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DOCTOR OF PHILOSOPHY 

 

Abstract 
 

 

Tumor progression, from the single mutated cell to the advanced stages of cancer, 

represents an evolutionary process. During tumor progression, cancer cells acquire new 

genetic mutations, becoming more heterogeneous, leading to tumor progression and 

resistance to therapy. However, clear genetic drivers of progression, metastasis, and 

therapeutic resistance are identified in only a subset of tumors, pointing to non-genetic 

contributors to cancer progression. Also, somatic evolution in cancer is occurring at the level 

of the single cell. Therefore, the application of the single cell genomic method is crucial for 

deciphering phenotypic heterogeneity. Here, we profiled single cell transcriptomes from 

genetically engineered mouse lung tumors at seven stages spanning tumor progression from 

atypical adenomatous hyperplasia to lung adenocarcinoma. The diversity of transcriptional 

states spanned by tumor cells increased over time and was reproducible across tumors and 

mice, but was not explained by genomic copy number variation. Cancer cells progressively 
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adopted alternate lineage identities, computationally predicted to be mediated through a 

common transitional, high-plasticity cell state (HPCS). HPCS cells prospectively isolated 

from mouse tumors had robust potential for phenotypic switching and tumor formation and 

were more chemoresistant in mice. Our study reveals transitions that connect cell states 

across tumor evolution and motivates therapeutic targeting of the HPCS. 
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Scientific journey and thesis preview 

 

I have completed my undergrad studies at Belgrade University in the Department of 

Biology. In. my undergrad, I have study molecular biology and experimental physiology. 

For my master's degree, I have been enrolled in the Experimental biomedical master 

program. During my undergrad studies, I got interested in cancer research. I have spent three 

summers doing internships abroad and getting acquainted with cancer research. My 

scientific journey started in the Cathrin Brisken lab at EPFL in Lausanne. In Brisken's lab, I 

have studied breast cancer and the role of WNT signaling in cancer progression and 

metastasis. Summer after that, I have spent in Cambridge, UK, where I have been working 

with Rebecca Fitzgerald. My project was involved in finding biomarkers for the early 

detection of the Barretss' Esophagus. After that summer, I have spent the summer at UNIL 

in Lausanne in Paulo Dotto lab working on skin cancer. My primary goal was to identify 

early benign lesions and what does fuels them in skin cancer. 

One of the main reasons I got interested in cancer research was that cancer was such 

a deadly disease. When I start more reading about it, I came across the information that 90% 

of cancer patients die because of cancer metastasis. I got interested in further understanding 

of cancer metastasis. Robert Weinberg's lab was at the front of the cancer metastasis 

research. For my master thesis, I have contacted professor Weinberg to join his lab and do a 

research project. Even though I came only for four months to do some metastasis research 

in the Weinberg lab, I end up spending a year and a half focusing on how cancer 

heterogeneity, primarily cancer stem cells, are connected with cancer metastasis. Working 

with Christine Chaffer, we have established that more aggressive breast cancer has a more 
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abundant cancer stem cell population. We have also observed that in more aggressive breast 

cancer, there is switching from non-cancer stem cell to cancer stem cell. This was for the 

first time observed. Further, we have named this cancer cell plasticity or adaptability. We 

have shown that this was under the control of the Zeb1 transcription factor in breast cancer 

and that TGF-b signaling was able to increases these transitions. 

Further, we established that cancer non-stem cells had this property and had bivalent 

chromatin at Zeb1 locus, which enabled them to respond to environmental cues, such as 

TGF-b. In contrast, cancer non-stem cells had silenced chromatin and DNA methylation at 

Zebn1 locus. It is worth mentioning that cancer cells that had been in the "locked" state were 

also breast cancer types that had been less aggressive and more luminal (more 

differentiated). Our work has been published in the Cell journal, and this was just the begging 

of my quest to understand cancer cell heterogeneity. 

After my experience in the Weinberg lab, I have spent some time at the Cancer 

program at the Broad Institute, in professor Todd Golub's lab. In Golub lab, I have been 

focused on trying to connect cancer heterogeneity with some functional consequences such 

as cancer cachexia. In my previous work, we have also observed that CSC and helping with 

cancer metastasis can also have some other systemic effects, such as increasing the 

inflammation, and that there is crosstalk between cancer cells from the primary tumor and 

metastasis. To better understand this phenomenon, I have asked the question: Do the cancer 

that can induce cancer cachexia have higher numbers of the CSC? We have shown that 

pancreatic and some stomach cancers, which were prominent in inducing cachexia, were 

also dominated by CSC populations. We have also demonstrated that these cellular 
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subpopulations also secrete S100 protein, which we further show can induce cachexia by 

binding to their receptorôs ion muscle and adipose tissue.  

After the Golub lab experience and coming to the understanding that there were a lot 

of issues with how we are defining CSC and which markers we are using to isolate them, I 

got interested in the more" unbiased" approaches in defining CSC and cancer heterogeneity. 

At the same time, I have noted the start of the single cell genomics and scRNA-seq. In my 

mind, this was the perfect tool to investigate cancer heterogeneity. I have decided to pursue 

a Ph.D. in the Computational and Systems Biology (CSBi) Program at MIT School of 

Engineering. 

The basic idea behind CSBi program is to train multidisciplinary scientist that will 

ask essential questions in biology and biomedicine, using system-level and computational 

approaches. The central premise is that biology, as a science, has come to an age where 

technology and computational approaches are driving novel discoveries. Along those lines, 

educating multidisciplinary trained scientists capable of addressing crucial biological 

questions using novel methods and computational techniques becomes paramount. In my 

Ph.D. work, I have addressed precisely the critical biological questions with high unmet 

need, such as lung cancer. Using novel approaches, such as scRNA-seq, I wanted to question 

how tumor heterogeneity changes during tumor progression and evolution and elucidate how 

drug treatments affect it. 
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Thesis Outline 

 
My Ph.D. thesis is divided into three chapters: Introduction, Results and Discussion. 

In the first chapter, or the Introduction chapter, I will provide a scholarly review of my 

thesis's critical aspects, such as lung cancer, tumor heterogeneity and scRNA-seq. In the first 

subchapter of the Introduction, I will present an overview of lung cancer and its unmet need, 

focusing on non-small cell lung cancer (NSCLC) and mouse models important for studying 

lung cancer. In the 2nd subchapter, I will provide an overview of what is known in the cancer 

heterogeneity field, examining some of the critical components of tumor heterogeneity, and 

some of the hypotheses that explain the importance of tumor heterogeneity for tumor 

progression and drug resistance. In the last subchapter of the Introduction, I will give an 

overview of the essential methods and computational approaches used for answering the 

questions in my thesis. I focused on the development of the scRNA-seq techniques and 

appropriate computational approaches for the data analysis. 

In the second chapter, or the Results chapter, of my Ph.D. thesis, I will present my 

work published in Cancer Cell journal. In this work, we have used genetically engineered 

mouse models (GEMMs) coupled with scRNA-seq to study tumor progression and drug 

resistance at the single-cell level. Using GEMMs allowed us to induce specific mutations in 

the cell of interest in the lungs. Further, this GEMM allowed us to selectively label cancer 

cells with the fluorescent dye, which helped us sort out cancer cells and use them for the 

downstream analysis. This model also allowed us to take samples at different time points 

and with different genetic modifications, further enabling us to provide, for the first time, 

the transcriptional map of the tumor progression at the single-cell level.  
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In the last chapter of the thesis, or the Discussion chapter, I will discuss the potential 

short- and long-term direction this work has opened up. Further, I will also underline the 

aspects of my Ph.D. work that present novel insights that could lead to novel discoveries. 
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Chapter 1 

 

Introduction  
 

1. Lung Cancer 

1.1 Overview of the epidemiology and etiology of lung cancer 

Lung cancer is one of the leading causes of death for both men and women in the 

USA and worldwide. In the USA, lung cancer is the deadliest cancer type. With around 

142,670 deaths in 2019, it results in almost three times as many deaths as colon cancer, 

which is the 2nd most fatal cancer in the USA, with 51,200 deaths in 2019 (1). Globally, lung 

cancer is the most diagnosed cancer type, and also it has the highest number of deaths. Owing 

to the absence of clinical symptoms and effective screening programs, most lung cancers are 

diagnosed at an advanced stage. Lung cancer five-year survival in the USA is around 15%. 

Even though there have been advances in lung cancer treatment in the last few decades, it is 

still lagging behind some other cancer types (breast cancer, prostate cancer, colon cancer) 

(2). 

One of the most common carcinogens that cause lung cancer is tobacco. It is 

estimated that for more than 80% of lung cancer, the primary etiologic agent is smoking. 

Further, it has been experimentally validated that polyaromatic hydrocarbons (such as 

benzo[a]pyrene (BaP), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), 1,3-

butadiene, ethyl carbamate), can induce lung cancer as well. Furthermore, it has been shown 

that second-hand smoking in the workplace can increase the risk of lung cancer. In addition 

to tobacco, a plethora of additional factors can increase the risk of lung cancer. Air pollution, 
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such as NO2 and benzopyrene, has also been established as a significant risk factor for 

developing lung cancer. Exposure to radon, asbestos, arsenic, nickel, and chromium can even 

increase lung cancer risk (2).  

Interestingly, recent statistics show that there has been a relatively large increase in 

the number of lung cancer cases in developing countries compared to developed countries. 

One explanation of this could be that leading causes of lung cancer are tobacco smoking and 

other air and chemical pollutants such as asbestos, arsenic, chromium, nickel, and NO2. The 

use of these pollutants in developing countries is less restricted than in developed countries 

(2). 

Figure 1. Annual incidence of lung cancer per 100,000 people. (11) 
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1.2 Molecular basis of the Lung Cancer 

Lung cancer is a heterogeneous disease with multiple genetic and epigenetic 

alternations. Understanding these alternations and their functional significance can impact 

lung cancer prevention, diagnosis, and treatment. Lung cancer develops through a multi-step 

process, where novel genetic and/or epigenetic mutations are acquired. These mutations' 

primary function is to activate the growth signaling pathways (KRAS, EGFR, BRAF, HER2, 

ALK) and to inhibit the tumor suppressor pathways (P53, PTEN, LKB-1). Activation of the 

oncogenes usually happens by gene amplification, point mutations, and structural 

rearrangements (3). Tumor suppressor genes are typically deleted. New generation 

sequencing (NGS) has highlighted great genetic diversity in lung cancer. Lung cancer is one 

of the most genetically diverse cancers by the number of different mutations identified. Some 

of the most common mutations in lung cancer are identified in BRAF, EGFR, and KRAS 

pathway. These findings were confirmed by NGS. In addition to these, NGS analyses have 

also identified low-frequency, but recurrent mutations in DDR2, ERB4, FGFR1, JAK2, RET 

(4). While NGS has been tremendously useful in identifying and cataloging all the different 

genetic mutations in lung cancer, one of the main challenges is understanding which of these 

mutations have functional consequences, and are therefore considered to be the driver 

mutations. On the other hand, it is also essential to identify which of these mutations don't 

have functional consequences but are more mere bystanders and are passenger mutations. 

 

1.2.1 KRAS 
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KRAS gene encodes a G-protein, and it is one of the three oncogenes in the RAS 

family, together with NRAS and HRAS. Kras' primary function is the downstream signal 

transduction upon binding various growth factors and activation of the MAPK pathway. 

Through MAPK pathway activation, KRAS regulates cell proliferation, differentiation, and 

survival (5). In the quiescent form, KRAS binds GDP; upon growth factor binding, GDP is 

exchanged to GTP, and KRAS is activated. After completing its function of activating the 

MAPK pathway, GTP is hydrolyzed to GDP. Activation mutations of KRAS are the most 

commonly observed mutations in lung cancer (with being observed in 25-40% of cases) (6). 

These mutations disable activated KRAS-GTP's inactivation to KRAS-GDP, making KRAS 

constitutively activated, which results in the constitutive activation of the the MAPK 

pathway. KRAS mutations are common for lung adenocarcinoma; however, they are rare in 

small cell lung cancer. KRAS mutations are also more common in the western populations 

than in Asian populations and they are more often seen in smokers and males. Interestingly, 

KRAS mutations are rarely seen together with EGFR mutations in the same patients (7). 

This could be because these two mutations would have the same result of activating the 

MAPK pathway. Even though KRAS mutations are common in lung cancer and might seem 

to be a lucrative therapeutic target, the clinical trials for KRAS-targeted therapies have been 

disappointing.  

 

1.2.2 EGFR 

EGFR gene codes for the transmembrane tyrosine kinase receptor. Upon binding the 

epidermal growth factor, it leads to receptor dimerization and activation of the tyrosine 
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kinase domain and downstream signal transduction. Signaling pathways activated via EGFR 

are Pi3k/AKT/mTOR, RAS/RAF/MAPK, and Jak/STAT. EGFR signaling controls cellular 

proliferation, survival, differentiation, neovascularization, invasion, and metastasis (8). 

Activating mutations in EGFR lead to constitutive tyrosine kinase activation. EGFR 

mutations are found in 15% of the Western population and in about 40% of patients in Asian 

populations (8).  

 

1.2.3 Tumor Suppressors 

The tumor suppressor's primary function is the control of the cellular growth and 

proliferation in normal cells. For successful tumorigenesis, tumor suppressor genes and their 

expression and function are like breaks that can halt the cell cycle and induce apoptosis. To 

overcome this hurdle, tumors need to lose both copies of the tumor suppressor genes. 

Usually, one allele is inactivated via mutation or epigenetic silencing, while the other copy 

is lost through loss of heterozygosity (LOH). In lung cancer, the most commonly deleted 

tumor suppressors are TP53, retinoblastoma 1 (RB1), and serine-threonine kinase 11 

(STK11), CDKN2a, FHIT, PTEN. Deletion of the genomic region 17p13, where Tp53 is 

located, is one of the most common lung cancer events, with a 90% incidence in small cell 

lung cancer and about 65% NSCLC (9). Tp53 encodes for the gene that responds to stress 

induced by damaged DNA. Upon activation, p53 functions as the transcription factor, which 

controls the expression of many different genes. The primary function of those genes is 

stalling the cell cycle and activation of the DNA repair or apoptosis upon identification of 

the cellular stress and DNA damage (10).   
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1.3 Non-small cell lung cancer (NSCLC) 

Lung cancer is a heterogeneous disease, which can be divided broadly into two 

different classes: small cell lung carcinoma (SCLC) and non-small cell lung carcinoma 

(NSCLC). Lung cancer can be divided into these two subcategories based on the cell of 

origin, which in NSCLC is the lung cell, whereas in SCLC it is the neuroendocrine cell. 

NSCLC is the most common lung cancer subtype, with more than 80% of all lung cancer 

cases. NSCLC can be subdivided into lung adenocarcinoma, squamous cell carcinoma, and 

large cell carcinoma (11).  

 

Figure 2. Lung cancer classification (11). 

The primary function for the lungs is the gas exchange, where oxygen is captured, 

and CO2 is released. Because lungs have direct interaction with the environment through the 
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air we breathe, lung cells can accumulate different mutations due to exposure to various 

mutagens. In addition to this, inflammation in the lungs due to different irritants coming in 

contact with alveoli can increase the risk of developing cancer. Due to environmental 

exposure, lung cells can start to change (genetically and epigenetically); these changes are 

usually observed in the localized area called field defect. The first histologically observed 

step in lungs carcinogenesis is the atypical adenomatous hyperplasia (AAH), which is a 

benign and preneoplastic change. After AAH, further progression to metaplasia, dysplasia, 

carcinoma in situ, and advanced carcinoma in lung cancer can be observed (12). Some of 

the most common oncogene mutations detected in NSCLC are mutations in EGFR and ALK. 

The most typical mutations for the adenocarcinomas NSCLS subtype are the KRAS 

oncogene activation. In addition to these oncogenes, Sox, PIK3 CA, Keap1 are among the 

most common oncogenes being mutated in the NSCLC adenocarcinoma subtype. When it 

comes to tumor suppressor mutations in NSCLC, we can observe that Tp53 and Rb1 are the 

most common tumor suppressors to be deleted. Even though these oncogenes and tumor 

suppressors are the most common genetic alternation seen in NSCLC adenocarcinomas, it is 

worth emphasizing that NSCLC is a highly heterogeneous disease at the genetic and 

epigenetic level. 

Furthermore, we can observe this heterogeneity at different levels; we can observe it 

at the intra-tumoral level (e.g., different mutations observed between primary tumor and 

metastatic lesion) and inter-tumoral level (different mutation observed among different 

patients). We can also observe that even in the primary tumor, we can have different genetic 

clones. These different genetic clones can be observed at different time points (temporal 
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heterogeneity), or in different areas of the tumor (spatial heterogeneity). In addition to 

genetic and epigenetic heterogeneity, we can also observe that tumor microenvironment can 

be heterogeneous, and this can be observed at both intra-tumoral and inter-tumoral level. 

This heterogeneity also has functional consequences, as we know that one of the features of 

the NSCLC is the extensive interaction with stromal components, where tumor cells need 

VEGF, HGF, and SHH for their growth, and which are being provided by the stromal 

components. (13) 

NSCLC treatment is divided into three categories, which depend on the tumor stage 

at the time of diagnosis, its histological cell type, and molecular profile. Based on these 

categories, NSCLC tumor management is classified as resectable, locally advanced, or 

advanced NSCLC (11). The standard treatment for the resectable NSCLC is lobectomy. For 

the locally advanced NSCLC, multimodal therapy is the primary option, where sequential 

chemotherapy is combined with radiotherapy. For the advanced stage, NSCLC therapy is 

usually personalized based on the genomic mutation profile and the histology of the tumor. 

