constrained optimization theory

and nonlinear programming.

Fourthly, the SMoDS was simulated as a closed loop system and a feedback con-

troller was synthesized to correct modelling errors and respond to changes in pas-

sengers’ risk preferences, via price-based transactive control. This was achieved via

gradient descent based control to update the dynamic SMoDS tariff, while also at-

tempting to achieve convergence in the CPT behavioral model parameters towards

their true values.

Finally, challenges arose at all stages throughout this study due to the highly

nonconvex nonlinearities introduced by CPT models. We explored several different

strategies to tackle and ultimately resolve some, but not all of these issues. To our

knowledge, this is the first application of CPT to ridesharing and ride pooling appli-

cations. Accurate estimation and calibration of such models for the SMoDS, and the

synthesis of feedback controller based on these, is a truly challenging task. We have

made significant progress towards these goals in this thesis, in addition to developing

standardized frameworks and methodologies for each of these steps. However, there

are some unresolved issues and this remains an active, open area of research.

6.1 Future work

There are several areas that could be looked into as part of future work to take this

research further. Some of the potential avenues to explore are discussed below.
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6.1.1 Extensions to mode choice model

This could entail incorporating higher order terms (quadratic, cubic etc.) and in-

teraction effects in the objective utility functions. For e.g., several models from the

literature include interaction terms combining price and travel times, such as 𝛾𝑖𝑡𝑟𝑖𝑑𝑒,𝑖.

In addition, we could also make the models more realistic by incorporating other

modes like driving, mixed modes, accounting for externalities like weather etc.

6.1.2 Further Improving quality of CPT estimates

The lessons learned through this study could be used to launch revised and revamped

iterations of the survey in the future, to improve the quality of survey responses

and build richer data sets. Hierarchical parameter estimation approaches could also

be explored which perform more systematic and sequential estimation of the CPT

parameters. Some examples from the literature include hierarchical Bayesian [89] and

hierarchical maximum likelihood based procedures [90]. Other studies also determine

parameters in gain (𝛽+ and 𝛼+) and loss (𝛽− and 𝛼−) regimes separately from pure

gain and pure loss scenario questions, respectively. The loss aversion parameter (𝜆)

can then be inferred using the mixed outcome lotteries [2].

6.1.3 Extensions to sensitivity and robustness analysis

Possible extensions here include implement the global sensitivity analysis method via

both analytical approaches and numerical solutions, and verify that it does indeed

improve the accuracy of our results in terms of the predicted mismatch loss as well

as variations in the optimal solution and objective value. In addition, the analysis

could be extended to multiple passengers and rides, to see how the losses due to

parametrization errors scale with the size of the population being served. Global

sensitivity analysis-based approaches can also be used to compute closed loop solution

updates which can then be used for dynamic optimization of systems [59].
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6.1.4 Other potential applications for CPT

In theory, CPT can be applied to any other field or use case that involves decision

making in the presence of risk and uncertainty. Some other fields where such models

and methods could be applied include, but are not limited to:

• Dynamic rates for electric vehicle charging that accurately account for range

anxiety, variable waiting times at charging stations etc.

• Uncertainties introduced by the COVID-19 pandemic in numerous areas such

as vaccine uptake, use of public transit and ridesharing services, risk mitigation

while social distancing etc.

• Dynamic tolls and congestion pricing.

• Real-time pricing for electricity or ancillary services in power grids with an

increasing penetration of intermittent, variable renewable sources and other

distributed energy resources.

• Mitigation and preventative actions and decision making for various extreme

events like pandemics, natural disasters induced by climate change etc.
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