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Abstract

Tumor progressionrém the single mutated cell to the advanced stages of cancer,
represents an evolutionary process. During tumor progression, cancer cells acquire new
genetic mutationsbecoming more heterogeneousading to tumor progressionand
resistance to therapy-However, clear genetic drivers of progression, metastasid
therapeutic resistance are identified in only a subset of tumors, pointing ‘genetic
contributorgo cancer progressioAlso, somatic evolution in cancer is occurring at the level
of the single cell. Thereforégheapplication of the single caflenomic method is crucial for
deciphering phenotypic heterogeneijere, we profiled single cell transcriptomes from
genetically engineered mouse lung tumors at seven stages spanning tumor progression from
atypical adenomatous hyperplasia to lung ademowama. The diversity of transcriptional
states spanned by tumor cells increased over time and was reproducible across tumors and

mice, but was not explained by genomic copy number variation. Cancer cells progressively



adopted alternate lineage identifieomputationally predicted to be mediated through a
common transitional, higplasticity cell state (HPCS). HPCS cells prospectively isolated
from mouse tumors had robust potential for phenotypic switching and tumor formation and
were more chemoresistam mice. Our study reveals transitions that connect cell states

across tumor evolution and motivates therapeutic targeting of the HPCS.
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Scientific journey and thesis preview

| have completed my undergrad studies at Belgrade Univandityye Department of
Biology. In. my undergrad, | have study molecular biology and experimental physiology.
For my master's degree, | have been enrolled in the Experimental biomedical master
program. During my undergrad studies, | got interested in caesearch. | have spent three
summers doing internships abroad and getting acquainted with cancer research. My
scientific journey started in the Cathrin Brisken lab at [EPA_ausanne. In Brisken's lab, |
have studied breast cancer and the role of WNTadiigg in cancer progression and
metastasis. Summer after that, | have spent in Cambridge, UK, where | have been working
with Rebecca Fitzgerald. My project was involved in finding biomarkers for the early
detection of the Barretss' Esophagus. After thatreer, | have spent the summer at UNIL
in Lausanne in Paulo Dotto lab working on skin cancer. My primary goal was to identify
early benign lesions and what does fuels them in skin cancer.

One of the main reasons | got interested in cancer research weantet was such
a deadly disease. When | start more reading about it, | came across the information that 90%
of cancer patients die because of cancer metastasis. | got interested in further understanding
of cancer metastasis. Robert Weinberg's lab waheatfront of the cancer metastasis
research. For my master thesis, | have contacted professor Weinberg to join his lab and do a
research project. Even though | came only for four months to do some metastasis research
in the Weinberg lab, | end up spendiagyear and a half focusing on how cancer
heterogeneity, primarily cancer stem cells, are connected with cancer metastasis. Working

with Christine Chaffer, we have established that more aggressive breast cancer has a more



abundant cancer stem cell populatitVe have also observed that in more aggressive breast
cancer, there is switching from ngancer stem cell to cancer stem cell. This was for the
first time observed. Further, we have named this cancer cell plasticity or adaptability. We
have shown thahts was under the control of the Zebl transcription factor in breast cancer
and that TGFb signaling was able to increases these transitions.

Further, we established that cancer4stem cells had this property and had bivalent
chromatin at Zebl locus, wdti enabled them to respond to environmental cues, such as
TGFb. In contrast, cancer nestem cells had silenced chromatin and DNA methylation at
Zebnl locus. It is worth mentioning that cancer cells that had been in the "locked" state were
also breast caer types that had been less aggressive and more luminal (more
differentiated). Our work has been published in the Cell journal, and this was just the begging
of my quest to understand cancer cell heterogeneity.

After my experience in the Weinberg lab, dye spent some time at the Cancer
program at the Broad Institute, in professor Todd Golub's lab. In Golub lab, I have been
focused on trying to connect cancer heterogeneity with some functional consequences such
as cancer cachexia. In my previous work,hage also observed that CSC and helping with
cancer metastasis can also have some other systemic effects, such as increasing the
inflammation, and that there is crosstalk between cancer cells from the primary tumor and
metastasis. To better understand giiisnomenon, | have asked the question: Do the cancer
that can induce cancer cachexia have higher numbers of the CSC? We have shown that
pancreatic and some stomach cancers, which were prominent in inducing cachexia, were

also dominated by CSC populationd/e have also demonstrated that these cellular



subpopulations also secrete S100 protein, which we further show can induce cachexia by
binding to their e ¢ e poh musd@esand adipose tissue.

After the Golub lakexperience andoming to the understanditigat there were a lot
of issues with how we are defining CSC and which markers we are using to isolate them, |
got interested in the more" unbiased" approaches in defining CSC and cancer heterogeneity.
At the same time, | have noted the start of the siggll genomics and scRN#eq. In my
mind, this was the perfect tool to investigate cancer heterogeneity. | have decided to pursue
a Ph.D. in theComputational and Systems Biology (CSBi) ProgratmMIT School of
Engineering

The lasic idea behind CSBI progm is to train multidisciplinary scientist that will
askessentiabuestions in biology and biomedicine, ussygstemlevel and computational
approachesThe centrapremise is that biology, as a science, has come to an age where
technology and computatial approaches are driving novel discoveries. Along those lines,
educating multidisciplinary trained scientists capable of addressing crucial biological
questions using novel methods and computational techniques becomes paramount. In my
Ph.D. work, | haveaddressed precisely the critical biological questions with high unmet
need, such as lung cancer. Using novel approaches, such as-seBNAvanted to question
how tumor heterogeneity changes during tumor progression and evolution and elucidate how

drug reatments affect it.



ThesisOutline

My Ph.D. thesis is divided into three chapters: Introduction, Results and Discussion.
In the first chapter, or the Introduction chapter, | will provide a scholarly review of my
thesis's critical aspects, such agjl@ancer, tumor heterogeneity and scRb&%. In the first
subchapter of the Introduction, | will present an overview of lung cancer and its unmet need,
focusing on norsmall cell lung cancer (NSCLC) and mouse models important for studying
lung cancer. Intte 29 subchapter, | will provide an overview of what is known in the cancer
heterogeneity field, examining some of the critical components of tumor heterogeneity, and
some of the hypotheses that explain the importance of tumor heterogeneity for tumor
progession and drug resistance. In the last subchapter of the Introduction, | will give an
overview of the essential methods and computational approaches used for answering the
questions in my thesis. | focused on the development of the seRiyjAechniquesnal
appropriate computational approaches for the data analysis.

In the second chapter, or the Results chapter, of my Ph.D. thesis, | will present my
work published in Cancer Cell journal. In this work, we have used genetically engineered
mouse models (GEMMscoupled with scRNAseq to study tumor progression and drug
resistance at the singtell level. Using GEMMs allowed us to induce specific mutations in
the cell of interest in the lungs. Further, this GEMM allowed us to selectively label cancer
cells with the fluorescent dyghich helped us sort out cancer cells and use them for the
downstream analysis. This model also allowed us to take samples at different time points
and with different genetic modifications, further enabling us to provide, for the first time,

the transcriponal map of the tumor progression at the siragi level.



In the last chapter of the thesis, or the Discussion chapter, | will discuss the potential
short and longterm direction this work has opened up. Further, | will also underline the

aspects ofmy Ph.D. work that present novel insights that could lead to novel discoveries.

10



Chapter 1

Introduction

1. Lung Cancer

1.1 Overview of the epidemiology and etiology of lung cancer

Lung cancer is one of the leadingusef deathfor both men and women in the
USA and worldwide. In the USA, lung cancer is the deadliest cancer \Wyple around
142,670 deaths in 2018, results inalmostthreetimes as manydeathsas colon cancer,
which is the 2¢ most fatalkcancer irtheUSA, with 51,200 deaths in 201@). Globally, lung
cancer is the most diagnosed cancer type, and also it has the highest number of deaths. Owing
to the absence of clinical symptoms and effective scre@moggamsmost lung cancers are
diagnosed at an advanced stage. Lung cdieeyearsurvival inthe USA is around 15%
Eventhough there have beadvancesn lung cancer treatment in thest few decadeg, is

still lagging behind some other cancer types (breaster, prostate cancer, colon cancer)

).

One of the most common carcinogeth&it causedung cancer is tobacco. It is
estimated that for more than 80% of lung canttez primary etiologic agent is smoking.
Further, it has been experimentally validated tbalyaromatichydrocarbons (such as
benzo[a]pyrene (BaP),4-(methylnitrosamino)l-(3-pyridyl)-1-butanone (NNK), 1,3
butadiene, ethyl carbamate), can induce lung caaseell. Furthermore, it has been shown
thatsecondhandsmoking in the workplace can increase the risk of lung cancer. In addition

totobaccoaplethora of additional factors can increase the risk of lung cancer. Air pollution,
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such as M2 and benzopyrenéhas also beempstablished asa significantrisk factor for
developing lung cancer. Exposure to radon, asbestos, arsenic, ancasiromium careven

increasdung cancer risk2).

Interestingly recent statistics show thitere has beearelatively large increase in
thenumber of lung cancecasesn developing countries compared to developed countries.
Oneexplanatiorof this could be thdeadingcauses of lung cancer are tobacco smoking and
other air and chemical pollutants such as asbestos, @resbromium, nickelandNOz. The

use of these pollutants in developing countries is less restricted than in developed countries

(2).

Annual incidence
per 100,000 people
0-10
11-20
21-30
M 3140
M 41->50

Figure 1. Annual incidence of lung cancer per 100,000 people. (11)
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1.2 Molecular basis of the Lung Cancer

Lung cancer isa heterogeneouslisease with multiple genetic and epigenetic
alternations. Understandinbese alternations and their functional significance can impact
lung cancer prevention, diagngsasd treatment. Lung cancer develops throagtulti-step
process, where novel genetic and/or epigenetic mutations are acduieseé mutations'
primaryfunction isto activatehe growth signaling pathways (KRAS, EGFR, BRAF, HERZ2,
ALK) andto inhibit the tumor suppressor pathwdi?53, PTEN, LKB1). Activaion of the
oncogenes usually happens by gene amplification, point mutatems$ structural
rearrangementq3). Tumor suppressor genes atgpically deleted. New generation
sequencingNGS)has highlighted great genetic diversity in lung cancer. Lung ca&oee
of the most genetically diverse cansly the number of different mutations identified. Some
of the most commomutationsin lung cancer arelentified inBRAF, EGFR and KRAS
pathway.These findings wereonfirmed by NGS. In addition to the$¢GS analyses have
also identifiedow-frequencyput recurrent mutations iDDR2, ERB4, FGFR1, JAK2, RET
(4). While NGShas been tremendously useful in identifying and catalogjirte different
geneticnutationsn lung cancer, one of the main challengasiderstandingvhich of these
mutations have functional consequencasd are therefore considered to the driver
mutations. On the other hand, it is also essential to idemhifgh of these mutations don't

have functional consequences but are more mere bystandenegrabsenger mutations.

1.2.1KRAS
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KRAS gene encodes a-@otein andit is one of the three oncogenes in RAS
family, together with NRAS and HRAXras' primaryfunction is the downstreasignal
transduction upon binding various growth factors and activation of the MAPK pathway.
Through MAPK pathway activationkK RAS regulates cell proliferation, differentiatipand
survival (5). In the quiescent forfKRAS binds GDP upongrowth factor binling, GDPis
exchangedo GTP, and KRAS is activated After completing its function of activatine
MAPK pathway, GTP is hydrolyzed to GDP. Activation mutasioh KRAS arethe most
commonly observed mutatiein lung cancer (with being observed in28% of cased)p).
These mutations disabdetivated KRASGTP's inactivatioto KRAS-GDP, making KRAS
constitutively activated, which results in the constitutive activation of the the MAPK
pathway KRAS mutatiors arecommon for lung adenocarcinopfeweverthey are rare in
small cell lung cancer. RAS mutatiors arealso more common ithe westernpopulations
thanin Asian populationsindthey aremore often seen in smokers and males. Interegtingl
KRAS mutationsare rarely seetogetherwith EGFR mutatios in the same patientd).

This could be because these two mutations would have the same result of activating the
MAPK pathway. Even thougkRAS mutations are common in lung cancer and might seem
to bealucrative therapeutic targetheclinical trials forKRAS-targeted therapies have been

disappointing.

1.22EGFR

EGFRgene codes for the transmembrane tyrosine kinase receptor. Upon binding the

epidermal growth factornt leads to receptor dimerization and activation of the tyrosine
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kinase domain and downstream signal transduction. Signaling pathways activatédriRia E
are Pi3k/AKT/mTOR, RAS/RAF/MAPKandJakKSTAT. EGFRssignaling controls cellular
proliferation, survival, differentiation, neovascularization, invasiand metastasi¢3).
Activating mutatiols in EGFR lead to constitutive tyrosine kinase activation. EGFR
mutations are found in 15% tfie Westernpopulationandin about 406 of patientdn Asian

populationg8).

1.2.3Tumor Suppressors

The tumorsuppressor'grimary function is the control of the cellular growth and
proliferation in normal cells. For succesisfumorigenesigumor suppressor genes and their
expression and function are like bre#tkat can halt the cell cycle and induce apoptdsis
overcome thishurdle tumors need to lose both copies of the tumor suppressos.gene
Usually, one allele is inetivated via mutatiomr epigenetic silencing, whilthe other copy
is lost through loss of heterozygosity (LOH). In lung cantte® most commonly deleted
tumor suppressorare TP53, retinoblastoma 1 (RBIgnd serinethreonine kinase 11
(STK11), CDKN2a,FHIT, PTEN. Deletion of the genomic region 17p13, where Tp53 is
located, is one of the most commlang cancer eventsvith a 90% incidencan small cell
lung cancer and about 65% NSCI®@). Tp53 encodes fahe gene that responds to stress
induced bydamaged DNA. Upon activatipp53 functions as the transcriptitactor, which
controlsthe expression of mangifferent genes The primary function of those geness
stalling the cell cycle and activation of the DNA repair or apoptagen identificatiorof

the cellular stress and DNA damgde).
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1.3Non-small cell lung cancer (NSCLC)

Lung cancer isa heterogeneous disease, which can be divided braattiytwo
different classes: small cell lung carcinof®CLC) and nomsmall cell lung carcinoma
(NSCLC) Lung cancer can be dividadto these two subcategories based on the cell of
origin, which in NSCLC is the lung celyhereasn SCLCit is the neuroendoare cell.
NSCLC is the most common lung cancer subtype, with more than 80% of all lung cancer
casesNSCLCcan be subdivideohto lung adenocarcinomaguamous cell carcinomand

large cell carcinoméll).

‘ Lung cancer ‘

15%l lss%

‘ Small-cell lung cancer Non-small-cell lung cancer
30%lv 70%
Y
Squamous Non-squamous
10% 90%
\ ]

Adenocarcinoma
= Mixed subtypes
= Lepidic (hon-mucinous or

v mucinous)
= Acinar
Large-cell carcinoma = Papillary
= Large-cell neuroendocrine| | » Micropapillary
carcinoma = Solid

Figure 2. Lung canceaassification (11).
The primary function for the lungs the gas exchang&here oxygen isaptured,

and CQ s releasedBecause lurghavedirect interaction witlthe environment through the
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air we breathe, lungcells can accumulate differemutationsdue toexposure tovarious
mutagensin addition to thisinflammation inthelungs due to different irritants coming in
contact with alveolican increase the risk afevelopingcancer. Due to environmental
exposure, lung cells can start to change (gealétiand epigeneticallythese changes are
usually observed in the localized area called field defdwt firsthistologically observed

step in lung carcinogensisis the atypical adenomatous hyperplasia (AAkyhich is a

benign andoreneoplastic change. After AAH, further progression to metaplasia, dysplasia,
carcinoma in situ, and advanced carcinoma in lung cancer can be obd@ye&tbme of

the most common oncogene mutations detected in NSCLC are mutations in EGFR and ALK.
The mat typical mutations for the adenocarcinomas NSCLS subtype are the KRAS
oncogene activation. In addition to these oncogenes, Sox, PIK3 CA, Keapl are among the
most common oncogenes being mutated in the NSCLC adenocarcinoma subtype. When it
comes to tumorugppressor mutations in NSCLC, we can observe that Tp53 and Rb1 are the
most common tumor suppressors to be deleted. Even though these oncogenes and tumor
suppressors are the most common genetic alternation seen in NSCLC adenocarcinomas, it is
worth emphaging that NSCLC is a highly heterogeneous disease at the genetic and
epigenetic level.

Furthermore, we can observe this heterogeneity at different levels; we can observe it
at the intratumoral level (e.g., different mutations observed between primaryrtana
metastatic lesion) and inttmmoral level (different mutation observed among different
patients). We can also observe that even in the primary tumor, we can have different genetic

clones. These different genetic clones can be observed at diffenenpaints (temporal
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heterogeneity), or in different areas of the tumor (spatial heterogeneity). In addition to
genetic and epigenetic heterogeneity, we can also observe that tumor microenvironment can
be heterogeneous, and this can be observed at ba#untoral and intetumoral level.