The most common treatments are targeted therapies against EGFR and ALK.(14) 

 

1.4 Mouse cancer models 

Before developing mouse cancer models to study cancer, cancer researchers were 

using cancer cell lines, of both human and mouse origins. While the use of cancer cell lines 

helped define oncogenes and their function and had a role in understanding the process of 

cancer transformation, the use of cancer cell lines had a few important limitations. Primarily, 

these were ex vivo systems, and therefore the physiological aspects of the tumorigenesis 
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processes were missing. In addition, studying tumor development, as well as studying tumor 

interactions with stromal cells in these systems was not possible. Some of these concerns 

were addressed with the xenograft models, where cancer researchers could transplant human 

tumor cells into the immunocompromised mice. Even though this enabled in vivo studying 

of the tumor development, one of the main issues was that the immune component was 

missing. We know now that the immune system plays one of the crucial roles in tumor 

development .(15) 

Genetically engineered mouse models (GEMMs) helped overcome these hurdles. 

There are multiple different ways to induce cancer in genetically manipulated mice. First 

unofficial GEMMS were transgenic mouse models such as MMTV-Myc, which confirmed 

that oncogenes could promote tumorigenesis in vivo. (16) After that, the discovery of 

homologous recombination in mammalian cells and the development of the methods for 

manipulating the mouse embryonic stem cells spurred further development of the first 

GEMMS. In these first GEMMs, it was possible to delete the genetic sequence of interest, 

creating knockout mice, or insert an exogenous genetic sequence of interest, creating knock-

in mouse models (17). These models enabled understanding of the ways deletions of tumor 

suppressor genes, such as tp53 and Rb, affect tumor development. These studies showed that 

deletion of the tp53 increases chances of developing tumors. The next development in 

GEMMs was the use of conditional and inducible mouse models. One of the most famous 

models is the Cre-loxP recombination system. In this model, Cre recombinase performs site-

directed DNA recombination between two 34-bp loxP sites. (18) The significant advantage 

of this model is to study gene function in a cell-specific manner. In addition, inducible 
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models as the Tet-inducible system allowed examining gene function in the temporal 

fashion.  

 

2. Cancer heterogeneity  

 
2.1 Genetic heterogeneity and clonal progression 

Genetic heterogeneity in tumors is one of the first observed axes of tumor 

heterogeneity. Some of the early work goes back to Nowell in 1976, where he strongly 

advocated for the stepwise acquisition of mutation during tumor progression. Further, he 

proposed that two main forces, acquired genetic instability and selection process, act 

together and result in advanced cancer. He also noted that advanced tumors are 

karyotypically and biologically highly individual and that perhaps each patient tumor would 

require unique treatment (19). His work also hints at the idea of the intertumoral 

heterogeneity - tumors of the same type having different genetic mutations. Our current 

understanding of tumor growth and progression is based on Nowell's initial theories, which 

were later supported by experimental proof from Vogelstein and others. In their seminal 

work, they have shown that colon cancer progression is a stepwise process, where tumor 

cells acquire novel mutations to advance to the next stage of progression (20).  

In cancer, we observe a spectrum of different mutations, from single nucleotide 

mutations to whole genome multiplications (21). These mutations provide the substrate on 

which selection can act upon it in Darwinian fashion. During tumor evolution, with selective 

pressure, the fittest clones are selected, which grow and dominate other clones through so-

called selective sweeps. Selective sweeps can be repeated numerous times during tumor 
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progression, indicating that most tumors will have multiple genetic clones during their 

lifetime and that clonal evolution is one of the shaping forces during tumor progression (22). 

Figure 3. Depiction of the genetic evolution in cancer (23) 

With the development of NGS and its application to oncology in the last decade, we 

now have a much better understanding of tumor genetic heterogeneity and the prevalence of 

clonal evolution. Human tumors can harbor very few mutations (24), to hundreds of 

mutations, as we observe in human lung adenocarcinoma (25, 26). Further, it has also been 

shown that not all mutations observed in cancers have the same importance for tumor 

progression. Based on their role in tumor growth, mutations have been divided into two 

distinct classes: driver and passenger mutations. Driver mutations are defined as mutations 

that contribute to tumor growth and progression. In contrast, passenger mutations are 

bystander mutations, which don't play an active role in tumor growth and progression (21). 

Driver and bystander mutations show patterns of intratumoral and intertumoral 

heterogeneity. It is also worth noting that most of the sequencing efforts have been made at 
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the "bulk" level by sampling populations of cells. Therefore, we still don't have a  full 

understanding of the extent of the actual genetic heterogeneity. 

 

2.2 Tumor microenvironment (TME) role in tumor heterogeneity 

The tumor microenvironment (TME) is the environment around tumor cells 

consisting of the cellular (blood vessels, immune, stromal, and parenchymal cells) and non-

cellular (extracellular matrix, signaling molecules) components. Spatial heterogeneity is one 

of the main features of the TME. First observations about spatial heterogeneity came from 

pathology reports that observed differences in the type, number, and position of tumor-

infiltrating lymphocytes (TILs) in cutaneous melanoma. Further, they have shown that 

tumor-infiltrating lymphocytes can have a predictive survival value as well. Similar findings 

have been observed in many other cancer types (27).  

TME has been recognized as one of the critical players essential for tumor growth 

and progression, tumor metastases, therapy efficacy, and resistance. For example, it has also 

been shown that chronic inflammation can result in oxidative stress, which in itself can 

induce DNA mutations, and therefore provide additional substrate for the tumor evolution, 

and aid tumor progression. In glioblastomas, the spatial heterogeneity of the TME was 

shown to be aligned with the tumor's genetic heterogeneity. Cancer cells with EGFR 

amplifications tend to be near hypoxic or poorly vascularized areas, whereas cancer cells 

that have amplified PDGFRA are near blood vessels (28).  For cancer cells to metastasize, 

the first step is to leave the primary tumor. Along those lines, it has been shown that TME 

is different at the invasive and non-invasive edge of the primary tumors. Additionally, it has 
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been demonstrated that TME can be an essential factor in inducing EMT, as well as 

influencing differentiation in tumor cells (29). 

The contribution of the TME to the tumor heterogeneity can be seen as analogous to 

the environment's role in natural ecosystems. In the previous example, we could be thinking 

about the ecosystem where there is a river (blood vessel) vs. the ecosystem where there is a 

desert, for example. 

 

2.3 Cancer Stem Cell (CSC) hypothesis 

 

The basic premise of CSC theory is that there are phenotypic differences among 

tumor cells that are essential for tumor growth and progression. Cells with CSC features are 

thought to fuel tumor growth because they can self-renew and maintain the CSC pool, or 

they can differentiate and add to the tumor non-CSC. Non-CSCs are thought to have the 

ability to increase, and for most cancer types, they would make up the bulk of the tumor. 

The CSC hypothesis proposes a hierarchy among cancer cells, similar to the hierarchy in 

normal tissue. If the CSC were analogous to a normal stem cell, non-CSC would be 

analogous to transit-amplifying and/or differentiated cells in normal tissue.  

The first experimental evidence for the existence of the cancer stem cell (CSC) was 

found in acute myeloid leukemia (AML) . In AML, a cell population with hematopoietic 

stem cell (HSC) surface markers (CD34+CD38-) can reconstitute the original tumor when 

transplanted to the immunodeficient mice in a limiting dilution assay. By contrast, other 

cancer cell populations, which didn't have these markers, show limited tumor-initiating 

capability (29). This initial work highlighted that CSCs have two different traits: 
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¶ tumor initiation properties when transplanted into mice, indicating that only 

a few of these cells are enough to initiate a tumor 

¶ capacity to generate other cellular subpopulations as well as CSC population 

(they can both differentiate and self-renew) 

 In addition to observing CSC in liquid cancers, CSCs have also been observed, 

isolated, and studied in solid cancer, with breast cancer being one of the most thoroughly 

researched solid cancers. In breast cancer, the CD44+CD24- population showed increased 

self-renewal, increased tumorigenicity, the ability to differentiate into other subpopulations, 

increased metastatic potential, reduced proliferation, and reduced sensitivity to 

chemotherapy (31). Not all CSCs have reduced proliferation, but those with similar features, 

albeit different markers, have been identified across multiple solid and liquid cancer types 

(32). 

Despite being able to detect CSC in most tumor types, the CSC theory still faces vigorous 

debate in the scientific community. One of the significant problems with the CSC hypothesis 

is that CSC has been defined based on particular experimental conditions. The most common 

experimental set up used to study and test CSC are: 

- Tumorosphere assay, which tests the ability of cells to proliferate in 3D conditions 

- Transplantation assay where tumor initiation is tested in immunodeficient mice 

Transplantation assays were thought to be the gold standard for testing CSC. However, it is 

essential to note that the transplantation assay only tests the tumor-initiating capability of 

the cancer cells and can only be tested in a permissive environment. Most CSC models to 

date have been xenograft models, where human cells are transplanted to 
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immunocompromised mice (33). Studies done on AML, melanoma, lung, and breast cancer 

CSC have unequivocally shown that the more the mice are immunocompromised, the higher 

the number of CSCs detected (34). An additional layer of complexity arose with the CSC 

surface markers and their variability from patient to patient or cell line to cell line, making 

CSC theory somewhat problematic and disputed (35). 

 

Figure 4. Depiction of differences between cancer stem cell hypothesis and clonal 

evolution/stochastic model (36). 

2.4 Phenotypic plasticity 
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In the previous chapter, we outlined the CSC hypothesis and potential problems with 

it, including that CSC identity is defined by the experimental set up we have used. Also, 

another problem is that we have applied our understanding of the normal stem cell 

differentiation directly to the CSC hypothesis. In this particular case, we have kept our 

uncompromising vision of the differentiation of the normal stem cell to differentiated cells, 

where the differentiation happens through a serious of strictly defined stages and in a more 

controlled microenvironment. However, it is crucial to outline the outstanding questions 

about the  CSC hypothesis: 

1. How confident are we that differentiation in normal tissue occurs through rigid and 

defined stages, versus being a more continuous process? 

2. How do we know that cancer cells would follow this particular rigid trajectory even 

if they were correct in the first place? 

3. Are the transitions between CSC and non-CSC always unidirectional from CSC to 

non-CSC? Or are transitions bidirectional? 

Roesch et al. have shown in melanoma that CSCs don't follow the hierarchal model, 

and they have observed transitions from non-CSC to CSC. Using H3K4 demethylase 

JARID1B as a marker of CSC, they observed that JARID1B- cells could give rise to 

JARID1B+ cells. Further, they have also shown that the expression of JARID1B can be 

switched on and off in a reversible fashion and that oxygen levels can control the switch 

(37). Their dynamic stemness model was one of the first demonstrations of the phenotypic 

plasticity of cancer cells, where the correct environmental stimulus cells can switch from 

one state to the other.   
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Using breast cancer as a model, Chaffer et al. showed that some subtypes of the breast 

cancers don't follow the classical hierarchical CSC model, where transitions from CSC to 

non-CSC are unidirectional. In this work, they have shown that in some types of breast 

cancer, non-CSC could give rise to CSC. These transitions were instigated with TGFb. 

However, it is essential to underline that non-CSC to CSC switching was not observed in all 

types of breast cancer. Breast cancers that showed bidirectional transitions also had bivalent 

chromatin on the promoter of Zeb1. Breast cancer cells that were in a locked state, and which 

were not able to switch back and forth, had repressed chromatin marks and DNA 

hypermethylation on Zeb1 promotor (38). These two seminal papers support the plasticity 

theory, which states that cancer cells can adapt to new environmental signals and switch 

their phenotypes without changing their phenotype. 

Phenotypic plasticity was also observed in drug-resistant cancer cells. Using cancer 

cell lines, Sharma et al. detected a small subpopulation of the reversible drug-tolerant cancer 

cells. The drug-tolerant cancer cell phenotype was transitional, and it was chromatin-

mediated (39).  

Cancer cell plasticity seems to occur in cells that have a permissible epigenetic 

landscape and correct external cues. However, it is essential to ask why some cancer cells 

have the right epigenetic landscape, and others don't. One of the factors could be the cell of 

origin for the particular cancer. Chaffer et al. showed in their work that only basal breast 

cancers, not luminal ones, show phenotypic plasticity (40).  

 

 



 28 

2.5 Consequences of tumor heterogeneity 

Tumor heterogeneity is omnipresent, and it fosters tumor evolution by: 

1. Providing genetic and epigenetic substrates upon which selection and Darwinian 

evolution can act, thus giving the advantage or disadvantage to tumor growth 

2. The interaction of multiple genetic or phenotypic clones with each other to enable 

tumor growth and progression. For example, in lung adenocarcinoma, niche cells 

provide WNT ligands to CSCs (41).  

In addition to fueling tumor growth and progression, tumor heterogeneity is one of 

the biggest challenges in medicine, playing a key role in diagnosis, treatment, and clinical 

outcomes. For example, in metastatic colorectal cancer, anti-EGFR treatments show efficacy 

in patients with KRAS wild-type subtype tumors. However, in patients with mutated KRAS, 

these treatments have subpar effectiveness (42). In another example, cancers with oncogene 

addiction are addicted to particular mutations that could be used as their vulnerability. 

Melanoma patients with a BRAF mutation are sensitive to treatment with BRAF inhibitor, 

while patients that have melanoma with wild type BRAF are resistant to this treatment (43). 

Therapy response and resistance can be profoundly affected by intratumor 

heterogeneity. If we think about therapy as a selective pressure, when applied, it can select 

for the fittest tumor cells, enabling the growth of the selected clones and relapse of the 

disease. In our previous example with CRC, which has KRAS wild type, anti-EGFR therapy 

can lead to the relapse of the disease, where we observe mutated KRAS. In addition to 

genetic heterogeneity, it has been shown as well that CSC, in general, are more resistant to 

therapy (44). In breast cancer, it has been shown that breast CSC can have low levels of 
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reactive oxygen species, which in turn protect them against radiation (45). CSC in CML has 

shown to be more quiescent and less proliferative compared to non-CSC, which protects 

them against imatinib, a drug that mostly targets proliferating cells (46). 

 

3. RNA sequencing and single cell genomics 

3.1 Overview of RNA sequencing   

RNA sequencing (RNA-seq) methods were developed in 2007 (46). RNA-seq was 

primarily applied for measuring the mRNA levels at the cell population level, also known as 

bulk RNA-seq. Bulk RNA-seq enabled measuring and comparing gene expression programs. 

In recent years single cell RNA-seq was developed, which enabled reading gene expression 

at the single cell level. This greater resolution allows researchers to move from the gene 

expression on the level of population of cells to a single cell gene expression level. It allows 

agreater understanding of the fundamental unit of life: a cell. In addition to methods 

measuring the mRNA levels, some methods are able to measure mRNA that is being 

transcribed or translated. Also, some methods can sequence the structure of the RNA. The 

most recent development in the fields is the invention of the spatial transcriptomics, which 

enables spatial sequencing and identifying gene expression in the tissues. (47) 

RNA sequencing starts with the preparation of the sequencing library. Library 

preparation will depend on the sequencing platform. There are three different methods for 

RNA sequencing: direct RNA sequencing (Oxford nanopore), long read sequencing 

(PacificBio), and short read sequencing (Illumina). The most commonly used sequencing 

platform is the short-read sequing. Library preparation usually starts with the RNA 
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fragmentation, followed by reverse transcription and cDNA synthesis with, or followed by 

adaptor ligation and PCR amplification. The last step is the size selection of the library. The 

main advantage of the short-read sequencing is the high throughput of the methods. In 

addition, short read has been shown to be extremely robust at both inter and intra platform 

level. This is essential characteristic because RNA is a highly unstable molecule and 

degrades easily outside of the cell. 

 

3.2 Single Cell Genomics - Overview 

The cell is the fundamental unit of life. Since the discovery of the cell in the 18th 

century, and with the discovery of the microscope, scientists have extensively studied single 

cells. In the last 20/30 years, we have seen a significant expansion of the methods for 

studying single-cell measurements, such as flow cytometry and FISH. However, the problem 

with most of these approaches is that they provide limited information: usually, we can 

measure a few features (RNA, protein) at once in each cell. The rapid development of 

sequencing, especially NGS, has enabled scientists to collect thousands of features from the 

cell, also known as genome-scale approaches. However, most of genome-scale approaches 

were done at the population level, which means that we were sampling thousands of cells at 

once and recording population genome-scale features. Trying to bridge genome-scale 

approaches with single cell resolution has fueled the development of single cell genomics. 

In the last few years, available cell genomics methods have tremendously developed and 

enabled us to study cells at both single cell resolution and genome scale, where we can 

collect thousands of features simultaneously for each cell. 



 31 

 

Figure 5. Comparison between bulk RNA-seq and scRNA-seq (48) 

3.3 Single Cell Genomics - Development 

A typical cell contains around 10-50pg of total RNA, with mRNA being 

approximately 1-5% of the total RNA in the cell. Thus, the amplification of the input material 

is a crucial step to obtain sequencing input requirements. For the generation of whole 

transcriptome amplification (WTA) in scRNAseq, the initial method used oligo-dT primers, 

followed by ligation adapter PCR (49). However, this approach had 3' bias due to insufficient 

first strand synthesis. To overcome this issue, the Smart-seq2 method was developed, which 

enabled us to profile full-length mRNA. For the first strand synthesis, Smart-seq2 uses a 

template-switching mechanism to anchor the primer binding site on the 3'cDNA and MMLV 

reverse transcriptase. After that, cDNA is amplified with PCR, and the sequencing library is 

prepared using the NEXTERA kit (50). 

Additionally, the method was also automatized by using the Bravo robot, which 

significantly increased the efficiency and consistency of the protocol. The advantages of the 
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Smart-seq2 approach are that we can detect multiple transcript isoforms, as well as SNPs. 

However, due to PCR amplification, some PCR biases are introduced. This particular issue 

can be overcome by using UMI (universal molecular identifier or barcode), which corrects 

for the PCR amplification biases. Another problem is that template switching is a highly 

inefficient process, and therefore lowly expressed transcripts can be difficult to detect. A 

parallel method to Smart-seq2, called CEL-seq, was developed to overcome PCR biases by 

using in vitro transcription (IVT) to amplify mRNA (51). An additional problem with the 

Smart-seq2 method is that the high throughput was low (around a few hundred cells per 

experiment), due to not being able to pool samples before the final step of the library 

preparation. With the development of the application of microfluidics, this problem was 

solved. Microfluidic approaches use droplets to separate samples (cells), and each droplet 

has a unique barcode, which is incorporated in the first-strand synthesis during the reverse 

transcription step. Early barcoding of the cells enables the pooling of all of the samples 

together and increases the throughput of the method. Initial droplet methods were Drop-seq 

and InDrop, and today 10x is the commercial version most widely used (52). 

