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Abstract

In this thesis, we look at three different problems related to capacity allocation, work-
in-process (WIP) inventories, safety stocks and lead times in manufacturing systems.

In Chapter Two, we examine the following question: Consider a manufacturing system
with n stages. If there were a fixed number K of capacity units available, how should
this capacity be allocated among the different stages so that the total inventory at
all the stages is minimized? The exogeneous demand process is characterized by an
n-dimensional diffusion process. In this model, the production at each stage in the
system is governed by a linear rule. We show that the WIP inventory vector for the
n stages can be represented by an n-dimensional stochastic differential equation. We
formulate the optimization problem and show that the optimal capacity allocation
at each stage is similar to the square root and other formulae obtained for queucing
networks. We are also able to obtain expressions for the corresponding lead time at
each stage. We then provide tradeoff curves for the WIP inventory, safety stock, base
stock and lead time as a function of the total capacity K.

In Chapter Three, we consider a discrete time model of a single production stage
with a fixed processing capacity which processes two nonsubstitutable items. After
an item is produced at the machine, it enters the final item inventory which is used
to satisfy demand for that item. The end item inventory for each item should be set
to meet a certain service level. The question that we ask is the following: Should
these items be produced on a single machine, or on two separate machines? If we
were to consider this as a queueing problem with two servers, and the objective was
to minimize the average waiting time, the answer would be to merge the two streams.
But if one were to use a different criterion, say, to minimize the total WIP and safety
stock, it is not clear which alternative is preferable. If the demand is relatively stable
for one item and more variable for the other, it might be preferable to produce the two
items on separate machines, because by preserving the stability in production for the

vi
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first item, the overall reduction in WIP plus safety stock ior the two items combined
may be greater. We are able to specify the conditions on the mean and variance of
the demand for each item under which either a single machine or two machines are
appropriate. We extend this result to the cise where there are setup times at each
machine. We then look at the case where more than two items are processed at the
stage and study how the different items =re grouped ir. an optimal configuration.

In Chapters Two and Three, the control rule that we use to represent the production
function was linear. In Chapter Four, we characterize the production function using
a capacitated rule and propose a model to study work-in-process (WIP) inventory
levels and safety stocks for a single stage. The cumulative demand at the stage is
modeled as a diffusion process with drift g and dispersion . The inventory at the
stage is of two types: work-in-process inventory and end-item inventory. The end-
item inventory, also called safety stock, is used to meet the demand at the stage.
The stage processes the WIP at a rate dictated by a certain production rule. This
parameterized production rule is fairly general and it subsumes a broad class of rules.
When the WIP increases, the production rate increases until it reaches a maximum
rate C. The questions that we consider are the following: What should be the level
of safety stocks so that a certain leve! of service is provided? What is the distribution
of the WIP inventory in steady state? We represent the WIP inventory process in
terms of a stochastic differential equation. We show that under certain conditions on
the parameters and the initial state of the process, the WIP inventory process has an
ergodic distribution. We then compare the results that we get with the results that
have been obtained previously using other models.

Thesis Supervisor: Stephen C. Graves

Title: Leaders for Manufacturing Professor of Management Science
Deputy Dean, Sloan School of Management



Acknowledgements

This work was funded by the National Science Foundation’s Strategic Manufac-
turing Initiative Project “Decision Making in Manufacturing Systems” (NSI' Grant
DMM-8914181).

I would like to express my deep sense of gratitude to my advisor, Prof.Steve
Graves. I thank him for the sage counsel that he provided me throughout this thesis;
for his encouragement and his patience with rne, especially during the initial period
when my output was virtually nought; for allowing me the freedom to pursue a wide
range of research topics and for the Celtics tickets that he gave me from time to time.

I wish to thank the other two members of my thesis committee, Prof. Gabriel
Bitran and Prof. Larry Wein. I thank Gabriel for having taken the time off his impos-
sibly busy schedule to be on my committee and making several insightful and useful
comments on earlier drafts on the manuscript. I thank Larry for his comprehensive
and extremely valuable feedback on this document, and also for stimulating my in-
terest in this field when he offered his course on Queueing Networks a couple ol years
ago.

I would like to mention a special word of thanks to Prof. Dick Larson for providing
me an education in the practical domain of operations research while working on the
Queue Inference Engine and for giving me the opportunity to work for two summers
on different projects. [ also thank Prof. Tom Magnanti, Prof. Amedeo Odoni and
Prof. Jim Orlin for their genuine concern about my welfare throughout my stay at

MIT.

I thank Marcia Chapman and Paulette Mosley, the administrators of the OR
center during different periods of my stay, for their work behind the scenes, ensuring
every semester that the paperwork went through and for being the buffer between
me and the bureaucratic process at MIT. I also thank Michele Brodeur and Laura
Terrell for their assistance on more than one occasion.

What really makes the OR Center such a great place are the students. The
students at the OR Center are, without exaggeration, the finest that I have met in
my life. I thank all the ORC students who have made my stay here extremely plecasant
and a fine learning experience.

My roommates, Mehul, Tina, Mikhail and Nicole were extremely tolerant towards
a roommate who could, at best, be described as being weird, and I thank them for
their friendship and support. My companionship with Mikhail kept me abreast of
the latest technological developments (you know, Nintendo, Teenage Mutant Ninja
Turtles, Mighty Mouse and the like).