This heterogeneity also has functional consequences, as we know that one of the features of
the NSCLC is the extensive interaction with stromal components, where tumor cells need
VEGF, HGF, and SHH for their growth, anhich are being provided by the stromal
components(13)

NSCLC treatment is divided into three categories, which depend on the tumor stage
at the time of diagnosis, its histological cell type, and molecular profile. Based on these
categories, NSCLC tumor anagement is classified as resectable, locally advanced, or
advanced NSCL(CL1). The standard treatment for the resectable NSCLC is lobectomy. For
the locally advanced NSCLC, multimodal therapy is the primary option, where sequential
chemotherapy is comba with radiotherapy. For the advanced stage, NSCLC therapy is
usually personalized based on the genomic mutation profile and the histology of the tumor.

The most common treatments are targeted therapies against EGFR arftl4A\LK.

1.4Mouse cancer models

Before developing mouse cancer models to study cancer, cancer researchers were
using cancer cell lines, of both human and mouse origins. While the use of cancer cell lines
helped define oncogenes and their function and had a role in understanding the piroces
cancer transformation, the use of cancer cell lines had a few important limitations. Primarily,

these were ex vivo systems, and therefore the physiological aspects of the tumorigenesis
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processes were missing. In addition, studying tumor developnsenglbas studying tumor
interactions with stromal cells in these systems was not possible. Some of these concerns
were addressed with the xenograft models, where cancer researchers could transplant human
tumor cells into the immunocompromised mice. Evesugh this enabled in vivo studying
of the tumor development, one of the main issues was that the immune component was
missing. We know now that the immune system plays one of the crucial roles in tumor
development(15)

Genetically engineered mouse mod@BEEMMS) helped overcome these hurdles.
There are multiple different ways to induce cancer in genetically manipulated mice. First
unofficial GEMMS were transgenic mouse models such as MNVIy¢, which confirmed
that oncogenes could promote tumorigenesiviuwo. (16) After that, the discovery of
homologous recombination in mammalian cells and the development of the methods for
manipulating the mouse embryonic stem celmirredfurther development of the first
GEMMS. In these first GEMMs, it was possible to deletegbeetic sequence of interest,
creating knockout mice, or insert an exogenous genetic sequence of interest, creating knock
in mouse model§l7). These models enabled understanding of the ways deletions of tumor
suppressor genes, such as tp53 and Rb, éfiectr development. These studies showed that
deletion of the tp53 increases chances of developing tumors. The next development in
GEMMs was the use of conditional and inducible mouse models. One of the most famous
models is the CHoxP recombination sysi. In this model, Cre recombinase performs site
directed DNA recombination between two-Bg loxP sites(18) The significant advantage

of this model is to study gene function in a «gikcific manner. In addition, inducible
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models as the Tehducible ystem allowed examining gene function in the temporal

fashion.

2. Cancer heterogeneity

2.1 Genetic heterogeneity and clonal progression

Genetic heterogeneity in tumors is one of the fobservedaxes of tumor
heterogeneity. Some of the early warkes back to Nowell in 1976, where he strongly
advocated for the stepwise acquisition of mutation during tumor progre$sidher, he
proposedthat two main forces, acquired genetic instability and selection process, act
together and result in advance@ncer. Healso noted that advancedtumors are
karyotypically and biologically highly individual and that perhaps each patient tumor would
require unique treatmenfl9). His work also hintsat the idea of the intertumoral
heterogeneity tumors of the samg/pe having different genetic mutatiorGur current
understanding of tumor growth and progression is bas&buarell'sinitial theories, which
were latersupported byexperimental proofrom Vogelstein and others. In their seminal
work, they have shown #h colon cancer progression is a stepwise process, where tumor
cellsacquire novel mutations to advancedtienext stage of progressi@go).

In cancer, we observe a spectrum of different mutations, from single nucleotide
mutatiors to whole genome multiplication2). These mutations provide tlsabstrateon
which selection can act upon it in Darwinian fashidaringtumor evolution with selective
pressure, the fittest clones are selected, which grow and dominate other clongk #w

called selective sweeps. Selective sweeps can be repeated numerous times during tumor
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progression, indicating that most tumors will have multiple genetic clones during their

lifetime and that clonal evolution is one of the shaping forces duringrtprogression42).

@ Driver heterogeneity b Incomplete clonal sweep € Clonal sweep Y -
in small lesions i Qo= A
— L 0/
~ - L~ \ A~ A_ S \ A
\ \ € § N \ \ g, W P T A \ ,1]
— NN O A ! Y2~ A ) P |
\ ©[e Vo) { O )0) \ LHCROYD ‘
<o > ~— (\o‘ S o ° — — oA
—te) T . ) e “~N
Competing driver Pink subclone Pink subclone drives light
subclones arise expands blue subclone to extinction
Time
O Tumour cell subclone with driver mutations A and B O Tumour cell subclone with driver mutations A B and C
<9\> Tumour cell subclone with driver mutations A Band D ’V > Tumour cell subclone with driver mutations A B, C and E

Figure 3. Depiction of the genetic evolution in cancer (23)

With the development of NGS and its application to oncology in the last decade, we
now have a much better understanding of tumor genetic heterogeneibhepanevalence of
clonal evolution. Human tumors can harbor very few mutati@4y, (o hundreds of
mutations, as we observe in human lung adenocarcing®&8). Further, it has also been
shown that not all mutations observed in cancers have the same importance for tumor
progression. Based on their role in tumor growth, mutations haveddeded into two
distinct classes: driver and passenger mutations. Driver mutations are defined as mutations
that contribute to tumor growth and progressitm contrast, passenger mutations are
bystander mutations, whiadon'tplay an active role in tumarowth and progressiof21).
Driver and bystander mutations show patterns of intratumoral and intertumoral

heterogeneity. It is also worth noting that most ofseguencing féorts havebeenmadeat
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the "bulk" level by sampling populations of cell§herefore we still don't have a full

understanding of the extent of thetualgenetic heterogeneity.

2.2 Tumor microenvironment (TME) role in tumor heterogeneity

The wumor microenvironment (TME)s the environment around tumor cells
consisting of the cellular (blood vessels, immune, stromal, and parenchymal cells) and non
cellular (extracellular matrix, signaling molecules) components. Spatial heterogeneity is one
of the main features of the TMEirst observations about spatial heterogeneity came from
pathology reports that observed differences in the type, number, and position of tumor
infiltrating lymphocytes (TILS) in cutaneous melanoma. Further, they have shown that
tumorinfiltrating lymphog/tes can have a predictive survival value as well. Similar findings
have been observed in many other cancer ty8s (

TME has been recognized as one of ¢h&cal playersessentiafor tumor growth
and progression, tumor metastases, therapy effiaachresistancéor exampleit hasalso
beenshown that chronic inflammation can result in oxidative stress, which in itself can
induce DNA mutationsand therefore provide additional substrate for the tumor evolution,
and aid tumor progressioin glioblastomas, the spatial heterogeneity of the TME was
shown to be aligned with theumor's genetic heterogeneity. Cancer cells with EGFR
amplifications tend to be near hypoxic or poorly vascularized areas, whereas cancer cells
that have amplified PDGFRA areareblood vessel28). For cancecellsto metastasize
the first step is to leavilae primary tumor. Along those lines, it has been shown TE

is different at the invasive and namvasive edge of the primary tumofgdditionally, it has
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beendemonstratedhat TME can bean essentiafactor in inducing EMT, as well as
influencingdifferentiation in tumor cell§29).

The contributiorof the TME to the tumor heterogeneity can be seen as analogous to
theenvironment'sole in natural ecosystems the previous example, we could be thinking
about the ecosystem where there is a river (blood vessel) vs. the ecosystem whera there is

desert, for example.

2.3 Cancer Stem Cell (CSC) hypothesis

The basic premise of CSC theory is that therepdmenotypic differences among
tumor cellsthatareessentiafor tumor growth and progression. CeNgh CSC features are
thought to fuel tumor growth because they cansgiew andnaintainthe CSCpool, or
they can differentiate and add to the tumor-@&8C. Non-CSCsarethought tohave the
ability to increase and for most cancer types, they would make up the bulk of the .tumor
The CSC hypothesis proposes a hierarchy among cancer cells, similar to the hierarchy in
normal tissue. If the CSC were analogoto a normal stem cell, nd®dSC would be
analogous to transamplifying and/or differentiated cells in normal tissue.

The first experimental evidence for the existencénefdancer stem cell (CS@ps
found in acute myeloid leukemi@AML). In AML, a cdl populationwith hematopoietic
stem cell(HSC) surfacemarkers(CD34'CD38) can reconstitutéhe original tumor when
transplanted to the immunodeficient miceaitimiting dilution assayBy contrast, other
cancer cell populations, whiatidn't have thes markers, show limited tumanmitiating

capability 9). This initial work highlighted that CSCs have two different traits:
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1 tumor initiation properties when transplanted into micdicatingthat only
a few of these cells are enough to initiate a tumor

1 capacity to generate other cellular subpopulations as well as CSC population
(they can both differentiate and sedihew)

In addition to observing CSC in liquid cancers, G3fave alsobeen okerved,
isolated and studied in solid cangeawith breast cancer being one of the most thoroughly
researchedolid cancersin breast cancethe CD44*CD24 population showed increased
selfrenewal, increagsktumorigenicity the ability to differentiatento other subpopulations,
increased metastatic potential, reduced proliferation, and reduced sensitivity to
chemotherapy3l). Not all CSCs have reduced proliferation, but those with similar features,
albeit different markers, have been identified acrosiiphe solid and liquid cancer types
(32).

Despite being able to detect CSC in most tumor tythe§;SC theory still facegigorous
debate in the scientific community. One of significantproblems with th&€ SC hypothesis
is that CShasbeen defined based particularexperimental condition§.he mostommon
experimental set up used to study &stCSC are:

- Tumorosphere assay, whidbststheability of cells to proliferate ir8D conditions

- Transplantation assay whertartorinitiation is testedn immunodeficient mice
Transplantation assays were thought to be the gold standard for testing CSC. However, it is
essential to note that the transplantation assay only tests theitutiading capability of
the cancer cells and camly be tested in a permissive environment. Most CSC models to

date have been xenograft models, where human cells are transplanted to
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immunocompromised mig@3). Studies done on AML, melanoma, lung, and breast cancer
CSC have unequivocally shown that there the mice are immunocompromised, the higher
the number of CSCs detecté). An additional layer of complexity arose with the CSC
surface markers and their variability from patient to patient or cell line to cell line, making
CSC theorysomewhaprodematic and dispute(B5).

Hierarchical/ Cancer stem Clonal evolution/ Stochastic
Cell model model

)Self renewal

Differentiated cells

Progenitor/ stem \ l 1% mutation

. ., Differentiated
Gmutated stem cell
Mutated

rogenitor/
gtergn cell \ l 27d mutation

ﬁ Cancer cell

l Dedifferentiation

Differentiated

=

Self renewal

Cancer stem cell

Cancer cell

Cancer stem cell
Cancer cell Cancer stem cell

Figure 4. Depiction of differences between cancer stem cell hypothesis and clonal
evolution/stochastic model (36).

2.4Phenotypic plasticity
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In theprevious chaptemwe outlinedthe CSC hypothesis amabtential problemsvith
it, including that CSGdentity is definedby the experimental set up we have us&i$o,
another problem is that we hawapplied our understanding of the normal stem cell
differentiationdirectly to the CSC hypothesis. In this particular casee hawe kept our
uncompromisingvision of the differentiation of the normal stem cell to differentiateits,
where the differentiation happens throwgberious of strictly defined stagasd in a more
controlled microenvironmentHowever, it iscrucial to outine the outstandingquestions
about the CSC hypothesis

1. How confidentare wethat differentiation in normal tissue occurs through rigid and
defined stageersus being a more continuous pro@ess

2. How do we know thatancercells would follow this particular rigid trajectory even
if theywerecorrectin the fird place?

3. Are the transitions between CSC and 1@®C always unidirectional from CSC to
nonCSC? Or are transitions bidirectional?

Roesch et al. have shown in melandiraet CSCglon'tfollow the hierarchal model,
and they have observed transitions from-@8C to CSC. Using H3K4 demethylase
JARID1B as a marker of CSC, they observed that JARHIDAdEIs could give rise to
JARID1B+ cells. Further, they have also shown that expression of JARID1B can be
switched on and off in a reversible fashion and that oxygen levels can control the switch
(37). Their dynamic stemness model was one of the first demonstratitmspifenotypic
plasticity of cancer cells, where the catrenvironmental stimulus cells can switch from

one state to the other.
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Using breast cancer as a model, Chaffer et al. showed that some subtypes of the breast
cancergdon'tfollow the classical hierarchical CSC model, where transitions from CSC to
nonCSC are unidirectionalln this work they haveshownthat in some types of breast
cancer nonCSC could give rise to CSOhese transitions were instigated with TGFb.
However, it is essential to underline that A@8C to CSC switching was not observed In al
types of breast cancer. Breast cancers that showed bidirectional transitions also had bivalent
chromatin on the promoter of Zeb1. Breast cancer cells that were in a locked state, and which
were not able to switch back and forth, had repressed chromatiks nand DNA
hypermethylation on Zeb1l promot(88). These two seminal papers suppib plasticity
theory, which stateghat cancer cells can adapt to new environmental signals and switch
their phenotypes without changing their phenotype.

Phenotypic plasticity was also observed in dregjstant cancer cells. Using cancer
cell lines, Sharma et al. detected a small subpopulation of the reversibl®lénagt cancer
cells. The drugolerant cancer cell phenotype was transitional, and it elmematin
mediated39).

Cancer cell plasticity seems to occur in cells that have a permissible epigenetic
landscape and correct external cues. However, it is essential to ask why some cancer cells
have the right epigenetic landscape, and ottiend One of the factors could be the cell of
origin for the particular cancer. Chaffer et al. showed in their work that only basal breast

cancers, not luminal ones, show phenotypic plast{ddy.
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2.5 Consequences of tumor heterogeneity
Tumor heterogeneitysiomnipresent, and fosterstumor evolutiorby:
1. Providing genetic and epigenesabstratesipon which selection and Darwinian
evolution can act, thus giving the advantage or disadvantage to tumor growth
2. The interaction of mltiple genetic or phenotypicloneswith each other t@nable
tumor growth and progressioRor example, in lung adenocarcinoma, niche cells
provide WNT ligands to CSC41).

In addition to fueling tumor growth and progression, tumor heterogeneity is one of
the biggest challenges in medicine, playing a key roliagnosis, treatmenand clinical
outcomesFor example, in metastatic colorectal cancer;BGR treatments shoefficacy
in patients with KRAS wiletype subtype tumors. Howevar,patients with mutated KRAS,
thesetreatmentdhiave subpaeffectivenes$42). In another exampleances withoncogene
addiction are addicted to particulanutations thatcould be used as their vulnerability.
Melanoma patient&ith a BRAF mutation are sensitive to treatment with BRAF inhibitor,
while patients that have melanoma with wild type BRAF are resistant to this treafi®ent (

Therapy response and resistance can pbafoundly affected by intratumor
heterogeneity. If we think about therapy as a selective pressure, when appaadselect
for the fittest tumor cells, enaby the growth of the selected clones and relaps¢he
disease. In our previous examplem@RG which has KRAS wild typeanttEGFRtherapy
can lead to the relapse of the disease, where we observe mutated KRAS. In addition to
geneticheterogeneity, it haseen showras well that CSCOn generalare more resistant to

therapy 44). In breastcancer, it has been shown that breast C&have low levels of
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reactive oxygerspecies, which iturn protect them agastradiation 45). CSC in CMLhas
shown to be more quiescent and less proliferative comparedit€@SC which protects

them against imatinikg drug thamostly targed proliferating cells 46).

3. RNA sequencing and single cell genomics

3.1 Overview of RNA sequencing

RNA sequencing (RNAeq) methods were developed in 2@88). RNA-seq was
primarily appled for measuring the mRNA levels at the cell population level, also known as
bulk RNA-seq. Bulk RNAseq enabled measuring and comparing gene expression programs.
In recent years single cell RN#eq was developed, which enabled reading gene expression
at the single cell level. This greater resolution allows researchers to move from the gene
expression on the level of population of cells to a single cell gene expression level. It allows
agreater understanding of the fundamental unit of life: a cell. In addit methods
measuring the mRNA levels, some methods are able to measure mRNA that is being
transcribed or translated. Also, some methods can sequence the structure of theh®@NA. T
most recent development in the fields is the invention of the spatiattiptomics, which
enables spatial sequencing and identifying gene expression in the t{43jes.

RNA sequencing starts with the preparation of the sequencing library. Library
preparation will depend on the sequencing platform. There are three diffextirads for
RNA sequencing: direct RNA sequencing (Oxford nanopore), long read sequencing
(PacificBio), and short read sequencing (lllumina). The most commonly used sequencing

platform is the shontead sequing. Library preparation usually starts with tiMAR
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fragmentation, followed by reverse transcription and cDNA synthesis with, or followed by
adaptor ligation and PCR amplification. The last step is the size selection of the library. The
main advantage of the shedad sequencing is the high throughpfittee methods. In
addition, short read has been shown to be extremely robust at both inter and intra platform
level. This is essential characteristic because RNA is a highly unstable molecule and

degrades easily outside of the cell.