 

3.4 Single cell RNA sequencing analysis  

The first step in the scRNA-seq analysis is the mapping of the reads or the read 

alignment. This first step is the crucial step for the downstream analysis. Read alignment is 

also a useful QC metric of the overall quality of the scRNA-seq data. Since this process is 

the same for the bulk RNAseq, there are no differences between alignment approaches when 
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mapping the reads of the scRNA-seq data. We can divide read mapping algorithms into two 

subgroups: 

¶ Spaced-seed indexing based algorithms such as TopHat2 

¶ Burrows-Wheeler transform based algorithms such as Bowtie, HISAT. 

The mapping algorithms' primary function is to accurately map the sequence to the reference 

genome and do it promptly (to be fast enough). According to a comparison done by 

Engstrom et al., which evaluated 26 different mapping algorithms, there is no perfect 

algorithm; some of them will be more accurate, while others will be able to perform mapping 

faster, but with more errors. (53) 

 

Figure 6. Overview of the analysis of the scRNA-seq data. (54) 

 After mapping the reads to the reference genome, transcript expression quantification 

is the next step. Depending on whether the used scRNA-seq method is the whole transcript 
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or the 3ô or 5ô, different methods should be used. Expression, or the transcripts' abundance, 

is usually calculated in reads, or the fragments per kilobase per million mapped reads, and/or 

transcripts per million mapped reads. Some of the most common tools used for this are the 

Cufflinks or RSEM. If the method is 3ô or 5ô, UMI is used to quantify the expression. One 

of the popular tools for quantification of the 3ô UMI based methods is SAVER (55). 

 One of the scRNA-seq methods' main limitations is that starting material (mRNA 

captured) is in low quantities (approximately every mammalian cell has a total of 360,000 

mRNA molecules, which is up to 3% of total RNA in a cell). This will increase technical 

variation in comparison with the bulk RNA-seq methods due to low capture efficiency, the 

bias of transcript coverage, and sequencing coverage. In addition to these effects, biological 

variation is also much higher when using scRNA-seq than bulk RNA-seq methods. 

Biological variation is different because we look at single cells compared to averaged 

transcriptomes of thousands of cells. And, additionally, the process of isolation of the single 

cell can be damaging to many cells, leading to cell death and stress, among other effects. It 

is also crucial to note that our sorting methods (or the microfluidics methods) sometimes 

capture multiple cells instead of a single cell, which results in inaccurate data. 

 With these limitations in mind, quality control of the scRNA-seq data sets is of 

paramount importance to avoid misinterpretation of the data. A few metrics should be 

implemented in removing scRNA-seq data: 

¶ Cells with very few reads per cell should be removed as we donôt know the reason 

why only a few reads were detected (it could be due to capture or sequencing bias, 

or cells could be dead or stressed) 
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¶ Cells with very low mapping ration should be removed (these reads might be 

unmappable due to RNA degradation, and therefore this cell as the sample could be 

confounding the data) 

¶ Cells with low numbers of mapped mitochondrial reads (we know that RNA in the 

cytoplasm can easily degrade, however, RNA in mitochondria is more stable; 

therefore a low number of mitochondrial reads could suggest that this cell is damaged 

or dead) 

¶ Cells with a low gene/transcript ratio (low number of unique genes detected in a cell 

could suggest cell death or damage) 

In addition to the aforementioned technical biases, one additional technical bias is 

the batch bias, which is common for high throughput experiments. The batch bias of the 

high throughput experiments, coupled with the limiting amounts of the highly unstable 

RNA (as the starting material) in the generation of the scRNA-seq libraries, leads to one 

of the major challenges in the scRNA-seq analysis. The batch effect poses challenges in 

analyzing data indifferent experiments and different labs and platforms. Removing the 

batch effect enables easier data integration and interpretation. There are few methods 

developed for batch correction; however, it is important to note that many of these 

methods can overcorrect the batch effect. Therefore, it is possible to lose some of the 

biological variation. Some of the most commonly used methods for batch correction are 

the CCA (canonical correlation analysis), kBET (k-nearest neighbor batch effect), and 

MNN (mutual nearest neighbor). (54) 
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All of these QC and batch effect removal methods are helping with the normalization 

of the data. Normalization of the data can be done within the sample or between samples. 

For the normalization within the sample, the goal is to remove gene-specific biases, such 

as gene length. This can be achieved by using metrics such as RPKM/FPKM or TPM. 

The goal of the normalization between samples is to equalize the differences in the 

sequencing depth and coverage.  

After the normalization of the scRNA-seq data, the next step in the analysis is the 

dimensionality reduction. scRNA-seq data set usually has thousands of cells, with each 

cell having hundreds to thousands of genes detected, resulting in a phenomenon called 

high dimensional data. Seeing all of this data at once is incredibly hard; therefore, the 

purpose of dimensionality reduction is to project this data into lower dimensional space 

by preserving some key properties of the original data. There are two different ways to 

reduce data dimensionality: using linear on nonlinear approaches. PCA (Principal 

Component Analyses) is one of the most commonly used linear approaches to reduce 

dimensionality. tSNE and UMAP are methods for nonlinear dimensionality reduction 

(56). 

After this step, the next important step is the identification of different cellular 

subpopulations. One way to do this is to cluster scRNA-seq in a way that enables cells 

that are alike to cluster together. There are two approaches to clustering:  

¶ We have the prior information on the cellular markers and by using them, 

and we can cluster the cells based on their cellular markers, for example 
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¶ Unsupervised clustering where we can use the computational approaches for 

the identification of the novel cell subpopulations. 

Algorithms for the unsupervised clustering can be divided into these four categories: 

¶ Density-based clustering 

¶ Graph-based clustering 

¶ Hierarchical clustering 

¶ K-means clustering 

 

Figure 7. Depiction of how clustering works with discrete cell types (57) 

 

After the identification of different cellular subpopulations, the next step is to 

understand the differences among different cellular subpopulations. In scRNA-seq, 

we measure the mRNA levels; therefore, comparison in gene expression is an 

important analytical metric to look at. The difference in gene expression is an 

important metric for understanding the function of the cellular subpopulation and 

identifying markers that can help us isolate a subpopulation of interest to further 
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study in the reductionism approach, for example. It is important to note that scRNA-

seq has high technical noise, emphasizing high dropouts, which can significantly 

disable the use of the DEGs method developed for the bulk RNA-seq analysis. 

Therefore, there have been developed additional scRNA-seq DEG analysis methods 

such as Census, DEsingle, MAST, and SCDE. (54) As with most of the methods, 

each of the approaches has advantages and disadvantages, shown in a comparison 

done by Soneson and Robinson. In their comparison, they have compared 36 

different approaches and found measurable differences. (58) 

In addition to the aforementioned technical noise, there is also considerable 

biological noise. Bulk RNA-seq analyses measure gene expression programs across 

many cells, giving us gene expression programs of the different cellular 

subpopulations and states, and probably to certain degree measures the most common 

gene program in cell subpopulation. However, we know that gene expression 

programs for particular cell states are not rigid; rather, the cell state is somewhat 

dynamic. We should talk about cellular states and not cellular state (singular). To 

analyze the cellular states' dynamics, transition methods for inferring and modeling 

cellular trajectory and pseudotime have been developed. Using these methods, we 

can put cells ordered on the trajectory from the beginning to the end of the trajectory. 

By doing so, we can identify stem, progenitor, and differential cellular states. We 

can also infer the key molecular underpinnings for the transition between states by 

comparing and analyzing DEGs during the trajectory. Observed trajectories can be 

linear, bifurcated, multifurcated, cyclic, or tree structure. The most commonly used 
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methods are Monocle, Optimal transport, Waterfall, Wishbone, TSCAN, and RNA 

velocity. (59) 

 

  

Figure 8. Modeling continuous cellular states. Using pseudotime or trajectory 

analysis helps with modeling of the continuous cell states. (57) 
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Chapter 2 

Results 

 

 

Emergence of a high-plasticity cell state during lung cancer evolution 
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SUMMARY  

Tumor evolution from a single cell into a malignant tissue comprised of diverse cell 

populations remains poorly understood. Here, we profiled single cell transcriptomes from 

genetically engineered mouse lung tumors at seven stages spanning tumor progression from 

atypical adenomatous hyperplasia to lung adenocarcinoma. The diversity of transcriptional 

states spanned by tumor cells increased over time and was reproducible across tumors and 

mice, but was not explained by genomic copy number variation. Cancer cells progressively 

adopted alternate lineage identities, computationally predicted to be mediated through a 

common transitional, high-plasticity cell state (HPCS). HPCS cells prospectively isolated 

from mouse tumors had robust potential for phenotypic switching and tumor formation, and 

were more chemoresistant in mice. Putative HPCS cells prospectively isolated from human 

patient-derived lung cancer xenografts displayed high plasticity and tumor sphere-forming 

capacity. The HPCS program was associated with poor survival in human lung 
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adenocarcinoma and across human cancers. Our study reveals transitions that connect cell 

states across tumor evolution and motivate therapeutic targeting of the HPCS. 

  

INTRODUCTION  

Tumors are cellular societies in which the phenotype, or state, of each cancer cell is 

influenced by multiple cell-intrinsic and cell-extrinsic factors. Defined cellular states 

observed in cancer, such as cancer stem-like cells (CSCs) and epithelial-to-mesenchymal 

transition (EMT), can play distinct roles in tumor progression (Batlle and Clevers, 2017; 

Chaffer et al., 2016; Kreso and Dick, 2014; Marjanovic et al., 2013). Moreover, the diversity 

of cancer cell states within tumors poses a challenge for effective cancer therapies (Lawson 

et al., 2018). The nature and sequence of the genetic events that define some common 

cancers have been characterized in detail over the past three decades (Fearon and Vogelstein, 

1990; Hutter and Zenklusen, 2018), as have the expression profiles of bulk human and mouse 

tumors in late stages of tumor progression (Ambrogio et al., 2016; Campbell et al., 2016; 

Feldser et al., 2010; Winslow et al., 2011). However, our increasingly fine understanding of 

genetic events occurring during tumorigenesis is not yet matched by a similar understanding 

of the progression of cancer cell at the molecular and functional level, especially for early 

microscopic neoplasias that cannot be readily detected in patients. In particular, we do not 

know how diverse such states are at different points along tumorigenesis, how reproducibly 

they would arise in a defined genetic context, how the states of different cells in the same 

tumor relate to, support, or compete with each other, and what role they may play in driving 

tumor progression or response to therapy. 
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Genetically engineered mouse models (GEMM) of human cancer and single cell RNA-Seq 

(scRNA-Seq) can together help address this gap. ScRNA-Seq is a powerful tool for 

characterizing the molecular identity of individual cells in tissues, including in solid tumors 

(Lambrechts et al., 2018; Patel et al., 2014; Tirosh et al., 2016a; Tirosh et al., 2016b; Zilionis 

et al., 2019). However, it has typically been applied to advanced tumors in humans, which 

were not analyzed over time, thus limiting oneôs ability to infer temporal changes over 

processes that take years in patients. In particular, the spectra of cell states that exist in 

advanced human tumors may represent transitions that occurred over short or far longer time 

scales (Neftel et al., 2019). This limitation can be addressed by studying cancer GEMMs, 

which allow spatiotemporal control over tumor development in the context of mammalian 

physiology. Moreover, in GEMMs tumorigenesis is initiated using defined genetic 

perturbations, reducing experimental variability across individual mice.  

 

In GEMMs of lung adenocarcinoma (LUAD), viral expression of Cre recombinase in lung 

epithelial cells leads to somatic activation of oncogenic KRAS-G12D with or without 

deletion of the p53 tumor suppressor (referred to here as ñKò and ñKPò models, respectively) 

(Farago et al., 2012; Jackson et al., 2005; Jackson et al., 2001). K tumors rarely progress 

beyond adenomas, whereas the KP tumors evolve over the span of 12-30 weeks into 

advanced LUADs. These models accurately mimic human lung adenoma and 

adenocarcinoma progression at the molecular and histopathological levels (Jackson et al., 

2005; Jackson et al., 2001; Winslow et al., 2011), as well as in their response to 

chemotherapy (Oliver et al., 2010), making them well-suited for studying tumor evolution, 
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heterogeneity and treatment responses. Importantly, the combination of the K and KP models 

with a Rosa26LSL-tdTomato/+ fluorescent reporter allele (KT and KPT, respectively) enables the 

comprehensive isolation of all cancer cells without the need to rely on cell surface markers 

(Madisen et al., 2010; Tammela et al., 2017), which are typically heterogeneously expressed 

in cancer cells and susceptible to protease cleavage during tissue dissociation.  

 

Emerging evidence indicates that LUAD predominantly arises from a subset of alveolar type 

2 (AT2) cells (Desai et al., 2014; Nabhan et al., 2018; Sutherland et al., 2014; Treutlein et 

al., 2014; Zacharias et al., 2018). Here, we used LUAD GEMMs and scRNA-Seq to examine 

the evolution of cancer cell states initiated in AT2 cells at 2, 12, 20, and 30-week time points 

in a comprehensive fashion, interrogating the progression from early lung neoplasias to fully 

formed adenocarcinomas. Cells spanned multiple transcriptional programs with growing 

variability over time and presented in a reproducible fashion across tumors within and 

between mice. Computational modeling of the transitions in cell states between time points 

predicted a previously unknown cell state as a key transition point. We prospectively isolated 

mouse LUAD cells in this state based on expression of a cell surface molecule, TIGIT, and 

functionally profiled them in 3-dimensional (3D) tumor sphere cultures and in orthotopic 

transplants. We showed that cells in this transition state possess a high degree of phenotypic 

plasticity and tumorigenic potential as well as substantial chemoresistance. This transition 

program defined in the mouse model was also detected in cancer cells from human tumors 

and had predictive power for poor patient outcomes in multiple human cancers. Human and 

mouse LUAD cells in this transition state expressed high levels of integrin Ŭ2. Integrin Ŭ2Hi 

cells isolated from human patient-derived LUAD xenografts displayed high plasticity and 
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clonogenic ability in 3D tumor sphere cultures. Our work highlights the importance of plastic 

cell states in cancer progression and in response to therapy. 

 

 

 

 

RESULTS 

 

LUAD progression is characterized by a dramatic and reproducible increase in 

phenotypic diversity  

To initiate lung tumors, we delivered adenoviral vectors encoding Cre recombinase under 

the control of an AT2 cell-specific surfactant protein-C promoter [AdSPC-Cre; (Sutherland 

et al., 2014)] into the lungs of Rosa26LSL-tdTomato/+ (ñTò), KT, or KPT mice. We isolated live 

tdTomato+/CD45-/CD11b-/TER119-/CD31- cells (Tammela et al., 2017) at defined time 

points and performed full-length scRNA-Seq using a modified SMART-Seq2 (Picelli et al., 

2013) protocol (Figure 1A-C; STAR Methods). To characterize malignant cell diversity 

along tumorigenesis, we collected 3,891 high quality, single cell full-length transcriptomes 

from 39 mice at eight distinct stages of LUAD evolution, defined by genetic perturbation 

and time point, starting with normal AT2 cells and ending with fully formed LUADs (Figure 

1A-C; Figure S1A-C; STAR Methods). We chose time points that reflected key stages in 

LUAD progression: atypical adenomatous hyperplasia (AAH) (KT and KPT at 2 weeks), 

adenoma (KT at 12 and 30 weeks), adenoma-to-LUAD transition (KPT at 12 weeks) and 

LUAD (KPT at 20 and 30 weeks). We micro-dissected large KPT tumors individually at 20 

and 30 weeks, whereas all other samples were harvested by dissociating entire lungs 

containing mixtures of neoplasias in various stages of tumor progression. 
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The single cell expression profiles spanned 12 clusters with distinct expression patterns 

discovered by unsupervised clustering (Shekhar et al., 2016) (Figure S1D; STAR 

Methods), showing increasing cellular phenotypic heterogeneity with tumor progression 

(Figure 1C, D). The growing diversity was reflected by the fact that cells from later time 

points (late adenoma and LUAD) were members of a larger number of clusters (Figure 1C, 

D; Figure S1C, E) and showed a more diverse expression pattern, as measured by a 

decreased median Normalized Mutual Information (NMI) between the cells within a time 

point (Figure 1E; Figure S1F; STAR Methods). Cells from p53 mutant KPT tumors were 

the most heterogeneous, consistent with the established role of p53 in restricting cancer 

progression and safeguarding lineage commitment (Kastenhuber and Lowe, 2017). For 

clarity, we numbered the clusters by the extent of enrichment of cells from each time point 

in that cluster.  

 

The increased heterogeneity during tumor progression was remarkably reproducible from 

tumor to tumor within and across mice and in line with the tumorsô histopathological 

progression (Figure 1B). First, all late-stage adenocarcinomas included the ñlate onsetò 

subpopulations unique to this stage (clusters 10, 11, and 12; Figure 1D; Figure S1E), which 

represent the most advanced cell states in tumor evolution, as well as cells from all cellular 

states detected at the earlier steps of tumor initiation, including the very earliest cell states 

found in normal AT2 cells and in early neoplasias. Furthermore, most of the cancer cell 

phenotypes were present in each of the individually micro-dissected KPT tumors at 30 weeks 

(Figure 1F; Figure S1G). Notably, cluster 5 and 9 cells were present in every tumor 
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analyzed, both across and within mice and individual tumors. Thus, in this genetically 

defined animal model, tumors undergo a relatively ordered and reproducible progression of 

the diversification of transcriptional states.  

