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Abstract

Biological processes from differentiation to disease progression are governed by gene
regulatory mechanisms. Currently large-scale omics and imaging data sets are being
collected to characterize gene regulation at every level. Such data sets present new
opportunities and challenges for extracting biological insights and elucidating the
gene regulatory logic of cells. In this thesis, I present computational methods for
the analysis and integration of various data types used for cell profiling. Specifically,
I focus on analyzing and linking gene expression with the 3D organization of the
genome.

First, I describe methodologies for elucidating gene regulatory mechanisms by
considering multiple data modalities. I design a computational framework for identi-
fying colocalized and coregulated chromosome regions by integrating gene expression
and epigenetic marks with 3D interactions using network analysis. Then, I provide
a general framework for data integration using autoencoders and apply it for the
integration and translation between gene expression and chromatin images of naive
T-cells.

Second, I describe methods for analyzing single modalities such as contact fre-
quency data, which measures the spatial organization of the genome, and gene ex-
pression data. Given the important role of the 3D genome organization in gene
regulation, I present a methodology for reconstructing the 3D diploid conformation
of the genome from contact frequency data. Given the ubiquity of gene expression
data and the recent advances in single-cell RNA-sequencing technologies as well as the
need for causal modeling of gene regulatory mechanisms, I then describe an algorithm
as well as a software tool, difference causal inference (DCI), for learning causal gene
regulatory networks from gene expression data. DCI addresses the problem of directly
learning differences between causal gene regulatory networks given gene expression
data from two related conditions.

Finally, I shift my focus from basic biology to drug discovery. Given the cur-
rent COVID19 pandemic, I present a computational drug repurposing platform that
enables the identification of FDA approved compounds for drug repurposing and in-
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vestigation of potential causal drug mechanisms. This framework relies on identifying
drugs that reverse the signature of the infection in the space learned by an autoen-
coder and then uses causal inference to identify putative drug mechanisms.

Thesis Supervisor: Caroline Uhler
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Biological processes from differentiation to disease progression are governed by gene

regulatory mechanisms. Although nearly every human cell contains the exact same

DNA sequence, there are 200-500 major cell types that have different functions and

phenotypes (Roy and Conroy, 2018). These differences arise due to different sets of

gene regulatory programs turned on and off in different cell types. Since the advent

of genome sequencing, large-scale "omics" data sets are being collected to charac-

terize gene regulation at every level such as at transcriptome, proteome, epigenome

and 3D genome conformation levels. Beyond "omics" data, imaging technologies also

provide additional measurements on the function and phenotype of the cells. Both

omics and imaging data sets are often large and complex and thus advanced com-

putational methods are required for their analysis. In this thesis, we will focus on

developing algorithms for analyzing and integrating data types with the goal of fa-

cilitating downstream derivation of new hypotheses and predictions that may enable

a better understanding of the regulatory logic in the cells. In Section 1.1, we will

describe different levels of gene regulation and the interplay between them with a

specific focus on the 3D genome organization. In Section 1.2 we will discuss the types

of data collected for the study of gene regulation and in Section 1.3 we will cover

methods for inferring gene regulatory mechanisms relevant to this thesis. Section 1.4

will provide the outline for the thesis.
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1.1 Model of gene regulation

The human genome, which contains the hereditary material of the cell, is composed of

approximately 6 billion base pairs and is packed inside the cell nucleus. Protein-coding

genes account for 1.5% of the genome with the remaining fraction of the genome

associated with regulatory DNA elements, introns, non-coding RNA, repetitive DNA

sequences and sequences with yet unknown function (Lander et al., 2001).

The activity of protein-coding genes is controlled by the dynamic interplay be-

tween transcription factors, which are proteins that bind to regulatory DNA elements,

the epigenome and the 3D conformation of the genome (Stadhouders et al., 2019).

As part of biological processes in the human body, cues from the environment trigger

signaling pathways, which most prominently converge in the activation or silencing

of transcription factors that are then translocated from the cytoplasm of the cell

into the nucleus. Transcription factors bind to specific motifs in the DNA sequence,

contained within regulatory DNA elements such as promoters or enhancers. Upon

binding, transcription factors promote or preclude recruitment of the cellular ma-

chinery needed for transcription of gene DNA sequence into mRNA, for chromatin

remodeling as well as for DNA and histone modifications (Vaquerizas et al., 2009).

However, epigenetic marks such as histone modifications, DNA accessibility and DNA

methylation may hinder the access of transcription factors to the DNA. For example,

if the DNA is less accessible, the transcription factors would not be able to bind to the

DNA (Klemm et al., 2019). Similarly, the 3D conformation of the genome determines

which genes and regulatory DNA elements are in physical proximity and thus can

act as a facilitator for the rapid activation of the colocalized genes or conversely as

a barrier for activation (Bonev and Giacomo, 2016; Stadhouders et al., 2019; Uhler

and Shivashankar, 2017a).
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1.1.1 Principles of 3D genome folding and role in gene regu-

lation

Since the 3D genome organization is a major player in regulating the cell state, in the

following, we will describe the organizing principles of the 3D genome conformation,

elucidated by several decades of research. In humans, the approximately two meters

of genomic DNA is fit into a micron scale nucleus. Early studies of the nucleus via

imaging with fluorescence in situ hybridization of DNA (DNA-FISH) have revealed

that the nucleus is not homogeneous but is highly compartmentalized (Bolzer et al.,

2005). Chromosomes occupy distinct chromosome territories and neighboring chro-

mosome territories may loop out and intermingle with each other, which has been

proposed to be relevant for various gene expression programs such as T-cell acti-

vation (Iyer et al., 2012), human antiviral response (Apostolou and Thanos, 2008),

olfactory receptor choice (Lomvardas et al., 2006; Monahan et al., 2019), and globin

gene activation in erythroid cells (Schoenfelder et al., 2010).

More recently, chromosome conformation capture methods, which measure contact

frequencies between genomic loci, have revealed that chromosome territories spatially

segregate into megabase pair-long A and B compartments, where A compartments are

associated with transcriptionally active and open chromatin regions while B compart-

ments are associated with trancriptional silencing, closed chromatin and repressive

epigenetic marks (Lieberman-Aiden et al., 2009; Rao et al., 2014). During cell dif-

ferentiation it has been shown that up to 35% of the genome switches compartments

(Stadhouders et al., 2019; Dixon et al., 2015; Hu et al., 2018; Bonev et al., 2017).

Several studies have proposed that segregation into compartments can be partially

explained by phase separation, where proteins self-organize into 3D condensates that

concentrate specific factors and exclude others, thereby enabling efficient expression

of gene regulatory programs (Strom et al., 2017; Erdel and Rippe, 2018; Boija et al.,

2018; Chong et al., 2018).

At higher resolution, the A and B compartments can be further divided into

topologically associating domains (TADs), which contain DNA that tends to in-
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teract with itself more in comparison with DNA from other TADs (Dixon et al.,

2012). Finally, chromatin loops, mainly linking DNA regulatory elements such as

enhancers and promoters within TADs, can be observed. These loops are also highly

cell-type-specific with 80% of promoters exhibiting cell-type-specific 3D interactions

(Stadhouders et al., 2019).

Although the exact mechanisms by which the architecture of the genome has an

effect and is in turn affected by gene expression are still being elucidated, studies

have shown that gene expression and 3D organization are interlinked. For example,

analysis of reprogramming of B lymphocytes into pluripotent stem cells revealed a

tight coupling between chromatin state, 3D genome architecture and gene expression

dynamics. In particular, genes that were positioned within A compartments (Oct4 )

were activated much faster than the ones in B compartments (Sox2 ) (Stadhouders

et al., 2018), thereby providing an example of how the 3D genome organization can

act as a barrier or facilitator for gene expression. In pluripotent cells, transcription

factors such as NANOG have been observed to induce the spatial clustering of genes in

3D for robust maintenance of their expression levels (De Wit et al., 2013). Similarly,

polycomb group proteins and their target Hox genes are clustered together in 3D to

maintain the genes in a silent but poised state (Schoenfelder et al., 2015). Taken

together, the 3D genome organization plays an important role in gene regulation

and thus analysis linking and integrating this information with gene expression and

epigenetic marks may provide a more systematic understanding of the processes inside

the cell.

1.2 Data types for cell profiling

A variety of methods have been developed to probe the cell at different levels of

gene regulation. In order to measure gene expression, RNA-sequencing (RNA-seq)

has been developed in the mid 2000s (Emrich et al., 2007; Lister et al., 2008) and

has become a routine part of many molecular biology studies. Quantification of gene

expression by RNA-seq results in a genes × samples matrix of counts, where each
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entry indicates the number of reads mapped to the gene in the sample.

In order to characterize the chromatin state of DNA several methods have been

developed such as chromatin immunoprecipitation sequencing (ChIP-seq), DNase I

hypersensitive sites sequencing (DNase-seq) and assay of transposase accessible chro-

matin sequencing (ATAC-seq). ChIP-seq measures histone modifications of the DNA

and transcription factor binding to the DNA (Johnson et al., 2007). DNase-seq and

ATAC-seq measure chromatin accessibility (Boyle et al., 2008; Buenrostro et al.,

2013). ChIP-seq, DNase-seq and ATAC-seq methods provide genome-wide signals

and can be represented by a matrix of binned genomic loci × samples or by a list

of peak locations for every sample. Currently, the majority of data from sequencing-

based methods is collected in bulk and on just a few samples (e. g. 3 replicates),

where each sample represents an average over all the cells in the sample. Such bulk

measurements preclude studying covariation of signals and heterogeneity of cells in

the sample. Recently, single-cell methods that measure the signal for each cell in-

dividually have been introduced both for measuring gene expression, e.g. single-cell

RNA-seq, and chromatin state, e.g. single-cell ChIP-seq, DNase-seq and ATAC-seq

(Rotem et al., 2015; Jin et al., 2015; Buenrostro et al., 2015; Cusanovich et al., 2015).

In order to measure the 3D genome organization, imaging and sequencing tech-

nologies have been developed. The most commonly used imaging technique is DNA-

FISH, which allows measurement of physical distances between two or a few (e. g. 50)

differentially labelled genomic loci of interest in single cells. More recently, sequencing-

based methods such as chromosome conformation capture methods, in particular Hi-

C (Lieberman-Aiden et al., 2009; Bickmore and Van Steensel, 2013; Schmitt et al.,

2016; Dekker and Mirny, 2016), and related methods such as SPRITE (Quinodoz

et al., 2018) and GAM (Beagrie et al., 2017) have been developed to probe the spa-

tial organization of the entire genome over a population of cells by measuring contact

frequencies between genomic loci. The output of these methods can be represented by

a contact frequency matrix of binned genomic loci × binned genomic loci, where each

entry represents the contact frequency between two loci. Similar to other sequencing-

based methods, Hi-C has also been adapted to enable measurements in single cells
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(Nagano et al., 2013).

1.3 Computational methods for learning regulatory

logic

Comprehensive modeling of gene regulatory logic is one of the key challenges in mod-

ern molecular systems biology. In the following, we will describe several approaches

for inferring gene regulatory mechanisms. We break up these approaches into two

categories to set up the background and key concepts in this thesis.

1.3.1 Inferring gene regulatory networks from gene expression

Above we have described a complex model of gene regulation, taking into account

epigenomics and the 3D conformation of the genome. Although experiments can mea-

sure some of these properties, simply utilizing just the gene expression data, which

can be collected easily and cheaply, may enable us to reconstruct the gene regulatory

networks governing the cells. In this case a gene regulatory network consists of 𝑝

nodes corresponding to 𝑝 genes and an edge between two nodes represents a rela-

tionship between the two genes. A variety of methods have been proposed to learn

such gene regulatory networks (Wang and Huang, 2014). Commonly, the relation-

ship between a pair of genes is defined by a measure of coexpression such as Pearson

correlation (Langfelder and Horvath, 2008). Although the computational costs for

calculating correlation-based coexpression networks are low, correlation can give mis-

leading results, e. g. two genes might be highly correlated due to a confounding effect

of a third gene that is related to both genes. As a result, Gaussian graphical models

that capture partial correlations, which is a measure of association between two genes

controlling for the effect of all other genes, have been proposed for modeling gene reg-

ulatory networks (Friedman et al., 2008). One major drawback of both coexpression

networks and Gaussian graphical models is that the resulting graph is undirected and

thus causal relationships cannot be represented. Since ultimately understanding a
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biological system means that one can predict the effect of perturbing that system, it

is important that the inferred gene regulatory network can predict the effect of an

intervention (e.g. small molecule, overexpression of a transcription factor, knock-out

of a gene). This cannot be done using an undirected graph and necessitates modeling

a gene regulatory network by a causal (directed) graph.

One of the most common frameworks for representing causal relationships are

directed acyclic graphs (DAGs). We will use this framework for inference of gene

regulatory networks in Chapters 5 and 6. Let 𝒢 = ([𝑝], 𝐸) be a DAG with nodes

[𝑝] := {1, . . . , 𝑝} and directed edges 𝐸. A random variable 𝑋𝑖 is associated to each

node 𝑖 ∈ [𝑝]. The data is assumed to be generated by a linear structural equation

model with Gaussian noise:

𝑋 = 𝐵𝑇𝑋 + 𝜖, (1.1)

where 𝐵 is the weighted adjacency matrix of 𝒢 and 𝜖 ∼ 𝒩𝑝(0,Ω) with Ω =

diag(𝜎2
1, · · · , 𝜎2

𝑝). The goal is to learn the DAG 𝒢 associated with the variables 𝑋.

A standard approach for causal structure discovery is to first infer the conditional

independence (CI) relations among the observed variables and then use the CI re-

lations to learn the DAG structure (Spirtes et al., 2000). However, since multiple

DAGs can encode the same CI relations, 𝒢 can only be identified up to its Markov

equivalence class (MEC). An MEC can be represented by a CPDAG, a partially di-

rected graph whose skeleton (underlying undirected graph) is the skeleton of 𝒢 and

an edge is directed if it has the same direction for all DAGs in the MEC (Verma

and Pearl, 1990). Various algorithms have been developed for learning a CPDAG

(Glymour et al., 2019; Chickering, 2002; Solus et al., 2017; Spirtes et al., 2000); most

prominently the PC algorithm (Spirtes et al., 2000), which treats causal inference

as a constraint satisfaction problem with the CI relations as constraints and GES

(Chickering, 2002), which greedily searches over the space of MECs to maximize a

score function.
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1.3.2 Learning regulatory logic beyond a single data modality

When multiple data modalities are available, a number of approaches have been

developed to extract biological insights by integrating the different data types. The

exact scheme by which the data is integrated will depend on the goals of the analysis

and the type of data. For the purposes of this thesis, we will divide the methods

into non-exclusive categories of methods based on models, networks, correspondences

between data sets and neural networks.

First, the data can be integrated using a statistical model that relates different

data modalities. For example, the expression of a gene might be modelled as a

function of the accessibility of the regulatory DNA element associated with the gene

and the likelihood of the regulatory DNA element being recruited to the gene (Duren

et al., 2017). However, the relationships between some modalities such as imaging

and sequencing might be unknown or difficult to express by a model.

Second, the data might be integrated via a network where the structure of the net-

work represents interactions (e. g. protein-protein interactions or interactions between

genomic loci) and the values of nodes and edges correspond to data from other ge-

nomics experiments (Huang and Fraenkel, 2009; Tuncbag et al., 2012; Pancaldi et al.,

2016). Network analysis can then be applied to identify a subnetwork of interest,

prioritize nodes via network centrality measures or cluster the network to identify

densely connected communities that might be functionally relevant. We use these

ideas in Chapters 2 and 6.

Third, the data can be integrated using correspondences between samples or fea-

tures of the datasets. Recent breakthroughs in single-cell technologies have allowed

simultaneous profiling of multiple types of molecules within a single cell, resulting in

datasets which share samples across the different modalities such as RNA-seq and

ATAC-seq (Cao et al., 2018). In this case, methods such as canonical correlation

analysis or factor analysis can be used for investigating the relationships between

the two data sets (Gundersen et al., 2019; Argelaguet et al., 2018). However, in the

typical case samples across the different modalities are not paired and thus some
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methods rely on correspondences between features such as shared markers or shared

data structures of sequencing methods to integrate different modalities (Stuart et al.,

2019; Lopez et al., 2019; Stanley et al., 2020; Liu et al.; Amodio and Krishnaswamy,

2018; Liu et al., 2020).

Finally, neural networks have been very successful in domain translation, in par-

ticular for image-to-image-translation (Zhu et al., 2017; Amodio and Krishnaswamy,

2019) and thus can also be applied to biological data to translate between different

data types (Amodio and Krishnaswamy, 2018; Liu et al., 2020) and thus essentially

obtain paired data (discussed in the previous paragraph). In Chapters 3 and 6 we will

use autoencoders, which are a special type of neural network, for domain translation

and learning a data representation. Briefly, an autoencoder is a neural network that

attempts to reconstruct the input data and thereby learn a representation of the data

in an unsupervised manner. Given training examples 𝑥, the autoencoder consists

of an encoder 𝐸 and a decoder 𝐷 and is trained by minimizing the reconstruction

loss 𝐿(𝑥,𝐷(𝐸(𝑥)), where 𝐿 is typically the mean squared error (Baldi, 2012). Typi-

cally, the encoder maps the data to a low-dimensional representation and additional

regularization may be incorporated into the loss function.

1.4 Overview of the thesis

In this thesis, we first describe methodologies for studying gene regulation by con-

sidering multiple data modalities (Chapters 2 and 3). Then, we focus on developing

methods for extracting biological insights based on data from a single modality such

as contact frequency data describing the spatial organization of the genome (Chapter

4) or gene expression data (Chapter 5). We end by considering how the developed

methodologies and ideas can be used for drug repurposing against SARS-CoV-2 given

the current COVID19 pandemic (Chapter 6). Chapters 2, 3 and 6 represent the main

work of this thesis. The following provides a more detailed overview of each chapter.

In Chapter 2, informed by the models of gene regulation described in Section 1.1

and the role of spatial organization in the regulatory control of the cell, we design
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a computational framework for identifying chromosome regions that are colocalized

and coregulated. Our framework is based on integrating 1D genomic features such as

epigenetic marks with 3D interactions using network analysis. The colocalized and

coregulated clusters of regions that we identify may be functionally important and

could act as an additional layer of transcriptional regulation.

Our work in Chapter 2 provides an example of how data from different modalities

can be used to provide novel insights into gene regulation. In the ideal setting, to

derive a deep understanding of the cellular state and regulatory logic, from experi-

ments we would be able to measure all aspects of the cell such as the cell’s expression

profile, proteomic profile, epigenome and 3D conformation, along with their full his-

tories. However, obtaining high-throughput paired measurements of these different

data modalities within single cells is still a major challenge requiring significant break-

throughs in single-cell technologies. In Chapter 3, we provide a general framework

using autoencoders for data integration across different data modalities. Specifically,

we address the gap of integrating modalities with vastly different data structures such

as imaging and sequencing data. We apply our methodology for integrating and trans-

lating between gene expression and chromatin images of naive T-cells. Our method

allows for hypothesis generation to predict the genome-wide expression profile of a

particular cell given its chromatin organization and vice-versa. Such a methodology is

valuable to understand how features in one dataset translate to features in the other.

While it is valuable to analyze multiple data modalities together, significant chal-

lenges still exist for extracting useful information even from a single modality. In

Chapters 4 and 5, we focus on designing algorithms for data measuring the spatial

organization of the genome and gene expression, respectively.

In Chapter 4, we consider the problem of reconstructing the 3D conformation of

the genome from contact frequency data. This is challenging since the data obtained

from sequencing technologies does not distinguish between the two homologous copies

of DNA that are present in human cells. To alleviate this, we design an efficient

algorithm for obtaining the 3D diploid genome configuration.

In Chapter 5, we consider having access only to gene expression data as a read-
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out from a cell and we consider learning causal gene regulatory networks from such

data. Unfortunately, application of classical causal inference algorithms to infer gene

regulatory networks based on gene expression data is still challenging, requiring high

sample sizes and computational resources. In Chapter 5, we circumvent this challenge

by focusing on a related problem of learning the difference between gene regulatory

networks between two related conditions, which is likely sparse. We propose an algo-

rithm and provide a Python package that infers changes (i.e., edges that appeared,

disappeared or changed weight) between two causal graphs given gene expression data

from the two conditions.

Finally, while in most of this thesis we focus on designing algorithms that could

enable us to understand the basic biology of the cell, in Chapter 6 we turn to using

some of the computational frameworks discussed in this thesis such as autoencoders,

networks and causal analysis for drug repurposing against SARS-CoV-2.

29



30



Chapter 2

Network analysis identifies

chromosome intermingling regions as

regulatory hotspots for transcription

Parts of this chapter were published as:

Belyaeva, A., Venkatachalapathy, S., Nagarajan, M., Shivashankar, G. V., & Uh-

ler, C. (2017). Network analysis identifies chromosome intermingling regions as regu-

latory hotspots for transcription. Proceedings of the National Academy of Sciences,

114(52), 13714-13719.

My contributions were to design and implement the computational approach, per-

form data analysis and write the manuscript.

2.1 Summary

The 3D structure of the genome plays a key role in regulatory control of the cell.

Experimental methods such as high-throughput chromosome conformation capture

(Hi-C) have been developed to probe the 3D structure of the genome. However, it

remains a challenge to deduce from these data chromosome regions that are colocal-

ized and coregulated. Here, we present an integrative approach that leverages 1D

functional genomic features (e.g., epigenetic marks) with 3D interactions from Hi-C
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data to identify functional interchromosomal interactions. We construct a weighted

network with 250-kb genomic regions as nodes and Hi-C interactions as edges, where

the edge weights are given by the correlation between 1D genomic features. Individual

interacting clusters are determined using weighted correlation clustering on the net-

work. We show that intermingling regions generally fall into either active or inactive

clusters based on the enrichment for RNA polymerase II (RNAPII) and H3K9me3,

respectively. We show that active clusters are hotspots for transcription factor bind-

ing sites. We also validate our predictions experimentally by 3D fluorescence in situ

hybridization (FISH) experiments and show that active RNAPII is enriched in pre-

dicted active clusters. Our method provides a general quantitative framework that

couples 1D genomic features with 3D interactions from Hi-C to probe the guiding

principles that link the spatial organization of the genome with regulatory control.

2.2 Introduction

The three-dimensional (3D) structure of the genome plays a key role in regulatory

control of the cell. Historically, the spatial organization of the genetic material has

been probed with fluorescence in situ hybridization (FISH), and it was shown that

chromosome organization is nonrandom. Each chromosome occupies its own terri-

tory with gene-dense chromosomes more likely to be in the nuclear interior (Bolzer

et al., 2005). As an addition to FISH, chromosome conformation capture methods

(3C, 4C, 5C, and Hi-C) have been designed to probe the 3D organization of the

genome by measuring the genome-wide contact frequencies over a population of cells

(Lieberman-Aiden et al., 2009; Bickmore and Van Steensel, 2013; Schmitt et al., 2016;

Dekker and Mirny, 2016). Computational and experimental efforts have largely fo-

cused on investigating intrachromosomal contacts. Studies where these interactions

have been analyzed together with epigenetic modifications as measured by chromatin

immunoprecipitation sequencing (ChIP-seq) showed that epigenetic marks are tightly

linked to shaping the architecture of the genome (Dixon et al., 2012; Lan et al., 2012).

Few studies have considered interchromosomal interactions. It was shown that re-
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gions on neighboring chromosome territories may loop out and intermingle with each

other in a transcription-dependent manner (Iyer et al., 2012; Branco and Pombo,

2006). In addition, a recent study has revealed that intermingling regions are en-

riched in both, active and repressive epigenetic marks, as well as the active form

of RNA Polymerase II (RNAPII) and transcription factors (Maharana et al., 2016).

Furthermore, it was identified that genes are spatially colocalized and coregulated by

sharing common transcription factors (Schoenfelder et al., 2010; Papantonis et al.,

2012) and epigenetic machinery like the polycomb proteins (Bantignies et al., 2011).

For example, TNF𝛼-responsive genes (on the same and different chromosomes) have

been shown to colocalize upon their stimulation. Their spatial clustering was found

to be correlated with their temporal expression patterns (Papantonis et al., 2012).

The clustering of genes, transcriptional machinery, and regulatory factors to coordi-

nate expression, also known as transcription factories, has been proposed as a model

for gene regulation (Papantonis and Cook, 2013; Chen et al., 2015; Uhler and Shiv-

ashankar, 2017a). Collectively, these studies suggest that interchromosomal regions

could harbor coregulated gene clusters. However, missing in this picture is a system-

atic analysis linking 1D epigenetic marks and 3D intermingling regions and their roles

in transcription control.

Various methods have been developed to infer the spatial connectivity of the whole

genome from Hi-C data. Restraint-based approaches transform Hi-C contact matri-

ces into distances to deduce one consensus structure (Zhang et al., 2013; Lesne et al.,

2014; Varoquaux et al., 2014; Segal and Bengtsson, 2015; Serra et al., 2015). How-

ever, it remains a challenge to map contact frequencies to spatial distances due to

biases in Hi-C matrices (Imakaev et al., 2015). A different approach is to produce

an ensemble of structures that could explain the experimental data (Wang et al.,

2015; Tjong et al., 2016). Computational methods have largely focused on inferring

the 3D genome structure based on Hi-C data alone without leveraging functional ge-

nomic data for studying its architecture. A recent study has explored this idea by

superimposing ChIP-seq data of three transcription factors (TFs) on the 3D genome

architecture inferred from Hi-C and determined functional hotspots in Saccharomyces
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cerevisiae (Capurso et al., 2016). Another study used 1D epigenomic tracks to predict

3D interactions (Zhu et al., 2016). But there remains a lack of a general quantita-

tive framework that integrates 1D functional genomic features with 3D intermingling

regions to determine a regulatory code for interchromosomal interactions.

In this study, we take a novel approach by integrating Hi-C and functional genomic

data in order to predict regions that are colocalized and coregulated in 3D. The

model of gene regulation that is captured by our analysis is the spatial clustering of

genomic regions for their coregulation (Dekker and Misteli, 2015). This mode of gene

regulation may enable the cell to coordinate gene expression and activate or repress

pathways that are important for cell function in a coordinated manner. We focus

on interchromosomal interactions to study chromosome intermingling regions. Using

a network analysis approach, we construct a network of chromosomal interactions

weighted by correlations in their genomic features at a 250kb resolution. We find that

intermingling regions can be divided into active and inactive clusters, where active

clusters are hotspots for transcription factor binding. We validate our predictions

using FISH by comparing a predicted active cluster versus a predicted negative control

and also confirm that active RNAPII is significantly enriched in the predicted active

cluster.

2.3 Results

Identification of Intermingling Domains

In order to identify interchromosomal regions that are both spatially colocalized and

coregulated, we leveraged spatial information from Hi-C experiments and regula-

tory information, namely, epigenetic marks, TF ChIP-seq, DNase I hypersensitivity

(DNase-seq), and RNA-seq. Our aim was to identify clusters of chromosome regions

at the whole genome scale that interact spatially due to similarities in their regulatory

features and thus might be coregulated by shared regulatory factors and epigenetic

marks. Our method consists of 4 steps outlined in Fig. 2-1: a) identification of highly
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interacting domains by determining large average submatrices in interchromosomal

Hi-C maps, b) superimposing regulatory marks on the interacting domains, c) con-

struction of a network of interacting regions with edges weighted by the correlation

of the superimposed marks as a measure of coregulation, and d) network clustering

to obtain spatially colocalized and coregulated domains.

We analyzed Hi-C data from IMR90 human lung fibroblast cells at 250kb resolu-

tion, obtained from (Rao et al., 2014). After bias correction, filtering, and transform-

ing the data (Methods), we identified a stringent set of highly interacting interchro-

mosomal regions by solving the following submatrix finding problem in Hi-C maps.

We sought a contiguous submatrix 𝑈(𝑘 × 𝑙), that has a high average, 𝜏 , within the

real-valued data matrix 𝑋(𝑚× 𝑛), where each entry is an interchromosomal contact

frequency between two 250kb regions. We used the iterative Large Average Submatrix

(LAS) algorithm (Shabalin et al., 2009), that balances matrix size and average value,

as outlined in Methods to discover highly interacting domains. Fig. 2-1a shows the

identified domains in the Hi-C contact map for chromosomes 19 and 20. As shown

in Fig. 2-1a, the LAS algorithm captures the regions with high intensity in the inter-

chromosomal matrix. Applying this procedure to all pairwise interchromosomal maps

yields Fig. 2-1b, where each entry in the matrix corresponds to the number of 250kb

regions identified for the particular chromosome pair (FDR < 4.16× 10−8, Methods).

The total size of highly interacting domains across all chromosomes spanned 903.25

Mb (Supplementary Table A.1). Consistent with previous observations (Lieberman-

Aiden et al., 2009; Kalhor et al., 2012), Fig. 2-1b shows that gene-dense chromosomes

such as 15-17 and 19-22 had a high number of intermingling 250kb regions. In addi-

tion, as previously noted (Croft et al., 1999), we found a striking difference between

chromosomes 18 and 19 - although these two chromosomes are approximately equal

in size, the gene-poor chromosome 18 has a low level of intermingling across most

chromosomes, while the gene-rich chromosome 19 tends to intermingle more with

other chromosomes.
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Figure 2-1: Overview of the proposed quantitative framework for detecting intermin-
gling regions. A) Example of an observed interchromosomal Hi-C contact matrix at
250kb resolution after pre-processing and transformation (standardized by mean and
standard deviation after log(1+x) transformation) for chromosome 19 and 20 (Meth-
ods). Rectangular boxes represent interacting domains for this pair of chromosomes
as detected by the LAS algorithm, which finds submatrices with high average. B)
Matrix containing the number of interacting 250kb regions identified by the LAS al-
gorithm for each pair of chromosomes. C) Subnetwork of the chromosome interaction
network corresponding to two distinct clusters. Nodes are colored by chromosome
number. Each node in the network corresponds to a 250kb region. Edges link nodes
that are found together in a submatrix (box) as determined by the LAS algorithm.
The edge weights are given by the strength of correlation between the genomic features
(histone modifications, TF ChIP-seq, DNase-seq, and RNA-seq as listed in Supple-
mentary Table A.2) of adjacent 250kb nodes. D, E) Activity (normalized number
of peaks in a 250kb region) of the genomic features for the two clusters obtained
by weighted correlation clustering on the subnetwork in C. Each ring corresponds
to 1 genomic feature, listed from outer ring to inner ring in Supplementary Table
A.2. Features are grouped into active (outer rings - RNA-seq, RNAPII, H3K4me1,
H3K4me2, H3K4me3, H3K36me3, H3K9ac), repressive (middle rings - H3K27me3
and H3K9me3), and other (inner rings) categories. F) Fold enrichment of each ge-
nomic feature in the intermingling regions (Methods).
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Integration of Functional Genomic Data and Network Analysis

We obtained functional genomic data: TF ChIP-seq, histone modifications, DNase-

seq, and RNA-seq data from ENCODE (Dunham et al., 2012), Roadmap Epigenomics

(Kundaje et al., 2015), and GEO databases (Supplementary Table A.2). We used this

experimental data as a regulatory profile for all 250kb regions that laid within the

intermingling domains.

Considering each selected 250kb region as a node, a whole-genome network of

chromosomal interactions was constructed as follows. Between chromosomes, the

edges in the network were placed between pairs of 250kb regions that laid within

the same submatrix as identified by the LAS algorithm. Within chromosomes, edges

were placed between loci that fall within the same intrachromosomal domain, as

determined in (Rao et al., 2014). After establishing the skeleton of the network, the

edge weights were calculated as follows. Since our goal was to determine spatially

coregulated regions, we weighted the edges by Spearman’s correlation between the

genomic profiles (e.g. gene expression, epigenetic marks, DNA accessibility, TF ChIP-

seq) of adjacent 250kb regions. This combined approach can mitigate some of the

noise associated with using Hi-C contact frequencies alone. In addition, it allows

us to identify chromosome intermingling regions with coordinated activity, which

might be controlled by the same set of transcription factors or epigenetic marks, as

opposed to domains that interact in 3D by chance. A subnetwork containing six

250kb regions from 3 distinct chromosomes is shown in Fig. 2-1c. The edge weights

in this subnetwork suggest the presence of two separate clusters.

In order to retrieve intermingling regions that are coregulated, the weighted net-

work of 250kb regions was partitioned into clusters using weighted correlation clus-

tering (Elsner and Schudy, 2009). This approach can for example identify regions

that are brought together for transcription, since these would have high RNAPII and

low repressive epigenetic marks. This approach indeed found two clusters in the sub-

network shown in Fig. 2-1c. The regulatory profiles of the 6 regions, separated into

two clusters, are illustrated in Fig. 2-1d,e. As a consequence of using weighted corre-
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lation clustering, the genomic features within a cluster are more similar than across

clusters. Interestingly, the particular cluster in Fig. 2-1d is enhanced for active ge-

nomic features (we analyzed H3K9ac, H3K36me3, H3K4me3, H3K4me2, H3K4me1,

RNAPII, and RNA-seq) and depleted for repressive features (we analyzed H3K27me3

and H3K9me3), while the cluster in Fig. 2-1e is depleted for active features. Using

this method, 446 clusters (totaling to 459.5 Mb, Supplementary Table A.1) were iden-

tified (p-value < 2.2 × 10−16 under 𝜒2-test) that consist of at least two nodes and

span multiple chromosomes. On average, 2.5 chromosomes interact within one cluster

(Fig. 2-2).
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Figure 2-2: Number of chromosomes within an intermingling cluster.

We analyzed the enrichment of regulatory marks in intermingling regions and

found that these regions were most enriched for RNAPII, namely by a factor of 2.23

(Fig. 2-1f). We also found the active and repressive marks (e.g., H3K9ac, H3K4me3,

and H3K9me3) to be enriched in intermingling clusters, which is consistent with a

previous study (Maharana et al., 2016).
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Regulatory Features are Predictive of Intermingling

In order to characterize intermingling regions as a whole and evaluate whether they

are distinct from non-intermingling regions on a regulatory level, we built a classifier

and determined the features that contribute the most to distinguishing between these

two classes. These features may represent a mechanism to spatially cluster genes for

their coregulation. We annotated 250kb regions as intermingling or non-intermingling

based on the results from our network analysis and clustering. We then performed

classification based on the associated regulatory profiles (Methods, Supplementary

Table A.2). We used eXtreme gradient boosting trees with 10-fold cross-validation to

train our classifier. Using all features, the classifier achieves an accuracy of 85%±5%

and the corresponding ROC curve in Fig. 2-3a has an area under the curve (AUC) of

0.77.

To quantify the importance of each feature by itself and in conjunction with all

other features, we computed its univariate and multivariate rank based on its depth

in the decision trees of the ensemble (Fig. 2-3b and Fig. 2-4). The most important

features determined by this analysis are lamin B1 (LMNB1), H3K9me3, H3K56ac, and

H2A.Z. The importance of both repressive (H3K9me3, LMNB1) and active (H3K56ac,

H2A.Z) marks ties with the observation that intermingling regions contain both active

and repressed regions (Pombo and Dillon, 2015). Furthermore, previous mapping of

LMNB1 in the genome revealed the presence of lamina-associated domains (LADs)

that interact with the lamina on the nuclear envelope, spatially organize chromosomes

by anchoring them to the lamina, and display coordinated gene repression (Camps

et al., 2015; Guelen et al., 2008a; Finlan et al., 2008). H3K9me3 is enriched in LADs

and may facilitate gene silencing in LADs (Guelen et al., 2008a; Shachar et al., 2015).

The context-dependent importance of this feature is in line with its low univariate,

but high multivariate rank (Fig. 2-4). H3K56ac is a known mark of transcriptionally

active chromatin regions (Stejskal et al., 2015; Das et al., 2009). Finally, H2A.Z is

enriched at transcription start sites (Barski et al., 2007), indicating its involvement

in transcription initiation, and it appears to be a defining feature of intermingling on
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its own (Fig. 2-4).

Performing step-wise feature elimination shows that approximately 13 features

are sufficient for achieving high AUC (Fig. 2-3c) and the corresponding features are

annotated by stars in Fig. 2-3b.

Figure 2-3: Performance and feature importance for classifying intermingling regions.
A) ROC curve for eXtreme gradient boosting trees classifier that was trained on ge-
nomic features of intermingling versus non-intermingling regions. This results in AUC
of 0.77. B) Features ranked in the order of importance (relative depth of feature in
the decision tree) for distinguishing intermingling domains. C) AUC when recursively
eliminating one feature at a time based on 10-fold cross-validation. Near-optimal per-
formance is reached with 13 features, which are indicated by stars in B.
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Figure 2-4: Scatterplot of univariate rank of a feature (two-sample Kol-
mogorov–Smirnov test) versus predictive rank of a feature when it is combined with
all other features (relative importance in decision trees) for classification of inter-
mingling versus non-intermingling regions. A similar analysis has been performed
in (Whalen et al., 2016) to explore context-dependency of features for classification.

Intermingling Clusters are Divided into Active and Inactive

Clusters

While it is interesting to evaluate intermingling regions altogether, studying these on a

cluster-by-cluster level may give insights into the links between regulatory processes

and spatial colocalization. Based on previous evidence (Simonis et al., 2006) we

hypothesized that active regions are clustered with other active regions and inactive

regions with other inactive regions. In order to analyze the types of clusters we

obtained, we computed the fold enrichment of each cluster for several regulatory

features. We found that a high proportion of the clusters - 41.7% (186 clusters) -

was enriched for all active marks - RNAPII, H3K9ac, H3K36me3, H3K4me3, and

H3K4me1 as shown in Fig. 2-5a (p-value = 1.398 × 10−5 under 𝜒2-test, Methods).

Notably, the majority of clusters were either enriched for all 5 active marks or not

enriched for any active mark.

The percentage of clusters enriched for the repressive/inactivating mark H3K9me3
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was 38.3% (171 clusters). Interestingly, we observed a clear separation of the inter-

mingling clusters into active and inactive, with only 4% of clusters (18 clusters) that

were in both categories as shown in Fig. 2-5b (p-value = 4.699 × 10−4 under 𝜒2-test,

Methods). Active clusters were defined as those clusters enriched for RNAPII (fold

enrichment > 1) but not for H3K9me3. Inactive clusters were defined as enriched

for H3K9me3 but not for RNAPII. Active clusters also had significantly higher gene

expression (p-value = 0.004 under t-test) in comparison to inactive clusters (Supple-

mentary Fig. A-1). In addition, high-occupancy target (HOT) regions, i.e. regions

that are occupied by many TFs (Li et al., 2016), were overrepresented in active clus-

ters in comparison to low-occupancy target (LOT) regions, by HOT:LOT ratio of

2.94 (Supplementary Table A.3). These findings suggest that active clusters may be

hotspots for transcription factor binding.

Figure 2-5: Classification of intermingling regions into active and inactive clusters.
A) 5-way Venn diagram representing the number of clusters enriched for each active
epigenetic mark and RNAPII. Interestingly, many clusters (186 out of 446) are en-
riched for all 5 active marks. B) Venn diagram of the active clusters (the 186 clusters
in the intersection of the 5-way diagram in A) and clusters enriched for the silencing
mark H3K9me3. Note that only 18 out of 446 clusters are both active and silenced,
showing that the clusters separate into 2 categories of active and inactive clusters.

Active Clusters are Hotspots for Transcription Factor Binding

We probed the active clusters for shared transcription factors that may be involved

in colocalizing and coregulating regions in a cluster by analyzing transcription factor

binding sites (TFBS). We used the JASPAR 2016 database to obtain the TFBS. This
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data was overlayed and then filtered using ChIP-seq peaks from all human cell lines

available from ENCODE (Dunham et al., 2012) (Methods). This resulted in TFBS for

52 transcription factor motifs. We performed an additional analysis to also consider a

larger set of transcription factor motifs (386) by overlaying and filtering the JASPAR

2016 database with a robust set of CAGE peaks from (Forrest et al., 2014), collected

across 353 human tissue samples as part of the FANTOM5 project (Methods). This

filtering step provided us with a list of potential transcription start sites that contain

motifs for the TFs under consideration.

We compared the distributions of TFBS counts per 250kb region for active clusters

versus whole genome. Several factors, such as EGR1, YY1, CTCF, and the E2F family

of proteins showed a significant increase in TFBS counts under a Mann-Whitney U-

test (Fig. 2-6a).

The majority of active clusters contained binding sites for TFs that are shared

across regions spanning multiple chromosomes. For example, the cluster studied in

Fig. 2-1d involving chromosome 12 and 17 contains binding sites for the TFs USF1

and NRF1 on regions of both chromosomes (Fig. 2-6b). This cluster is formed by the

colocalization between two adjacent 250kb regions on chromosome 12 and one region

on chromosome 17. Gene ontology (GO) term analysis of the expressed genes in

this cluster revealed an enrichment for biological processes related to fibroblasts such

as "cytoskeleton dependent intracellular transport" (Fig. 2-6c). On the other hand,

we found that inactive clusters contained a low number of TFBS (Supplementary

Table A.4), reaffirming the existence of two distinct types of cluster categories for

intermingling regions.

Experimental Validation

We ranked the active clusters according to the presence of binding sites for TFs that

were shared across multiple chromosomes using a permutation test (Methods). The

top 15 active clusters are shown in Supplementary Table A.5. Chromosomes 12 and

17 were consistently found together among the top highly ranked clusters and were

thus chosen for experimental validation (Supplementary Fig. A-2). We compared the
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Figure 2-6: Transcription factor binding sites (TFBS) and GO terms across active
clusters. A) Top 10 TFs with significantly overrepresented TFBS in active clusters
as compared to the whole genome distribution (under Mann-Whitney U test). B)
Matrix corresponding to a representative active cluster with number of TFBS for
each 250kb region in the cluster. Only TFs containing at least one nonzero column
entry are shown. A transcription factor shared among multiple regions in the cluster
may indicate its role in colocalization and coregulation of the clustered regions. C)
Significantly enriched GO terms computed from the genes that are expressed and
colocalized in intermingling cluster shown in B. GO terms were ranked by p-value
using DAVID (Huang et al., 2009b,a).
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amount of overlap between chromosomes 12 and 17 to a negative control that we

obtained by analyzing the network of least interacting chromosomes (Supplementary

Fig. A-3). The chromosome territories were identified in BJ fibroblast cells using

DNA FISH and visualized using a laser scanning confocal microscope (Fig. 2-7a-f). In

order to obtain a representative sample of the population, we imaged at least 200 cells

for each chromosome pair. We confirmed that chromosomes 12 and 17 consistently

intermingle in a population of cells (Fig. 2-7c, Supplementary Fig. A-4), while the

negative control chromosome pair does not (Fig. 2-7f, Supplementary Fig. A-5). To

quantify our results, the intermingling degree, i.e., the amount of overlap between

the two pairs of chromosome territories, was calculated as explained in Methods. We

found that the chromosome pair 12 and 17, which was predicted to interact, had

a significantly higher intermingling degree than the negative control pair 3 and 20

(Fig. 2-7g, p-value = 0.005 under Welch Two Sample t-test). The percentage of

nuclei that were intermingling (intermingling degree > 0) was higher in the predicted

pair of interacting chromosomes, 12 and 17, than in the negative control, 3 and 20

(Supplementary Fig. A-6). In addition, we also calculated the enrichment of active

RNAPII in the intermingling regions for the aforementioned pairs (Methods). We

found that the predicted chromosome pair, 12 and 17, which belongs to an active

cluster, had significantly higher enrichment for active RNAPII in the intermingling

regions as compared to the negative control pair, 3 and 20, (Fig. 2-7h, p-value =

7.125e-05 under Welch Two Sample t-test), showing that the chromosome pair 12

and 17 indeed contains an active mark at the site of intermingling.

2.4 Discussion

Understanding the spatial organization of the chromosomes within the cell nucleus

has been a major question in cell biology. A number of studies have suggested that

the packing of DNA plays a critical role in regulating genomic programs (Bickmore

and Van Steensel, 2013). Earlier experiments took advantage of chromosome paint-

ing methods and revealed that chromosomes are organized nonrandomly and in a
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Figure 2-7: Experimental validation. A) Representative images of the maximum
intensity Z projections of the nucleus, active RNAPII, and chromosomes 17 and 12,
from left to right, respectively. B) Raw image resulting from merging the nuclear
(blue) and the two chromosome channels depicting the overlap between chromosomes
17 (purple) and 12 (cyan). C) Image in B) after segmentation with nucleus (white),
chromosome 17 (red) and chromosome 12 (green). Yellow regions are the overlapping
or intermingling regions. The region in the dotted white boxes has been enlarged.
D) Representative images of the maximum intensity Z projections of the nucleus,
active RNAPII, and chromosomes 20 and 3, from left to right, respectively. E) Raw
image resulting from merging the nuclear (blue) and the two chromosome channels
depicting the overlap between chromosomes 20 (purple) and 3 (cyan). F) Image in
E) after segmentation with nucleus (white), chromosome 20 (red) and chromosome
3 (green). The region in the dotted white boxes has been enlarged. G) Boxplot
depicting intermingling degree between chromosomes 12 and 17 and chromosomes 3
and 20 (p-value = 0.005 under Welch Two Sample t-test). H) Boxplot depicting the
enrichment of active RNAPII between chromosomes 12 and 17 and chromosomes 3
and 20 (p-value = 7.125e-05 under Welch Two Sample t-test). The scale bar has a
length of 5𝜇m.
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cell-type specific manner (Bolzer et al., 2005; Branco and Pombo, 2006; Iyer et al.,

2012). Analysis of gene positioning using FISH showed that coregulated genes were

coclustered (Papantonis et al., 2012; Schoenfelder et al., 2010). Such clusters of genes

were also found to be colocalized with transcription-related machinery such as ac-

tive RNAPII and TFs (Papantonis et al., 2012; Schoenfelder et al., 2010). Recent

developments in chromosome capture technologies further revealed that genome-wide

chromosome contact maps are correlated with epigenetic marks (Dixon et al., 2012;

Lan et al., 2012). The majority of studies using chromosome conformation capture

focused on linking chromatin contacts with epigenetic modifications at the resolution

of genes in intrachromosomal regions (Dixon et al., 2012; Lan et al., 2012). However,

the coupling between the global organization of chromosomes with genome-wide epi-

genetic marks and the intermingling regions as an additional layer of transcriptional

regulation has not been well studied.

In this study, we developed a network analysis approach to reveal the principles of

transcription-dependent chromosome intermingling by taking advantage of 3D contact

maps obtained using Hi-C and 1D epigenetic marks, TF ChIP-seq, DNA accessibility,

and RNA-seq. Our computational approach focuses on interchromosomal domains,

since their organizational principles have been largely unknown. The proposed quan-

titative framework enables the prediction of chromosome intermingling regions at a

genome-wide scale, thereby complementing experimental methods such as FISH that

can be used to study specific clusters of interchromosomal interactions. The novelty

of our method lies in leveraging 1D genomic features in combination with 3D interac-

tions from Hi-C data. This allows us to study functionally colocalized regions: since

interactions can occur by chance in 3D, some intermingling regions may not be of bi-

ological relevance. By leveraging epigenetic marks and data from TF binding, DNA

accessibility, as well as gene expression, we can determine interchromosomal regions

that are colocalized and coregulated.

Our predictions reveal intriguing patterns of chromosome organization and have

been validated by FISH experiments. Our findings recapitulate known principles of

chromosome interactions, such as the tendency of gene-dense chromosomes to inter-
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mingle more frequently (Lieberman-Aiden et al., 2009; Kalhor et al., 2012) and the

enrichment of RNAPII in intermingling regions (Maharana et al., 2016), suggesting

that RNAPII may play a crucial role in establishing and maintaining chromosome

interactions. We observe that the clusters of interchromosomal regions fall broadly

into two categories, active and inactive, where active clusters are enriched for active

epigenetic marks and RNAPII and inactive clusters are enriched for H3K9me3. Inter-

estingly, we found that active clusters are hotspots for TF binding sites, with several

TFs being shared among multiple chromosomes within a cluster. These clusters con-

tain genes with biologically relevant GO terms. We established the predictive power

of our model through experimental validation. Using FISH experiments we showed

that the predicted intermingling chromosomes interact consistently across a popula-

tion of cells and that such intermingling regions are enriched for active RNAPII. Our

quantitative analysis provides evidence that TF hotspots in active clusters are colo-

calized with active epigenetic modifications, RNAPII, and have a significantly higher

gene expression than inactive clusters, suggesting that the relative positioning of the

chromosomes in the cell nucleus is optimized to facilitate the clustering of coregulated

genes, TFs, epigenetic modifications, and transcriptional machinery.

Collectively, these findings suggest that the spatial organization of the genomic

material in the cell nucleus is optimized for transcription programs. The framework

we present here is general and can be applied to analyze any cell type. We showed

by experimentally validating the predictions from our model using single-cell imag-

ing methods that population-level genome-wide contact and epigenetic data carries

enough information to identify highly interacting regions. However, we anticipate

that the power of our method will be increased as more robust single-cell genomic

data becomes available.

We believe that our quantitative approach will provide a useful framework to

gain insights into the interplay between chromosome reorganization and regulation

during processes such as cell differentiation, reprogramming, or the maintenance of

homeostasis.
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2.5 Future directions

While previous approaches have focused on the identification of interacting regu-

latory regions within a chromosome such as A and B compartments, TADs and

loops (Lieberman-Aiden et al., 2009; Rao et al., 2014), we developed a methodol-

ogy aimed at identifying interchromosomal colocalized and coregulated regions of

the DNA. While our analysis was performed at 250kb resolution due to the sparsity

of the interchromosomal contact frequency matrices, it would be interesting to apply

our framework at higher resolution to provide a more fine-grained analysis when more

high-resolution data becomes available. It would be particularly interesting from a

biological perspective to perform such an analysis at the resolution of promoters,

where transcription factors bind.

Our framework relied on combining the Hi-C contact frequency data with 1D

genomic profiles. The LAS algorithm was necessary for obtaining highly interact-

ing domains between chromosomes. While a simpler approach such as thresholding

the Hi-C contact frequency data could have been applied, this would likely lead to

missing interactions. Since interchromsomal matrices at 250kb resolution are noisy,

a particular pair of loci might show a contact frequency below the threshold while

the adjacent loci might have high interaction frequencies. Since adjacent loci on the

string of DNA likely have similar 3D interactions, such interactions can be picked up

using LAS but would be missed using thresholding. While we used the LAS algorithm

for detecting colocalized regions, in future work it would be interesting to explore or

develop other approaches with faster run time or use scoring functions that extend

beyond Gaussian data.

After applying LAS to detect highly interacting regions, we used correlations

between 1D genomic profiles to filter out regions that are colocalized in 3D for reasons

unrelated to regulation (e.g. regions that are colocalized and coregulated in 3D force

other nearby regions to be in proximity that are not coregulated). We used epigenetic

marks, gene expression, DNA accessibility and TF ChIP-seq data to obtain a metric

of coregulation between two regions. However, this simple metric may miss many
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nuances in biology. For example, it is known that enhancers and promoters are

associated with different epigenetic marks and thus a simple correlation metric may

not capture their regulatory relationship. Therefore, it would be of interest to use

prior knowledge or discover directly from the data an accurate metric quantifying

coregulation between loci on the DNA.