3.2Single Cell Genomes- Overview

The cellis the fundamental unit of life. Sint¢ke discovery of thecell in the 18"
century, and with the discovery of the microscgmentistdhave extensively studied single
cells. Inthe last 20/30 yearswe have seem significant expansion of the methods for
studyingsingle-cellmeasurements, such as flow cytomeingFISH. Howevertheproblem
with most of these approaches is that they provide limited information: uswallgan
measurea few features (RNA, proteinat once in each celllThe rapiddevelopment of
sequencing, especially NGS, has enablgdntistgo collect thousands of features from the
cell, alsoknownas genomescale approaches. However, most of gensoade approaches
were done at thpopulationlevel, which means that we were sampling thousands of cells at
once and recording populatiorgenomescale features. Trying to bridge genorseale
approaches with single cell resolution has fugtedevelopment of single cell genomics.
In the last few yearsavailablecell genomics metha@havetremendously developed and
enabled us to studgells at both single cell resolution and genome scale, where we can

collect thousands of features simultaneously for each cell.
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Figure 5.Comparison between bulk RN#eq and scRNAeq (48)
3.3 Single Cell Genomics Development

A typical cell contains around 1®80pg of total RNA with mRNA being
approximatelyl-5% of the total RNA in the cellThus the amplification of the input material
Is a crucial step to obtain sequencing input requirements. For the generatomolef
transcriptome amplification (WTAh scRNAseqtheinitial method used oligdT primers
followed by ligation adapter PCRY). However, this approach h8thias due to insufficient
first strandsynthesis. To overcome this issthlee Smartsed® method was developed, which
enablel us to profile fultlength mRNA. For the first strand synthesis, SrsatR usesa
templateswitching mechanism to anchéineprimer binding site on th&#cDNA and MMLV
reverse transcriptase. After that, cDNA is amplified with P&@Rithesequencing library is
prepared usinthe NEXTERA kit (50).

Additionally, the method was also automatized by usthg Bravo robot, which

significantlyincreased the efficiency and consistency of the protd¢ta.advantagesf the
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Smartse approach are that we can detect multiple transcript isoforms, as well as SNPs.
However, due to PCR amplificatiospme PCR biasesmeintroduced. This particular issue

can be overcome by using UMI (universal molecudantifier or barcodg which corrects

for the PCR amplification biases. Anoth@oblem is that template switching @shighly
inefficient process, and therefore lowdxpressedranscriptscan be difficult to dedsct. A
parallel methodo Smartse@®, called CELseq,wasdeveloped to overcome PCR biabgs

using in vitro transcription (IVT) to amplify mRNA51). An additionalproblem withthe
Smartsec method is that théigh throughput was low (arouna few hundred cells per
experiment), due to not being able to pool samplef®re the final step of the library
preparation. With the development thfe application of microfluiits, this problem was
solved. Microfluidic approaches use droplets to separate samples (cells), and each droplet
has a unique barcode, whishincorporated irthe firststrandsynthesis during the reverse
transcription step. Early barcoding of the ca@tsblesthe pooling of all of the samples
together andhcreaseshe throughpubf the method. Initial droplet methods wéyeop-seq

andInDrop, and today 10x is the commercial version most widely (52d

3.4 Single cell RNA sequencingnalysis

The first step inthe scRNA-seq analysis is thenapping of the reads or the read
alignment. This first step is the crucial step for the downstream analysis. Read alignment is
also a useful QC metric of the overall quality of the scR4 data. Since this process is

the same fothe bulk RNAseq, there are no differences between alignment approaches when
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mapping the reads of the scRM#&q data. We can divide read mapping algorithms into two
subgroups:

1 Spaceeseedndexing based algorithms such as TopHat2

1 BurrowsWheeler transform based algorithms such as Bowtie, HISAT
The mapping algorithms' primary function is to accurately map the sequence to the reference
genome and do it promptly (to be fast enough). Accordim a comparison done by
Engstrom et al., which evaluated 26 different mapping algorithms, there is no perfect
algorithm; some of them will be more accurate, while others will be able to perform mapping

faster, but with more erroré3)
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Figure 6. Overiew of the analysis of the scRNgeq data. (54)

After mapping the reads to the reference genome, transcript expression quantification

is the next step. Depending on whether the used seBadmethod is the whole transcript
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or the 306 or dbsbauld eiused. Expressian, ombettrangcripts' abundance,
is usually calculated in reads, or the fragments per kilobase per million mapped reads, and/or

transcripts per million mapped reads. Some of the most common tools used for this are the

Cufflinkso r RSEM. | f the method is 306 or 56, UMI

of the popular tools for quantif®ation of

One of the scRNAeq methods' main limitations is that starting material (NRNA
captured) isn low quantities (approximately every mammalian cell has a total of 360,000
MRNA molecules, which is up to 3% of total RNA in a cell). This will increase technical
variation in comparison with the bulk RN#eq methods due to low capture efficiency, the
bias of transcript coverage, and sequencing coverage. In addition to these effects, biological
variation is also much higher when using scRbEyg than bulk RNAseq methods.
Biological variation is different because we look at single cells compared to aderag
transcriptomes of thousands of cells. And, additionally, the process of isolation of the single
cell can be damaging to many cells, leading to cell death and stress, among other effects. It
is also crucial to note that our sorting methods (or the niisdiés methods) sometimes
capture multiple cells instead of a single cell, which results in inaccurate data.

With these limitations in mind, quality control of the scRIN@q data sets is of
paramount importance to avoid misinterpretation of the dataewA rhetrics should be
implemented in removing scRNgeq data:

1 Cells with very few reads per cell should be remosesl we donét Kknow
why only a few reads were detected (it could be due to capture or sequencing bias,

or cells could be dead or stsesl)

34

t

h



1 Cells with very low mapping ration should be removed (these reads might be
unmappable due to RNA degradation, and therefore this cell as the sample could be
confounding the data)

1 Cells with low numbers of mapped mitochondrial reads (we know that RNAei
cytoplasm can easily degrade, however, RNA in mitochondria is more stable;
therefore a low number of mitochondrial reads could suggest that this cell is damaged
or dead)

1 Cells with a low gene/transcript ratio (low number of unique genes detecteelin a
could suggest cell death or damage)

In addition to the aforementioned technical biases, one additional technical bias is
the batch bias, which is common for high throughput experiments. The batch bias of the
high throughput experiments, coupled witie limiting amounts of the highly unstable
RNA (as the starting material) in the generation of the scRBi\libraries, leads to one
of the major challenges in the scRM&qg analysis. The batch effect poses challenges in
analyzing data indifferent experants and different labs and platforms. Removing the
batch effect enables easier data integration and interpretation. There are few methods
developed for batch correction; however, it is important to note that many of these
methods can overcorrect the batffect. Therefore, it is possible to lose some of the
biological variation. Some of the most commonly used methods for batch correction are
the CCA (canonical correlation analysis), kBEFn@arest neighbor batch effect), and

MNN (mutual nearest neighboKb4)
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All of these QC and batch effect removal methods are helping with the normalization
of the data. Normalization of the data can be done within the sample or between samples.
For the normalization within the sample, the goal is to remove geaficbiases, such
as gene length. This can be achieved by using metrics such as RPKM/FPKM or TPM.
The goal of the normalization between samples is to equalize the differences in the
sequencing depth and coverage.

After the normalization of the scRNg$eq datathe next step in the analysis is the
dimensionality reduction. scRN8&eq data set usually has thousands of cells, with each
cell having hundreds to thousands of genes detected, resulting in a phenomenon called
high dimensional data. Seeing all of thisadat once is incredibly hard; therefore, the
purpose of dimensionality reduction is to project this data into lower dimensional space
by preserving some key properties of the original data. There are two different ways to
reduce data dimensionality: usirigmear on nonlinear approaches. PCA (Principal
Component Analyses) is one of the most commonly used linear approaches to reduce
dimensionality tSNE and UMAP are methods for nonlinear dimensionality reduction
(56).

After this step, the next important stepthe identification of different cellular
subpopulations. One way to do this is to cluster scFEé in a way that enables cells
that are alike to cluster together. There are two approaches to clustering:

1 We have the prior information on the cellularrikexs and by using them,

and we can cluster the cells based on their cellular markers, for example
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1 Unsupervised clustering where we can use the computational approaches for

the identification of the novel cell subpopulations.

Algorithms for theunsupervised clustering can be divided into these four categories:

)l

)l

Densitybased clustering
Graphbased clustering
Hierarchical clustering

K-means clustering

Cells

Cluster a

Clusterc

Clustera ] Cluster ¢
Cluster b

Figure 7. Depiction of how clustering works with discrete cell types (57)

After the identificaibn of different cellular subpopulations, the next step is to

understand the differences among different cellular subpopulations. In ssBiNA

we measure the mRNA levels; therefore, comparison in gene expression is an

important analytical metric to lookt.aThe difference in gene expression is an

important metric for understanding the function of the cellular subpopulation and

identifying markers that can help us isolate a subpopulation of interest to further
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study in the reductionism approach, for examfiles important to note that SCRNA

seq has high technical noise, emphasizing high dropouts, which can significantly
disable the use of the DEGs method developed for the bulk-s&gAanalysis.
Therefore, there have been developed additional secBR&PDEGanalysis methods

such as Census, DEsingle, MAST, and SC[@) As with most of the methods,

each of the approaches has advantages and disadvantages, shown in a comparison
done by Soneson and Robinson. In their comparison, they have compared 36
different approaches and found measurable differe(s8}.

In addition tothe aforementioned technical noise, there is also considerable
biological noise. Bulk RNAseq analyses measure gene expression programs across
many cells, giving us gene expression programs of the different cellular
subpopulations and states, and prob#&bbertain degree measures the most common
gene program in cell subpopulation. However, we know that gene expression
programs for particular cell states are not rigid; rather, the cell state is somewhat
dynamic. We should talk about cellular states andcebtlar state (singular). To
analyze the cellular states' dynamics, transition methods for inferring and modeling
cellular trajectory and pseudotime have been developed. Using these methods, we
can put cells ordered on the trajectory from the beginwitiget end of the trajectory.

By doing so, we can identify stem, progenitor, and differential cellular states. We
can also infer the key molecular underpinnings for the transition between states by
comparing and analyzing DEGs during the trajectory. Obdetnagectories can be

linear, bifurcated, multifurcated, cyclic, or tree structure. The most commonly used
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methods are Monocle, Optimal transport, Waterfall, Wishbone, TSCAN, and RNA

velocity. (59)
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Figure 8. Modeling continuous cellular states. Usirgpyalotime or trajectory

analysis helps with modeling of the continuous cell states. (57)
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Chapter 2

Results

Emergence of ahigh-plasticity cell state during lung cancer evolution

This article has been published in

Marjanovic, N. D., Hofree, M., Chan, J. E., Canner, D., Wu, K., Trakala, M., ... & Hudson,
A. (2020). Emergence of a highasticity cell state during lung canaarolution.Cancer

Cell.

SUMMARY

Tumor evolution from a single cell into a malignant tissue comprised of diverse cell
populations remains poorly understood. Here, we profiled single cell transcriptomes from
genetically engineered mouse lung tumors at seven stages spanning tumor profyoessio
atypical adenomatous hyperplasia to lung adenocarcinoma. The diversity of transcriptional
states spanned by tumor cells increased over time and was reproducible across tumors and
mice, but was not explained by genomic copy number variation. Caglteprogressively
adopted alternate lineage identities, computationally predicted to be mediated through a
common transitional, higplasticity cell state (HPCS). HPCS cells prospectively isolated
from mouse tumors had robust potential for phenotypictmg and tumor formation, and

were more chemoresistant in mice. Putative HPCS cells prospectively isolated from human
patientderived lung cancer xenografts displayed high plasticity and tumor sfameriag

capacity. The HPCS program was associated watior survival in human lung
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adenocarcinoma and across human cancers. Our study reveals transitions that connect cell

states across tumor evolution and motivate therapeutic targeting of the HPCS.

INTRODUCTION

Tumors are cellular societies in which tpbaenotype, or state, of each cancer cell is
influenced by multiple celintrinsic and celextrinsic factors. Defined cellular states
observed in cancer, such as cancer dikencells (CSCs) and epithelitd-mesenchymal
transition (EMT), can play distingoles in tumor progression (Batlle and Clevers, 2017,
Chaffer et al., 2016; Kreso and Dick, 2014; Marjanovic et al., 2013). Moreover, the diversity
of cancer cell states within tumors poses a challenge for effective cancer therapies (Lawson
et al., 2018) The nature and sequence of the genetic events that define some common
cancers have been characterized in detail over the past three decades (Fearon and Vogelstein,
1990; Hutter and Zenklusen, 2018), as have the expression profiles of bulk human and mouse
tumors in late stages of tumor progression (Ambrogio et al., 2016; Campbell et al., 2016;
Feldser et al., 2010; Winslow et al., 2011). However, our increasingly fine understanding of
genetic events occurring during tumorigenesis is not yet matched mylax sinderstanding

of the progression of cancer cell at the molecular and functional level, especially for early
microscopic neoplasias that cannot be readily detected in patients. In particular, we do not
know how diverse such states are at differenmifgaklong tumorigenesis, how reproducibly

they would arise in a defined genetic context, how the states of different cells in the same
tumor relate to, support, or compete with each other, and what role they may play in driving

tumor progression or respanto therapy.
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Genetically engineered mouse models (GEMM) of human cancer and single celb&NA
(scRNA-Seq) can together help address this gap. SciSHd& is a powerful tool for
characterizing the molecular identity of individual cells in tissues, imjuich solid tumors
(Lambrechts et al., 2018; Patel et al., 2014, Tirosh et al., 2016a; Tirosh et al., 2016b; Zilionis
et al., 2019). However, it has typically been applied to advanced tumors in humans, which
were not anal yzed o vseabilitytta imes temporal eheangdsiovai t i n g
processes that take years in patients. In particular, the spectra of cell states that exist in
advanced human tumors may represent transitions that occurred over short or far longer time
scales (Neftel et al., 2019)his limitation can be addressed by studying cancer GEMMSs,
which allow spatiotemporal control over tumor development in the context of mammalian
physiology. Moreover, in GEMMs tumorigenesis is initiated using defined genetic

perturbations, reducing exp@ental variability across individual mice.

In GEMMs of lung adenocarcinoma (LUAD), viral expression of Cre recombinase in lung

epithelial cells leads to somatic activation of oncogdRAS-G12D with or without

deletion of thgp53 tumor suppressor (refe ed t &Ko haWPé Bedél s, respect
(Farago et al., 2012; Jackson et al., 2005; Jackson et al., 20@inors rarely progress

beyond adenomas, whereas KB tumors evolve over the span of-32 weeks into

advanced LUADs. These models ately mimic human Ilung adenoma and
adenocarcinoma progression at the molecular and histopathological levels (Jackson et al.,

2005; Jackson et al., 2001; Winslow et al., 2011), as well as in their response to

chemotherapy (Oliver et al., 2010), making thewgll-suited for studying tumor evolution,
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heterogeneity and treatment responses. Importantly, the combinationkKand&P models

with a Rosa26-wro-fluorescent reporter allele&KT and KPT, respectively) enables the
comprehensivésolation of all cancer cells without the need to rely on cell surface markers
(Madisen et al., 2010; Tammela et al., 2017), which are typically heterogeneously expressed

in cancer cells and susceptible to protease cleavage during tissue dissociation.

Emerging evidence indicates that LUAD predominantly arises from a subset of alveolar type
2 (AT2) cells (Desai et al., 2014; Nabhan et al., 2018; Sutherland et al., 2014; Treutlein et
al., 2014; Zacharias et al., 2018). Here, we used LUAD GEMMSs and s<kdgfd examine

the evolution of cancer cell states initiated in AT2 cells at 2, 12, 20, ang&dtime points

in a comprehensive fashion, interrogating the progression from early lung neoplasias to fully
formed adenocarcinomas. Cells spanned multiple trmi®nal programs with growing
variability over time and presented in a reproducible fashion across tumors within and
between mice. Computational modeling of the transitions in cell states between time points
predicted a previously unknown cell state &syatransition point. We prospectively isolated
mouse LUAD cells in this state based on expression of a cell surface molecule, TIGIT, and
functionally profiled them in @limensional (3D) tumor sphere cultures and in orthotopic
transplants. We showed ttells in this transition state possess a high degree of phenotypic
plasticity and tumorigenic potential as well as substantial chemoresistance. This transition
program defined in the mouse model was also detected in cancer cells from human tumors
and had pedictive power for poor patient outcomes in multiple human cancers. Human and
mouse LUAD cells in this transition state expressed high levels of integrimtegrinU2«

cells isolated from human patiedérived LUAD xenografts displayed high plasticégd
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clonogenic ability in 3D tumor sphere cultures. Our work highlights the importance of plastic

cell states in cancer progression and in response to therapy.