 

 

Diversity in gene copy number variation is not a sufficient determinant of phenotypic 

heterogeneity in LUAD 

We next tested whether genetic heterogeneity underlies the phenotypic diversity in advanced 

adenocarcinomas (KPT 30 weeks), which had the largest number of cell states (Figure 1E, 

F; Figure S1E, G). Previous studies have demonstrated that the mutational landscape of KP 

tumors is dominated by chromosomal copy number alterations and that the tumors do not 

develop recurrent point mutations (Chung et al., 2017; McFadden et al., 2016; Westcott et 

al., 2015). We therefore inferred chromosomal copy number variations (CNVs) from each 

cellôs scRNA-Seq profile (Figure 1G; Figure S1H-J), using a method we previously 

demonstrated and validated in multiple human tumors (STAR Methods) (Jerby-Arnon et 

al., 2018; Patel et al., 2014; Puram et al., 2017; Tirosh et al., 2016a; Tirosh et al., 2016b; 

Venteicher et al., 2017). KPT cells harbored more CNVs when compared to KT tumors at 

corresponding time points (Figure S1H, I), consistent with previously published results and 

the established role of p53 in maintaining genome integrity (Chung et al., 2017; Kastenhuber 

and Lowe, 2017; McFadden et al., 2016; Westcott et al., 2015). In a subset of the KPT tumors 

at 30 weeks we estimated DNA copy number by whole genome sequencing (WGS) of 

individual tumor cells (scDNA-Seq) (Figure 1H, I ; Figure S1K, L ; n = 3), which was highly 

concordant with the scRNA-Seq-based inference. There was considerable inter- and intra-
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tumoral heterogeneity in the single cell CNV patterns, which increased with tumor 

progression (Figure S1H, I). Prominent shared CNVs across mice and tumors implicated 

common clonal founders (ñtrunksò) for each tumor (Figure 1G, H; Figure S1J, K).  

 

We classified the CNV patterns into subtypes based on scDNA-Seq data (Figure 1H; Figure 

S1K), and assigned each cell analyzed by scRNA-Seq into these clonotypes (Figure S1L). 

Surprisingly, cell subtypes defined by CNV patterns did not directly align with the 

transcriptional classes (Figure 1H, I; Figure S1K-M ). Specifically, cells harboring highly 

similar CNV patterns were members of multiple transcriptionally distinct clusters (Figure 

1I; Figure S1L, M) and cells with different CNVs and belonging to different clonotypes 

can belong to the same transcriptional cluster (Figure 1I; Figure S1L, M). These results 

suggest that substantial phenotypic heterogeneity in the KP tumors is reproducibly acquired 

and not simply a result of chromosomal CNV. 

  

Loss of alveolar identity and acquisition of features associated with lung progenitors, 

embryonic endoderm, and epithelial-to-mesenchymal transition during LUAD 

progression 

The 12 transcriptional clusters were associated with distinct expression signatures (Table 

S1) that corresponded to known mouse cell identity programs, with more divergent states 

emerging in advanced tumors, suggesting a reversal of the lung developmental trajectory 

(Figure 2A; Figure S2A). We characterized each cellular subset with a signature of 

differentially expressed genes (Table S2; STAR Methods), which we compared to a 

published Mouse Cell Atlas scRNA-Seq dataset (Han et al., 2018) (Figure 2A). Cells in the 
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early-emerging clusters 1 and 2 expressed features of normal AT2 cells and were present in 

most tumors throughout LUAD progression (Figure 2A; Figure 1D). Distinct 

subpopulations that emerged first in adenomas (clusters 3 and 4) lost some AT2 

transcriptional identity, but retained features of the lung epithelial lineage (Figure 2A). Most 

populations that predominantly emerged in adenocarcinomas (clusters 6-10 and 12, Figure 

1D) had features of intestinal and/or gastric or embryonic liver epithelium ï all endodermal 

tissues cells derived from the embryonic primordial gut (Cao et al., 2019; Nowotschin et al., 

2019) (Figure 2A). This suggests that LUAD evolution is characterized by a loss of fidelity 

of the lung lineage and emergence of alternative related fates. Indeed, features of embryonic 

lineages more primitive than the primordial gut emerged in multiple subsets of lung tumor 

cells during tumor progression (Cao et al., 2019; Nowotschin et al., 2019) (Figure 2B). 

These changes were associated with the previously described loss of expression of the lung 

lineage-defining transcription factor Nkx2-1 as well as loss of the AT2 markers Sftpc and 

Lyz2, correlating with induction of developmental master regulators Hnf4a (primordial gut) 

and Hmga2 (primordial gut, developing lung) (Snyder et al., 2013; Winslow et al., 2011) 

(Figure 2C; Figure S2A).  

 

Interestingly, one late-emerging subpopulation (cluster 11, Figure 1D) bore no resemblance 

to epithelial cells, adopting a mouse embryonic fibroblast-like state and an expression 

program consistent with epithelial-to-mesenchymal transition (EMT) (Dongre and 

Weinberg, 2019) (Figure 2A). Only late-stage adenocarcinomas contained a subpopulation 

that had fully undergone EMT, indicating that LUAD tumors remain largely epithelial until 

later stages; this is in contrast to for example pancreatic ductal adenocarcinomas, where 
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EMT is detected in early neoplasias (Rhim et al., 2012). Finally, our analysis confirmed 

heterogeneous expression of previously published markers of LUAD cell subpopulations 

(Guinot et al., 2016; Tammela et al., 2017; Zheng et al., 2013) (Figure S2B).  

  

A highly mixed program emerges during LUAD evolution 

As our results pointed to a highly dynamic acquisition of cell states across the tumor 

evolution continuum, we next explored continuous changes in transcriptional programs and 

cell-state transitions. To do this, we used non-negative matrix factorization (NMF), which is 

well-suited for identifying overlapping gene expression programs in cells (Kotliar et al., 

2019; Lee and Seung, 1999; Puram et al., 2017) (STAR Methods). We uncovered 11 

transcriptional programs, five of which particularly highlighted gradual phenotypic changes 

during tumor progression (Figure 2D, E; Figure S2C; Table S3). Three of the five 

programs were consistent with the emergence of the different cell identity programs we 

uncovered above: a program associated with AT2 cell features present at the onset of LUAD 

development, an embryonic liver-like program, and an EMT program emerging at a later 

stage (Figure 2D).  

 

In addition, we uncovered two previously unknown cell programs, an early program 

associated with a mix of AT1 and AT2 cell features (ñMixed AT1/AT2ò state) and another 

program that did not match a consistent, defined cell identity program (ñHighly mixedò state; 

Figure 2D; Table S3). The ñmixed AT1/AT2ò program was characterized by co-expression 

of AT1 markers, such as Hopx and Pdpn, together with AT2 markers Sftpc and Lyz2 (Table 

S4; Figure 2D; Figure S2A). This AT1/AT2-like program may mimic common alveolar 
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progenitors in development or bi-potent alveolar progenitor cells in mature lungs (Desai et 

al., 2014; Nabhan et al., 2018; Treutlein et al., 2014; Zacharias et al., 2018). Conversely, the 

ñHighly mixedò program displayed features of drastically different cell types, ranging from 

trophoblast stem cells to chondroblasts and kidney tubular epithelium (Table S3), suggesting 

that cells in this state are capable of exploring a broader phenotypic space. Interestingly, a 

subset of cells expressing this ñHighly mixedò program also expressed a portion of the late-

emerging EMT program (Figure 2D). 

 

We identified highly specific markers for these programs (Figure S2D), and validated the 

presence of cancer cells expressing these programs and possible transitions by 

immunostaining for key program markers in situ (Figure 2E, F), such as the Highly mixed 

program (marked by claudin-4, encoded by Cldn4, e.g. Figure 2E, F ñ3ò). Interestingly, we 

detected cells that co-expressed markers of distinct programs, suggesting that these cells may 

be in the process of transitioning from one state to another. For example, some cells co-

expressed lysozyme (encoded by Lyz1 and Lyz2) and claudin-2 (encoded by Cldn2, e.g. 

Figure 2E, F ñ1ò) and may thus be in transition between the AT2-like state and the 

embryonic liver-like state. Other cells (e.g., Figure 2E, F ñ2ò) expressed both claudin-2 and 

claudin-4, suggesting that they are in transition between the Embryonic liver-like and the 

Highly mixed state.  

 

Relating the clusters and programs, we found that of the 12 clusters, cluster 5 was strongly 

enriched for the highly mixed program (Figure 2G, H; Figure S2E). Notably, cluster 5 cells 

were present in both early adenomas and fully formed LUADs across all mice and tumors 
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(Figure 2I; Figure S2F) and distinctly expressed Slc4a11, a gene associated with poor 

overall survival in grade 3/4 serous ovarian cancers (Qin et al., 2017) (Figure S2H-J).  

 

An optimal transport model predicts that the highly mixed program marks a high-

plasticity cell state forming a key transition point between other states  

Based on the timing of cluster 5ôs emergence, its expression of the highly mixed program, 

and its particular persistence across tumors, we hypothesized that cells in cluster 5 may form 

a key transition point and give rise to the heterogeneity observed in advanced tumors. To 

explore this hypothesis, we modeled the likelihood of transitions between cell states as a 

temporal coupling between cells along a time course using our Waddington-Optimal 

Transport (Waddington-OT) algorithm (Schiebinger et al., 2019) (STAR Methods). Briefly, 

Waddington-OT estimates, for a set of cells C at a given time point, its ñdescendant 

distributionò at a later time point as the mass distribution over all cells at that later time point. 

This is estimated by transporting C according to a temporal coupling between cells learned 

by the model. Similarly, the cell set Côs ñancestor distributionò at an earlier time is the mass 

distribution over all cells at that earlier time point, obtained by ñrewindingò time according 

to the temporal coupling. In our case, after learning the model over the cells in our data, we 

used it to examine the connection between cell clusters across consecutive time points, by 

defining the sets C by membership in the 12 clusters in the respective time point (Figure 

3A; Figure S3A).  

 

Where some clusters were transcriptional ñsinksò, having low probabilities of giving rise to 

other states (in particular clusters 3 and 11), others (clusters 2, 4, 5, 6 and 9) had both higher 
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potential to give rise to other cellular states and a substantial number of incoming 

trajectories, suggesting they may be important transition points in tumor evolution. Cluster 

5 had the most abundant and robust connections with other cellular states across the time 

course (Figure 3A, Figure S3A). This was evident even when compared to other clusters of 

a similar ñage distributionò such as cluster 2, 3 or 4 (Figure S3A). Given this prediction and 

that cluster 5 contained cells with a highly mixed cellular identity, we designated this cell 

state a high-plasticity cell state (HPCS).  

 

The LUAD cell subset comprising the HPCS can be prospectively isolated based on 

TIGIT expression  

To functionally interrogate cluster 5 cells comprising the HPCS state, we queried our data 

for surface markers whose expression is enriched in this subset (Figure S2G). Surprisingly, 

the Tigit (T cell immunoreceptor with IgG and ITIM domains) gene was a marker of the 

HPCS subset (Figure S3B top). TIGIT is a co-inhibitory immunoreceptor typically 

expressed in lymphocytes, and has been studied in the context of autoimmunity, viral 

immunity, and cancer (Manieri et al., 2017). Other markers included Slc4a11 (noted above), 

and the pro-inflammatory cytokines Tnf and Il23a. 

 

We validated the association between Tigit expression and the HPCS (cluster 5 cells) by 

prospective isolation of TIGIT+ KP LUAD cells from primary autochthonous tumors at 20 

weeks post-initiation, followed by droplet based scRNA-Seq of 26,739 cells. This analysis 

indicated a strong association of TIGIT+ cells with the HPCS signature (Figure 3B, C; P = 

3.08x10-25, Wilcoxon rank-sum test). Quantitative PCR (qPCR) indicated robust enrichment 
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of Tigit and the most specific cluster 5/HPCS marker, Slc4a11, in the TIGIT+ KP LUAD cell 

fraction (Figure S3D). We also confirmed by qPCR for Epcam that the isolated cells were 

of epithelial (tumor) origin, rather than immune cells (Figure S3D). 

 

The HPCS has a distinct chromatin accessibility profile 

We hypothesized that the HPCS may represent a distinct program reflected in a unique 

chromatin state. To test this hypothesis, we profiled cluster 5 cells by performing single-cell 

assay for transposase-accessible chromatin sequencing (scATAC-Seq) on TIGIT+ and 

TIGIT - cells, along with bulk ATAC-Seq of matching populations. As expected, TIGIT+ 

tumor cells had increased accessibility at genes defining the cluster 5 signature (Figure 3D-

F, P = 1.8x10-6, Wilcoxon rank-sum test; Figure S3D; Table S5). We further scored the 

chromatin accessibility signatures identified by LaFave et al. (accompanying manuscript) 

and found that TIGIT+ cells had a higher module accessibility score for modules 

characterized by low Nkx2.1 accessibility (module 1), late stage of progression (module 9), 

and high Runx2 (module 2) (Figure 3G; Figure S3E). Consistently, we found that Nkx2-1 

expression was lower in HPCS cells (Figure 2C), the Runx2 locus was more accessible in 

TIGIT+ cells (by bulk ATAC-Seq, Figure S3F), and Runx2 expression was higher in HPCS 

cells (Figure S3G). Notably, LaFave et al. identified Runx2 as a driver of the metastatic 

phenotype in the primary tumors (accompanying manuscript) and CD109 signaling activity 

through the Jak/Stat pathway has been shown to contribute to this phenotype (Chuang et al., 

2017). Indeed, we found that CD109 marks cluster 11 (EMT, Figure S2G). Thus our 

findings suggest that the HPCS likely serves as a precursor to the EMT state that acquires 

metastatic capacity in the primary tumor (Chuang et al., 2017). These findings are further 
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supported by the fact that the HPCS shows partial features of mouse embryonic fibroblasts 

and embryonic mesoderm (Figure 2A, B). Thus, the HPCS has a distinct chromatin state, 

which foreshadows future transitions, such as the EMT state that is endowed with metastatic 

potential. 

 

TIGIT + KP LUAD cells are highly plastic in vitro and in vivo 

Besides giving rise to EMT (cluster 11), our Waddington-OT model predicted that the HPCS 

cells are capable of giving rise to multiple other cell states (clusters) (Figure 4A). To 

functionally evaluate the phenotypic plasticity of cluster 5 cells, we isolated primary TIGIT+ 

cells from mouse LUAD tumors and placed them in 3D tumor sphere cultures (Tammela et 

al., 2017) for 11 days, isolated live cells by sorting, and performed scRNA-Seq (Figure 4B). 

As comparators, we also isolated, grew cultures, and profiled cells from (i) all TIGIT- cells; 

and (ii) the EMT cell state (cluster 11) that was predicted to be fixed (Figure 4A), which we 

isolated based on CD109 expression (Figure S3B bottom).  

 

Overall, tumor spheres arising from the TIGIT+ population had the greatest diversity of cell 

states, followed by the TIGIT- cells (a population depleted of HPCS cells) and finally the 

CD109+ EMT-like cells (cluster 11) (Figure 4C, D, P < 0.01; STAR Methods). In particular, 

TIGIT+ cells gave rise to three distinct cellular states, whereas cluster 11 cells remained 

phenotypically homogeneous (Figure 4C, D), consistent with the Waddington-OT model 

(Figure 4A), even though TIGIT- cancer cells span a greater range of phenotypes in the 

primary tumor.  
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To investigate the differentiation potential of HPCS cells in vivo, we next isolated primary 

TIGIT+ and TIGIT- LUAD tumor cells by FACS from mice harboring autochthonous KP 

tumors and transplanted the subsets intratracheally into the lungs of immunodeficient NSG 

(NOD.Cg-Prkdcscid Il2rg tm1Wjl/SzJ) mice. We harvested tumors established by the two LUAD 

cell subsets 8 weeks following transplantation. We assessed the diversity of the cells both 

pre-transplantation and in the resulting tumors by droplet-based scRNA-Seq (Figure 4E). 

As expected, TIGIT+ HPCS cells were more homogenous pre-transplantation when 

compared to the TIGIT- cells (Figure 4F). Yet, transplanted tumors derived from TIGIT+ 

HPCS-enriched cells had higher diversity than those derived from TIGIT- cells (Figure 4G-

I ; * P < 0.05, STAR Methods). Collectively, our findings indicate that cluster 5 represents 

a high-plasticity cell state with robust potential for cell state transitions in vitro and in vivo. 

 

LUAD cells enriched for the HPCS show high proliferative potential and profound 

chemoresistance  

Having demonstrated that HPCS cells can give rise to diverse LUAD cell states, we next 

functionally interrogated their potential to proliferate and resist therapy. Isolated HPCS 

(TIGIT+) cells were more efficient at forming tumor spheres than TIGIT- cells in 3D cultures 

(Figure 5A, B). To examine the tumor-propagating potential of the HPCS cells, we isolated 

TIGIT+ and TIGIT- cells from autochthonous KP LUAD tumors engineered to express firefly 

luciferase (STAR Methods) and transplanted them orthotopically into the lungs of 

immunodeficient NSG recipient mice (Figure 5C). The HPCS cells grew faster and 

propagated a greater number of tumors than the TIGIT- cells as measured by luciferase signal 
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in living transplant recipient mice and by quantification of lung surface nodules following 

euthanasia, respectively, at 39 days following transplantation (Figure 5D, E).  

 

We next examined the relative ability of HPCS cells to resist chemotherapy by treating mice 

with advanced KPT LUAD tumors at 20 weeks post-tumor initiation with a single dose of 

cisplatin, a component of first-line chemotherapies for advanced-stage LUAD patients 

(Gandhi et al., 2018; Schiller et al., 2002) and a well-characterized chemotherapy agent in 

the KP LUAD model (Oliver et al., 2010). We collected live tdTomato+ LUAD cells at 72 

hours following administration of cisplatin or vehicle control and profiled them using 

droplet-based scRNA-Seq. We chose this time point as the KP LUAD tumors undergo a 

nadir in proliferation and the peak of a second wave of apoptosis at 72 h following a single 

dose of cisplatin. (Oliver et al., 2010). Annotating the post-treatment cells with the 

previously identified cell cluster labels from the tumor progression time course (Figure 1D; 

Figure S5A), we observed a significant compositional difference between cells treated with 

cisplatin vs. vehicle control (Figure S5A-C, P < 1x10-20 for association between cluster 5 and 

cisplatin treatment, Fisherôs exact test).  