While we applied our methodology to a single cell type (fibroblasts), in future work

it would also be of interest to apply our framework to different cell types and analyze

the similarities as well as differences between the identified clusters of co-regulated

regions and relate these findings to cell function.

2.6 Methods

Obtaining Hi-C matrices

The Hi-C matrices were obtained from (Rao et al., 2014) at 250kb resolution. Matrices

were corrected for bias using interchromosomal matrix balancing based on the Knight-

Ruiz algorithm using software in (Durand et al., 2016). Centromeric regions, as well

as peri-centromeric regions within 2Mb of the centromere were filtered out. Repeat

regions, outliers based on row and column sums (outside of 1.5 × interquartile range

interval) in the Hi-C contact matrix, and regions already masked in (Rao et al., 2014),

were removed from the analysis. The final Hi-C matrix was log(1 + 𝑥) transformed

and normalized by mean contact frequency and standard deviation, computed over

all interchromosomal contact pairs that were not filtered out.

LAS Algorithm for identification of highly interacting regions

The LAS algorithm (Shabalin et al., 2009) takes a real-valued data matrix 𝑋(𝑚×𝑛)

as input and outputs contiguous submatrices 𝑈(𝑘 × 𝑙) that have a high average, 𝜏 .

This is done via the following iterative algorithm:

Repeat until 𝜏
√
𝑘𝑙 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:

1. Search: greedily, by updating one row and column at a time, find a submatrix
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𝑈 that maximizes the submatrix score

𝑆(𝑈) = − log
[︀
(𝑚− 𝑘 + 1)(𝑛− 𝑙 + 1)Φ(−𝜏

√
𝑘𝑙)
]︀

(2.1)

2. Remove: identify rows and columns corresponding to 𝑈 in 𝑋 and subtract the

submatrix average 𝜏 from this set of rows and columns.

The LAS algorithm search space was limited to contiguous submatrices of at most

10Mb × 10Mb in size, i.e. 40 × 40 submatrices (at 250kb resolution). For each

chromosome pair each iteration of the search procedure was initialized at a random

contiguous 𝑘 × 𝑙 submatrix in the interchromosomal Hi-C map.

The threshold for the algorithm was chosen based on a Gaussian approximation

such that 𝑃 (𝜏
√
𝑘𝑙 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) = 1𝐸 − 15. This stringent cutoff guarantees that

highly interacting regions in the whole-genome Hi-C map are identified with FDR

controlled at 4.16 × 10−8 (see the following paragraph). Returning submatrices 𝑈 ,

as determined by LAS, for each interchromosomal contact matrix results in a list of

highly interacting pairs of 250kb regions.

FWER and FDR computation for Large Average Submatrix (LAS) algo-

rithm

The LAS algorithm takes a real-valued matrix𝑋(𝑚×𝑛) as input and outputs contigu-

ous submatrices 𝑈(𝑘× 𝑙) of high average (Shabalin et al., 2009). The null hypothesis

is that the interchromosomal Hi-C matrix is a standard Gaussian random matrix,

and the alternative hypothesis is that the interchromosomal Hi-C matrix is a sum of

𝐾 constant (> 0) submatrices plus a standard Gaussian random matrix, i.e., that

the Hi-C contact matrix contains substructure (Lieberman-Aiden et al., 2009). More

precisely, each entry in the alternative model can be expressed as

𝑥𝑖,𝑗 =
𝐾∑︁

𝑘=1

𝛼𝑘𝐼(𝑖 ∈ 𝐴𝑘, 𝑗 ∈ 𝐵𝑘) + 𝜖𝑖𝑗, (2.2)
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where 𝐴𝑘 ⊆ [𝑚] and 𝐵𝑘 ⊆ [𝑛] are the row and column sets of the 𝑘th submatrix, 𝛼𝑘 is

the constant corresponding to the 𝑘th submatrix, 𝜖𝑖𝑗 are independent noise variables

sampled from 𝒩 (0, 1), and 𝐼(·) is the indicator function. Note that𝐾 = 0 corresponds

to the null model. The individual entries in the log(1 +𝑥) transformed Hi-C matrices

have an 𝑅2 of 0.972 with the standard normal distribution, which justifies using a

standard Gaussian random matrix as null hypothesis.

Let 𝜏 := 𝐴𝑣𝑔(𝑈), i.e., the average of the submatrix 𝑈 . Under the null hypothesis,

𝜏
√
𝑘𝑙 ∼ 𝑁(0, 1) and thus the probability of observing a 𝑘 × 𝑙 submatrix 𝑉 with

an average of 𝜏 or greater is 𝑃 (𝐴𝑣𝑔(𝑉 ) ≥ 𝜏) = Φ(−𝜏
√
𝑘𝑙), where Φ is the standard

normal cdf. Let 𝐴 denote the event that there exists a 𝑘× 𝑙 submatrix 𝑉 with average

greater than or equal to 𝜏 in an 𝑚 × 𝑛 matrix. Note that this event is bounded as

follows: 𝑃 (𝐴) ≤ ∑︀
𝑃 (𝐴𝑣𝑔(𝑉 ) ≥ 𝜏), where the sum is over all 𝑘 × 𝑙 submatrices in

the 𝑚 × 𝑛 matrix. Hence, under the null hypothesis, 𝑃 (𝐴) ≤ 𝑁Φ(−𝜏
√
𝑘𝑙), where

𝑁 = (𝑚 − 𝑘 + 1) × (𝑛 − 𝑙 + 1), the total number of contiguous submatrices of size

𝑘 × 𝑙 in an 𝑚× 𝑛 matrix.

The search space of the LAS algorithm was limited to contiguous submatrices

of at most 10Mb × 10Mb in size, which corresponds to 40 × 40 submatrices (at

250kb resolution). In order to calculate the total number of hypotheses for each

interchromosomal matrix, we summed the number of possible contiguous submatrices

for all combinations of 𝑘 and 𝑙 within the [1,40] range. Considering all pairs of

interchromosomal matrices, the total number of hypotheses was 9.33 × 1010. In our

procedure, we applied a p-value threshold, namely 𝑃 (𝜏
√
𝑘𝑙 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) = 1 ×

10−15, for the discovery of significant submatrices. Using a formulation based on the

Bonferroni correction, we can estimate the familywise error rate (FWER), which is

the probability of making at least one type I error. Let 𝑝 be the p-value threshold, 𝑏

the number of hypotheses and 𝛼 the FWER level. The Bonferroni correction rejects

the null hypothesis when p-value ≤ 𝛼
𝑏
, thereby controlling the FWER at ≤ 𝛼. With

our p-value threshold of 1 × 10−15, the FWER is ≤ 0.0000933.

We can also calculate the false discovery rate (FDR), i.e. the fraction of false

discoveries among all discoveries, using the Benjamini–Hochberg procedure. Let 𝑎 be
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the number of discoveries, 𝑏 the number of hypotheses, 𝑝 the p-value threshold, and 𝛼

the FDR level. The Benjamini–Hochberg procedure rejects the null hypothesis when

p-value ≤ 𝑎
𝑏
𝛼, thereby controlling the FDR at ≤ 𝛼. With our p-value threshold of

1×10−15 and the resulting number of discoveries 𝑎 = 2244, the FDR is ≤ 4.16×10−8.

Genomic features

Pre-processed data for 48 features including histone modifications, transcription fac-

tor ChIP-seq, DNase-seq and RNA-seq, were retrieved from ENCODE (Dunham

et al., 2012), Roadmap Epigenomics (Kundaje et al., 2015), the GEO database, and

previous studies (Whalen et al., 2016) (Supplementary Table A.2) for the IMR90 cell

line. In order to obtain the genomic profile for a 250kb region, matching the resolu-

tion of Hi-C data, the number of peaks overlapping the 250kb region was calculated

for each feature. For each feature, the feature matrix was log(1 + 𝑥) transformed

and z-scored by computing the mean and standard deviation of the feature across all

regions in the genome that were not removed by Hi-C filtering step.

Weighted Correlation Clustering

The weighted network of 250kb regions was partitioned into clusters using weighted

correlation clustering on networks (Elsner and Schudy, 2009). This method de-

termines clusters by drawing cluster boundaries across edges with low weights but

not across edges with high weights by solving a non-convex minimization problem.

Weighted correlation clustering was run in 25 replicates and the clustering with the

lowest value of the objective function was chosen for further analysis. The result-

ing clusterings were robust across replicate runs, as evidenced by the high adjusted

mutual information between cluster labels across runs (Supplementary Fig. A-7).

Classification into Intermingling and Non-intermingling Domains

In order to identify features that may be important for chromosome intermin-

gling, a binary classification task was performed. The training and test data
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consisted of genomic feature profiles (Supplementary Table A.2) for intermin-

gling versus non-intermingling regions, weighted by the number of samples in

each class. Classification was done using eXtreme gradient boosting trees with

n_estimators=1000, learning_rate=0.1, max_depth=5, min_child_weight=1 with

10-fold cross-validation. Feature importances were computed by the relative rank of

a feature in the decision tree, calculated via feature_impotances_ function in scikit-

learn (Pedregosa et al., 2012) in python. Additionally, features were evaluated using

iterative feature elimination by removing one feature at a time and optimizing the

AUC.

Fold Enrichment of Genomic Features

Fold enrichment for the intermingling regions as well as for specific clusters was cal-

culated as follows:

# bases in cluster and having feature
# bases in genome

/
(︁ # bases in cluster

# bases in genome

)︁(︁# bases having feature
# bases in genome

)︁
(2.3)

A fold enrichment of 1 indicates that the two events - belonging to the intermingling

regions or a particular cluster and belonging to a particular feature - are independent

events.

Comparison to a random network - Stochastic Block Model

To analyze the importance of the spatial interactions for the function and properties

of the determined clusters, we performed a comparison based on a "similar" net-

work in which the spatial interactions have been randomized. To be more precise,

we generated a network from a stochastic block model, where each chromosome is a

community and the edge probabilities within and between communities are computed

from the number of interactions in the Hi-C matrix as determined by the LAS algo-

rithm. In order to obtain similar cluster sizes as in the original network, we sampled
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the edge weights from the observed distribution of edge weights.

Using a 2-sided 𝜒2-test we tested whether the proportion of intermingling regions

in the observed network was equal (𝐻𝐴: not equal) to the proportion of intermingling

regions in a random network. Generating 50 networks from the stochastic block model

and using the average proportion of intermingling regions as test statistic, the null

hypothesis was rejected with a p-value < 2.2 × 10−16.

Further, in order to test the functional relevance of the determined clusters, we

tested using a 1-sided 𝜒2-test whether the proportion of clusters enriched for all five

active marks (RNAPII, H3K9ac, H3K36me3, H3K4me3, H3K4me1) in the observed

network was equal (𝐻𝐴: larger than) in a random network. As in the previous

test, generating 50 networks from the stochastic block model and using the average

proportion as test statistic, the null hypothesis was rejected with a p-value of 1.398×
10−5.

Finally, we tested the regulatory event that active and inactive clusters are spa-

tially separated. To do this, we tested using a 1-sided 𝜒2-test whether the proportion

of clusters enriched for all five active marks and the inactive mark (H3K9me3) in

the observed network was equal (𝐻𝐴: smaller than) in a random network. Following

the same procedure as in the previous test, the null hypothesis was rejected with a

p-value of 4.699 × 10−4.

Gene ontology

Expressed genes for IMR90 with reads per kilobase of transcript per million mapped

reads (RPKM) > 0 were obtained from ENCODE (Dunham et al., 2012). For each

cluster, we identified the genes that resided in the cluster and were expressed. For

each cluster, we then performed gene ontology (GO) term analysis on these genes

using DAVID (Huang et al., 2009b,a).

Cluster ranking

In order to select clusters for experimental validation, we ranked each cluster based

on the number of TFBS present in each region in the cluster. Several methods and
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databases were used for ranking the clusters in order to choose a robust set of clusters

for experimental validation. The whole genome was scanned for TFBS using position

frequency matrices (PFMs) from the JASPAR2016 database for humans. MOODS

software (Korhonen et al., 2016) was used to identify motif matches. TFBS were

further filtered by ChIP-seq from ENCODE (Dunham et al., 2012), resulting in 52

TFs or robust CAGE peaks, resulting in 386 TFs. The CAGE peaks, which indicate

transcription start sites, were obtained from the FANTOM5 project (Forrest et al.,

2014), which pooled CAGE analysis over 573 human cell samples. These peaks were

flanked by 400bp upstream and 50bp downstream as suggested by (Marbach et al.,

2016) and overlayed with the TFBS data to obtain the final set of TFBS.

In the following, we explain how we used the determined TFBS to rank the clusters

based on a permutation test. First, we constructed a score function to compare

observed and randomized matrices. For each cluster we construct a matrix 𝑍 of

size 𝑚 × 𝑛 consisting of the TFBS counts for each of the 𝑚 250kb domains that

are clustered together for each of the 𝑛 transcription factors that were analyzed.

The number 𝑚 may change from cluster to cluster, while the number of considered

transcription factors 𝑛 is the same for all clusters. Let 𝐴 be the set of TFs that have

TFBS on multiple chromosomes in the considered cluster. Then the score function

for each cluster is computed as follows:

𝑆𝑐𝑜𝑟𝑒(𝑍) =
∑︁

𝑗∈𝐴

𝑚∑︁

𝑖=1

𝑍𝑖𝑗 (2.4)

For each matrix 𝑍, a set of 1000 random matrices is generated to compute the back-

ground score distribution. Assuming that the number of TFBS for a specific tran-

scription factor is independent of the other transcription factors, a random matrix

for a particular cluster with corresponding matrix Z is generated by the following

procedure:

1. Let 𝑘 denote the number of nonzero entries in 𝑍. The probability of hav-

ing a nonzero entry for each of the 𝑛 transcription factors is defined by 𝑝𝑗,

where 𝑝𝑗 =
# nonzero entries for TFj
total # of nonzero entries . The number of nonzero entries for each tran-

56



scription factor, 𝑥𝑗, is drawn from a multinomial distribution, (𝑥1, · · · , 𝑥𝑛) ∼
𝑀𝑢𝑙𝑡(𝑘, 𝑝1, · · · , 𝑝𝑛).

2. After determining the number of nonzero entries for each transcription factor,

these nonzero entries must be distributed across the 𝑚 clustered 250kb regions.

Let 𝑞𝑖 be the probability of assigning a nonzero entry to that specific region,

where 𝑞𝑖 = # nonzero entries in regioni
𝑘

. For each transcription factor 𝑗, the number

of nonzero entries for each region, (𝑦1𝑗, · · · , 𝑦𝑚𝑗) is drawn from a multinomial,

(𝑦1𝑗 · · · 𝑦𝑚𝑗) ∼𝑀𝑢𝑙𝑡(𝑥𝑗, 𝑞1, · · · , 𝑞𝑚).

3. By now the positions of nonzero entries within the randomly generated matrix

have been chosen, and only the number of TFBS (counts) remain to be assigned

to each of the 𝑘 nonzero entries. For each transcription factor, samples are

drawn from the observed count distribution for that transcription factor over

active clusters.

Finally, the p-value of the observed score was computed using the background

score distribution that we obtained by calculating a score for each of the 1000 ran-

domly generated matrices described above. In order to ensure stability of the ranking

procedure, the background distribution was computed in 10 replicates, resulting in

10 different p-values. We observed that the p-values across different runs were con-

sistent. For each replicate, we obtained the cluster rankings based on their p-values.

The final rank of each cluster was computed from the median rank across the 10

replicate runs.

Negative controls - chromosomes that do not intermingle

As negative controls, we identified by a whole-genome analysis analysis pairs of chro-

mosomes that do not intermingle (in Hi-C) and are anti-correlated in terms of genomic

features (Fig. A-3). First, we determined chromosome pairs for which the LAS analy-

sis did not result in any intermingling regions. These chromosomes formed the nodes

of a network with edges drawn between pairs of chromosomes with no intermingling

regions. The weight of the edges was calculated as 1 − |𝜌|, where 𝜌 is the correlation
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between the genomic features averaged over the whole chromosome. Chromosomes 3

and 20 were chosen as a negative control pair, since they were representative of the

network of non-intermingling chromosomes.

Cell Culture and Chromosome FISH

BJ fibroblast cells were cultured in Low Glucose DMEM (Life Technologies, USA)

supplemented with 10% (vol/vol) FBS (GIBCO, Life Technologies, USA) at 37C in

5% CO2. BJ fibroblast cells were cultured overnight on fibronectin-coated cleaned

glass slides. Cells were then washed with 1× PBS to remove cell culture medium fol-

lowed by incubation on ice for 5-8 minutes, with 0.25% Triton in CSK buffer (100 mM

NaCl, 300 mM Sucrose, 3 mM MgCl2, 10 mM PIPES with pH 6.8). Cultured cells

were fixed with 4% PFA (Paraformaldehyde) for 10 minutes, briefly rinsed with 0.1 M

Tris-HCl and washed with 1× PBS wash. This was followed by permeabilization with

0.5% Triton for 10-15 minutes. The cells were then incubated overnight in 20% glyc-

erol at 4C and subjected to 5-6 freeze-thaw cycles in liquid nitrogen. After this, cells

were washed with 1× PBS a few times, before and after treatment with 0.01% HCl

for 5-10 minutes, followed by protein digestion with 0.002% porcine pepsin (Sigma

Aldrich, USA) in 0.01N HCl at 37C for 4 minutes. Cells were then fixed with 1% PFA

for 4 minutes, briefly rinsed in 1× PBS before being treated with RNAse (Promega,

USA, 200 microgram/ml made in 2× SSC-0.3M sodium chloride and 30mM trisodium

citrate) at 37C for 15-20 minutes to digest RNA. The cells were then washed with 2×
SSC and equilibrated in 50% Formamide / 2 SSC (pH 7.4) overnight at 4C. Hybridiza-

tion was set up the following day. Chromosome fish probes (Chrombios, Germany)

tagged with different fluorophores were thawed to room temperature and mixed with

hybridization buffer provided by the supplier. The DNA was denatured in 50% For-

mamide / 2× SSC at 85C for 2-3 minutes and then incubated with the fluorescently

labeled human chromosome FISH probe mix. The slides were then sealed with a

Sigmacote (Sigma Aldrich, USA) coated hydrophobic coverslip and rubber cement to

incubate for 18-48 hours in a moist chamber at 37C with shaking. At the end of the

incubation period, slides were washed three times in 50% Formamide / 2× SSC at
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45C and 0.1× SSC at 60C. After the last stringent wash with 50% Formamide made

in 0.1× SSC at 45C, the nuclei were blocked in 5% BSA solution made in 2× SSC

and then subjected to primary and secondary antibodies diluted in 5% BSA solu-

tion made in 2× SSC. In case indirect labels such as chromosome probes conjugated

with biotin and digoxigenin (DIG), were used during hybridization detection step,

the procedure also involved the use of fluorophore labeled streptavidin/avidin and

anti-DIG. The primary antibodies used here were: RNAPII CTD repeat YSPTSPS

(phospho S5) (Abcam - ab5131, 1:500 dilution), mouse monoclonal (21H8) to DIG

(Abcam-ab420; 1:500 dilution). Finally, the nuclei were stained with Hoechst 33342

(Sigma Aldrich, USA) for 10 minutes and then mounted with Prolong Gold antifade

mounting medium (Life Technologies, USA), sealed with a coverslip, and imaged.

Confocal Imaging and Image Analysis

Slides for chromosome FISH were scanned using a Nikon A1 Confocal microscope

(Nikon, USA) with a 100×, 1.4 NA oil objective. Stacks of 12-bit gray scale two-

dimensional images were obtained with a pixel size of 130 nm in XY direction and

500 nm in the Z direction and used for the quantitative evaluation. The image

analysis was performed using a custom code in ImageJ2. The code first identified

the nuclear boundary using Otsu 3D thresholding method. This was followed by the

identification of chromosome territories in the nuclear region using ReyniEntropy 3D

thresholding. The threshold for identifying signal and background in each image was

determined using the intensity histogram from the 3D image stack. The thresholded

image was binarized. The overlapping region between two chromosomes, i.e. the

intermingling region (IMR), was identified by performing the AND function over the

3D binary stacks of both chromosomes. The chromosome and IMR volumes were

computed by summing up the volumes of the non-zero voxels in the respective binary

images. The intermingling degree was calculated by dividing the volume of the IMR

between two chromosomes by the total volume of the two chromosomes. Similarly,

the amount of active RNAPII in the nucleus and the IMR was obtained by passing

the RNAPII image and the binary images of the nucleus and IMR through the AND
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filter, respectively. The enrichment of active RNAPII in the intermingling regions

was obtained by dividing the mean intensity of active RNAPII in the IMR by the

mean intensity of the active RNAPII in the entire nucleus. R was used for testing

statistical significance and for data visualization.

Code availability

The code for interchromosomal network construction via LAS and for the identifica-

tion and analysis of clusters is available at http://github.com/anastasiyabel/fun

ctional_chromosome_interactions. The code for performing the image analysis is

available at http://github.com/SaradhaVenkatachalapathy/Chromsome-interm

ingling-region-indentifcation-and-characterisation-of-protein-levels.
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Chapter 3

Multi-Domain Translation between

Single-Cell Imaging and Sequencing

Data using Autoencoders

Parts of this chapter have been accepted for publication to Nature Communications:

Dai Yang, K.*, Belyaeva, A.*, Venkatachalapathy, S., Damodaran, K., Radhakr-

ishnan, A., Katcoff, A., Shivashankar, G. V., & Uhler, C. (2020). Multi-Domain

Translation between Single-Cell Imaging and Sequencing Data using Autoencoders.
* These authors contributed equally. My contributions were to implement the

models, design and perform model and data analysis, and write the manuscript.

3.1 Summary

The development of single-cell methods for capturing different data modalities includ-

ing imaging and sequencing have revolutionized our ability to identify heterogeneous

cell states. Different data modalities provide different perspectives on a population

of cells, and their integration is critical for studying cellular heterogeneity and its

function. While various methods have been proposed to integrate different sequenc-

ing data modalities, coupling imaging and sequencing has been an open challenge.

We here present an approach for integrating vastly different modalities by learning

61



a probabilistic coupling between the different data modalities using autoencoders to

map to a shared latent space. We validate this approach by integrating single-cell

RNA-seq and chromatin images to identify distinct subpopulations of human naive

CD4+ T-cells that are poised for activation. Collectively, our approach provides a

framework to integrate and translate between data modalities that cannot yet be

measured within the same cell for diverse applications in biomedical discovery.

3.2 Introduction

Recent evidence has highlighted the importance of the 3D organization of the genome

to regulate cell-type specific gene expression programs (Uhler and Shivashankar,

2017b; Zheng and Xie, 2019). High-throughput and high-content single-cell tech-

nologies have provided important insights into genome architecture (using imaging

and chromosome capture methods) (Finn et al., 2019; Stevens et al., 2017; Ramani

et al., 2017) as well as detailed genome-wide epigenetic profiles and expression maps

(using various sequencing methods) (Klein et al., 2015; Macosko et al., 2015; Buen-

rostro et al., 2015). However, obtaining high-throughput paired measurements of

these different data modalities within single cells is still a major challenge requiring

significant breakthroughs in single-cell technologies.

Different data modalities provide different perspectives on a population of cells

and their integration is critical for studying cellular heterogeneity and its function

(Fig. 3-1a). Current computational methods allow the integration of datasets of the

same modality (Butler et al., 2018; Haghverdi et al., 2018; Trong et al., 2020) or of

different modalities with the same data structure such as various sequencing mea-

surements (Stuart et al., 2019; Lopez et al., 2019; Stanley et al., 2020; Liu et al.). We

here present a computational framework based on autoencoders for integrating and

translating between different data modalities with very distinct structures. Several

works have proposed using autoencoders for domain adaptation (in particular batch

correction) in the context of biological data (Lopez et al., 2018; Amodio et al., 2019).

Different from these works, our method uses autoencoders to integrate and translate
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between different data modalities that may have very different representations. A

separate line of work has proposed using neural networks to directly translate be-

tween pairwise modalities in an unsupervised manner (Amodio and Krishnaswamy,

2019; Zhu et al., 2017) or with side information (Liu et al., 2020; Amodio and Kr-

ishnaswamy, 2018). These methods tend to focus on modalities with similar rep-

resentations (e.g., image-to-image-translation) and directly translate between pairs

of modalities without learning a common latent representation of the data. In con-

trast, our work maps each data distribution to a common latent distribution using

an autoencoder. This not only enables data integration and translation between ar-

bitrary modalities in a globally consistent manner, but, importantly, it also enables

performing downstream analysis such as clustering across multiple modalities at once.

Other work has proposed coupled autoencoders to translate between paired biological

data (Gundersen et al., 2019), which differs from our method that does not require

paired data. Building on Makhzani et al., 2015, we align the latent space of an au-

toencoder using adversarial training and leverage this technique for data integration

and/or translation. In particular, our framework can be applied to integrate and

translate imaging and sequencing data, which cannot yet be obtained experimentally

in the same cell, thereby providing a methodology for hypothesis generation to predict

the genome-wide expression profile of a particular cell given its chromatin organiza-

tion and vice-versa. Such a methodology is valuable to understand how features in

one dataset translate to features in the other.

3.3 Results

Cross-modal autoencoders: Multi-domain data integration and

translation using autoencoders

To integrate and translate between data modalities with very distinct structures, we

propose a new strategy of mapping each dataset to a shared latent representation of

the cells (Fig. 3-1a-b). This mapping is achieved using autoencoders (Baldi, 2012;
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LeCun et al., 2015; Ngiam et al., 2011), neural networks consisting of an encoder

(mapping to the latent space) and a decoder (mapping back to the original space),

whose architectures can be customized to the specific data modality (Fig. 3-1b-c).

Combining the encoder and decoder modules of different autoencoders enables trans-

lating between different data modalities at the single-cell level (Fig. 3-1d). To enforce

proper alignment of the embeddings obtained by the different autoencoders, we em-

ploy a discriminative objective function to ensure that the data distributions from the

different modalities are matched in the latent space. When prior knowledge is avail-

able, an additional term in the objective function can be used that encourages the

alignment between specific markers or the anchoring of certain cells. In the following,

we formally introduce our framework.

We formalize the multi-modal data integration problem within a probabilistic

framework. Each modality or dataset presents a different view of the same underlying

population of cells. Formally, we consider cells from each modality 1 ≤ 𝑖 ≤ 𝐾 as

samples of a random vector 𝑋𝑖 that are generated independently based on a common

latent random vector 𝑍:

𝑋𝑖 = 𝑓𝑖(𝑍,𝑁𝑖), ∀𝑖 = 1, . . . , 𝐾, (3.1)

where 𝑓𝑖 are deterministic functions, 𝑍 has distribution 𝑃𝑍 , and 𝑁𝑖 are noise variables.

The domain of 𝑍, here denoted by 𝒵, represents some underlying latent representation

space of cell state, and each function 𝑓𝑖 represents a map from cell state to data

modality 𝑖. For simplicity of notation, we assume for the remainder of this section

that each 𝑋𝑖 is 1-dimensional and obtained via a deterministic function of 𝑍, so that

the noise variables 𝑁𝑖 can be ignored. This model implies the following factorization

of the joint distribution 𝑃X (with density 𝑝X) of the data over all modalities:

𝑝X(x) =

∫︁

𝒵
Π𝐾

𝑖=1 𝑝𝑋𝑖|𝑍(𝑥𝑖|𝑧)𝑝𝑍(𝑧)𝑑𝑧, (3.2)

where 𝑝𝑍 is the probability density of 𝑍, and 𝑝𝑋𝑖|𝑍 is the conditional distribution

of 𝑋𝑖 given 𝑍 that reflects the generative process. Multi-modal data integration
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Figure 3-1: Schematic of multimodal data integration and translation strategy using
our cross-modal autoencoder model. (a) Each modality or dataset (represented by
different colors) presents a different view of the same underlying population of cells
of interest. (b) Our computational strategy to integrate multiple modalities involves
embedding each dataset into a shared space that represents the latent state of the
cells, such that the distributions of each dataset mapped into the latent space are
aligned. (c) The embedding of each dataset is performed using an autoencoder, a
neural network with separate encoder and decoder modules, whose architectures can
be customized to the specific data modality (autoencoders for each modality are
represented by different colors). (d) Combining the encoder and decoder modules of
different autoencoders enables translation between different data modalities at the
single-cell level.

65



can then be formalized as the problem of learning conditional distributions 𝑃𝑋𝑖|𝑍 as

well as the latent distribution 𝑃𝑍 based on samples from the marginal distributions

𝑃𝑋1 , 𝑃𝑋2 , . . . 𝑃𝑋𝐾
, which are given by the datasets. Note that the assumption that

each 𝑋𝑖 is obtained via a deterministic function of 𝑍 implies that the latent distri-

bution of each dataset is the same. However, by including the noise variables 𝑁𝑖 as

in Equation (3.2), our method extends to the case where only a subset of the latent

dimensions is shared between the different modalities and the remaining dimensions

are specific to each modality.

When the latent distribution 𝑃𝑍 is known, then learning the conditional distribu-

tions 𝑃𝑋𝑖|𝑍 given the marginals 𝑃𝑋1 , 𝑃𝑋2 , . . . , 𝑃𝑋𝐾
can be solved by learning multiple

autoencoders. Specifically, for each domain 1 ≤ 𝑖 ≤ 𝐾, we propose training a regu-

larized encoder-decoder pair (𝐸𝑖, 𝐷𝑖) to minimize the loss

E𝑥∼𝑃𝑋𝑖
[𝐿1(𝑥,𝐷𝑖(𝐸𝑖(𝑥))) + 𝜆𝐿2(𝐸𝑖#𝑃𝑋𝑖

|𝑃𝑍)] , (3.3)

where 𝜆 > 0 is a hyperparameter, 𝐿1 is the (Euclidean) distance metric, 𝐿2 represents

a divergence between probability distributions, and 𝐸𝑖#𝑃𝑋𝑖
is the distribution of 𝑋𝑖

after embedding to the latent space 𝒵. Translation from domain 𝑖 to 𝑗 is accomplished

by composing the encoder from the source domain with the decoder from the target

domain, i.e.,

𝑋𝑖→𝑗(𝑥𝑖) := 𝐷𝑗(𝐸𝑖(𝑥𝑖)). (3.4)

The autoencoders obtained by minimizing the loss in Equation (3.3) satisfy various

consistency properties; see (Yang and Uhler, 2019).

Since 𝑃𝑍 is not usually known in practice, it must also be estimated from the

data. This can be done using the following approaches: (i) learn 𝑃𝑍 by training a

regularized autoencoder on data from a single representative domain; or (ii) alter-

nate between training multiple autoencoders until they agree on an invariant latent

distribution. The first approach is typically more stable in practice, while the sec-

ond captures variability across multiple domains and is therefore more suitable for

integrating multiple datasets. Note that 𝑃𝑍 is by no means unique; there are multi-
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ple solutions that can result in the same observed data distributions in the different

domains.

To be concrete, an invariant latent distribution based on two domains 𝑖, 𝑗 ∈
{1, . . . , 𝐾} is learned as follows. Let 𝑃𝑍𝑖′

, 𝑖′ ∈ {𝑖, 𝑗} denote the empirical latent

distribution based on the encoded data from domain 𝑖′, i.e. 𝑃𝑍𝑖′
= 𝐸𝑖′#𝑃𝑋𝑖′

. Then

for domain 𝑖, we optimize the objective

min
𝐸𝑖,𝐷𝑖

E𝑥∼𝑃𝑋𝑖
𝐿1(𝑥,𝐷𝑖 ∘ 𝐸𝑖(𝑥)) + 𝜆𝐿2(𝐸𝑖#𝑃𝑋𝑖

|𝑃𝑍𝑗
), (3.5)

while for domain 𝑗, we optimize the objective

min
𝐸𝑗 ,𝐷𝑗

E𝑥∼𝑃𝑋𝑗
𝐿1(𝑥,𝐷𝑗 ∘ 𝐸𝑗(𝑥)) + 𝜆𝐿2(𝐸𝑗#𝑃𝑋𝑗

|𝑃𝑍𝑖
). (3.6)

In practice, we parameterize (𝐸𝑖, 𝐷𝑖) by neural networks and minimize the objective

function via stochastic gradient updates. In particular, 𝐿2 can be chosen to be the

discriminative loss,

𝐿2(𝑃 |𝑄) := max
𝑓

E𝑥∼𝑃 log 𝑓(𝑥) + E𝑥∼𝑄 log(1 − 𝑓(𝑥)), (3.7)

which is equivalent to the Jensen-Shannon divergence up to a constant factor. In

practice, the model architecture of each autoencoder is selected based on the in-

put data representation (e.g., fully-connected network for gene expression data and

convolutional network for images). The dimensionality of the latent distribution is

a hyperparameter that is tuned to ensure that the autoencoders are able to recon-

struct the respective data modalities well. For sequencing data, PCA can be used

to obtain an initial estimate of the intrinsic dimensionality of the data, which can

then be fine-tuned by analyzing the reconstruction loss of the model. For imaging

data the reconstruction quality can also be assessed qualitatively (see Supplementary

Fig. B-5) and a variational autoencoder with a small weight on the KL divergence

regularization term can be used to improve image generation quality.
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Incorporating prior knowledge

Prior knowledge is sometimes available to guide the integration of different data

modalities. For example, there may be knowledge of alignment of specific markers

or clusters, or knowledge of certain samples from different datasets corresponding to

the same cell, i.e., the same point in the latent space. In this case, training of the

autoencoders can be guided by additional loss functions that incorporate the prior

knowledge.

Discriminative loss to align shared markers/clusters among datasets : If there are

shared markers or clusters that are present in two datasets, they can be aligned by

replacing 𝐿2 above with the following discriminative loss that is conditioned on these

factors:

𝐿2(𝑃 |𝑄) := max
𝑓

E𝑥,𝑦∼𝑃 log 𝑓(𝑥, 𝑦) + E𝑥,𝑦∼𝑄 log(1 − 𝑓(𝑥, 𝑦)), (3.8)

where 𝑃 and 𝑄 are now joint distributions over the data and the markers and/or

clusters. This approach is valid for both discrete and continuous values of the clus-

ter/marker 𝑦. For example, in (Yang and Uhler, 2019), this approach was used to

align a continuous differentiation marker between RNA-seq and ChIP-seq data. Al-

ternatively, if the markers or clusters can take 𝑚 discrete values (i.e., 1, . . . ,𝑚), then

we can add a simple classifier model 𝑝𝜃(𝑌 |𝑍) with parameters 𝜃 and minimize the

loss
∑︁

modality 𝑖

E𝑥,𝑦∼𝑃𝑖

𝑚∑︁

𝑗=1

1(𝑦 = 𝑗) 𝑝𝜃(𝑌 = 𝑗|𝑍 = 𝐸𝑖(𝑥)) (3.9)

with respect to 𝜃 and the parameters of the encoders 𝐸𝑖; here 𝑃𝑖 is the distribution of

the 𝑖th data modality. This loss function encourages data points with the same class

label irrespective of the data modality to be clustered together in the latent space.

Anchor loss to match paired samples : If (𝑥1, 𝑥
′
1), (𝑥2, 𝑥

′
2), . . . , (𝑥𝑚, 𝑥

′
𝑚) are corre-

sponding points from two datasets that are embedded by encoders 𝐸 and 𝐸 ′, we can

add the following anchor loss,

𝑚∑︁

𝑖=1

||𝐸(𝑥𝑖) − 𝐸 ′(𝑥′𝑖)|| (3.10)
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to minimize their distance in the latent embedding space.

Model validation on paired single-cell RNA-seq and ATAC-seq

data

Recent technological advances have made it possible to obtain paired single-cell RNA-

seq and ATAC-seq data. Such paired data was collected from human lung adenocar-

cinoma–derived A549 cells treated with dexamethasone (DEX) for 0, 1, or 3 hours

in (Cao et al., 2018). While our autoencoder framework is designed to integrate vastly

different data structures, in the following we show that our framework is competi-

tive with previous methods for the simpler problem of integrating different modalities

with similar data structures. For details on the implementation see Methods, Supple-

mentary Table B.1 and Supplementary Table B.2. Since the RNA-seq and ATAC-seq

data was collected in the same cell, we could evaluate the accuracy of our method

in matching samples from RNA-seq to ATAC-seq (and vice-versa). We evaluated

the accuracy of the matching by the following two measures: (a) the fraction of cells

whose cluster assignment (0, 1, or 3 hours treatment with DEX) is predicted correctly

based on the latent space embedding, and (b) 𝑘-nearest neighbors accuracy, i.e., the

proportion of cells whose true match is within the 𝑘 closest samples in the latent

space (in ℓ1-distance).

In Fig. 3-2, we compare our cross-modal autoencoder model to methods that

align modalities in the latent space, namely deep canonical correlation analysis

(DCCA) (Andrew et al., 2013), which determines a nonlinear transformation of the

two datasets to maximize the correlation of the resulting representations, as well

as to Seurat, a prominent method for biological data intergration of similar modali-

ties (Butler et al., 2018; Stuart et al., 2019). In addition, we compare our cross-modal

autoencoder model to two additional methods that do not rely on the latent space for

alignment of modalities, namely CycleGAN (Zhu et al., 2017) and MAGAN (Amodio

and Krishnaswamy, 2018). Similar to the CycleGAN, our cross-modal autoencoder

does not require paired samples, which is advantageous for many modalities, where
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the process of data collection often results in destruction of the cell (e.g. RNA-seq)

and thus the same cell cannot be used in another assay measuring a different modality

(e.g. imaging). However, if additional information is available such as shared mark-

ers measured in all modalities and/or paired data, similar to the MAGAN approach,

this prior information can be incorporated through addition of new terms in the loss

function (see incorporating prior knowledge section). In terms of comparisons in

the latent space, our autoencoder framework outperforms Seurat and is competitive

with DCCA for integrating single-cell RNA-seq and single-cell ATAC-seq data both

in terms of fraction of cells assigned to the correct cluster (Fig. 3-2a) as well as 𝑘-

nearest neighbor accuracy (Fig. 3-2b). While paired data was only used to evaluate

the accuracy in Fig. 3-2a-b, Fig. 3-2c-e explore the setting in which paired data on a

fraction of samples is used for training. Although paired data is not necessary for our

method, such prior knowledge can be incorporated using the anchor loss described

above, which ensures that paired samples are close in the latent space. Fig. 3-2c-d

show that our autoencoder model outperforms DCCA, CycleGAN and MAGAN when

trained on varying amounts of paired data. In fact, as shown in Fig. 3-2e, our au-

toencoder model trained with just 25% of the paired samples has similar performance

to DCCA trained on all (i.e. 100%) of the paired samples, thereby indicating that

our method is practical and competitive also in the setting where some paired data

is available.

Experimental validation on single-cell RNA-seq and chromatin

images of naive CD4+ T-cells

We applied our method to integrate single-cell RNA-seq data with chromatin images

in order to study the heterogeneity within naive T-cells. T-cell activation is a funda-

mental biological process and identifying naive T-cells poised for activation is critical

to understanding immune response (Smith-Garvin et al., 2009). Moreover, linking

genome organization with gene expression generates hypotheses that can be tested

experimentally to validate our methodology.
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a b c

ed

Figure 3-2: Performance of our multimodal data integration method (cross-modal
autoencoders), deep canonical correlation analysis (DCCA), Seurat, CycleGAN and
MAGAN on paired RNA-seq and ATAC-seq data. (a) Fraction of cells that were
assigned to the correct treatment time cluster based on their embedding in the
integrated latent space that was learned by fitting our cross-modal autoencoder
model, DCCA, or Seurat. (b) 𝑘-nearest neighbor accuracy for quantifying the qual-
ity of matching between local neighborhoods for our cross-modal autoencoder model,
DCCA, Seurat and CycleGAN trained with 0% supervision (no paired samples). (c)
Fraction of cells that were assigned to the correct treatment time cluster for our cross-
modal autoencoders and DCCA trained with varying amount of paired samples. (d)
𝑘-nearest neighbor accuracy for our cross-modal autoencoders, DCCA, MAGAN and
CycleGAN trained with 0, 5, 50 and 100% of the paired samples. (e) 𝑘-nearest neigh-
bor accuracy for our cross-modal autoencoder model trained with varying amount of
paired samples versus DCCA trained on all paired samples. In (a-c) colors denote
different domain translation methods and in (d-e) colors denote different levels of
supervision (paired samples). Additionally, different markers denote different domain
translation methods.
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Single-cell RNA-seq analysis of naive CD4+ T-cells revealed

two distinct subpopulations

We analyzed single-cell RNA-seq data of human peripheral blood mononuclear cells

(PBMCs) from (Zheng et al., 2017); for details on the analysis see Methods. We used

known markers to identify naive and activated (CD4+) T-cells (Fig. 3-3a, Supplemen-

tary Fig. B-1 and Supplementary Table B.3. An in-depth analysis of the naive T-cell

population revealed two distinct subpopulations (see Methods). The number of sub-

populations / clusters was obtained via two separate analyses, namely by maximizing

the silhouette coefficient (Supplementary Fig. B-2a) and by minimizing the Bayesian

information criterion (Supplementary Fig. B-2b). The co-association matrix shown

in Fig. 3-3b, which quantifies how often each pair of cells was clustered together for

different clustering methods, shows that the two clusters were highly robust to the

choice of clustering method. Differential gene expression and gene ontology (GO)

enrichment analysis indicated that one cluster corresponded to quiescent cells while

the other was poised for activation, with an expression profile more similar to that of

activated T-cells (Fig. 3-3c-d). Specifically, we observed that one of the two clusters

of naive CD4+ T-cells contained "immune response" and "cell activation" as one of

the top significant GO terms as well as a well-known activation marker IL32 as one

of the differentially expressed (DE) genes.

Analysis of single-cell chromatin images of naive CD4+ T-cells

revealed two distinct subpopulations

Given the link between expression and chromatin organization (Uhler and Shiv-

ashankar, 2017a), we hypothesised the presence of two subpopulations of naive T-cells

with distinct chromatin packing features. To test this, we carried out DAPI-stained

imaging experiments of naive CD4+ human T-cells and analyzed their chromatin or-

ganization (Methods, Fig. 3-3e, and Supplementary Fig. B-3). We extracted image

features by quantifying the chromatin density in concentric spheres with increasing

radii (Methods, Fig. 3-3f). Cluster analysis based on the extracted features revealed
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Figure 3-3: Analysis of single-cell RNA-seq data and single-cell chromatin images
of naive CD4+ T-cells reveals two distinct subpopulations respectively. (a) t-SNE
and PCA (inset) embeddings of single-cell RNA-seq data derived from (Zheng et al.,
2017). Cluster analysis reveals activated (red) population of T-cells and naive pop-
ulation of T-cells divided into two subpopulations (poised and quiescent, denoted in
green and blue, respectively). (b) Consensus clustering plot demonstrating the ro-
bustness of quiescent (blue) and poised (green) clusters of naive T-cells to various
clustering methods. Gene expression data was clustered using k-means, Gaussian
mixture models and spectral clustering based on a k-nearest neighbor graph with
𝑘 ∈ {10, 20, 50, 100} with 100 initializations for each method. (c) Differential gene
expression analysis between the blue and green subpopulations reveals two distinct
gene expression programs. The green subpopulation of naive T-cells is more similar
to the activated T-cells and hence poised for activation, while the blue subpopula-
tion shows an upregulation of ribosomal genes and has a relatively more quiescent
expression profile. (d) Gene ontology enrichment analysis of marker genes for qui-
escent and poised naive T-cell subpopulations supports two distinct gene expression
programs. (e) Examples of DAPI-stained nuclear images of naive CD4+ T-cells. (f)
Cluster analysis of the 3D nuclear images is performed by first quantifying the chro-
matin signal in concentric spheres with increasing radii, and then using hierarchical
clustering on these spatial chromatin features. The features were clustered using hier-
archical clustering with complete linkage based on the distance matrix obtained from
1-Spearman’s correlation. (g) Average chromatin signal , calculated using 𝑛 = 729
cells from two biologically independent replicates, (mean represented by the solid line
and standard deviation represented by shading) in concentric spheres with increasing
radii for central (green) and peripheral (blue) clusters. One cluster has higher con-
centration of chromatin in the central region of the nucleus (green), while the other
cluster has higher concentration of chromatin in the peripheral region of the nucleus
(blue).
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two distinct subpopulations of cells, with higher chromatin density in the central and

peripheral nuclear regions respectively (Fig. 3-3g, Supplementary Fig. B-4). These

observations are consistent with previous experiments in mouse naive T-cells that

also showed two subpopulations with distinct chromatin organization patterns, where

naive T-cells with more central heterochromatin were shown to be poised for activa-

tion (Gupta et al., 2012).

Autoencoder framework allows integrating and translating be-

tween single-cell expression and imaging data

Up to this point, we had observed two subpopulations of naive T-cells based on a

separate analysis of gene expression (from single-cell RNA-seq data) and chromatin

packing (from single-cell imaging data).

To link the identified subpopluations from the unpaired datasets, we used our

cross-modal autoencoder framework to integrate the single-cell RNA-seq data with

the chromatin images (Methods and Supplementary Table B.4), thereby enabling

translation between the two data modalities at the single-cell level (Fig. 3-4a and

Supplementary Fig. B-5). Visual inspection of the latent representations indicates

that the subpopulations from the two datasets are appropriately matched (Fig. 3-4b

and Supplementary Fig. B-7). To quantitatively assess whether our methodology

aligns imaging features and gene expression features in a consistent manner, we next

analyzed the latent embeddings as well as the results of translation between the two

datasets. Consistent with other methods used for data integration and translation in

the biological domain, where the goal is to provide a matching between samples in

the observed datasets (Stuart et al., 2019), our evaluation is based on the full dataset

used for training rather than a held-out evaluation set.
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Figure 3-4: Integration of single-cell RNA-seq data and single-cell nuclear images
of naive T-cells using our methodology allows translating between chromatin pack-
ing and gene expression profiles. (a) Illustration of data integration and translation:
(left) t-SNE plots of observed single-cell RNA-seq data (red) and single-cell RNA-
seq data translated from single-cell images (yellow); (middle) PCA visualization of
single-cell RNA-seq data (red) and single-cell imaging data (yellow) embedded in 128-
dimensional latent space; (right) examples of observed single-cell images (yellow) and
images translated from single-cell RNA-seq data (red). (b-e) Evidence that our data
integration methodology correctly aligns gene expression features and imaging fea-
tures. (b) Linear Discriminant Analysis (LDA) plots of single-cell RNA-seq (top) and
imaging (bottom) datasets embedded in the latent space. The clusters with more qui-
escent (blue) and poised (green) gene expression programs from the RNA-seq dataset
are aligned with the clusters with peripheral (blue) and central (green) chromatin pat-
terns from the imaging dataset. (c) (top) Receiver Operating Characteristic (ROC)
curve illustrating performance of a classifier trained to distinguish between peripheral
and central chromatin patterns in images when evaluated on images translated from
RNA-seq data. (bottom) ROC curve illustrating performance of a classifier trained to
distinguish between quiescent and poised gene expression programs when evaluated on
RNA-seq data translated from images. High performance of both classifiers indicates
that the alignment of the clusters in the latent space in (b) also holds in the origi-
nal gene expression and imaging spaces. The dotted line represents random guessing
based on evenly-distributed classes. (d) Differential gene expression analysis between
cells with central and peripheral chromatin pattern performed on the predicted gene
expression matrix translated from images using our methodology. The predicted fold-
change of gene expression based on images is strongly correlated with the observed
fold-change of gene expression between quiescent and poised naive T-cells from the
actual RNA-seq dataset. (e) Analysis of gene ontology (GO) enrichment terms of cells
with central and peripheral chromatin pattern based on the predicted gene expression
matrix translated from images using our methodology shows a high overlap between
predicted markers (orange) from the imaging dataset and actual markers (red) from
the RNA-seq dataset.

ROC analysis on translated datasets indicates that imaging and

gene expression features are consistently aligned

In order to assess whether translated image (or RNA-seq respectively) datasets are

still able to separate poised and quiescent subpopulations (or central and periph-

eral subpopulations respectively) and analyze if the clusters obtained separately from

gene expression and imaging datasets align with each other, we performed Receiver
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Operating Characteristic (ROC) analysis on the translated datasets. For RNA-seq,

we first trained a random forest classifier (using 100 trees in a forest with 2 as the

maximum depth of a tree) on the RNA-seq data with labels based on poised ver-

sus quiescent clustering of naive CD4+ T-cell gene expression data. This classifier

learned the genes that separate the two clusters. Next, we translated chromatin im-

ages into RNA-seq using our autoencoder method and assessed the performance of

the pre-trained classifier on its ability to separate central versus peripheral clusters

on images translated to RNA-seq (Fig. 3-4c, top). Similarly, to assess translation

of RNA-seq into images, we trained a classifier to separate central versus peripheral

chromatin patterns. Then, we translated RNA-seq data into images and evaluated

the performance of the pre-trained classifier in being able to separate poised versus

quiescent clusters (Fig. 3-4c, bottom). The area under the curve (AUC) was com-

puted for both of these tasks. The high AUCs demonstrate that classifiers trained to

distinguish between the subpopulations in the original datasets also performed well

when evaluated on the translated datasets.

Strong correlation of DE genes between original RNA-seq and

images translated to RNA-seq indicates consistent alignment

Imaging datasets can provide a rich quantification of cells, such as their chromatin

organization. Based on image analysis, subpopulations of cells with different charac-

teristics may be found (e.g., central versus peripheral chromatin organization), and it

is often of interest to study which genes might be markers of each subpopulation such

that these subpopulations can be separated for example using antibodies against the

marker genes. However, generally the full gene expression and imaging features cannot

be measured in the same cell. Our computational framework can translate chromatin

images into RNA-seq and calculate the predicted mean difference in expression be-

tween the subpopulations (e.g. for central versus peripheral chromatin organization).

As shown in Fig. 3-4d, the observed mean difference in expression is strongly corre-

lated with the predicted mean expression difference. In addition, we obtained a set of
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marker genes associated with central and peripheral chromatin organization by per-

forming two-sided Welch’s 𝑡-test on the generated RNA-seq data (considering marker

genes for each cluster to be the top 50 genes that had the highest mean difference in

expression for the two clusters as well as p-value < 0.05 after adjustment for multiple

hypothesis testing using the Benjamini–Hochberg procedure). Note the considerable

overlap between the true and predicted marker genes (Fig. 3-4e). We also performed

GO analysis on the marker genes for each cluster; we report the top 5 GO biological

process terms with lowest 𝑝-values (FDR adjusted 𝑝-value < 0.05). In summary, in

the gene expression matrix translated from the imaging dataset, we found that the

differential expression of genes was strongly correlated with the true observed dif-

ferential gene expression and that the predicted and observed marker genes showed

considerable overlap.