RESULTS

LUAD progression is characterized by a dramatic and reproducible increase in
phenaypic diversity

To initiate lung tumors, we delivered adenoviral vectors encoding Cre recombinase under
the control of an AT2 cebpecific surfactant protei@ promoter [AdSP&Cre; (Sutherland

et al., 2014)] into the lungs dRosa26-wre+( TO )KT, or KPT mice. We isolated live
tdTomata/CD45/CD11W/TER119CD31 cells (Tammela et al., 2017) at defined time
points and performed fulength scRNASeq using a modified SMAR$eq2 (Picelli et al.,

2013) protocol Figure 1A-C; STAR Methods). To characterize malignant cell diversity
along tumorigenesis, we collected 3,891 high quality, single celledjth transcriptomes

from 39 mice at eight distinct stages of LUAD evolution, defined by genetic perturbation
and time point, starting with normair2 cells and ending with fully formed LUAD&igure

1A-C; Figure S1A-C; STAR Methods). We chose time points that reflected key stages in
LUAD progression: atypical adenomatous hyperplasia (AAKI) &nd KPT at 2 weeks),
adenomaKT at 12 and 30 weeks), at@mato-LUAD transition KPT at 12 weeks) and
LUAD (KPT at 20 and 30 weeks). We miedissected larg&PT tumors individually at 20

and 30 weeks, whereas all other samples were harvested by dissociating entire lungs

containing mixtures of neoplasias in iars stages of tumor progression.
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The single cell expression profiles spanned 12 clusters with distinct expression patterns
discovered by unsupervised clustering (Shekhar et al., 2QRi§uré S1D STAR
Methods), showing increasing cellular phenotypic dreigeneity with tumor progression
(Figure 1C, D). The growing diversity was reflected by the fact that cells from later time
points (late adenoma and LUAD) were members of a larger number of clésgense(1C,

D; Figure S1C, B and showed a more divergxpression pattern, as measured by a
decreased median Normalized Mutual Information (NMI) between the cells within a time
point (Figure 1E; Figure S1F; STAR Method3. Cells from p53 mutarKPT tumors were

the most heterogeneous, consistent with the established role of p53 in restricting cancer
progression and safeguarding lineage commitment (Kastenhuber and Lowe, 2017). For
clarity, we numbered the clusters by the extent of enrichment offic@itseach time point

in that cluster.

The increased heterogeneity during tumor progression was remarkably reproducible from
tumor to tumor within and across mice and I
progression Kigure 1B). First, all latestagg adenocarcinomas includec
subpopulations unique to this stage (clusters 10, 11, arkigl2e 1D; Figure S1E), which

represent the most advanced cell states in tumor evolution, as well as cells from all cellular

states detected at therkgr steps of tumor initiation, including the very earliest cell states

found in normal AT2 cells and in early neoplasias. Furthermore, most of the cancer cell
phenotypes were present in each of the individually rdessectedPT tumors at 30 weeks

(Figure 1F; Figure S1G. Notably, cluster 5 and 9 cells were present in every tumor
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analyzed, both across and within mice and individual tumors. Thus, in this genetically
defined animal model, tumors undergo a relatively ordered and reproducible progression of

the diversification of transcriptional states.

Diversity in gene copy number variation is not a sufficient determinant of phenotypic
heterogeneity in LUAD

We next tested whether genetic heterogeneity underlies the phenotypic diversity in advanced
adenearcinomasKPT 30 weeks), which had the largest number of cell st&iigsie 1E,

F; Figure S1E, G. Previous studies have demonstrated that the mutational landsé&pe of
tumors is dominated by chromosomal copy number alterations and that the tumots do n
develop recurrent point mutations (Chung et al., 2017; McFadden et al., 2016; Westcott et
al., 2015). We therefore inferred chromosomal copy number variations (CNVs) from each
cel | 6s-Seq prétiN &igure 1G; Figure S1HJ), using a method we previsly
demonstrated and validated in multiple human tum8mAR Methods) (JerbyArnon et

al., 2018; Patel et al., 2014; Puram et al., 2017; Tirosh et al., 2016a; Tirosh et al., 2016b;
Venteicher et al., 2017KPT cells harbored more CNVs when compared&iotumors at
corresponding time point&igure S1H, 1), consistent with previously published results and

the established role of p53 in maintaining genome integrity (Chung et al., 2017; Kastenhuber
and Lowe, 2017; McFadden et al., 2016; Westcott et al.,)201& subset of th€PT tumors

at 30 weeks we estimated DNA copy number by whole genome sequencing (WGS) of
individual tumor cells (scDNASeq) Eigure 1H, I; Figure S1K, L ; n= 3), which was highly

concordant with the scRNS&egbased inference. There wesgnsiderable interand intra
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tumoral heterogeneity in the single cell CNV patterns, which increased with tumor
progressionKigure S1H, I). Prominent shared CNVs across mice and tumors implicated

common cl onal f ounder Bigu(e G, H;FigukesSBJ)K).f or each t

We classified the CNV patterns into subtypes based on seBégpdataRigure 1H; Figure
S1K), and assigned each cell analyzed by scR34 into these clonotypekigure S1L).
Surprisingly, cell subtypes defined by CNV patterns dat directly align with the
transcriptional classe§igure 1H, I; Figure S1K-M). Specifically, cells harboring highly
similar CNV patterns were members of multiple transcriptionally distinct cludtegare
11; Figure S1L, M) and cells with different CNVand belonging to different clonotypes
can belong to the same transcriptional cluskggure 1I; Figure S1L, M). These results
suggest that substantial phenotypic heterogeneity iKt@mors is reproducibly acquired

and not simply a result of chromosahCNV.

Loss of alveolar identity and acquisition of features associated with lung progenitors,
embryonic endoderm, and epithelialto-mesenchymal transition during LUAD
progression

The 12 transcriptional clusters were associated with distixgtession signature3dble

SJ) that corresponded to known mouse cell identity programs, with more divergent states
emerging in advanced tumors, suggesting a reversal of the lung developmental trajectory
(Figure 2A; Figure S2A). We characterized each cellular subset with a signature of
differentially expressed gene3able S2; STAR Methodg, which we compared to a

published Mouse Cell Atlas sScRN8eq dataset (Han et al., 201Bigure 2A). Cells in the
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earlyemerging clusters 1 andeXpressed features of normal AT2 cells and were present in
most tumors throughout LUAD progressiorFigure 2A; Figure 1D). Distinct
subpopulations that emerged first in adenomas (clusters 3 and 4) lost some AT2
transcriptional identity, but retained feega of the lung epithelial lineag€igure 2A). Most
populations that predominantly emerged in adenocarcinomas (clusit®rar@l 12Figure

1D) had features of intestinal and/or gastric or embryonic liver epithélialinendodermal
tissues cells deriveflom the embryonic primordial gut (Cao et al., 2019; Nowotschin et al.,
2019) Figure 2A). This suggests that LUAD evolution is characterized by a loss of fidelity
of the lung lineage and emergence of alternative related fates. Indeed, features of embryoni
lineages more primitive than the primordial gut emerged in multiple subsets of lung tumor
cells during tumor progression (Cao et al., 2019; Nowotschin et al., 2BiRir€ 2B).

These changes were associated with the previously described loss of erpoé#ise lung
lineagedefining transcription factoNkx21 as well as loss of the AT2 markesétpcand

Lyz2 correlating with induction of developmental master reguladtorfga (primordial gut)

and Hmga2 (primordial gut, developing lung) (Snyder et &013; Winslow et al., 2011)

(Figure 2C; Figure S2A).

Interestingly, one latemerging subpopulation (cluster Figure 1D) bore no resemblance
to epithelial cells, adopting a mouse embryonic fibrobliast state and an expression
program consistent wit epithelialto-mesenchymal transition (EMT) (Dongre and
Weinberg, 2019)Kigure 2A). Only latestage adenocarcinomas contained a subpopulation
that had fully undergone EMT, indicating that LUAD tumors remain largely epithelial until

later stages; this i& contrast to for example pancreatic ductal adenocarcinomas, where
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EMT is detected in early neoplasias (Rhim et al., 2012). Finally, our analysis confirmed
heterogeneous expression of previously published markers of LUAD cell subpopulations

(Guinot et al. 2016; Tammela et al., 2017; Zheng et al., 20ER)ufe S2B).

A highly mixed program emerges during LUAD evolution

As our results pointed to a highly dynamic acquisition of cell states across the tumor
evolution continuum, we next explored continuchanges in transcriptional programs and
cell-state transitions. To do this, we used-m&gative matrix factorization (NMF), which is
well-suited for identifying overlapping gene expression programs in cells (Kotliar et al.,
2019; Lee and Seung, 1999; Purat al., 2017) $TAR Methods). We uncovered 11
transcriptional programs, five of which particularly highlighted gradual phenotypic changes
during tumor progressionF{gure 2D, E; Figure S2C; Table S3 Three of the five
programs were consistent with themergence of the different cell identity programs we
uncovered above: a program associated with AT2 cell features present at the onset of LUAD
development, an embryonic livBke program, and an EMT program emerging at a later

stage Figure 2D).

In additon, we uncovered two previously unknown cell programs, an early program
associated with a mix of AT1 and AT2 cell fe
program that did not match a consistent, def.
Figure2D; TableS3 . The fimi xed AT1/ AT20 p-exprgssimm was ¢C
of AT1 markers, such @$opxandPdpn together with AT2 markerSftpcandLyz2(Table

S4; Figure 2D; Figure S2A. This AT1/AT2like program may mimic common alveolar
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progeritors in development or fpotent alveolar progenitor cells in mature lungs (Desai et

al., 2014; Nabhan et al., 2018; Treutlein et al., 2014; Zacharias et al., 2018). Conversely, the

AHIi ghly mixedo program di spl aypesiranigiegdrorur es o f
trophoblast stem cells to chondroblasts and kidney tubular epith&laine(S3, suggesting

that cells in this state are capable of exploring a broader phenotypic space. Interestingly, a
subset of cell s expraogramalsogxprésted sporfioH of thérlatey mi x e

emerging EMT progranmFjgure 2D).

We identified highly specific markers for these prografigyre S2D), and validated the

presence of cancer cells expressing these programs and possible transitions by
immunostaining for key program markemssitu (Figure 2E, F), such as the Highly mixed

program (marked by claudi, encoded b¢ldn4, e.g.Figure 2E, FA 8 ) . |l nterestingl
detected cells that eexpressed markers of distinct programs, suggesting that these cells may

be in the process of transitioning from one state to another. For example, some-cells co
expressed lysozyme (encoded lbyz1l and Lyz2 andclaudin2 (encoded byCldn2 e.g.

Figure 2E, Fi 1 0) and may thus be i-like dtateaandsthiet i on b
embryonic liverlike state. Other celle(g, Figure 2E,Fi 2 0) expr es s2amd bot h ¢
claudin4, suggesting that they are in traims between the Embryonic livdike and the

Highly mixed state.

Relating the clusters and programs, we found that of the 12 clusters, cluster 5 was strongly
enriched for the highly mixed prograigure 2G, H; Figure S2B. Notably, cluster 5 cells

werepresent in both early adenomas and fully formed LUADs across all mice and tumors
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(Figure 2I; Figure S2F and distinctly expressefiic4al]l a gene associated with poor

overall survival in grade 3/4 serous ovarian cancers (Qin et al., Z0igjdy¢ S2H-J).

An optimal transport model predicts that the highly mixed program marks a high

plasticity cell state forming a key transition point between other states

Based on the timing of cluster 506s emergence
and its paicular persistence across tumors, we hypothesized that cells in cluster 5 may form

a key transition point and give rise to the heterogeneity observed in advanced tumors. To
explore this hypothesis, we modeled the likelihood of transitions betweenateB st a

temporal coupling between cells along a time course using our Waddidgtonal

Transport (Waddingte®T) algorithm (Schiebinger et al., 2019TAR Methods). Briefly,

WaddingtorOT estimates, for a set of celS a t a given ticemdantpoi nt ,
di stributiono at a | ater time point as the m:
This is estimated by transporti@according to a temporal coupling between cells learned

by the model. Similarly, thecells€ébs fianc¢cestboat i din® at an earl i e
di stribution over all/l cells at that earlier
to the temporal coupling. In our case, after learning the model over the cells in our data, we

used it to examine theonnection between cell clusters across consecutive time points, by

defining the set€ by membership in the 12 clusters in the respective time peigtie

3A; Figure S3A).

Where some clusters were transcr vipgtrisetconal A S

other states (in particular clusters 3 and 11), others (clusters 2, 4, 5, 6 and 9) had both higher
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potential to give rise to other cellular states and a substantial number of incoming
trajectories, suggesting they may be important transitamtgin tumor evolution. Cluster

5 had the most abundant and robust connections with other cellular states across the time
course Figure 3A, Figure S3A). This was evident even when compared to other clusters of

a similar fAage dirt3ori4bigute SIANGiversthisplrediciamand | ust e
that cluster 5 contained cells with a highly mixed cellular identity, we designated this cell

state a higtplasticity cell state (HPCS).

The LUAD cell subset comprising the HPCS can be prospectively isted based on

TIGIT expression

To functionally interrogate cluster 5 cells comprising the HPCS state, we queried our data
for surface markers whose expression is enriched in this stgete S2G) Surprisingly,

the Tigit (T cell immunoreceptor with I§ and ITIM domains) gene was a marker of the
HPCS subsetRigure S3B top. TIGIT is a caeinhibitory immunoreceptor typically
expressed in lymphocytes, and has been studied in the context of autoimmunity, viral
immunity, and cancer (Manieri et al., 2017}h€r markers includefiic4all(noted above),

and the pranflammatory cytokineg nfandll23a.

We validated the association betweRgit expression and the HPCS (cluster 5 cells) by
prospective isolation of TIGFKP LUAD cells from primary autochthonous tumors at 20
weeks postnitiation, followed by droplet based scRN®eq of 26,739 cells. This analysis

indicated a strong associationTiGIT- cells with the HPCS signatur€igure 3B, C, P =

3.08x10-, Wilcoxonrank-sum test). Quantitative PCR (QPCR) indicated robust enrichment
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of Tigit and the most specific cluster 5/HPCS markéedallin the TIGIT KP LUAD cell
fraction Figure S3D). We also confirmed by qPCR f&pcamthat the isolated cells were

of epithelial (tumor) origin, rather than immune celsgure S3D).

The HPCS has a distinct chromatin accessibility profile

We hypothesized that the HPCS may represent a distinct pragféeoted in a unique
chromatin state. To test this hypothesis, we profiled cluster 5 cells by performingcghgle
assay for transposasecessible chromatin sequencing (scAF8€g) on TIGIT and

TIGIT cells, along with bulk ATACSeq of matching popuians. As expected, TIGIT

tumor cells had increased accessibility at genes defining the cluster 5 sighagure 8D-

F, P = 1.8x10, Wilcoxon ranksum testjFigure S3D; Table S5. We further scored the
chromatin accessibility signaturegentified by LaFave et al. (accompanying manuscript)

and found that TIGIT cells had a higher module accessibility score for modules
characterized by lowkx2.1laccessibility (module 1), late stage of progression (module 9),
and highRunx2(module 2) Figure 3G; Figure S3B). Consistently, we found thatkx21
expression was lower in HPCS cellBdure 2C), theRunx2locus was more accessible in
TIGIT- cells (by bulk ATAGSeq,Figure S3F, andRunx2expression was higher in HPCS

cells Figure S3G). Notably, LaFave et al. identified Runx2 as a driver of the metastatic
phenotype in the primary tumors (accompanying manuscript) and CD109 signaling activity
through the Jak/Stat pathway has been shown to contribute to this phenotype (Chuang et al.,
2017). Indeedwe found that CD109 marks cluster 11 (EMHigure S2G). Thus our
findings suggest that the HPCS likely serves as a precursor to the EMT state that acquires

metastatic capacity in the primary tumor (Chuang et al., 2017). These findings are further
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supporteddy the fact that the HPCS shows partial features of mouse embryonic fibroblasts
and embryonic mesoderrigure 2A, B). Thus, the HPCS has a distinct chromatin state,
which foreshadows future transitions, such as the EMT state that is endowed with metastat

potential.

TIGIT -KP LUAD cells are highly plasticin vitro and in vivo

Besides giving rise to EMT (cluster 11), our Wadding@®h model predicted that the HPCS
cells are capable of giving rise to multiple other cell states (clusteig)ré 4A). To
functionally evaluate the phenotypic plasticity of cluster 5 cells, we isolated primary-TIGIT
cells from mouse LUAD tumors and placed them in 3D tumor sphere cultures (Tammela et
al., 2017) for 11 days, isolated live cells by sorting, and performed seRMy/Figure 4B).

As comparators, we also isolated, grew cultures, and profiled cells from (i) all TkHE}

and (ii) the EMT cell state (cluster 11) that was predicted to be fixigdre 4A), which we

isolated based on CD109 expressibiggre S3B botom).

Overall, tumor spheres arising from the TIGpbpulation had the greatest diversity of cell
states, followed by the TIGITEells (a population depleted of HPCS cells) and finally the
CD109 EMT-like cells (cluster 11)Kigure 4C, D, P <0.01;STAR Methods). In particular,

TIGIT- cells gave rise to three distinct cellular states, whereas cluster 11 cells remained
phenotypically homogeneouligure 4C, D), consistent with the WaddingtéaDT model
(Figure 4A), even though TIGITcancer cells span a @ter range of phenotypes in the

primary tumor.
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To investigate the differentiation potential of HPCS cillsivo, we next isolated primary
TIGIT- and TIGIT LUAD tumor cells by FACS from mice harboring autochthon&ifs
tumors and transplanted the subsatratracheally into the lungs of immunodeficient NSG
(NOD.CgPrkdc= l12rg=+/SzJ) mice. We harvested tumors established by the two LUAD
cell subsets 8 weeks following transplantation. We assessed the diversity of the cells both
pretransplantation and in the resulting tumors by drepéeted scRNASeq Figure 4E).