 

Cells from the HPCS (cluster 5) showed robust relative enrichment following chemotherapy, 

suggesting that cells in this state may be more chemoresistant (Figure S5A-C). A similar 

robust enrichment of cells in the HPCS was observed 72h following a single dose of cisplatin 

and paclitaxel, the most common combination chemotherapy in the clinical management of 

advanced-stage LUAD (Gandhi et al., 2018; Schiller et al., 2002) (Figure 5F-H, P = 6.71 

x10-35 for association between cluster 5 and cisplatin + paclitaxel treatment, Fisherôs exact 
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test; Figure S5D). Out of all 12 clusters found in advanced KP LUAD tumors, cells in the 

HPCS (cluster 5) exhibited the lowest cell cycle score (Figure S5E). The low cell cycle 

score may in part explain why the HPCS cells are resistant to chemotherapies, which target 

proliferating cells.  

 

Our work demonstrated that a subset of the HPCS cells have partially activated the EMT 

program (Figure 2A, D; Figure S2E), and our Waddington OT model suggested a transition 

between the two clusters enriched for the HPCS and cells that had fully undergone EMT 

(cluster 5 and cluster 11, respectively). As the EMT cells emerge late in KP LUAD evolution 

and share features with metastatic cells observed by Chuang et al. (Chuang et al., 2017) and 

LaFave et al. (accompanying manuscript), we performed droplet-based scRNA-Seq on a 

primary tumor and a mediastinal lymph node metastasis at 30 weeks post-tumor initiation. 

The mediastinal lymph node was enriched for cells with the EMT (cluster 11) gene signature 

(P = 5.19x10-36, Fisherôs exact test). Interestingly, a subset of the KP cells in the metastatic 

lesion expressed the HPCS (cluster 5) gene signature (Figure S5F), suggesting that the 

HPCS may also directly play a role in metastatic outgrowths in addition to being capable of 

giving rise to the cluster 11/EMT cell state with metastatic capacity within the primary 

tumor.  

  

Taken together, our results suggest that the HPCS is associated with particularly aggressive 

features, including high proliferative potential and drug resistance as well as lineage 

plasticity that enables the acquisition of multiple distinct phenotypes, including a cell state 

with the ability to metastasize. These aggressive features are frequently associated with 
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cancer stem cells (Batlle and Clevers, 2017; Kreso and Dick, 2014). To interrogate whether 

the HPCS correlates with known stem cell types, we performed a comparison of the HPCS 

signature with 1,197 previously published cancer and normal tissue stem cell signatures 

(Figure S5G; Table S6; STAR Methods). We only found significant correlations between 

the HPCS and eight of these signatures, including several hematopoietic stem cell signatures, 

an adult stem cell signature, as well as an embryonic stem cell signature (Bystrykh et al., 

2005; Gal et al., 2006; Gattinoni et al., 2011; Ramirez et al., 2012; Villanueva et al., 2011), 

with the largest overlap including only 14 (8.24%) of the 170 genes in the signature (Figure 

S5G; Table S6). These results suggest that the HPCS is largely distinct from known stem 

cell identities. 

 

Cancer cells in a corresponding high plasticity cell state are present in human LUAD 

tumors and associate with poor survival  

Finally, we explored the relevance of the HPCS in human LUAD tumors, finding important 

correspondence to our observations in the mouse model. First, immunostaining of human 

lung adenocarcinoma tissues for markers of the different programs revealed cells 

representing the transitions observed in the mouse model (Figure S6A; Figure 2F). 

Additionally, an analysis of 9,543 scRNA-Seq profiles of malignant cells from 20 human 

LUAD tumors across three published datasets (Lambrechts et al., 2018; Laughney et al., 

2020; Zilionis et al., 2019) showed that cells with the highly mixed/HPCS program 

assignment were present in each of these tumors (Figure 6A; Figure S6B-G). The AT2-like 

and EMT programs were also robustly detected in human LUAD cells (Figure S6B-F).  
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Importantly, in an analysis of The Cancer Genome Atlas (TCGA) bulk RNA-Seq data, 

LUAD tumors that express the highly mixed, the EMT, and GI-epithelium programs were 

associated with worse survival, whereas the AT2-like and mixed AT1/AT-like states which 

were associated with a more favorable prognosis (Figure 6B; Table S7; P = 2.4x10-4, 4.2x10-

3, 3.6x10-2, 2.4x10-2, 5.6x10-3 respectively, Cox proportional hazards model; P = 4x10-4 in the 

full model including all NMF programs). A cluster-based analysis of the same TCGA LUAD 

data also demonstrated worse survival for cluster 5/HPCS (Figure 6C; Table S7; P = 

2.35x10-2, Cox proportional hazards model). Notably, the significance of association of the 

highly mixed program did not require KRAS or TP53 mutations (Figure S6H; Table S7). 

Accordingly, high CLDN4 expression, a marker of the highly mixed state, predicted poor 

outcomes in human LUAD (Figure S6I). The highly mixed state and cluster 5/HPCS 

signatures also predicted poor outcomes in a pan-cancer analysis across the pooled TCGA 

collection (Figure 6D, E; Table S7; P < 2x10-16 for a model including all NMFs, Cox 

proportional hazards model), suggesting that features of these cell states may generally 

define aggressive cancers. As in mouse lung adenomas and LUAD tumors, some cells 

expressing the HPCS program were present in each of the 15 primary human LUAD tumors 

and in five metastases examined by scRNA-Seq (Lambrechts et al., 2018; Laughney et al., 

2020; Zilionis et al., 2019) (Figure 7A). Notably, SLC4A11 was a marker of the cell state in 

both mouse and human LUAD tissues (Figure S7A, B).  

 

We next evaluated whether HPCS-like cells in human LUAD tumors contained cell surface 

markers compatible with flow cytometry. TIGIT RNA was not detected in any of the publicly 

available human LUAD scRNA-Seq datasets (data not shown), and we did not identify 
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significant expression of TIGIT mRNA or protein in situ in cancer cells in human LUAD 

tissues, or by flow cytometry of human LUAD patient-derived xenografts (PDXs) (data not 

shown). This suggests that some features of the HPCS signature are species-specific. Instead, 

we identified alternative putative cell surface markers based on the expression profiles of 

human LUAD cells from the three published datasets that scored highly with the mouse 

HPCS signature (Figure 7A; Figure S7C; STAR Methods). In particular, ITGA2 (CD49B), 

encoding integrin Ŭ2, a subunit of the integrin Ŭ2ɓ1 collagen receptor (Hynes and Naba, 

2012; Tuckwell et al., 1995) was expressed at high levels in both human and mouse LUAD 

HPCS cells (Figure 7B; Table S1; Table S5). Interestingly, integrin Ŭ2 marks a subset of 

proliferating trophoblast progenitor cells during development that exhibit a gene expression 

signatures with both epithelial and mesenchymal characteristics (Lee et al., 2018) ï all 

features of the HPCS.  

 

We next surveyed integrin Ŭ2 expression in 125 human LUAD patient tissues and identified 

heterogeneity in integrin Ŭ2 signal, with 42.4% of patients (53 of 125) with tumor samples 

containing at least 10% integrin Ŭ2Hi tumor cells. Notably, 44% of patients (55 of 125) had 

tumor samples with at least 10% claudin-4Hi tumor cells (defined as the top 15% of claudin-

4 staining), and 20.8% (26 of 125) had tumor samples with at least 10% of tumor cells 

staining for both claudin-4Hi and integrin Ŭ2Hi (Figure 7C, D). These results suggest that the 

highly mixed cell state and the HPCS gene expression program overlap in human patients 

and may be present in a significant fraction of patients. 

Finally, we tested whether the integrin Ŭ2Hi human LUAD cells functionally recapitulate 

features of the mouse LUAD HPCS, including high plasticity and capacity to proliferate. To 
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this end, we isolated integrin Ŭ2Hi and integrin Ŭ2Lo tumor cells prospectively from three 

independent PDX models (Figure S7D; STAR Methods) and established 3D tumor sphere 

cultures (Figure 7E). Integrin Ŭ2Hi cells formed significantly more tumor spheres compared 

to integrin Ŭ2Lo cells (Figure 7F, P = 0.0159; Mann Whitney U test, n = 3 independent PDX 

models). We also performed droplet-based scRNA-Seq on tumor spheres and observed that 

the integrin Ŭ2Hi human HPCS cells gave rise to spheres with similar transcriptional diversity 

to the integrin Ŭ2Lo bulk of the tumor (Figure 7G). Taken together, these results suggest that 

a HPCS-like state also exists in human LUAD and may have significant implications as a 

driver and biomarker of tumor progression and drug resistance in the clinic. 

 

DISCUSSION 

Cancer progression is thought to be a stepwise process, in which tumors evolving under 

selective pressures acquire novel mutations and drivers (Fearon and Vogelstein, 1990). 

However, the relationship between the accumulation of genetic perturbations over time and 

changes in phenotypic cell states is not fully understood. Here, we used scRNA-Seq to study 

cell state changes during tumor evolution in a mouse model of LUAD mimicking the 

oncogenic transformation processes observed in human disease (Jackson et al., 2005; 

Jackson et al., 2001), where mutations in oncogenes, such as KRAS, are thought to occur 

early, followed by inactivation of the p53 pathway (Campbell et al., 2016; The Cancer 

Genome Atlas Research, 2014). Transcriptional heterogeneity grew dramatically during 

tumor progression, but the process was stereotypic and reproducible across individual 

tumors within a mouse and between mice, and some states were shared between the K and 

KP genotypes. Thus, phenotypic diversity, as captured by the transcriptional state, emerges 
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reproducibly in this cancer model, suggesting the existence of programs governing the 

emergence and maintenance of heterogeneity. 

 

One straightforward hypothesis was that this cell state variation is a direct outcome of 

underlying genetic variation, consistent with a model of tumorigenesis, where every step is 

governed by the acquisition of a novel driver mutation (Fearon and Vogelstein, 1990). 

However, the CNV patterns and transcriptional states of individual cells were not directly 

aligned in the tumors from the KP model: some cells with different CNV patterns (as inferred 

from scRNA-Seq and matching scDNA-Seq data from tumors) had the same transcriptional 

state; conversely, cells with the same CNV pattern could be found in different transcriptional 

states. Furthermore, both p53 mutant and wild-type cells co-clustered in the early-emerging 

clusters 1-5. Taken together, these results suggest that additional factors besides genetic 

drivers, such as the tumor microenvironment and epigenetic changes, as suggested by the 

accompanying manuscript by LaFave et al., may strongly influence cell states during tumor 

progression. However, although robust in identifying subclones, or at least clonally closely 

related cells, within tumors, our CNV detection method has limited sensitivity and does not 

address point mutations. Further work employing approaches such as lineage-tracing and 

high-resolution sequencing would help definitively address the contribution of genetic 

events to phenotypic heterogeneity in tumors. 

 

Time-course scRNA-Seq studies similar to our study have been performed in for example 

embryonic development (Cao et al., 2019; Nowotschin et al., 2019), but not in tumorigenesis. 

In contrast to embryogenesis, where new states emerge and preceding states are lost, our 
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findings indicate that during tumor progression new states are acquired, with preceding 

states maintained even in advanced tumors. Our results suggest that disruption of normal 

developmental programs is a major organizing principle in the acquisition of new states: we 

first observed emergence of  alternative lung epithelial programs, then loss of alveolar 

identity, followed by several alternative programs mimicking the primordial gut, and finally 

the emergence of cells with a mesenchymal state, indicating a complete EMT (Figure 7H). 

Whereas each of these cell states emerged at a different characteristic time, all persisted in 

tumors once they arose, such that more advanced tumors were composed of a growing 

assortment of cells with an increasing diversity of states. Specifically, the earliest arising 

states, including those present in benign cells, were characterized by AT2 cell programs 

followed by a mixed AT1/AT2 state. The mixed AT1/AT2 cell state mirrors an aspect of 

lung development, where AT1 and AT2 cells derive from a common bipotent progenitor cell 

during early development (Cohen et al., 2018; Desai et al., 2014; Treutlein et al., 2014). We 

found that the mixed AT1/AT2 cell state preludes the more prominently embryonic cell 

states that have been demonstrated to emerge later in tumor progression (Winslow et al., 

2011), and parallels a mixed lineage state seen in recent work evaluating human LUAD 

tumors (Laughney et al., 2020) and thus may mark a key transition point where 

developmental programs are reactivated.  

 

Next emerge cellular states that had lost alveolar identity and displayed features of the 

primordial gut (Cao et al., 2019; Nowotschin et al., 2019), a structure that develops from 

embryonic endoderm. This finding is consistent with previous studies implicating down-

regulation of the lung lineage-defining transcription factor Nkx2.1 and induction of 
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primordial gut transcriptional regulators Hnf4a and Hmga2 in LUAD progression and 

metastasis (Snyder et al., 2013; Winslow et al., 2011). Lineage fidelity is further eroded in 

the highly mixed state/HPCS, finally leading to a mesenchymal EMT state. Overall, the 

transcriptional states we observed are consistent with and mirrored by distinct chromatin 

states grouped into modules identified by LaFave et al. (accompanying manuscript) in late-

stage KP tumors, including AT2-like cells, AT1/AT2-like mixed states, and alternative fates 

such as EMT. Taken together, these results support a model of tumor progression involving 

loss of lineage fidelity and extensive de-differentiation, followed by partial differentiation 

to other endoderm derived lineages, such as intestine and liver. This conclusion is further 

supported by a recent study describing similar recapitulation of endoderm and lung 

morphogenesis within metastatic LUAD outgrowths (Laughney et al., 2020). 

 

Notably, we found that phenotypic diversity has an important genetic correlate: while 

neoplasias with the KT genotype are dominated by the lung-like states, non-lung states are 

enriched in the KPT genotype. These findings cast p53 as a guardian of lineage fidelity, 

whose deletion facilitates loss of lineage identity and increases plasticity, enabling cells to 

sample a broader range of phenotypic space. However, growth signals that naturally drive 

tissue regeneration ï that become co-opted by oncogene activation upon transformation ï 

may suffice to give rise to at least some plasticity even in p53 proficient cells, as suggested 

by recent work on wound healing and tumorigenesis in the skin (Ge et al., 2017).  

 

Our analysis ï leveraging NMF to identify continuously varying programs and optimal 

transport to relate single cell transitions over time ï highlighted one particular cell state, 
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which was not similar to any defined or previously reported program, as the hub of cell state 

transitions in the tumor. This high-plasticity cell state (HPCS) was enriched in cluster 5, the 

only cluster whose cells were present in all mouse adenomas and LUAD tumors analyzed, 

as well as in scRNA-Seq profiles of human LUAD tumors (Lambrechts et al., 2018; 

Laughney et al., 2020; Zilionis et al., 2019). Our Optimal Transport model suggested that 

trajectories connecting distinct cell states over time often ñpass throughò cluster 5. 

Interestingly, we found that the HPCS develops not only in advanced KrasG12D mutant, p53 

deficient KPT adenocarcinomas, but also in early stage KrasG12D mutant, p53 proficient KT 

adenomas. Thus, it is the cell states downstream of the HPCS rather than the HPCS itself 

that depend p53 status or, more broadly, the stage of tumor progression: the HPCS can give 

rise to more diversity and more aggressive cell states, such as EMT, in advanced p53 mutant 

adenocarcinomas when compared to p53 wild-type adenomas (Figure 7H). Indeed, 

prospectively isolated cluster 5/HPCS cells from KPT tumors produced more heterogenous 

progeny and displayed higher growth potential in 3D tumor sphere cultures than cells from 

either a terminal-like state or from all other states combined (i.e. the TIGIT- HPCS-depleted 

pool of cells). Importantly, the HPCS cells also had high growth potential and plasticity in 

vivo in orthotopic allotransplants. 

 

Our findings are surprising, as they do not support an intuitive model whereby lineage-

switching occurs gradually from a ñleading edgeò of progressively more de-differentiated 

cells. Rather, tumor heterogeneity appears to arise from a highly plastic cell state that 

emerges rapidly in tumorigenesis and persists in advanced tumors. Furthermore, we found 

that isolated HPCS cells can functionally give rise to the entire diversity of observed cell 



 70 

states in the tumor in vivo, spanning a range of defined cancer cell states in established 

tumors. For instance, a subset of the HPCS-expressing cells partially activated the EMT 

program, suggesting that the HPCS is a prerequisite to EMT. Our results evaluating the 

chromatin state of the HPCS in primary tumors and single-cell gene expression patterns in a 

metastatic lymph node are also concordant with this conclusion. Moreover, the results from 

LaFave et.al. suggest overlap between the transcription factors governing the HPCS and the 

EMT state (accompanying manuscript). ñPre-EMTò states were recently described in skin 

and mammary tumor models (Pastushenko et al., 2018) and in head and neck cancers (Puram 

et al., 2017), suggesting that the HPCS may exist in other types of carcinomas. 

 

Our data demonstrates that the HPCS arises early and reproducibly in all tumors seen in the 

mouse model of LUAD. This suggests that any genetic variability that develops over time 

during tumorigenesis is unlikely to fully explain the plasticity seen in this cell state, as both 

early and late tumors contain the HPCS. In addition, we have annotated multiple different 

clonotypes from our analysis of copy number variation in this mouse model that map to the 

same HPCS; conversely, these same clonotypes also map to other cellular states. 