Experimental validation of matching via protein immunofluo-

rescence staining

Our model generates predictions of gene expression programs based on patterns of

chromatin density (Fig. 3-4e). To validate these results experimentally, we chose two

genes, CORO1A and RPL10A, which were predicted to be strongly upregulated in the

naive T-cell subpopulations with central and peripheral patterns of chromatin den-

sity respectively (Fig. 3-4d, Fig. 3-5a). We analyzed the immunofluorescence staining

data of these proteins obtained along with chromatin images (Fig. 3-5b). Consistent

with the model predictions, we found that CORO1A was upregulated in the cells with

central chromatin pattern, while RPL10A was upregulated in the images with periph-

eral chromatin pattern (Fig. 3-5c and Supplementary Methods and Supplementary

Fig. B-8). These results altogether demonstrate that our method properly aligns the

gene expression and image features that characterize two distinct subpopulations of

human naive T-cells, and suggests that peripheral and central enrichment of chro-

matin are associated with gene expression programs for more quiescent and poised

naive CD4+ T-cells respectively (Fig. 3-5d).
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Figure 3-5: Validation of our model alignment using single-cell immunofluorescence
experiments. (a) Histograms of predicted CORO1A/RPL10A gene expression ratio in
cells with central (green) and peripheral (blue) chromatin pattern based on the gene
expression matrix translated from the imaging dataset. Our model predicts the upreg-
ulation of CORO1A and RPL10A in the cells with central and peripheral chromatin
pattern respectively. (b) Examples of immunofluorescence staining data of CORO1A
and RPL10A proteins collected along with the chromatin images. (c) Histograms of
measured CORO1A/RPL10A protein ratio in cells with central (green) and periph-
eral (blue) chromatin pattern. Consistent with the model prediction, CORO1A and
RPL10A proteins are upregulated in the cells with central and peripheral chromatin
pattern respectively (𝑝-value < 2.2 × 10−16, two-sided Welch’s 𝑡-test). (d) Schematic
of the two naive T-cell subpopulations characterized by our multimodal analysis,
in which peripheral and central patterns of chromatin density are associated with
gene expression programs for quiescent (blue) and poised (green) naive CD4+ T-cells
respectively. The up and down arrows represent which genes are upregulated and
downregulated respectively as predicted by our model.
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3.4 Discussion

In summary, we presented a powerful approach to integrate and translate between

different data modalities of very different structures, namely single-cell chromatin im-

ages and RNA-seq. Using our cross-modal autoencoder methodology, we established

a quantitative link between chromatin organization and expression, jointly character-

izing a subpopulation of naive T-cells that is poised for activation using both data

modalities. Additionally, we validated our model’s predictions of gene expression

using protein fluorescence experiments.

While we used our method to align RNA-seq and imaging datasets, we have presented

a general framework that can be adapted to numerous other biological problems. As

indicated in Figure 3-1, our framework can be used to integrate datasets of different

modalities simply by incorporating autoencoder architectures tailored to those modal-

ities. For example, Hi-C data could be integrated using a graph neural network and

multi-channel cell images using a convolutional neural network with different input

channels. Also, while we focused on aligning datasets each containing two distinct

clusters, our method can be applied to datasets with other distributions as long as the

samples are taken from the same cell population. For example, in applications where

there are no clear clusters in the datasets, our method can be used to align continuous

markers between datasets by conditioning the adversarial loss on the values of the

continuous marker (Equation 3.8). In applications where there is some shared signal

between modalities as well as signal that is individual to each modality, our model

can be extended by introducing a subset of latent dimensions that is specific to each

modality. Empirically validating this aspect of our model is a potential direction for

future work. An important consideration, however, is that while our method can be

applied for data integration and cross-modal alignment in generic contexts, depend-

ing on the data distributions, there may be multiple alignments that satisfy the same

objective function. Additional constraints (in the form of prior knowledge) should

be added to these models where possible to enforce alignments that are biologically

accurate. Overall, we envision an iterative process of biological discovery where our
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predictive model is used for hypothesis generation (for example linking particular im-

age features to particular gene regulatory modules), the hypotheses are validated (or

disproved) experimentally, and the new experimental results now serve as additional

data (prior knowledge) for improving the alignment of the model. In summary, our

methodology can be applied generally to integrate single-cell datasets that cannot yet

be measured in the same cell by using a different autoencoder for each data modal-

ity, and as such has broad implications for the integration of spatial transcriptomics

(Ståhl et al., 2016), proteomics (Irish et al., 2006) and metabolomics (Zenobi, 2013)

datasets. In particular, our methodology can be applied to generate hypotheses and

predict the functional landscape of single cells in a tissue section where only limited

functional data is available by acquiring chromatin imaging data.

3.5 Future directions

We proposed a methodology that enables integration and translation between differ-

ent data modalities by learning a shared latent space. We explored the performance

of our method in two settings: for the integration of gene expression and DNA ac-

cessibility data as well as gene expression and imaging data. While our approach is

powerful, the task of integrating different modalities is very challenging and various

improvements in terms of accuracy should be explored. How challenging the task

is given the current data quality is highlighted by the observation that DCCA with

100% supervision (having fully paired data) achieves low accuracy. Application areas

such as natural language processing have seen great successes in accurate domain

translation. Quite surprisingly, for natural language processing, learning separate

embeddings for each data modality and aligning them post hoc using for example

Procrustes algorithm works quite well. For the biological applications mentioned in

this work where integration and translation between very different data modalities

is required, separate estimation of data embeddings is not likely to perform well.

Therefore, an important focus of future work are improvements on how to learn a

better shared latent space. Since the state of a cell is governed by the underlying
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regulatory mechanisms, one approach could be to learn a latent space that identifies

these underlying causal units. This is particularly important for imaging data, where

it is not immediately clear how information from the pixels can be summarized into

causal factors. Since common biological phenomena should be consistently observed

across different modalities, considering multiple data modalities will be critical for

the identification of such causal units. On the other hand, different data modalities

may not share exactly the same information. Therefore, it would also be of interest

to learn a latent space, where a subset of the latent dimensions are specific to each

modality. Related questions are the identification of the modality that contains the

most information about the biological phenomenon, learning features that are iden-

tifiable only in a certain modality and discovering which features are most different

across modalities.

In terms of biological questions, it would be interesting to apply our autoencoder

framework to novel datasets that are beginning to be collected at scale. For example,

recent technological advances in spatial transcriptomics allow simultaneous imaging

of cells and the collection of gene expression data on a few hundred to thousands of

genes. Our approach could be used to impute the expression profiles of the remaining

genes based on the cell images. Finally, exploring the integration of more than two

data modalities would also be an interesting avenue for future work.

3.6 Methods

Model validation on paired RNA-seq and ATAC-seq data

We obtained paired RNA-seq and ATAC-seq data collected in the same cell from (Cao

et al., 2018). Specifically, we used paired data collected from human lung ade-

nocarcinoma–derived A549 cells treated with dexamethasone (DEX) for 0, 1, or 3

hours. We downloaded the single-cell RNA-seq data from the GEO accession number

GSE117089, corresponding to (Cao et al., 2018). For the ATAC-seq data, instead of

using raw matrix of peaks by cells, we acquired a transcription factor (TF) motif by
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cells matrix from the authors, which was computed as described in (Cao et al., 2018)

by counting occurrences of each motif in all accessible sites for each cell, resulting in

815 TF motifs. For single-cell RNA-seq data we considered genes that were deter-

mined to be differentially expressed by (Cao et al., 2018), keeping genes with 𝑞-value

> 0.05. Both single-cell RNA-seq and ATAC-seq were log(𝑥 + 1) transformed and

normalized to zero mean and unit variance. The number of cells that were shared

between TFs × cells matrix from ATAC-seq and genes × cells matrix from RNA-seq

was 1874, therefore our model had to learn a latent embedding and translate between

data sets with different number of features, i.e. for single-cell RNA-seq a matrix of

2613 genes × 1874 cells and for single-cell ATAC-seq a matrix of 815 TFs × 1874

cells.

We trained our cross-modal autoencoder model to embed the single-cell RNA-seq and

ATAC-seq into the same latent space (dimensionality of 50), which allows mapping

and translation of samples from one space to the other. Our model’s architecture

consisted of fully connected layers with input, hidden layers and output sizes listed

in Supplementary Table B.1. In order to train the model we minimized the weighted

sum of losses listed in Supplementary Table B.2. The model was trained in Pytorch

with learning rate of 0.0001 and batch size of 32 for 4000 epochs using Adam with

𝛽1 = 0.5, 𝛽2 = 0.999 and weight decay of 0.0001.

Since the RNA-seq and ATAC-seq data was collected in the same cell, we could

evaluate the accuracy of our method in matching samples from RNA-seq to ATAC-

seq (and vice-versa). For evaluation, we created an 80-20 training-test split of the

paired data. To measure the accuracy of matching RNA-seq and ATAC-seq samples

in the latent space or in the original space for methods that do not rely on the latent

space, we used the following 𝑘-nearest neighbors accuracy, calculated on the test set:

k-NN(A,B) =

∑︀
𝑖 1(𝑏′𝑖 ∈ 𝑎𝑘𝑖 )

𝑛
, (3.11)

where 𝑛 is the length of the test set, 𝐴 and 𝐵 are sets of vectors, with 𝑏𝑖 as a vector

in 𝐵 and 𝑎𝑖 as its pair in A, and 𝑏′𝑖 and 𝑎′𝑖 are the encoded versions of 𝑏𝑖 and 𝑎𝑖 in
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the latent space. The set 𝑎𝑘𝑖 contains the 𝑘 nearest neighbors of 𝑎′𝑖 in 𝐴′, the set of

vectors in 𝐴 projected into the latent space. Since k-NN(A,B) does not necessarily

equal k-NN(B,A), we computed the average of these metrics. We used ℓ1 distance

for distance computations.

In order to quantify whether our model maps cells to the correct treatment time

cluster, we computed the fraction of cells in the test split that had the correct cluster

assignment. In order to assign cells to a cluster, we trained a simple logistic regression

classifier on the latent space using cells in the training split and their corresponding

treatment time labels. Subsequently, the trained classifier was used to predict treat-

ment time labels on the cells in the test set and the accuracy of the classifier was

quantified.

First, we compared our method against deep canonical correlation analysis (DCCA),

which uses paired samples between two domains to learn a shared embedding of the

two domains by maximizing the total correlation (Andrew et al., 2013). The model for

DCCA consisted of two neural networks, one for each domain. For ATAC-seq data,

the input to the model was a matrix with 815 features, followed by 815 hidden nodes

with sigmoid activation, and a final output layer of size 50. For RNA-seq data, the

input to the model was a matrix with 2613 features, followed by 2613 hidden nodes

with sigmoid activation, and a final output layer of size 50. Finally, as in (Andrew

et al., 2013), linear CCA was applied to the output layers of the two neural networks

corresponding to the two different domains. DCCA jointly learns the parameters for

both neural networks such that the correlation of the final output layer between the

domains is maximized. DCCA was trained using RMSProp with learning rate of 10−3,

batch size of 1024 for 100 epochs. Regularization parameter of 10−9 was applied to

the networks.

For both our cross-modal autoencoder method and DCCA, we explored the use of

samples whose pairing is known between the two domains (i.e., anchored cells in

both datasets), which is available in some applications. To make use of the pairing

information in our cross-modal autoencoder model, we included an additional term

in the loss function corresponding to the mean absolute error between the paired
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training points in the latent space. While our method based on autoencoders does

not require paired samples, DCCA does. In order to train DCCA with 0% paired

samples, we randomly generated paired samples using the treatment time labels of

the cells as follows. For each point with a particular treatment time label, we sampled

100 random points with the same label to use as its paired samples.

We additionally compared our method against a popular method for data integra-

tion, Seurat version 3.0 (Butler et al., 2018; Stuart et al., 2019). Briefly, this method

assumes that the features across different modalities are the same and learns a shared

embedding using CCA based on this assumption. In order to apply Seurat to this

particular dataset, we used the Seurat pipeline as follows: in order to obtain from

ATAC-seq data a matrix that has the same features as the gene expression matrix,

the ATAC-seq data was transformed into a gene activity matrix using the CreateGe-

neActivityMatrix function in Seurat 3.0. We normalized and scaled the data using

the NormalizeData and ScaleData functions in Seurat 3.0. Finally, a shared CCA

embedding was learned using the FindTransferAnchors functionality in Seurat 3.0.

Similar to our cross-modal autoencoder and DCCA, we used the inferred CCA em-

bedding to quantify the method’s performance. Note that Seurat was fit using both

training and test data, thereby giving Seurat an advantage over the other methods.

Finally, we compared our method against CycleGAN (Zhu et al., 2017), a prominent

deep learning method for domain translation, which ensures that source samples

are recovered back after mapping source samples to target domain and back to the

source domain. We used the code provided by the authors of CycleGAN at http:

//github.com/junyanz/pytorch-CycleGAN-and-pix2pix to translate ATAC-seq to

RNA-seq and RNA-seq to ATAC-seq. We modified the architecture of the generator

and discriminator networks to handle non-image data and match the architecture

of our cross-modal autoencoder. In particular, the generator for translating ATAC-

seq to RNA-seq consisted of a sequence of fully-connected layers with the following

sizes: 815, 815, 815, 100, 50, 100, 2613, 2613, 2613. Similarly, the generator for

translating RNA-seq to ATAC-seq consisted of a sequence of fully-connected layers

with the following sizes: 2613, 2613, 2613 815, 815, 815, 100, 50, 100, 815, 815, 815.
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The discriminator model for ATAC-seq data took as input 815 features, followed by

815 hidden nodes and then 100 hidden nodes with a final output layer of size 1. The

discriminator model for RNA-seq data took as input 2613 features, followed by 2613

hidden nodes and then 100 hidden nodes with a final output layer of size 1. All

models used leaky ReLU as activation. The CycleGAN was trained for 2000 epochs

with a learning rate of 0.0002 and batch size of 32. We evaluated the model only

in terms of the 𝑘-nearest neighbor accuracy since the fraction of cells in the correct

cluster was meant to evaluate the quality of the latent space. The 𝑘-nearest neighbor

accuracy of the CycleGAN was computed in the original instead of the latent space

since the model does not rely on the latent space for domain translation. Similarly, we

compared our method against MAGAN (Amodio and Krishnaswamy, 2018), which

has an additional correspondence loss term that ensures the measurements coming

from the same sample should be close to each other. We trained MAGAN by providing

5%, 50% and 100% of paired samples in the training data for the correspondence loss.

Gene expression data of naive CD4+ T-cells

We used gene expression data corresponding to human peripheral blood mononuclear

cells (PBMCs) collected in (Zheng et al., 2017); the filtered cell by gene matrix was

downloaded from https://support.10xgenomics.com/single-cell-gene-expre

ssion/datasets/2.1.0/pbmc8k. We analyzed the PBMC 8k data set since it had the

highest number of reads per cell. Since the data was already filtered, we only applied

minor additional filtering such as removing cells with high proportion of counts in

mitochondrial genes (≥ 10%), which reduced the number of cells from 8381 to 8371

cells. After cell filtering, we performed gene filtering by removing mitochondrial genes

and keeping genes which had at least 10 cells expressing the gene with a count > 1,

resulting in 7633 remaining genes.

After cell and gene filtering, we followed a standard analysis pipeline using Seurat

(version 2.3.0) (Butler et al., 2018; Stuart et al., 2019). We normalized the gene

expression measurements for each cell by the total expression for that cell and scaled

the result using the median total expression across cells. The scaled result was log(𝑥+
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1) transformed. We z-scored the data and applied PCA to obtain 30 components,

which were used for t-SNE and clustering analysis. The t-SNE embedding for all

cells, computed using default parameters, is shown in Supplementary Fig. B-1a. We

clustered the data using default clustering in Seurat (FindClusters function in Seurat

version 2.3.0) with resolution parameter of 0.4, which resulted in 13 clusters, shown

in Supplementary Fig. B-1a. Briefly, the clustering method in Seurat constructs a 𝑘-

nearest neighbor graph and adjusts the edge weights between cells based on Jaccard

similarity of their local neighborhoods. The resulting graph is clustered using the

Louvain algorithm to obtain cell clusters. In order to determine the identity of each

cluster we performed differential expression analysis using the default Wilcoxon rank

sum test in Seurat (FindAllMarkers function in Seurat version 2.3.0). We list the top

10 differentially expressed genes for each cluster in Supplementary Table B.3.

From the clustering analysis of all PBMCs and annotation using differentially ex-

pressed genes, we were able to determine that cluster 1 generally corresponds to

naive CD4+ T-cells (differential overexpression of CCR7, LEF1, TCF7), cluster 2 cor-

responds to cytotoxic T-cells (differential overexpression of GZMK, NKG7, CCL5),

cluster 3 corresponds to activated CD4+ T-cells (differential overexpression of IL7R,

IL32) and cluster 4 corresponds to naive CD8+ T-cells (differential overexpression

of CD8A, CD8B, LEF1, CCR7) (Willinger et al., 2006; Ding et al., 2019). Supple-

mentary Fig. B-1b provides a t-SNE plot of all PBMCs, colored by the expression of

known markers genes, further corroborating our cell type annotation.

Gene expression analysis of naive CD4+ T-cells

We aimed to explore potential heterogeneity in naive CD4+ T-cell gene expression in

relation to CD4+ T-cells that already underwent activation. We performed a feature

selection step, keeping genes which had average log-fold change of > 0.05 between

naive and activated CD4+ T-cells (and vice-versa), resulting in 1187 genes. Similar

to the analysis of PBMCs (see the previous section), we applied PCA for dimension-

ality reduction on the selected genes, keeping the top 30 components and clustered

the naive CD4+ T-cells using the default clustering method in Seurat version 2.3.0
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with resolution of 0.8 (Supplementary Fig. B-1c). Based on differential expression

analysis and t-SNE embedding, the smallest cluster (shown in grey in Supplementary

Fig. B-1c) was determined to belong to the CD8+ T-cell population since the top dif-

ferentially overexpressed genes for this small cluster were CD8A and CD8B. Therefore,

this small cluster was removed from the downstream gene expression analysis of the

naive CD4+ T-cells. In order to characterize the remaining two subpopulations, we

performed differential expression analysis on the two subpopulations of naive CD4+

T-cells using Wilcoxon rank sum test. We defined marker genes as all genes with

Bonferroni-corrected 𝑝-value of < 0.05. Fig. 3-3c, shows the resulting heatmap for

the genes that are markers between poised and quiescent subpopulations of naive T-

cells and are also part of the 1187 genes that have an average log-fold change of > 0.05

between naive and activated CD4+ T-cells (and vice-versa). Gene ontology analysis

was performed on these marker genes overexpressed in each cluster (average log-fold

change > 0) using g:Profiler (Reimand et al., 2007, 2016), keeping the top 5 gene

ontology biological process terms with lowest 𝑝-values (Fig. 3-3d). All reported 𝑝-

values (after adjusting for multiple hypothesis testing using the Benjamini–Hochberg

procedure) were ≤ 0.05.

Since the identification of the two subpopulations of naive T-cells is an important

step in our analysis, we thoroughly evaluated its robustness with respect to number

of clusters and clustering methods. We re-clustered the data corresponding to naive

CD4+ T-cells using Seurat version 2.3.0 with different resolution parameters, i.e.

0.9, 1.1 and 1.15 to obtain 3, 4 and 5 clusters respectively. We computed the silhouette

coefficient for each clustering, observing that the number of clusters corresponding

to 2 gave the highest score (Supplementary Fig. B-2a). This suggests that using 2

clusters is optimal. We also fit a Gaussian mixture model to the data and computed

the Bayesian information criterion (BIC) for a model with 1, 2, 3, 4 and 5 mixture

components (across 100 randomly initialized trials). Also with this method the model

with 2 components resulted in the lowest mean BIC, suggesting again that 2 clusters is

optimal for this data (Supplementary Fig. B-2b). To test the robustness with respect

to different clustering methodologies, we also used k-means, Gaussian mixture models
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and spectral clustering based on a 𝑘-nearest neighbor graph with 𝑘 ∈ {10, 20, 50, 100}
to cluster the data. We performed 100 different initializations for each method and

computed the co-association matrix, which quantifies how often each pair of cells

was clustered together; the result is shown in Fig. 3-3b. We observe that the chosen

clustering given by Seurat is in strong agreement with the other methods and that

the clusters are highly robust to the choice of clustering method.

Autoencoder training for integration and translation between

single-cell RNA-seq data and single-cell chromatin images

Images were normalized to range between [0, 1] and RNA-seq matrix was log(𝑥 + 1)

normalized. Since the imaging dataset is more difficult to reconstruct in comparison

to the RNA-seq dataset, we first pretrained the image autoencoder to reconstruct

single-cell chromatin images for 850 epochs using the reconstruction loss and the dis-

criminative loss in Equation [3.9]. Subsequently, we trained the full model consisting

of the pretrained image autoencoder, the RNA-seq autoencoder, and latent space

discriminator using reconstruction loss and discriminative loss with hyperparameters

𝜆1 = 0.1, 𝜆2 = 1. The architectures of all networks are shown in Supplementary Table

B.4. Models were trained with the Adam optimizer with a learning rate of 1e-3. In

Supplementary Fig. B-9 and B-10, we show that our findings are robust to the choice

of architecture (fully-connected versus convolutional layers, number of layers, as well

as latent space dimension).

Cell culture and immunostaning

CD4+/CD45RA+ naive helper T-cells from human peripheral blood were purchased

from AllCells. These cells were revived and cultured in media (RPMI-1640 + 10%

FBS + 1% pen-strep) as per the manufacturer’s instructions. The cells for the exper-

iments were used within two days upon revival.

Cells in media were allowed to adhere to Poly-lysine coated slides for 30 minutes. Cells

were then fixed with 4% Paraformaldehyde (Sigma) for 30 minutes and washed with
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PBS three times, which also removed unattached cells. Permeabilization was done

with 0.5% Triton X-100 (Sigma) for 10 minutes followed by PBS washes. Blocking

was done with 5% BSA in PBS for 30 minutes and incubated with primary and

secondary antibodies as per the dilution and incubation time recommended by the

manufacturer. The primary antibodies used in this study are anti-RPL10A antibody

(Abcam, ab174318, dilution 1/200) and Anti-Coronin 1a/TACO antibody (Abcam

ab14787, dilution 1/150). Cells were washed with PBS (+0.1% Tween) three times

after primary and secondary antibody incubation. During the final step, excess liquid

was removed by slanting the slides. ProLong R○ Gold Antifade Mountant with DAPI

(ThermoFischer Scientific) was added to these slides and allowed to cure for 24 hours.

Coverslips were then sealed and imaged using a confocal microscope.

Confocal microscopy and image analysis

1024 × 1024 and 12-bit multi-channel images were obtained using a Nikon A1R

confocal microscope. Z-stack images were captured using a 100× objective with a

pixel size of 0.1 𝜇m and 0.5 𝜇m depth. Images were processed and further analyzed

using custom programs in Fiji and R (see below in code availability).

The nuclear boundaries were segmented in 3D using the DAPI channels to identify

individual nuclei. These nuclei were eroded by 0.5 microns in 𝑥, 𝑦, and 𝑧 iteratively

until the volume of the eroded nucleus was less than 10 cubic microns. Then the

mean intensity of each 3D ring (width 0.5 microns) in the nucleus was computed for

all cells. The intensity fraction was calculated by normalizing the mean ring intensity

for each nucleus (maximum= 1). Linear interpolation was then used to compute

the intensity fraction of rings that occupy 0-10% to 90-100% volume fraction of the

nucleus. The heatmaps were visualized using functions from gplots, RColorBrewer

and dendextend.

In order to calculate the cellular levels of proteins, the 3D nuclear object was dilated

by 2 microns in 𝑥, 𝑦 and 𝑧. This was efficient as the cells were all spherically shaped

with high karyoplasmic index. The total intensity in the 3D cellular object was

computed for each protein channel and their ratio was obtained for each cell.
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Data availability

The data for model validation on paired single-cell RNA-seq and ATAC-seq is publicly

available and was obtained from GSE117089 (Cao et al., 2018). The RNA-seq data for

integration of RNA-seq and chromatin images is publicly available and was obtained

from https://support.10xgenomics.com/single-cell-gene-expression/da

tasets/2.1.0/pbmc8k. The chromatin images are available at Zenodo from DOI:

10.5281/zenodo.4265737.

Code availability

The code for model training is available at (Yang et al., 2020a): https://github.c

om/uhlerlab/cross-modal-autoencoders. Code containing the image processing

scripts for the analysis of the primary images is available at (Yang et al., 2020b):

http://github.com/SaradhaVenkatachalapathy/Radial_chromatin_packing

_immune_cells. Data analysis was performed using standard libraries and software

such as scikit-learn, scipy, numpy, seaborn and R.
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Chapter 4

Identifying 3D Genome Organization

in Diploid Organisms via Euclidean

Distance Geometry

Parts of this chapter are under review.

Belyaeva, A., Kubjas, K., Sun, L., & Uhler, C. (2020). Identifying 3D Genome

Organization in Diploid Organisms via Euclidean Distance Geometry.

My contributions were to implement the methods, design and perform method and

data analysis, and write the manuscript. I include theoretical results and some of the

proofs in the main text and the remaining proofs in Appendix C for completeness.

4.1 Summary

The spatial organization of the DNA in the cell nucleus plays an important role for

gene regulation, DNA replication, and genomic integrity. Through the development

of chromosome conformation capture experiments (such as 3C, 4C, Hi-C) it is now

possible to obtain the contact frequencies of the DNA at the whole-genome level. We

study the problem of reconstructing the 3D organization of the genome from such

whole-genome contact frequencies. A standard approach is to transform the contact

frequencies into noisy distance measurements and then apply semidefinite program-
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ming (SDP) formulations to obtain the 3D configuration. However, neglected in such

reconstructions is the fact that most eukaryotes including humans are diploid and

therefore contain two copies of each genomic locus. We prove that the 3D organiza-

tion of the DNA is not identifiable from distance measurements derived from contact

frequencies in diploid organisms. In fact, there are infinitely many solutions even in

the noise-free setting. We then discuss various additional biologically relevant and

experimentally measurable constraints (including distances between neighboring ge-

nomic loci and higher-order interactions), and we prove identifiability under these

conditions. Furthermore, we provide SDP formulations for computing the 3D embed-

ding of the DNA with these additional constraints and show that we can recover the

true 3D embedding with high accuracy from both noiseless and noisy measurements.

Finally, we apply our algorithm to real pairwise and higher-order contact frequency

data and show that we can recover known genome organization patterns.

4.2 Introduction

It is now well established that the spatial organization of the genome in the cell nu-

cleus plays an important role for cellular processes including gene regulation, DNA

replication, and the maintenance of genomic integrity (Dekker, 2008; Uhler and Shiv-

ashankar, 2017a,b). Notably, a recent study (Wang et al., 2018a) showed a causal

link between three-dimensional (3D) genome organization and gene regulation, where

gene repositioning was induced and subsequent changes in gene expression were ob-

served. This motivates the development of methods to reconstruct the 3D structure

of the genome to study its functions.

The genetic information in cells is contained in the DNA, which is organized into

chromosomes and packed into the cell nucleus. Chromosome confirmation capture

techniques (such as 3C, 4C, Hi-C, Capture-C) have enabled the interrogation of the

contact frequencies between pairs of genomic loci at the whole-genome scale (Dekker

et al., 2002; Simonis et al., 2006; Lieberman-Aiden et al., 2009; Hughes et al.,

2014). In Hi-C, for example, interacting chromosome regions are crosslinked (i.e.,
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frozen), the DNA is then fragmented, the crosslinked fragments are ligated, and

paired-end sequencing is applied to the ligation products and mapped to a reference

genome (Lieberman-Aiden et al., 2009). By binning the genome and ascribing each

read pair into the corresponding bin, one obtains a contact frequency matrix between

genomic loci that is commonly of the size 106 × 106.

Different computational approaches for reconstructing the 3D genome organization

from contact frequency data have been considered. Distance-based approaches con-

vert contact frequencies 𝑓𝑖𝑗 into spatial distances 𝑑𝑖𝑗 and find a Euclidean embedding

of the points in 3D (Duan et al., 2010; Zhang et al., 2013; Lesne et al., 2014; Rieber

and Mahony, 2017). Ensemble methods such as MCMC5C and BACH (Rousseau

et al., 2011; Hu et al., 2013) learn a set of possible 3D structures by defining a prob-

abilistic model for contact frequencies and generating an ensemble of structures via

MCMC sampling. Other ensemble methods include molecular dynamics simulations

that model DNA as a polymer and output an ensemble of 3D structures (Lieberman-

Aiden et al., 2009; Mirny, 2011; Di Pierro et al., 2016; Qi and Zhang, 2019). Finally,

statistical methods directly model contact counts instead of distances, using for exam-

ple the Poisson distribution (Varoquaux et al., 2014), and maximize the log-likelihood

of the data to infer the 3D genome organization.

Almost all existing methods make the simplifying assumption that the genome is hap-

loid, when in fact most organisms of interest including humans are diploid, i.e. there

are two copies of each chromosome known as homologous chromosomes. For example,

human cells contain two copies of 23 chromosomes each. The challenge is that the

contact frequency data from chromosome conformation capture experiments is gener-

ally unphased, meaning that the copies of each chromosome cannot be distinguished.

As a result, if the DNA is modeled as a string of beads containing two copies of each

bead 𝑖 for 1 ≤ 𝑖 ≤ 𝑛 (Figure 4-1), then the measured contact frequencies result in an

𝑛×𝑛 matrix, from which we would like to infer the 3D embedding of 2𝑛 points. This

problem cannot be solved by classical methods for 3D genome reconstruction such

as those mentioned above. With significant experimental efforts, phased data can be

obtained (1000 Genomes Project Consortium et al., 2012, 2015) and used in order to
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reconstruct the 3D genome organization (Cauer et al., 2019). However, such data is

rare and costly.

In this study, we provide a computational method for inferring the 3D diploid orga-

nization of the genome without relying on phased data. In particular, we consider

a distance-based approach and use Euclidean distance geometry to obtain the 3D

diploid structure of the genome. The precise mathematical problem considered in

this study is as follows and illustrated in Figure 4-1. DNA is modeled as a string of

beads, that contains two copies of each bead 1 ≤ 𝑖 ≤ 𝑛. We would like to infer the lo-

cation of the two copies of each bead, which we denote by 𝑥𝑖 ∈ R3 and 𝑦𝑖 ∈ R3. Since

for unphased data, the two copies of each bead cannot be distinguished, the prob-

lem is to identify the 3D configuration (2𝑛 × 3 matrix), i.e. 𝑥1, . . . 𝑥𝑛, 𝑦1, . . . 𝑦𝑛 ∈ R3

(up to translation and rotation), from the composite distance measurements 𝐷𝑖𝑗,

1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛 (𝑛 × 𝑛 matrix), corresponding to the sum of the distances between

either copy of bead 𝑖 and 𝑗, i.e.,

𝐷𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2.

In the haploid or phased setting, this problem boils down to the standard Euclidean

distance geometry problem. This problem has a long history: in the classical setting

with no missing values, this problem can be solved via the classical multidimensional

scaling (cMDS) algorithm that is based on spectral decomposition followed by dimen-

sionality reduction; see (Cox and Cox, 2000) for an overview. Other approaches for

the Euclidean embedding and completion problems, including in the presence of miss-

ing values, are non-convex formulations (Fang and O’Leary, 2012; Mishra et al., 2011)

as well as semidefinite relaxations (Alfakih et al., 1999; Fazel et al., 2003; Cayton and

Dasgupta; Lu et al., 2005; Weinberger et al., 2007; Zhang et al., 2016).

A naive approach in the unphased diploid setting is to assume that the four dis-

tances that make up our measured composite distance 𝐷𝑖𝑗 are equal and solve the

corresponding Euclidean embedding problem. However, it is evident from single-cell

imaging studies that the four distances in 𝐷𝑖𝑗 can be wildly different (Bolzer et al.,
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Figure 4-1: Schematic of the diploid genome. Nucleus with green, blue and red
curves depicting three homologous pairs of chromosomes. In the unphased setting, the
measured distance between loci 𝑖 and 𝑗 corresponds to the sum of the four distances
(denoted in purple) between two pairs of homologous loci 𝑥𝑖, 𝑦𝑖 and 𝑥𝑗, 𝑦𝑗.

2005; Nir et al., 2018). Hence this approach cannot provide realistic embeddings.

While, a simple dimension argument (6𝑛 variables versus
(︀
𝑛
2

)︀
constraints) suggests

that the 3D genome configuration could be uniquely identifiable, one of the main

results of our study is that the 3D diploid genome configuration is not identifiable

from unphased data. In fact, we show that there are infinitely many configurations

that satisfy the constraints imposed by 𝐷𝑖𝑗, even in the noiseless setting (Section 4.3,

Theorem 4.3.1).

We therefore consider additional biologically relevant and experimentally measur-

able constraints and study identifiability of the 3D diploid structure under these

constraints. First, we take into account distances between neighboring beads,

i.e. ‖𝑥𝑖 − 𝑥𝑖+1‖2 and ‖𝑦𝑖 − 𝑦𝑖+1‖2 on each chromosome. While we show that this

yields unique identifiability for configurations in 2D, there are still infinitely many

configurations in 3D, which is of primary interest for genome modeling (Section 4.4,

Propositions 4.4.1, 4.4.2). To obtain identifiability, we consider adding constraints

based on contact frequencies between three or more loci simultaneously. The mea-

surement of such higher-order contact frequencies has recently been enabled by exper-

imental assays such as SPRITE (Quinodoz et al., 2018), C-walks (Olivares-Chauvet

et al., 2016) and GAM (Beagrie et al., 2017). We prove that this information can

be used to uniquely identify the 3D genome organization from unphased data in the

noiseless setting (Section 4.5, Theorem 4.5.1).
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Finally, we provide an SDP formulation for obtaining the 3D diploid configuration

from noisy measurements (Section 4.6) and show based on simulated data that our

algorithm has good performance and that it is able to recover known genome orga-

nization patterns when applied to real contact frequency data collected from human

lymphoblastoid cells (Section 4.7).

4.3 Unidentifiability from pairwise distance con-

straints

We denote the true but unknown coordinates of the homologous loci by 𝑥*𝑖 and 𝑦*𝑖 and

the corresponding noiseless distances by 𝐷*
𝑖𝑗 while the symbols 𝑥𝑖 and 𝑦𝑖 denote the

variables that we want to solve for. From a biological perspective the relevant setting

is when 𝑥𝑖, 𝑦𝑖 ∈ R3. However, many of our results hold more generally and we will state

these in R𝑑. The main result of this section is Theorem 4.3.1, which characterizes

the set of solutions given by the constraints 𝐷*
𝑖𝑗. In particular, it establishes non-

identifiability of the 3D genome structure from pairwise distance measurements in

unphased data.

Theorem 4.3.1. The set of points (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) ∈ (R𝑑)2𝑛 satisfying

𝐷*
𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2 for all 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛 (4.1)

is equal (up to translations and rotations in R𝑑 and permutations of 𝑥𝑖 and 𝑦𝑖) to the

set of points satisfying

𝑥𝑖 + 𝑦𝑖 = 𝑥*𝑖 + 𝑦*𝑖 and ‖𝑥𝑖‖2 + ‖𝑦𝑖‖2 = ‖𝑥*𝑖 ‖2 + ‖𝑦*𝑖 ‖2 for all 1 ≤ 𝑖 ≤ 𝑛. (4.2)

As a consequence, the measurements 𝐷*
𝑖𝑗 identify the location of each pair of homol-

ogous loci (𝑥𝑖, 𝑦𝑖) up to a sphere with center (𝑥*𝑖 + 𝑦*𝑖 )/2 and radius ‖𝑥*𝑖 − 𝑦*𝑖 ‖/2.

Namely, the points 𝑥𝑖, 𝑦𝑖 lie opposite to each other anywhere on this sphere. Unless

𝑥*𝑖 = 𝑦*𝑖 for all 𝑖, i.e., all spheres have radius 0, this set is infinite in dimensions 𝑑 > 1
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and hence the configuration is unidentifiable.

In the remainder of this section, we will prove Theorem 4.3.1. The two inclusions in

Theorem 4.3.1 are proven in Lemmas 4.3.2 and 4.3.4. In Lemma 4.3.3 it is shown

that the distance ‖𝑥𝑖 − 𝑦𝑖‖ within each homologous pair is fixed given the pairwise

distances 𝐷*
𝑖𝑗. This result is used to prove Lemma 4.3.4.

Lemma 4.3.2. Let (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) ∈ (R𝑑)2𝑛 satisfy

𝑥𝑖 + 𝑦𝑖 = 𝑥*𝑖 + 𝑦*𝑖 and ‖𝑥𝑖‖2 + ‖𝑦𝑖‖2 = ‖𝑥*𝑖 ‖2 + ‖𝑦*𝑖 ‖2 for all 1 ≤ 𝑖 ≤ 𝑛. (4.3)

Then

‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2 = 𝐷*
𝑖𝑗 for all 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛.

Proof. Observe that for each pair 𝑥𝑖, 𝑦𝑖 satisfying the equations (4.3), it holds that

𝐷*
𝑖𝑗 = 2 · (‖𝑥*𝑖 ‖2 + ‖𝑦*𝑖 ‖2) + 2 · (‖𝑥*𝑗‖2 + ‖𝑦*𝑗‖2) − 2(𝑥*𝑖 + 𝑦*𝑖 ) · (𝑥*𝑗 + 𝑦*𝑗 )

= 2 · (‖𝑥𝑖‖2 + ‖𝑦𝑖‖2) + 2 · (‖𝑥𝑗‖2 + ‖𝑦𝑗‖2) − 2(𝑥𝑖 + 𝑦𝑖) · (𝑥𝑗 + 𝑦𝑗)

= ‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2.

This completes the proof.

Next we will show that the distance between homologous pairs is uniquely determined

by the 𝐷*
𝑖𝑗

Lemma 4.3.3. Let 𝑑 ≤ 3 and 𝑛 ≥ 2𝑑 + 3. Then for each 1 ≤ 𝑖 ≤ 𝑛 the quantity

‖𝑥𝑖 − 𝑦𝑖‖ is identifiable from the constraints imposed by the 𝐷*
𝑖𝑗, i.e., for any solu-

tion (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) ∈ (R𝑑)2𝑛 to the equations defined by the 𝐷*
𝑖𝑗 in (4.1), the

quantity ‖𝑥𝑖 − 𝑦𝑖‖ is constant.

The constraint 𝑑 ≤ 3 is due to our proof technique. The condition 𝑛 ≥ 2𝑑 + 3 is

necessary for unique identifiability of the distance between homologous pairs of loci.

Proof. Without loss of generality we assume that 𝑖 = 1 and show that ‖𝑥1 − 𝑦1‖
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is equal to some constant. First, we perform a shift on the solution so that 𝑥1 =

−𝑦1 = 𝑣. Since shifts preserve distances, they in particular preserve the equality

constraints (4.1). Hence,

𝐷*
1𝑗 = ‖𝑣 − 𝑥𝑗‖2 + ‖𝑣 − 𝑦𝑗‖2 + ‖ − 𝑣 − 𝑥𝑗‖2 + ‖ − 𝑣 − 𝑦𝑗‖2.

Expanding this out into dot products and simplifying yields

𝐷*
1𝑗 = 4‖𝑣‖2 + 2(‖𝑥𝑗‖2 + ‖𝑦𝑗‖2).

Let 𝑗 ̸= 𝑘 be both not equal to 1. Then substituting the above leads to

𝐷*
1𝑗 +𝐷*

1𝑘 −𝐷*
𝑗𝑘 = 8‖𝑣‖2 + 2(𝑥𝑗 + 𝑦𝑗) · (𝑥𝑘 + 𝑦𝑘).

Defining 𝑇𝑗𝑘 := 𝐷*
1𝑗 +𝐷*

1𝑘 −𝐷*
𝑗𝑘 and 𝑠𝑗 :=

√
2(𝑥𝑗 + 𝑦𝑗), this is equivalent to

𝑇𝑗𝑘 − 8‖𝑣‖2 = 𝑠𝑗 · 𝑠𝑘.

Let 𝑇 ′ be the (𝑑+1)× (𝑑+1) submatrix of 𝑇 satisfying 𝑇 ′
𝑖𝑗 = 𝑇𝑖+1,𝑗+𝑑+2, i.e. the rows

of 𝑇 ′ correspond to the rows 2, 3, . . . , 𝑑+ 2 of 𝑇 and the columns of 𝑇 ′ correspond to

the columns 𝑑+3, 𝑑+4, . . . , 2𝑑+3 of 𝑇 . We now show that for generic configurations

det(𝑇 ′) ̸= 0. Since det(𝑇 ′) can be written as a polynomial in the coordinates 𝑥𝑖 and

𝑦𝑖, then det(𝑇 ′) ̸= 0 for generic configurations as long as it does not identically vanish.

Hence it suffices to present one configuration where det(𝑇 ′) is nonzero. For 𝑑 ≤ 3 we

can check this using random configurations.

Since 𝑇 ′ has full rank, then the matrix determinant lemma implies that

det(𝑇 ′ − 8𝐽‖𝑣‖2) = (1 − 8‖𝑣‖21𝑇 (𝑇 ′)−11) det(𝑇 ′), (4.4)

where 1 denotes the all ones vector. Note that the scalar 1𝑇𝑇 ′−11 is fixed and

(det𝑇 ′) ̸= 0. Furthermore, since 𝑇 ′−8𝐽‖𝑣‖2 is formed from the dot products between

𝑑-dimensional vectors, it has rank at most 𝑑 and therefore det(𝑇 ′−8𝐽‖𝑣‖2) = 0 due to
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𝑇 ′−8𝐽‖𝑣‖2 being a (𝑑+1)×(𝑑+1) matrix. Hence, (1−8‖𝑣‖21𝑇 (𝑇 ′)−11) det(𝑇 ′) = 0,

which is a linear equation in terms of ‖𝑣‖2. As a consequence, it has a unique solution

for ‖𝑣‖2 and thus the distance between the homologous pair 𝑥1, 𝑦1 is fixed as long as

𝑛 ≥ 2𝑑+ 3.

We next characterize all solutions to the constraints imposed by the 𝐷*
𝑖𝑗.

Lemma 4.3.4. Let (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) ∈ (R𝑑)2𝑛 be a solution to

‖𝑥𝑖 − 𝑥𝑗‖2 + ‖𝑥𝑖 − 𝑦𝑗‖2 + ‖𝑦𝑖 − 𝑥𝑗‖2 + ‖𝑦𝑖 − 𝑦𝑗‖2 = 𝐷*
𝑖𝑗 for all 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛.

Then

𝑥𝑖 + 𝑦𝑖 = 𝑥*𝑖 + 𝑦*𝑖 and ‖𝑥𝑖‖2 + ‖𝑦𝑖‖2 = ‖𝑥*𝑖 ‖2 + ‖𝑦*𝑖 ‖2 for all 1 ≤ 𝑖 ≤ 𝑛

up to translations and rotations in R𝑑 and permutations of 𝑥𝑖 and 𝑦𝑖.

Proof. Without loss of generality we perform a translation on the solution such that

𝑥1 = −𝑦1 = 𝑣 for some vector 𝑣. By Lemma 4.3.3 the quantity ‖𝑥𝑘 − 𝑦𝑘‖ is constant

for each 1 ≤ 𝑘 ≤ 𝑛 and thus also ‖𝑣‖ is constant. Since for any 𝑗 ̸= 1 it holds that

𝐷*
1𝑗 = 4‖𝑣‖2+2(‖𝑥𝑗‖2+‖𝑦𝑗‖2), also ‖𝑥𝑗‖2+‖𝑦𝑗‖2 is constant and hence ‖𝑥𝑖‖2+‖𝑦𝑖‖2 =

‖𝑥*𝑖 ‖2 + ‖𝑦*𝑖 ‖2 for all 1 ≤ 𝑖 ≤ 𝑛.

Similarly to the proof of Lemma 4.3.3, if we define 𝑇𝑗𝑘 = 𝐷*
1𝑗 + 𝐷*

1𝑘 − 𝐷*
𝑗𝑘 and

𝑠𝑗 =
√

2(𝑥𝑗 + 𝑦𝑗), we find that

𝑇𝑗𝑘 − 8‖𝑣‖2 = 𝑠𝑗 · 𝑠𝑘.

Because we have access to the diagonal constraints now, this relationship holds for

all 𝑗, 𝑘 and not just 𝑗 ̸= 𝑘. Thus 𝑇 − 8𝐽‖𝑣‖2 is a symmetric (𝑛− 1)× (𝑛− 1) matrix

admitting a rank 𝑑 factorization. Let 𝑆 be the matrix formed with the vectors 𝑠𝑗. We

then have 𝑇 − 8𝐽‖𝑣‖2 = 𝑆𝑆𝑇 . There is a result on rank factorizations of symmetric

matrices that any other factorization 𝑇 − 8𝐽‖𝑣‖2 = 𝑆 ′𝑆 ′𝑇 satisfies 𝑆 = 𝑆 ′𝑄 for some

orthogonal matrix 𝑄 (Krislock, 2010, Proposition 3.2). Thus for any other solution
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𝑠′𝑗, we have 𝑠𝑗 = 𝑠′𝑗𝑄, implying all solutions are simply orthogonal transformations of

each other (rotations, reflections, etc.)

In summary, we have shown that once we have fixed 𝑥1 + 𝑦1 = 0 via translation, then

the quantities 𝑥𝑗 + 𝑦𝑗 are unique up to orthogonal transformations and the quantities

‖𝑥𝑗‖2 + ‖𝑦𝑗‖2 are unique.

4.4 Distance constraints between neighboring loci

In Section 4.3, we showed that the 3D genome configuration is not identifiable from

pairwise distance constraints available from typical (unphased) contact frequency

maps. In order to gain identifiability, we next consider adding other biological con-

straints to the problem formulation that are generally available or can be measured.

In particular, since DNA can be viewed as a string of connected beads, we use the

distance between adjacent beads as an additional constraint. The distance between

neighboring beads can be derived empirically or from imaging studies (Müller et al.,

2010; Jungmann et al., 2014); see also our experimental results in Section 4.7. The

additional mathematical constraints are:

‖𝑥𝑖 − 𝑥𝑖+1‖ = ‖𝑥*𝑖 − 𝑥*𝑖+1‖ and ‖𝑦𝑖 − 𝑦𝑖+1‖ = ‖𝑦*𝑖 − 𝑦*𝑖+1‖ for 1 ≤ 𝑖 ≤ 𝑛− 1,

where 𝑥*1, 𝑥*2, . . . , 𝑥*𝑛 and 𝑦*1, 𝑦*2, . . . , 𝑦*𝑛 correspond to consecutive beads on homologous

chromosomes; see Figure 4-2.

In this section we show the following results: under the additional distance constraints

between neighboring loci, we prove that identifiability can be obtained in the 2D

setting (Proposition 4.4.1). However, in the 3D setting we prove that there are still

infinitely many 3D configurations even with these additional distance constraints

(Proposition 4.4.2).

Proposition 4.4.1. For 𝑛 ≥ 3, there are unique points 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 ∈ R2
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Figure 4-2: Distance constraints between neighboring beads. Green and blue curves
depict two homologous pairs of chromosomes. For the green curves distances between
neighboring genomic regions are shown by black lines.

satisfying equations

𝑥𝑖 + 𝑦𝑖 = 𝑥*𝑖 + 𝑦*𝑖 and ‖𝑥𝑖‖2 + ‖𝑦𝑖‖2 = ‖𝑥*𝑖 ‖2 + ‖𝑦*𝑖 ‖2 for 1 ≤ 𝑖 ≤ 𝑛,

‖𝑥𝑖 − 𝑥𝑖+1‖ = ‖𝑥*𝑖 − 𝑥*𝑖+1‖ and ‖𝑦𝑖 − 𝑦𝑖+1‖ = ‖𝑦*𝑖 − 𝑦*𝑖+1‖ for 1 ≤ 𝑖 ≤ 𝑛− 1.
(4.5)

We provide the proofs for Proposition 4.4.1 in Appendix C.

Despite having uniqueness in 2D, we do not have uniqueness in 3D as shown in the

following proposition.

Proposition 4.4.2. For any 𝑛 ∈ N, there exist 𝑥*1, 𝑥*2, . . . , 𝑥*𝑛 and 𝑦*1, 𝑦
*
2, . . . , 𝑦

*
𝑛

such that there are infinitely many points 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 ∈ R3 satisfying equa-

tions (4.5).

We provide the proofs for Proposition 4.4.2 in Appendix C.

4.5 Identifiability from higher-order contact con-

straints

In Section 4.4, we showed that considering distances between neighboring beads only

yields identifiability in 2D but not in 3D. In the following, we consider adding further

constraints that are becoming widely available from experimental data, mainly higher-

order contact frequencies between three or more loci as measured by experimental
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assays such as SPRITE (Quinodoz et al., 2018), C-walks (Olivares-Chauvet et al.,

2016) and GAM (Beagrie et al., 2017). We express these constraints mathematically

by letting 𝑓 ∈ R𝑚×𝑚×···×𝑚 be a contact frequency tensor, where 𝑓𝑥𝑖1
,𝑥𝑖2

,...,𝑥𝑖𝑘
measures

the contact frequency between loci 𝑖1, 𝑖2, . . . , 𝑖𝑘 with coordinates 𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘 . In

the unphased setting we can only measure a combination of contact frequencies over

the homologous loci {𝑥𝑖1 , 𝑦𝑖1}×{𝑥𝑖2 , 𝑦𝑖2}×. . .×{𝑥𝑖𝑘 , 𝑦𝑖𝑘}, which we denote by 𝐹𝑖1𝑖2...𝑖𝑘 .

In addition, as commonly done we turn contact frequencies into distances by defining

𝐷𝑖1𝑖2...𝑖𝑘 := 1/𝐹𝑖1𝑖2...𝑖𝑘 .

In the following we describe how to derive constraints on the 3D location of the

genomic loci from such measured higher-order distances. For simplicity, we first

describe the higher-order distance constraints in the phased setting and only for

three loci. Since the contact frequency measures when all three loci come together,

we define 𝐷𝑖1𝑖2𝑖3 as the sum of the distances of the three loci 𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 to their

centroid (Figure 4-3a). We next generalize this distance to the unphased setting.

For three homologous loci (𝑥𝑖1 , 𝑦𝑖1), (𝑥𝑖2 , 𝑦𝑖2) and (𝑥𝑖3 , 𝑦𝑖3), these contact frequencies

can be formed by 8 possible triples, namely (𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3), (𝑥𝑖1 , 𝑥𝑖2 , 𝑦𝑖3), (𝑥𝑖1 , 𝑦𝑖2 , 𝑥𝑖3),

(𝑦𝑖1 , 𝑥𝑖2 , 𝑥𝑖3), (𝑥𝑖1 , 𝑦𝑖2 , 𝑦𝑖3), (𝑦𝑖1 , 𝑦𝑖2 , 𝑥𝑖3), (𝑦𝑖1 , 𝑥𝑖2 , 𝑦𝑖3), (𝑦𝑖1 , 𝑦𝑖2 , 𝑦𝑖3). We will assume

that one of the triples constitutes the majority of the observed contact frequency count

and hence we define the 𝐷𝑖1𝑖2𝑖3 as the minimum over all 8 higher-order distances. This

is illustrated in Figure 4-3b. Generalizing from three to 𝑘 loci, the distance constraint

becomes

𝐷𝑖1𝑖2...𝑖𝑘 = min
𝑧𝑖𝑗∈{𝑥𝑖𝑗

,𝑦𝑖𝑗 }

(︃
𝑘∑︁

𝑗=1

‖𝑧𝑖𝑗 − (𝑧𝑖1 + . . .+ 𝑧𝑖𝑘)/𝑘‖2
)︃
.