As expected, TIGIT HPCS cells were more homogenous -pessplantation when
compared to the TIGHcells Figure 4F). Yet, transplanted tumors derived from TIGIT
HPCSenriched cells had higher diversity than those derived from TiIE Figure 4G-

I; * P<0.05,STAR Methods). Collectively, our findings indicate that cluster 5 represents

a highplasticity cell state with robust potential for cell state transitionstro andin vivo.

LUAD cells enriched for the HPCS show high proliferative potential and profound
chemoresistance

Having demonstrated that HPCS cells can give rise to diverse LUAD cell states, we next
functionally interrogated their potential to pfeliate and resist therapy. Isolated HPCS
(TIGIT-) cells were more efficient at forming tumor spheres than TI€&IIS in 3D cultures
(Figure 5A, B). To examine the tumeeropagating potential of the HPCS cells, we isolated
TIGIT- and TIGIT cells from autochthonousP LUAD tumors engineered to express firefly
luciferase $TAR Methods) and transplanted them orthotopically into the lungs of
immunodeficient NSG recipient mica=igure 5C). The HPCS cells grew faster and

propagated a greater nuarlof tumors than the TIGITells as measured by luciferase signal
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in living transplant recipient mice and by quantification of lung surface nodules following

euthanasia, respectively, at 39 days following transplantéfigare 5D, E).

We next examingthe relative ability of HPCS cells to resist chemotherapy by treating mice
with advancedPT LUAD tumors at 20 weeks pestmor initiation with a single dose of
cisplatin, a component of fidine chemotherapies for advanestdge LUAD patients
(Gandhiet al., 2018; Schiller et al., 2002) and a wakaracterized chemotherapy agent in
the KP LUAD model (Oliver et al., 2010). We collected live tdTomatdAD cells at 72
hours following administration of cisplatin or vehicle control and profiled them using
dropletbased scRNASeq. We chose this time point as #ie LUAD tumors undergo a
nadir in proliferation and the peak of a second wave of apoptosis at 72 h following a single
dose of cisplatin. (Oliver et al., 2010). Annotating the fiesitment cells wh the
previously identified cell cluster labels from the tumor progression time cdtitged 1D;
Figure S5A), we observed a significant compositional difference between cells treated with
cisplatinvs. vehicle control Figure S5A-C, P < 1x10~for assaiation between cluster 5 and

cisplatin treatment, Fisherds exact test).

Cells from the HPCS (cluster 5) showed robust relative enrichment following chemotherapy,
suggesting that cells in this state may be more chemoresiBtgatg S5A-C). A similar
robust enrichment of cells in the HPCS was observed 72h following a single dose of cisplatin
and paclitaxel, the most common combination chemotherapy in the clinical management of
advanceestage LUAD (Gandhi et al., 2018; Schiller et al., 200yre 5FH, P = 6.71

x10«sf or association between cluster 5 and <ci s|
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test;Figure S5D). Out of all 12 clusters found in advand€B LUAD tumors, cells in the
HPCS (cluster 5) exhibited the lowest cell cycle scéigure S5E). The low cell cycle
score may in part explain why the HPCS cells are resistant to chemotherapies, which target

proliferating cells.

Our work demonstrated that a subset of the HPCS cells have partially activated the EMT
program Figure 2A, D; Figure S2E), and our Waddington OT model suggested a transition
between the two clusters enriched for the HPCS and cells that had fully undergone EMT
(cluster 5 and cluster 11, respectively). As the EMT cells emerge KELWAD evolution

and share features tivimetastatic cells observed by Chuang et al. (Chuang et al., 2017) and
LaFave et al. (accompanying manuscript), we performed drbpkstd sScCRNASeq on a
primary tumor and a mediastinal lymph node metastasis at 30 weeksipaostinitiation.

The mediastial lymph node was enriched for cells with the EMT (cluster 11) gene signature
(P = 5.19x16x, Fi sherds exact t es tKpcellslinnhe metastatc i ngl vy,
lesion expressed the HPCS (cluster 5) gene signaffigaré S5F, suggesting that the
HPCS may also directly play a role in metastatic outgrowths in addition to being capable of
giving rise to the cluster 11/EMT cell state with metastatic capacity within the primary

tumor.

Taken together, our results suggest thaHRES is associated with particularly aggressive
features, including high proliferative potential and drug resistance as well as lineage
plasticity that enables the acquisition of multiple distinct phenotypes, including a cell state

with the ability to metstasize. These aggressive features are frequently associated with
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cancer stem cells (Batlle and Clevers, 2017; Kreso and Dick, 2014). To interrogate whether
the HPCS correlates with known stem cell types, we performed a comparison of the HPCS
signature wih 1,197 previously published cancer and normal tissue stem cell signatures
(Figure S5G; Table S6; STAR Methods We only found significant correlations between

the HPCS and eight of these signatures, including several hematopoietic stem cell signatures,
an adult stem cell signature, as well as an embryonic stem cell signature (Bystrykh et al.,
2005; Gal et al., 2006; Gattinoni et al., 2011; Ramirez et al., 2012; Villanueva et al., 2011),
with the largest overlap including only 14 (8.24%) of the 170 gentae isignatureRigure

S5G; Table S§. These results suggest that the HPCS is largely distinct from known stem

cell identities.

Cancer cells in a corresponding high plasticity cell state are present in human LUAD
tumors and associate with poor survival

Finally, we explored the relevance of the HPCS in human LUAD tumors, finding important
correspondence to our observations in the mouse model. First, immunostaining of human
lung adenocarcinoma tissues for markers of the different programs revealed cells
representing the transitions observed in the mouse mdeéglre S6A; Figure 2F.
Additionally, an analysis of 9,543 scRN&eq profiles of malignant cells from 20 human
LUAD tumors across three published datasets (Lambrechts et al., 2018; Laughney et al.,
2020; Zilionis et al., 2019) showed that cells with the highly mixed/HPCS program
assignment were present in each of these turkagare 6A; Figure S6B-G). The AT2like

and EMT programs were also robustly detected in human LUAD ¢€etjare S6B-F).
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Importantly, in an analysis of The Cancer Genome Atlas (TCGA) bulk ¢4 data,

LUAD tumors that express the highly mixed, the EMT, anek@thelium programs were
associated with worse survival, whereas the AK€ and mixed AT1/ATike states which

were assoated with a more favorable prognodisgure 6B; Table S7;P = 2.4x10, 4.2x10

5, 3.6x10, 2.4x10, 5.6x10respectively, Cox proportional hazards modrek 4x10 in the

full model including all NMF programs). A clustbased analysis of the same€GA LUAD

data also demonstrated worse survival for cluster 5/HHEIfre 6C; Table S7;P =
2.35x10, Cox proportional hazards model). Notably, the significance of association of the
highly mixed program did not requittRASor TP53 mutations Figure S6H; Table S7).
Accordingly, highCLDN4 expression, a marker of the highly mixed state, predicted poor
outcomes in human LUADHgure S6l). The highly mixed state and cluster 5/HPCS
signatures also predicted poor outcomes in agaauter analysis across tpeoled TCGA
collection figure 6D, E; Table S7;P < 2x10<for a model including all NMFs, Cox
proportional hazards model), suggesting that features of these cell states may generally
define aggressive cancers. As in mouse lung adenomas and LUAD tuomoes,cslls
expressing the HPCS program were present in each of the 15 primary human LUAD tumors
and in five metastases examined by scRBEY (Lambrechts et al., 2018; Laughney et al.,
2020; Zilionis et al., 2019Figure 7A). Notably,SLC4A1lwas a markerfahe cell state in

both mouse and human LUAD tissué&sure S7A, B).

We next evaluated whether HPIEe cells in human LUAD tumors contained cell surface
markers compatible with flow cytometIGIT RNA was not detected in any of the publicly

availabe human LUAD scRNASeq datasets (data not shown), and we did not identify
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significant expression of TIGIT mRNA or protein situin cancer cells in human LUAD
tissues, or by flow cytometry of human LUAD patielgrived xenografts (PDXs) (data not
shown).This suggests that some features of the HPCS signature are-specigs. Instead,

we identified alternative putative cell surface markers based on the expression profiles of
human LUAD cells from the three published datasets that scored highly witmahse
HPCS signatureHigure 7A; Figure S7C; STAR Methods. In particular)]TGA2(CD49B),
encoding integrinJ2, a subunit of the integrib2b1 collagen receptor (Hynes and Naba,
2012; Tuckwell et al., 1995) was expressed at high levels in both humamoaiseé LUAD

HPCS cells Figure 7B; Table S1; Table Sk Interestingly, integrirJ2 marks a subset of
proliferating trophoblast progenitor cells during development that exhibit a gene expression
signatures with both epithelial and mesenchymal character{tfies et al., 2018) all

features of the HPCS.

We next surveyed integrit? expression in 125 human LUAD patient tissues and identified
heterogeneity in integri2 signal, with 42.4% of patients (53 of 125) with tumor samples
containing at least 10%tegrin U2+ tumor cells. Notably, 44% of patients (55 of 125) had
tumor samples with at least 10% claudintumor cells (defined as the top 15% of claudin

4 staining), and 20.8% (26 of 125) had tumor samples with at least 10% of tumor cells
staining forboth claudin4+ and integrinU2+ (Figure 7C, D). These results suggest that the
highly mixed cell state and the HPCS gene expression program overlap in human patients
and may be present in a significant fraction of patients.

Finally, we tested whether the integii2« human LUAD cells functionally recapitulate

features of the mouse LUAD HPCS, including high plasticity and capacity to proliferate. To
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this end, we isolated integrid2« and integrinU2- tumor cells prospectiwe from three
independent PDX model&igure S7D; STAR Methods) and established 3D tumor sphere
cultures Figure 7E). IntegrinU2+ cells formed significantly more tumor spheres compared
to integrinU2- cells Figure 7F, P = 0.0159; Mann Whitney test,n = 3 independent PDX
models). We also performed dropleised scCRNASeq on tumor spheres and observed that
the integrinU2+« human HPCS cells gave rise to spheres with similar transcriptional diversity
to the integrinJ2- bulk of the tumor Figure 7G). Taken together, these results suggest that
a HPCSlike state also exists in human LUAD and may have significant implications as a

driver and biomarker of tumor progression and drug resistance in the clinic.

DISCUSSION

Cancer progression is thought to be a stepwise process, in which tumors evolving under
selective pressures acquire novel mutations and drivers (Fearon and Vogelstein, 1990).
However, the relationship between the accumulation of genetic perturbationsra/ant
changes in phenotypic cell states is not fully understood. Here, we used <a&NA study

cell state changes during tumor evolution in a mouse model of LUAD mimicking the
oncogenic transformation processes observed in human disease (Jacksor?@d5al
Jackson et al., 2001), where mutations in oncogenes, sU(RAS are thought to occur

early, followed by inactivation of the p53 pathway (Campbell et al., 2016; The Cancer
Genome Atlas Research, 2014). Transcriptional heterogeneity grew dedipadiaring

tumor progression, but the process was stereotypic and reproducible across individual
tumors within a mouse and between mice, and some states were shared betWeamlthe

KP genotypes. Thus, phenotypic diversity, as captured by the transcalpsitate, emerges
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reproducibly in this cancer model, suggesting the existence of programs governing the

emergence and maintenance of heterogeneity.

One straightforward hypothesis was that this cell state variation is a direct outcome of
underlying genét variation, consistent with a model of tumorigenesis, where every step is
governed by the acquisition of a novel driver mutation (Fearon and Vogelstein, 1990).
However, the CNV patterns and transcriptional states of individual cells were not directly
aligned in the tumors from th&” model: some cells with different CNV patterns (as inferred
from scRNASeq and matching scDN8eq data from tumors) had the same transcriptional
state; conversely, cells with the same CNV pattern could be found in differesttiptional
states. Furthermore, both p53 mutant and-tyifte cells ceclustered in the eadgmerging
clusters 15. Taken together, these results suggest that additional factors besides genetic
drivers, such as the tumor microenvironment and epigedesinges, as suggested by the
accompanying manuscript by LaFave et al., may strongly influence cell states during tumor
progression. However, although robust in identifying subclones, or at least clonally closely
related cells, within tumors, our CNV detien method has limited sensitivity and does not
address point mutations. Further work employing approaches such as-hreeagg and
high-resolution sequencing would help definitively address the contribution of genetic

events to phenotypic heterogegait tumors.

Time-course sCRNASeq studies similar to our study have been performed in for example
embryonic development (Cao et al., 2019; Nowotschin et al., 2019), but not in tumorigenesis.

In contrast to embryogenesis, where new states emerge andipgesttes are lost, our
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findings indicate that during tumor progression new states are acquired, with preceding
statesmaintainedeven in advanced tumors. Our results suggest that disruption of normal
developmental programs is a major organizing priediplthe acquisition of new states: we

first observed emergence dlternative lung epithelial programs, then loss of alveolar
identity, followed by several alternative programs mimicking the primordial gut, and finally
the emergence of cells with a mesleymal state, indicating a complete EMHiure 7H).
Whereas each of these cell states emerged at a different characteristic time, all persisted in
tumors once they arose, such that more advanced tumors were composed of a growing
assortment of cells withnaincreasing diversity of states. Specifically, the earliest arising
states, including those present in benign cells, were characterized by AT2 cell programs
followed by a mixed AT1/AT2 state. The mixed AT1/AT2 cell state mirrors an aspect of
lung developrant, where AT1 and AT2 cells derive from a common bipotent progenitor cell
during early development (Cohen et al., 2018; Desai et al., 2014; Treutlein et al., 2014). We
found that the mixed AT1/AT2 cell state preludes the more prominently embryonic cell
states that have been demonstrated to emerge later in tumor progression (Winslow et al.,
2011), and parallels a mixed lineage state seen in recent work evaluating human LUAD
tumors (Laughney et al., 2020) and thus may mark a key transition point where

develpmental programs are reactivated.

Next emerge cellular states that had lost alveolar identity and displayed features of the
primordial gut (Cao et al., 2019; Nowotschin et al., 2019), a structure that develops from
embryonic endoderm. This finding is @stent with previous studies implicating down

regulation of the lung lineage#efining transcription factoMNkx2.1 and induction of
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primordial gut transcriptional regulatoidnf4a and Hmga2in LUAD progression and
metastasis (Snyder et al., 2013; Winsldvale 2011). Lineage fidelity is further eroded in

the highly mixed state/HPCS, finally leading to a mesenchymal EMT state. Overall, the
transcriptional states we observed are consistent with and mirrored by distinct chromatin
states grouped into modulekentified by LaFave et al. (accompanying manuscript) it late
stageKP tumors, including ATZike cells, AT1/AT2like mixed states, and alternative fates
such as EMT. Taken together, these results support a model of tumor progression involving
loss of lineage fidelity and extensive d#fferentiation, followed by partial differentiation

to other endoderm derived lineages, such as intestine and liver. This conclusion is further
supported by a recent study describing similar recapitulation of endoderm amd lun

morphogenesis within metastatic LUAD outgrowths (Laughney et al., 2020).

Notably, we found that phenotypic diversity has an important genetic correlate: while
neoplasias with th&T genotype are dominated by the ldiige states, notung states are
eniiched in theKPT genotype. These findings cast p53 as a guardian of lineage fidelity,
whose deletion facilitates loss of lineage identity and increases plasticity, enabling cells to
sample a broader range of phenotypic space. However, growth signalattivatiyr drive

tissue regeneration that become copted by oncogene activation upon transformation

may suffice to give rise to at least some plasticity even in p53 proficient cells, as suggested

by recent work on wound healing and tumorigenesis iskive(Ge et al., 2017).

Our analysisi leveraging NMF to identify continuously varying programs and optimal

transport to relate single cell transitions over timkighlighted one particular cell state,
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which was not similar to any defined or previousported program, as the hub of cell state
transitions in the tumor. This higtiasticity cell state (HPCS) was enriched in cluster 5, the
only cluster whose cells were present in all mouse adenomas and LUAD tumors analyzed,
as well as in scRN/Aeq profils of human LUAD tumors (Lambrechts et al., 2018;
Laughney et al., 2020; Zilionis et al., 2019). Our Optimal Transport model suggested that
trajectories connecting di stinct cel l stat e
Interestingly, we found thahé HPCS develops not only in advan¢@@s»mutant, p53
deficientKPT adenocarcinomas, but also in early stégas>mutant, p53 proficienKT
adenomas. Thus, it is the cell states downstream of the HPCS rather than the HPCS itself
that depend p58tatus or, more broadly, the stage of tumor progression: the HPCS can give
rise to more diversity and more aggressive cell states, such as EMT, in advanced p53 mutant
adenocarcinomas when compared to p53 -yifte adenomasF{gure 7H). Indeed,
prospectivey isolated cluster 5/HPCS cells frddiPT tumors produced more heterogenous
progeny and displayed higher growth potential in 3D tumor sphere cultures than cells from
either a terminalike state or from all other states combined (i.e. the TIBATSdepleed

pool of cells). Importantly, the HPCS cells also had high growth potential and plasticity

vivoin orthotopic allotransplants.