Furthermore, the HPCS formed a subset of LUAD cells in all 20 available human scRNA-

Seq datasets, which represent multiple genetic subtypes of the disease in genetically diverse 

individuals (Lambrechts et al., 2018; Laughney et al., 2020; Zilionis et al., 2019). Taken 

together these results suggest that genetic variability alone is unlikely to explain the gene 

expression patterns and functional characteristics of the HPCS. 
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LUAD predominately initiates from bi-potent alveolar progenitor cells that have the capacity 

to differentiate into AT1 and AT2 cells (Desai et al., 2014; Nabhan et al., 2018; Treutlein et 

al., 2014; Zacharias et al., 2018). We detected a subset of LUAD cells with features of both 

AT1 and AT2 cells (cluster 3), resembling these bi-potent progenitors. However, our results 

suggest that LUAD cells acquire significantly more primitive states than their cell of origin, 

such as states mimicking embryonic endoderm previously associated with patient metastases 

(Laughney et al., 2020) and the HPCS. Thus, LUAD tumors maintain hierarchical features, 

as has been previously shown by us and others (Tammela et al., 2017; Zheng et al., 2013), 

but, in contrast to the hierarchy in the normal lung, the LUAD hierarchy is associated with 

increased plasticity, encompassing phenotypes beyond the lung lineage.  

 

Cell plasticity has been postulated to contribute to failure of chemo-, targeted- and 

immunotherapies (Arozarena and Wellbrock, 2019; Gupta et al., 2019). A particularly 

fascinating example is the conversion of lung and prostate adenocarcinomas to a 

neuroendocrine lineage, which is occasionally observed as a response to highly effective 

targeted therapies against epidermal growth factor receptor or androgen receptor, 

respectively. This lineage switch causes the tumors to lose dependence on oncogene activity 

and become resistant to the targeted therapy (Beltran et al., 2019; Quintanal-Villalonga et 

al., 2020). Given our results, it is possible that the HPCS is a gateway to the acquisition of 

the neuroendocrine lineage during extreme therapeutic pressure. Indeed, our results show 

that HPCS cells were enriched shortly following platinum-based chemotherapies. This may 

be either because the HPCS cells are intrinsically chemoresistant or because stress imposed 

by chemotherapy drives cancer cells in other states into the HPCS. In either case, our results 
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implicate the HPCS as a cell state that is strongly associated with LUAD treatment 

resistance, motivating its therapeutic targeting.  

 

Several studies have suggested that cancers initiate from stem or progenitor cells and that 

features of stemness are retained in a subset of cancer cells (Batlle and Clevers, 2017; Kreso 

and Dick, 2014). Such cancer stem-like cells (CSCs) have increased capacity for self-

renewal, give rise to progeny with features of differentiated cells, and are likely to be 

resistant to therapy (Batlle and Clevers, 2017; Kreso and Dick, 2014). The HPCS shares 

features of both normal tissue stem cells and CSCs, including robust growth and 

differentiation potential. However, the HPCS gene expression signature was largely distinct 

from published normal and cancer stem cell signatures. CSCs have classically been 

identified and studied using candidate markers often derived from normal stem cells. In 

contrast, we discovered the HPCS using an unsupervised profiling approach and 

computational modeling, which led us to uncover markers for this cell state that have 

previously not been implicated in cells with CSC-like behavior (TIGIT, integrin Ŭ2 and 

Slc4a11). These results suggest that the HPCS represents a truly novel cell state with 

importance in human LUAD and, possibly, human cancers more broadly. The HPCS 

signature and may help in identifying cells in similar transcriptional states in additional 

cancer types. 

 

Focusing on a mouse model allowed us to track tumor evolution at high resolution and show 

that growth in heterogeneity is stereotypical and reproducible. Importantly, the key cell 

states that we uncovered here, including the HPCS, were present in human tumors: the HPCS 
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defines a subset of cancer cells observed in all lung tumors in three published studies 

(Lambrechts et al., 2018; Laughney et al., 2020; Zilionis et al., 2019). Furthermore, we 

observed markers of the HPCS signature and other transition states in human LUAD tumors 

in situ. Importantly, the HPCS program was associated with poor patient survival in TCGA 

data. Notably, the HPCS predicted poor survival even in an analysis pooling all cancers 

represented in TCGA, suggesting that similar HPCSs may exist or that features that define 

the HPCS are particularly malignant across the spectrum of human cancers.  

 

Notably, our work demonstrated that integrin Ŭ2 is a marker for the HPCS signature in 

human cells. Indeed, integrin Ŭ2Hi human LUAD cells appear to be an aggressive 

subpopulation based on a nearly 4-fold increase in spheroid forming ability compared to 

other cells in the tumor. This is in line with our mouse data, which suggests that integrin Ŭ2 

is also a marker of the mouse HPCS, and with previous work, implicating a functional role 

for integrin Ŭ2 in many different cancers, including glioblastoma (Guo et al., 2019), gastric 

cancer (Dong et al., 2017), and pancreatic cancer (Ren et al., 2019). 

 

In conclusion, we have shown that increased transcriptional heterogeneity coupled with 

lineage infidelity and plasticity are hallmarks of tumor progression in a mouse model of 

LUAD, and that these features are present in human tumors. Whereas increased plasticity is 

highly reproducible and greater in tumors where p53 is inactivated, the variation itself is 

largely independent of specific genetic alterations. In addition to programs reflecting lung 

and other epithelial cell states, a high-plasticity cell state appears at the nexus of these 

developmental cell state transitions, and is associated with resistance to chemotherapy, high 
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growth potential, and poor survival in patients. Our work highlights cells the HPCS as a key 

player in tumor progression and heterogeneity, highlighting the importance of targeting 

specific cell states in cancer therapy. 

 

 

 

 

 

STAR Methods 

 

EXPERIMENTAL METHODS  

 

Mice 

We used mice from these previously published strains: KrasLSL-G12D (Jackson et al., 2001), 

Trp53flox/flox (Marino et al., 2000), Rosa26LSL-tdTomato (Madisen et al., 2010), Rosa26LSL-Luciferase (Yeddula 

et al., 2015), NOD.Cg-Prkdcscid Il2rg tm1Wjl/SzJ (aka NSG mice) (Ishikawa et al., 2005) (The 

Jackson Laboratory, catalog #005557). Mice in all experiments were monitored by the 

investigators and veterinary staff at the Department of Comparative Medicine at 

Massachusetts Institute of Technology (MIT), MA or by the staff at the Research Animal 

Resource Center at Memorial Sloan Kettering Cancer Center (MSKCC), NY. Animal studies 

were approved by the Committee for Animal Care at MIT, MA (institutional animal welfare 

assurance no. A-3125-01) or the Institutional Animal Care and Use Committee at MSKCC, 

NY (protocol #17-11-008).  

 

Human samples.  
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Human samples from MSKCC were obtained under MSKCC IRB#06-107 and IRB#12-245. 

MSK-IMPACT profiling (Samstein et al., 2019) was previously performed and the 

cBioPortal (Cerami et al., 2012; Gao et al., 2013) was used to identify LUAD patient samples 

with KRAS and TP53 mutations. Primary tumors for generation of PDX models were 

obtained with informed consent from patients under protocols approved by the MSKCC 

Institutional Review Board. Human samples assembled in tissue microarrays in this study 

from Vanderbilt University Medical Center and the Tennessee Valley Health Care Systems 

were collected with informed consent from subjects enrolled on Institutional Review Board-

approved protocol 000616 that complies with all relevant ethical regulations at Vanderbilt 

University Medical Center and the Tennessee Valley Health Care Systems, Nashville 

Campus, TN. 

 

Isolation of cells from primary lung adenocarcinoma tumors 

Mice with LUAD tumors were euthanized at 2, 12, 20, or 30 weeks following tumor 

induction and perfused with S-MEM (Gibco, catalog #11380037) through the right ventricle 

of the heart. Dissected lung tumors were dissociated either with protease and DNAse 

solution of the Lung Dissociation Kit (Miltenyi Biotech, catalog #130-095-927) followed by 

mechanical dissociation using gentleMACS ñCò columns (Miltenyi Biotech, catalog #130-

093-237) according to the manufacturerôs instructions (Tammela et al., 2017), or by a 

mixture of Dispase II (Gibco, catalog #17105-041, final concentration 0.6 U/ml), 

Collagenase Type IV (Thermo Fisher Scientific, catalog #17104019; final concentration 

0.083 U/ml), and DNase I (Sigma-Aldrich, catalog #69182-3; final concentration 10 U/ml) 

in S-MEM solution containing Gentamicin (Gibco, catalog #15750-060, final concentration 
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20 ɛg/ml) at 37ÁC for 30 minutes (Table S8). The dissociated cells were then filtered using 

a 100 ɛm strainer and spun at 300 g for 5 min at room temperature. The supernatant was 

removed by aspiration and red blood cell lysis was performed using ACK (Thermo Fisher 

Scientific, catalog #A1049201). Cells were then washed with media and pelleted at 300 g 

for 5 min at 4°C. The supernatant was removed, and the pellet resuspended in Fluorescence-

Activated Cell Sorting (FACS) buffer media (200 mM EDTA with 250 ɛl heat-inactivated 

FBS in PBS) before being passed through a 40 ɛm strainer and counted for use in FACS 

below. 

 

Isolation of tumors from patient-derived xenografts (PDXs) 

Primary tumors collected for generation of PDX models were obtained with informed 

consent from patients under protocols approved by the MSKCC Institutional Review Board. 

Subcutaneous flank tumors were generated as described previously (Daniel et al., 2009). 

 

PDX tumors were dissected off the flank of immunocompromised NSG mice (Jackson 

Laboratory, catalog #005557). Tumor samples were minced using fresh razor blades in a 

sterile dish. Tumors were then transferred to a gentleMACS C tube (Miltenyi Biotech, 

catalog #130-093-237) with 7 ml of RPMI and TDK enzymes (Miltenyi Biotech, catalog 

#130-095-929). The tube was then placed inverted on a gentleMACS (Miltenyi Biotech, 

catalog #130-096-427) with a heater is attached. A pre-selected program (37C_h_TDK_3) 

was used for dissociation. After dissociation (~1hr), the dissociated tumor cells were then 

transferred to a 50 ml tube with a 70um MACS SmartStrainer (Miltenyi Biotech, catalog # 

130-098-462) and washed with 20-25ml of FACS buffer. The sample was then centrifuged 



 77 

at 300 g for 5 minutes and the supernatant is discarded. The cell pellet was resuspended in 

up to 5ml of ACK Lysing Buffer (Lonza, catalog #10-548E) and kept at room temperature 

for 2 minutes. 20-25ml of FACS buffer was added and another spin at 300 g for 5 minutes 

was performed. The supernatant was then discarded and cells resuspended in PBS. 

 

Fluorescence-activated cell sorting (FACS) 

Cells were prepared as above and appropriate Fc block was added on ice for 5 minutes prior 

to being stained with the appropriate panel (Table S8). Cells were stained for 20 minutes 

before washing twice with FACS buffer media. Five-minute, 300 g spins at 4°C were used 

in between washes to pellet the cells. YO-PRO-1 (Invitrogen, catalog #Y3603) or DAPI 

(final concentration 1 ɛg/ml) was added to each sample to identify dead cells and FACS was 

performed at either the Swanson Biotechnology Center Flow Cytometry Core Facility at the 

Koch Institute for Integrative Cancer Research or the Flow Cytometry Core Facility at 

Memorial Sloan Kettering Cancer Center/Sloan Kettering Institute, using a BD FACS Aria. 

Cells for single cell experiments were sorted using the ósingle cell purityô mode; cells for 

culture and allotransplant were sorted using óyieldô mode. Cancer cells in the LUAD 

progression study were sorted as (CD45/CD31/CD11b/TER119)-/tdTomato+/DAPI- live 

cells. To isolate TIGIT+ cancer cells, dissociated tumor cells were stained and sorted for live 

(CD45/CD31/CD11b/CD11c/F4/80/TER119)-/EPCAM+/YO-PRO1-/TIGIT+ cells. TIGIT- 

cells were sorted as live (CD45/CD31/CD11b/CD11c/(F4/80)/TER119)-/EPCAM+/YO-

PRO1-/TIGIT - cells. CD109+ cells were sorted from tumors generated in KPT mice and gated 

as (CD45/CD31/CD11b/CD11c/(F4/80)/TER119)-/tdTomato+/YO-PRO-1-/CD109+ live 
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cells. We confirmed that the isolated TIGIT+ cells belonged to cluster 5/HPCS by qPCR 

(described below) for Tigit, Epcam, and Slc4a11. Gusb was used as a housekeeping control. 

 

Integrin Ŭ2Hi and Integrin Ŭ2Lo cells were isolated from patient-derived xenografts grown in 

NSG mice by flow cytometry. Tumors were dissociated as above and sorted as live (anti-

human CD45, CD31, CD11b, CD11c)-/(anti-mouse CD45/TER119/H-2Kd/CD31)-/(anti-

human EPCAM)+/DAPI-/Integrin Ŭ2Hi) cells. Integrin Ŭ2Hi cells were defined as the top 15% 

of the Integrin Ŭ2-expressing cells; Integrin Ŭ2Lo cells represented the rest of the tumor. 

 

Plate-based scRNA-Seq  

Cells were dissociated as above, stained with DAPI and live cells were sorted as described 

above into 96 well plates containing 5 ɛl of TCL Buffer (Qiagen, catalog #1031576) with 

1% beta-mercaptoethanol. Plates were processed by a modified SMART-Seq2 protocol 

(Picelli et al., 2013), with the following modifications: RNA from single cells was first 

purified with Agencourt RNAClean XP beads (Beckman Coulter, catalog #A63881) using 

Bravo Automated Liquid Handling Platform prior to oligo-dT primed reverse transcription 

with Maxima reverse transcriptase (Thermo Fischer, catalog #EP0752) and locked TSO 

oligonucleotide (Exiqon, custom made), which was followed by a 21 cycle PCR 

amplification using KAPA HiFi HotStart ReadyMix (KAPA Biosystems, catalog 

#KK2601). The WTA product was purified using Agencourt AMPure XP beads (Beckman-

Coulter, catalog #A63881) and a Bravo Automated Liquid Handling Platform. Libraries 

were tagmented using the Nextera XT Library Prep kit (Illumina, catalog #FC-131-1096) 

with custom barcode adapters (Table S8). Libraries from 384 cells with unique barcodes 
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were combined and sequenced using a NextSeq 500 sequencer (Illumina, catalog #FC-404-

2005) at the Broad Genomics Platform. 

 

Droplet-based scRNA-Seq  

Mice with LUAD tumors were prepared and stained as above. Live cells were collected and 

processed directly by droplet based scRNA-Seq using the 10X genomics Chromium Single 

Cell 3ô Library & Gel bead Kit V2 according to manufacturerôs protocol. An input of 6,000 

cells was added to each 10x channel with a median recovery of 3,266 cells. Libraries were 

sequenced on an Illumina Nextseq (Illumina, catalog #FC-20024907) or HiSeqX (132 bp 

reads) at the Broad Genomics Platform.  

Single-cell DNA sequencing 

Single tumor cells were isolated by microaspiration after tumor dissociation, and genomic 

DNA was amplified with the GenomePlex Single Cell Whole Genome Amplification Kit 

(Sigma, catalog #254-457-8). Amplified DNA was purified, barcoded and pooled, and 

sequenced on an Illumina HiSeq2000 at the MIT Bio-Micro Center. 

 

Bulk assay for transposase-accessible chromatin sequencing (ATAC-Seq) 

Omni-ATAC experiment was performed as described previously (Corces et al., 2017) with 

slight modifications. Briefly, around 10,000 cells were resuspended in 1 ml of cold ATAC 

resuspension buffer (RSB; 10 mM Tris-HCl pH 7.4, 10 mM NaCl, and 3 mM MgCl2 in 

water). Cells were centrifuged at 500 g for 5 min in a pre-chilled (4 °C) fixed-angle 

centrifuge. After centrifugation, the supernatant was carefully aspirated to avoid the cell 

pellet. Cell pellets were then resuspended in 35 ɛl of ATAC-lysis buffer (ATAC-RSB 
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containing 0.1% NP40, 0.1% Tween-20, and 0.01% digitonin (Promega, catalog #G9441)) 

by pipetting up and down. This cell lysis reaction was incubated on ice for 3 min. After lysis, 

1 ml of ATAC-wash buffer (ATAC-RSB containing 0.1% Tween-20 (without NP40 or 

digitonin)) was added, and the tubes were inverted to mix. Nuclei were then centrifuged for 

10 min at 500 g in a pre-chilled (4 °C) fixed-angle centrifuge. Supernatant was removed and 

nuclei were resuspended in 10 ɛl of transposition mix (25 ɛl 2Ĭ TD buffer, 2.5 ɛl transposase 

(Illumina, catalog #15027865), 16.5 ɛl PBS, 0.5 ɛl 1% digitonin, 0.5 ɛl 10% Tween-20, and 

5 ɛl water) by pipetting up and down six times. Transposition reactions were incubated at 

37 °C for 30 min in a thermomixer with shaking at 1,000 rpm. Reactions were cleaned up 

with Qiagen MinElute PCR Purification Kit (Qiagen, catalog #28004). ATAC-Seq libraries 

were amplified with 10 PCR cycles and sequenced on NextSeq 550 (paired-end 35 bp).  

Single-cell ATAC-Seq 

Samples for single-cell ATAC-sequencing were isolated from primary tumors by flow 

cytometry as above and then frozen in Bambanker Cell Freezing Medium (Lymphotec, 

catalog #302-14681) for at least 24 hours. Cells were then thawed and processed as per 

manufacturerôs guidelines (Chromium Single Cell ATAC Reagent Kit v1 chemistry, catalog 

#1000083). 

 

Quantitative PCR (qPCR) 

RNA was isolated from whole tumors or sorted cell populations using either the Qiagen 

RNeasy Plus Mini kit (catalog #74136) or Micro kit (catalog #74034) as appropriate per 

manufacturerôs instructions. cDNA was synthesized using either the SuperScript VILO 

cDNA synthesis kit (Invitrogen, catalog #11754050) or the PrimeScript RT Reagent kit 



 81 

(Takara, catalog #RR037B). qPCR was performed in quadruplicate with 1-2 ɛl of cDNA 

(diluted 1:10 if necessary) using the Powerup SYBR mix (Applied Biosystems, catalog 

#A25778) and run on the QuantStudio 7 Flex Real-Time PCR System. The ȹȹCT method 

was used to compare markers of interest and expression was normalized to mouse Gusb. All 

oligonucleotides used in this study are listed in Table S8. 