In the following, we prove our main result; namely we show that the distance con-

straints of order 3 together with the previously considered pairwise distance con-

straints and distance constraints among consecutive beads results in unique iden-

tifiability of the 3D genome configuration (Theorem 4.5.1). In fact, only very few

order 3 distance constraints are required for unique identifiability. As we show in

Theorem it is sufficient that the first and last bead of each chromosome be contained
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(a) (b)

Figure 4-3: Higher-order distance constraints. (a) Three loci 𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , located on
the same chromosome, are depicted. In the phased setting, the higher-order distance
constraint 𝐷𝑖1𝑖2𝑖3 is defined as the sum of the distances (pink dashed lines) of the three
loci 𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 to their centroid (pink point). Green and blue depict two different
chromosomes. (b) This figure illustrates the definition of 𝐷𝑖1𝑖2𝑖3 in the unphased set-
ting. Green, blue and red curves depict neighborhoods around three homologous loci
(𝑥𝑖1 , 𝑦𝑖1), (𝑥𝑖2 , 𝑦𝑖2) and (𝑥𝑖3 , 𝑦𝑖3). From these homologous loci 8 possible higher-order
distance constraints can be defined (colored dashed lines) based on the 8 centroids
depicted in the figure. The chosen higher-order distance constraint 𝐷𝑖1𝑖2𝑖3 is the min-
imum of the possible 8 higher-order distance constraints (achieved here by the three
black dashed line segments).

in an order 3 distance constraint. This is a reasonable constraint given that meth-

ods such as SPRITE, C-walks and GAM measure higher-order interactions over the

whole genome. These insights are of interest experimentally since they suggest that

the methods can restrict the measurement of such higher-order constraints to first

and last beads of each chromosome, known as telomeres.

Theorem 4.5.1. Let 𝑚 be the number of chromosome pairs, let 𝑛1, 𝑛2, . . . , 𝑛𝑚 be the

number of domains on chromosomes 1, 2, . . . ,𝑚 and define 𝑛 = 𝑛1+𝑛2+ . . .+𝑛𝑚. Let

𝐼 ⊆ [𝑛]×[𝑛]×[𝑛] be such that each of 1, 𝑛1, 𝑛1+1, 𝑛1+𝑛2, . . . , 𝑛1+𝑛2+. . .+𝑛𝑚−1+1, 𝑛

(labels of domains at the beginning and at the end of each chromosome) is contained

in at least one triple in 𝐼. Let 𝑥*1, . . . , 𝑥*𝑛, 𝑦*1, . . . , 𝑦*𝑛 ∈ R3 be fixed such that

min
𝑧*𝑖 ∈{𝑥*

𝑖 ,𝑦
*
𝑖 } for 𝑖=𝑘1,𝑘2,𝑘3

⎛
⎝ ∑︁

𝑗∈{𝑘1,𝑘2,𝑘3}

‖𝑧*𝑗 − (𝑧*𝑘1 + 𝑧*𝑘2 + 𝑧*𝑘3)/3‖2
⎞
⎠ = 0 for (𝑘1, 𝑘2, 𝑘3) ∈ 𝐼.
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Consider the polynomial system:

𝑥𝑖 + 𝑦𝑖 = 𝑥*𝑖 + 𝑦*𝑖 and ‖𝑥𝑖‖2 + ‖𝑦𝑖‖2 = ‖𝑥*𝑖 ‖2 + ‖𝑦*𝑖 ‖2 for 1 ≤ 𝑖 ≤ 𝑛,

‖𝑥𝑖 − 𝑥𝑖+1‖ = ‖𝑥*𝑖 − 𝑥*𝑖+1‖ and ‖𝑦𝑖 − 𝑦𝑖+1‖ = ‖𝑦*𝑖 − 𝑦*𝑖+1‖ for 𝑖 ∈ [𝑛]∖{𝑛1, 𝑛1 + 𝑛2, . . . , 𝑛},

min
𝑧𝑖∈{𝑥𝑖,𝑦𝑖} for 𝑖=𝑘1,𝑘2,𝑘3

⎛
⎝ ∑︁

𝑗∈{𝑘1,𝑘2,𝑘3}

‖𝑧𝑗 − (𝑧𝑘1 + 𝑧𝑘2 + 𝑧𝑘3)/3‖2
⎞
⎠ = 0 for (𝑘1, 𝑘2, 𝑘3) ∈ 𝐼.

(4.6)

For generic 𝑥*1, . . . , 𝑥*𝑛, 𝑦*1, . . . , 𝑦*𝑛, this system has a unique solution in (R3)2𝑛.

We provide the proof for Theorem 4.5.1 in Appendix C.

4.6 Algorithms and implementation

So far, we derived a theoretical framework to establish when we have unique and fi-

nite identifiability of the 3D configuration in the noiseless setting. However, a unique

solution does not necessarily mean that we can find it efficiently, as in many cases

finding the solution may be NP-hard. In addition, we have so far not yet consid-

ered the noisy setting. In this section, we show how to construct an optimization

formulation to determine the 3D configuration efficiently.

We frame the 3D reconstruction problem as a Euclidean embedding problem, where

the coordinates 𝑥1, . . . 𝑥𝑛, 𝑦1, . . . 𝑦𝑛 ∈ R3 are inferred from distances. Similar to

ChromSDE (Zhang et al., 2013), we formulate all distances in terms of entries

in the Gram matrix 𝐺, which tracks the dot products between the 2𝑛 genomic

regions. Namely, letting the column/row 𝑖 of 𝐺 correspond to 𝑥𝑖 and the col-

umn/row 𝑛 + 𝑖 correspond to its homologous locus 𝑦𝑖, then the distances are given

by ‖𝑥𝑖 − 𝑥𝑗‖2 = 𝐺𝑖,𝑖 + 𝐺𝑗,𝑗 − 2𝐺𝑖,𝑗, ‖𝑥𝑖 − 𝑦𝑗‖2 = 𝐺𝑖,𝑖 + 𝐺𝑛+𝑗,𝑛+𝑗 − 2𝐺𝑖,𝑛+𝑗 and

‖𝑦𝑖 − 𝑦𝑗‖2 = 𝐺𝑛+𝑖,𝑛+𝑖 + 𝐺𝑛+𝑗,𝑛+𝑗 − 2𝐺𝑛+𝑖,𝑛+𝑗. It is natural to work with the Gram

matrix 𝐺, since it is rotation invariant. By imposing the constraint
∑︀

𝑖,𝑗 𝐺𝑖,𝑗 = 0 we

can also fix the translational axis. Also the additional distance constraints that we

introduced in the previous sections (Lemma 4.3.3, Proposition 4.4.2, Theorem 4.5.1)

can be represented as linear constraints in terms of entries in 𝐺 as follows:
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∙ Pairwise distance constraints:

𝑔𝑖𝑗(𝐺) := 𝐺𝑖,𝑖 +𝐺𝑗,𝑗 +𝐺𝑛+𝑖,𝑛+𝑖 +𝐺𝑛+𝑗,𝑛+𝑗 −𝐺𝑖,𝑗 −𝐺𝑛+𝑖,𝑗 −𝐺𝑖,𝑛+𝑗 −𝐺𝑛+𝑖,𝑛+𝑗

∙ Distances between homologous pairs:

𝑔𝑖𝑖(𝐺) := 𝐺𝑖,𝑖 +𝐺𝑛+𝑖,𝑛+𝑖 − 2𝐺𝑖,𝑛+𝑖

∙ Distances between neighboring beads:

𝑔𝑖+(𝐺) := 𝐺𝑖,𝑖 +𝐺𝑖+1,𝑖+1 − 2𝐺𝑖,𝑖+1

∙ Higher-order distance constraints:

𝑔𝑖𝑗𝑘(𝐺) := min
𝑙

(𝑔𝑖𝑗𝑘𝑙 : 𝑙 = 1, . . . , 8)

where

𝑔𝑖𝑗𝑘1(𝐺) :=𝐺𝑖,𝑖 +𝐺𝑗,𝑗 +𝐺𝑘,𝑘 −𝐺𝑖,𝑗 −𝐺𝑖,𝑘 −𝐺𝑗,𝑘,

𝑔𝑖𝑗𝑘2(𝐺) :=𝐺𝑖,𝑖 +𝐺𝑗,𝑗 +𝐺𝑛+𝑘,𝑛+𝑘 −𝐺𝑖,𝑗 −𝐺𝑖,𝑛+𝑘 −𝐺𝑗,𝑛+𝑘,

𝑔𝑖𝑗𝑘3(𝐺) :=𝐺𝑖,𝑖 +𝐺𝑛+𝑗,𝑛+𝑗 +𝐺𝑘,𝑘 −𝐺𝑖,𝑛+𝑗 −𝐺𝑖,𝑘 −𝐺𝑛+𝑗,𝑘,

𝑔𝑖𝑗𝑘4(𝐺) :=𝐺𝑖,𝑖 +𝐺𝑛+𝑗,𝑛+𝑗 +𝐺𝑛+𝑘,𝑛+𝑘 −𝐺𝑖,𝑛+𝑗 −𝐺𝑖,𝑛+𝑘 −𝐺𝑛+𝑗,𝑛+𝑘,

𝑔𝑖𝑗𝑘5(𝐺) :=𝐺𝑛+𝑖,𝑛+𝑖 +𝐺𝑗,𝑗 +𝐺𝑘,𝑘 −𝐺𝑛+𝑖,𝑗 −𝐺𝑛+𝑖,𝑘 −𝐺𝑗,𝑘,

𝑔𝑖𝑗𝑘6(𝐺) :=𝐺𝑛+𝑖,𝑛+𝑖 +𝐺𝑗,𝑗 +𝐺𝑛+𝑘,𝑛+𝑘 −𝐺𝑛+𝑖,𝑗 −𝐺𝑛+𝑖,𝑛+𝑘 −𝐺𝑗,𝑛+𝑘,

𝑔𝑖𝑗𝑘7(𝐺) :=𝐺𝑛+𝑖,𝑛+𝑖 +𝐺𝑛+𝑗,𝑛+𝑗 +𝐺𝑘,𝑘 −𝐺𝑛+𝑖,𝑛+𝑗 −𝐺𝑛+𝑖,𝑘 −𝐺𝑛+𝑗,𝑘,

𝑔𝑖𝑗𝑘8(𝐺) :=𝐺𝑛+𝑖,𝑛+𝑖 +𝐺𝑛+𝑗,𝑛+𝑗 +𝐺𝑛+𝑘,𝑛+𝑘 −𝐺𝑛+𝑖,𝑛+𝑗 −𝐺𝑛+𝑖,𝑛+𝑘 −𝐺𝑛+𝑗,𝑛+𝑘

Our objective is to determine a rank 3 solution of 𝐺, satisfying the above constraints.

However, this optimization problem is non-convex due to the rank constraint, and we

instead consider the standard relaxation: we minimize the trace of the Gram matrix
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as an approximation to matrix rank (Fazel et al., 2001). The resulting optimization

problem then becomes the following semidefinite program (SDP):

minimize
𝐺

tr(𝐺)

subject to 𝑔𝑖𝑖(𝐺) = 𝐷*
𝑖𝑖, 1 ≤ 𝑖 ≤ 𝑛,

𝑔𝑖𝑗(𝐺) = 𝐷*
𝑖𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,

𝑔𝑖+(𝐺) = 𝐷*
𝑖+, 𝑖 ∈ Ω1,

𝑔𝑖𝑗𝑘(𝐺) = 𝐷*
𝑖𝑗𝑘, (𝑖, 𝑗, 𝑘) ∈ Ω2,

∑︁

1≤𝑖,𝑗≤2𝑛

𝐺𝑖,𝑗 = 0,

𝐺 ⪰ 0.

(4.7)

Here, 𝐷*
𝑖𝑖 denote the distances between homologous pairs computed from the pair-

wise distances using Lemma 4.3.3, 𝐷*
𝑖𝑗 denote the pairwise distances, 𝐷*

𝑖+ denote

the distances between neighboring beads, and 𝐷*
𝑖𝑗𝑘 denote the distances between

three loci (while one could also consider 4 or higher-order distance constraints, in

our implementation, we only used three-way distance constraints). The index set

Ω1 = [2𝑛]∖{𝑛1, 𝑛1 + 𝑛2, . . . , 𝑛, 𝑛 + 𝑛1, 𝑛 + 𝑛1 + 𝑛2, . . . , 2𝑛} corresponds to all beads

that are not the last bead on a chromosome. The index set Ω2 ⊆ [𝑛]3 corresponds to

all triples of beads with non-zero contact frequencies.

In the noisy setting, which is relevant for biological data, we replace the equality

constraints by penalties in the loss function. Namely, using 𝐷* for the noiseless and

𝐷 for the noisy distances, we replace the equality constraints of the form 𝑔(𝐺) = 𝐷* by

adding (𝑔(𝐺)−𝐷)2 to the objective function. For the higher-order distance constraints

of the form 𝐷*
𝑖𝑗𝑘 = min(𝑔𝑖𝑗𝑘1(𝐺), . . . , 𝑔𝑖𝑗𝑘8(𝐺)) for (𝑖, 𝑗, 𝑘) ∈ Ω2 we use slack variables

and a convex relaxation using an atomic norm that combines the ℓ2- and ℓ1-norms.

More precisely, we propose the use of the following transformation in the noisy setting,

𝐷𝑖𝑗𝑘 + 𝜆𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑗𝑘𝑙(𝐺) + 𝑠𝑖𝑗𝑘𝑙 for 𝑙 = 1, 2, . . . , 8,

where 𝜆𝑖𝑗𝑘𝑙, 𝑠𝑖𝑗𝑘𝑙 ≥ 0 for all 𝑖, 𝑗, 𝑘, 𝑙 act as slack variables. In general, for each triple
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(𝑖, 𝑗, 𝑘) we want one of the 𝜆𝑖𝑗𝑘𝑙 to be close to 0 and the sum over all 𝑠𝑖𝑗𝑘𝑙 to be small.

Naively this can be done by placing
∑︀
𝑠𝑖𝑗𝑘𝑙 +

∑︀
𝜆𝑖𝑗𝑘𝑙 into the objective function.

However, this would not enforce for each (𝑖, 𝑗, 𝑘) at least one 𝜆𝑖𝑗𝑘𝑙 to be close to 0.

Instead we propose to use

∑︁

(𝑖,𝑗,𝑘)∈Ω2,1≤𝑙≤8

𝑠𝑖𝑗𝑘𝑙 +

⎯⎸⎸⎷ ∑︁

(𝑖,𝑗,𝑘)∈Ω2

(︃∑︁

1≤𝑙≤8

𝜆𝑖𝑗𝑘𝑙

)︃2

.

The ℓ2-norm will push down the
∑︀

𝑙 𝜆𝑖𝑗𝑘𝑙 for each (𝑖, 𝑗, 𝑘), while the ℓ1 norm will drive

at least one of the 𝜆𝑖𝑗𝑘𝑙 to zero, which is precisely the desired behavior. The quantity√︁∑︀
𝑖,𝑗,𝑘 (

∑︀
𝑙 𝜆𝑖𝑗𝑘𝑙)

2 is an atomic norm as defined in (Chandrasekaran et al., 2012)

with the set of atoms

𝒜 = {(𝜆𝑖𝑗𝑘𝑙) :
∑︁

𝑖,𝑗,𝑘

(︃∑︁

𝑙

𝜆𝑖𝑗𝑘𝑙

)︃2

= 1 and
∑︁

𝑖,𝑗,𝑘

𝜆2𝑖𝑗𝑘𝑙𝑖𝑗𝑘 = 1 for 𝑙𝑖𝑗𝑘 = 1, . . . , 8, (𝑖, 𝑗, 𝑘) ∈ Ω2}.

Then the optimization problem in the noisy setting becomes:

minimize
𝐺,𝑠,𝜆

𝜌 tr(𝐺) +
∑︁

1≤𝑖≤𝑛

(𝑔𝑖𝑖(𝐺) −𝐷𝑖𝑖)
2 +

∑︁

1≤𝑖<𝑗≤𝑛

(𝑔𝑖𝑗(𝐺) −𝐷𝑖𝑗)
2

+
∑︁

𝑖∈Ω1

(𝑔𝑖+(𝐺) −𝐷𝑖+)2 +
∑︁

(𝑖,𝑗,𝑘)∈Ω2,1≤𝑙≤8

𝑠𝑖𝑗𝑘𝑙 +

⎯⎸⎸⎷ ∑︁

(𝑖,𝑗,𝑘)∈Ω2

(︃∑︁

1≤𝑙≤8

𝜆𝑖𝑗𝑘𝑙

)︃2

subject to 𝐷𝑖𝑗𝑘 + 𝜆𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑗𝑘𝑙(𝐺) + 𝑠𝑖𝑗𝑘𝑙, (𝑖, 𝑗, 𝑘) ∈ Ω2, 1 ≤ 𝑙 ≤ 8,

𝑠𝑖𝑗𝑘𝑙 ≥ 0, (𝑖, 𝑗, 𝑘) ∈ Ω2, 1 ≤ 𝑙 ≤ 8,

𝜆𝑖𝑗𝑘𝑙 ≥ 0, (𝑖, 𝑗, 𝑘) ∈ Ω2, 1 ≤ 𝑙 ≤ 8,
∑︁

1≤𝑖,𝑗≤2𝑛

𝐺𝑖,𝑗 = 0,

𝐺 ⪰ 0.

(4.8)

We use a tuning parameter 𝜌 for the trace in the objective function, which can be

used to balance low-rank versus satisfying the constraints. The tuning parameter 𝜌

can be chosen using cross-validation or by selecting it so that the resulting solution
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has small (𝑑+ 1)𝑡ℎ eigenvalue. As shown in Appendix C (Figures C-4, C-9, C-10) we

observe on synthetic and real data that the solution is robust to the choice of 𝜌.

The theoretical results from Lemma 4.3.3 allow us to compute the distances between

homologous pairs from the pairwise distances 𝐷𝑖𝑗. We recall that we need to compute

‖𝑣‖2 such that

det(𝑇 ′ − 8𝐽‖𝑣‖2) = 0,

where 𝑇 ′ is an invertible matrix constructed from the pairwise distance matrix by

selecting a set of 2𝑑+2 indices. One step of computing ‖𝑣‖ involves inverting 𝑇 ′. Even

if the error in the measurements is small, noise can propagate and severely impact

this computation. In order to obtain a robust estimate of homolog-homolog distances,

for each locus 𝑖, we sample 100 𝑇 ′ matrices and obtain 100 solutions to the equation

for ‖𝑣‖2. We then take the median of the solutions to be the homolog-homolog

distance for locus 𝑖 and use these homolog-homolog distances for the evaluation of

our algorithms for synthetic and real data in the following section.

To solve the two convex optimization problems presented in this section for the noise-

less and noisy setting, we make use of the solver MOSEK implemented in CVX within

MATLAB. This results in the Gram matrix. In order to reconstruct the coordinates

of the genomic regions from the Gram matrix, we use an eigenvector decomposition as

also done in (Zhang et al., 2013), namely: letting 𝛾1, . . . , 𝛾𝑑 be the top 𝑑 eigenvalues

and 𝜈1, . . . , 𝜈𝑑 the corresponding eigenvectors of 𝐺, then

𝑥𝑖 = (
√
𝛾1 · 𝜈1,𝑖, . . . ,

√
𝛾𝑑 · 𝜈𝑑,𝑖) and 𝑦𝑖 = (

√
𝛾1 · 𝜈1,𝑛+𝑖, . . . ,

√
𝛾𝑑 · 𝜈𝑑,𝑛+𝑖) for 𝑖 = 1, . . . , 𝑛.

Since we are interested in recovering the genome configuration in 3D, we use 𝑑 = 3,

thereby obtaining the desired 3D diploid configuration.

110



4.7 Evaluation on synthetic and real data

Synthetic data

We start by testing our method on simulated data. For this we construct three dif-

ferent types of 3D structures: (a) a Brownian motion model using a standard normal

distribution to generate successive points; (b) points sampled uniformly along a spi-

ral with random translations sampled uniformly within (0, 0.5) range and orientations

sampled uniformly within (−𝜋
4
, 𝜋
4
); (c) points sampled uniformly in a unit sphere.

Performance of our method in the noiseless setting. For the dimension one

case we deduced in Section 4.3 that the pairwise distance constraints by themselves

are sufficient to identify the underlying 3D configuration. For the dimension two case

we proved in Section 4.4 that knowing additionally the distances between neighboring

beads leads to uniqueness. We here perform simulations in dimension 3 since this is

the biologically relevant setting. These results are depicted in Figure 4-4 with addi-

tional examples in Figure C-2. The input to our algorithm are the pairwise distances

(which are summed over homologs), all three-way distances, the distances between

homologous loci, and the distances between neighboring beads. In the noiseless set-

ting considered here we solve the SDP formulation in Equation (4.7). Figure 4-4 and

Figure C-2 show that the true and reconstructed structures highly overlap, thereby

indicating that our optimization formulation is able to recover the 3D structure of the

full diploid genome in the noiseless setting. When the three-way distance constraints

are removed, the reconstructions are less aligned with the true structures. This is

shown in Figure 4-5, where we measure the root-mean-square deviation (RMSD) be-

tween true and reconstructed 3D coordinates over 20 trials. In line with our theoretical

results, these experimental results in the noiseless setting indicate the importance of

higher-order contact frequencies for recovering the 3D diploid configuration, especially

when the number of chromosomes is high.

Performance of our method in the noisy setting. Next, we consider noisy

distance observations 𝐷𝑖𝑗 = 𝐷*
𝑖𝑗(1 + 𝛿) and noisy three-way distance observations
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(a) (b) (c)

Figure 4-4: Examples of true and reconstructed points on simulated data. (a) Brown-
ian motion model. (b) Spirals. (c) Random points in a sphere. We generate six chro-
mosomes with in total of 120 domains, corresponding to three homologous pairs with
20 domains per chromosome in the noiseless setting. Solid lines / points correspond
to the true 3D coordinates and dashed lines / unfilled points to the reconstructions
via our method. Each color represents a different chromosome.

(a) (b) (c)

Figure 4-5: Performance of our method in the noiseless setting. Root-mean-square
deviation (RMSD) between true and reconstructed structure computed with and with-
out tensor constraints. Simulated data was generated using a Brownian motion model
with (a) one (b) two and (c) three chromosomes. Mean and standard deviation over
20 trials are shown.

𝐷𝑖1𝑖2...𝑖𝑘 = 𝐷*
𝑖1𝑖2...𝑖𝑘

(1 + 𝛿) by sampling 𝛿 uniformly within (−𝜖, 𝜖) as in (Zhang et al.,

2013), where 𝜖 is a given noise level. For our simulations we sample a maximum of

1000 three-way distance constraints. As shown in Figure C-3, we observe that the

number of constraints does not have a major effect on the reconstruction accuracy.

While for all simulations shown in this section, we set 𝜌 = 0.000001, Figure C-4 in

shows that the performance is not significantly different when using different choices

of 𝜌.

In Figure 4-6 we numerically assess the accuracy of our predicted structure for the

Brownian motion model for different number of chromosomes (one, two, or three) and
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(a) (b) (c)

Figure 4-6: Performance of our method in the noisy setting. Spearman correlation
under different noise levels for (a) one, (b) two and (c) three chromosomes. Simulated
data was generated using a Brownian motion model where each chromosome has 10
or 20 domains. Mean and standard deviation over 20 trials are shown.

different number of domains per chromosome (10 or 20) by computing the Spearman

correlation between reconstructed and true pairwise distances, similar to (Zhang et al.,

2013). As expected, Figure 4-6 shows that when the noise level increases, then the

Spearman correlation between the original and reconstructed configuration decreases.

For the simulations with one chromosome, the Spearman correlation is higher for 20

domains than 10.

Application to 3D diploid genome reconstruction

We apply our algorithm to the problem of reconstructing the diploid genome from

contact frequency data derived from experiments. We obtain pairwise and three-way

contact frequencies collected via SPRITE in human lymphoblastoid cells from (Quin-

odoz et al., 2018). Since we aim to reconstruct the whole diploid genome, which

consists of approximately 6 billion base pairs, for computational reasons we bin the

contact frequencies in the SPRITE dataset into 10 Mega-base pair (Mb) regions.

While some previous studies considered higher resolutions, the majority of the stud-

ies (Cauer et al., 2019; Hu et al., 2013; Rousseau et al., 2011; Varoquaux et al., 2014;

Zhang et al., 2013) did not attempt to reconstruct the whole diploid genome and fo-

cused only on reconstructing one chromosome, thus enabling them to consider higher

resolutions.

After filtering out regions with a small number of total contacts, we obtain 514 un-
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phased points on the chromosomes. We convert the pairwise contact frequencies to

pairwise distances using the previously observed relationship 𝐷𝑖𝑗 = 𝐹
−1/2
𝑖𝑗 (Rousseau

et al., 2011) and use Lemma 4.3.3 to obtain the distances between homolog pairs

from this data. As in our simulations in the noisy setting, we randomly sample 1000

three-way distance constraints from all nonzero three-way contact frequencies (for

the transformation from three-way contact frequencies to three-way distances, see

Section 4.5). Finally, we obtain the distances between neighboring 10Mb beads by

empirically evaluating 3D reconstructions under different input distances; see Ap-

pendix C and Figures C-5, C-6.

After obtaining the pairwise constraints, homolog-homolog constraints, neighboring

bead constraints, and three-way distance constraints, we solve the SDP problem in

Equation (4.8) for the noisy setting and analyze the corresponding 3D coordinates.

Our diploid reconstruction is shown in Figure 4-7a. We compare this diploid genome

reconstruction to the 3D structure computed via ChromSDE (Zhang et al., 2013),

shown in Figure 4-7b obtained under the assumption that the observed contact fre-

quencies and the corresponding distances are a sum of four equal quantities, i.e.,

‖𝑥𝑖 − 𝑥𝑗‖2, ‖𝑥𝑖 − 𝑦𝑗‖2, ‖𝑦𝑖 − 𝑥𝑗‖2, and ‖𝑦𝑖 − 𝑦𝑗‖2 are equal. In Figure C-7, we show

that the reconstruction obtained using ChromSDE with equal distances does not

recapitulate known biology as described in the following paragraphs.

Experimental studies have shown that chromosomes are organized by size within

the nucleus, with small chromosomes in the interior and larger chromosomes on the

periphery (Bolzer et al., 2005). We colored each chromosome according to its size

and computed the mean chromosome size versus distance away from the center. The

results of the 3D configuration obtained using our method are shown in Figure 4-

7c,d and recapitulate prior studies: smaller chromosomes are preferentially located in

the center, whereas larger chromosomes are preferentially on the periphery; see also

Figure C-8. This is especially apparent for chromosomes 2 and 4, which are some of

the largest chromosomes, and in our reconstruction they are located on the periphery

as expected.

Experimental studies on the spatial organization of the genome have also shown that
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the center of the nucleus is enriched in active compartments (known as A compart-

ments), while the periphery contains inactive compartments (known as B compart-

ments) (Stevens et al., 2017). From previously published data on the location of A

and B compartments in human lymphoblastoid cells (Rao et al., 2014), we counted

the number of A compartments per 10Mb bin. Then dividing our 3D reconstruction

into concentric circles of increasing radius away from the center, we found the mean

number of A compartments in each concentric circle. Figure 4-7e shows that with

increasing distance away from the center, the number of A compartments decreases.

Thus, our reconstruction recovers the experimentally observed trend for A compart-

ments to be preferentially located near to the nucleus center. As shown in Figures C-9

and C-10, we note that our results are robust to the choice of the tuning parameter

𝜌 resulting in biologically plausible configurations independent of the choice of 𝜌.

Currently, many studies such as (Rieber and Mahony, 2017) simply ignore the fact

that the genome is diploid and infer the 3D genome organization as if the data was

collected from a haploid organism, assuming that the homologous loci have the same

3D structure. However, we show in Figure C-11 that the haploid distance matrices,

computed by including only one copy of each of the homologous loci, are different be-

tween the two copies with a mean Spearman correlation of only 0.08. This shows that

modeling the diploid aspect of the genome provides valuable information regarding

the 3D structure of each of the homologs, which may be substantially different.

4.8 Discussion

In this study, we proved that for diploid organism the 3D genome structure is not

identifiable from pairwise distance measurements alone. This implies that applying

any algorithm for the reconstruction of the 3D genome structure from typical chro-

mosome conformation capture data for a diploid organism can result in any of the

infinitely many configurations with the same pairwise contact frequencies. We showed

that unique idenfiability is obtained using distance constraints between neighboring

genomic loci as well as three-way distance constraints in addition to the pairwise
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Figure 4-7: 3D diploid genome reconstruction. Estimated 3D positions of all chromo-
somes and their corresponding homologs at 10Mb resolution. 3D positions obtained
using (a) our method and (b) using ChromSDE with chromosomes colored according
to chromosome number. (c) Whole diploid organization obtained via our method,
colored by chromosome size. (d) Mean chromosome size as the distance from the
center increases. (e) The number of A compartments as the distance from the center
increases.

distance constraints that can be obtained from typical chromosome capture data.

Distances between neighboring genomic loci can be obtained from imaging stud-

ies or empirically, while three-way distance constraints can be obtained from the

most recently developed sequencing-based methods for obtaining contact frequencies

such SPRITE (Quinodoz et al., 2018), C-walks (Olivares-Chauvet et al., 2016) and

GAM (Beagrie et al., 2017). We also presented SDP formulations for determining

the 3D genome reconstruction both in the noiseless and noisy setting. Finally, we

applied our algorithm to contact frequency data from human lymphoblastoid cells

collected using SPRITE and showed that our results recapitulate known biological

trends; in particular, in the 3D configuration identified using our method, the small

chromosomes are preferentially situated in the interior of the cell nucleus, while larger

chromosomes are preferentially situated at the periphery of cell nucleus. In addition,
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in the 3D configuration identified using our method the number of A domains is

higher in the interior versus the periphery, which is in line with experimental results.

Our work shows the importance of higher-order contact frequencies that can be mea-

sured using SPRITE (Quinodoz et al., 2018), C-walks (Olivares-Chauvet et al., 2016)

and GAM (Beagrie et al., 2017) for obtaining the 3D organization of the genome

in diploid organisms. This is particularly relevant for the reconstruction of cancer

genomes, where copy number variations are frequent and hence the genome may

contain even more than two copies of each locus.

4.9 Future directions

We conjecture that identifiability of the 3D genome structure can also be achieved by

replacing the higher-order contact constraints by distance constraints to the center

of the cell nucleus. Such constraints are also biologically relevant, since these dis-

tances can be measured via imaging experiments, or inferred by measuring whether

a particular locus is in a lamin-associated domain or a telomere, both of which tend

to lie at the boundary of the cell nucleus (Crabbe et al., 2012; Guelen et al., 2008b;

Van Steensel and Belmont, 2017). Another future research direction is the develop-

ment of specialized solvers to enable reconstruction of the genome at higher resolution.

In this study we used a 10Mbp resolution due to the computational constraints im-

posed by SDP solvers. Furthermore, the theory in this study builds on the assumption

that distances are inverses of square roots of pairwise and higher-order contact fre-

quencies. Finally, another interesting future research direction is to develop a method

for estimating the map between higher-order contact frequencies and distances, and

then prove identifiability as well as build reconstruction algorithms for these different

maps.
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Chapter 5

Learning Causal Differences between

Gene Regulatory Networks

Parts of this chapter were published as:

Wang, Y., Squires, C., Belyaeva, A., & Uhler, C. (2018). Direct estimation of differ-

ences in causal graphs. In Advances in Neural Information Processing Systems (pp.

3770-3781).

My contributions to that manuscript were to evaluate the methodology and contribute

to writing the manuscript. In this chapter, we omit the proofs showing the consistency

of the proposed algorithm but they can be found in the above publication (Wang et al.,

2018b).

The majority of this chapter is part of a manuscript under review:

Belyaeva, A., Squires, C., & Uhler, C. (2020). DCI: Learning Causal Differences

between Gene Regulatory Networks.

My contributions were to create a package for the method, design and perform method

and data analysis, and write the manuscript.

5.1 Summary

Designing interventions to control gene regulation necessitates modeling a gene reg-

ulatory network by a causal graph. Currently, large-scale expression datasets from
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different conditions, cell types, disease states and developmental time points are being

collected. However, application of classical causal inference algorithms to infer gene

regulatory networks based on such data is still challenging, requiring high sample sizes

and computational resources. Here, we propose an algorithm that efficiently learns

the differences in gene regulatory mechanisms between different conditions. Our dif-

ference causal inference (DCI) algorithm infers changes (i.e., edges that appeared,

disappeared or changed weight) between two causal graphs given gene expression

data from the two conditions. This algorithm is efficient in its use of samples and

computation since it infers the differences between causal graphs directly without

estimating each possibly large causal graph separately. We provide a user-friendly

Python implementation of DCI and also enable the user to learn the most robust

difference causal graph across different tuning parameters via stability selection. Fi-

nally, we evaluate DCI on synthetic data and show how to apply DCI to bulk and

single-cell RNA-seq data from different conditions and cell states, and we also validate

our algorithm by predicting the effects of interventions.

5.2 Introduction

Biological processes from differentiation to disease progression are governed by gene

regulatory networks. Various methods have been developed for inferring such net-

works from gene expression data (Wang and Huang, 2014), the majority by learn-

ing undirected graphs using correlations (Langfelder and Horvath, 2008), Gaussian

graphical models to capture partial correlations (Friedman et al., 2008), or mutual

information (Reshef et al., 2011). However, the ultimate goal is often to use gene

regulatory networks to predict the effect of an intervention (small molecule, overex-

pression of a transcription factor, knock-out of a gene, etc.). This cannot be done

using an undirected graph and necessitates modeling a gene regulatory network by a

causal (directed) graph.

Causal relationships are commonly represented by a directed acyclic graph (DAG)

and a variety of methods have been developed for learning causal graphs from obser-
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vational data (Glymour et al., 2019). These methods have been successfully applied

to learning (directed) gene regulatory networks on a small number of genes, start-

ing with the pioneering study by (Friedman et al., 2000). However, applying these

methods at the whole genome-level is still challenging due to high sample size and

computational requirements of the algorithms.

We address this problem by noting that it is often of interest to learn changes in causal

(regulatory) relationships between two related gene regulatory networks correspond-

ing to different conditions, disease states, cell types or developmental time points, as

opposed to learning the full gene regulatory network for each condition. This can

reduce the high sample and computational requirements of current causal inference

algorithms, since while the full regulatory network is often large and dense, the differ-

ence between two related regulatory networks is often small and sparse. As of now,

this problem has only been addressed in the undirected setting, namely by KLIEP (Liu

et al., 2017), DPM (Zhao et al., 2014) and others (Fukushima, 2013; Lichtblau et al.,

2017) that estimate differences between undirected graphs; for a recent review see

(Shojaie, 2020). In the following, we describe the difference causal inference (DCI )

algorithm and present an easy to use Python package for the direct estimation of the

difference between two causal graphs based on observational data from two conditions

(for the theoretical properties of this algorithm see (Wang et al., 2018b)). In particu-

lar, we show how to apply DCI to gene expression data from different conditions and

demonstrate the algorithm’s performance on synthetic data and real data. Impor-

tantly, our DCI implementation also allows selecting the most robust difference gene

regulatory network based on a collection of tuning parameters via stability selection.

To seamlessly integrate DCI with other causal inference methods, it is incorporated

in the causaldag package at https://github.com/uhlerlab/causaldag.

5.3 Preliminaries

Let 𝒢(𝑘) = ([𝑝], 𝐸(𝑘)) for 𝑘 ∈ {1, 2} be a directed acyclic graph (DAG) with nodes

[𝑝] := {1, . . . , 𝑝} and directed edges 𝐸(𝑘). The DAGs 𝒢(1) and 𝒢(2) model the gene
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regulatory networks in the two conditions of interest. We assume that the two DAGs

are consistent with the same ordering, meaning that there cannot be an edge 𝑖 → 𝑗

in 𝒢(1) if there is a directed path 𝑗 → · · · → 𝑖 in 𝒢(2) and vice-versa. This assumption

is reasonable in gene regulatory networks, since genetic interactions may appear or

disappear or change edge weights, but generally do not change directions. For each

graph we associate a random variable 𝑋(𝑘)
𝑖 to each node 𝑖 ∈ [𝑝]. We consider the

setting where we have data from two conditions and this data is generated by a linear

structural equation model

𝑋(𝑘) = 𝐵(𝑘)𝑇𝑋(𝑘) + 𝜖(𝑘) for 𝑘 ∈ {1, 2}, (5.1)

where 𝑋 = (𝑋1, · · · , 𝑋𝑝)
𝑇 is a random vector, 𝐵(𝑘) denotes the weighted adjacency

matrix of the DAG 𝒢(𝑘) and 𝜖(𝑘) ∼ 𝒩 (0,Ω(𝑘)) denotes Gaussian noise with covariance

matrix Ω(𝑘) := diag(𝜎
2(𝑘)
1 , · · · , 𝜎2(𝑘)

𝑝 ). Given samples 𝑋̂(1) ∈ R𝑛1×𝑝 and 𝑋̂(2) ∈ R𝑛2×𝑝

from the two models (where 𝑛1 and 𝑛2 denote the sample size under each condition),

our goal is to estimate the difference-DAG across the two conditions. The difference-

DAG is denoted by ∆ = ([𝑝], 𝐸) and contains an edge 𝑖 → 𝑗 ∈ 𝐸 if and only if

𝐵
(1)
𝑖𝑗 ̸= 𝐵

(2)
𝑖𝑗 .

5.4 Difference Causal Inference (DCI) algorithm

DCI takes as input two matrices 𝑋̂(1) and 𝑋̂(2) of size 𝑛1 × 𝑝 and 𝑛2 × 𝑝, where

𝑛1, 𝑛2 are the number of samples in each dataset and 𝑝 is the number of genes. These

matrices contain the RNA-seq values corresponding to two different conditions. DCI

outputs the difference causal graph between the two conditions, i.e. the edges in the

gene regulatory networks that appeared, disappeared or changed weight between the

two conditions (Fig. 5-1). DCI consists of three steps described below (also described

in Algorithm 1) for computing the difference-DAG. These steps are implemented in

the dci function of the causaldag package found at https://github.com/uhler

lab/causaldag. Briefly, DCI is initialized with the difference undirected graph,
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Figure 5-1: Overview of DCI algorithm: DCI takes as input two gene expression
matrices 𝑋1 and 𝑋2, representing two different conditions of interest. The function
dci(X1,X2) outputs the difference gene regulatory network consisting of the causal
relationships that appeared, disappeared or changed weight between the two condi-
tions.

Algorithm 1 Difference Causal Inference (DCI) algorithm (dci function)

Input: Sample data 𝑋̂(1), 𝑋̂(2).
Output: Estimated difference-DAG ∆̂.
Initialize with difference undirected graph ∆̄ and conditioning set 𝒞.
Estimate the skeleton of the difference-DAG ∆̃ using Algorithm 2.
Direct edges in ∆̃ using Algorithm 3 to obtain ∆̂.

which can be obtained using prior methods, our constraint-based method, based on

prior knowledge or by simply taking the complete graph. Second, the skeleton of the

difference causal graph is determined by testing for invariance of regression coefficients

estimated from data. Finally, edges are oriented by testing for invariance of residual

variances, also estimated from the data.

Step 1: Initialization with a difference undirected graph. In the first step,

the algorithm is initialized with a difference undirected graph (representing changes

of conditional dependencies among genes between the two conditions), which we de-

note by ∆̄, with edge 𝑖 − 𝑗 if and only if Θ
(1)
𝑖𝑗 ̸= Θ

(2)
𝑖𝑗 for 𝑖 ̸= 𝑗, where Θ(1) and Θ(2)

are the precision matrices corresponding to the DAGs 𝒢(1) and 𝒢(2). This is done to

remove some edges to reduce the downstream computational burden. The difference

undirected graph can be determined either using our constraint-based method out-

lined below, previous methods such as KLIEP (Liu et al., 2014, 2017; Zhao et al.,

2014; Fukushima, 2013; Lichtblau et al., 2017), based on prior biological knowledge,

or simply with the complete graph when the number of considered genes is small.

In addition, to reduce the number of downstream hypothesis tests, the nodes to be
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considered as conditioning sets can be reduced to the nodes in the difference undi-

rected graph as well as nodes whose conditional distribution changes between the two

conditions, namely 𝒞 =
{︀
𝑖 | ∃𝑗 ∈ [𝑝] such that Θ

(1)
𝑖,𝑗 ̸= Θ

(2)
𝑖,𝑗

}︀
. The reduced node set

can be determined from the output of methods such as our constraint-based method,

KLIEP (Liu et al., 2014, 2017; Zhao et al., 2014; Fukushima, 2013; Lichtblau et al.,

2017), prior biological knowledge, or taken as the set of all nodes when the number

of genes to be considered is small.

Our constraint-based method estimates the precision matrices corresponding to each

dataset, Θ̂(1) and Θ̂(2), from data and computes the following test statistic for each

entry (𝑖, 𝑗) to quantify the difference:

𝑄𝑖𝑗 :=
(︁

Θ̂
(1)
𝑖𝑗 − Θ̂

(2)
𝑖𝑗

)︁2
·
(︃

Θ̂
(1)
𝑖𝑖 Θ̂

(1)
𝑗𝑗 +(Θ̂

(1)
𝑖𝑗 )2

𝑛1

+
Θ̂

(2)
𝑖𝑖 Θ̂

(2)
𝑗𝑗 +(Θ̂

(2)
𝑖𝑗 )2

𝑛2

)︃−1

.

In order to determine whether a particular edge should remain as part of the undi-

rected difference graph, 𝑄𝑖𝑗 is tested for fit to the F-distribution with parameters

𝐹 (1, 𝑛1 + 𝑛2 − 2𝑝 + 2) and the edge remains if the null hypothesis is rejected. As

described in (Wang et al., 2018b), this hypothesis testing framework comes from the

facts that (1) the entry Θ̂𝑖𝑗 converges asymptotically to a multivariate normal cen-

tered at the true parameter, with variance Θ𝑖𝑖Θ𝑗𝑗 + Θ2
𝑖𝑗, (2) the difference between

two independent standard normal random variables follows a 𝜒2 distribution, and (3)

the F-distribution with the suggested parameters converges asymptotically to a 𝜒2

distribution, but the fatter tails of the F-distribution better match the finite sample

distribution of the test statistic (Lütkepohl, 2005).

Step 2: Estimation of the skeleton of the difference causal graph. In the

second step, edges are removed from the difference undirected graph by testing for

invariance of regression coefficients using an F-test. Since each entry 𝐵𝑖𝑗 corresponds

to a regression coefficient 𝛽𝑖𝑗|𝑆 obtained by regressing 𝑋𝑗 on 𝑋𝑖 given the parents

of node 𝑗 in 𝒢, testing whether 𝐵(1)
𝑖𝑗 = 𝐵

(2)
𝑖𝑗 , is equivalent to testing whether there

exists a set of nodes 𝑆 such that 𝛽(1)
𝑖,𝑗|𝑆 = 𝛽

(2)
𝑖,𝑗|𝑆. More precisely, Algorithm 2 describes

the estimation of the skeleton of the difference-DAG, denoted by ∆̃. Given 𝑖, 𝑗 ∈ [𝑝]
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Algorithm 2 Estimating skeleton of the difference-DAG (dci_skeleton function)

Input: Sample data 𝑋̂(1), 𝑋̂(2), estimated difference undirected graph ∆̄ and con-
ditioning set 𝒞, maximum conditioning set size 𝑟.
Output: Estimated skeleton ∆̃.
Set ∆̃ := ∆̄;
for each edge 𝑖− 𝑗 in ∆̃ do

If ∃𝑆 ⊆ 𝒞 ∖ {𝑖, 𝑗}, with |𝑆| ≤ 𝑟, such that 𝛽(𝑘)
𝑖,𝑗|𝑆 is invariant across 𝑘 = {1, 2},

delete 𝑖− 𝑗 in ∆̃ and continue to the next edge. Otherwise, continue.
end for

and 𝑆 ⊆ [𝑝] ∖ {𝑖, 𝑗}, the regression coefficient 𝛽(𝑘)
𝑖,𝑗|𝑆 is defined as the entry in 𝛽

(𝑘)
𝑀

corresponding to 𝑖, where 𝛽(𝑘)
𝑀 is the best linear predictor of 𝑋(𝑘)

𝑗 given 𝑋(𝑘)
𝑀 , i.e., the

minimizer of E[(𝑋
(𝑘)
𝑗 −(𝛽

(𝑘)
𝑀 )𝑇𝑋

(𝑘)
𝑀 )2] and 𝑀 := {𝑖}∪𝑆. Hence, 𝛽(𝑘)

𝑖,𝑗|𝑆 can be computed

in closed form. Note that 𝐵(𝑘)
𝑖𝑗 corresponds to a particular regression coefficient,

namely when 𝑆 = Pa(𝑘)(𝑗) ∖ {𝑖}, where Pa(𝑘)(𝑗) denotes the parents of node 𝑗 in 𝒢(𝑘).

This means that we can determine whether 𝐵(1)
𝑖𝑗 = 𝐵

(2)
𝑖𝑗 without learning each graph

𝒢(𝑘), namely by testing subsets 𝑆: if there exists a subset 𝑆 such that 𝛽(1)
𝑖,𝑗|𝑆 = 𝛽

(2)
𝑖,𝑗|𝑆,

then 𝐵(1)
𝑖𝑗 = 𝐵

(2)
𝑖𝑗 and hence the edge (𝑖, 𝑗) /∈ ∆̃. In fact, it turns out that it is sufficient

to consider conditioning sets 𝑆 ⊆ 𝒞 (Wang et al., 2018b).

Step 3: Orienting edges in the difference causal graph. All edge directions

that are identifiable from observational data are obtained by testing for invariance of

residual variances. More precisely, we direct edges in the skeleton of the difference-

DAG ∆̃ using Algorithm 3. Similar to many prominent causal inference algorithms

such as the PC (Spirtes et al., 2000) and GES (Meek, 1997) algorithms, we may not

be able to determine the directions of all edges in ∆̃, since in general, the difference-

DAG ∆ is not completely identifiable. In fact, we are able to identify the direction of

all edges adjacent to nodes whose internal node variances are unchanged across the

two conditions, i.e. for which 𝜎
(1)
𝑖 = 𝜎

(2)
𝑖 (Wang et al., 2018b). Hence the output of

the DCI algorithm is a partially directed acyclic graph, which contains both directed

and undirected edges. Edge directions in the difference-DAG are determined by cal-

culating residual variances (𝜎
(𝑘)
𝑗|𝑆)2 and testing whether they are invariant, i.e. whether

(𝜎
(1)
𝑗|𝑆)2 = (𝜎

(2)
𝑗|𝑆)2, again using an F-test. Given 𝑗 ∈ [𝑝] and 𝑆 ⊆ [𝑝] ∖ {𝑗}, the residual
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Algorithm 3 Directing edges in the difference-DAG (dci_orient function)

Input: Sample data 𝑋̂(1), 𝑋̂(2), estimated skeleton ∆̃ and conditioning set 𝒞,
maximum conditioning set size 𝑟.
Output: Estimated difference-DAG ∆̂.
Set ∆̂ := ∅;
for conditioning set size 𝑘 = 1, . . . , 𝑟 do

Set 𝒱 to all nodes 𝑗 incident to at least one undirected edge in ∆̃
For each 𝑗 ∈ 𝒱 , let 𝑝𝑗 = max𝑆⊆𝒞∖{𝑗}:|𝑆|=𝑘 pval(𝜎

(1)
𝑗|𝑆 = 𝜎

(2)
𝑗|𝑆)

while 𝒱 ≠ ∅ do
Let 𝑗 = arg max𝑗′∈𝒱 𝑝𝑗
If 𝑝𝑗 > 𝛼, set the corresponding 𝑆 as the parent set for 𝑗 in ∆̂, and the
remaining adjacent nodes to 𝑗 as its children in ∆̂, as long as this does not
create any cycles or contradict any existing edges.
Let 𝒱 = 𝒱 ∖ {𝑗}

end while
end for
Orient as many undirected edges as possible via graph traversal using the following
rule:

Orient 𝑖− 𝑗 as 𝑖→ 𝑗 whenever there is a chain 𝑖→ ℓ1 → · · · → ℓ𝑡 → 𝑗.

variance (𝜎
(𝑘)
𝑗|𝑆)2 is defined as the variance of the regression residual when regressing

𝑋
(𝑘)
𝑗 onto the random vector 𝑋(𝑘)

𝑆 . In fact it holds that 𝜎(1)
𝑖 = 𝜎

(2)
𝑖 if and only if

there exists a subset 𝑆 ⊆ 𝒞 ∖ {𝑖} such that 𝜎(1)
𝑖|𝑆 = 𝜎

(2)
𝑖|𝑆 and if 𝑖 → 𝑗 in ∆ then 𝑗 /∈ 𝑆,

whereas if 𝑗 → 𝑖 in ∆ then 𝑗 ∈ 𝑆 (Wang et al., 2018b). Hence determining condition-

ing sets that lead to the invariance of residual variances can be used to orient some

of the edges in the difference-DAG ∆. In order to ensure that the results are not

dependent on the order in which one iterates over nodes, Algorithm 3 simultaneously

considers all nodes at each level of conditioning set size. In Algorithm 3 we note

that pval(𝜎
(1)
𝑗|𝑆 = 𝜎

(2)
𝑗|𝑆) refers to the 𝑝-value obtained from the F-test to determine the

invariance of residual variances.

Example. We end the description of the main three steps of the DCI algorithm

with an example, shown in Fig. 5-2. Suppose that 𝒢(1) and 𝒢(2) are two true but

unknown gene regulatory networks governing genes 1, 2, and 3 corresponding to

two different biological conditions. Let 𝐵(1) and 𝐵(2) be the autoregressive matrices

defined by the edge weights of 𝒢(1) and 𝒢(2) and let 𝜖(𝑘) ∼ 𝒩 (0, 1). Given enough
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Figure 5-2: Example of the DCI algorithm for 3 nodes.

samples from the model, we expect that DCI will find the true difference between

𝒢(1) and 𝒢(2), i.e. that there is an edge 2 → 3 with a changed weight. First, we can

initialize DCI with the complete graph as the difference undirected graph and let the

conditioning set 𝒞 be the set of all nodes. Second, the skeleton of the difference causal

graph is determined. For the 3-node example in Fig. 5-2, for the changed edge 2 − 3

observe that given enough samples the regression coefficients would be estimated as

𝛽
(1)
2,3|{1} = 0.2 and 𝛽

(2)
2,3|{1} = 0.4, so 𝛽(1)

2,3|{1} ̸= 𝛽
(2)
2,3|{1} and in fact, for all sets of nodes

𝑆 ⊆ 𝒞, 𝛽(1)
2,3|𝑆 ̸= 𝛽

(2)
2,3|𝑆. While, for example, for unchanged edge 1 − 3, there exists

a set 𝑆 = {2} such that 𝛽(1)
1,3|{2} = 𝛽

(2)
1,3|{2} = 0.5. This observation motivates testing

invariance of regression coefficients to infer the skeleton of the difference graph and

deleting edges with invariant regression coefficients. Third, the edges in the skeleton

of the difference causal graph are oriented. In the 3-node example in Fig. 5-2, 2 → 3

is the correct orientation for the edge 2− 3. Observe that the residual variances such

as 𝜎(1)
3|{1,2} = 𝜎

(2)
3|{1,2} = 1 are invariant when node 2 (a parent of node 3) ∈ 𝑆, while

𝜎
(1)
3|𝑆 ̸= 𝜎

(2)
3|𝑆 when 2 /∈ 𝑆, which motivates using invariance between residual variances

to determine edge orientations.