Our findings are surprising, as they do not support an intuitive model whereby lineage
switching occureadirmaguatggof ob mdfieredidteels si vely
cells. Rather, tumor heterogeneity appears to arise from a highly plastic cell state that
emerges rapidly in tumorigenesis and persists in advanced tumors. Furthermore, we found

that isolated HPCS cellsan functionally give rise to the entire diversity of observed cell
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states in the tumoin vivo, spanning a range of defined cancer cell states in established
tumors. For instance, a subset of the HRRPBressing cells partially activated the EMT
program,suggesting that the HPCS is a prerequisite to EMT. Our results evaluating the
chromatin state of the HPCS in primary tumors and sioglegene expression patterns in a

metastatic lymph node are also concordant with this conclusion. Moreover, thefresults

LaFave et.al. suggest overlap between the transcription factors governing the HPCS and the
EMT state (accomparEyMTng snaan uessc rweprte) .r eficRernet | y
and mammary tumor models (Pastushenko et al., 2018) and in head anainoeck (Puram

et al., 2017), suggesting that the HPCS may exist in other types of carcinomas.

Our data demonstrates that the HPCS arises early and reproducibly in all tumors seen in the
mouse model of LUAD. This suggests that any genetic variabilitydénatlops over time

during tumorigenesis is unlikely to fully explain the plasticity seen in this cell state, as both
early and late tumors contain the HPCS. In addition, we have annotated multiple different
clonotypes from our analysis of copy number \aorain this mouse model that map to the
same HPCS; conversely, these same clonotypes also map to other cellular states.
Furthermore, the HPCS formed a subset of LUAD cells in all 20 available human scRNA
Seq datasets, which represent multiple genetig/pebtof the disease in genetically diverse
individuals (Lambrechts et al., 2018; Laughney et al., 2020; Zilionis et al., 2019). Taken
together these results suggest that genetic variability alone is unlikely to explain the gene

expression patterns and faiomal characteristics of the HPCS.
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LUAD predominately initiates from kpotent alveolar progenitor cells that have the capacity

to differentiate into AT1 and AT2 cells (Desai et al., 2014; Nabhan et al., 2018; Treutlein et
al., 2014; Zacharias et al., 2Z8). We detected a subset of LUAD cells with features of both
AT1 and AT2 cells (cluster 3), resembling thes@dient progenitors. However, our results
suggest that LUAD cells acquire significantly more primitive states than their cell of origin,
such astates mimicking embryonic endoderm previously associated with patient metastases
(Laughney et al., 2020) and the HPCS. Thus, LUAD tumors maintain hierarchical features,
as has been previously shown by us and others (Tammela et al., 2017; Zheng £8rl., 20
but, in contrast to the hierarchy in the normal lung, the LUAD hierarchy is associated with

increased plasticity, encompassing phenotypes beyond the lung lineage.

Cell plasticity has been postulated to contribute to failure of chetaogeted and
immunotherapies (Arozarena and Wellbrock, 2019; Gupta et al., 2019). A particularly
fascinating example is the conversion of lung and prostate adenocarcinomas to a
neuroendocrine lineage, which is occasionally observed as a response to highly effective
targeted therapies against epidermal growth factor receptor or androgen receptor,
respectively. This lineage switch causes the tumors to lose dependence on oncogene activity
and become resistant to the targeted therapy (Beltran et al., 2019; Qtiftiaahga et

al., 2020). Given our results, it is possible that the HPCS is a gateway to the acquisition of
the neuroendocrine lineage during extreme therapeutic pressure. Indeed, our results show
that HPCS cells were enriched shortly following platinbased cemotherapies. This may

be either because the HPCS cells are intrinsically chemoresistant or because stress imposed

by chemotherapy drives cancer cells in other states into the HPCS. In either case, our results
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implicate the HPCS as a cell state that iorgjly associated with LUAD treatment

resistance, motivating its therapeutic targeting.

Several studies have suggested that cancers initiate from stem or progenitor cells and that
features of stemness are retained in a subset of cancer cells (Batllewrd,2017; Kreso

and Dick, 2014). Such cancer stéike cells (CSCs) have increased capacity for-self
renewal, give rise to progeny with features of differentiated cells, and are likely to be
resistant to therapy (Batlle and Clevers, 2017; Kreso ankl, R14). The HPCS shares
features of both normal tissue stem cells and CSCs, including robust growth and
differentiation potential. However, the HPCS gene expression signature was largely distinct
from published normal and cancer stem cell signatures.sCG%ve classically been
identified and studied using candidate markers often derived from normal stem cells. In
contrast, we discovered the HPCS using an unsupervised profiling approach and
computational modeling, which led us to uncover markers for tlisstate that have
previously not been implicated in cells with G8k& behavior (TIGIT, integrind2 and
Slc4al). These results suggest that the HPCS represents a truly novel cell state with
importance in human LUAD and, possibly, human cancers moradlytoThe HPCS
signature and may help in identifying cells in similar transcriptional states in additional

cancer types.

Focusing on a mouse model allowed us to track tumor evolution at high resolution and show
that growth in heterogeneity is stereotypiead reproducible. Importantly, the key cell

states that we uncovered here, including the HPCS, were present in human tumors: the HPCS
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defines a subset of cancer cells observed in all lung tumors in three published studies
(Lambrechts et al., 2018; Laugin et al., 2020; Zilionis et al., 2019). Furthermore, we
observed markers of the HPCS signature and other transition states in human LUAD tumors
in situ. Importantly, the HPCS program was associated with poor patient survival in TCGA
data. Notably, the HPE predicted poor survival even in an analysis pooling all cancers
represented in TCGA, suggesting that similar HPCSs may exist or that features that define

the HPCS are particularly malignant across the spectrum of human cancers.

Notably, our work demonated that integriid2 is a marker for the HPCS signature in
human cells. Indeed, integrit2« human LUAD cells appear to be an aggressive
subpopulation based on a nearlyodd increase in spheroid forming ability compared to
other cells in the tumor.His is in line with our mouse data, which suggests that int&ggrin

is also a marker of the mouse HPCS, and with previous work, implicating a functional role
for integrinU2 in many different cancers, including glioblastoma (Guo et al., 2§8)tic

cancer (Dong et al., 2017), and pancreatic cancer (Ren et al., 2019).

In conclusion, we have shown that increased transcriptional heterogeneity coupled with
lineage infidelity and plasticity are hallmarks of tumor progression in a mouse model of
LUAD, and that these features are present in human tumors. Whereas increstgsty jga
highly reproducible and greater in tumors where p53 is inactivated, the variation itself is
largely independent of specific genetic alterations. In addition to programs reflecting lung
and other epithelial cell states, a higlasticity cell stee appears at the nexus of these

developmental cell state transitions, and is associated with resistance to chemotherapy, high
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growth potential, and poor survival in patients. Our work highlights cells the HPCS as a key
player in tumor progression and hetgeneity, highlighting the importance of targeting

specific cell states in cancer therapy.

STAR Methods

EXPERIMENTAL METHODS

Mice

We used mice from these previously published stradfinass-<» (Jackson et al., 2001),
Trp53-# (Marino et &, 2000),Rosa26-«m+(Madisen et al., 2010R0sa26:--«=(Yeddula

et al., 2015), NOD.Cdrkdce l12rg=+/SzJ(aka NSG mice) (Ishikawa et al., 2005) (The
Jackson Laboratory, catalog #005557). Mice in all experiments were monitored by the
investigators and veterinary staff at the Department of Comparative Medicine at
Massachusetts Institute of Technology (MIT), M by the staff at the Research Animal
Resource Center at Memorial Sloan Kettering Cancer Center (MSKCC), NY. Animal studies
were approved by the Committee for Animal Care at MIT, MA (institutional animal welfare
assurance no.-812501) or the Institutinoal Animal Care and Use Committee at MSKCC,

NY (protocol #1711-008).

Human samples
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Human samples from MSKCC were obtained under MSKCC IRB#I6and IRB#1245.
MSK-IMPACT profiling (Samstein et al., 2019) was previously performed and the
cBioPortal Cerami et al., 2012; Gao et al., 2013) was used to identify LUAD patient samples
with KRAS and TP53 mutations. Primary tumors for generation of PDX models were
obtained with informed consent from patients under protocols approved by the MSKCC
Institutional Review Board. Human samples assembled in tissue microarrays in this study
from Vanderbilt University Medical Center and the Tennessee Valley Health Care Systems
were collected with informed consent from subjects enrolled on Institutional ReviewBoard
appoved protocol 000616 that complies with all relevant ethical regulations at Vanderbilt
University Medical Center and the Tennessee Valley Health Care Systems, Nashville

Campus, TN.

Isolation of cells from primary lung adenocarcinoma tumors

Mice with LUAD tumors were euthanized at 2, 12, 20, or 30 weeks following tumor

induction and perfused withBEM (Gibco, catalog #11380037) through the right ventricle

of the heart. Dissected lung tumors were dissociated either with protease and DNAse
solution of the Lag Dissociation Kit (Miltenyi Biotech, catalog #1-895-927) followed by

mechani cal di ssociation using gentl eMACS ACO
0932 37) according to the manufacturerdés 1inst
mixture of Dspase Il (Gibco, catalog #171@4&1, final concentration 0.6 U/ml),
Collagenase Type IV (Thermo Fisher Scientific, catalog #17104019; final concentration

0.083 U/ml), and DNase | (Sign#drich, catalog #69183; final concentration 10 U/ml)

in SMEM solution containing Gentamicin (Gibco, catalog #1508D, final concentration
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20 eg/ ml) at 3 TaAlE€SY The disSobiatethiels wereetisen filtered using

a 100 em str ai mgér5mnmadroos emperataré. The SuPernatant was

removed by aspiration and red blood cell lysis was performed using ACK (Thermo Fisher
Scientific, catalog #A1049201). Cells were then washed with media and pelletedgt 300

for 5 min at 4°C. The supernatant was removed, and the pellet resuspended irc&hoares
Activated Cel l Sorting (FACS) budnacevatedmedi a (
FBS in PBS) before being passed through a 4

below.

Isolation of tumors from patient-derived xenografts (PDXSs)
Primary tumos collected for generation of PDX models were obtained with informed
consent from patients under protocols approved by the MSKCC Institutional Review Board.

Subcutaneous flank tumors were generated as described previously (Daniel et al., 2009).

PDX tumorswere dissected off the flank of immunocompromised NSG mice (Jackson
Laboratory, catalog #005557). Tumor samples were minced using fresh razor blades in a
sterile dish. Tumors were then transferred to a gentleMACS C tube (Miltenyi Biotech,
catalog #13093-237) with 7 ml of RPMI and TDK enzymes (Miltenyi Biotech, catalog
#130095929). The tube was then placed inverted on a gentleMACS (Miltenyi Biotech,
catalog #13@96-427) with a heater is attached. A ym@lected program (37C_h_TDK_3)

was used for dissa@tion. After dissociation (~1hr), the dissociated tumor cells were then
transferred to a 50 ml tube with a 70um MACS SmartStrainer (Miltenyi Biotech, catalog #

130098462) and washed with 286ml of FACS buffer. The sample was then centrifuged
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at 300g for 5 minutes and the supernatant is discarded. The cell pellet was resuspended in
up to 5ml of ACK Lysing Buffer (Lonza, catalog #548E) and kept at room temperature
for 2 minutes. 2@25ml of FACS buffer was added and another spin atg3@® 5 minutes

was performed. The supernatant was then discarded and cells resuspended in PBS.

Fluorescenceactivated cell sorting (FACS)

Cells were prepared as above and appropriate Fc block was added on ice for 5 minutes prior

to being stained with the appropriate ph(Table S§. Cells were stained for 20 minutes

before washing twice with FACS buffer media. Fwmenute, 300g spins at 4°C were used

in between washes to pellet the cells.-PACG-1 (Invitrogen, catalog #Y3603) or DAPI

(final concent ddedtoeach sainpletagidemity fleadicalls andhFACS was
performed at either the Swanson Biotechnology Center Flow Cytometry Core Facility at the

Koch Institute for Integrative Cancer Research or the Flow Cytometry Core Facility at
Memorial Sloan Ketteringancer Center/Sloan Kettering Institute, using a BD FACS Aria.

Cells for single cell experiments were sSorte
culture and allotranspl ant were sorted wusin
progression stud were sorted as (CD45/CD31/CD11b/TERYi@jyomata/DAPI live

cells. To isolate TIGITcancer cells, dissociated tumor cells were stained and sorted for live
(CD45/CD31/CD11b/CD11c/F4/80/TER1YEPCAM/YO-PROYTIGIT: cells. TIGIT

cells were sorted as live (CD45/CD31/CD11b/CD11c/(F4/80)/TEREFJAM/YO-

PROJYTIGIT- cells. CD109cells were sorted from tumors generatedRT mice and gated

as (CD45/CD31/CD11b/CD11c/(F4/80)/TERLAE omata’YO-PRO-1/CD109 live
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cells. We confimed that the isolated TIGiTells belonged to cluster 5/HPCS by qPCR

(described below) foFigit, EpcamandSlc4all Gusbwas used as a housekeeping control.

Il nt egrainm U 2 t- eelisweraisoldt2d from patiederived xenografts grown in
NSG mice by flow cytometry. Tumors were dissociated as above and sorted as live (anti
human CD45, CD31, CD11b, CDl1i@ntrmouse CD45/TER119A2Kd/CD31)(antk
human EPCAMJDAPI/ | nt exyr icre | U2 .~cellswere definedras theZop 15%

ofthe | nt eegxrpirne s(62i n g ¢ eellslrepreserited theergst of tie tuthar.

Plate-based scRNASeq

Cells were dissociated as above, stained with DAPI and live cells were sorted as described
above into 96 wel/l pl ates containing 5 ¢l
1% betamercaptoethanol. Plates were processed by a modified SMZRZ protool

(Picelli et al., 2013), with the following modifications: RNA from single cells was first
purified with Agencourt RNAClean XP beads (Beckman Coulter, catalog #A63881) using
Bravo Automated Liquid Handling Platform prior to oligd primed reverse traogption

with Maxima reverse transcriptase (Thermo Fischer, catalog #EP0752) and locked TSO
oligonucleotide (Exigon, custom made), which was followed by a 21 cycle PCR
amplification using KAPA HiFi HotStart ReadyMix (KAPA Biosystems, catalog
#KK2601). TheWTA product was purified using Agencourt AMPure XP beads (Beckman
Coulter, catalog #A63881) and a Bravo Automated Liquid Handling Platform. Libraries
were tagmented using the Nextera XT Library Prep kit (Illumina, catalog831096)

with custom barcodadapters Table S8. Libraries from 384 cells with unique barcodes
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were combined and sequenced using a NextSeq 500 sequencer (lllumina, cataddg-#FC

2005) at the Broad Genomics Platform.

Droplet-based scRNASeq

Mice with LUAD tumors were prepared and stained as above. Live cells were collected and
processed directly by droplet based scR8i&q using the 10X genomics Chromium Single
Cell 36 Library & Gel bead Kit V2 &®@Wor ding
cells was added to each 10x channel with a median recovery of 3,266 cells. Libraries were
sequenced on an Illumina Nextseq (lllumina, catalog-26024907) or HiSegX (132 bp
reads) at the Broad Genomics Platform.

Single-cell DNA sequencing

Single umor cells were isolated by microaspiration after tumor dissociation, and genomic
DNA was amplified with the GenomePlex Single Cell Whole Genome Amplification Kit
(Sigma, catalog #25457-8). Amplified DNA was purified, barcoded and pooled, and

sequencedroan lllumina HiSeq2000 at the MIT Bidicro Center.

Bulk assay for transposaseccessible chromatin sequencing (ATAGeQq)

OmniATAC experiment was performed as described previously (Corces et al., 2017) with
slight modifications. Briefly, around 10,00@Its were resuspended in 1 ml of cold ATAC
resuspension buffer (RSB; 10 mM TFHECI pH 7.4, 10 mM NaCl, and 3 mM MgGh
water). Cells were centrifuged at 500 g for 5 min in aqgmded (4 °C) fixedangle
centrifuge. After centrifugation, the supernataras carefully aspirated to avoid the cell

pell et. Cel | pell ets wer e -lsid buffer APASBSBp e nded
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containing 0.1% NP40, 0.1% Twe&0, and 0.01% digitonin (Promega, catalog #G9441))
by pipetting up and down. This cell lysis cdan was incubated on ice for 3 min. After lysis,

1 ml of ATAC-wash buffer (ATAGRSB containing 0.1% Twee20 (without NP40 or
digitonin)) was added, and the tubes were inverted to mix. Nuclei were then centrifuged for

10 min at 500 g in a prehilled (4°C) fixed-angle centrifuge. Supernatant was removed and

nucl ei were resuspended in 10 ¢l of transpos]
(Il umina, catalog #15027865), 16.-Z2,and PBS,
5 ¢l w aigetéing up abdydowm six times. Transposition reactions were incubated at

37 °C for 30 min in a thermomixer with shaking at 1,000 rpm. Reactions were cleaned up

with Qiagen MinElute PCR Purification Kit (Qiagen, catalog #28004). AF2¥q libraries

were amfified with 10 PCR cycles and sequenced on NextSeq 550 (paimeé@5 bp).