 

Low-density 3-dimensional tumor sphere culture  

Mouse cultures were plated on Matrigel as previously described (Tammela et al., 2017). 

Briefly, 350-1000 KP primary mouse LUAD cells were mixed in 50% Matrigel (Corning, 

catalog #CB-40230C) and 50% Advanced DMEM/F12 (Gibco, catalog #12634028) and 

plated on 10-12 ɛl of Matrigel. The solution was allowed to solidify at 37° C and then 

Advanced DMEM/F12 supplemented with Gentamicin, Penicillin-Streptomycin (Gibco, 

catalog #15140163), 10 mM HEPES (Gibco, catalog #15630080), and 2% heat-inactivated 

fetal bovine serum was added to fully cover the Matrigel plug. Media was refreshed every 

1-3 days. 

 

Human cultures were plated using tissue culture treated plates with inserts (Plates: Falcon, 

catalog #353504; Inserts: Falcon, catalog #353095). Briefly, up to 10,000 primary patient-

derived xenograft LUAD cells were mixed in 50% Matrigel and 50% Advanced DMEM/F12 

and plated on the insert. Human organoid media with appropriate supplements (Table S8) 

was added to the well before the addition of the insert. Media was refreshed every 2-3 days. 

 

For dissociation of the organoids for single cell sequencing in a 24 well plate, media is 

replaced with 200 µl dissociation mix (50 µl Corning Dispase, catalog #354235; 150 µl 
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Advanced DMEM/F12 supplemented media as above) per well and the plate incubated at 

37°C for 30 min. 1ml of cold PBS is then added to each well and the media transferred to a 

15ml tube PBS was then added to the tube to increase the volume to 10ml. A 300 g 5min 

spin at 4°C was then performed. The supernatant was then gently aspirated, with the goal of 

leaving about 300-500ul of supernatant. 500 µl of TrypLE (Gibco, catalog #12604013) was 

added and the tube incubated at 37°C for 5 min. Serum containing Advanced DMEM/F12 

was then added and the contents transferred to a sterile filter top FACS tube. The cells were 

then pelleted by a 300 g 5min spin at 4°C. 

 

Chemotherapy 

The response of the KP model to cisplatin chemotherapy has been carefully characterized in 

a previous study (Oliver et al., 2010): the tumors undergo a nadir in proliferation and the 

peak of a second wave of apoptosis at 72 h following a single dose of cisplatin. Mice were 

treated with freshly prepared cisplatin (EMD-Millipore, catalog #232120) in PBS at 7 mg/kg 

body weight intraperitoneally as previously described (Oliver et al., 2010). Tumors were 

extracted at 72 hours following cisplatin or vehicle administration and isolated for scRNA-

Seq, as described above. Alternatively, mice were intraperitoneally injected with freshly 

prepared cisplatin (SelleckChem, catalog #S1166) and paclitaxel (SelleckChem, catalog 

#S1150), prepared as per manufacturerôs instructions, at 3mg/kg and 20mg/kg bodyweight, 

respectively. Tumors were harvested at 72 hours following chemotherapy or vehicle 

administration and isolated for scRNA-Seq as above. 

 

Immunohistochemistry 
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Tissues were fixed in either Shandon Zinc Formal-Fixx (Thermo Scientific, catalog 

#6764255), 10% neutral buffered formalin, or 4% PFA for 24-48 hours at 4° C and 

embedded in paraffin. Manual immunohistochemistry was performed using Vector Labs 

reagents (ImmPRESS HRP Anti-Rabbit IgG (Peroxidase) Polymer Detection Kit, catalog 

#MP-7401-50; Mouse-on-Mouse ImmPRESS HRP (Peroxidase) Polymer Kit, catalog #MP-

2400; ImmPACT DAB Peroxidase (HRP) Substrate, catalog # SK-4105) as per 

manufacturer protocols. Antibodies and dilutions used are available in Table S8.  

 

Manual tissue immunofluorescence 

For manual immunofluorescence staining, tissues were incubated in 30% sucrose at 4°C for 

6-10 hours, rinsed with PBS, then embedded in OCT and frozen at -80° C for at least 24 

hours. Fresh cut slides were then fixed in acetone for 10 min at -20° C and rinsed with PBS. 

Donkey Immunomix (0.2% BSA, 5% donkey serum, 0.05% sodium azide, and 0.3% Triton-

X-100 in PBS) was used to block the slides for 30 minutes. Slides were incubated with the 

primary antibody in Donkey Immunomix overnight at 4°C. Slides were washed in 0.1% 

Triton X-100 in PBS the following morning and incubated with the secondary antibody in 

Donkey Immunomix for 1-2 hours in the dark at RT. Slides were washed in 0.1% Triton X-

100 in PBS three times, fixed with 1% PFA for 2 min, and washed with PBS. Slides were 

mounted in VECTASHIELD with DAPI (Vector Labs, catalog #H-1200) and stored at 4°C 

in the dark. Antibodies and concentrations used are available in Table S8.  

 

Automated multiplexed immunofluorescence and immunohistochemistry 
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Automated immunofluorescent and immunohistochemical staining was performed at the 

Molecular Cytology Core Facility of Memorial Sloan Kettering Cancer Center using a 

Discovery XT processor (Ventana Medical Systems). The tissue sections were 

deparaffinized with EZPrep buffer (Ventana Medical Systems), antigen retrieval was 

performed with CC1 buffer (Ventana Medical Systems). Sections were blocked for 30 

minutes with Background Buster solution (Innovex), followed by avidin-biotin blocking for 

8 minutes (Ventana Medical Systems). Multiplexed immunofluorescent stainings were 

performed as previously described (Yarilin et al., 2015). Staining was performed in the 

following order: Anti-Claudin-4 (Invitrogen, catalog #36-4800, 5 ɛg/ml), anti-Claudin-2 

(Invitrogen, catalog #32-5600, 5 ɛg/ml), anti-Lysozyme (DAKO, catalog #A0099, 2 ɛg/ml). 

After staining slides were counterstained with DAPI (Sigma Aldrich, catalog #D9542, 5 

ɛg/ml) for 10 min and coverslipped with Mowiol mounting reagent. Secondary antibodies 

used for visualization were AF488 (Claudin-4), AF594 (Claudin-2), AF546 (Lysozyme). 

Slides were scanned to acquire fluorescent signals, coverslips were removed and 

immunohistochemical staining was performed as follows: Anti-HOPX (Santa Cruz 

Biotechnology, catalog #sc-398703, 2.5 ɛg/ml) with detection using the DAB detection kit 

(Ventana Medical Systems) according to manufacturer instruction; anti-pan-Keratin 

(AE1/AE3/PCK26) (Ventana, catalog #760-2135, 0.09 ɛg/ml) with detection using the Deep 

Space Black chromogen detection kit (Biocare Medical) according to manufacturer 

instruction. Slides were coverslipped with Permount (Fisher Scientific, catalog # SP15-500). 

 

Single-molecule mRNA in situ hybridization  
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Single-molecule mRNA in situ hybridization was performed on formalin-fixed paraffin 

embedded tissues using the manual Advanced Cell Diagnostics RNAscope 2.5 HD Detection 

Kit (catalog # 322360) per the manufacturerôs instructions. Antigen retrieval times were 20 

min for mouse and human tissues. Protease digestion times were 15 minutes for mouse 

LUAD tumor tissues and 30 minutes for human LUAD tumor tissues. Probes are listed in 

Table S8.  

 

COMPUTATIONAL ANALYSIS  

scRNA-Seq pre-processing and quality control filtering 

For plate-based scRNA-Seq by SMART-Seq2, reads were aligned against Gencode 

GRCm38.p5 (M15) mouse reference using STAR (v2.5.4b), and transcript abundance was 

quantified using RSEM (v.1.3.0). For each cell bam, Picard-Tools CollectRnaSeqMetrics 

was run on each genome  

aligned bam and summary statistics were collected (Table S9). Cell were excluded from 

further analysis based on the following criteria: (1) Fewer than 1000 genes; (2) Fewer than 

500,000 reads aligned. Additionally, for each plate we exclude cells deviating by >2 times 

the interquartile range (IQR) above/bellow the upper/lower quartile for: (1) number of genes-

expressed; (2) total read counts (3) or mean expression of housekeeping panel(Tirosh et al., 

2016a). Similarly, we exclude cells per plate deviating by >2×IQR above the top quartile for 

proportion of mitochondrial reads, proportion of intergenic reads, or total count of ribosomal 

RNA reads, and by >2×IQR below the bottom quartile for proportion aligned reads and 

expression of tdTomato marker transcript. Next, gene level read count summaries were 

sampled (with replacement) to a uniform depth of 500K reads per cell. In order to further 
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account for differences in amplification efficiency and sequencing depth, read counts were 

transformed to log2(100K+1) normalized abundance, which was used for all downstream 

analysis unless indicated otherwise.  

 

For droplet-based scRNA-Seq, Cellranger v3.1 was used to align reads to the mm10 mouse 

reference, and its output processed using the dropletUtils R package, for excluding chimeric 

reads, and identification and exclusion of empty cell droplets (Griffiths et al., 2018; Lun et 

al., 2019). We excluded any chimeric read that had less than 80% assignment to cell barcode. 

Cell barcodes were tested for emptiness against a background generated based on barcodes 

with 1000 to 10 UMIs, with cutoffs determined dynamically based on channel specific 

characteristics. We further estimate the saturation of UMIs and genes in individual cells by 

sub-sampling reads without replacement in each cell barcode, in incremental fractions of 

2%, with 20 repeats. A saturation function of the form y= ax(x+b)+c  was fit based on the 

number of UMIs observed (Table S9). We excluded cell barcodes based on any one of 

following criteria: (1) Fewer than 500 genes; (2) Fewer than 5,000 reads; (3) Fewer than 

1,000 transcript UMIs, (4) Less than 30% reads mapping; (5) Per cell estimated sequencing 

saturation less than 0.3; (6) Non-empty droplet FDR > 0.1; (7) Expression of tdTomato > 8 

TP10K. In addition, a subset of 10x channels reaching high UMI sequencing saturation 

(Table 9), were filtered to retain only UMIs captured by 2 or more reads. 

 

Selection of variable genes, dimensionality reduction and clustering 

We clustered the plate-based scRNA-seq profiles across all time points using a non-negative 

matrix factorization (NMF) and a graph clustering-based approach, as follows. First, we 
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identified transcriptionally over-dispersed genes within each experimental batch by 

examining the difference of the coefficient of variation (CV) with the median CV for other 

genes with a similar mean expression(Satija et al., 2015). A robust set of ~2,000 genes is 

retained based on an elbow-based criterion, applied to the median of over-dispersed 

difference statistic based on 200 samples of 75% of cells. Next, subsampling 80% of genes 

and samples, we used NMF to reduce the dimension of the full dataset to between 20 and 40 

dimensions (Lee and Seung, 1999). The loading matrices (i.e., activations) of these NMF 

components were used to calculate a cosine similarity k-nearest-neighbors (k-NN) graph 

(k=21). This graph was clustered using stability optimizing graph clustering (Delvenne et 

al., 2010; Shekhar et al., 2016). A final clustering of 14 subsets was determined based on an 

elbow-criteria of mean cluster silhouette. Two clusters of 44 and 35 cells were excluded 

from further analysis as either suspected doublets and or recombination in off-target cells 

(club cells).  

 

Visualization of single cell profiles  

We generated tSNE plots from NMF loading matrices, with a perplexity value of 30 and the 

Barnes-Hut approximation method (Van Der Maaten, 2014). 

 

We generated PHATE maps (Moon et al., 2019) using normalized single cell expression 

profiles of the same top over-dispersed genes as used for clustering (above), and the 

following input parameters: k=21 nearest neighbors, square root potential heat diffusion 

kernel (pot_method=ôsqrtô), 4,000 feature landmarks for metric multi-dimensional scaling 

(n_landmarks=4000, 30 input principle components (npca=30), distance=ôcovô). 
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Identification of differentially expressed genes 

Differentially expressed genes (DEG) were identified using a Poisson-Tweedie model on 

unscaled transcript counts normalized to uniform counts by sampling reads. Genes were 

identified as differentially expressed in a particular set of cells if they met all of the following 

criteria: (1) Benjamini-Hochberg FDR < 0.1; (2) Minimum expression in at least 10% of 

cells; and (3) Area under a receiver operating curve (AUROC) > 0.60, (4) log fold change 

vs. cells in all other subsets > 1.5, and (5) log-fold change vs. cells in any other subset is 

highest within the set. 

 

Pearson residuals calculation in contingency tables 

The Pearson residual is a measure of relative enrichment for cells in a contingency table. It 

is calculated here as: R=obs-expexp, where the expected value is calculated as the product 

of row and column marginal probabilities by the total count. 

 

Estimating heterogeneity of single cell profiles within a timepoint 

Heterogeneity of single cell profiles within a timepoint was quantified by examining the 

average pairwise Normalized Mutual Information (NMI) between the profiles within each 

time point. Using 100 differentially expressed genes per each of 12 subtype clusters and top 

100 NMF genes per each of 11 NMF programs (above; Identification of differentially 

expressed genes, and below; Identification of novel gene expression programs by NMF) 

(total of 2,374 genes), we discretized expression per gene into 10 bins. In order to account 

for differences in the number of cells across samples, we subsampled 100 cells from each 

time-point (or mouse) 100 times and calculated the median NMI across each within-
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timepoint sampled pair. NMI was calculated between each pair of cells x and y by first 

calculating the mutual information )8Ƞ9 ØÙÐØȟÙÌÏÇ ÐØȟÙÐØÐ Ù and then normalizing it by 

the entropy of each cell: NMIX,Y=I(X;Y)HxH(Y). To estimate a p-value for the difference 

in NMI value between two groups we compare the number of sub-samples from in A group 

vs all those in another B group and report P=(ijAi<Bj+1)/(AB+1) . 

 

Single-cell DNA-Seq pre-processing and copy number quantification 

Sequencing reads were aligned to reference GRCm38.p mouse genome reference using BWA 

(0.7.17). Duplicate reads were marked with SAMBLASTER (v0.1.24). CNVkit (v0.9.6) was 

used to quantify read abundance in genomic window of 200 kb, and normalized for GC 

content and mappability, excluding outlier bins. Segmentation was performed using a three 

state HMM for amplified and deleted regions (Talevich et al., 2016). 

 

Copy number inference from scRNA-Seq profiles 

Single cell copy number was estimated following our previously published method (Tirosh 

et al., 2016a). Briefly, we square root log transformed TP100K expression values to stabilize 

variance (Anscombe transform), and capped per-cell, and per-gene expression to the 99th 

percentile to reduce the effect of outliers (i.e., for each cell, genes expressed above the 99th 

percentile are set to the 99th percentile, next for each gene, cells expressed above 99th 

percentile are set to the 99th percentile). Next, genes were assigned to each of 20 expression 

bins by mean expression in a reference normal, here assigned to be all cells from the ñTò 

only timepoint. For each chromosome, all genes were ordered by the location of the 

Transcription Start Site (TSS), and the mean expression value in a sliding window of 25 
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million bases was calculated (with a step size of one million bases), corresponding to ~100 

genes windows. For each cell and window, we compared the mean expression to a null 

distribution of gene samples drawn to match the normal mean expression, i.e., for a window 

of k genes, we drew k genes from matching expression bins in the normal reference sets (as 

in single-cell gene set enrichment below). The raw mean expression per cell and window 

was normalized by subtracting the mean of the resampling-based null distribution. 

Additionally, an empirical P-value was calculated by comparing to the null distribution and 

used to filter for likely spurious CNV events.  

 

Matching of RNA based inferred CNV to DNA-based copy number estimates 

For three 20-week KP tumors for which we had both single cell DNA-Seq and single cell 

RNA-Seq, we matched between DNA-based single cell CNVs and RNA-inferred single cell 

CNVs, by relating each single cell RNA-based inferred CNV profile to the most similar 

DNA-based single cell CNV profile by the L1-norm distance.  

 

Single cell gene set enrichment 

We performed single cell gene-set enrichment as previously described (Chihara et al., 2018; 

Tirosh et al., 2016a). Briefly, genes were split into 20 bins by mean expression across all 

cells, where the 20 bins were defined based on the distribution of all genesô expression. Gene 

expression was centered, scaled, and transformed using the logistic function to the [0,1] 

range. Given a gene set signature of k genes, the mean of the normalized expression for the 

set was calculated in each cell as a raw signature score. This score was then compared against 

a null distribution of 1,000 randomly selected signatures, each consisting of k genes, drawn 
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such that the mean expression of each of the k genes matches the same global mean 

expression bin of a gene in the original signature. The final per cell activity score is 

calculated as the per cell raw score centered by the mean score of the signatures from the 

null distribution. This final score is subsequently normalized to have mean of zero and 

standard deviation of one (z-score). We calculate an empirical P-value of association with 

the clustering to 12 subtypes (of Figure 1D) by comparing an ANOVA F-statistic for the 

true raw score, with the distribution of the F-statistic of the randomly selected signatures. 

The tested gene sets, and their sources are listed in Table S10.  

  

Identification of novel gene expression programs by NMF 

To identify robust transcriptional programs, we adapted a consensus NMF procedure 

(Kotliar et al., 2019). We used as input 1,346 NMF expression weight components identified 

across 50 subsampled repeats used for clustering, as described above (see section on 

Selection of variable genes, dimensionality reduction and clustering). We excluded 

outlier components by sorting components by their cosine distance to the 20th nearest 

neighbor and excluding components with unusually high distance by an elbow-based 

criterion. Next, we constructed a symmetric k-nearest neighbors (k-NN) graph (k=30), and 

identified clusters of highly similar components in this graph, using stability optimizing 

graph clustering, with an exponentially varied scale parameter (0.1 to 10, resulting in 42 to 

3 clusters). The components in each cluster were median-averaged into a single component, 

resulting in a short list of ñconsensus NMFò components. These were used as the 

initialization component matrix for a second round of NMF of all cells and highly variable 
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genes (as described in Selection of variable genes, dimensionality reduction and 

clustering). We selected a solution with 11 NMF components based on an elbow criterion 

of reconstruction error of the input data matrix.  