Stability selection to obtain robust difference gene regulatory network.

Running DCI requires choosing several hyperparameters, namely the ℓ1-regularizer

for estimating the difference undirected graph via KLIEP (Liu et al., 2017) or a

significance level for the constraint-based method as well as the significance levels for

hypothesis testing of invariance of regression coefficients as well as residual variances.

We implemented DCI with stability selection to address the issue of choosing the

correct hyperparameters. Stability selection was introduced by (Meinshausen and

Bühlmann, 2010) and has been successfully applied in tandem with other causal
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Algorithm 4 DCI with stability selection (dci_stability_selection function)

Input: Sample data 𝑋̂(1), 𝑋̂(2), set of tuning parameters Λ, number of subsamples
𝑁 of size given by the fraction 𝑓 of all samples, and threshold 𝜋thr for choosing
stable variables.
Output: Stable estimate of difference-DAG ∆̂stable.
for each 𝜆 in Λ do

for each 𝑖 in 1, . . . , 𝑁 do
Generate subsamples of the two datasets, 𝑋̂(1)

(𝑖) and 𝑋̂(2)
(𝑖) (without replacement)

of size defined by the fraction 𝑓 of the full samples size.
Run Algorithm 1 on 𝑋̂(1)

(𝑖) and 𝑋̂(2)
(𝑖) with hyperparameters 𝜆 to obtain ∆̂𝜆

(𝑖).
end for
Calculate selection probability for each edge 𝑘 by Π̂𝜆

𝑘 = 1
𝑁

∑︀𝑁
𝑖=1 I{𝑘 ∈ ∆̂𝜆

(𝑖)}.
end for
Construct stable estimate of difference-DAG ∆̂stable = {𝑘 : max

𝜆∈Λ
Π̂𝜆

𝑘 ≥ 𝜋thr}.

inference methods (Meinshausen et al., 2016). The idea behind stability selection is

to choose the most stable estimate across different hyperparameters as opposed to

focusing on choosing the right value for the hyperparameters.

Algorithm 4 outlines the methodology for running DCI with stability selection. Let

Λ denote the set of considered hyperparameter values consisting of ℓ1 regularizers for

KLIEP or significance levels for the constraint-based method, significance levels for

hypothesis testing of invariance of regression coefficients and significance levels for

hypothesis testing of invariance of residual variances. Given a particular 𝜆 ∈ Λ, we

can run DCI (Algorithm 1) and obtain the corresponding estimated difference causal

graph ∆̂𝜆. Stability selection relies on estimating the probability of selection of each

edge Π̂𝜆
𝑘 by running the DCI algorithm on subsamples of the data. Aggregating

selection probabilities across different tuning parameters 𝜆 ∈ Λ, we keep edges with

high selection probability as the stable set of estimated edges in the difference-DAG

∆̂stable.

Stability selection alleviates the need for the user to rely on the results from a single

hyperparameter in DCI. Instead, the user can see how the selection probability of

edges vary in comparison to each other across a range of hyperparameters. Such

a plot is shown in Figure 5-3, where the significance level for hypothesis tests in

the difference skeleton discovery phase is varied from 𝛼 = 10−5 to 𝛼 = 0.1, and the
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probability that each edge is included in the difference skeleton is given on the vertical

axis. Additionally, for each edge, we may use a heatmap to indicate the probability

that it appears in either one or the other orientation in the difference-DAG. This

provides additional information on how much the user should trust the presence of an

edge: a true edge should consistently be oriented in its correct orientation, and thus

inconsistent orientation of an edge across different subsamples of data indicates that

it is a false positive. In Figure 5-3, true positive edges are colored according to the

probability that they appear in their correct orientation, while false positive edges

are colored according to the proportion of times that they occur in an arbitrary fixed

direction. It is apparent from Figure 5-3 that the three edges (a-c) are significantly

more likely than the others to belong to the difference skeleton, and that all of these

edges have a consistent orientation, which suggests that these are true positives,

and indeed they are. Meanwhile, the fourth and fifth most likely edges (d, e) have

inconsistent orientations, and they indeed do not correspond to edges in the true DAG,

while the sixth most likely edge (f) has a more consistent orientation and is indeed

a true positive. This information allows the user to select a trade-off between false

positives and true positives that is suitable for their application, e.g. a conservative

rule which excludes any edges which themselves have inconsistent orientations or lay

below an edge with inconsistent orientations would still get three of the four true

positives correct, while more liberal rules would pick up all four true positives while

only returning a small number of false positives.

DCI with stability selection is optimized to run in parallel on multiple cores across the

different bootstrap subsamples. In addition, since the DCI skeleton learning phase

has a monotonicity property, i.e. if an edge is absent in the difference skeleton for some

𝛼, then it is absent in the difference skeleton for all 𝛼′ < 𝛼, the DCI skeleton discovery

phase is run simultaneously for all significance levels to speed up computation.

An issue that can arise in practice when applying the original DCI method to gene

expression data is due to the need to compute test statistics that depend on the inverse

of the sample covariance matrix (Wang et al., 2018b). This inverse may not exist,

since gene expression data is often high-dimensional with more genes than samples,
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in particular when the data is subsampled for stability selection, and the matrix can

have many zeros (possibly leading to variance zero for a node) due to dropout. In this

case, we use the pseudoinverse instead of the inverse to compute the test statistics.

Figure 5-3: Stability selection paths for the difference between two simulated DAGs,
with 𝑝 = 40 nodes, 𝑛 = 2, 000 samples, and 2 additions/deletions between either DAG,
where the skeleton of one of the DAGs was generated from an Erdös-Renyi model
with 2 expected neighbors per node. Each curve represents an edge in the difference
skeleton. The horizontal axis displays the significance level used for hypothesis tests
in the difference skeleton discovery phase of the method, and the vertical axis displays
the proportion of bootstrap iterations (out of 50) for which an edge was picked to
be present. For the 4 edges which belong to the true difference skeleton (curves a-c
and f), their color (varying from blue to red) indicates the probability that the edge
was oriented in the correct direction, given that it was included in the graph. For the
edges which do not belong to the true difference skeleton (such as curves d, e and g),
their color (varying from purple to green) indicates the probability that the edge was
oriented such that the node with the smaller index pointed to the larger one.

5.5 Evaluation

In this section, we compare the performance of DCI to the naive approach of running

classical causal inference algorithms such as PC (Spirtes et al., 2000) or GES (Meek,

1997) on each dataset 𝑋̂(1) and 𝑋̂(2) separately, obtaining two causal graphs and then
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taking the difference. We evaluate DCI on both synthetic and real data.

Synthetic data

We analyze the performance of our algorithm in both, the low- and high-dimensional

setting. For both settings we generated 100 realizations of pairs of upper-triangular

SEMs (𝐵(1), 𝜖(1)) and (𝐵(2), 𝜖(2)). For 𝐵(1), the graphical structure was generated

using an Erdös-Renyi model with expected neighbourhood size 𝑠, on 𝑝 nodes and

𝑛 samples. The edge weights were uniformly drawn from [−1,−0.25] ∪ [0.25, 1] to

ensure that they were bounded away from zero. 𝐵(2) was then generated from 𝐵(1)

by adding and removing edges with probability 0.1, i.e.,

𝐵
(2)
𝑖𝑗

i.i.d.∼ Ber(0.9) ·𝐵(1)
𝑖𝑗 if 𝐵(1)

𝑖𝑗 ̸=0,

𝐵
(2)
𝑖𝑗

i.i.d.∼ Ber(0.1) · Unif([−1,−.25] ∪ [.25, 1]) if 𝐵(1)
𝑖𝑗 =0.

Note that while the DCI algorithm is able to identify changes in edge weights, we

only generated DAG models that differ by edge insertions and deletions. This is to

provide a fair comparison to the naive approach, where we separately estimate the

two DAGs 𝒢(1) and 𝒢(2) and then take their difference, since this approach can only

identify insertions and deletions of edges.

In Figure 5-4 we analyzed how the performance of the DCI algorithm changes over

different choices of significance levels 𝛼. The simulations were performed on graphs

with 𝑝 = 10 nodes, neighborhood size of 𝑠 = 3 and sample size 𝑛 ∈ {103, 104}. For

Figure 5-4a and b we set 𝜖(1), 𝜖(2) ∼ 𝒩 (0,1𝑝). We compared the performance of

DCI to the naive approach, where we separately estimated the two DAGs 𝒢(1) and

𝒢(2) and then took their difference. For separate estimation we used the prominent

PC and GES algorithms tailored to the Gaussian setting. Since KLIEP requires an

additional tuning parameter, to understand how 𝛼 influences the performance of the

DCI algorithm, we here only analyzed initializations in the fully connected graph and

using the constraint-based method. Both initializations provide a provably consistent

algorithm (Wang et al., 2018b). Figures 5-4a and b show the proportion of consistently
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(a) (b)

(c)

Figure 5-4: Proportion of consistently estimated difference-DAGs for 100 realizations
per setting with 𝑝 = 10 nodes and sample size 𝑛. PC and GES is compared with
DCI initialized with the fully connected graph (DCI-FC) and using the constraint-
based method (DCI-C). (a) and (b) show the proportion of consistently estimated
difference-DAGs when considering (a) just the skeleton and (b) both skeleton and
edge orientations. 𝛼 is the significance level used for the hypothesis tests in the
algorithms. (c) shows the proportion of consistent estimates with respect to the
number of changes in internal node variances 𝑣.

estimated difference-DAGs by just considering the skeleton and both skeleton and

orientations, respectively. For PC and GES, we considered the set of edges that

appeared in one estimated skeleton but disappeared in the other as the estimated

skeleton of the difference-DAG ∆̃. In determining orientations, we considered the

arrows that were directed in one estimated CPDAG but disappeared in the other as

the estimated set of directed arrows. We used the exact recovery rate as the evaluation

criterion. Both variants of the DCI algorithm outperformed taking differences after

separate estimation. Figure 5-4a and b also show that the PC algorithm outperformed

GES, which is unexpected given previous results showing that GES usually has a
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higher exact recovery rate than the PC algorithm for estimating a single DAG. This

is due to the fact that while the PC algorithm usually estimates less DAGs correctly,

the incorrectly estimated DAGs tend to look more similar to the true model than the

incorrect estimates of GES (as also reported in (Solus et al., 2017)) and can still lead

to a correct estimate of the difference-DAG.

In Figure 5-4c we analyzed the effect of changes in the noise variances on estimation

performance. We set 𝜖(1) ∼ 𝒩 (0,1𝑝), while for 𝜖(2) we randomly picked 𝑣 nodes and

uniformly sampled their variances from [1.25, 2]. We used 𝛼 = .05 as significance

level based on the evaluation from Figure 5-4. As we increase the number of nodes

𝑖 such that 𝜖(1)𝑖 ̸= 𝜖
(2)
𝑖 , the number of edges whose orientations can be determined

decreases. This is because Algorithm 3 can only determine an edge’s orientation

when the variance of at least one of its nodes is invariant. Moreover, Figure 5-4c

shows that the accuracy of Algorithm 2 is not impacted by changes in the noise

variances.

Finally, Figure 5-5 shows the performance (using ROC curves) of the DCI algorithm

in the high-dimensional setting when initiated using KLIEP and the constraint-based

method. The simulations were performed on graphs with 𝑝 = 100 nodes, expected

neighborhood size of 𝑠 = 10, sample size 𝑛 = 300, and 𝜖(1), 𝜖(2) ∼ 𝒩 (0,1𝑝). 𝐵(2) was

derived from 𝐵(1) so that the total number of changes was 5% of the total number

of edges in 𝐵(1), with an equal amount of insertions and deletions. Figure 5-5 shows

that DCI with both initializations performs similarly well and outperform separate

estimation using GES and the PC algorithms. The respective plots for 10% change

between 𝐵(1) and 𝐵(2) are given in Supplementary Figure D-1.

Real data analysis

We evaluate DCI on real gene expression data. First, we evaluate DCI for learning

the causal difference gene regulatory network on single-cell gene expression data and

quantify its performance in predicting the effects of gene perturbations. Note that

a major advantage of our work is the ability to learn a causal as opposed to an

undirected graph, which enables us to predict the effects of interventions on genes
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(a) (b)

Figure 5-5: High-dimensional evaluation of the DCI algorithm on synthetic data;
(𝑎) − (𝑏) are the ROC curves for estimating the (a) skeleton of the difference-DAG
and (b) the difference-DAG with 𝑝 = 100 nodes, expected neighbourhood size 𝑠 = 10,
𝑛 = 300 samples, and 5% change between DAGs.

and evaluate them against true effects of interventions, measured experimentally.

In the following, we assess the performance of DCI on two datasets collected via

CROP-seq (Datlinger et al., 2017) and Perturb-seq (Dixit et al., 2016). Both of these

experimental techniques collect, in a pooled fashion, single-cell gene expression data

with no interventions (observational data) as well as single-cell gene expression data

where some genes were knocked out via CRISPR/Cas9 (interventional data). We use

the observational data to learn a causal difference gene regulatory network via DCI

and evaluate this graph against the held-out CRISPR/Cas9 gene knockouts, similar

in spirit to prior evaluations of causal inference methods (Wang et al., 2017).

As a final evaluation, we apply DCI to bulk gene expression data of patients with

ovarian cancer with different survival rates. We provide a qualitative evaluation of

our method by considering prior literature.

CROP-seq: Naive versus activated T cells

We test our method on gene expression data collected via CROP-seq for naive and

activated Jurkat T cells. In particular, we use DCI to learn the differences in the gene

regulatory networks as a result of T-cell activation. The CROP-seq data includes 615
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observational naive Jurkat T cells and 1320 observational activated Jurkat T cells.

As in the original CROP-seq study (Datlinger et al., 2017), we normalize the gene

expression of each cell by the total number of reads corresponding to the cell, scale

expression by 104 and apply a log2(𝑥 + 1) transformation to the data. The data is

mean-centered prior to applying our algorithm. We follow (Datlinger et al., 2017) in

focusing on genes most relevant to T-cell activation and keep genes that have non-zero

variance, resulting in 31 genes.

We apply DCI on the observational naive and activated gene expression data to di-

rectly obtain the causal difference gene regulatory network (difference-DAG), which

contains edges that appeared, disappeared or changed weight between the two cell

states. We report the performance of DCI when initialized in the complete graph,

initialized with the difference undirected graph estimated via KLIEP (ℓ1 regulariza-

tion set to 0.005) and with the constraint-based method (significance threshold set

to 0.005). Additionally, we compared the performance of DCI to the naive approach

of running classical causal inference algorithms such as PC (Spirtes et al., 2000) or

GES (Meek, 1997) on each dataset (naive and activated) separately, obtaining two

causal graphs and then taking the difference. We consider an edge to be in the

difference-DAG if the edge was directed in one causal graph and absent in the other

causal graph.

As previously mentioned, we can use gene knockouts, collected as part of the CROP-

seq study for evaluation of the causal difference gene regulatory network. Note that

if perturbing a gene affected the gene expression distribution of another gene, this

means that the perturbed gene is upstream of the affected gene in the gene regulatory

network. In the following we describe how we estimate the differences in the effects of

CRISPR/Cas9 perturbations on genes between the two states (naive and activated)

to construct an ROC curve for evaluating the DCI algorithm versus naive applications

of PC and GES.

First, for each condition (naive and activated), we separately obtain a matrix that

describes which gene knockouts had an effect on which genes (Figures 5-6a and 5-

6b). Then, we take the difference between these matrices to determine the differences
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in the effects of perturbations (Figure 5-6c). In order to construct the matrices in

Figures 5-6a and 5-6b, for each condition, we estimate the impact of each gene deletion

𝑗 ∈ {1, . . . , 𝑑} on each of the measured genes 𝑖 ∈ {1, . . . , 𝑝} by testing whether the

observational distribution (no intervention) of the measured gene 𝑖 is significantly

different from the interventional distribution of the measured gene 𝑖 when gene 𝑗 was

deleted using a Wilcoxon rank-sum test. We form a 𝑝 × 𝑑 matrix of p-values, 𝑄,

from the Wilcoxon rank-sum tests. Next, each column 𝑗 in 𝑄 is thresholded using

the entry 𝑞𝑗𝑗, which is the p-value obtained by comparing the distribution of the gene

expression level of a deleted gene versus its distribution without intervention. The

rationale is that knocking out a particular gene should result in a change in its own

gene expression distribution and can be used as a baseline to threshold the other

entries in the column. In particular, we conclude that 𝑞𝑖𝑗 is significant if and only

if 𝑞𝑖𝑗 ≤ 𝑞𝑗𝑗. After thresholding the matrix 𝑄 in this manner, we obtain the binary

matrices in Figures 5-6a and 5-6b, which summarize the effects of the interventions.

By forming the difference of these binary matrices we obtain the binary matrix 𝑄Δ

in Figure 5-6c. Since not all CRISPR/Cas9 knockouts were effective, here we focused

our analysis on the top most effective interventions, which were prioritized based on

the maximum 𝑞𝑗𝑗 p-value (taken over two conditions), using the mean p-value as the

cutoff to filter interventions.

We use the matrix of differences in the effects of interventions to evaluate DCI, PC

and GES by constructing an ROC curve. If the predicted difference-DAG has a

directed edge from 𝑗 to 𝑖, we count this edge as a true positive if 𝑄Δ
𝑖𝑗 = 1, i.e. there

was a difference in the effect of knocking out gene 𝑗 on gene 𝑖 between the two

conditions. If the predicted difference-DAG has a directed edge from 𝑗 → 𝑖 but

𝑄Δ
𝑖𝑗 = 0, the edge is counted as a false positive. Note that this definition of a false

positive is overly conservative, since we may have 𝑄Δ
𝑖𝑗 = 0 if 𝑞𝑖𝑗 is significant in both

matrices, but the magnitude of the effect changes. In other words, 𝑄Δ
𝑖𝑗 = 1 only

captures additions/deletions of edges, but does not capture changes in edge weights.

We construct an ROC curve by varying the parameters of DCI, PC and GES. The

ROC curve in Figure 5-7 shows that DCI outperforms PC and GES in predicting the
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(a) (b) (c)

Figure 5-6: Effects of gene deletions estimated from CROP-seq data; (a) naive T
cells, (b) activated T cells, and (c) the difference between the binary matrices in (a)
and (b), i.e., the difference in the effects of each gene deletion on the measured genes
between naive and activated T cells; this binary matrix is taken to be the ground
truth for constructing ROC curves.

Figure 5-7: ROC plot evaluating DCI (initialized in the undirected difference graph
estimated via the constraint-based method, KLIEP as well as in the complete graph),
GES and PC on the CROP-seq data for predicting the differences in the effects of
gene knockouts. Each point in the ROC curve represents a run with different tuning
parameters for DCI, PC and GES.
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effects of interventions on this single-cell gene expression dataset. In order to quantify

the improvement of the DCI algorithm over the naive approaches, we report a 𝑝-value

quantifying the difference from random guessing. On the CROP-seq dataset, the PC

algorithm achieved a 𝑝-value of 0.84, GES a 𝑝-value of 0.99, DCI_complete a 𝑝-value

of 1.1 × 10−7, DCI_KLIEP a 𝑝-value of 3.0 × 10−9, and DCI_constraint a 𝑝-value of

1.5×10−10. The 𝑝-value is calculated by sampling causal graphs from an Erdös-Renyi

model and quantifying the number of true and false positives. For each false positive

level, we created a distribution over true positives based on the sampled random causal

graphs and calculated the 𝑝-value for the number of true positives obtained from the

PC, GES and DCI algorithms. The 𝑝-values were combined using Fisher’s method and

this combined 𝑝-value was used for evaluating the causal algorithms. In Figure 5-8,

we include examples of the estimated difference gene regulatory networks inferred via

DCI (our algorithm) and GES (the best performing baseline). The 𝑝-value analysis

indicates that PC and GES do not produce good results - this is expected because

both methods need to infer the full (potentially dense) gene regulatory networks for

each condition as opposed to a likely sparse difference gene regulatory network. One

of the main motivations for the DCI algorithm is the fact that high-degree nodes pose

a challenge even for state-of-the-art causal inference algorithms; the computational

complexity and statistical guarantees of these algorithms depend exponentially on the

maximum in-degree of the graph (Chickering and Meek, 2015) and the detrimental

effect of large neighborhood size has also been observed empirically (Solus et al.,

2017). Since gene regulatory networks are believed to have many high-degree nodes,

this may explain the poor performance of PC and GES on such data. On the other

hand, the difference gene regulatory networks may likely contain less high-degree

nodes, which could explain the improved performance of DCI as compared to PC and

GES.

Perturb-seq: Dendritic cells at 0 versus 3 hours post-stimulation

We perform a similar evaluation of DCI on gene expression data collected as part

of the Perturb-seq dataset (Dixit et al., 2016). Gene expression data was collected
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(a)

(b)

Figure 5-8: Examples of difference gene regulatory networks between naive and acti-
vated Jurkat T cells, estimated from the CROP-seq data. Difference gene regulatory
network inferred via (a) our algorithm, DCI, initialized with KLIEP, which directly
learns the difference causal graph from two datasets and (b) baseline causal structure
discovery algorithm, GES, which estimates two gene regulatory networks separately
and then takes the difference. Blue edges indicate true positives and pink edges
indicate false positives. Black edges are the edges inferred to be in the difference
gene regulatory network for which ground truth is not available. Graphs were chosen
such that the number of false positives is the same across the two methods (16 false
positives).
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from bone-marrow derived dendritic cells (BMDCs) pre-stimulation (0 hours) and

after stimulation with LPS (3 hours). We applied DCI to learn the difference gene

regulatory network between these two time points. We used the same procedure for

pre-processing Perturb-seq data as we used for CROP-seq. Additionally, we filtered

cells for quality, only keeping cells with at least two nonzero counts (CROP-seq dataset

already satisfied this filtering constraint). The filtered Perturb-seq data includes 940

observational cells collected at 0 hours and 990 observational cells collected at 3

hours. We followed (Dixit et al., 2016) in focusing on 24 transcription factors that

are important for dendritic cell regulation.

(a) (b) (c)

Figure 5-9: Effects of gene deletions estimated from Perturb-seq data; (a) before
stimulation with LPS, (b) after stimulation with LPS, and (c) the difference between
the binary matrices in (a) and (b), i.e., the difference in the effects of each gene
deletion on the measured genes before and after stimulation with LPS; this binary
matrix is taken to be the ground truth for constructing ROC curves.

Using the same procedure as performed on the CROP-seq dataset, we constructed

the binary matrices describing the effects of gene deletions on measured genes for the

two time points (0 and 3 hours) separately, shown in Figures 5-9a and 5-9b, and then

determined the difference in the effects of the interventions between the two time

points in Figure 5-9c. As above, we constructed an ROC curve, taking the differences

in the effects of interventions as the ground truth. The ROC curve (Figure 5-10) shows

that in the majority of settings, DCI outperforms the naive approach of estimating

two causal graphs separately via PC or GES and taking the difference of the output

graph. On the Perturb-seq dataset, the PC algorithm achieved a 𝑝-value of 0.91, GES
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a 𝑝-value of 0.5, DCI_complete a 𝑝-value of 5.1 × 10−9, DCI_KLIEP a 𝑝-value of

3.1 × 10−9, and DCI_constraint a 𝑝-value of 2.9 × 10−7. Figure 5-11 shows examples

of the estimated difference gene regulatory networks inferred via DCI (our algorithm)

and GES (best performing baseline).

Figure 5-10: ROC plot evaluating DCI (initialized in the undirected difference graph
estimated via the constraint-based method, KLIEP as well as in the complete graph),
GES and PC on the Perturb-seq data for predicting the differences in the effects of
gene knockouts. Each point in the ROC curve represents a run with different tuning
parameters for DCI, PC and GES.

Ovarian cancer: patients with different survival rates

We tested our method on an ovarian cancer data set (Tothill et al., 2008) that contains

two groups of patients with different survival rates and was previously analyzed using

the DPM algorithm in the undirected setting (Zhao et al., 2014). We followed the

analysis of (Zhao et al., 2014) and applied the DCI algorithm to gene expression data

from the apoptosis and TGF-𝛽 pathways. Figure 5-12 shows the estimated difference

causal graphs. In the apoptosis pathway we identified two hub nodes: BIRC3, also

discovered by DPM, is an inhibitor of apoptosis (Johnstone et al., 2008) and one

of the main disregulated genes in ovarian cancer (Jönsson et al., 2014); PRKAR2B,

not identified by DPM, has been shown to be important in disease progression in

ovarian cancer cells (Cheadle et al., 2008) and an important regulatory unit for cancer

cell growth (Chiaradonna et al., 2008). In addition, the RII-𝛽 protein encoded by
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(a)

(b)

Figure 5-11: Examples of difference gene regulatory networks of dendritic cells before
and after stimulation with LPS, estimated from the Perturb-seq data. Difference gene
regulatory network inferred via (a) our algorithm, DCI, initialized with KLIEP, which
directly learns the difference causal graph from two datasets and (b) baseline causal
structure discovery algorithm, GES, which estimates two gene regulatory networks
separately and then takes the difference. Blue edges indicate true positives and pink
edges indicate false positives. Black edges are the edges inferred to be in the difference
gene regulatory network for which ground truth is not available. Graphs were chosen
such that the number of false positives is the same across the two methods (5 false
positives).
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PRKAR2B has been considered as a therapeutic target for cancer therapy (Cho-

Chung, 1999; Mikalsen et al., 2006), thereby confirming the relevance of our findings.

With respect to the TGF-𝛽 pathway, the DCI method identified THBS2 and COMP

as hub nodes. Both of these genes have been implicated in resistance to chemotherapy

in epithelial ovarian cancer (Marchini et al., 2013) and were also recovered by DPM.

Overall, the difference undirected graph discovered by DPM is comparable to the

difference-DAG found by our method. More details on this analysis are given in

Appendix D along with graphs resulting from naively applying PC and GES and

computing differences in Fig. D-2.

(a) (b)

Figure 5-12: Estimate of the difference-DAG between the two groups of ovarian cancer
patients for (a) the apoptosis and (b) TGF-𝛽 pathways. The black lines represent
the edges discovered by both our method and DPM, the red lines represent the edges
discovered only by our method, and the grey lines represent the undirected edges
discovered only by DPM.

Time complexity comparison

We assess the run time of DCI as compared to the naive approach of estimating

each graph separately via PC or GES and then taking the difference on simulated

data. For this, we generate 10 different pairs of ground truth causal graphs and

sample 10 pairs of datasets from these graphs. For the generation of causal graphs,

we sample a weighted adjacency matrix 𝐵(1) using an Erdös-Renyi model with ex-

pected neighbourhood size of 10, on 𝑝 nodes. The weights are uniformly drawn from

[−1,−0.25] ∪ [0.25, 1] to ensure that they are bounded away from zero. The second

weighted adjacency matrix 𝐵(2) is constructed from 𝐵(1) by adding and removing 5
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edges (10 changes in total). We sample datasets 𝑋̂(1) and 𝑋̂(2) from the distribution

induced by the Gaussian DAG models with 𝑛 = 100, 000 samples. Next, we run DCI

(𝛼undirected = 0, 𝛼skeleton = 0.1, 𝛼orient = 0.1), PC (𝛼 = 1 × 10−6) and GES (𝜆 = 1000)

on 𝑋̂(1) and 𝑋̂(2) and evaluate the CPU time (in seconds) as well as the number of

true and false positives averaged over the 10 simulations. As shown in Figure 5-13,

DCI is much faster than PC and GES (in terms of mean CPU time) and significantly

more accurate as indicated by the average number of true and false positives for each

setting. For example, with 500 nodes, on average, DCI runs in 45 seconds and results

in 9 true positives (out of 10 possible) and 1 false positive, while GES runs in 0.67

hours and results in 9.67 true positives and 1529.56 false positives, and PC runs in 4

hours and results in 2.33 true positives and 187.56 false positives. Figure 5-14 shows

the CPU time of DCI for varied parameter settings, which control the sparsity of the

output given by the different steps in the DCI algorithm.

Figure 5-13: CPU time, in seconds, averaged over 10 simulations for variable input
size. Each simulation consisted of 𝑝 ∈ {100, 250, 500} nodes, 10 expected neighbors,
10 changed edges between the graphs and 100,000 samples. DCI was run with 𝛼 = 0
for undirected graph estimation via the constraint-based method, 𝛼 = 0.1 for skeleton
estimation, and 𝛼 = 0.1 for inferring the edge orientations. PC was run with 𝛼 =
1 × 10−6 and GES was run with 𝜆 = 1000. Each point is annotated with a tuple
consisting of the average number of true and false positives.
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(a) (b)

Figure 5-14: CPU time, in seconds, averaged over 10 simulations for varying tuning
parameters (sparsity). Each simulation consisted of 𝑝 = 100 nodes, 10 expected
neighbors, 10 changed edges between the graphs and 100,000 samples. DCI was run
with (a) 𝛼 = 0 and (b) 𝛼 = 0.01 for undirected graph estimation via the constraint-
based method, 𝛼 ∈ {0.001, 0.1} for skeleton estimation, and 𝛼 ∈ {0.01, 0.1} for
inferring the edge orientations. Each square is annotated with the average CPU time
as well as the number of true and false positives.

5.6 Discussion

We presented an algorithm with an accompanying Python package for directly esti-

mating the difference between two causal DAG models given i.i.d. samples from each

model. To our knowledge this is the first such algorithm and is of particular interest

for learning differences between related gene regulatory networks, where each net-

work might be large and complex, while the difference is sparse. We evaluated DCI

on synthetic and real gene expression data, and showed that it outperforms the naive

approach of separately estimating two DAG models and taking their difference. We

applied our algorithm to gene expression data in bulk and from single cells, show-

ing that DCI is able to predict the effects of interventions and identify biologically

relevant genes. This purports DCI as a promising method for identifying interven-

tion targets that are causal for a particular phenotype for subsequent experimental

validation.
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5.7 Future directions

In order to make DCI scale to networks with thousands of nodes, an important

challenge is to reduce the number of hypothesis tests. Currently the time complexity

(given by the number of hypothesis tests) of DCI scales exponentially with respect

to the size of 𝒞 (Wang et al., 2018b). The PC algorithm overcomes this problem by

dynamically updating the list of CI tests given the current estimate of the graph. It is

an open problem whether one can similarly reduce the number of hypothesis tests for

DCI. Furthermore, in many applications (e.g., when comparing normal to diseased

states), there is an imbalance of data/prior knowledge for the two models and it is

of interest to develop methods that can make use of this for learning the differences

between the two models.

Next, while there has been some work on learning causal graphs with cycles (see

e.g. Richardson, 2019), the majority of causal inference algorithms, including DCI,

assume acyclicity. This assumption stems from the fact that a cause always precedes

its effect and thus with sufficient time resolution there would be no feedback loops.

However, it is well known that feedback loops are an important feature of biological

networks. Therefore, the causal graphs obtained from the methods used in this work

(DCI, PC and GES) do not represent the true gene regulatory network and should

merely be viewed as useful models for downstream tasks. In particular, learning a

DAG allows predicting the effect of interventions, which is one of our main motiva-

tions and also how we evaluated the learned networks. While some algorithms have

been developed that allow for cycles, this comes at a significant computational cost.

Extending our method to allow for feedback loops is an interesting area for future

work.

DCI is preferable to separate estimation methods like PC and GES since it can infer

not only edges that appear or disappear, but also edges with changed edge weights.

However, unlike separate estimation methods, DCI relies on the assumption that the

two DAGs share a topological order. Especially in the presence of feedback loops,

this assumption may be violated in real biological systems. For example, while in one
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condition, gene A might control gene B, in a different condition, the other part of

the cycle may be activated (gene B controls gene A). Developing methods to directly

estimate the difference of two DAGs that do not share a topological order is of great

interest for future work.

Another limitation of our method is the assumption of a linear-Gaussian model for

gene expression data, which may exhibit complicated nonlinear relationships. Indeed,

prior work (Wang et al., 2017) has demonstrated the utility of removing the linear

Gaussian assumption when working with gene expression data. While the present

work does not investigate nonlinear models, it would be straightforward to extend the

current algorithm to the nonlinear setting. For instance, by allowing each function

in the structural causal model to be a generalized additive model (GAM), we can

associate a vector to each edge, representing the coefficients of each basis function in

the model. Then, we can define the difference-DAG by including an edge whenever at

least one of these coefficients changes between two settings. Finally, we could modify

the algorithm to use GAM regression and hypothesis tests for the invariance of this

whole vector. For more complicated models with interaction terms, the difference-

DAG would need to be defined slightly differently, but the same ideas still carry

through. As for the assumption of Gaussian noise, our test statistic remains valid

even for non-Gaussian noise, but we may no longer be able to compute confidence

intervals, in which case stability selection may be even more important to obtain

robust results.

Furthermore, while we described our framework in the setting with no latent variables,

our methodology extends to the setting where the edge weights and noise terms of

all latent variables remain invariant across the two DAGs. However, for real world

problems, latent variables might have different effects across the two conditions -

extending our framework to this situation is of considerable interest for future work.

Finally, since interventional data from CRISPR/Cas9 is becoming more commonplace

in biology, it would be valuable to extend DCI to take advantage of interventional

data in addition to the observational data.
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Chapter 6

Causal Network Models of

SARS-CoV-2 Expression and Aging

to Identify Candidates for Drug

Repurposing

Parts of this chapter have been accepted for publication to Nature Communications:

Belyaeva, A.*, Cammarata, L.*, Radhakrishnan, A.*, Squires, C., Yang, K. D., Shiv-

ashankar, G. V., & Uhler, C. (2020). Causal Network Models of SARS-CoV-2 Ex-

pression and Aging to Identify Candidates for Drug Repurposing.
* These authors contributed equally. My contributions were to design and implement

algorithms, perform method and data analysis, and write the manuscript.

6.1 Summary

Given the severity of the SARS-CoV-2 pandemic, a major challenge is to rapidly

repurpose existing approved drugs for clinical interventions. While a number of data-

driven and experimental approaches have been suggested in the context of drug re-

purposing, a platform that systematically integrates available transcriptomic, pro-

teomic and structural data is missing. More importantly, given that SARS-CoV-2
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pathogenicity is highly age-dependent, it is critical to integrate aging signatures into

drug discovery platforms. We here take advantage of large-scale transcriptional drug

screens combined with RNA-seq data of the lung epithelium with SARS-CoV-2 in-

fection as well as the aging lung. To identify robust druggable protein targets, we

propose a principled causal framework that makes use of multiple data modalities.

Our analysis highlights the importance of serine/threonine and tyrosine kinases as

potential targets that intersect the SARS-CoV-2 and aging pathways. By integrating

transcriptomic, proteomic and structural data that is available for many diseases, our

drug discovery platform is broadly applicable. Rigorous in vitro experiments as well

as clinical trials are needed to validate the identified candidate drugs.

6.2 Introduction

Candidates for drug repurposing have mainly been identified based on an understand-

ing of their pharmacology or based on retrospective analyses of their clinical effects.

Recently, also more systematic computational methods combined with large-scale ex-

perimental screens have been employed (Pushpakom et al., 2019). The Connectivity

Map (CMap) containing gene expression profiles generated by dosing thousands of

small molecules, including many FDA approved compounds, in a number of human

cell lines has been particularly valuable in this regard (Subramanian et al., 2017).

Common computational approaches include signature matching, where the signature

of a drug is determined for example using CMap and compared to the reverse sig-

nature of a disease to identify drugs with high correlation (Dudley et al., 2011). In

addition, approaches to identify drug or disease networks based on known pathways,

protein-protein interactions, gene expression or genome-wide association studies have

also been employed (Greene and Voight, 2016; Smith et al., 2012; Gordon et al.,

2020). To capitalize on the abundance of data, it is critical to develop computational

platforms that can integrate different data modalities including gene expression, drug

targets and signatures, as well as protein-protein interactions. In addition, a drug rep-

resents an intervention in the system and only a causal framework allows predicting
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the effect of an intervention. It is therefore critical to capitalize on recent advances

in causal inference (Pearl, 2009; Spirtes et al., 2000) in particular with respect to the

use of interventional data (Eberhardt, 2007; Meinshausen et al., 2016; Wang et al.,

2017; Yang et al., 2017b).

Given the current coronavirus disease 2019 (COVID-19) crisis, there is an urgent need

for the development of robust drug repurposing methods. Coronaviruses belong to

the family of positive-strand RNA-viruses. While most coronaviruses infect the upper

respiratory tract and cause mild illness, they can have serious effects as exemplified

by the severe acute respiratory syndrome coronavirus (SARS-CoV) epidemic and now

the SARS-CoV-2 pandemic (de Wit et al., 2016). Recent studies have shown that

coronaviruses use canonical inflammatory pathways (e.g. NF-𝜅B) of the host cell

for their replication, while simultaneously dampening their outward inflammatory

signaling (Fung and Liu, 2019; Poppe et al., 2017). This delicate partial up and

down-regulation of inflammatory pathways by coronaviruses has represented major

challenges for therapeutic interventions (Yang et al., 2017a). While the infection rates

for these viruses are similar among different age groups, the morbidity and fatality

rates are significantly higher in the aging population (Wu et al., 2020; Onder et al.,

2020). The respiratory system of aging individuals is characterized by alterations of

tissue stiffness (Sicard et al., 2018). Notably, recent micropatterning experiments have

shown that cells subjected to substrates of different stiffness stimulated with the same

cytokine (TNF-𝛼) exhibit different downstream NF-𝜅B signaling (Mitra et al., 2017).

In a recent commentary, we outlined that the cross-talk between coronavirus infection

and cellular aging could play a critical role in the replication of the virus in host cells

by differentially intersecting with NF-𝜅B signaling (Uhler and Shivashankar, 2020b).

This suggests that efforts for drug repurposing should analyze SARS-CoV-2 infected

host cell expression programs in conjunction with aging-dependent programs. While

a number of studies are underway that investigate viral integration/replication and

interactions with the host cell (Gordon et al., 2020; Zhou et al., 2020), to our knowl-

edge the interplay of SARS-CoV-2 host response and aging has not been explored in

the context of drug development and repurposing.
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In this study, we propose a novel computational platform for drug repurposing, which

integrates transcriptomic, proteomic and structural data with a principled causal

framework, and we apply it in the context of SARS-CoV-2 (Fig. 6-1, Supplementary

Fig. E-1). Given the age-dependent pathogenicity of SARS-CoV-2, we first identify

genes that are differentially regulated by SARS-CoV-2 infection and aging based on

bulk RNA-seq data from (Blanco-Melo et al., 2020; Carithers et al., 2015). We then

use an autoencoder, a type of artificial neural network used to learn data represen-

tations in an unsupervised manner (Baldi, 2012; LeCun et al., 2015), to embed the

CMap data together with the SARS-CoV-2 expression data for signature matching

to obtain an ordered list of FDA approved drugs. In particular, we show that over-

parameterized autoencoders align drug signatures from different cell types and thus

allow constructing synthetic interventions (Agarwal et al., 2019; Abadie et al., 2010)

by translating the effect of a drug from one cell type to another similar in spirit but

different from (Hodos et al., 2018), where a tensor-based approach was used. We

then construct a combined SARS-CoV-2 and aging interactome using a Steiner tree

analysis to connect the differentially expressed genes within a protein-protein inter-

action network (De Las Rivas and Fontanillo, 2010; Huang and Fraenkel, 2009). By

intersecting the resulting combined SARS-CoV-2 and aging interactome with the tar-

gets of the top ranked FDA approved drugs from the previous analysis, we identify

serine/threonine and tyrosine kinases as potential drug targets for therapeutic inter-

ventions. Causal structure discovery methods applied to the combined SARS-CoV-2

and aging interactome show that the identified protein kinase inhibitors such as axi-

tinib, dasatinib, pazopanib and sunitinib target proteins that are upstream from genes

that are differentially expressed in SARS-CoV-2 infection and aging, thereby validat-

ing these drugs as being of particular interest for the repurposing against COVID-19,

post-infection. While we apply our computational platform in the context of SARS-

CoV-2, our algorithms integrate data modalities that are available for many diseases,

thereby making them broadly applicable.
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Figure 6-1: Overview of computational drug repurposing platform for COVID-19.
(a) COVID-19 is associated with more severe outcomes in older individuals, suggest-
ing that gene expression programs associated with SARS-CoV-2 and aging must be
analyzed in tandem. A potential hypothesis regarding the cross-talk between SARS-
CoV-2 and aging relies on changes in tissue stiffness in older individuals, outlined
in (Uhler and Shivashankar, 2020b). (b) In order to identify potential drug candi-
dates for COVID-19, we integrated RNA-seq data from SARS-CoV-2 infected cells
(obtained from (Blanco-Melo et al., 2020)) and RNA-seq data from the lung tissue
of young and old individuals (collected as part of the GTEx project (Carithers et al.,
2015)) with protein-protein interaction data (from (Razick et al., 2008)), drug-target
data (from DrugCentral (Ursu et al., 2019)) and the large-scale transcriptional drug
screen CMap (Subramanian et al., 2017). (c) Based on this data, we develop a novel
drug repurposing pipeline, which consists of first, mining relevant drugs by matching
their signatures with the disease signature in the latent embedding obtained by an
overparameterized autoencoder and sharing data across cell types to obtain missing
drug signatures via synthetic interventions. Second, we identify a disease interactome
within the protein-protein interaction network by identifying a minimal subnetwork
that connects the genes differentially expressed by SARS-CoV-2 infection and aging
using a Steiner tree analysis. Third, we validate the drugs identified in the first step
that have targets in the interactome by identifying the potential drug mechanism
using causal structure discovery.
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6.3 Results

Differential expression analysis identifies genes that intersect

the SARS-CoV-2 host response and aging pathways

Since age is strongly associated with severe outcomes in patients with COVID-19, we

sought to analyze genes differentially expressed in normal versus SARS-CoV-2 infected

cells as well as genes differentially expressed in young versus old individuals. Used

as model system for lung epithelial cells and the effect of SARS-CoV-2 infection, we

obtained from (Blanco-Melo et al., 2020) RNA-seq samples from normal and SARS-

CoV-2 infected A549 lung alveolar cells as well as A549 cells supplemented with

ACE2 (A549-ACE2), a receptor that has been shown to be critical for SARS-CoV-2

cell entry (Hoffmann et al., 2020). Fig. 6-2a shows the expression of A549-ACE2 cells

infected with SARS-CoV-2 in comparison to normal A549-ACE2 cells, with many

genes upregulated as a result of the infection, as expected. Given the availability of

A549 data with/without ACE2 and with/without SARS-CoV-2 infection, we removed

genes from this initial list of differentially expressed genes that were just ACE2-specific

or just SARS-CoV-2 infection-specific to extract a more refined expression pattern of

ACE2-mediated SARS-CoV-2 infection (Methods, Fig. 6-2b). The rationale was to

remove genes linked to the response of the ACE2 receptor to signals other than SARS-

CoV-2 infection or genes involved in the entry of SARS-CoV-2 into the cell through

means other than the ACE2 receptor, which has been shown to be the critical mode

of entry in humans (Hoffmann et al., 2020). Gene ontology (GO) enrichment analysis

revealed enrichment in mitotic cell cycle as the top term, further supporting removal

of these genes (Supplementary Fig. E-2). The remaining 1926 genes are denoted in

red in Fig. 6-2a,b and used for the subsequent analysis. GO enrichment analysis

of these genes revealed that they are significantly enriched in the type I interferon

signaling pathway and defense response to virus in addition to other GO terms (Fig. 6-

2c). Next, in order to analyze the link between SARS-CoV-2 infection and aging,

we analyzed RNA-seq samples from the lung of different aged individuals collected
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as part of the Genome Tissue Expression (GTEx) study (Carithers et al., 2015).

Given the stark increase in case fatality rates of COVID-19 after age 70 (Wu et al.,

2020; Onder et al., 2020), we performed a differential expression analysis comparing

the youngest group (20-29 years old) and oldest group (70-79 years old), thereby

identifying 1923 genes differentially regulated in aging (Fig. 6-2d, Supplementary

Fig. E-3). As shown in Fig. 6-2e, these genes show a significant overlap with the

1926 genes found to be differentially regulated by SARS-CoV-2 (p-value= 0.01999,

Fisher’s exact test), thereby confirming results obtained using a different analysis

in (Chow and Chen, 2020). Interestingly, these 219 genes that we found to intersect

the SARS-CoV-2 infection and aging pathways (Fig. 6-2e) display concordant changes

in gene expression (i.e. the majority of genes is either upregulated or downregulated

with SARS-CoV-2 infection and aging) as shown by the log2-fold changes in Fig. 6-

2f and Supplementary Fig. E-4a. The association in the directionality of regulation

between SARS-CoV-2 infection and aging is statistically significant (p-value < 2.2 ×
10−16, Fisher’s exact test), thereby providing further evidence for the interplay of

SARS-CoV-2 host response and aging as hypothesized in (Uhler and Shivashankar,

2020b). Fig. 6-2g shows the log2-fold changes of the 10 most differentially expressed

genes across aging and SARS-CoV-2 infection (based on the sum of their ranks with

Supplementary Fig. E-4b showing the distribution of the ranks).

Identification of SARS-CoV-2 infection signature in reduced

L1000 gene expression space

Next, we focused our analysis on identifying the SARS-CoV-2 transcriptional signa-

ture, which we then correlated with the transcriptional signatures of FDA approved

drugs in CMap to identify drugs that could revert the effect of SARS-CoV-2 infection.

While this analysis resulting in an initial ranking of FDA approved drugs did not take

the transcriptional signature of aging into account, aging was a critical component in

the final selection of FDA approved drugs described below.