Singlecell ATAC-Seq

Samples for singleell ATAC-sequencing were isolated from primary tumors by flow

cytometry as above and then frozen in Bambanker Cell Freezing Medium (Lyophot

catalog #30214681) for at least 24 hours. Cells were then thawed and processed as per
manufacturerés guidelines (Chromium Single C

#1000083).

Quantitative PCR (qPCR)

RNA was isolated from whole tumors or smttcell populations using either the Qiagen

RNeasy Plus Mini kit (catalog #74136) or Micro kit (catalog #74034) as appropriate per
manufacturerds instructions. cDNA was synth

cDNA synthesis kit (Invitrogen, catalodl#754050) or the PrimeScript RT Reagent kit
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(Takara, catalog #RR037B). qPCR was performed in quadruplicate &ith £ | of c¢cDNA
(diluted 1:10 if necessary) using the Powerup SYBR mix (Applied Biosystems, catalog
#A25778) and run on the QuantStudio 7 FlexaRei me PCR System. The @@
was used to compare markers of interest and expression was normalized tGosiusd

oligonucleotides used in this study are listed@ble S8

Low-density 3dimensional tumor sphere culture

Mouse cultures were g@ted on Matrigel as previously described (Tammela et al., 2017).
Briefly, 350-1000KP primary mouse LUAD cells were mixed in 50% Matrigel (Corning,
catalog #CB40230C) and 50% Advanced DMEM/F12 (Gibco, catalog #12634028) and
plated on 101 2 ¢ | o f Thevealutioni was dllawed to solidify at 37° C and then
Advanced DMEM/F12 supplemented with Gentamicin, PenieBiireptomycin (Gibco,
catalog #15140163), 10 mM HEPES (Gibco, catalog #15630080), and 2% detatated

fetal bovine serum was added to yudover the Matrigel plug. Media was refreshed every

1-3 days.

Human cultures were plated using tissue culture treated plates with inserts (Plates: Falcon,
catalog #353504; Inserts: Falcon, catalog #353095). Briefly, up to 10,000 primary-patient
derived xenograft LUAD cells were mixed in 50% Matrigel and 50% Advanced DMEM/F12
and plated on the insert. Human organoid media with appropriate supplefredits $8

was added to the well before the addition of the insert. Media was refreshed-8veay 2

For dissociation of the organoids for single cell sequencing in a 24 well plate, media is

replaced with 200 pl dissociation mix (50 pl Corning Dispase, catalog #354235; 150 ul
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Advanced DMEM/F12 supplemented media as above) per well and the plate incubated at
37°C for 30 min. 1ml of cold PBS is then added to each well and the media transferred to a
15ml tube PBS was then added to the tube to increase the volume to 10mIgABd0

spin at 4°C was then performed. The supernatant was then gently aspirditede\gival of
leaving about 30®00ul of supernatant. 500 pl of TrypLE (Gibco, catalog #12604013) was
added and the tube incubated at 37°C for 5 min. Serum containing Advanced DMEM/F12
was then added and the contents transferred to a sterile filter top ®£AE. The cells were

then pelleted by a 3a§5min spin at 4°C.

Chemotherapy

The response of teP model to cisplatin chemotherapy has been carefully characterized in
a previous study (Oliver et al., 2010): the tumors undergo a nadir in proliferation and the
peak of a second wave of apoptosis at 72 h following a single dose of cisplatin. Mice were
treaed with freshly prepared cisplatin (EMRillipore, catalog #232120) in PBS at 7 mg/kg
body weight intraperitoneally as previously described (Oliver et al., 2010). Tumors were
extracted at 72 hours following cisplatin or vehicle administration and isdtatsdRNA

Seq, as described above. Alternatively, mice were intraperitoneally injected with freshly
prepared cisplatin (SelleckChem, catalog #S1166) and paclitaxel (SelleckChem, catalog
#S1150) , prepared as per man Wihgkg bodyweightd s | nst
respectively. Tumors were harvested at 72 hours following chemotherapy or vehicle

administration and isolated for scRN®eq as above.

Immunohistochemistry
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Tissues were fixed in either Shandon Zinc Forfigk (Thermo Scientific, catalog
#6764255), 10% neutral buffered formalin, or 4% PFA ford84hours at 4° C and
embedded in paraffin. Manual immunohistochemistry was performed using Vector Labs
reagents (IMmMPRESS HRP AdRabbit IgG (Peroxidase) Polymer Detection Kit, catalog
#MP-7401-50; Mouseon-Mouse ImMmPRESS HRP (Peroxidase) Polymer Kit, catalog-#MP
2400; ImmPACT DAB Peroxidase (HRP) Substrate, catalog #48)5) as per

manufacturer protocols. Antibodies and dilutions used are availab&bie S8

Manual tissueimmunofluorescence

For manual immunofluorescence staining, tissues were incubated in 30% sucrose at 4°C for
6-10 hours, rinsed with PBS, then embedded in OCT and frozé&80aC for at least 24
hours. Fresh cut slides were then fixed in acetone for 1@&i¥@0° C and rinsed with PBS.
Donkey Immunomix (0.2% BSA, 5% donkey serum, 0.05% sodium azide, and 0.3% Triton
X-100 in PBS) was used to block the slides for 30 minutes. Slides were incubated with the
primary antibody in Donkey Immunomix overnight at 4°®lides were washed in 0.1%
Triton X-100 in PBS the following morning and incubated with the secondary antibody in
Donkey Immunomix for 422 hours in the dark at RT. Slides were washed in 0.1% Triton X
100 in PBS three times, fixed with 1% PFA for 2 mindavashed with PBS. Slides were
mounted in VECTASHIELD with DAPI (Vector Labs, catalog #00) and stored at 4°C

in the dark. Antibodies and concentrations used are availabkbie S8

Automated multiplexed immunofluorescence and immunohistochemistry
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Automated immunofluorescent and immunohistochemical staining was performed at the
Molecular Cytology Core Facility of Memorial Sloan Kettering Cancer Center using a
Discovery XT processor (Ventana Medical Systems). The tissue sections were
deparaffinizedwith EZPrep buffer (Ventana Medical Systems), antigen retrieval was
performed with CC1 buffer (Ventana Medical Systems). Sections were blocked for 30

minutes with Background Buster solution (Innovex), followed by auiatin blocking for

8 minutes (Ventaa Medical Systems). Multiplexed immunofluorescent stainings were
performed as previously described (Yarilin et al., 2015). Staining was performed in the
following order: AntiClaudin4 (Invitrogen, catalog #38 8 0 O , 5 eClpbdm? ) , anti
(Invitrogen, @talog#325 6 00, 5 dg/smlz)y, mean{tDIAKO, <catal og #A
After staining slides were counterstained with DAPI (Sigma Aldrich, catalog #D9542, 5

eg/ ml) for 10 min and coverslipped with Mowi
used for vwsualization were AF488 (Claudi), AF594 (Claudir2), AF546 (Lysozyme).

Slides were scanned to acquire fluorescent signals, coverslips were removed and
immunohistochemical staining was performed as follows: -R@PX (Santa Cruz
Biotechnology, catalog #s3 9 8 7 0 3, 2.5 e€g/ ml) with detecti on
(Ventana Medical Systems) according to manufacturer instruction:pamieratin
(AE1/AE3/PCK26) (Ventana, catalog #7201 35, 0. 09 eg/ ml) with det €
Space Black chromogenetiction kit (Biocare Medical) according to manufacturer

instruction. Slides were coverslipped with Permount (Fisher Scientific, catalog #68B1L5

Singlemolecule mRNAIn situ hybridization
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Singlemolecule mRNAIn situ hybridization was performed on rfoalinfixed paraffin

embedded tissues using the manual Advanced Cell Diagnostics RNAscope 2.5 HD Detection

Kit (catalog # 322360) per the manufacturerd
min for mouse and human tissues. Protease digestios tweee 15 minutes for mouse

LUAD tumor tissues and 30 minutes for human LUAD tumor tissues. Probes are listed in

Table S8

COMPUTATIONAL ANALYSIS

SCRNA-Seq preprocessing and quality control filtering

For platebased scRNASeq by SMARTSeq2, reads wereligned against Gencode
GRCm38.p5 (M15) mouse reference using STAR (v2.5.4b), and transcript abundance was
quantified using RSEM (v.1.3.0). For each cell bam, Pidarols CollectRnaSeqgMetrics

was run on each genome

aligned bam and summary statistics weodlected Table S9. Cell were excluded from
further analysis based on the following criteria: (1) Fewer than 1000 genes; (2) Fewer than
500,000 reads aligned. Additionally, for each plate we exclude cells deviating by >2 times
the interquartile range (IR) above/bellow the upper/lower quartile for: (1) number of genes
expressed; (2) total read counts (3) or mean expression of housekeeping panel(Tirosh et al.,
2016a). Similarly, we exclude cells per plate deviating by >2xIQR above the top quartile for
proportion of mitochondrial reads, proportion of intergenic reads, or total count of ribosomal
RNA reads, and by >2xIQR below the bottom quartile for proportion aligned reads and
expression of tdTomato marker transcript. Next, gene level read count summearges w

sampled (with replacement) to a uniform depth of 500K reads per cell. In order to further
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account for differences in amplification efficiency and sequencing depth, read counts were
transformed to loglO0K+1) normalized abundance, which was used fod@lnstream

analysis unless indicated otherwise.

For dropletbased scRNASeq, Cellranger v3.1 was used to align reads to the mm10 mouse
reference, and its output processed usingltbpletUtilsR package, for excluding chimeric
reads, and identificatfoand exclusion of empty cell droplets (Griffiths et al., 2018; Lun et

al., 2019). We excluded any chimeric read that had less than 80% assignment to cell barcode.
Cell barcodes were tested for emptiness against a background generated based on barcodes
with 1000 to 10 UMls, with cutoffs determined dynamically based on channel specific
characteristics. We further estimate the saturation of UMIs and genes in individual cells by
subsampling reads without replacement in each cell barcode, in incrementairfsacfi

2%, with 20 repeats. A saturation function of the fgrmax(x+b)+c was fit based on the
number of UMIs observedléble S9. We excluded cell barcodes based on any one of
following criteria: (L) Fewer than 500 gene<)(Fewer than 5,00@eads; 8) Fewer than

1,000 transcript UMIs 4) Less than 30% reads mapping); Per cell estimated sequencing
saturation less than 0.3)(Non-empty droplet FDR > 0.1; (7) Expression of tdTomato > 8
TP10K. In addition, a subset of 10x channels reachigh UMI sequencing saturation

(Table 9), were filtered to retain only UMIs captured by 2 or more reads.

Selection of variable genes, dimensionality reduction and clustering
We clustered the plateased scRNAseq profiles across all time points using a-negative

matrix factorization (NMF) and a graph clusterdbgsed approach, as follows. First, we
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identified transcriptionally ovedispersed genes within each experimental batch by
examining the difference of the coefficient of variation (CV) with theliare CV for other

genes with a similar mean expression(Satija et al., 2015). A robust set of ~2,000 genes is
retained based on an elbdo@sed criterion, applied to the median of esmspersed
difference statistic based on 200 samples of 75% of cells, Bli#x$ampling 80% of genes

and samples, we used NMF to reduce the dimension of the full dataset to between 20 and 40
dimensions (Lee and Seung, 1999). The loading matn@esactivations) of these NMF
components were used to calculate a cosine sityilemearesheighbors K-NN) graph

(k=21). This graph was clustered using stability optimizing graph clustering (Delvenne et
al., 2010; Shekhar et al., 2016). A final clustering of 14 subsets was determined based on an
elbow-criteria of mean cluster silliette. Two clusters of 44 and 35 cells were excluded
from further analysis as either suspected doublets and or recombinatiortargetfcells

(club cells).

Visualization of single cell profiles
We generatetSNE plots from NMF loading matrices, wighperplexity value of 30 and the

BarnesHut approximation method (Van Der Maaten, 2014).

We generated PHATE maps (Moon et al., 2019) using normalized single cell expression
profiles of the same top owveispersed genes as used for clustering (above),tland
following input parameters: k=21 nearest neighbors, square root potential heat diffusion

kernel (pot_method=06sqrtodo), 4dimeénBiénal caliagt u r e

a

(n_l andmarks=4000, 30 input principle compon
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Identification of differentially expressed genes

Differentially expressed genes (DEG) were identified using a Poibaeedie model on
unscaled transcript counts normalized to uniform counts by sampling reads. Genes were
identified as differentially gxressed in a particular set of cells if they met all of the following
criteria: (1) BenjamintHochberg FDR < 0.1;2) Minimum expression in at least 10% of
cells; and B) Area under a receiver operating curve (AUROC) > 0.60log fold change
vs.cells n all other subsets > 1.5, ar) (og-fold changevs. cells in any other subset is

highest within the set.

Pearson residuals calculation in contingency tables
The Pearson residual is a measure of relative enrichment for cells in a contingency table. It
is calculated here aR=0bs-expexp, where the expected value is calculated as the product

of row and column marginal probabilities by the total count.

Estimating heterogeneity of single cell profiles within a timepoint

Heterogeneity of single cell profiles within a timepoint was quantified by examining the
average pairwise Normalized Mutual Information (NMI) between the profiles within each
time point. Lsing 100 differentially expressed genes per each of 12 subtype clusters and top
100 NMF genes per each of 11 NMF programs (abtentification of differentially
expressed genesnd belowjdentification of novel gene expression programs by NMF

(total o 2,374 genes), we discretized expression per gene into 10 bins. In order to account
for differences in the number of cells across samples, we subsampled 100 cells from each

time-point (or mouse) 100 times and calculated the median NMI across each- within
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timepoint sampled pair. NMI was calculated between each pair ofxcalsly by first
calculating the mutual information8 N9 @UDP @h Ul lar@ then@drroebz@idit by
the entropy of each celNMIX,Y=I(X;Y)HxH(Y). To estimate a-palue for the diffeence
in NMI value between two groups we compare the number efaniples from in A group

vs all those in another B group and reg(ijAi<Bj+1)/(AB+1)

Single-cell DNA-Seq preprocessingand copy number quantification

Sequencing reads were aligneddference GRCm38.p mouse genome reference BS\Wy
(0.7.17). Duplicate reads were marked VBIWMBLASTERV0.1.24). CNVKkit (v0.9.6) was

used to quantify read abundance in genomic window of 200 kb, and normalized for GC
content and mappability, excludingtter bins. Segmentation was performed using a three

state HMM for amplified and deleted regions (Talevich et al., 2016).

Copy number inference from scRNASeq profiles

Single cell copy number was estimated following our previously published methodh(Tiros

et al., 2016a). Briefly, we square root log transformed TP100K expression values to stabilize
variance (Anscombe transform), and cappedgedly and peigene expression to the 99
percentile to reduce the effect of outlierg.( for each cell, genesxpressed above the99
percentile are set to the ©Percentile, next for each gene, cells expressed above 99
percentile are set to the®9%ercentile). Next, genes were assigned to each of 20 expression

bins by mean expression in a reference norima,r ¢ assi gned toTobe al l
only timepoint. For each chromosome, all genes were ordered by the location of the

Transcription Start Site (TSS), and the mean expression value in a sliding window of 25
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million bases was calculated (with a sgpe of one million bases), corresponding to ~100
genes windows. For each cell and window, we compared the mean expression to a null
distribution of gene samples drawn to match the normal mean expressjdor, a window

of k genes, we drew genes fron matching expression bins in the normal reference sets (as
in singlecell gene set enrichment below). The raw mean expression per cell and window
was normalized by subtracting the mean of the resamplwsgd null distribution.
Additionally, an empiricaP-value was calculated by comparing to the null distribution and

used to filter for likely spurious CNV events.

Matching of RNA based inferred CNV to DNA-based copy number estimates

For three 26veekKP tumors for which we had both single cell DA&eq ad single cell
RNA-Seq, we matched between DMyased single cell CNVs and RNAferred single cell
CNVs, by relating each single cell RN#ased inferred CNV profile to the most similar

DNA-based single cell CNV profile by the-norm distance.

Single cellgene set enrichment

We performed single cell gerset enrichment as previously described (Chihara et al., 2018;

Tirosh et al., 2016a). Briefly, genes were split into 20 bins by mean expression across all

cells, where the 20 bins were defined basedodthes t r i buti on of all gene
expression was centered, scaled, and transformed using the logistic function to the [0,1]
range. Given a gene set signatur& génes, the mean of the normalized expression for the

set was calculated in eachleae a raw signature score. This score was then compared against

a null distribution of 1,000 randomly selected signatures, each consiskrgeoés, drawn
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such that the mean expression of each ofkilgeenes matches the same global mean
expression bin foa gene in the original signature. The final per cell activity score is
calculated as the per cell raw score centered by the mean score of the signatures from the
null distribution. This final score is subsequently normalized to have mean of zero and
stardard deviation of one {gcore). We calculate an empirid&lvalue of association with

the clustering to 12 subtypes (Bigure 1D) by comparing an ANOVA fstatistic for the

true raw score, with the distribution of thestatistic of the randomly selectstynatures.