 

To characterize the novel transcriptional programs identified with this procedure, we used 

the top 100 genes in each of the 11 components, ranked by the following weighting scheme: 

For the i th gene and j th component we define the scaled weight as follows: WSij = Wij 

*WijWik  . This weighting scheme prioritizes for high weight (highly expressed) and unique 

genes in each component. We tested for enrichment of the top 100 genes in each program in 

a compendium of gene sets listed in Table S10, with the hypergeometric test. P-values were 

adjusted by a Benjamini-Hochberg false discovery rate procedure.  

 

Optimal transport  

To estimate robust transport maps of single cell profiles we adapted the approach we 

previously in (Schiebinger et al., 2019). We calculated transport maps between cells in each 

pair of consecutive time points, except that we merged KT and KPT 2-week samples due to 

low numbers of healthy cells in the KPT sample (Figure 1G), such that we had the following 

transitions: T {KT2,KPT2}, {KT2,KPT2} KT12, KT12 KT30, {KT2,KPT2} KPT12, 

KPT12 KPT20, and KPT20KPT30. For each pair of time points we use the cosine 

similarity of NMF loading matrices for each cell (as described in section Identification of 

novel gene expression programs by NMF), as the input distance measure for inferring a 

transport map from each cell in the starting time point to a distribution of cells in the 

subsequent time point, with parameters lambda1 = 1, lambda2 = 25, and a uniform growth 
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rate. We performed the OT inference procedure 20 times using random seeds and the mean 

across runs was used as the OT map estimate for each pair of time points. 

 

Bulk ATAC -Seq 

Analysis was performed using the ENCODE ATAC-Seq pipeline (v1.5.4, 

https://github.com/ENCODE-DCC/atac-seq-pipeline), with default parameters, for initial 

quality control analysis. The pipeline was run once for each condition, inputting FASTQ 

files from the mouse replicates (n = 4). A final peak list was generated by processing the 

resulting BAM files generated by the ENCODE ATAC-Seq pipeline with Samtools (v1.8; 

http://www.htslib.org/) to: (1) filter the BAM files to contain only the main chromosomes, 

(2) subsample each BAM file to the minimum number of reads observed across all replicates 

and conditions, and (3) merge BAM files from each replicate for each condition. MACS2 

(v2.2.6) (Zhang et al., 2008)was used to call peaks, bedtools (v2.26.0; 

https://bedtools.readthedocs.io/en/latest/) to filter blacklisted regions (as defined by the 

ENCODE project) and merge the peak files from the experimental conditions, and the 

featureCounts function from the Subread package (v2.0.0; http://subread.sourceforge.net/) 

to generate a matrix of peak counts from the merged peak list and filtered BAM files. 

DESeq2 (v1.26.0) (Love et al., 2014)was used to call differentially accessible peaks in R 

(v3.6), with ~Mouse + Tigit_status as the design variable. Peaks were considered 

differentially accessible if they had an FDR adjusted P-value less than 0.1. HOMER (v4.11) 

(Heinz et al., 2010) was used to annotate peaks. The UCSC Genome Browser (Kent et al., 

2002) was used to visualize peaks. 

https://github.com/ENCODE-DCC/atac-seq-pipeline
http://www.htslib.org/
https://bedtools.readthedocs.io/en/latest/
http://subread.sourceforge.net/
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scATAC-Seq data processing 

We used the Cell Ranger ATAC (v1.2) pipeline (10x Genomics) to generate single-cell 

accessibility counts. First, we used cellranger-atac mkfastq to generate demultiplexed 

FASTQ files from the raw sequencing reads. We then aligned these reads to the mouse 

mm10 genome and quantified chromatin accessibility counts using cellranger-atac count. 

This pipeline performs barcode error correction, PCR duplicate marking, peak calling and 

cell calling, and produces both a filtered peak cell barcode matrix, and a fragment file 

containing all fragments assigned to single cells.  

 

scATAC-Seq quality control 

Starting with the filtered peak cell barcode matrix, we further filtered out low quality cells 

using five per-cell quality control metrics: the total number of fragments overlapping peaks, 

the percent of fragments mapping to peaks, the percent of fragments overlapping blacklisted 

regions as defined by the ENCODE project, the ratio of mononucleosomal to nucleosome-

free fragments, and the transcriptional start site (TSS) enrichment score as defined by the 

ENCODE project (https://www.encodeproject.org/data-standards/terms/). We retained cells 

with between 1000 and 50000 fragments overlapping peaks, with at least 20% of the 

fragments mapping to peaks, with fewer than 5% of fragments mapping to blacklisted 

regions, with the ratio of mononucleosomal to nucleosome-free fragments less than five, and 

with TSS enrichment score greater than two. 

 

scATAC-Seq data normalization, dimensionality reduction and clustering 

https://www.encodeproject.org/data-standards/terms/
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We analyzed the cells passing quality control using the R packages Signac (v0.2.1) 

(https://github.com/timoast/signac) and Seurat (v3.1.2) (https://github.com/satijalab/seurat) 

(Butler et al., 2019). We performed term frequency inverse document frequency (TF-IDF) 

normalization on the peak cell barcode matrix using RunTFIDF, which normalizes across 

both cells and peaks, to control for differences in cell sequencing depth and to increase 

values for peaks that occur more rarely across cells. We chose features (peaks) for 

dimensionality reduction and clustering using FindTopFeatures, which ranks peaks based 

on the total number of fragments in a peak across all cells. We retained the top 90% of peaks. 

We next performed a singular value decomposition to reduce dimensionality of the data, 

with the function RunSVD, and retained the left and right singular vectors associated with 

the 30 largest singular values. We performed graph-based Louvain clustering using 

FindNeighbors and FindClusters, with k = 20 for the k-nearest neighbor algorithm and the 

resolution parameter set to 0.8. We visualized gene activity and clustering results on Uniform 

manifold Approximation and Projection (UMAP) using RunUMAP. The UMAP was 

calculated from the first 30 singular vectors of the dimensionally reduced data with the 

following settings: n.neighbors=30, min.dist=0.3, and spread=1. 

 

Chromatin accessibility data was used to estimate a geneôs activity by assuming that gene 

expression is correlated with promoter accessibility. For each gene, we extracted its gene 

coordinates from the mouse genome using EnsDb.Mmusculus.v79, and then extended the 

resulting coordinates 2 kb upstream so that they covered both the gene body and promoter. 

The activity of each gene was estimated by counting how many fragments within each cell 

mapped to this extended region. To examine the activity of entire gene modules or signatures 

https://github.com/timoast/signac
https://github.com/satijalab/seurat
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within single cells, we scored signature activity levels using AddModuleScore. This function 

calculates the average activity levels of the genes in a signature and then subtracts off the 

average activity levels of control gene sets (Tirosh et al., 2016a). The genes in the control 

sets are randomly chosen with the constraint that they have similar activity levels to the 

genes in the signature. This approach controls for technical differences in cell quality and 

library complexity across single cells that contribute to a signatureôs activity level.  

 

scATAC-Seq data integration 

To integrate the TIGIT+ and TIGIT- scATAC-Seq datasets, we restricted analysis to peak 

regions that overlapped across both datasets using MergeWithRegions and performed the 

same dimensionality reduction and clustering analysis described above. To integrate the data 

while correcting for technical batch effects, we use Seurat v3 integration, which identifies 

correspondences between cells in the two datasets and applies a correction matrix to the peak 

cell barcode matrix (Stuart et al., 2019). We identified the corresponding cell subsets using 

FindIntegrationAnchors, where the dimensionality of both datasets was first reduced using 

canonical correlation analysis and the first 30 canonical correlation vectors were retained. 

We then calculated and applied a correction to the peak barcode matrix using IntegrateData, 

with the weight.reduction parameter set to use the dimensional reduction space calculated 

above. Finally, we took this corrected peak cell barcode matrix and applied the same 

dimensional reduction, clustering, and UMAP visualization described above. 

 

Comparison to human scRNA-Seq data 
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Processed scRNA-Seq profiles from human LUAD tumors were downloaded from 

GSE127465, E-MTAB-6149, and E-MTAB-6653 (Lambrechts et al., 2018; Laughney et al., 

2020; Zilionis et al., 2019). Analysis was limited to lung adenocarcinoma samples (5 and 2 

samples respectively) and examined only cells annotated by the authors as tumor cells.  

Estimating activity of mouse NMF gene programs in other human or mouse datasets 

Activity of NMF programs defined in the mouse time course study (ñsource datasetò) was 

estimated in additional secondary datasets from mouse or human (ñtarget datasetò). For 

human, 1-to-1 gene orthologs were mapped between mouse and human using an ortholog 

table downloaded from Ensemble BioMart (v.96, downloaded June 11, 2019), retaining only 

1:1 orthologs. For both human and mouse, the analysis was limited to 100 differentially 

expressed genes per each of 12 subtype clusters (Figure 1D) and top 200 NMF genes per 

each of 11 NMF programs (total of 2,374 genes). The distribution of each gene was matched 

between the source and target cohort based on a matching of the empirical cumulative 

distribution functions (eCDF) of the gene in the target dataset to the eCDF of the gene in the 

source dataset, while ignoring zero values ï that is, for a given gene the cell expressed at the 

nth percentile in the target cohort is assigned the expression of the nth percentile cell in the 

source. We excluded from analysis genes expressed in less than 1% of the cells in the target 

dataset, as well as genes showing a large deviation in mean expression between the two 

cohorts after normalization (defined as genes deviating from the predicted expression at an 

alpha < 0.0005, using a Gaussian process regression of the source mean expression to the 

target mean expression). The remaining genes were used to estimate the activity matrix (H) 

in the target cohort, using a nonnegative least-squares (NNLS) fit of the source NMF gene 



 98 

program (W) matrix on the transformed and normalized expression values of the target 

dataset. NNLS fit was performed using the Block Principal Pivoting method for solving the 

equation: ớX-WHớF  , where X is the input matrix for the target dataset, and W was a matrix 

of NMF gene programs (gene by k) learned from the source dataset (Kim and Park, 2008).  

 

Transferring cluster assignments between datasets 

To transfer cluster assignments, we use a similar procedure to that for estimating NMF 

activities (section Estimating activity of mouse NMF gene programs in other human or 

mouse datasets). The procedure above was applied to each of 50 NMF activity matrices (H) 

for the target dataset generated by subsampling the source dataset, resulting in a matrix of 

1,346 activity features in the target dataset. Next, a multiclass gradient boosting tree 

classifier was trained to on the activity feature matrices to predict cluster type (using the 

XGBoost package v. 0.82.0.1 in R v3.5.3). This classifier was used to predict cluster 

assignments in the target dataset on the set of NMF activity features.  

 

Comparison of HPCS signature to available stem cell signatures 

We quantified enrichment between our HPCS cluster or the highly mixed state/HPCS and 

known signatures for normal and cancer stem cells using the GeneOverlap R package 

(v1.22.0) (Shen and Sinai, 2019), which is based on the hypergeometric distribution. To 

build a set of stemness signatures, we collected 1197 gene sets from the Molecular 

Signatures Database (MSigDB, v6.2) (Liberzon et al., 2015; Liberzon et al., 2011; 

Subramanian et al., 2005) and CellMarker (downloaded on 2018/10/22) (Zhang et al., 2019), 

mapped them to mouse genes using the orthology mapping from Mouse Genome Informatics 
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(http://www.informatics.jax.org/), and filtered the signatures to retain only those with 

ñ_stem_ò in their name and at least four genes in the gene set; our final set of stemness 

signatures contained 1,197 gene sets. We defined our HPCS gene set by the set of 406 

differentially expressed genes marking cluster 5, and our highly mixed state/ HPCS gene set 

as the 103 genes defining this NMF program. We calculated enrichment using 

newGeneOverlap and testGeneOverlap, with a genomic background of 25,656 ï the number 

of genes in our RNA expression data expressed in 10 or more cells. P-values were adjusted 

for multiple comparisons using p.adjust in R, with the ófdrô correction method.  All analyses 

were carried out in R (v3.6). Gene sets that showed significate enrichment (Padj Ò 0.01), were 

manually curated to validate that they are truly enriched in normal or cancer stem cells and 

that the signature did not represent an experimental perturbation that may have confounded 

the conclusion. Gene sets from the following studies were identified: (Bystrykh et al., 2005; 

Gal et al., 2006; Gattinoni et al., 2011; Ramirez et al., 2012; Villanueva et al., 2011); in 

addition a gene ontology set 

ñGO_POSITIVE_REGULATION_OF_STEM_CELL_PROLIFERATIONò was identified. 

Curated gene sets are plotted based on Padj and Jaccard Index in Figure S5G. The Jaccard 

index was calculated by the number of intersecting genes between the two gene sets divided 

by the union of the two gene sets. 

 

Human clinical data analyses 

Processed RNA-seq expression data was downloaded from https://gdc.cancer.gov/about- 

data/publications/pancanatlas. Clinical annotations were downloaded from 

http://www.linkedomics.org/data_download/. All survival outcomes data was transformed 

http://www.informatics.jax.org/
https://gdc.cancer.gov/about-%20data/publications/pancanatlas
https://gdc.cancer.gov/about-%20data/publications/pancanatlas
http://www.linkedomics.org/data_download/
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to months. We excluded patients older than 85 at time of diagnosis, or having reported post-

surgery residual disease (LUAD analysis only), the latter because this appeared to be a strong 

confounder of outcome with few observations. When calculating 5-year survival we capped 

the survival period at 60 months and right censored patients with longer survival. Survival 

analysis was performed using a Cox proportional hazards model including terms for age, 

tumor purity, and stratified for stage (early ï stage I or stage II, vs. advanced ï stage III or 

stage IV) for LUAD and stratified by cancer type for PANCAN. Kaplan-Meier plots were 

drawn by dividing the NMF activities or cluster gene signatures into 3 equal sized bins. NMF 

activities or cluster signature activities (calculated as described above in Estimating activity 

of mouse NMF gene programs in other human or mouse datasets and Single cell gene 

set enrichment), are used as continuous predictors in a cox proportional-hazards model. 

Reported P values are for a likelihood-ratio test comparing the full model to one including 

only the baseline parameters (age, tumors purity and stage or cancer type). Genetic mutation 

information was downloaded from cBioportal on Feb 24th 2020. When testing for association 

with outcome in the context of genetic state, samples were considered mutated if these were 

annotated for any non-silent mutation or copy number amplification/deletion. 

 

Computational tools 

Software used for analysis of data during this project included, MATLAB (version >= 

9.2.0.556344-R2017a), R (version >= 3.4), and Python (versions >= 2.7 and >= 3.6). 
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Figure 1. Increased transcriptional heterogeneity in mouse lung adenocarcinoma 

evolution is reproducible across individual tumors and mice, but cannot fully be 

explained by copy number variation. (A) Experimental pipeline. (B) Tumor evolution in 

a lung adenocarcinoma GEMM. Top: genetic constructs of three mouse models profiled by 

scRNA-Seq at different time points. Middle and Bottom: schematic (middle) and 

hematoxylin & eosin (H&E) staining of tissue sections (bottom) at different phases of tumor 

progression. AT1: normal alveolar type 1 (AT1) cells; AT2: normal alveolar type 2 (AT2) 

cells, AAH: atypical adenomatous hyperplasia. Scale bar: 100 µm. (C-E) Increased 

transcriptional heterogeneity with LUAD progression. (C) PHATE map embedding (STAR 

Methods) of scRNA-Seq profiles (dots) collected from the models and time points in (B) 

(labels, top). Colored dots: Cells collected from the indicated sample; grey dots: all other 

cells. (D) Increased diversity of cell clusters with progression. Left: The fraction of cells (y 

axis) in each cluster (x axis) that are derived from each sample type (genotype and time 

point; colored as in (C)). Middle and Right: matched t-stochastic neighborhood embedding 

(tSNE, left plot, STAR Methods) and PHATE map embedding (right plot, as in (C)) colored 

by either sample type (middle pair) or cluster number (STAR Methods) (right pair). (E) 

Reduced transcriptional homogeneity within time point with progression. Transcriptional 

heterogeneity is inversely proportional to the Normalized Mutual Information (NMI, y axis) 

between cells within in each sample type (genotype/time point combination, x axis), for 

either whole lung samples or microdissected single tumors. Box plots: upper, median, and 

lower quartile of 1,000 bootstrap samples, of 50 cells each, from the indicated time point; 

whiskers: 1.5 interquartile range. * P < 0.05, ** P < 0.01, *** P < 0.001 (STAR Methods). 
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(F) Heterogeneity is reproducible across individual tumors and mice. Fraction of cells (y 

axis) in sample (x axis) that are members of each cluster (color code, as in D, right). The 

number of clusters observed in each tumor is indicated at the top of the bars. Note that each 

sample is an individually plucked tumor. (G-I ) Transcriptional heterogeneity does not 

simply follow genetic clonotype (G) Inferred large-scale CNVs from scRNA-Seq. CNVs 

(red: amplifications, blue: deletions) across the chromosomes (columns) inferred from the 

scRNA-Seq of each cell (rows) from 12 KP tumors at the 30-week time point (STAR 

Methods). Color: the cluster membership of each cell. (H) Congruence between CNV 

profiles inferred from scDNA-Seq and scRNA-Seq. CNVs shown as in (G) for single cells 

(rows) of one individually microdissected KPT tumor at 30 weeks profiled by scDNA-Seq 

(top-left) or scRNA-Seq (bottom-left). Left color bar: Predominant clonotypes identified 

from scDNA-Seq (top-left) and assigned to scRNA-Seq cells (bottom-left). Far left color bar 

in scRNA-Seq panels: cell cluster membership as in (G). (I) A single clonotype matches 

multiple transcriptional states. PHATE map as in Figure 1D, colored by clonotype.  
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