Since gene expression in CMap was quantified using L1000 reduced representation

155



a b

258 1926173

806

209
302

111

A549 with SARS-CoV-2 vs. A549

A549-ACE2 with SARS-CoV-2

A549-ACE2 vs. A549

vs. A549-ACE2

A549-ACE2 with SARS-CoV-2
vs. A549-ACE2

Older vs. younger

c

0 2 4 6 8
expression (log2 RPKM + 1) of A549-ACE2

0

2

4

6

8

ex
pr

es
si

on
 (

lo
g

2 
R

P
K

M
 +

 1
) 

of
 A

54
9

-A
C

E
2 

w
ith

 S
A

R
S

-C
o

V
-2

EGR1

IRF1

CD274

ZNF436

DDX60

HELZ2

IL20RB

GEM

HIST1H2BE

NFKBIE

NDUFA2

THEMIS2

IFIH1

WTAP

RSAD2

HERC5

TNFSF10

STAT2

IFI27

NFKBIZ

TNF

SAMD9L

PIGA

PLD6

HIST1H3E

CCNL1

IFITM1

PARP10

PCF11

IFI44
IRF7

FOXC2

PPP1R10

NFKBID

RBBP6

BHLHE41

TEX29

CYLD

PLEKHG2

CREB5

NFKB1

USP18

OAS3

IFNB1

IFNL2

OAS2

ZNF77

HLA-F

IFNL1

IFITM3

PLEKHA4

SUMO4

CMPK2

SOCS1

EPHX1

IFNL3

ZNF12

DDX58

ZNF57

HES1

ADIRF

USP43

SP110

GRHL1

RBPJ

RSRC2
ZNF830

EGR2

SNIP1

NR1D1

LIF

MX1

C11orf96

PPP4R4

C5orf51

PER1

KDM6B

ZNF211

PIM1

ZBTB10

BATF2

OASL

ZBTB43

TRANK1

VAMP2

CHD2

FOSB

CREBRF

XAF1

EFNA3

Protein coding genes

SARS-CoV-2

0 1 2 3 4 5
expression (log2 RPKM + 1) of lung tissue in young

0

1

2

3

4

5

ex
pr

es
si

on
 (

lo
g

2 
R

P
K

M
 +

 1
) 

of
 lu

ng
 ti

ss
ue

 in
 o

ld

AP1M2

RRM2

SCT

PXMP4

CXCL14

RASGRF1

N4BP3

LGI3

SLC46A2

SLCO4C1

KCNE4

HSPA4L

HIST1H2AD

ITGBL1

FOXA2

CPB2

ACADL

F8

HHIP

PLA2G1B

HDC

VEPH1

TNFSF14

DEFB1

MS4A14

TOP2A

C9orf152

FUT3

ZNF385B

C6orf223

SCN1A

BHLHE22

ALPP

EHF

TMEM130 C1orf210

CLDN3

PHGDH

FMO5

FLRT3

IL12A

SLC22A3

ALAS2

FHDC1

HPN

FRZB

BEX2

GOLT1A

LAD1

CCNB1

SFRP5

XAGE2

CD200

PAMR1 TMEM97

C2orf40

NTRK2
GREM1

DEFB4B

HBG2

ZWINT

HBQ1

HRASLS2

MYBL2

HAPLN3

CDH1

UBE2C

ESRP1

SLN

PLA2G3

RFTN2

HKDC1

ROS1
B3GNT8

ADCYAP1

Protein coding genes

SARS-CoV-2 and aging genes

Aging genes

0 1 2 3 4 5 6 7 8 9
-log (Adjusted P-value)10

negative regulation of multi-organism process (GO:0043901)

generation of precursor metabolites and energy (GO:0006091)

negative regulation of viral process (GO:0048525)

defense response to virus (GO:0051607)

response to virus (GO:0009615)

electron transport chain (GO:0022900)

respiratory electron transport chain (GO:0022904)

cellular response to type I interferon (GO:0071357)

response to type I interferon (GO:0034340)

type I interferon signaling pathway (GO:0060337)

SARS-CoV-2 associated genes

d

1707 1704219

SARS-CoV-2 Aging

−2

0

2

4

6

lo
g2

 fo
ld

 c
ha

ng
e

FOXC2
GNRH1

SNAP25
N4BP3

HIVEP2
TCTE3

RAPGEF4
IL20RB
CREB5
LPAR6
GRHL1

OASL
HIST1H1D

OVGP1
HIST1H1E

SUMO4
COLEC11

HAS2
CHIC2

ZFC3H1
ZNF217
SMAD3

ELL
HIST1H4E

ARL4D
LOX

IFI44L
C5orf56

C19orf66
ZSWIM4

PML
CRY1

YY1AP1
INHBA
SP100
ETV6

SPRED3
IRF2

ZSWIM6
SETD5

HIST3H2BB
XAF1
DLL1

MTMR11
KRTAP5-1

LARP6
KAT6A

PHF21A
PLSCR1
TRIM38

RIPK2
WHAMM

PDE4B
GATAD2B

XRN1
ISG20

WDR26
CEP85L

ZNF8
MCTP1

GTPBP1
CDK17

TSPYL4
SCG2

RBM33
USP12
THAP2
HOXB3
PROX1
AURKC

CCDC71L
BTN2A2
BRSK1
MKLN1

TSC22D2
CHN1

RASA2
TERF2IP

CTTNBP2NL
TRAF6
PHC3
RBM5
SAV1

SFMBT2
RNF24

SEC31B
HECA

SMPDL3B
PYCR1

GOT1
TLCD1
NSDHL

TM7SF2
HADH

TRUB2
IPO4
PLS1
DPP3

SLC25A11
GPD1L

FOXRED2
EXOSC5

MMP15
MPDU1

QDPR
TMEM164

DOLK
FAH

PCCB
DCDC2
FARSA

APEH
SRPRB

GLB1
GBA

ARSD
ADK

CYB561D2
METTL13
TMEM238

NUDT14
CDH1
AIFM1

MEGF9
ALDH1B1

PXMP4
AGA

ACAT1
MMP24

C19orf48
MSH2

NLRP2
MIPEP

MSRB1
FADS1

PTPN13
CLN6
GSR

TNFSF15
GGT1

NIPSNAP1
POP1
FECH

TMEM56
PARP1

ATIC
SLC39A11

MRPL37
MYO5C

DTD2
SAC3D1
CCDC71

FH
SDSL

FGFBP1
FGFR3
SMIM4
PAICS

TIMM13
EBNA1BP2

ALG1
SLC27A4
MRPS16
MANSC1

CLN3
NLN

MRPL27
HMBS

ORMDL2
OSGIN1
SLC7A7
GSTZ1
MMAB

MRPS33
SLC31A1

EPS8L2
OCIAD2

PPA2
HSD17B8

THNSL1
TCTA

PDGFD
TM4SF18
HRASLS2

HBQ1
KLF5

LTB
FOXA2

ZNF165
NEDD4L

PIGA
UTP3
EGR2
FA2H

DNM1
RBP4

F8
TRNP1
TUBB1

B3GNT7
UAP1L1

SNCG
MAD2L1BP

PRSS23
ATP8B1

SLC22A17
CNTNAP1
PITPNM1

LTV1
PIGW

EXOC3L2
LGALSL
MED18
ADCY3
COPZ2
PDE4D
CSTF1

CACNA2D1
FAM84B

e f

g

Figure 6-2: Identification of differentially regulated genes in SARS-CoV-2 infection
and aging. (a) Gene expression (log2 RPKM + 1) of A549-ACE2 cells infected
with SARS-CoV-2 versus normal A549-ACE2 cells. Genes associated with ACE2-
mediated SARS-CoV-2 infection after removing just ACE2-specific or just SARS-
CoV-2 infection-specific genes are shown in red. (b) Venn diagram, showing the
number of genes in sets considered for obtaining the 1926 genes in the red subset
and shown in red in (a) associated with ACE-2 mediated SARS-Cov-2 infection. (c)
Top 10 gene ontology terms associated with SARS-CoV-2 infection (adjusted 𝑝-value
< 0.05). (d) Gene expression (log2 RPKM + 1) of cells collected from lung tissue
of older (70-79 years old) versus younger (20-29 years old) individuals. Differentially
expressed genes associated with aging are shown in blue and genes that are associated
with both aging and SARS-CoV-2 are shown in orange. (e) Venn diagram of genes
associated with SARS-CoV-2 and aging; intersection is significant (𝑝-value = 0.01999,
Fisher’s exact test). (f) Heatmap of log2-fold changes of differentially expressed genes
shared by SARS-CoV-2 and aging; most genes show concordant expression, i.e., they
are both upregulated or both downregulated with SARS-CoV-2 infection and age-
ing. (g) Table of the top 10 most differentially expressed genes across aging and
SARS-CoV-2, based on the sum of their ranks with log2-fold changes for each gene.
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expression profiling (Subramanian et al., 2017), which measures gene expression of

1000 representative genes, we first sought to analyze whether these genes sufficiently

capture the transcriptional signature of SARS-CoV-2 infection. For this, we inter-

sected the genes measured both by Blanco et al. (Blanco-Melo et al., 2020) and

CMap (Subramanian et al., 2017), resulting in 911 genes. We found a statistically

significant overlap between the genes identified as differentially expressed by SARS-

CoV-2 infection in Fig. 6-2 and the L1000 genes (p-value=7.94×10−16, Fisher’s exact

test), thereby providing a rational for using the CMap database for drug identifica-

tion in this disease context (Fig. 6-3a). We thus proceeded to obtain the signature

of SARS-CoV-2 infection in the reduced L1000 gene expression space by projecting

the RNA-seq data of A549 cells with and without ACE2-receptor and SARS-CoV-2

infection onto the shared 911 genes. The resulting signatures of SARS-CoV-2 infec-

tion and ACE2-receptor are visualized using the first two principal components in

Fig. 6-3b. Interestingly, the signature of SARS-CoV-2 infection (indicated by arrows)

was aligned across both A549 and A549-ACE2 cells as well as across different levels

of infection (MOI of 0.2 and 2), suggesting that the SARS-CoV-2 transcriptional sig-

nature was captured robustly by the L1000 genes, thus providing further rational for

using CMap to identify drugs that could reverse the effect of SARS-CoV-2 infection.

Combined autoencoder and synthetic interventions framework

to identify drug signatures and rank FDA approved drugs for

SARS-CoV-2

Next, we sought to determine transcriptional drug signatures using the CMap

database, which includes among other cell lines A549. The data was visualized using

Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) in

Supplementary Fig. E-5a, showing that the perturbations clustered by cell type and

hence the drug signatures were small relative to the differences between cell types.

We intersected the perturbations from CMap with a list of FDA approved drugs using

Slinky (Kort and Jovinge, 2019), resulting in 759 drugs of which 605 were available
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for A549. After removing batch effects using k-means clustering (see Methods and

Supplementary Fig. E-5b), we computed initial signatures of these drugs based on the

mean before and after drug perturbation in A549 cells. Fig. 6-3c shows a selection of

drug signatures in relation to the signature of SARS-CoV-2 infection visualized using

the top two principal components.

Since the effect of a drug can be cell-type specific (Niepel et al., 2017), this standard

approach to computing drug signatures may not allow extrapolating the obtained sig-

natures beyond A549 cells. In order to determine robust drug signatures and consider

also FDA approved drugs that have been dosed on cell lines other than A549 in CMap,

we employed an autoencoder framework. Autoencoders, a particular class of neural

networks where an input is mapped through a latent space to itself, have been widely

used for representation learning (Hinton and Salakhutdinov, 2006; Baldi, 2012; LeCun

et al., 2015) and more recently also in genomics and single-cell biology (Yang et al.,

2020d,c; Lotfollahi et al., 2019). We trained an autoencoder (architecture described

in Supplementary Fig. E-6) to minimize reconstruction error on CMap data and data

from Blanco et al. (Blanco-Melo et al., 2020) in the L1000 gene expression space. We

then computed the disease and drug signatures based on the embedding of the data

in the latent space. Interestingly, by comparing the correlations between drug signa-

tures obtained from A549 cells and MCF7 cells (Fig. 6-3d) as well as HCC515 cells

(Fig. 6-4), cell lines with many perturbations in CMap, it is apparent that the au-

toencoder aligned the drug signatures across different cell types. While autoencoders

and other generative models have been used for computing signatures of perturbations

also in other works (Lotfollahi et al., 2019; Ghahramani et al., 2018), these works have

used autoencoders in the standard way to obtain a lower -dimensional embedding of

the data. Motivated by our recent work which, quite counter-intuitively, described

various benefits of using autoencoders to learn a latent representation of the data

that is higher -dimensional than the original space (Radhakrishnan et al., 2019), we

found that overparameterized autoencoders not only led to better reconstruction of

the data than standardly used autoencoders (Supplementary Fig. E-7 and architec-

tures described in Supplementary Fig. E-6), but also to a better alignment of drug
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signatures between different cell types (Fig. 6-4). Interestingly, overparameterized

autoencoders provided about the same alignment of drug signatures as using the top

three principal components (Fig. 6-3e), while at the same time allowing a near perfect

reconstruction of the original gene expression vectors from the embedding. We thus

used this latent space embedding to rank the drugs based on their correlation with the

reverse disease signature in A549 cells. Since overparameterized autoencoders aligned

drug signatures across cell types, this embedding also allowed constructing synthetic

interventions (Agarwal et al., 2019; Abadie et al., 2010), i.e., to predict the effect of

a drug on A549 cells without measuring it, by linearly transferring the correspond-

ing drug signature in the latent space from a cell type where it has been measured.

In this way, we obtained an enlarged list of drug signatures, which we correlated in

the latent space with the reverse disease signature to obtain further candidates of

FDA approved drugs for SARS-CoV-2. To compare the correlations obtained with

the different embeddings, a list of the top ranked drugs is shown in Fig. 6-3f and the

similarity between drug lists is quantitatively assessed by an analysis akin to a re-

ceiver operating characteristic (ROC) plot (Supplementary Note and Supplementary

Fig. E-8), showing that the drug lists obtained using an embedding in the PCA or

the original space are similar but not identical to the autoencoder embedding (AUC

of 0.901 and 0.904, respectively). Interestingly, these drug lists contain various drugs

that were identified also in (Gordon et al., 2020) using a different analysis (clemas-

tine, haloperidol, ribavirin) or are currently in clinical trials (ribavirin, quinapril).

To put these AUC values into perspective and assess the robustness of the identified

drug list using the autoencoder embedding, we repeated the analysis on two other

SARS-CoV-2 datasets from (Blanco-Melo et al., 2020), namely infected A549 cells

without ACE-2 supplement as well as samples collected at a lower MOI (0.2 instead

of 2). This resulted in very similar drug lists (Supplementary Fig. E-9); in fact the

drug lists from A549 cells with and without ACE-2 supplement in the autoencoder

embedding were more similar than the drug lists obtained from the PCA and the

original space embedding.
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Figure 6-3: Mining FDA approved drugs by correlating disease and drug signatures us-
ing an overparameterized autoencoder embedding. (a) Gene expression (log2 RPKM
+1) of A549-ACE2 cells infected with SARS-CoV-2 versus normal A549-ACE2 cells
with genes collected as part of the CMap study using L1000 reduced representation ex-
pression profiling method highlighted as stars, showing that L1000 genes significantly
overlap with SARS-CoV-2 associated genes (p-value=7.94×10−16, Fisher’s exact test).
(b) Signature of SARS-CoV-2 infection on A549 and A549-ACE2 cells visualized us-
ing the first two principal components based on RNA-seq data from (Blanco-Melo
et al., 2020). Signature of SARS-CoV-2 infection is aligned across normal A549 and
A549-ACE2 cells as well as across different levels of infection. (c) Comparison of the
signatures of a selection of 13 representative FDA approved drugs as compared to
the signature of SARS-CoV-2 infection based on A549-ACE2 cells visualized using
the first two principal components. Drugs whose signatures maximally align with
the direction from SARS-CoV-2 infection to normal are considered candidates for
treatment. As expected, drugs have varying signatures of varying magnitudes. (d)
Correlation between drug signatures in A549 and MCF7 cells when using the original
L1000 expression space versus the embedding obtained from an overparameterized
autoencoder. The overparameterized autoencoder aligns the drug signatures in A549
and MCF7 cells by shifting the correlations towards -1 or 1 while maintaining the
sign of the correlation in the original space. (e) Histogram of correlations between
cell types for a given drug using original L1000 gene expression vectors, overparam-
eterized autoencoder embedding, top 100 principal components, and top 3 principal
components. The overparameterized autoencoder achieves about the same alignment
of drug signatures as using the top 3 principal components, while at the same time
faithfully reconstructing the data (10−7 training error). (f) A list of drugs whose
signatures maximally align with the direction from SARS-CoV-2 infection to normal
in A549-ACE2 cells (MOI 2) with respect to correlations using the overparameterized
autoencoder embedding, the original L1000 gene expression space, and the top 100
principal components.

Steiner tree analysis identifies candidate drug targets by con-

structing combined SARS-CoV-2 and aging interactome

Our differential expression analysis revealed relevant genes to investigate in the con-

text of SARS-CoV-2infection and aging, while the combined autoencoder and syn-

thetic interventions analysis provided candidate FDA approved drugs for reverting

the effect of SARS-CoV-2 infection. Next, we integrated these two separate analyses

to obtain a final list of FDA approved drugs by constructing a combined SARS-CoV-2

infection and aging protein-protein interactome and intersecting it with the targets
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Figure 6-4: Comparison of drug signature alignment between A549 and MCF7 (top)
and A549 and HCC515 (bottom) cell types upon using an embedding verus the origi-
nal space. Embeddings provided include (from left to right) top 2 PCs, top 100 PCs,
underparameterized leaky ReLU autoencoder, overparameterized cosid autoencoder,
overparameterized leaky ReLU autoencoder. Embeddings from the overparameter-
ized autoencoder with leaky ReLU activation better align drug signatures between
these two pairs of cell types than any other embedding considered while still providing
near perfect reconstruction of the original data.

of the candidate drugs (Fig. 6-5a). For this, we selected the differentially expressed

genes identified in Fig. 6-2f that showed concordant regulation between aging and

SARS-CoV-2 infection and intersected them with the nodes of the human protein-

protein interaction (PPI) network (IRefIndex Version 14 (Razick et al., 2008)), which

contains 182,002 interactions between 15,759 human proteins along with a confidence

measure for each interaction. This resulted in 162 protein-coding genes, which we call

terminals (Supplementary Fig. E-10 and Methods). To gain a better understanding

of the molecular pathways connecting these terminal genes, we used a Steiner tree

algorithm (Huang and Fraenkel, 2009; Tuncbag et al., 2012) to determine a “mini-

mal” subnetwork or interactome within the PPI network that connects these genes

(see Methods). A Steiner tree is minimal in that it is a minimum weight subnet-

work that connects the terminals. As edge weights in the PPI network we used 1

minus the confidence in the corresponding interactions so as to favor high-confidence

edges. After a careful sensitivity analysis to select the various tuning parameters

(Methods and Supplementary Fig. E-11), this resulted in an interactome containing

252 nodes and 1,003 edges (Fig. 6-5b and Supplementary Fig. E-12). Interestingly,
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the interactome contained five genes whose corresponding proteins have been found

in (Gordon et al., 2020) to interact with SARS-CoV-2 proteins (EXOSC5, FOXRED2,

LOX, RBX1, RIPK1). The 2-nearest-neighborhoods of these proteins are shown in

Fig. 6-5c. Another Steiner tree analysis revealed that two additional SARS-CoV-2 in-

teraction partners (CUL2 and HDAC2) were connected to the identified interactome

via few high-confidence edges (Supplementary Fig. E-13 to E-15).

Next, we intersected the interactome with the targets of the candidate drugs identi-

fied in the previous analysis. A compound was considered if its signature matched

the reverse SARS-CoV-2 signature with at least a correlation of 0.86, resulting in

142 FDA approved drugs (see Methods). The targets of these drugs were determined

using DrugCentral (Ursu et al., 2016, 2019) and filtered for high affinity (activity

constants lower than 10𝜇𝑀 , a common threshold used in the field for 𝐾𝑖, 𝐾𝑑, 𝐼𝐶50

or 𝐸𝐶50). Interestingly, the resulting drugs, shown in Fig. 6-5d, consisted (with

few exceptions) of protein kinase inhibitors (e.g. axitinib, dasatinib, pazopanib, suni-

tinib). To analyze the specificity of our findings to SARS-CoV-2 infection in aged

individuals, we repeated the above analysis without using the GTEx data. This re-

sulted in an interactome containing 1,052 edges across 270 nodes, 42 of which (15%)

were also present in the interactome taking age into consideration (Supplementary

Fig. E-16). This pure SARS-CoV-2 interactome contained 6 SARS-CoV-2 interaction

partners (ETFA, GNB1, NUP62, RBX1, RIPK1, SNIP1). Drugs targeting proteins

in this interactome belonged to several families including serotonin inhibitors (clozap-

ine, cyproheptadine, desipramine, methysergide), histamine H1 blockers (clemastine,

cyproheptadine, ketotifen), protein kinase inhibitors (including axitinib, dasatinib,

pazopanib, sunitinib) and HDAC inhibitors (vorinostat, belinostat). This analysis

shows that taking aging into account acted as a valuable filter for the identification

of drugs.
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gene prize log2FC virus log2FC age
ACAT1 1.20 -1.20 -0.51

ADK 1.19 -1.19 -0.57
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Figure 6-5: Drug target discovery via Steiner tree analysis to identify putative molec-
ular pathways linking differentially expressed genes in SARS-CoV-2 infection and
aging. (a) The general procedure takes as input a list of genes of interest (terminal
nodes) with prizes indicating their respective importance, a protein-protein interac-
tion (PPI) network with edge cost/confidence information (e.g. from IRefIndex v14),
and a list of drugs of interest along with their protein targets and available affinity
constants (e.g. from DrugCentral). In this study we consider 181 terminal nodes (of
which 162 are present in the IREF network) corresponding to genes differentially ex-
pressed in SARS-CoV-2 infection and aging from Fig. 6-2 that are either up-regulated
in both SARS-CoV-2 infection and aging or down-regulated in both SARS-CoV-2 in-
fection and aging. The prize of a terminal node equals the absolute value of its
log2-fold change in SARS-CoV-2-infected A549-ACE2 cells versus normal A549-ACE2
cells based on the data from (Blanco-Melo et al., 2020). Terminals and PPI data are
processed using OmicsIntegrator2 (Huang and Fraenkel, 2009) to output the disease
interactome, i.e., the subnetwork induced by a Steiner tree, with drug targets indi-
cated by green diamonds and terminal nodes colored according to their prizes. (b)
Interactome obtained using this procedure. Genes are grouped by general function
and marked with a cross if known to interact with SARS-CoV-2 proteins based on
data from (Gordon et al., 2020). (c) 2-Nearest-Neighborhoods of nodes of interest
(denoted by a red hexagon) in the interactome. A threshold was applied on the edge
confidence to improve readability. Proteins known to interact with SARS-CoV-2 are
denoted by blue squares, drug targets are denoted as green diamonds, terminal nodes
are colored according to their log2-fold change in SARS-CoV-2-infected A549-ACE2
cells versus normal A549-ACE2 cells, Steiner nodes appear in grey. (d) Table of drug
targets and corresponding drugs in the interactome. Selected drugs are FDA ap-
proved, high affinity (at least one of the activity constants 𝐾𝑖, 𝐾𝑑, 𝐼𝐶50 or 𝐸𝐶50 is
below 10𝜇𝑀), and match the SARS-CoV-2 signature well (correlation > 0.86). The
affinity column displays − log10(activity). Protein name corresponding to each gene
is included. 164



Causal structure discovery methods validate serine/threonine

and tyrosine kinases as critical targets in SARS-CoV-2 infection

in the elderly.

Finally, in order to suggest putative causal drug mechanisms and validate the pre-

dicted drugs for COVID-19, we supplemented the PPI analysis with causal structure

discovery. Since the edges in the PPI network and hence in the SARS-CoV-2 and

aging interactome are undirected, it is a-priori not clear whether a drug that targets a

node in the interactome has any effect on the differentially expressed terminal nodes,

since the target may be downstream of these nodes (Fig. 6-6a). To understand which

genes can be modulated by a drug, it is therefore critical to obtain a causal (directed)

network. We obtained single-cell RNA-seq data for A549 cells from (Li et al., 2017)

and intersected it with the genes present in the combined SARS-CoV-2 and aging

interactome. To learn the (causal) regulatory network among these genes, we took

advantage of recently developed causal structure discovery algorithms, in particular

the greedy sparsest permutation (GSP) algorithm: it performs a greedy search over

orderings of the genes to find the sparsest causal network that best fits the data,

and it has been successfully applied to single-cell gene expression data before (Solus

et al., 2017; Wang et al., 2017; Yang et al., 2017b). To validate the obtained causal

model and benchmark the performance of GSP to other prominent causal structure

discovery algorithms including PC and GES (Glymour et al., 2019), we took advan-

tage of the gene knockout and overexpression data available from CMap. A causal

model should allow predicting the effect of such interventions. Thus, for each such

gene knockout and overexpression experiment in CMap that targeted a gene in the

interactome, we inferred the genes whose expression changed as a result of the inter-

vention, when compared to control samples (Methods and Supplementary Fig. E-17a).

We then constructed receiver operating characteristic (ROC) curves to evaluate GSP,

PC and GES by varying their tuning parameters and counting an edge 𝑖 → 𝑗 as a

true positive if intervening on gene 𝑖 resulted in a change in the expression of gene 𝑗

and a false positive otherwise, thereby showing that GSP exceeded random guessing
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based on the PPI network (p-value=0.0177, see Methods) and outperformed the other

methods (Supplementary Fig. E-17b).

Having established that the causal network obtained by GSP can be used to predict

the effect of an intervention, we turned to analyzing the regulatory effects of the

identified candidate drugs on the SARS-CoV-2 and aging interactome in A549 cells.

The main connected component of the corresponding causal graph is shown in Fig. 6-

6a (see also Supplementary Fig. E-18a) highlighting the drug targets and the genes

that were found to be differentially expressed by SARS-CoV-2 infection and aging. We

then traced the possible downstream effects for each identified drug, thereby finding

that the protein kinase inhibitors and HDAC inhibitors could target the majority

of differentially expressed genes in this connected component (Supplementary Table

E.1). Similarly, we traced the downstream effects for each gene in the interactome that

can be targeted by one of the identified drugs, thereby finding that EGFR, FGFR3,

HDAC1, HSP90AA1, IRAK1, PAK1, RIPK1, RIPK2, STK3 all have downstream

nodes in the interactome with RIPK1 having the largest number of them (127).

To validate these results in a broader context, we obtained single-cell RNA-seq data

from (Reyfman et al., 2019) and repeated the analysis in AT2 cells, which have been

shown to be critically affected by SARS-CoV-2 in humans (Hoffmann et al., 2020).

The resulting causal network for AT2 cells (Supplementary Fig. E-18b) is similar to

the one for A549 cells, intersecting it in 55.3% of the edges, with EGFR, HDAC1,

HSP90AA1, IRAK1, RIPK1 and RIPK2 all having descendants in the interactome,

and targets of protein kinase inhibitors and HDAC inhibitors being particularly cen-

tral (Supplementary Table E.1). To analyze the most critical targets for the crosstalk

between SARS-CoV-2 and aging, we repeated the analysis in the interactome obtained

without taking aging into account (Supplementary Fig. E-18c). Interestingly, while

HDAC1 and HSP90AA1 continued to have widespread effect, the number of genes

downstream of RIPK1 changed drastically to just 1, suggesting that RIPK1 plays a

critical role in the SARS-CoV-2 and aging cross-talk. In line with this, while the effect

of HDAC inhibitors remained similar in the analysis without ageing, the effect of pro-

tein kinase inhibitors changed drastically (Supplementary Table E.1). Collectively,
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our combined analysis points to protein kinase inhibitors, and it in particular high-

lights RIPK1, a serine/threonine-protein kinase, as one of the main targets against

SARS-CoV-2 infections with a highly age-dependent role and the largest number of

downstream differentially expressed genes in the combined SARS-CoV-2 and ageing

interactome.

a

b

�
Drug target

Terminal node

Steiner node

Drug target

Terminal node

Steiner node

�

c

A549-ACE2 with SARS-CoV-2
vs. A549-ACE2

Older vs. younger

lo
g2

 fo
ld

 c
ha

ng
e

d

RBM33

RIPK1

RIPK2

TRIM38

CD40

CBL

UBE2D2

BTRC

CUL1

UBC

HIVEP2IRAK1

CRY1

RPL23

ACAT1

MYH9

EBNA1BP2 PSMA3QDPR FARSA PSMD3

PARP1HIF1A

UBE2N

SMAD9

SHFM1

SUMO1 ATR

EGFR

ATIC

MLH1

IRF2

RAD21

MYC

HECW2

HSP90AA1

PLSCR1

MSH2

UIMC1

SUMO2

METTL13

TP53

RAC1

BTN2A2

TERF2IP

VHLPCCB

DAXXRANBP9 MRPL27

CTNNB1

FAH

SLC3A2

XRN1

MIPEPDHX15 SMAD3ALDH1B1SEC31B

UBE2D3 ZSWIM6 PRMT5 FGFR1

TERF2

RNF2

MSH6

PHC3

DPP3

PPA2

HIST1H1E

PYCR1

SP100

SRPRBMRPS16YY1AP1

ACVR2AHMBS

SLC7A7 ZNF8

EP300

AIFM1CLN6 KDM1A

FBXO6

AGA

HDAC1

MBD3GATAD2B

SMAD4

CREBBP

REL

ZNF217 PHF21A

MDM2

TCTA

HOXB3CDH1

EXOSC5NUDT14

STX1AFH

VAMP2

SNF8

RELAKAT6A SAV1

XIAP

XAF1 CCSWDR48

USP12

PEX19

TRAF6

APP

NLN LARP6 SNAP25GTPBP1PAK1 IPO4 OCIAD2

BRSK1

COMMD3-BMI1

SLC25A11

FN1

PAICS

POP1

VKORC1

RBX1

PML

TCF4

NIPSNAP1

NFKBIANCK2

STK3

lo
g2

 fo
ld

 c
ha

ng
e

lo
g2

 fo
ld

 c
ha

ng
e

SLC3A2

PEX19

EGFR

ATR

CTNNB1

CBL

RPL23 ATIC FAHFARSA

UBE2D2

TP53

MYH9 SUMO1

RIPK2

RBM33 RAD21

ACAT1

CD40

RANBP9IRAK1 HIVEP2MRPL27 DAXX

SMAD3

PSMA3UBE2D3

TRIM38

PAK1

POP1

IRF2RNF2 CUL1

EBNA1BP2 QDPR

GTPBP1 IPO4 OCIAD2 LARP6

APP

XAF1 NLN SNAP25

TRAF6

UBC

RIPK1

Figure 6-6: Causal mechanism discovery of potential drug targets. (a) In an undi-
rected PPI network (left), edge directions for a particular drug target (green dia-
mond) are unknown. Establishing causal directions is important since it is of interest
to avoid drug targets that do not have many downstream nodes in the disease inter-
actome (middle) and instead choose drug targets that have a causal effect on many
downstream nodes in the disease interactome (right). (b) Causal network underlying
the combined SARS-CoV-2 and aging interactome in A549 cells with gene targets
of selected drugs in boxes (largest connected component shown). (c) Causal sub-
network of A549 cells corresponding to nodes within 5 nearest neighbors of RIPK1.
The node color corresponds to the log2-fold change of A549-ACE2 with versus with-
out SARS-CoV-2. (d) Heatmap of log2-fold change of genes that are downstream of
RIPK1.
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6.4 Discussion

The repurposing of drugs for SARS-CoV-2 has been a major challenge given the

many pathways involved in host-pathogen interactions and the intricate interplay of

SARS-CoV-2 with inflammatory pathways (Fung and Liu, 2019; de Wit et al., 2016;

Poppe et al., 2017; Yang et al., 2017a). Interestingly, while both young and old

individuals are susceptible to SARS-CoV-2 infection, the virus’ pathogenicity is sig-

nificantly more pronounced in the elderly (Wu et al., 2020; Onder et al., 2020). Since

the mechanical properties of the lung tissue change with aging (Sicard et al., 2018),

this led us to hypothesize an interplay between viral infection/replication and tissue

aging (Uhler and Shivashankar, 2020b), suggesting that this could play an important

role in drug discovery programs. While ongoing drug repurposing efforts have ana-

lyzed host-pathogen interactions and the associated gene expression programs (Gor-

don et al., 2020; Blanco-Melo et al., 2020), they have lacked an integration with aging.

More generally, while a number of data-driven and experimental approaches have been

proposed for drug identification and repurposing (Pushpakom et al., 2019), a platform

that systematically integrates different data modalities including transcriptomic, pro-

teomic and structural data into a principled causal framework to predict the effect of

different drugs has been missing.

By combining bulk RNA-seq data from GTEx (Carithers et al., 2015) and Blanco et

al. (Blanco-Melo et al., 2020), we identified a critical group of genes that were differ-

entially expressed by aging and by SARS-CoV-2 infection. While previous analysis

relied primarily on contrasting the expression in cells with and without SARS-CoV-2

infection (Chow and Chen, 2020), we made an attempt to separate the effect of the

ACE2 receptor alone and the effect of SARS-CoV-2 in cells without ACE2 receptor to

extract a more refined differential expression pattern of ACE2-mediated SARS-CoV-2

infection. While previous computational efforts to repurpose drugs have mainly con-

sidered two approaches: (1) identifying drug targets by analyzing disease networks

based for example on PPI or transcriptomic data (Smith et al., 2012; Greene and

Voight, 2016; Gordon et al., 2020), and (2) identifying drugs by matching their sig-
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nature (for example obtained from the CMap project (Subramanian et al., 2017)) to

the reverse disease signature (Dudley et al., 2011), we developed a principled causal

framework that encompasses these two approaches. First, in order to ensure that the

CMap database, which measures expression using 1000 representative genes, would

be useful in the context of SARS-CoV-2, we validated that the intersection of these

genes with the SARS-CoV-2 differentially expressed genes was significant. Second,

to establish drug signatures based on the CMap database, we employed a particu-

lar autoencoder framework (Radhakrishnan et al., 2019). Rather unintuitively, we

showed that using an overparameterized autoencoder, i.e. by using an autoencoder

not to perform dimension reduction as usual but to instead embed the data into

a higher-dimensional space, aligned the drug signatures across different cell types.

This allowed constructing synthetic interventions, i.e., to predict the effect of a drug

on a cell type without measuring it by using other cell types to infer it. Third, to

identify drug targets in the pathways intersecting SARS-CoV-2 and aging, we con-

nected the differentially expressed genes in the PPI network using a Steiner tree

analysis (Huang and Fraenkel, 2009) and intersected the resulting interactome with

high-affinity targets of the drugs obtained using the overparameterized autoencoder

framework. Finally, while computational drug discovery programs have been largely

correlative (Pushpakom et al., 2019), we made use of recent causal structure discovery

algorithms (Glymour et al., 2019; Solus et al., 2017; Wang et al., 2017) to validate

the identified drug targets and their downstream effects, thereby identifying protein

kinase inhibitors such as axitinib, dasatinib, pazopanib, and sunitinib as drugs of

particular interest for the repurposing against COVID-19.

Among the various protein kinases, in particular from the family of serine/threonine-

protein kinases, identified by our drug repurposing pipeline, RIPK1 was singled out

by our causal analysis as being upstream of the largest number of genes that were

differentially expressed by SARS-CoV-2 infection and aging, while losing its central

role in the corresponding gene regulatory network without taking aging into account.

Notably, RIPK1 has been shown to bind to SARS-CoV-2 proteins (Gordon et al.,

2020) and has also been found to be in an age-dependent module (Chow and Chen,
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2020). RIPK1 belongs to an interesting family of proteins comprising of a kinase

domain on the N terminus and a death domain on the C terminus; activation of the

kinase domain has been associated with epithelial cell homeostasis, while activation

of the death domain leads to triggering necroptotic or apoptotic pathways (Festjens

et al., 2007; Dannappel et al., 2014), the death pathways potentially triggering tis-

sue fibrosis (Sauler et al., 2019). Interestingly, our differential expression analysis

found RIPK1 to be upregulated with SARS-COV-2 infection. We hypothesize that

upon SARS-CoV-2 infection in older individuals the death pathways may be favored,

thereby leading to fibrosis and increased blood clotting. Consistent with this, recent

post-mortem lung tissue biopsies of SARS-CoV-2 human patients revealed a fibrotic

epithelium and increased blood clotting (Jose and Manuel, 2020; Spagnolo et al.,

2020).

In order to test how specific our findings are to SARS-CoV-2 and demonstrate the

broad applicability of our pipeline, we repeated the analysis on gene expression data

available from (Blanco-Melo et al., 2020) for respiratory syncytial virus (RSV) and

influenza A virus (IAV); see Supplementary Note for a detailed description of the

analysis. Differential gene expression analysis showed that the intersection of the

identified genes with RSV and IAV was only 3.19% and 19.6%, respectively (Supple-

mentary Fig. E-19). Comparing the drug lists resulting from the overparameterized

autoencoder analysis for IAV and RSV to SARS-CoV-2 shows that the drug rankings

for SARS-CoV-2 and RSV are significantly different, while the rankings for SARS-

CoV-2 and IAV are more similar, but less so than between different SARS-CoV-2

datasets (Supplementary Fig. E-20 and E-9). The Steiner tree analysis further en-

forced these findings (Supplementary Fig. E-21), which is in line with SARS-CoV-2

and IAV having more similar clinical symptoms with higher morbidity and fatality

rates in the ageing population, while RSV is riskier for young children.

Collectively, our results highlight the importance of RIPK1 in the interplay between

SARS-CoV-2 infection and aging as a potential target for drug repurposing programs

to be administered post-infection. There are various drugs currently approved that

non-specifically target RIPK1 (such as pazopanib and sunitinib) as well as under
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investigation that are highly specific to RIPK1 (Martens et al., 2020; Degterev et al.,

2019). Given the distinct pathways elicited by RIPK1, there is a need to develop

appropriate cell culture models that can differentiate between young and aging tissues

to validate our findings experimentally and allow for highly specific and targeted

drug discovery programs. While our method is broadly applicable, we note several

limitations. First, our drug repurposing pipeline relies on the availability of RNA-seq

data from normal and infected/diseased cells in the cell type of interest and therefore

the availability of such data is necessary for the application of our platform. Second,

since our autoencoder is trained on CMap data, which only contains the expression

of 1000 genes (L1000 genes), it is possible that the signal of the infection may not be

captured by these 1000 genes. However, this can be checked by assessing whether there

is a statistically significant overlap between the L1000 genes and the differentially

expressed genes in the disease of interest, which we performed in our analysis for

SARS-CoV-2. Finally, since the CMap data contains a limited set of drugs, it is

possible that none of the drugs are anticorrelated with the disease signature, thus

preventing the user from identifying drug candidates. While our work identified

particular drugs and drug targets in the context of COVID-19, our computational

platform is applicable well beyond SARS-CoV-2, and we believe that the integration

of transcriptional, proteomic and structural data with network models into a causal

framework is an important addition to current drug discovery pipelines.

6.5 Future directions

We proposed a computational platform for drug repurposing and applied it in the

context of SARS-CoV-2. An important future direction would be to validate our

predictions experimentally. Since COVID-19 is age-dependent and since an impor-

tant part of our analysis was the inclusion of age, it would be important to develop

realistic organoid systems that mimic aged tissue, its microenvironment and its me-

chanical properties forvalidation of the identified drugs. Given that cells in younger

versus older populations are known to display different phenotypes (Angelidis et al.,
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2019), e.g. it has been hypothesized that subpopulations of epithelial cells in older tis-

sues undergo epithelial-to-mesenchymal transitions (Uhler and Shivashankar, 2020a),

for the same viral signal, cells in younger versus older tissues could exhibit different

downstream gene expression signals. These age-dependent differences have direct im-

plications for drug discovery and thus should be taken into account during validation.

Another interesting future direction would be to apply our computational platform

for drug repurposing against other infections or diseases. Currently, large-scale single-

cell RNA-seq data is being collected on normal and diseased cells in various contexts.

In this work, we used bulk RNA-seq collected in a cell line that was also part of

the CMap dataset. Going forward, it would be important to analyze how well our

framework generalizes for predicting the effects of drugs for cell types not present in

CMap such as those collected from single-cell RNA-seq on real human tissues.

6.6 Methods

Bulk gene expression data

The RNA-seq gene expression data related to SARS-CoV-2 infection in A549 and

A549-ACE2 cells was obtained from (Blanco-Melo et al., 2020) under accession code

GSE147507. The RNA-seq data of lung tissues for the aging analysis was down-

loaded from the GTEx Portal (https://gtexportal.org/home/index.html) along with

metadata containing the age of the individual from whom the RNA-seq sample was

obtained. The RNA-seq raw read counts were transformed into quantile normalized,

log2(𝑥 + 1) scaled RPKM values, following the normalization performed in (Subra-

manian et al., 2017).

Differential expression analysis

For differential expression analysis, we focused on genes that were highly expressed,

filtering out any genes with log2(RPKM +1) < 1 for all considered datasets. In order

to determine the ACE2-mediated SARS-CoV-2 genes, we computed three different
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log2-fold changes based on the data from (Blanco-Melo et al., 2020). Namely, we

defined as ACE2-mediated SARS-CoV-2 genes all genes that had an absolute log2-

fold change between A549-ACE2 cells infected with SARS-CoV-2 and A549-ACE2

cells above threshold, excluding genes that had an absolute log2-fold change above

the same threshold in A549-ACE2 cells versus A549 cells and also excluding genes

that had an absolute log2-fold change above the same threshold in A549 cells infected

with SARS-CoV-2 versus normal A549 cells. In other words, the ACE2-mediated

SARS-CoV-2 genes were defined as the genes denoted in red in the Venn diagram

in Fig. 6-2b (with pink, brown and yellow subsets removed). The absolute log2-fold

change threshold was determined such that the number of ACE2-mediated SARS-

CoV-2 genes was 10% of the protein coding genes.

In order to determine the age associated genes, we analyzed lung tissue samples ob-

tained from the GTEx portal (https://gtexportal.org/home/index.html) from indi-

viduals of varying ages. We computed the absolute log2-fold change between samples

of the lung tissue from older (70-79 years old) and younger (20-29 years old) individ-

uals, defining the age associated genes as the top 10% of protein coding genes with

highest absolute log2-fold change. We also considered defining age-associated genes

based on the absolute log2-fold change comparing individuals who are 20-29 years old

versus 60-79 years old, which yielded similar age-associated genes, with 1339 out of

the 1923 genes in common between the two sets as shown in Supplementary Fig. E-3b.

Gene ontology enrichment analysis

Gene ontology analysis was performed on a given gene set using GSEApy, keeping

the top 10 gene ontology biological process terms with lowest p-values. All reported

terms had p-values ≤ 0.05, after adjusting for multiple hypothesis testing using the

Benjamini–Hochberg procedure.
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L1000 gene expression data from CMap

The CMap data measured via L1000 high-throughput reduced representation expres-

sion profiling, which quantifies the expression of 1000 landmark genes, was obtained

from (Subramanian et al., 2017) under accession code GSE92742. We chose level 2

data, truncated to only the genes that were also measured by (Blanco-Melo et al.,

2020), and then performed log2(𝑥 + 1) scaling and min-max scaling on each of the

resulting 911-dimensional expression vectors.

Combined autoencoder and synthetic interventions framework

We first describe our training procedures for the autoencoder framework. CMap con-

tains a total of 1,269,922 gene expression vectors and we performed a 90-10 training-

test split resulting in 1,142,929 training examples and 126,993 test examples. We

selected the best model by applying early stopping with an upper bound on the num-

ber of total epochs being 150. Note that this is well past the usual early stopping

method of applying a patience strategy with a patience of at most 10 epochs (Good-

fellow et al., 2016). All hyperparameter settings, optimizer details, and architecture

details are presented in Supplementary Fig. E-6c. To summarize, we considered a

range of fully connected autoencoders with varying depth, width, and nonlinearity,

and we used Adam with a learning rate of 10−4 for optimization. To compute the

drug signatures via the trained autoencoder, we used as embeddings the output of

the first hidden layer prior to application of the activation function.

Drug signatures for the A549 cells (and similarly for the MCF7 and HCC515 cells)

in CMap were computed by taking the difference between the mean embedding for

the A549 samples with drug and the mean embedding for the A549 control (DMSO)

samples. To remove batch effects, we performed 𝑘-means clustering of the control

samples in the embedding space and removed all points falling in the smaller of the

two clusters (see Supplementary Fig. E-5b). Subsequent analysis of the removed

cluster revealed that it consisted of samples with a minimum gene expression value

of 1 (after log2(𝑥+ 1) scaling), while all other gene expression values fell in the range

174



of [5, 13], thereby providing further reason for removal of this cluster.

Next, we briefly describe the synthetic interventions framework and how the embed-

ding from our trained overparameterized autoencoder is used for this. The traditional

application of synthetic interventions (Agarwal et al., 2019; Abadie et al., 2010) in

the context of drug repurposing would proceed as follows: when a drug signature is

unavailable on a given cell type but is available on other cell types, we would ex-

press the cell type as a linear combination of the other cell types and use this linear

combination to predict the signature on the cell type for which data is unavailable.

Since we demonstrated that over-parameterized autoencoders align drug signatures

between different cell types (Fig. 6-4), instead of using a linear combination of drug

signatures across cell types, we can simply use one of the available drug signatures

as the synthetic intervention. In particular, in this work, we used drug signatures on

MCF7 cells to construct synthetic interventions for A549 cells. We also considered

drug signatures on HCC515 cells; however, there was only one FDA approved drug

that was applied to HCC515 cells which was not also applied to A549 cells in CMap.

While this analysis did not help to increase the number of considered drugs, we used

the data on HCC515 cells in conjunction with the data on A549 and MCF7 cells

to validate that the overparameterized autoencoder aligns the signatures of drugs

between different cell types (Fig. 6-3d and Fig. 6-4).

Cosine similarity between perturbations

For each cell type and perturbation, we computed a cell-type specific “perturbation

signature", which is defined as the difference between the average gene expression

of a cell type under that perturbation and under the control perturbation, DMSO.

Then, for each perturbation, we computed the cosine similarity
(︁

𝑎·𝑏
‖𝑎‖‖𝑏‖

)︁
between the

perturbation vectors for all pairs of cell types which received that perturbation in

CMap. For example, daunorubicin was applied to 14 cell types in cMap, resulting

in
(︀
14
2

)︀
= 91 cosine similarities associated with daunorubicin. All cosine similarities

were plotted (Fig. 6-3e).
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Steiner tree analysis

Human protein-protein interaction (PPI) network

A weighted version of the publicly available IRefIndex v14 human PPI net-

work (Razick et al., 2008) was retrieved from the OmicsIntegrator2 GitHub reposi-

tory (http://github.com/fraenkel-lab/OmicsIntegrator2). The interactome contains

182,002 interactions between 15,759 proteins. Each interaction 𝑒 has an associated

cost 𝑐(𝑒) = 1 − 𝑚(𝑒) where the score 𝑚(𝑒) is obtained using the MIScore algo-

rithm (Kedaigle, 2018), which quantifies confidence in the interaction 𝑒 based on

several evidence criteria (e.g. number of publications reporting the interaction and

corresponding detection methods).

Human-SARS-CoV-2 PPI network

A high-confidence host-pathogen interaction map of 27 SARS-CoV-2 viral pro-

teins with HEK293T proteins (Gordon et al., 2020) was retrieved from NDEx

(http://www.ndexbio.org/#/network/5d97a04a-6fab-11ea-bfdc-0ac135e8bacf),

which reports interactions with 332 human proteins.

Drug-target interaction data

Data on the targets of drugs was obtained from DrugCentral

(http://drugcentral.org/download), an online drug information resource, which

includes drug-target interaction data extracted from the literature along with metrics

(such as inhibition constant 𝐾𝑖, dissociation constant 𝐾𝑑, effective concentration

𝐸𝐶50, and inhibitory concentration 𝐼𝐶50) measuring the affinity of the drug for

its target (Ursu et al., 2016, 2019). Drugs in the database are approved by the

FDA and may also be approved by other regulatory agencies (such as the EMA).

From this database, we filtered out compounds targeting non-human proteins. We

also discarded drug-target pairs with affinity metrics (𝐾𝑖, 𝐾𝑑, 𝐸𝐶50 or 𝐼𝐶50)

higher than 10𝜇𝑀 , a commonly used threshold in the field. Based on this filtering

we obtained a data set containing 12,949 high affinity drug-target pairs involving
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1,457 unique human protein targets and 2,095 unique compounds. This dataset

was further restricted to drugs predicted to reverse the SARS-CoV-2 signature

(correlation greater than 0.86 in the overparameterized autoencoder embedding).

This correlation threshold was chosen to be the point at which the proportion of

drugs decreases the most rapidly (Supplementary Fig. E-22). As a result, the final

drug-target data set included information on 2,296 drug-target pairs involving 652

unique human gene targets and 117 unique FDA approved drugs.

Prize-collecting Steiner forest algorithm

The Prize-Collecting Steiner Forest (PCSF) problem is an extension of the classical

Steiner tree problem: Given a connected undirected network with non-negative edge

weights (costs) and a subset of nodes, the terminals, find a subnetwork of minimum

weight that contains all terminals. The resulting subnetwork is always a tree, which

in general contains more nodes than the terminals; these are known as Steiner nodes.

In the special case when there are only 2 terminals, this boils down to finding the

shortest path between these nodes. The Steiner tree problem in general is known

to be NP-complete, but various approximations are available. The PCSF problem

generalizes this problem by introducing prices for the terminals (in addition to the

edge costs already present in the Steiner tree problem) and a dummy node connected

to all terminals. The problem is then to find a connected subnetwork that minimizes

an objective function involving the cost of selected edges and the prizes of terminals

that are missing from the subnetwork as detailed below; we used OmicsIntegrator2

to solve this optimization problem (Huang and Fraenkel, 2009).

To formally introduce the objective function, let 𝐺 = (𝑉,𝐸, 𝑐(·), 𝑝(·)) denote the

undirected PPI network with protein set 𝑉 (containing 𝑁 proteins), interaction set 𝐸,

edge cost function 𝑐(·), set of terminals 𝑆 ⊂ 𝑉 (containing 𝑁 proteins) and attributed

prizes 𝑝(·). The version of the PCSF problem solved by OmicsIntegrator2 (Huang

and Fraenkel, 2009) and used in this study consists of finding a connected subnetwork

𝑇 = (𝑉𝑇 , 𝐸𝑇 ) of the modified graph𝐺* = (𝑉 ∪{𝑟}, 𝐸∪{{𝑟, 𝑠} : 𝑠 ∈ 𝑆}) that minimizes
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the objective function

𝜓(𝑇 ) = 𝑏
∑︁

𝑣/∈𝑉𝑇

𝑝(𝑣) +
∑︁

𝑒∈𝐸𝑇

𝑐*(𝑒)

The node 𝑟 is a dummy root node connecting all terminals in the network. The

parameter 𝑏 ∈ R+ linearly scales the node prizes (which are non-zero for terminal

nodes exclusively), and the modified edge cost function 𝑐*(·) can be expressed as

follows. For any edge 𝑒 = {𝑥, 𝑦}

𝑐*(𝑒) =

⎧
⎪⎨
⎪⎩
𝑐(𝑒) + 𝑑𝑥𝑑𝑦

𝑑𝑥𝑑𝑦+(𝑁−𝑑𝑥−1)(𝑁−𝑑𝑦−1)
10𝑔 if 𝑒 ∈ 𝐸

𝑤 if 𝑒 ∈ {{𝑟, 𝑠} : 𝑠 ∈ 𝑆}
(6.1)

where 𝑑𝑥 denotes the degree of node 𝑥 in 𝐺 and 𝑔, 𝑤 ∈ R+ are tuning parameters. If

the resulting tree contains the root node 𝑟, 𝑟 is removed from the tree, and the output

is an ensemble of trees, a forest. The final output, the interactome, is the subnetwork

in the PPI network induced by the nodes of this forest.

Selection of terminal nodes

Results from the differential expression analysis yielded 219 protein-coding genes that

were associated with both aging and SARS-CoV-2 infection. Of particular interest

among these genes were 181 genes that showed concordant regulation, i.e. they were

either upregulated in both SARS-CoV-2 infection and aging or downregulated in both

SARS-CoV-2 infection and aging. Intersecting the proteins corresponding to these

181 genes with proteins in the IREF interactome resulted in 162 proteins. These 162

proteins were selected as terminal nodes for the PCSF algorithm and prized according

to their absolute log2-fold change between SARS-CoV-2-infected A549-ACE2 cells and

normal A549-ACE2 cells (Supplementary Fig. E-10).

Parameter sensitivity analysis

Running the PCSF algorithm in the OmicsIntegrator2 required specifying three tun-

ing parameters: 𝑔, 𝑤 and 𝑏. In order to guarantee the robustness of the resulting
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network with respect to moderate changes in these parameters, we selected the pa-

rameters based on a sensitivity analysis.

The parameter 𝑔 modifies the background PPI network by imposing an additive

penalty on each edge based on the degrees of the corresponding vertices. It reduces

the propensity of the algorithm to select hub nodes connecting many proteins in the

interactome. While this feature may be relevant in certain biological applications, it

was not necessarily the case in our work since high degree nodes may be of interest

for the purpose of drug target identification. In the cost function in Equation (6.1),

the absence of penalty corresponds to 𝑔 = −∞. However the OmicsIntegrator2

implementation only allows for 𝑔 ∈ R+. In Supplementary Fig. E-11a1, we reported

boxplots of penalized edge costs in the IREF interactome for different values of 𝑔.

These boxplots suggest that the hub penalty parameter 𝑔 = 0 yields similar edge

costs to the desired setting where 𝑔 = −∞. For this reason we chose the value 𝑔 = 0

in all OmicsIntegrator2 runs in this work.

The parameter 𝑤 corresponds to the cost of edges connecting terminal nodes to

the dummy root 𝑟. This parameter influences the number of trees in the Steiner

forest. If 𝑤 is chosen too low compared to the typical shortest path cost between

two terminals, a trivial solution will connect all terminal nodes via 𝑟, leading to fully

isolated terminals in the final forest. For high values of 𝑤 the PCSF algorithm will

not include the root 𝑟 and output a connected network. Based on the histogram of

the cost of the shortest path between any two terminals in the IREF interactome

reported in Supplementary Fig. E-11a2, we ran a sensitivity analysis for 𝑤 in the

range [0.2, 2].

The parameter 𝑏 linearly inflates the prizes of terminal nodes in the objective function.

Higher values of 𝑏 result in more terminal nodes in the final PCSF. We analyzed

edge costs in the network to determine a suitable range for 𝑏 so as to include many

terminal nodes in the resulting interactome. Supplementary Fig. E-11a1 shows that

the maximum edge cost in the network for 𝑔 = 0 was lower than 1, which meant that

making 𝑏 of order greater than 1 was necessary to ensure that trading off cost of edges

added and prizes collected in the solution would rarely require discarding a terminal
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node. For this reason we ran a sensitivity analysis for 𝑏 in the range [5, 50].