The tested gene sets, and their sources are lisabie S10

Identification of novel gene expression programs by NMF

To identify robust transcriptional programs, we adapted a consensus NMF procedure
(Kotliar et al., 2019). We used as uifd,346 NMF expression weight components identified
across 50 subsampled repeats used for clustering, as described above (see section on
Selection of variable genes, dimensionality reduction and clusteringWe excluded

outlier components by sorting compnts by their cosine distance to the- P@arest
neighbor and excluding components with unusually high distance by an -bés®d
criterion. Next, we constructed a symmetcinearest neighbor&-(NN) graph k=30), and
identified clusters of highly simak components in this graph, using stability optimizing
graph clustering, with an exponentially varied scale parameter (0.1 to 10, resulting in 42 to

3 clusters). The components in each cluster were megiaraged into a single component,
resulting in a B or t I i st of Afconsensus NMFO compone

initialization component matrix for a second round of NMF of all cells and highly variable
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genes (as described iBelection of variable genes, dimensionality reduction and
clustering). We seleted a solution with 11 NMF components based on an elbow criterion

of reconstruction error of the input data matrix.

To characterize the novel transcriptional programs identified with this procedure, we used
the top 100 genes in each of the 11 componeat&ed by the following weighting scheme:

For thei» gene and» component we define the scaled weight as folloWsSij = Wij

*WijWik . This weighting scheme prioritizes for high weight (highly expressed) and unique
genes in each component. We tested for enrichment of the top 100 genes in each program in
a compendium of gene sets listedable S1Q with the hypergeometric teft-valueswere

adjusted by a Benjamitiochberg false discovery rate procedure.

Optimal transport

To estimate robust transport maps of single cell profiles we adapted the approach we
previously in (Schiebinger et al., 2019). We calculated transport maps bewllean each

pair of consecutive time points, except that we metedndKPT 2-week samples due to

low numbers of healthy cells in thké>T sample Figure 1G), such that we had the following
transitions: T {KT2,KPT2}, {KT2,KPT2} KT12, KT12 KT30, {KT2,KPT2} KPT12,

KPT12 KPT20, and KPT20KPT30. For each pair of time points we use the cosine
similarity of NMF loading matrices for each cell (as described in setdiemtification of

novel gene expression programs by NMK-as the input distance measure ifderring a
transport map from each cell in the starting time point to a distribution of cells in the

subsequent time point, with parameters lambdal = 1, lambda2 = 25, and a uniform growth

92



rate. We performed the OT inference procedure 20 times usingmesekds and the mean

across runs was used as the OT map estimate for each pair of time points.

Bulk ATAC -Seq
Analysis was performed using the ENCODE ATSeq pipeline (v1.5.4,

https://github.com/ENCODIDCC/ataesegpipeling, with default parameters, for initial

guality control analysis. The pipeline was run once for each condition, inputting FASTQ
files from the mous replicatesr( = 4). A final peak list was generated by processing the
resulting BAM files generated by the ENCODE ATAB2(q pipeline with Samtools (v1.8;

http://www.htslib.org) to: (1) filter the BAM files to contai only the main chromosomes,

(2) subsample each BAM file to the minimum number of reads observed across all replicates
and conditions, and (3) merge BAM files from each replicate for each condition. MACS2
(v2.2.6) (Zhang et al, 2008)was used to «call peaksedtools (v2.26.0;

https://bedtools.readthedocs.io/en/la)etd filter blacklisted regions (as defined by the

ENCODE project) and merge the peak files from the experimental conditions, and the

featureCountgunction from the Subread package (v2.0\@p://subread.soceforge.ne)/

to generate a matrix of peak counts from the merged peak list and filtered BAM files.
DESeq2 (v1.26.0) (Love et al., 2014)was used to call differentially accessible peaks in R
(v3.6), with ~Mouse +Tigit_status as the design variable. Peaksre considered
differentially accessible if they had an FDR adjuf®e¢hlue less than 0.1. HOMER (v4.11)
(Heinz et al., 2010) was used to annotate peaks. The UCSC Genome Browser (Kent et al.,

2002) was used to visualize peaks.
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SCATAC-Seq data processig

We used the Cell Ranger ATAC (v1.2) pipeline (10x Genomics) to generate-catigle
accessibility counts. First, we useellrangeratac mkfastqto generate demultiplexed
FASTQ files from the raw sequencing reads. We then aligned these reads to tlee mous
mmZ10 genome and quantified chromatin accessibility counts gsifrgngeratac count

This pipeline performs barcode error correction, PCR duplicate marking, peak calling and
cell calling, and produces both a filtered peak cell barcode matrix, andjraeina file

containing all fragments assigned to single cells.

SCATAC-Seq quality control

Starting with the filtered peak cell barcode matrix, we further filtered out low quality cells
using five percell quality control metrics: the total number of fragnts overlapping peaks,

the percent of fragments mapping to peaks, the percent of fragments overlapping blacklisted
regions as defined by the ENCODE project, the ratio of mononucleosomal to nucleosome
free fragments, and the transcriptional start site JTe@ichment score as defined by the

ENCODE projectlittps://www.encodeproject.org/deséandards/termp/We retained cells

with between 1000 and 50000 fragments overlapping peaks, witast 20% of the
fragments mapping to peaks, with fewer than 5% of fragments mapping to blacklisted
regions, with the ratio of mononucleosomal to nucleostreefragments less than five, and

with TSS enrichment score greater than two.

SCATAC-Seq data rormalization, dimensionality reduction and clustering
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We analyzed the cells passing quality control using the R packaigesc (v0.2.1)

(https://github.com/timoast/signeandSeurat(v3.1.2) (ttps://github.com/satijalab/seuyat

(Butler et al., 2019). We performed term frequency inverse document frequent KT F
normalization on the peak cell barcode matrix ustumTFIDF which normalizes across

both @lls and peaks, to control for differences in cell sequencing depth and to increase
values for peaks that occur more rarely across cells. We chose features (peaks) for
dimensionality reduction and clustering usiigdTopFeatureswhich ranks peaks based

on the total number of fragments in a peak across all cells. We retained the top 90% of peaks.
We next performed a singular value decomposition to reduce dimensionality of the data,
with the functionRunSVD and retained the left and right singular vecessociated with

the 30 largest singular values. We performed gizgded Louvain clustering using
FindNeighborsandFindClusters with k = 20 for thek-nearest neighbor algorithm and the
resolution parameter set to 0.8. We visualized gene activity and clustering results on Uniform
manifold Approximation and Projection (UMAP) usifUnUMAR The UMAP was
calculated from the first 30 singular vectors of thimensionally reduced data with the

following settings: n.neighbors=30, min.dist=0.3, and spread=1.

Chromatin accessibility data was used to est
expression is correlated with promoter accessibility. For eanl,gve extracted its gene

coordinates from the mouse genome using EnsDb.Mmusculus.v79, and then extended the
resulting coordinates 2 kb upstream so that they covered both the gene body and promoter.

The activity of each gene was estimated by counting finawy fragments within each cell

mapped to this extended region. To examine the activity of entire gene modules or signatures
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within single cells, we scored signature activity levels usiddModuleScoreThis function
calculates the average activity levelsthe genes in a signature and then subtracts off the
average activity levels of control gene sets (Tirosh et al., 2016a). The genes in the control
sets are randomly chosen with the constraint that they have similar activity levels to the
genes in the gnature. This approach controls for technical differences in cell quality and

l i brary complexity across single cells that

SCATAC-Seq data integration

To integrate the TIGITand TIGITscATAC-Seq datasets, westricted analysis to peak
regions that overlapped across both datasets hdargeWithRegionand performed the

same dimensionality reduction and clustering analysis described above. To integrate the data
while correcting for technical batch effects, weewSeurat v3 integration, which identifies
correspondences between cells in the two datasets and applies a correction matrix to the peak
cell barcode matrix (Stuart et al., 2019). We identified the corresponding cell subsets using
FindIntegrationAnchorswhere the dimensionality of both datasets was first reduced using
canonical correlation analysis and the first 30 canonical correlation vectors were retained.
We then calculated and applied a correction to the peak barcode matrintsgrgteData

with the weight.reduction parameter set to use the dimensional reduction space calculated
above. Finally, we took this corrected peak cell barcode matrix and applied the same

dimensional reduction, clustering, and UMAP visualization described above.

Comparisonto human scRNASeq data
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Processed scRN&eq profiles from human LUAD tumors were downloaded from
GSE127465, BMTAB-6149, and EMTAB-6653 (Lambrechts et al., 2018; Laughney et al.,

2020; Zilionis et al., 2019). Analysis was limited to lung adenocarcinomalea (5 and 2
samples respectively) and examined only cells annotated by the authors as tumor cells.
Estimating activity of mouse NMF gene programs in other human or mouse datasets
Activity of NMF programs definedataséehe) moas
estimated in additional secondary datasets
human, ito-1 gene orthologs were mapped between mouse and human using an ortholog
table downloaded from Ensemble BioMart (v.96, downloaded June 11, 28&®)ing only

1:1 orthologs. For both human and mouse, the analysis was limited to 100 differentially
expressed genes per each of 12 subtype clustiengré 1D) and top 200 NMF genes per

each of 11 NMF programs (total of 2,374 genes). The distributieaah gene was matched
between the source and target cohort based on a matching of the empirical cumulative
distribution functions (eCDF) of the gene in the target dataset to the eCDF of the gene in the
source dataset, while ignoring zero valuésat is for a given gene the cell expressed at the

n» percentile in the target cohort is assigned the expression of prexcentile cell in the

source. We excluded from analysis genes expressed in less than 1% of the cells in the target
dataset, as well aseges showing a large deviation in mean expression between the two
cohorts after normalization (defined as genes deviating from the predicted expression at an
alpha < 0.0005, using a Gaussian process regression of the source mean expression to the
target man expression). The remaining genes were used to estimate the activity matrix (H)

in the target cohort, using a nonnegative ksastares (NNLS) fit of the source NMF gene
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program (W) matrix on the transformed and normalized expression values of the target
dataset. NNLS fit was performed using the Block Principal Pivoting method for solving the
e g u a txXiWbidr ; whéreX is the input matrix for the target dataset, and W was a matrix

of NMF gene programs (gene by k) learned from the source dataset (Kifad@®008).

Transferring cluster assignments between datasets

To transfer cluster assignments, we use a similar procedure to that for estimating NMF
activities(sectionEstimating activity of mouse NMF gene programs in other human or
mousedatasety. The procedure above was applied to each of 50 NMF activity matrges (

for the target dataset generated by subsampling the source dataset, resulting in a matrix of
1,346 activity features in the target dataset. Next, a multiclass gradientngotrse
classifier was trained to on the activity feature matrices to predict cluster type (using the
XGBoost package v. 0.82.0.1 in R v3.5.3). This classifier was used to predict cluster

assignments in the target dataset on the set of NMF activity ésatur

Comparison of HPCS signature to available stem cell signatures

We quantified enrichment between our HPCS cluster or the highly mixed state/HPCS and
known signatures for normal and cancer stem cells using the GeneOverlap R package
(v1.22.0) (Shen an&inai, 2019), which is based on the hypergeometric distribution. To
build a set of stemness signatures, we collected 1197 gene sets from the Molecular
Signatures Database (MSigDB, v6.2) (Liberzon et al., 2015; Liberzon et al., 2011,
Subramanian et al., 26Pand CellMarker (downloaded on 2018/10/22) (Zhang et al., 2019),

mapped them to mouse genes using the orthology mapping from Mouse Genome Informatics
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(http://www.informatics.jax.org/ and filtered the sigatures to retain only those with

A_stem_o0 in their name and at |l east four ge
signatures contained 1,197 gene sets. We defined our HPCS gene set by the set of 406
differentially expressed genes marking clustear our highly mixed state/ HPCS gene set

as the 103 genes defining this NMF program. We calculated enrichment using
newGeneOverlapndtestGeneOverlgpvith a genomic background of 25,666he number

of genes in our RNA expression data expressed or hiore cellsP-values were adjusted

for multiple comparisons usiqgadjustt n R, wi t h t he OAlldnalgsescor r ect
were carried out in R (v3.6). Gene sets that showed significate enricliént (0 . 01) , wer e
manually curated to validatbat they are truly enriched in normal or cancer stem cells and

that the signature did not represent an experimental perturbation that may have confounded

the conclusion. Gene sets from the following studies were identified: (Bystrykh et al., 2005;

Gal etal., 2006; Gattinoni et al., 2011; Ramirez et al., 2012; Villanueva et al., 2011); in

addition a gene ontology set
AGO_POSI TI VE_REGULATI ON_OF_STEM_CELL_PROLI FE
Curated gene sets are plotted base®.pand Jaccard Index iRigure S5G. The Jaccard

index was calculated by the number of intersecting genes between the two gene sets divided

by the union of the two gene sets.

Human clinical data analyses

Processed RNAeq expression data was downloaded frdips://gdc.cancer.gov/abeut

data/publications/pancanatlas Clinical annotations  were downloaded from

http://www.linkedomics.org/data downloadXll survival outcomes data was transformed
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to months. We excluded patients older than 85 at time of diagnosiaying reported post
surgery residual disease (LUAD analysis only), the latter because this appeared to be a strong
confounder of outcome with few observations. When calculatipggh survival we capped

the survival period at 60 months and right ceadguatients with longer survival. Survival
analysis was performed using a Cox proportional hazards model including terms for age,
tumor purity, and stratified for stage (earltage | or stage Iys advanced stage Il or

stage 1V) for LUAD and strdied by cancer type for PANCAN. Kaplevieier plots were

drawn by dividing the NMF activities or cluster gene signatures into 3 equal sized bins. NMF
activities or cluster signature activities (calculated as described abestnating activity

of mouse NMF gene programs in other human or mouse datase@ndSingle cell gene

set enrichment) are used as continuous predictors in a cox proporttuazdrds model.
Reported P values are for a likeliheatio test comparing the full model to one including

only the baseline parameters (age, tumors purity and stage or cancer type). Genetic mutation
information was downloaded from cBioportal on Feb2B20. When testing for association

with outcome in the context of genetic state, samples were considered nifuteted were

annotated for any nesilent mutation or copy number amplification/deletion.

Computational tools
Software used for analysis of data during this project included, MATLAB (version >=

9.2.0.556344R2017a), R (version >= 3.4), and Python (versio= 2.7 and >= 3.6).
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Figure 1. Increased transcriptional heterogeneity in mouse lung adenocarcinoma
evolution is reproducible across individual tumors and mice, but cannot fully be
explained by copy number variation.(A) Experimental pipeline.B) Tumor evolution in

a lung adeocarcinoma GEMM. Top: genetic constructs of three mouse models profiled by
SCRNA-Seq at different time points. Middle and Bottom: schematic (middle) and
hematoxylin & eosin (H&E) staining of tissue sections (bottom) at different phases of tumor
progressia. AT1: normal alveolar type 1 (AT1) cells; AT2: normal alveolar type 2 (AT2)
cells, AAH: atypical adenomatous hyperplasia. Scale bar: 100 k) (Increased
transcriptional heterogeneity with LUAD progressidd) PHATE map embeddingTAR
Methods) of sRNA-Seq profiles (dots) collected from the models and time points in (B)
(labels, top). Colored dots: Cells collected from the indicated sample; grey dots: all other
cells. D) Increased diversity of cell clusters with progression. Left: The fractionllef(ge

axis) in each cluster (x axis) that are derived from each sample type (genotype and time
point; colored as in (C)). Middle and Right: matcheslochastic neighborhood embedding
(tSNE, left plot STAR Methods) and PHATE map embedding (righitt, as in (C)) colored

by either sample type (middle pair) or cluster numIiSFAR Methods) (right pair). €)
Reduced transcriptional homogeneity within time point with progression. Transcriptional
heterogeneity is inversely proportional to the Normalik®itual Information (NMly axis)
between cells within in each sample type (genotype/time point combinateois), for

either whole lung samples or microdissected single tumors. Box plots: upper, median, and
lower quartile of 1,000 bootstrap samplek50 cells each, from the indicated time point;

whiskers: 1.5 interquartile rangeP*< 0.05, **P < 0.01, *** P < 0.001 6TAR Methods).
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(F) Heterogeneity is reproducible across individual tumors and mice. Fraction ofycells (
axis) in samplex axis) tha are members of each cluster (color code, as in D, right). The
number of clusters observed in each tumor is indicated at the top of the bars. Note that each
sample is an individually plucked tumoiG{) Transcriptional heterogeneity does not
simply follow genetic clonotypeQ@) Inferred largescale CNVs from scRN&eq. CNVs

(red: amplifications, blue: deletions) across the chromosomes (columns) inferred from the
scRNA-Seq of each cell (rows) from 18P tumors at the 3@veek time point $TAR
Methods). Color. the cluster membership of each cell)(Congruence between CNV
profiles inferred from scDNASeq and scRNAeq. CNVs shown as in (G) for single cells
(rows) of one individually microdissectéPT tumor at 30 weeks profiled by scDN®eq
(top-left) or scRMA-Seq (bottorvleft). Left color bar: Predominant clonotypes identified
from scDNA-Seq (topleft) and assigned to scRN8eq cells (bottorteft). Far left color bar

in sSCRNASeq panels: cell cluster membership agGh (1) A single clonotype matches

multiple transcriptional states. PHATE map a$-igure 1D, colored by clonotype.
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