Based on the previous considerations we fixed 𝑔 = 0 and ran a sen-

sitivity analysis as described in Supplementary Fig. E-11b with 𝑤 ∈
{0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2} and 𝑏 ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. We

obtained 100 PCSFs, each corresponding to a particular choice of (𝑤, 𝑏). All of them

included the entire terminal set 𝑆, a desired property resulting from the chosen range

of the values of 𝑏. To analyze the robustness of the resulting networks to changes in

the parameters, we analyzed the matrix 𝑀 ∈ [0, 1]100×100 defined by

𝑀𝑖𝑗 =

⃒⃒
{ nodes in

network 𝑖} ∩
{︀

nodes in
network 𝑗

}︀
∩ 𝒞
⃒⃒

⃒⃒(︀
{ nodes in

network 𝑖} ∪
{︀

nodes in
network 𝑗

}︀)︀
∩ 𝒞
⃒⃒

for every pair of PCSFs 𝑖 and 𝑗 corresponding to parameters (𝑤𝑖, 𝑏𝑖) and (𝑤𝑗, 𝑏𝑗),

respectively. Supplementary Fig. E-11c displays heatmaps of this matrix. We consid-

ered three different node sets 𝒞, namely the set of all nodes in the input PPI network

(Supplementary Fig. E-11c1), the subset of terminal nodes (𝒞 = 𝑆, Supplementary

Fig. E-11c2) and the subset of SARS-CoV-2 interaction partners (Supplementary

Fig. E-11c3). Supplementary Fig. E-11c1, E-11c2, E-11c3 illustrate that choosing

any (𝑤, 𝑏) ∈ [1.2, 2] × [5, 50] led to the same connected PCSF with 252 nodes and

1,003 edges. This network is robust to moderate parameter changes for 𝑤 and 𝑏. Col-

lectively, this sensitivity analysis motivated the choice of 𝑔 = 0, 𝑤 = 1.4 and 𝑏 = 40

used to obtain the interactome in Fig. 6-5b, where nodes are grouped by general

function. The same interactome is presented in Supplementary Fig. E-12 with nodes

grouped by general process. Note that since this interactome included all terminals

and did not include the root node, it is equivalent to the solution of the classical

Steiner tree problem.

Neighborhood analysis

For the interactomes obtained in this work, we reported 2-nearest-neighborhoods of

genes of interest in Fig. 6-5c for the interactome of Fig. 6-5b, in Supplementary

Fig. E-15 for the interactome of Supplementary Fig. E-14, and in Supplementary

180



Fig. E-16d for the interactome in Supplementary Fig. E-16c. Depending on the in-

teractome, genes of interest include SARS-CoV-2 interaction partners (e.g. EXOSC5,

FOXRED2, LOX, RBX1, RIPK1) as well as genes of potential therapeutic interest

(e.g. HDAC1, EGFR). Neighborhood plots were enriched with information such as

SARS-CoV-2 interaction partners and FDA approved, high affinity (based on data

from DrugCentral) drugs with high correlation to the reverse SARS-CoV-2 infection

signature. To improve legibility of the neighborhood networks, we discarded the

highly connected hub node UBC (connected to 62% of proteins in the IREF net-

work). To further improve legibility, we applied an upper threshold on edge cost (i.e.,

only visualizing high confidence edges) when the neighborhood networks were too

densely connected. We generally chose this threshold at 0.53, with the exception of

the LOX neighborhood (0.58) and the FOXRED2, ETFA and GNB1 neighborhoods

(no thresholding). For each edge 𝑒 in a given neighborhood, we defined the min-max

scaled edge confidence 𝐶(𝑒) as

𝐶(𝑒) =
max𝑒′∈ℰ 𝑐(𝑒

′) − 𝑐(𝑒)

max𝑒′∈ℰ 𝑐(𝑒′) − min𝑒′∈ℰ 𝑐(𝑒′)
∈ [0, 1]

where ℰ denotes the edge set of the corresponding interactome and 𝑐(𝑒) denotes the

cost of edge 𝑒 in the PPI network. This confidence metric was used to color edges in

the neighborhood plots.

Addition of SARS-CoV-2 interaction partners to the terminal node list

In order to understand which other SARS-CoV-2 protein interaction partners were in

the neighborhood of the identified interactome, we also ran the PCSF algorithm on

the IREF PPI network using the SARS-CoV-2 and aging terminal list augmented with

all known SARS-CoV-2 interaction partners. All SARS-CoV-2 interaction partners

(with the exception of EXOSC5, FOXRED2 and LOX which were already present

in the original terminal gene list) were given a small prize 𝑝. This prize was chosen

by sensitivity analysis over a range of possible values from 𝑝 = 0 (5 SARS-CoV-2

interaction partners initially selected by the method: EXOSC5, FOXRED2, LOX,
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RBXL1, RIPK1) to 𝑝 = 0.02, beyond which all 332 known SARS-CoV-2 interaction

partners belonged to the computed interactome. Fine-grained analysis revealed that

choosing 𝑝 ∈ [4 × 10−4, 10−3] leads to interactomes which include a stable set of

7 SARS-CoV-2 interaction partners, the 5 present initially plus CUL2 and HDAC2

(Supplementary Fig. E-13a). Supplementary Fig. E-13b-E-13c display heatmaps of

the matrix 𝑀 ∈ [0, 1]16×16 defined as

𝑀𝑖𝑗 =

⃒⃒(︀
{ nodes in

network 𝑖} ∖
{︀

nodes in
network 𝑗

}︀)︀
∩ 𝒞
⃒⃒

|{ nodes in
network 𝑖} ∩ 𝒞|

for every pair of PCSFs 𝑖 and 𝑗 corresponding to parameters 𝑝𝑖 and 𝑝𝑗, respectively.

For the sensitivity analysis, we considered two different node sets 𝒞, namely the set

of all nodes in the input PPI network (Supplementary Fig. E-13b) as well as the

subset of SARS-CoV-2 interaction partners (Supplementary Fig. E-13c). Supple-

mentary Fig. E-13b shows that the obtained interactome was stable over the range

𝑝 ∈ [7 × 10−4, 10−3]. Supplementary Fig. E-13c shows that all SARS-CoV-2 interac-

tion partners collected in the interactome when 𝑝 ∈ [7×10−4, 10−3] were also collected

for higher values of 𝑝, which is a consequence of the observation from Supplementary

Fig. E-13b. We used the value 𝑝 = 8 × 10−4 for all subsequent analyses and figures,

including Supplementary Fig. E-14 and Supplementary Fig. E-15.

Randomization and robustness analysis

We conducted several randomization assessments to understand the importance of

each step in the pipeline, analyzing the impact of changes in the RNA-seq expression

data, the underlying protein-protein interaction network, the CMap drug signatures,

as well as the list of terminal genes on the final selection of drug targets and corre-

sponding drugs. This was quantified by the frequency of appearance of each drug in

the final drug list after 1000 randomization runs, for both drugs that were and that

were not selected in the original non-randomized analysis. Results from this analysis

suggest that the choice of terminal genes is the most critical step of the Steiner tree

procedure; see below and Supplementary Table E.2.
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(1) Randomization of PPI network: Randomization of the iREF protein-protein

interaction network was performed via randomly permuting the vertex labels. Such

randomization affects a gene’s neighborhood while preserving basic network properties

such as number of edges and degree distribution. The prize-collecting Steiner tree

analysis pipeline was then applied to this new network. Drugs targeting terminal

nodes were systematically selected in all randomization runs, as expected given that

the prize-collecting Steiner tree algorithm parameters were set so that all terminal

nodes are included in the solution. Other drugs identified by the non-randomized

analysis that did not target any terminal node appeared with frequencies varying

from 56% (primaquine, which has 5 targets in the network) to 97% (imatinib, which

has 69 targets in the network). Only two drugs (mifepristone and palbociclib) that

were not selected by the non-randomized analysis appeared more frequently (80%

of runs) than the least frequently selected drug from the non-randomized analysis

(primaquine, 56% of runs).

(2) Permuting expression data: Randomizing gene labels in the RNA-seq expres-

sion data set from (Blanco-Melo et al., 2020) while preserving gene labels of the GTEx

aging data set is an implicit approach to randomizing the list of terminal genes used

as input for the prize-collecting Steiner tree algorithm. After applying the Steiner

tree analysis pipeline, the drugs selected in the non-randomized analysis appeared

between 18% (milrinone) and 100% (sunitinib) of the runs. Generally, the more pro-

teins a drug targeted in the iREF network, the more frequently it appeared in the

solution (sunitinib, with 260 targets, is the drug with highest number of targets in

the PPI network). 16 drugs that were not selected in the non-randomized analysis

(this represents 1% of the set of non-selected drugs) appeared more frequently than

the least frequently selected drug from the non-randomized analysis (milrinone).

(3) Randomization of CMap signatures: We also ran the Steiner tree analysis

after randomly permuting the SARS-CoV-2-anticorrelation scores of the 605 CMap

drugs and selecting the drugs with anticorrelation above 0.86 (resulting in 142 drugs

as in the original non-randomized analysis). After applying the Steiner tree analysis

pipeline, drugs that were selected in the non-randomized analysis appeared in the final
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list with a frequency between 22% and 26%, as expected (since 142/605 ≈ 23.5%).

More interestingly, 17 drugs which were not selected in the non-randomized analysis

(representing 1% of the overall set of non-selected drugs) appeared at a similar 22-

29% frequency in the solution. These are drugs that target one of the network nodes

yet have a true SARS-CoV-2-anticorrelation score lower than 0.86.

(4) Randomization of terminal nodes: Finally, we directly randomized the list of

terminal nodes, by randomly selecting 162 genes from the RNA-seq expression dataset

and prizing them with their corresponding absolute log2 fold change after SARS-CoV-

2 infection in A549-ACE2 cells. The drugs selected in the non-randomized analysis

appeared between 3% (milrinone) and 100% (sunitinib) of the runs. In this analysis,

41 drugs that were not selected in the non-randomized analysis (this represents 2.5%

of the set of non-selected drugs) appeared more frequently than the least frequently

selected drug from the non-randomized analysis (milrinone).

These results show that while the output of our Steiner tree analysis pipeline is quite

robust to changes in the underlying PPI network, the selection of the terminal nodes

has a critical effect on the final drug list.

To ensure robustness of our results to different ways of mitigating batch effects in the

CMap dataset, we repeated the analysis by dropping all genes for which there was at

least one sample containing a 1 in the expression value (reducing the total number of

genes from 911 to 867 for the A549 cell line). As with the original batch correction

approach, the resulting drugs consist mainly of protein kinase inhibitors (7 out of 9)

and the drug targets are highly overlapping with the drug targets obtained from the

original analysis (Supplementary Fig. E-23).

Single-cell RNA-seq analysis

Single-cell RNA-seq for A549 cells was obtained from GSE81861 (Li et al., 2017),

where each entry in the matrix represents the gene expression (FPKM) of gene 𝑖

in cell 𝑗. We preprocessed the data, keeping only genes that had a nonzero gene

expression value in more than 10% of the cells, followed by log2(𝑥 + 1) transfor-

mation of the data. Single-cell RNA-seq data for AT2 cells was obtained from

184



http://www.nupulmonary.org/resources associated with (Reyfman et al., 2019). In

order to avoid batch effects, we subset the data to include cells only from Donor 7

since that donor had the largest number of AT2 cells collected (4002 cells). We pre-

processed the data using the same threshold as for A549 cells for filtering out genes

across cells. Since single-cell RNA-seq data for AT2 cells was not yet normalized, we

normalized the expression values across genes for each cell by the total RNA count

for that cell, followed by log2(𝑥+ 1) transformation of the data as for A549 cells.

Evaluation of causal structure discovery algorithms

Prior to reporting the results of learning gene regulatory networks on A549 and AT2

cells, we benchmarked several causal structure discovery methods on the task of pre-

dicting the effects of interventions using gene knockout and overexpression data col-

lected on A549 cells as part of the CMap project (Subramanian et al., 2017), similar to

prior evaluations of causal methods (Wang et al., 2017; Yang et al., 2017b). We esti-

mated the gene regulatory network underlying the identified interactome in A549 cells

using the prominent causal structure discovery methods PC, GES and GSP (Spirtes

et al., 2000; Glymour et al., 2019; Solus et al., 2017). Since not all edge directions are

identifiable from purely observational data, these methods output a causal graph con-

taining both directed and undirected edges. Since the advantage of causal networks

is their ability to predict the effects of interventions on downstream genes, we evalu-

ated these methods using interventions collected in CMap. In the following, we first

describe how we estimated the effects of interventions based on the CMap data to use

as ground truth for evaluating causal structure discovery methods. We focused our

evaluation on genes and interventions that are shared between the combined SARS-

CoV-2 and aging interactome and CMap knockout and overexpression experiments,

resulting in 32 genes and 41 interventions (note that the number of interventions is

larger than the number of genes, since in CMap interventions have been performed

on genes that are not part of the L1000 landmark genes, but are contained in the

interactome). We formed a matrix of genes by interventions, where each (𝑖, 𝑗)-entry

in the matrix represents the log2-fold change in expression of gene 𝑖 when gene 𝑗 was
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intervened on in comparison to the expression of gene 𝑖 without intervention. We

denoted by 𝑄 the binary matrix of intervention effects with 𝑄𝑖𝑗 = 1 if the sign of

the log2-fold change for the (𝑖, 𝑗) entry was opposite for knockout and overexpression

interventions to filter out unsuccessful interventions, the rational being that knockout

and overexpression should have opposite downstream effects. Thus 𝑄𝑖𝑗 = 1 denotes

that perturbing gene 𝑗 effects gene 𝑖 and hence that gene 𝑖 is downstream of gene 𝑗

(Supplementary Fig. E-17a). Taking this matrix of interventional effects, 𝑄, as the

ground truth, we estimated the causal graph using the PC, GES and GSP algorithms

and determined the corresponding ROC curve, counting and edge from 𝑗 → 𝑖 as a

true positive if 𝑄𝑖𝑗 = 1 and a false positive otherwise (Supplementary Fig. E-17b).

In order to statistically evaluate whether the different algorithms performed better

than random guessing, we sampled causal graphs (from an Erdös-Renyi model, where

the edges were directed based on a uniformly sampled permutation) with different

edge probabilities from the PPI network and calculated the corresponding number of

true and false positives. For each false positive level, we created a distribution over

true positives based on the sampled random causal graphs and calculated the p-value

for the number of true positives obtained from the PC, GES and GSP algorithms.

We combined the p-values across different numbers of false positives using Fisher’s

method and used this combined p-value for evaluating whether the PC, GES and

GSP algorithms were significantly different from random guessing.

Causal structure discovery for learning gene regulatory net-

works

In order to learn the gene regulatory networks governing A549 and AT2 cells, we used

the recent structure discovery method GSP (Solus et al., 2017; Wang et al., 2017; Yang

et al., 2017b) on single-cell RNA-seq data from A549 cells as well as AT2 cells with

the PPI network on 252 nodes as a prior. We used GSP since based on the previous

analysis it outperformed the PC and GES algorithms in terms of ROC analysis on

predicting the effect of gene knockout and overexpression experiments in A549 cells
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(𝑝-value = 0.0177 for GSP, 𝑝-value = 0.0694 for GSP and 𝑝-value = 0.5867 for GES);

in addition, GSP is also preferable from a theoretical standpoint, since it is consistent

under strictly weaker assumptions than the PC and GES algorithms (Solus et al.,

2017). To obtain an estimate of the causal graph that is robust across hyperparame-

ters and data subsampling, we used stability selection (Meinshausen and Bühlmann,

2010). In short, stability selection estimates the probability of selection of each edge

by running GSP on subsamples of the data. Aggregating selection probabilities across

algorithm hyperparameters (in this case the 𝛼-level for conditional independence test-

ing), edges with high selection probability (0.3 for A549 cells and 0.4 for AT2 cells)

were retained. The threshold for AT2 cells was chosen so as to approximately match

the number of edges in the A549 network.
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Appendix A

Appendix for Network analysis

identifies chromosome intermingling

regions as regulatory hotspots for
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Supplementary Figures

189



active inactive
16

14

12

10

8

6

4

2

0

2

lo
g

(R
P

K
M

)

Figure A-1: Comparison of gene expression in reads per kilobase of transcript per
million mapped reads (RPKM) on log scale between active and inactive clusters.
Active clusters show significantly higher gene expression (p-value = 0.004 under t-
test).
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Figure A-2: Top ranked clusters that appeared in the top 20 clusters across 8 differ-
ent methods of evaluation. The eight rankings are grouped by the different choices
for filtering the JASPAR 2016 database: The JASPAR2016 database was filtered by
ChIP-seq (blue) and the rankings were obtained i) using active clusters as background
and by generating random matrices from the observed counts for the permutation test,
ii) using active clusters as background and by generating random matrices based on
the Dirichlet distribution for the permutation test, iii) using all intermingling regions
as background and by generating random matrices from the observed counts for the
permutation test, iv) using the whole genome as background and by generating ran-
dom matrices from the observed counts for the permutation test. The JASPAR2016
database TFBS were obtained with a threshold of 0.00001 and filtered by CAGE
(green) and the rankings were obtained v) using active clusters as background and
by generating random matrices from the observed counts for the permutation test.
The JASPAR2016 database TFBS were obtained with a threshold of 0.000001 and
filtered by CAGE (red) and the rankings were obtained vi) using active clusters as
background and by generating random matrices from the observed counts for the
permutation test, vii) using active clusters as background and by generating ran-
dom matrices from the Dirichlet distribution for the permutation test, and viii) using
intermingling regions as background and by generating random matrices from the
observed counts for the permutation test.
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Figure A-3: Determining chromosomes that do not intermingle for predicting negative
controls. Edges link nodes, i.e., pairs of chromosomes, that showed no intermingling
regions in the LAS analysis. The edge weights are given by the absolute value of
the anti-correlation between the genomic features of the adjacent chromosomes at a
whole chromosome level.
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Figure A-4: Experimental validation using FISH for predicted active cluster on chro-
mosomes 12 and 17. Segmented images of nuclei from a population of cells with
nuclear boundary shown in white, chromosome 17 in red, and chromosome 12 in
green. The scale bar has a length of 5.
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Figure A-5: Experimental validation using FISH for predicted negative control, i.e.
chromosomes 3 and 20 that are predicted to not intermingle. Segmented images of
nuclei from a population of cells with nuclear boundary shown in white, chromosome
20 in red, and chromosome 3 in green. The scale bar has a length of 5.
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Figure A-6: Breakdown of the percentage of nuclei that intermingle (intermingling
degree > 0) versus don’t intermingle for the chromosome pairs 12-17 and 3-20, as
found by FISH experiments.

Figure A-7: Adjusted mutual information between replicate clusterings from weighted
correlation clustering.
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Supplementary Tables

Table A.1: Total sizes of intermingling regions
Region Size
Intermingling domains from LAS 903.25 Mb
Intermingling regions after clustering 459.5 Mb
Intermingling regions in active clusters 179.75 Mb

Table A.2: Datasets and accessions used to obtain the genomic features. The symbol
* indicates that peaks were retrieved from a previous study (Whalen et al., 2016)
that had already pre-processed the data from the GEO database.

Name Accession Category

RNA-seq GSE24565 active

RNAPII GSE31477 active

H3K4me1 GSE16256 active

H3K4me2 GSE16256 active

H3K4me3 GSE16256 active

H3K36me3 GSE16256 active

H3K9ac GSE16256 active

H3K27me3 GSE16256 repressive

H3K9me3 GSE16256 repressive

YAP1* GSE61852 other

RFX5 GSE31477 other

RELA* GSE43070 other

RCOR1 GSE31477 other

RBL2* GSE19899 other

RB1* GSE19899 other

RAD21 GSE31477 other

MXI1 GSE31477 other

MECP2* GSE47678 other

MAZ GSE31477 other
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MAFK GSE31477 other

LMNB1* GSE53332 other

H4K91ac GSE16256 other

H4K8ac GSE16256 other

H4K5ac GSE16256 other

H4K20me1 GSE16256 other

H3K9me1 GSE16256 other

H3K79me2 GSE16256 other

H3K79me1 GSE16256 other

H3K56ac GSE16256 other

H3K4ac GSE16256 other

H3K27ac GSE16256 other

H3K23ac GSE16256 other

H3K18ac GSE16256 other

H3K14ac GSE16256 other

H2BK5ac GSE16256 other

H2BK20ac GSE16256 other

H2BK15ac GSE16256 other

H2BK12ac GSE16256 other

H2BK120ac GSE16256 other

H2A.Z GSE16256 other

MacroH2A1.1 GSE54847 other

H2AK9ac GSE16256 other

H2AK5ac GSE16256 other

EP300* GSE43070 other

DNase-seq GSE18927 other

CTCF GSE31477 other

CHD1 GSE31477 other

CEBPB GSE31477 other
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Table A.3: Fold enrichment of high-occupancy target (HOT) regions as compared to
low-occupancy target regions (LOT) in active clusters.

Feature Enrichment
HOT:LOT 2.94

Table A.4: Top 15 inactive clusters, ranked by enrichment for H3K9me3. Clusters
are given by chromosome number and start position in kb; each region in the cluster
is 250kb in length. Only clusters with less than seven 250kb regions in the cluster are
included.

Cluster # Clusters (kb) H3K9me3 RNAPII
443 chr10:1500, chr8:2750 3.523 0.000
114 chr10:125000, chr1:5750, chr10:125250 3.377 0.000
204 chr8:137000, chr6:164500 3.353 0.000
213 chr17:11500, chr17:10750, chr5:6250, chr17:11000, chr17:11250 3.264 0.079
260 chr2:0, chr5:178250 3.225 0.431
370 chr22:26250, chr20:22000, chr20:21750 3.180 0.000
63 chr6:170250, chr1:13750 3.152 0.000
316 chr1:238250, chr6:162250 3.127 0.000
445 chr6:164750, chr5:166000 3.116 0.000
49 chr1:34750, chr1:34000, chr1:34250, chr8:142500, chr1:35000, chr1:34500 3.054 0.000
265 chr19:30750, chr20:19250 3.048 0.000
251 chr6:165250, chr8:138500 3.019 0.000
235 chr21:32250, chr20:15250 3.001 0.431
230 chr14:104500, chr14:104750, chr13:112000 2.994 0.000
434 chr1:239250, chr6:163000 2.992 0.000

Table A.5: Top 15 active clusters, ranked by p-value of permutation test based on
TFBS (JASPAR 2016, threshold = 0.000001, CAGE). Clusters are given by chromo-
some number and start position in kb; each region in the cluster is 250kb in length.

Cluster # Clusters (kb) P-value RNAPII H3K9me3
137 chr7:100250, chr7:100750, chr11:65250, chr17:42750 0.0000 10.1162 0.5417
111 chr1:22250, chr19:45250 0.0000 4.3250 0.2820
61 chr16:30000, chr19:10750, chr16:29750, chr19:10500 0.0002 4.9110 0.3573
57 chr19:56000, chr19:55500, chr22:50250, chr19:55750 0.0001 8.1535 0.9214
157 chr22:50750, chr17:7250 0.0005 8.2122 0.3790
27 chr20:48750, chr20:48500, chr21:47250, chr22:30500 0.0021 13.5989 0.4189
29 chr12:53500, chr4:1000, chr12:53250 0.0024 5.0042 0.5440
144 chr12:50000, chr6:35250 0.0031 5.2105 0.3111
92 chr1:1000, chr12:123250, chr1:750, chr9:133500, chr8:145000, chr13:114750 0.0043 9.0570 0.5125
180 chr1:27750, chr3:46750 0.0068 1.0079 0.5889
84 chr17:73000, chr8:144250 0.0068 3.5725 0.5660
68 chr2:220250, chr1:16750, chr2:220000 0.0070 5.4663 0.4099
185 chr16:30750, chr19:17250, chr16:31000 0.0073 5.3819 0.3246
17 chr12:49250, chr17:38250, chr12:49500 0.0075 6.0798 0.2533
78 chr1:203250, chr17:74500 0.0103 7.9689 0.5743
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Appendix B

Appendix for Multi-Domain

Translation between Single-Cell

Imaging and Sequencing Data using

Autoencoders

Supplementary Methods

Autoencoder training on chromatin images for validation

We trained a convolutional autoencoder with the following architecture on the chro-

matin images: (1) We used 15 convolutional layers with 256 3 × 3 filters per layer

followed by leaky ReLU activations throughout; (2) layers 2-6 have a stride size of

2 and layers 8-12 are followed by bilinear upsampling layers with a scale factor of 2.

The bottleneck of our network thus provides a 256 dimensional representation of the

images. We trained our network using the Adam optimizer (learning rate of 10−4)

and used a Kaiming uniform initialization for all our convolutional layers. All of the

images were trimmed to remove background and resized to 32 × 32 images in order

to remove nucleus size as a distinguishing feature. We held out 10% of the data as

test data and trained until the reconstruction loss on the test data was smaller than
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10−3.

In order to determine whether our network was able to separate the poised and qui-

escent naive CD4+ T-cell clusters (as determined by the protein ratio of CORO1A

to RPL10A) in an unsupervised fashion, we visualized the embedding of the images

corresponding to the histogram peaks in Fig. 3-5 (namely the images with protein

ratio in the range [.64, .7] and [0.93, 1]). Supplementary Fig. B-8 shows the result-

ing t-SNE embedding, where the color coding corresponds to the protein ratio of

CORO1A to RPL10A. Interestingly, the latent embedding of the images obtained

in an unsupervised fashion (with no information about the proteins) captures the

protein ratio.
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Supplementary Figures

(a) (b)

(c)

Figure B-1: Clustering of peripheral blood mononuclear cell (PBMC) data. (a) t-SNE
of all cells in the PBMC data set, colored by inferred cluster label. (b) t-SNE plots
of all cells in the PBMC data set, colored by expression of genes marking naive T-cell
subpopulations (LEF1, SELL, CCR7), T-cells (CD3E, CD3D, IL7R, IL32), CD8 T-
cells (CD8A, CD8B), natural killer, and cytotoxic T-cells (NKG7, PRF1, GZMK). (c)
t-SNE plot including the clustering of the naive CD4+ T-cells (clusters denoted by
different colors). Grey subpopulation differentially overexpresses CD8A and CD8B
as the genes with highest average log-fold change (corrected 𝑝-value = 1.30 × 10−40

and 1.54×10−51 respectively), indicating that these cells are not naive CD4+ T-cells;
thus they have been removed from further analysis.
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(a) (b)

Figure B-2: Evaluating optimal number of clusters for naive CD4+ T-cell gene ex-
pression data (𝑛 = 1166 cells). (a) Silhouette coefficient for clusters obtained with
Seurat at different resolutions (0.8, 0,9, 1.1, 1.15). (b) BIC score (averaged over 100
trials) for Gaussian mixture model with 1, 2, 3, 4 and 5 components. The boxplots il-
lustrate the median (middle line), with box indicating the first and third quartiles and
the whiskers indicating ± 1.5 × interquartile range. Outliers are plotted as separate
dots.
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Figure B-3: Examples of naive CD4+ T-cell nuclei stained with DAPI. Scale bar is 2
microns. Images were selected randomly from 4 experiments.
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(a) (b)

(c) (d)

Figure B-4: Evaluating optimal number of clusters for naive CD4+ T-cell imaging
data (𝑛 = 729 cells from two biologically independent replicates) using (a) average
silhouette width, (b) gap statistic using 50 bootstrap samples, (c) total within-cluster
sum of square, (d) alternative clustering using 1 - Pearson’s correlation matrix with
average linkage. Green and blue colors represent labels obtained based on the original
clustering with 1 - Spearman’s correlation and complete linkage, where green indicates
the subpopulation of cells with central chromatin pattern and blue indicates the
subpopulation of cells with peripheral chromatin pattern.
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(a) (b)

(c) (d)

(e)

Figure B-5: Cross-modal autoencoder model trained on single-cell RNA-seq and
single-cell images of DAPI-stained nuclei. (a) Reconstruction loss curve (sum of RNA-
seq and image reconstruction losses). (b) Discriminative loss curve for RNA-seq and
image translation model. (c) Examples of input images to the image autoencoder. (d)
Reconstructed images after training the image autoencoder. (e) Generated images
translated from RNA-seq to image space. Images were selected randomly.
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(a) (b)

(c) (d)

(e)
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Figure B-7: Validation of inferred latent embedding. Histograms of embedded naive
CD4+ T-cells from (a) RNA-seq and (b) imaging data sets, split by high (green)
versus low (blue) CORO1A/RPL10A ratio. Histogram is computed along LDA axis
that maximally separates two subpopulations in the latent space, showing that the
axis aligns with CORO1A/RPL10A ratio. (c) Scatterplot of CORO1A/RPL10A ratio
versus projection onto LDA axis. In both data sets, RNA-seq (blue) and imaging
(yellow), the positive correlation between the ratio and the projection onto the LDA
axis is statistically significant (𝑝 = 8.27 × 10−6 for RNA-seq data, 𝑝 = 2.27 × 10−6

for imaging data, two-sided Wald test for linear fit). (d) RNA-seq (red) and imaging
(yellow) data embedded in latent space, visualized using PCA. (e) Interpretation of
image features along the LDA axis that maximally separates the two naive T-cell
subpopulations in the latent space. Results show decreased background chromatin
concentration in the nucleus.
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(a) (b)

Figure B-8: t-SNE visualization of latent space learned by convolutional autoencoder
on chromatin imaging data of naive CD4+ T-cells colored by (a) cluster label: quies-
cent (blue) and poised (green) naive CD4+ T-cells and (b) protein ratio of CORO1A
to RPL10A. The autoencoder separates out the two naive CD4+ T-cell clusters by
protein ratio without cluster supervision.
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Figure B-9: Evaluation of robustness to the choice of architecture (fully-connected
versus convolutional layers, number of layers, and latent space dimension) for the
cross-modal autoencoder integrating RNA-seq and chromatin imaging. (a) Receiver
Operating Characteristic (ROC) curve illustrating performance of classifiers trained
to distinguish between peripheral and central chromatin patterns in images when
evaluated on images translated from RNA-seq data. High performance of classifiers
indicates that the alignment of the clusters in the latent space also holds in the
original gene expression and imaging spaces and is robust to different architecture
choices. The dotted dark blue line represents random guessing based on evenly-
distributed classes and the remaining colors represent different model architectures.
(b) ROC curves illustrating performance of classifiers trained to distinguish between
quiescent and poised gene expression programs when evaluated on RNA-seq data
translated from images. (c) Linear Discriminant Analysis (LDA) plots of single-cell
RNA-seq (left) and imaging (right) datasets embedded in the latent space for models
with different numbers of latent dimensions. The clusters with more quiescent (blue)
and poised (green) gene expression programs from the RNA-seq dataset are aligned
with the clusters with peripheral (blue) and central (green) chromatin patterns from
the imaging dataset. (d) Same as (c), for models with different numbers of layers in
the RNA-seq VAE. (e) Same as (c), for model with fully-connected image VAE. Note
that the model with latent dimension of 128 is the same model as the one with 4
layers in the RNA-seq VAE.
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Figure B-10: Evaluation of robustness to the choice of architecture (fully-connected
versus convolutional layers, number of layers, and latent space dimension) for the
cross-modal autoencoder integrating RNA-seq and chromatin imaging. Differential
gene expression analysis between cells with central and peripheral chromatin pattern
performed on the predicted gene expression matrix translated from images using our
methodology with different architecture choices. The predicted fold-change of gene
expression based on images is strongly correlated with the observed fold-change of
gene expression between quiescent and poised naive T-cells from the actual RNA-seq
dataset. (a) Original model with 128 latent dimensions and 4 layers in the RNA-seq
VAE, (b) model with 256 latent dimensions, (c) model with 3 layers in the RNA-seq
VAE, (d) model with 5 layers in the RNA-seq VAE, (e) model with fully-connected
image VAE instead of convolutional.
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Supplementary Tables

Input size Hidden layer size(s) Output size
Encoder A 815 (ATAC-seq TFs) 815, 815, 815, 100 50 (latent space)
Encoder B 2613 (RNA-seq genes) 2613, 2613, 2613, 100 50 (latent space)
Decoder A 50 (latent space) 100, 815, 815, 815 815 (ATAC-seq TFs)
Decoder B 50 (latent space) 100, 2613, 2613, 2613 2613 (RNA-seq genes)
Discriminator 50 (latent space) 50, 100 1
Classifier 50 (latent space) N/A 3 (treatment time class probabilities)

Table B.1: Network architecture for autoencoder network trained on RNA-seq and
ATAC-seq data collected from A549 cells. The discriminator, decoders, and encoders
have leaky ReLU activations after each layer.

Loss description Type Weight

Reconstruction loss for ATAC-seq Mean absolute error 10
Reconstruction loss for RNA-seq Mean absolute error 10
Discriminative loss Mean squared error 10
Shared cluster (treatment time) classification loss for ATAC-seq Cross-entropy 10
Shared cluster (treatment time) classification loss for RNA-seq Cross-entropy 10
Anchor/supervision loss between paired points in the latent space Mean absolute error 0.1

Table B.2: Losses and corresponding weights for autoencoder network trained on
RNA-seq and ATAC-seq data collected from A549 cells.
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Cluster # Differentially overexpressed genes Cluster annotation

0 S100A8, S100A9, LYZ, S100A12, TYROBP,
FCN1, FTL, CTSS, MNDA, CST3

1 LDHB, CCR7, LEF1, RPL31, NOSIP,
CD3E, RPS27, RPS6, SARAF, TCF7 Naive CD4+ T-cells

2 CCL5, NKG7, GZMK, GZMA, IL32,
KLRB1, CST7, DUSP2, CMC1, CTSW Cytotoxic T-cells

3 IL32, LTB, IL7R, ITGB1, KLRB1,
LDHB, CD3D, CD2, AQP3, GSTK1 Activated CD4+ T-cells

4 CD8B, CD8A, JUNB, LDHB, LEF1,
CCR7, NPM1, RPS6, CD7, SARAF Naive CD8+ T-cells

5 TCL1A, CD79A, CD74, CD79B, MS4A1,
HLA-DRA, HLA-DPA1, HLA-DQB1, HLA-DPB1, CD37

6 CD79A, MS4A1, CD79B, CD74, JCHAIN,
HLA-DRA, HLA-DPA1, HLA-DPB1, HLA-DQB1, BANK1

7 GNLY, NKG7, PRF1, FGFBP2, GZMA,
CTSW, KLRD1, GZMB, KLRF1, SPON2

8 LST1, FCGR3A, AIF1, SAT1, FCER1G,
COTL1, PSAP, MS4A7, FTL, IFITM3

9 HLA-DQA1, HLA-DRB1, CST3, HLA-DPB1, HLA-DPA1,
FCER1A, HLA-DRA, CD74, HLA-DQB1, LYZ

10 PPBP, PF4, GNG11, HIST1H2AC, RGS18,
TUBB1, TSC22D1, S100A9, S100A8, NRGN

11 CD79A, CD79B, CD74, TCL1A, MS4A1,
CD37, BANK1, HLA-DPA1, CD22, RALGPS2

12 GZMB, JCHAIN, LILRA4, ITM2C, PTGDS,
IRF7, IRF8, PLD4, PLAC8, CCDC50

Table B.3: Top 10 differentially upregulated genes (average log-fold change > 0) for
each cluster in PBMC data set.
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Image autoencoder RNA-seq autoencoder
2D Convolutional Block (1, 128, 4 x 4, 2) Fully connected block (7633, 1024)

2D Convolutional Block (128, 256, 4 x 4, 2) Fully connected block (1024, 1024)
Encoder 2D Convolutional Block (256, 512, 4 x 4, 2) Fully connected block (1024, 1024)

2D Convolutional Block (512, 1024, 4 x 4, 2) Fully connected block (1024, 1024)
2D Convolutional Block (1024, 1024, 4 x 4, 2) Fully connected block (1024, 1024)

Fully connected (4096, 128) Fully connected (1024, 128)

Fully connected (128, 4096) Fully connected (128, 1024)
2D Transposed Convolutional Block (1024, 1024, 4 x 4, 2) Fully connected block (1024, 1024)
2D Transposed Convolutional Block (1024, 512, 4 x 4, 2) Fully connected block (1024, 1024)

Decoder 2D Transposed Convolutional Block (512, 256, 4 x 4, 2) Fully connected block (1024, 1024)
2D Transposed Convolutional Block (256, 128, 4 x 4, 2) Fully connected block (1024, 1024)
2D Transposed Convolutional Block (128, 1, 4 x 4, 2) Fully connected (1024, 7633)

Sigmoid

Table B.4: Network architecture for RNA-seq and image autoencoder networks. Each
block consists of a batch normalization layer and ReLU nonlinearity. The discrimi-
nator has the same structure as the RNA-seq decoder with no batch normalization,
3 fully connected blocks and output dimension of 2.
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Appendix C

Appendix for Identifying 3D Genome

Organization in Diploid Organisms

via Euclidean Distance Geometry

Proofs studying identifiability of 3D configuration

from additional distance constraints between neigh-

boring loci

For the proofs of Propositions 4.4.1 and 4.4.2 we recall from Theorem 4.3.1 that

(𝑥𝑖, 𝑦𝑖) and (𝑥*𝑖 , 𝑦
*
𝑖 ) are diametrically opposite points on the same sphere. Denote the

𝑖-th sphere by 𝑆𝑖 and let it have center 𝑐𝑖 and radius 𝑟𝑖. Then ‖𝑐𝑖 − 𝑥𝑖‖ = 𝑟𝑖 and

2𝑐𝑖 − 𝑥𝑖 = 𝑦𝑖. We recall Proposition 4.4.1 from Section 4.4 in Chapter 4.

Proposition 4.4.1. For 𝑛 ≥ 3, there are unique points 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 ∈ R2

satisfying equations

𝑥𝑖 + 𝑦𝑖 = 𝑥*𝑖 + 𝑦*𝑖 and ‖𝑥𝑖‖2 + ‖𝑦𝑖‖2 = ‖𝑥*𝑖 ‖2 + ‖𝑦*𝑖 ‖2 for 1 ≤ 𝑖 ≤ 𝑛,

‖𝑥𝑖 − 𝑥𝑖+1‖ = ‖𝑥*𝑖 − 𝑥*𝑖+1‖ and ‖𝑦𝑖 − 𝑦𝑖+1‖ = ‖𝑦*𝑖 − 𝑦*𝑖+1‖ for 1 ≤ 𝑖 ≤ 𝑛− 1.
(4.5)

Proof. We have 𝑦1 = 2𝑐1−𝑥1 and 𝑦2 = 2𝑐2−𝑥2. Plugging this into ‖𝑦1−𝑦2‖ = ‖𝑦*1−𝑦*2‖

215



Figure C-1: Identifiability in the 2D setting with neighboring distance constraints.
Two solutions for 𝑥2 are obtained by translating the circle centered at 𝑐1 by 𝑥*2 − 𝑥*1
(this new circle is colored blue) and intersecting it with the circle centered at 𝑐2. The
other two solutions are obtained by reflecting the blue circle over the line through 𝑐1
and 𝑐2 (this new circle is colored green) and intersecting it with the circle centered at
𝑐2. The true solution for 𝑥2 is colored black and the three alternative solutions for 𝑥2
are colored red.

gives

‖𝑦*1 − 𝑦*2‖ = ‖(2𝑐1 − 𝑥1) − (2𝑐2 − 𝑥2)‖2

= ‖(2𝑐1 − 2𝑐2) − (𝑥1 − 𝑥2)‖2

= ‖2𝑐1 − 2𝑐2‖2 + ‖𝑥1 − 𝑥2‖2 − 2(2𝑐1 − 2𝑐2) · (𝑥1 − 𝑥2).

The quantities ‖2𝑐1 − 2𝑐2‖2 and ‖𝑥1 − 𝑥2‖2 are fixed. This implies that the quantity

(2𝑐1−2𝑐2)·(𝑥1−𝑥2) is fixed. Since we know ‖𝑥1−𝑥2‖ and 𝑐1 ̸= 𝑐2 holds by genericness,

then there are two possible angles for 𝑥1−𝑥2 (this is where we use the 2D constraint)

and thus there are two possible solutions for 𝑥1 − 𝑥2.

Because 𝑥1, 𝑥2 are constrained to lie on circles, the solutions for 𝑥1 are the intersection

points of the first circle and the second circle translated by 𝑥1 − 𝑥2 and the solutions

for 𝑥2 are the intersection points of the second circle and the first circle translated by

𝑥2 − 𝑥1. Hence each solution for 𝑥1 − 𝑥2 leads to at most two possible solutions for

(𝑥1, 𝑥2). In turn this implies there are at most four solutions for 𝑥2.

We now investigate the four solutions. The first two solutions are obtained by trans-

lating the circle centered at 𝑐1 by 𝑥*2 − 𝑥*1 and intersecting it with the circle centered
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at 𝑐2, see Figure C-1. One of the two solutions is 𝑥*2. The other two solutions are

reflections of these two solutions over the line from 𝑐1 to 𝑐2.

Let 𝑥*1, 𝑥*2, 𝑐1, 𝑐2 be fixed. They determine four possible solutions for 𝑥2. We will show

that these four solutions are different from the four solutions we get from considering

𝑥*2, 𝑥
*
3, 𝑐2, 𝑐3 for generic 𝑥*3, 𝑐3 (apart from 𝑥*2).

If either of the reflected solutions over the line from 𝑐2 to 𝑐3 coincides with one of

the four original solutions, then we can perturb 𝑐3 away from the line from 𝑐2 to 𝑐3

to change these solutions. If the solution that is the intersection point of the circle

centered at 𝑐2 and the translation by 𝑥*2 − 𝑥*3 of the circle centered at 𝑐3 (different

from 𝑥*2) coincides with one of the four original solutions, then we can perturb 𝑥*3.

This changes 𝑥*2 − 𝑥*3 and hence the second intersection point of the circle centered

at 𝑐2 and the translation by 𝑥*2 − 𝑥*3 of the circle centered at 𝑐3.

A similar argument can be used to show that 𝑥3, . . . , 𝑥𝑛−1 have unique solutions.

Given a unique solution for 𝑥2, there are two solutions for 𝑥1 if and only if 𝑥*2 lies

on the line from 𝑐1 to 𝑐2. This is however not a generic configuration. A similar

argument applies for 𝑥𝑛.

We recall Proposition 4.4.2 from Section 4.4 in Chapter 4.

Proposition 4.4.2. For any 𝑛 ∈ N, there exist 𝑥*1, 𝑥*2, . . . , 𝑥*𝑛 and 𝑦*1, 𝑦
*
2, . . . , 𝑦

*
𝑛

such that there are infinitely many points 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 ∈ R3 satisfying equa-

tions (4.5).

Proof. If 𝑛 = 1, then 𝑥*1, 𝑦*1 can be chosen randomly with the constraint that 𝑥*1 ̸= 𝑦*1.

Then 𝑥1 and 𝑦1 can be any points on the sphere 𝑆1 defined by 𝑥*1, 𝑦*1. Assume 𝑛 ≥ 2.

Fix any 𝑥*1, 𝑦
*
1 such that 𝑥*1 ̸= 𝑦*1. Choose two circles 𝐶1 and 𝐶 ′

1 on the sphere 𝑆1

defined by 𝑥*1, 𝑦*1 that intersect at two points one of which is 𝑥*1. The circle 𝐶1 is the

intersection of 𝑆1 and another sphere 𝑇1. Let 𝑥*2 be the center of the sphere 𝑇1. Let

𝐶 ′′
1 be the circle on 𝑆1 that consists of points antipodal to 𝐶 ′

1. Then 𝐶 ′′
1 is also an

intersection of 𝑆1 and another sphere 𝑇 ′′
2 . Let 𝑦*2 be the center of the sphere 𝑇 ′′

2 . We

use the same procedure to construct 𝑥*3 and 𝑦*3 from 𝑥*2 and 𝑦*2, 𝑥*4 and 𝑦*4 from 𝑥*3 and

𝑦*3 etc.
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Now consider points 𝑥𝑛 and 𝑦𝑛 in an 𝜀-neighborhood of 𝑥*𝑛 and 𝑦*𝑛. Consider the

spheres that are centered at 𝑥𝑛 and 𝑦𝑛 and have radii ‖𝑥*𝑛−1 − 𝑥*𝑛‖ and ‖𝑦*𝑛−1 − 𝑦*𝑛‖.
The intersections of these spheres with 𝑆𝑛−1 give circles 𝐶𝑛−1 and 𝐶 ′′

𝑛−1 that are

perturbations of circles 𝐶𝑛−1 and 𝐶 ′′
𝑛−1. In particular, the intersection of the circle

𝐶𝑛−1 and the circle 𝐶 ′
𝑛−1 that consists of points antipodal to 𝐶 ′′

𝑛−1 consists of two

points for 𝜀 small enough. Choosing 𝑥𝑛−1 to be the intersection point corresponding

to 𝑥*𝑛−1 and 𝑦𝑛−1 its antipodal gives points 𝑥𝑛−1, 𝑦𝑛−1 satisfying ‖𝑥𝑛−1−𝑥𝑛‖ = ‖𝑥*𝑛−1−
𝑥*𝑛‖ and ‖𝑦𝑛−1 − 𝑦𝑛‖ = ‖𝑦*𝑛−1 − 𝑦*𝑛‖.
Assuming that 𝜀 is small enough, 𝑥𝑛−1 and 𝑦𝑛−1 are in small neighborhoods of

𝑥*𝑛−1 and 𝑦*𝑛−1, and we can continue the same procedure to find 𝑥𝑛−2 and 𝑦𝑛−2

from 𝑥𝑛−1 and 𝑦𝑛−1, 𝑥𝑛−3 and 𝑦𝑛−3 from 𝑥𝑛−2 and 𝑦𝑛−2 etc. In particular, we can

find 𝑥1, . . . , 𝑥𝑛−1, 𝑦1, . . . , 𝑦𝑛−1 satisfying equations (4.5) for every 𝑥𝑛 and 𝑦𝑛 in an

𝜀-neighborhood of 𝑥*𝑛 and 𝑦*𝑛.

The previous proposition suggests that there are two degrees of freedom for choosing

𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 on each homologous pair and thus that finite identifiability re-

quires two additional algebraically independent constraints per homologous pair. Sim-

ilarly this suggests that unique identifiability requires three additional algebraically

independent constraints per homologous pair, where each endpoint of a chromosome

needs to be included in at least one of the additional constraints.

Proofs for identifiability from higher-order contact

constraints

We recall Theorem 4.5.1 from Section 4.5 in Chapter 4.

Theorem 4.5.1. Let 𝑚 be the number of chromosome pairs, let 𝑛1, 𝑛2, . . . , 𝑛𝑚 be the

number of domains on chromosomes 1, 2, . . . ,𝑚 and define 𝑛 = 𝑛1+𝑛2+ . . .+𝑛𝑚. Let

𝐼 ⊆ [𝑛]×[𝑛]×[𝑛] be such that each of 1, 𝑛1, 𝑛1+1, 𝑛1+𝑛2, . . . , 𝑛1+𝑛2+. . .+𝑛𝑚−1+1, 𝑛

(labels of domains at the beginning and at the end of each chromosome) is contained
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in at least one triple in 𝐼. Let 𝑥*1, . . . , 𝑥*𝑛, 𝑦*1, . . . , 𝑦*𝑛 ∈ R3 be fixed such that

min
𝑧*𝑖 ∈{𝑥*

𝑖 ,𝑦
*
𝑖 } for 𝑖=𝑘1,𝑘2,𝑘3

⎛
⎝ ∑︁

𝑗∈{𝑘1,𝑘2,𝑘3}

‖𝑧*𝑗 − (𝑧*𝑘1 + 𝑧*𝑘2 + 𝑧*𝑘3)/3‖2
⎞
⎠ = 0 for (𝑘1, 𝑘2, 𝑘3) ∈ 𝐼.

Consider the polynomial system:

𝑥𝑖 + 𝑦𝑖 = 𝑥*𝑖 + 𝑦*𝑖 and ‖𝑥𝑖‖2 + ‖𝑦𝑖‖2 = ‖𝑥*𝑖 ‖2 + ‖𝑦*𝑖 ‖2 for 1 ≤ 𝑖 ≤ 𝑛,

‖𝑥𝑖 − 𝑥𝑖+1‖ = ‖𝑥*𝑖 − 𝑥*𝑖+1‖ and ‖𝑦𝑖 − 𝑦𝑖+1‖ = ‖𝑦*𝑖 − 𝑦*𝑖+1‖ for 𝑖 ∈ [𝑛]∖{𝑛1, 𝑛1 + 𝑛2, . . . , 𝑛},

min
𝑧𝑖∈{𝑥𝑖,𝑦𝑖} for 𝑖=𝑘1,𝑘2,𝑘3

⎛
⎝ ∑︁

𝑗∈{𝑘1,𝑘2,𝑘3}

‖𝑧𝑗 − (𝑧𝑘1 + 𝑧𝑘2 + 𝑧𝑘3)/3‖2
⎞
⎠ = 0 for (𝑘1, 𝑘2, 𝑘3) ∈ 𝐼.

(4.6)

For generic 𝑥*1, . . . , 𝑥*𝑛, 𝑦*1, . . . , 𝑦*𝑛, this system has a unique solution in (R3)2𝑛.

Before we can prove Theorem 4.5.1, we will need two lemmas. Lemma C.0.1 states

that for a fixed solution (𝑥*1, 𝑦
*
1) on a sphere 𝑆1 and given distances between solutions

on 𝑆1 and 𝑆2, there are finitely many solutions (𝑥2, 𝑦2) on the sphere 𝑆2. Lemma C.0.2

is an extension of Lemma C.0.1. It states that if one has finitely many solutions on

a sphere 𝑆𝑖, then given distances between neighboring beads, there are finitely many

solutions on any sphere connected to 𝑆𝑖.

Lemma C.0.1. Let 𝑥*1, 𝑥*2, 𝑦*1, 𝑦*2 ∈ R3 be fixed. Consider the polynomial system:

𝑥2 + 𝑦2 = 𝑥*2 + 𝑦*2, ‖𝑥2‖2 + ‖𝑦2‖2 = ‖𝑥*2‖2 + ‖𝑦*2‖2,

‖𝑥*1 − 𝑥2‖ = ‖𝑥*1 − 𝑥*2‖ and ‖𝑦*1 − 𝑦2‖ = ‖𝑦*1 − 𝑦*2‖.
(C.1)

For generic 𝑥*1, 𝑥*2, 𝑦*1, 𝑦*2, this system has finitely many solutions in (R3)2𝑛.

Proof. The first two equations of (C.1) say that 𝑥2, 𝑦2 and 𝑥*2, 𝑦*2 are pairs of antipodal

points on the same sphere. We denote this sphere by 𝑆2. The third equation says that

𝑥2 is the same distance from 𝑥*1 as 𝑥*2 is from 𝑥*1. Hence 𝑥2 must lie on the circle 𝐶𝑥2

that is the intersection of 𝑆2 and the sphere centered at 𝑥*1 and with radius ‖𝑥*1−𝑥*2‖.
The last equation says that 𝑦2 must lie on the circle 𝐶𝑦2 that is the intersection of

𝑆2 and the sphere centered at 𝑦*1 with radius ‖𝑦*1 − 𝑦*2‖. We consider the circle 𝐶 ′
𝑥2
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that consists of antipodal points to the circle 𝐶𝑦2 on the sphere 𝑆2. The intersection

of the circles 𝐶𝑥2 and 𝐶 ′
𝑥2

gives the solutions for 𝑥2. Unless the two circles are equal,

they intersect at at most two points. Since 𝑦2 is antipodal to 𝑥2, then for each 𝑥2

there is a unique 𝑦2. The circles coincide if and only if 𝑥*1, 𝑦*1 and the center of 𝑆2 are

collinear.

Lemma C.0.2. Let 𝑥*1, . . . , 𝑥*𝑛, 𝑦*1, . . . , 𝑦*𝑛 ∈ R3 be fixed. Consider the polynomial

system:

𝑥𝑖 + 𝑦𝑖 = 𝑥*𝑖 + 𝑦*𝑖 and ‖𝑥𝑖‖2 + ‖𝑦𝑖‖2 = ‖𝑥*𝑖 ‖2 + ‖𝑦*𝑖 ‖2 for 2 ≤ 𝑖 ≤ 𝑛,

‖𝑥*1 − 𝑥2‖ = ‖𝑥*1 − 𝑥*2‖, ‖𝑦*1 − 𝑦2‖ = ‖𝑦*1 − 𝑦*2‖,

‖𝑥𝑖 − 𝑥𝑖+1‖ = ‖𝑥*𝑖 − 𝑥*𝑖+1‖ and ‖𝑦𝑖 − 𝑦𝑖+1‖ = ‖𝑦*𝑖 − 𝑦*𝑖+1‖ for 2 ≤ 𝑖 ≤ 𝑛− 1.

For generic 𝑥*1, . . . , 𝑥*𝑛, 𝑦*1, . . . , 𝑦*𝑛, this system has finitely many solutions in (R3)2𝑛−2.

Proof. By Lemma C.0.1, there are finitely many antipodal pairs (𝑥2, 𝑦2) ∈ R3×R3 on

𝑆2 such that ‖𝑥*1 − 𝑥2‖ = ‖𝑥*1 − 𝑥*2‖ and ‖𝑦*1 − 𝑦2‖ = ‖𝑦*1 − 𝑦*2‖. Similarly, for each of

these antipodal pairs (𝑥2, 𝑦2) ∈ R3×R3 on 𝑆2, there are finitely many antipodal pairs

(𝑥3, 𝑦3) ∈ R3 × R3 on 𝑆3 satisfying ‖𝑥2 − 𝑥3‖ = ‖𝑥*2 − 𝑥*3‖ and ‖𝑦2 − 𝑦3‖ = ‖𝑦*2 − 𝑦*3‖
etc.

Proof of Theorem 4.5.1. We recall that the first line of the polynomial system (4.6)

gives that 𝑥𝑖, 𝑦𝑖 are antipodal points on a sphere 𝑆𝑖. Consider a triple (𝑘1, 𝑘2, 𝑘3) ∈ 𝐼

that contains 1 and the equation on the last line of the polynomial system (4.6)

corresponding to this triple. This equation gives that 𝑧𝑘1 , 𝑧𝑘2 , 𝑧𝑘3 , where 𝑧𝑖 ∈ {𝑥𝑖, 𝑦𝑖},
coincide. Hence 𝑧𝑘1 , 𝑧𝑘2 , 𝑧𝑘3 lie on the intersection of 𝑆𝑘1 , 𝑆𝑘2 , 𝑆𝑘3 . Generically, if the

intersection of three spheres is non-empty in R3, then it consists of two points 𝑃 and

𝑃 ′. This gives four possible solutions for 𝑥1, 𝑦1: the points 𝑃, 𝑃 ′ and their antipodals

on 𝑆1. By Lemma C.0.2, there are finitely many solutions for 𝑥2, . . . , 𝑥𝑛1 , 𝑦2, . . . , 𝑦𝑛1

given these fixed solutions 𝑥1, 𝑦1 on 𝑆1. In the next two paragraphs we will show that

generically these finitely many solutions do not contain antipodal points on any of

the spheres 𝑆2, . . . , 𝑆𝑛1 .
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If there are two antipodal solutions on 𝑆𝑖, then we may assume that they come either

from the same solution on 𝑆1 or antipodal solutions on 𝑆1, because we can perturb

𝑆𝑘1 , 𝑆𝑘2 , 𝑆𝑘3 slightly to change the other pair of solutions. First we will show that

generically a solution for 𝑥𝑖 on 𝑆𝑖 does not give a pair of antipodal solutions for 𝑥𝑖+1

on 𝑆𝑖+1. If this was the case, then both the solution for 𝑥𝑖 and its antipodal would

have to lie on the plane that is perpendicular to the line through the antipodal pair

of solutions for 𝑥𝑖+1 on 𝑆𝑖+1. This plane contains the centers of 𝑆𝑖 and 𝑆𝑖+1. Hence

for a solution for 𝑥𝑖, there is only one antipodal pair on solutions on 𝑆𝑖+1. Thus for

generic distance between the solutions on 𝑆𝑖 and 𝑆𝑖+1, a solution on 𝑆𝑖 does not give

an antipodal pair of solutions on 𝑆𝑛+1.

Secondly, suppose that two different solutions on 𝑆𝑖 give a pair of antipodal solutions

on 𝑆𝑖+1. We will show that when we perturb the distance between solutions on 𝑆𝑖

and 𝑆𝑖+1, then we do not get an antipodal pair anymore. Let 𝑥𝑖 and 𝑥′𝑖 be two

different solutions on 𝑆𝑖 that give solutions 𝑥𝑖+1 and 2𝑐𝑖+1 − 𝑥𝑖+1 on 𝑆𝑖+1. Hence

‖2𝑐𝑖+1 − 𝑥𝑖+1 − 𝑥′𝑖‖2 = ‖𝑥𝑖+1 − 𝑥𝑖‖2. We want to show that generically

‖2𝑐𝑖+1 − (𝑥𝑖+1 + 𝜖) − 𝑥′𝑖‖2 ̸= ‖𝑥𝑖+1 + 𝜖− 𝑥𝑖‖2,

where 𝑥𝑖+1 + 𝜖 is the perturbed solution. Indeed, using the identity ‖𝑥𝑖+1 − 𝑥𝑖‖2 =

‖2𝑐𝑖+1 − 𝑥𝑖+1 − 𝑥′𝑖‖2 gives

‖2𝑐𝑖+1 − (𝑥𝑖+1 + 𝜖) − 𝑥′𝑖‖2 − ‖𝑥𝑖+1 + 𝜖− 𝑥𝑖‖2 = 2𝜖(𝑥𝑖 + 𝑥′𝑖 − 2𝑐𝑖+1).

This quantity is equal to zero if and only if 𝜖 = 0 or 𝑐𝑖+1 is the middle point of the

line segment from 𝑥𝑖 to 𝑥′𝑖. This is generically not the case.

Using a triple (𝑘′1, 𝑘
′
2, 𝑘

′
3) ∈ 𝐼 containing 𝑛1 and the equation for this triple, we get

four possible solutions for 𝑥𝑛1 , 𝑦𝑛1 . Generically, only one of them coincides with

the finitely many solutions on 𝑆𝑛1 that we get from the solutions on 𝑆1, because

perturbing the spheres slightly (with keeping the coinciding points fixed) perturbs

the second intersection point of the three spheres and we know that generically the

finitely many points do not contain antipodal points.

221



The unique solution on 𝑆𝑛 comes from one solution on each of the spheres

𝑆1, . . . , 𝑆𝑛1−1: If this was not the case then two different solutions on 𝑆𝑖 give

the same solution on 𝑆𝑖+1. By the proof of Proposition 4.4.1, the dot product

(𝑐𝑖 − 𝑐𝑖+1) · (𝑥𝑖 − 𝑥𝑖+1) is fixed. Hence for a fixed 𝑥𝑖+1, all possible solutions for

𝑥𝑖 lie on a hyperplane and this hyperplane is perpendicular to 𝑐𝑖 − 𝑐𝑖+1. Therefore

if two solutions on 𝑆𝑖 give the same solution on 𝑆𝑖+1, then they lie on a hyperplane

perpendicular to 𝑐𝑖− 𝑐𝑖+1. By slightly perturbing the sphere 𝑆𝑖+1, this is not the case

anymore, and hence generically a solution on 𝑆𝑖+1 comes from a unique solution on

𝑆𝑖.

Simulations

Reconstructions in the noiseless setting

Figure C-2 shows additional reconstructions of simulated data in the noiseless setting.

The true structures are consistently recovered under different data generation models.

Impact of the number of tensor constraints

Figure C-3 shows the impact of the number of tensor constraints on the solution in

the noisy setting. We explored the impact of the number of tensor constraints specif-

ically when the number of chromosomes is higher (three chromosomes) since tensor

constraints seem to play a more critical role in that setting, as shown in Figure 4-5.

We evaluate the performance when 500, 1000 or all (4060) tensor constraints are used.

Figure C-3 shows that the choice of the number of tensor constraints has little impact

on the accuracy of reconstruction, so we used 1000 tensor constraints (or all possible

triplets if that number was smaller) in simulations and in real data analysis.
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Figure C-2: Additional examples of true and reconstructed points on simulated data.
True points were generated using Brownian motion model (first row), spirals (second
row) and random points in a sphere (third row). We generate six chromosomes,
corresponding to three homologous pairs with 20 domains per chromosome in the
noiseless setting. Solid lines / points correspond to true 3D coordinates and dashed
lines / unfilled points to reconstructions via our method. Each color represents a
different chromosome.

(a) (b)

Figure C-3: The impact of the number of tensor constraints in the noisy setting. Box-
plots showing (a) Spearman correlation and (b) root-mean-square deviation (RMSD)
for different number of tensor constraints over 20 trials. Simulated data was generated
using Brownian motion model with three chromosomes, where each chromosome had
10 domains. Noise level of 0.5 was added. We used 𝜌 = 0.000001 to solve the SDP.
Green triangles and lines indicate the mean and median performance respectively.
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Impact of the tuning parameter 𝜌

Figure C-4 explores the impact of tuning parameter 𝜌 from equation (4.8) in the

noisy setting. The choice of 𝜌 has little impact on the accuracy of reconstruction.

For the simulations in the noisy setting, shown in Figure 4-6 and real data analysis

in Figure 4-7, we chose 𝜌 = 0.000001.

(a) (b)

Figure C-4: The impact of 𝜌 in the noisy setting. Boxplots showing (a) Spearman
correlation and (b) root-mean-square deviation (RMSD) for different values of 𝜌 over
20 trials. Simulated data was generated using Brownian motion model with one
chromosome and 10 domains per chromosome as well as noise level of 0.5. We used
the maximum number of triplet tensor constraints (120) to solve the SDP. Green
triangles and lines indicate the mean and median performance respectively.

Real contact frequency data

Distance between neighboring beads

We consider different values for the distance between neighboring beads as input to

our algorithm. If the distance between neighboring beads is chosen to be too small,

the resulting 3D diploid reconstruction of the data may have gaps in the structure

as shown in Figure C-5a, where the homologous loci 𝑥1, . . . 𝑥𝑛 (copy A) and 𝑦1, . . . 𝑦𝑛

(copy B) are completely separated. We chose increasing values for the distance be-

tween neighboring beads as input and quantified the separation between 𝑥1, . . . 𝑥𝑛 and

𝑦1, . . . 𝑦𝑛 by considering the distance between 𝑘 closest points from 𝑥1, . . . 𝑥𝑛 and from

𝑦1, . . . 𝑦𝑛. We obtained the hyperplane separating 𝑥1, . . . 𝑥𝑛 and 𝑦1, . . . 𝑦𝑛 by fitting a
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support-vector machine (SVM) classifier. Next, we chose 𝑘 points from 𝑥1, . . . 𝑥𝑛 and

𝑦1, . . . 𝑦𝑛 that are closest to the hyperplane and computed their centroids. Figure C-

5b shows the sum of distances of the two centroids to the separating hyperplane, thus

quantifying whether copy A points are separated from copy B. This distance should

approach 0 as copy A and copy B points come closer together. Indeed, Figure C-5b

shows that with parameter of 0.65, the distance between 𝑘 closest points stabilizes

close to 0 and thus we take 0.65 as our parameter of choice for the distance between

neighboring beads.

We provide additional quantification regarding the separation of points in copy A and

copy B by clustering the 3D structure using 𝑘-means into two clusters and computing

a confusion matrix, where the true labels are given by copy A and copy B. If points

𝑥1, . . . 𝑥𝑛 and 𝑦1, . . . 𝑦𝑛 are completely separated, then 𝑘-means would result in near

perfect accuracy of separation of all points into copy A and copy B. Figure C-5c

shows that this is indeed the case when copy A and copy B are separated. For the

chosen parameter of 0.65, the confusion matrix is shown in Figure C-5d, reinforcing

the observation that indeed copy A and copy B are not separated by a clear gap,

which is was our goal.

We note that our observations are robust to the exact choice of the distance between

neighboring beads. In Figure C-6 we show the resulting 3D reconstruction as well as

chromosome size and A compartment trends when parameter of 0.7 is chosen as the

distance between neighboring beads.

Comparison with ChromSDE

We compare our whole genome reconstruction to the reconstruction inferred by

ChromSDE (Zhang et al., 2013). Since ChromSDE does not account for the fact

that the measured contact frequencies and corresponding observed distances are a

sum of four different distances, i.e. ‖𝑥𝑖 − 𝑥𝑗‖2, ‖𝑥𝑖 − 𝑦𝑗‖2, ‖𝑦𝑖 − 𝑥𝑗‖2, and ‖𝑦𝑖 − 𝑦𝑗‖2,
we converted frequencies to distances using 𝐷𝑖𝑗 = 𝐹

−1/2
𝑖𝑗 and used 𝐷𝑖𝑗/4 for each

of the four distances so that the diploid configuration of the genome could be com-

puted. We assumed that homologous loci are far apart, as has been observed in
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(a) (b)

(c) (d)

Figure C-5: Empirical choice of parameter for the distance between neighboring
beads. (a) The 3D genome reconstruction with parameter for the distance between
neighboring beads set to 0.5. The homologous loci 𝑥1, . . . 𝑥𝑛 (copy A) and 𝑦1, . . . 𝑦𝑛
(copy B), colored by red and blue are completely separated. (b) The distance of
centroids corresponding to 𝑘 closest points to the SVM hyperplane separating copy A
from copy B (red and blue points) for different parameter settings. The black dashed
line corresponds to the chosen parameter of 0.65. (c) Confusion matrix quantifying
how often points clustered via 𝑘-means (predicted label) were assigned their true label
(copy A or copy B) when parameter of 0.5 was used. (d) Same as (c) for the chosen
parameter 0.65. Higher confusion across labels indicates that points belonging to
copy A and copy B are not clearly separated, as desired.
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Figure C-6: 3D Diploid Genome Reconstruction with a different parameter for the
distance between neighboring beads (0.7). (a) Estimated 3D positions of all chro-
mosomes and their corresponding homologs with chromosomes colored according to
chromosome number. (b) Whole diploid organization obtained via our method, col-
ored by chromosome size. (c) Mean chromosome size as the distance from the center
increases. (d) The number of A compartments as the distance from the center in-
creases.
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imaging studies (Bolzer et al., 2005; Nir et al., 2018), and thus set ‖𝑥𝑖 − 𝑦𝑖‖2 = ∞.

Given the described distance constraints, we solved the SDP for the Gram matrix and

obtained the 3D coordinates using eigenvector decomposition, similar to our method.

Figure C-7 shows the corresponding solution and quantification of the mean chromo-

some size and number of A compartments as the radius from the center increases.

The computed 3D diploid genome configuration obtained via ChromSDE does not

recapitulate that chromosome size increases with distance away from the center and

that the number of A compartments decreases with distance away from the center.
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(a) (b) (c)

Figure C-7: 3D diploid genome reconstruction with ChromSDE. ChromSDE was
run with distance matrix where distances for ‖𝑥𝑖 − 𝑥𝑗‖2, ‖𝑥𝑖 − 𝑦𝑗‖2, ‖𝑦𝑖 − 𝑥𝑗‖2, and
‖𝑦𝑖 − 𝑦𝑗‖2 were set to 𝐷𝑖𝑗/4. (a) Estimated 3D positions of all chromosomes and
their corresponding homologs at 10Mb resolution colored by chromosome size. (b)
Mean chromosome size as the distance from the center increases. (c) The number of
A compartments as the distance from the center increases.

Analysis of 3D diploid genome reconstruction

We provide further analysis of the 3D diploid genome reconstruction obtained using

our algorithm from contact frequency data. Figure C-8 shows that for each chro-

mosome, there is a strong correlation between chromosome size and distance of the

chromosome away from the center.

Impact of the tuning parameter 𝜌

Figure C-9 explores the impact of the tuning parameter 𝜌 from equation (4.8) on

real data. We compute the RMSD between the 3D genome reconstruction com-
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Figure C-8: Chromosome size (normalized by the size of the largest chromosome)
versus the mean distance of the chromosome and its homolog away from the center.

puted with 𝜌 = 0.000001 and the 3D genome reconstructions computed with other

choices of 𝜌 ∈ (0.00001, 0.0001, 0.001, 0.01, 0.1, 10, 1) to quantify how much does the

3D structure change with increasing 𝜌. As shown in Figure C-9, the RMSD is low

across different choices of the tuning parameter. In Figure C-10, we provide the 3D

genome reconstruction and trends for mean number of A compartments and mean

chromosome size versus the distance away from the center for the 3D reconstruction

computed with 𝜌 = 10 since the RMSD was the highest for this choice of the tuning

parameter. We observe that the trends remain the same for a different choice of 𝜌.

Figure C-9: The impact of 𝜌 in real data. Root-mean-square deviation
(RMSD) between the 3D genome reconstruction computed with 𝜌 = 0.000001
and the 3D genome reconstructions computed with other choices of 𝜌 ∈
(0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10).

229



0.4
0.2

0.0
0.2

0.4
0.4

0.2
0.0

0.2
0.4

0.4

0.2

0.0

0.2

0.4

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9
chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX

(a)

0.4
0.2

0.0
0.2

0.4
0.4

0.2
0.0

0.2
0.4

0.4

0.2

0.0

0.2

0.4

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ch

ro
m

os
om

e 
siz

e

(b)

(c) (d)

Figure C-10: 3D diploid genome reconstruction with 𝜌 = 10. Estimated 3D positions
of all chromosomes and their corresponding homologs at 10Mb resolution. Chromo-
somes are colored according to (a) chromosome number and (b) chromosome size. (c)
Mean chromosome size as the distance from the center increases. (d) The number of
A compartments as the distance from the center increases.

Haploid distance matrices

In order to determine whether modeling the diploid aspect of the genome provides

valuable information regarding the 3D organization of the genome, we randomly la-

beled each homolog of a particular chromosome to correspond to either copy A or

copy B of the chromosome and computed the Euclidean distances between all loci

belonging to copy A, i.e. ||𝑥𝑖 − 𝑥𝑗|| to obtain one haploid distance matrix and the

Euclidean distances between all loci belonging to copy B, i.e. ||𝑦𝑖 − 𝑦𝑗|| to obtain the

second haploid distance matrix. Figure C-11a,b shows the haploid distance matrices

where points 1, . . . , 𝑛 are assigned to copy A and points 𝑛 + 1, . . . , 2𝑛 are assigned

to copy B. We were interested in comparing the two haploid distance matrices to see

whether the two haploid matrices were the same or if modeling the diploid aspect

of the genome also allowed us to learn about each homolog. Close inspection of the
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two matrices reveals that the distances are different in these two haploid matrices,

suggesting that modeling the genome as a diploid structure gives additional infor-

mation. We quantify the difference by computing the Spearman correlation between

the distance matrices over 100 different samplings of assignments of chromosomes to

either copy A or B. Figure C-11c shows the histogram of the calculated Spearman

correlations with mean Spearman correlation of 0.08.

(a) (b) (c)

Figure C-11: Haploid distance matrices. (a) Haploid distance matrix for points be-
longing to copy A and (b) its corresponding homologous haploid distance matrix
for points belonging to copy B. (c) Spearman correlation between haploid distance
matrices over 100 different assignments of each homolog to either copy A or copy B.
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Appendix D

Appendix for Learning Causal

Differences between Gene Regulatory

Networks

Additional high-dimensional evaluation

High-dimensional setting: 10% changes. We present the results of increasing

the number of changes between the two DAGs, and hence the size of 𝑆. We used the

same simulation parameters as for Figure 5-5, i.e. 𝑝 = 100 nodes, a neighbourhood

size of 𝑠 = 10, and sample size 𝑛 = 300, except that the total number of changes was

10% of the number of edges in 𝐵(1), rather than 5%. As shown in Figure D-1, both

initializations of the DCI algorithm still outperform separate estimation by GES and

the PC algorithm. However, because the underlying DAGs have maintained constant

sparsity while the difference-DAG has become more dense, the gains in performance

by using the DCI algorithm have slightly diminished.

Real data analysis - ovarian cancer

We tested our method on an ovarian cancer data set (Tothill et al., 2008). This

data set consists of the gene expression data of patients with ovarian cancer. The
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(a) (b)

Figure D-1: ROC curves for estimating the difference-DAG. (a) Evaluation of the es-
timated skeleton and (b) the estimated difference-DAG with 𝑝 = 100 nodes, expected
neighbourhood size 𝑠 = 10, 𝑛 = 300 samples, and 10% percent change between DAGs.

patients are divided into six subtypes (C1-C6). The C1 subtype was characterized

by differential expression of genes associated with stromal and immune cell types and

is associated with shorter survival rates. In this experiment, we divide the subjects

into two groups, group 1 with 𝑛1 = 78 subjects containing patients with C1 subtype,

and group 2 with 𝑛2 = 113 subjects containing patients with C2-C6 subtypes. In

this work, we focused on two pathways from the KEGG database (Kanehisa et al.,

2011; Ogata et al., 1999), the apoptosis pathway containing 87 genes, and the TGF-𝛽

pathway with 82 genes.

We compared our results to those obtained by the DPM method (Zhao et al., 2014),

which infers the difference in the undirected setting. As input to Algorithm 2, we

took 𝒞 to be all of the nodes in the output of the DPM algorithm and took the

difference undirected graph to be the fully connected graph on 𝒞. We then learned

the difference DAG using Algorithm 3. The final set of edges over different tuning

parameters was chosen using stability selection as proposed in (Meinshausen and

Bühlmann, 2010) and is shown in Figure 5-12. This procedure identified two hub

nodes in the apoptosis pathway: BIRC3 and PRKAR2B. BIRC3 has been shown to

be an inhibitor of apoptosis (Johnstone et al., 2008) and is one of the top disregulated
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genes in ovarian cancer (Jönsson et al., 2014). This gene has also been recovered

by the DPM method as one of the hub nodes. While BIRC3 has high in-degree,

hub gene PRKAR2B has high out-degree, making it a better candidate for possible

interventions in ovarian cancer since knocking out a gene with high out-degree will

have widespread downstream effects on the target genes. Indeed, PRKAR2B is a

known important regulatory unit for cancer cell growth (Chiaradonna et al., 2008) and

the RII-𝛽 protein encoded by PRKAR2B has already been studied as a therapeutic

target for cancer therapy (Mikalsen et al., 2006; Cho-Chung, 1999). In addition,

PRKAR2B has also been shown to play an important role in disease progression in

ovarian cancer cells (Cheadle et al., 2008). Since the DPM method does not infer

directionality, it is not possible to tell which of the hub genes might be a better

interventional target. This is remedied by our method and its impact for identifying

possible therapeutic targets in real data is showcased by finding an already known

drug target for cancer.

(a) (b) (c)

Figure D-2: Estimate of the difference-DAG between the two groups of ovarian cancer
patients for (a) the apoptosis pathway estimated via PC, (b) the TGF-𝛽 pathway
estimated via GES and (c) TGF-𝛽 pathway estimated via PC.

For the TGF-𝛽 pathway, our analysis identified THBS2 and COMP as hub nodes.

Both of these genes have been implicated in resistance to chemotherapy in epithelial

ovarian cancer (Marchini et al., 2013), confirming the importance of our findings.

These nodes were also recovered by DPM.

Overall, the undirected graph discovered by DPM is similar to the DAG found by
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our method. The disparity in the TGF-𝛽 pathway between the difference undirected

graph and the difference-DAG model can be explained by the fact that the edge

between COMP−BMP7 in the undirected diffrence graph can be accounted for by

the two edges BMP7→ID1 and COMP→ID1 in the difference-DAG. Though these

edges might represent the true regulatory pathways, the sparsity-inducing penalty

in the DPM algorithm could remove them while leaving the edge between COMP

and BMP7. This disparity between the two algorithms highlights the importance of

replacing correlative reasoning with causal reasoning, and accentuates the significance

of our contribution.

We also applied the GES and PC algorithms on the ovarian cancer data set. We

considered the set of edges that appeared in one estimated skeleton but disappeared

in the other as the estimated skeleton of the difference-DAG. In determining orien-

tations, we considered the arrows that were directed in one estimated CPDAG but

disappeared in the other as the estimated set of directed arrows. Figure D-2 shows

the results by applying the PC algorithm on the apoptosis and TGF-𝛽 pathway and

the results by applying GES on the TGF-𝛽 pathway. Here we omitted GES results

on the apoptosis pathway since GES algorithm did not discover any differences on

the apoptosis pathway. Figure D-2 shows that PC and GES cannot discover any hub

nodes.
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Appendix E

Appendix for Causal Network Models

of SARS-CoV-2 Expression and

Aging to Identify Candidates for

Drug Repurposing

Supplementary Note

Overview of methodology

Our drug discovery pipeline consists of three parts: mining relevant drugs, identifying

the disease interactome, and investigating the drug mechanism. Fig. E-1 describes

the inputs, outputs and algorithms used in each of the three parts. Briefly, the first

part (mining relevant drugs) takes in normal and infected/diseased RNA-seq samples

along with the public CMap database, which contains gene expression data on cell

lines treated with a variety of FDA approved compounds, to train an autoencoder

and subsequently construct synthetic interventions in the learned latent space. It

outputs a list of drugs ranked by the correlation of each drug with the reverse disease

signature. The second part of the pipeline (identifying disease interactome) also

takes in the normal and infected/diseased RNA-seq samples as well as a PPI network
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(e.g. from the public iREF or STRING databases). It then identifies the genes that are

differentially expressed in the disease and learns the disease interactome connecting

these genes in the PPI network using the prize-collecting Steiner forest algorithm.

In addition, the inferred ranked list of drugs output from part 1 in the pipeline is

mapped to its targets using the public DrugCentral database. The drug targets are

intersected with the disease interactome to further filter the list of drugs to only

include those drugs that target nodes in the interactome. The third part of the

pipeline (investigating drug mechanism) uses multi-sample RNA-seq data (e.g. high

number of replicates or single-cell RNA-seq data) to learn the causal directions in the

disease interactome using GSP, a causal structure discovery algorithm, and identifies

which drugs and drug targets have the largest downstream causal effect on the disease

interactome.

Comparison of SARS-CoV-2 versus IAV and RSV

In order to test how specific our findings are to SARS-CoV-2 and demonstrate the

broad applicability of our pipeline, we apply our computational pipeline to two ad-

ditional viral infections: respiratory syncytial virus (RSV) and influenza A virus

(IAV). As for SARS-CoV-2 infection, we obtain gene expression data for these viruses

from (Blanco-Melo et al., 2020). First, we perform differential expression analysis for

IAV and RSV (Supplementary Fig. E-19) showing that only 3.19% and 19.6% of genes

specific to SARS-CoV-2 are shared with RSV and IAV, respectively. Next, we apply

our over-parameterized autoencoder and synthetic interventions framework to IAV

and RSV to obtain drug lists ranked by their correlation with the reverse disease

signature.

In order to quantitatively compare the drug lists obtained for RSV and IAV to the

drug list for SARS-CoV-2, we measure the similarity of two rankings using curves akin

to a receiver operating characteristic (ROC) curve, namely: given two rankings of 𝑛

drugs, we consider the top 𝑘 drugs in one of the lists and compute the number of drugs

in common among these top 𝑘 drugs for 𝑘 = 1, 2, . . . 𝑛. Thus, the 𝑥-coordinate in each

plot indicates the proportion, 𝑘/𝑛, of each drug list we consider and the 𝑦-coordinate
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is the size of the intersection of the two subsets normalized by 𝑘. The area under

the curve (AUC) is a measure of similarity between two drug lists. When two drug

lists are exactly the same, the AUC is 1 and when the two drug lists are maximally

different (i.e., one drug list is the reverse of the other), the AUC is 1 − ln(2) ≈ .306;

see Supplementary Fig. E-8a. Supplementary Fig. E-20a-b show that that the drug

lists for SARS-CoV-2 and RSV are significantly different and in fact very close to the

lower bound, while the drug lists for SARS-CoV-2 and IAV are quite similar with an

AUC of 0.843.

Finally, we perform the Steiner tree analysis based on the identified differentially

expressed genes for IAV and RSV as well as the drug lists obtained by the overpa-

rameterized autoencoder. As for SARS-CoV-2, since the morbidity and fatality rate

of IAV is higher in the aging population, we compute a combined IAV and aging

interactome. This consists of 185 nodes and 486 edges based on 124 terminal genes.

Since RSV is riskier in young children, but can also be serious for the aging popula-

tion, we compute two interactomes, one without taking aging into account (234 nodes

and 871 edges based on 139 terminal genes) and one combined with RSV and aging

(303 nodes and 1177 edges based on 200 terminal genes) to make it more comparable

to the other interactomes. To make the results comparable, since for SARS-CoV-2

we intersected the targets of the top 142 ranked drugs from the overparameterized

autoencoder analysis with the interactome, we perform the analysis with the same

number of drugs also for IAV and RSV. The resulting drugs and drug targets are

shown in Supplementary Fig. E-21. For IAV, this results in 20 drugs, 13 of which

overlap with drugs identified in the SARS-CoV-2 analysis. These drugs target 9 pro-

teins in the interactome, 2 of which are also present in the SARS-CoV-2 interactome,

namely EGFR and RIPK1. For RSV with and without aging the resulting drug lists

as well as their targets have no overlap with the ones identified by SARS-CoV-2.

In particular, the identified drug lists contain no tyrosine kinase inhibitors, thereby

indicating the specificity of our results to SARS-CoV-2.
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Supplementary Figures

Figure E-1: Detailed schematic of our computational drug repurposing platform.
Green boxes denote inputs that may need to be collected for the specific virus/disease
and cell type of interest. Blue boxes denote inputs corresponding to databases that
are publicly available. Orange boxes denote our computational methods and yellow
boxes denote method outputs. Computational pipeline for (a) mining relevant drugs,
(b) identifying disease interactome and (c) investigating drug mechanism.
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Figure E-2: (a) Gene expression of A549-ACE2 cells with and without SARS-CoV-2
infection, with differentially expressed genes in red. (b) Gene expression of A549 cells
with and without SARS-CoV-2 infection, with differentially expressed genes in purple.
(c) Gene expression of A549 cells with and without ACE2 receptor, with differentially
expressed genes in green. (d) Top 10 gene ontology terms associated with differentially
expressed genes between A549-ACE2 cells with and without SARS-CoV-2 infection .
(e) Top 10 gene ontology terms associated with differentially expressed genes between
A549 cells with and without SARS-CoV-2 infection. (f) Top 10 gene ontology terms
associated with differentially expressed genes between A549 cells with and without
ACE2 receptor. All gene ontology terms have adjusted p-value < 0.05.

asfd

584 5841339

Aging 20-29 vs. 70-79 Aging 20-29 vs. 60-79

a b

0 1 2 3 4
-log (Adjusted P-value)10

carboxylic acid catabolic process (GO:0046395)

organic acid catabolic process (GO:0016054)

mesonephric epithelium development (GO:0072163)

positive regulation of muscle organ development (GO:0048636)

regulation of organ morphogenesis (GO:2000027)

regionalization (GO:0003002)

cellular amino acid metabolic process (GO:0006520)

positive regulation of striated muscle tissue development (GO:0045844)

positive regulation of muscle tissue development (GO:1901863)

kidney epithelium development (GO:0072073)
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Figure E-3: (a) Top 10 gene ontology terms associated with aging. (b) Venn dia-
gram showing significant overlap between aging associated genes considering different
definitions of older, specifically just individuals in the oldest category (70-79) or in-
dividuals that are 60-79.
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Figure E-4: (a) Heatmap of log2-fold changes of differentially expressed genes shared
by SARS-CoV-2 and aging with gene names. (b) 2D histogram of the number of
genes having a certain rank in aging and SARS-CoV-2 datasets.
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Figure E-5: (a) UMAP of control and perturbations across all cell types in CMap.
The effect of a perturbation on a given cell type is small relative to the differences
between cell types. (b) Principal component analysis highlighting batch effects for
the control samples of the A549 cell line from CMap. K-means clustering by gene
expression vector is used to identify and remove batch effects (represented as red and
blue clusters).
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a

c
Num.

Hidden 

Units

Num. 

Hidden 

Layers

Nonlinearity Optimizer, LR Initialization Seed Used Training Loss Test Loss

1024 1 Leaky ReLU Adam, 1e-4 PyTorch

Default

17 7.3 x 10^-7 1.1 x 10^-6

100 1 Leaky ReLU Adam, 1e-4 PyTorch

Default

17 2.8 x 10^-3 2.8 x 10^-3

1024 1 CosID Adam, 1e-4 PyTorch

Default

17 6.4 x 10^-6 6.5 x 10^-6

Over-parameterized Autoencoder Under-parameterized Autoencoder

b

Figure E-6: Overview of autoencoder architectures, optimization methods and hy-
perparameter settings considered. (a) Diagram representing an overparameterized
autoencoder. While this autoencoder is capable of learning the identity function,
training leads to a solution that better aligns drug signatures across cell types in the
latent space. (b) Diagram representing an underparameterized autoencoder. While
this architecture is most commonly used in practice, it does not align drug signatures
as well in the latent space as its overparameterized counterpart; see Supplementary
Fig. 6-4. (c) Details on the width, depth, nonlinearity, optimization method, learning
rate, random seed, training loss and test loss for all architectures considered in this
work.

a b Under-parameterized Autoencoder Over-parameterized AutoencoderPCA (100 PCs)PCA (2 PCs) c d

Figure E-7: Receiver operating characteristic (ROC) curves for the agreement in clas-
sification between gene expression vectors and reconstructed gene expression vectors
obtained using an embedding given by the first 2 principle components in (a), the
first 100 principle components in (b), an underparameterized autoencoder in (c), and
an overparameterized autoencoder in (d). While a logistic regression model trained
to classify between 831 A549 control samples and 32893 A549 perturbation samples
shows differences in predictions on original gene expression vectors versus under-
parameterized autoencoder reconstructions and reconstructions from the top 2 or
100 principal component, the overparameterized embedding allows near perfect re-
construction of the original gene expression vectors with no difference in predictions
between using overparameterized embeddings for gene expression vectors and original
gene expression vectors.
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Figure E-8: Quantitative analysis of similarity between drug lists obtained using the
latent space embedding as compared to the original and PCA embedding (using 2
PCs). Given two rankings of 𝑛 drugs, we consider the top 𝑘 drugs and plot the
number of drugs in common among these top 𝑘 drugs for 𝑘 = 1, 2, . . . 𝑛; i.e., the
𝑥-coordinate of a point indicates the proportion, 𝑘/𝑛, of each drug list we consider
and the 𝑦-coordinate is the size of the intersection of the two subsets normalized by
𝑘. AUC denotes the area under the curve; (a) shows the result when considering two
maximally different drug lists, i.e., when one is the reverse of the other, resulting in
an AUC of 0.307; (b) demonstrates that the drug list produced in the latent space of
the over-parameterized autoencoder is similar to that produced in the original space
and to that produced using 2 PCs. The advantages of using the over-parameterized
autoencoder are that the resulting latent space contains enough signal to reconstruct
gene expression vectors well and provides better alignment between drug signatures
across cell types than in the original space.
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Figure E-9: Quantitative analysis of similarity between drug lists obtained using the
overparameterized autoencoder on gene expression data from different MOIs for A549
cells with and without ACE2 receptor. (a) Comparison of drug lists obtained from
SARS-CoV-2 infected A549-ACE2 cells with MOI 2 and A549 cells with MOI 2, (b)
A549-ACE2 cells with MOI 2 and A549-ACE2 cells with MOI 0.2, and (c) A549 cells
with MOI 2 and A549-ACE2 cells with MOI 0.2. The similarity between the drug lists
drops when comparing an MOI of 2 to an MOI of 0.2, which is consistent with the
observation by (Blanco-Melo et al., 2020) that low-MOI conditions did not stimulate
an important interferon-I and -III response.
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Figure E-10: Terminal node selection for prize-collecting Steiner forest analysis. Ter-
minal genes include 162 genes present in the IREF interactome that are either upregu-
lated in both SARS-CoV-2 infection and aging or downregulated in both SARS-CoV-2
infection and aging. Each terminal gene is prized with its absolute log2-fold change
between SARS-CoV-2 infected A549-ACE2 cells and normal A549-ACE2 cells. (a)
Histogram of prizes for terminal genes along with descriptive statistics. (b) Table of
75 terminal genes upregulated in both SARS-CoV-2 infection and aging (left) and
table of 87 terminal genes downregulated in both SARS-CoV-2 infection and aging,
along with prize and log2 fold change information.
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Figure E-11: Parameter selection via sensitivity analysis for prize-collecting Steiner
forest analysis. (a1) Boxplot of penalized edge costs in the IREF interactome for
different values of 𝑔. The distribution of penalized edge costs are very similar for
𝑔 = −∞ and 𝑔 = 0. For these values of 𝑔, the maximum penalized edge cost is
upper bounded by 1. (a2) Histogram of shortest path cost between any two terminals
in the IREF interactome for 𝑔 = 0, along with descriptive statistics. (b) Range of
parameters 𝑔, 𝑤 and 𝑏 used in sensitivity analysis. Red values indicate a stable range
for the interactome obtained with the prize-collecting Steiner forest algorithm. We
retain 𝑔 = 0, 𝑤 = 1.4 and 𝑏 = 40 for our subsequent analysis. (c1-3) Heatmaps of the
matrix 𝑀 indexed for different types of selected nodes: all nodes (c1), terminal nodes
(c2) and SARS-CoV-2 interaction partners (c3). Each row/column corresponds to a
prize-collecting Steiner forest obtained from a given set of parameters (𝑔 = 0, 𝑤, 𝑏).
A stability region for the prize-collection Steiner forest solution appears for 𝑔 = 0,
𝑤 ≥ 1.2 and 𝑏 ∈ [5, 50]. 246



Figure E-12: Interactome obtained from the prize-collecting Steiner forest algorithm
(with parameters 𝑔 = 0, 𝑤 = 1.4, 𝑏 = 40) using the terminal gene list from Sup-
plementary Fig. E-10. The interactome contains 1,003 edges between 252 genes, five
of which are known SARS-CoV-2 interaction partners (EXOSC5, FOXRED2, LOX,
RBX1, RIPK1). Genes in the interactome are grouped by general process.
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Figure E-13: Selection of the prize 𝑝 for non-terminal SARS-CoV-2 interaction part-
ners (all but EXOSC5, FOXRED2 and LOX) via sensitivity analysis. (a) Num-
ber of SARS-CoV-2 interaction partners collected in the interactome obtained from
the prize-collecting Steiner forest algorithm for different values of 𝑝 ranging from 0
to 0.02. For 𝑝 > 0.02, all known SARS-CoV-2 interaction partners present in the
IREF network are collected in the final interactome. A stability region appears for
𝑝 ∈ [4·10−4, 10−3] with 7 SARS-CoV-2 interaction partners collected. (b-c) Heatmaps
of the matrix𝑀 indexed for different types of selected nodes: all nodes (b), and SARS-
CoV-2 interaction partners (c). Each row/column corresponds to a prize-collecting
Steiner forest obtained from a given set of parameters (𝑔 = 0, 𝑤 = 1.4, 𝑏 = 40, 𝑝).
A stability region for the prize-collection Steiner forest solution appears for 𝑔 = 0,
𝑤 = 1.4 and 𝑏 = 40 and 𝑝 ∈ [7 · 10−4, 10−3]. We retain 𝑔 = 0, 𝑤 = 1.4, 𝑏 = 40 and
𝑝 = 8 · 10−4 for our subsequent analysis.
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Figure E-14: Interactome obtained from the prize-collecting Steiner forest algorithm
(with parameters 𝑔 = 0, 𝑤 = 1.4, 𝑏 = 40) using the terminal gene list from Supple-
mentary Fig. E-10 augmented with all other SARS-CoV-2 interaction partners prized
with 𝑝 = 8 · 10−4. The interactome contains 1,090 edges between 254 genes, seven of
which being known SARS-CoV-2 interaction partners (EXOSC5, FOXRED2, LOX,
RBX1, RIPK1, CUL2, HDAC2). Genes in the interactome are grouped by general
function.
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Figure E-15: 2-Nearest-Neighborhoods of nodes of interest (denoted by a red hexagon)
in the interactome of Supplementary Fig. E-14 (parameters 𝑔 = 0, 𝑤 = 1.4, 𝑏 = 40,
𝑝 = 8 · 10−4). A threshold was applied on the edge confidence to improve legibility.
Proteins known to interact with SARS-CoV-2 are denoted as blue squares, drug
targets are denoted as green diamonds, terminal nodes are colored according to log2-
fold change in SARS-CoV-2-infected A549-ACE2 cells versus normal A549-ACE2
cells, Steiner nodes appear in grey.

250



Figure E-16: Drug target discovery via prize-collecting Steiner forest analysis to iden-
tify putative molecular pathways linking differentially expressed genes in SARS-CoV-2
infection without taking into account age-related differential expression. (a) The gen-
eral procedure to obtain the interactome is identical to the one described in Fig. 6-5a,
with a different terminal gene list. (a) Terminal nodes and histogram of prize distribu-
tion. We consider 169 terminal nodes corresponding to genes differentially expressed
in SARS-CoV-2 infection after removing the effect of the ACE2 receptor. Only 11
of these 169 genes belong to the terminal list used in Fig. 6-5. The prize of a ter-
minal node equals the absolute value of its log2-fold change in SARS-CoV-2-infected
A549-ACE2 cells versus normal A549-ACE2 cells based on data from (Blanco-Melo
et al., 2020). (b) Sensitivity analysis to choose the parameters 𝑤 and 𝑏 for the prize-
collecting Steiner forest algorithm. We select 𝑔 = 0, 𝑤 = 1.4 and 𝑏 = 40 corresponding
to a robust solution for moderate changes in the parameters. (c) Interactome obtained
using the prize-collecting Steiner forest algorithm. Genes are grouped by general func-
tion and marked with a cross if known to interact with SARS-CoV-2 proteins based
on data from (Gordon et al., 2020). (d) 2-Nearest-Neighborhoods of nodes of inter-
est (denoted by a red hexagon) in the interactome. A threshold was applied on the
edge confidence to improve legibility. Proteins known to interact with SARS-CoV-2
are denoted as blue squares, drug targets are denoted as green diamonds, terminal
nodes are colored according to log2-fold change in SARS-CoV-2-infected A549-ACE2
cells versus normal A549-ACE2 cells, Steiner nodes appear in grey. (e) Table of drug
targets in the interactome with the corresponding drugs. Selected drugs are FDA
approved, high affinity (at least one of the activity constants 𝐾𝑖, 𝐾𝑑, 𝐼𝐶50 or 𝐸𝐶50
is below 10𝜇𝑀), and match the SARS-CoV-2 signature well (correlation > 0.86).
The affinity column displays − log10(activity). Protein name corresponding to each
gene is included.
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Figure E-17: (a) Matrix 𝑄 of estimated effects of interventions (columns) on measured
genes (rows) in A549 cells from CMap gene knockout and overexpression data with
𝑄𝑖𝑗 = 1 representing that perturbing gene 𝑗 effects gene 𝑖 and hence that gene 𝑖 is
downstream of gene 𝑗. (b) ROC curve evaluating causal structure discovery methods
GSP, PC and GES for predicting the effects of interventions in A549 cells. The
performance of each algorithm is measured by sampling random causal graphs and
measuring number of true positives and false positives. GSP performs significantly
above random guessing with 𝑝-value of 0.0177, while PC achieves 𝑝-value of 0.0694
and GES a 𝑝-value of 0.5867. The grey line represents a random guessing baseline
(not used for computation of 𝑝-value) based on the number of ground truth positives
and negatives, calculated from 𝑄 and scaled to extend from (0, 0) to span the entirety
of the plot.
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Figure E-18: (a) Causal network corresponding to A549 cells. (b) Causal network
corresponding to AT2 cells. (c) Causal network corresponding to A549 cells learned
using PPI interactome obtained without considering age-associated genes as a prior.
All non-singleton nodes are shown, gene targets of drugs selected via our computa-
tional drug repurposing pipeline are in boxes and the node color corresponds to the
log2-fold change of A549-ACE2 with versus without SARS-CoV-2.
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Figure E-19: (a) Venn diagram of overlap between differentially expressed genes in
SARS-CoV-2, RSV and IAV infections. (b) Heatmap of log2 fold change of dif-
ferentially expressed genes shared by SARS-CoV-2, IAV and RSV (first 3 genes),
SARS-CoV-2 and IAV (40 genes), and SARS-CoV-2 and RSV (last 4 genes).
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Figure E-20: Quantitative analysis of similarity between drug lists obtained using the
overparameterized autoencoder on gene expression data from different virus infec-
tions. Comparison of drug lists from SARS-CoV-2 infected A549-ACE2 cells versus
(a) RSV infected A549 cells, and (b) IAV infected A549 cells.
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Figure E-21: Drugs and their gene targets obtained from the prize-collecting Steiner
tree analysis for IAV and RSV infections in comparison to our findings for SARS-
CoV-2. (a) Venn diagram between selected drugs for IAV and SARS-CoV-2 using
aging as a filter in the differential gene expression analysis for both viruses, and
(b) Venn diagram for the respective gene targets. (c) Venn diagram between selected
drugs for RSV and SARS-CoV-2 without taking aging into account for the differential
expression analysis of RSV, and (d) Venn diagram for the respective gene targets. (e)
Venn diagram between selected drugs for RSV and SARS-CoV-2 using aging as a filter
in the differential gene expression analysis for both viruses, and (f) Venn diagram for
the respective gene targets.
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Figure E-22: Selection of correlation threshold for identifying candidate drugs. Plot
showing the percentage of drugs (y-axis) with correlation higher than a given threshold
(x-axis). The vertical red line indicates the x-value (0.86) for which the y-value shows
the largest jump and corresponds to the threshold used for the selection of drug
candidates.
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Figure E-23: Comparison of drug targets resulting from analyzing the CMap dataset
with and without removing confounding 1s.
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Supplementary Tables

Drug name % differentially expressed
nodes downstream (A549)

% nodes downstream
(A549 no age)

% nodes downstream
(AT2)

afatinib 98.51 0.00 83.93
axitinib 98.51 0.85 83.93
bosutinib 98.51 0.00 83.93
dasatinib 98.51 0.00 83.33
erlotinib 98.51 0.00 83.33
imatinib 98.51 0.00 83.93
pazopanib 98.51 0.85 83.93
ruxolitinib 98.51 0.00 83.33
sorafenib 97.01 0.00 0.60
sunitinib 98.51 0.85 83.93
tofacitinib 1.49 0.00 0.00
belinostat 98.51 94.92 83.33
vorinostat 98.51 94.92 83.33
formoterol 98.51 94.92 83.33
primaquine 98.51 94.92 83.33
vardenafil 0.00 0.00 0.00
milrinone 0.00 0.00 0.00
docetaxel 98.51 0.00 83.33

Table E.1: Percentage of nodes in the largest connected component of the correspond-
ing causal graph that are targeted by each drug. For A549 cells, only genes that are
associated with SARS-CoV-2 and aging are considered.
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Frequency of appearance

in randomizations

drug Selected
# targets

in PPI
Gene labels

CMAP

signatures

Terminal

genes

PPI

network

sunitinib 1 260 1.0 0.25 0.997 1.0

bosutinib 1 203 0.998 0.24 0.993 1.0

axitinib 1 99 0.997 0.25 0.98 1.0

dasatinib 1 128 0.98 0.246 0.98 1.0

sorafenib 1 116 0.998 0.266 0.975 1.0

pazopanib 1 103 0.991 0.235 0.965 1.0

ruxolitinib 1 132 0.988 0.243 0.94 1.0

erlotinib 1 96 0.967 0.234 0.933 1.0

afatinib 1 38 0.94 0.226 0.863 1.0

vardenafil 1 13 0.348 0.247 0.071 1.0

milrinone 1 9 0.178 0.253 0.034 1.0

imatinib 1 69 0.947 0.238 0.921 0.971

vorinostat 1 32 0.79 0.261 0.8 0.898

belinostat 1 11 0.743 0.225 0.755 0.867

docetaxel 1 13 0.422 0.251 0.576 0.796

tofacitinib 1 43 0.481 0.243 0.58 0.709

formoterol 1 5 0.326 0.253 0.499 0.59

primaquine 1 5 0.344 0.24 0.463 0.555

palbociclib 0 13 0.924 0.741 0.863

mifepristone 0 10 0.634 0.544 0.747

vemurafenib 0 4 0.246 0.393

danazol 0 16 0.501 0.377

tacrolimus 0 13 0.418 0.29

haloperidol 0 42 0.286

bicalutamide 0 2 0.278 0.277
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clozapine 0 39 0.195

risperidone 0 36 0.188

sulconazole 0 25 0.186

econazole 0 41 0.439 0.164

amitriptyline 0 33 0.138

clemastine 0 25 0.103

dipyridamole 0 19 0.353 0.103

phentolamine 0 17 0.095

iloperidone 0 24 0.092

methysergide 0 22 0.092

cyproheptadine 0 29 0.09

carteolol 0 2 0.083

lenalidomide 0 2 0.083

cabergoline 0 17 0.079

loxapine 0 29 0.079

digitoxin 0 9 0.076

terconazole 0 17 0.198 0.069

ketotifen 0 17 0.065

desipramine 0 22 0.054

rosuvastatin 0 2 0.054

perphenazine 0 16 0.053

naftifine 0 2 0.05

desoximetasone 0 1 0.048

flunisolide 0 1 0.048

halcinonide 0 1 0.048

irinotecan 0 7 0.048

phenelzine 0 10 0.048

prednisone 0 2 0.048

258



buspirone 0 13 0.046

guanfacine 0 8 0.043

terazosin 0 7 0.039

sertraline 0 19 0.038

flumazenil 0 36 0.037

daunorubicin 0 1 0.036

bortezomib 0 15 0.241

caffeine 0 3 0.324

cisplatin 0 10 0.234

clofarabine 0 2 0.216

dobutamine 0 23 0.226

famotidine 0 3 0.24

gefitinib 0 72 0.232

glimepiride 0 4 0.18

iloprost 0 8 0.206

lapatinib 0 13 0.256

midodrine 0 1 0.254

mitoxantrone 0 18 0.23

montelukast 0 21 0.251

nilotinib 0 70 0.292

olaparib 0 4 0.261

panobinostat 0 11 0.247

sildenafil 0 20 0.233

sitagliptin 0 2 0.183

tamoxifen 0 51 0.278

tolbutamide 0 2 0.18

topotecan 0 5 0.277

treprostinil 0 6 0.206
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warfarin 0 1 0.254

zafirlukast 0 13 0.238

Table E.2: Frequency of a drug’s presence in the list of final drugs after performing
Steiner tree analysis with randomization of gene labels, CMap signatures, terminal
genes, and the PPI network (1000 randomization runs).
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