And what can I say to my family -— my mom, my dad, my sister Marilu and my
brother Claude, for the countless sacrifices that they have made that enabled me to
reach this point? Thank you for everything.

viii



To Mom, Dad, Marilu and Claude



Chapter 1

Introduction

In many manufacturing and service organizations, inventories comprise a significant
fraction of a firm’s assets. Firms carry inventories for several reasons. One of them
is to safeguard against uncertainties that arise during the course of the normal op-
erations of the firm. These uncertainties could occur in different ways. The demand
for the product(s) may be uncertain and deciding to produce each unit after an order
for the product occurs may be impractical. The lead times for production may be
long and customers may decide that they are unwilling to wait. In situations like
these, it may be better to meet the demand frem stock and produce/order addi-
tional quantities to replenish the stock. In these make-to-stock systems, the items
are substitutable and the items from stock can be used to meet the demand for all
the customers. The other sources of uncertainty in the system may include machine

breakdowns, variability in the delivery of raw materials and components, etc.

Another reason why firms carry inventory is because of limitations on the capacity
or the maximum rate at which the units can be produced. If the demand for the prod-
uct is seasonal (cyclic), the firm may not be able to meet the demand if it decides to
produce units only in periods when the demand occurs. Rather, it may be preferable
to produce units at a steady rate even in periods when the demand is low and carry
the item as inventory. This also serves the purpose of reducing the fluctuations in the
workforce levels; more will be said about this in subsequent chapters when we study
the tradeoffs between varying the inventory levels and fluctuations in the levels of the

workforce.
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Firms also carry inventory to achieve economies of scale. It would be very inef-
ficient for a retailer to order items in very small batches from a central warehouse
because of a certain fixed overhead associated with transporting the item. There is a
considerable body of literature of the optimal lot-sizing or the economic lot-scheduling

problem. (See Elmaghraby [Elm78] for details).

Every dollar tied up in inventory represents a loss, to the firm, of funds that could
be inyested elsewhere; the {orfeited rate of return is equal to the firm’s opportunity
coét of capital. Managers make significant efforts to minimize the amount of inven-
tory carried on the balance sheet. The methods that they employ range from using
sophisticated information systems in order to keep close track of thz inventory, to ob-
taining better forecasts of the demand and reducing the uncertainties in the operating
environment. Accountants use inventory turnover, which is the ratio of annual cost
of goods sold to the average daily inventory, as a measure of how well firms manage

their inventory.

Inventories can be classified into different categories depending on the role that
they perform or their raison-d’étre. For example, consider the example of a factory
that manufactures lawn mowers. A lawn mower that is manufactured in the winter
months is stored in a warehouse in “anticipation” of high sales during the summer
months; hence its designation is anlicipation stock. For a nice discussion on the

different classification of inventories, see Graves [Gra88b).

Many production processes can be viewed as networks of stages. The notion of a
stage, as we describe it, is fairly general. In a factory, one could model a single machine
or a cluster of machines as a stage in the production process. The production output
is regarded as end item inventory for the stage, although this output may not be the
final product emerging from the factory. At the other extreme, if items produced
at factory A are used as components in the assembly of a product in factory B, one
could model the whole of factory A as a single stage in the manufacture of the product

made in factory B.
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A production stage, as we have described above, is modeled as a black box. At
any given time, the amount of work-in-process inventory at a stage is known. The
raw material or components enter the stage, and some time later (this time could be

fixed or variable), the processing of the item is compleie. The modeling is done at

the macroscopic level. To be more specific, we do not concern ourselves with details
of tool changeovers, machine breakdowns, job scheduling, worker unavailability and
other elements that would characterize the typical daily operation of a manufacturing
facility. The production is measured in terms of the rate at which the work-in-process

inventory leaves the stage and is available as end-item inventory.

In studying the behavior of a production stage, we need to find a mechanism to
characterize the production rate as a function of the work-in-process inventory. To
put it another way, suppose there is no work-in-process inventory at the stage — then
the production rate must be zero, since there is nothing to process. If thereis an upper
bound on the rate at which the work-in-process can be processed, then when the levels
of work-in-process inventory are high, the system would be operating at full capacity.
But how does one characterize the behavior of the system at intermediate levels of
‘inventory? One approach has been to assume that the system is processing inventory
at its maximum rate, whenever there is work-in-process. This is the assumption

underlying most queueing models of manufacturing systems.

In this thesis, we use a different approach in modeling the production process. We
assume that the production rate is not constant, but proportional to the amount of
work-in-process inventory in the system. This approach has been taken before (see
Holt et al. [Holt55], Graves [Gra88b] and Karmarkar [Karm89]) and it has been argued
that many manufacturing and service facilities behave in this manner. Consider the
example of a barber shop. The amount of time that a barber spends with a customer
when there is o one else in the shop is typically much more that the amount of time
that would be spent when there are a few customers waiting in line. The barber
works at a faster rate when there are more customers in the shop because the other

customers should not be kept waiting too long. Even though the barber could work
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at this rate throughout, he normally works at a much slower rate when there is a

single customer.

Another explanation of why systems operate in this manner may be attributed
to Parkinson’s law applied to manufacturing and service facilities. When work-in-
process inventory levels are low, there may not be as great a sense of urgency to
process material and this may be reflected in a higher fraction of employees going on
vacation, a higher proportion of worker hours spent on preventive maintenance etc.
But when the levels of inventory rise, associated with this is usually a higher level of
backlogs; and there is a desire to expedite orders and bring down inventories to more

reasonable levels!.

In the discussion so far, we have looked at some of the reasons why firms carry
inventories and how the production stage is modeled as a black box. We also briefly
talked about why the “proportional production rule” could be used to characterize
the behavior of many manufacturing and service operations. In the discussion that
follows, we shall talk about some of the central ideas in this thesis, namely, work-
in-process inventories and safety stocks in manufacturing systems and some of the

factors that affect them.

Let us, for the moment, restrict our attention to a single stage in a manufacturing
system. Graves [Gra88b] has defined safety stock as the “excess inventories held
beyond the minimum inventory level that would be possible in a deterministic and
uncapacitated world.” If one looks at the definition, there are two reasons why one
needs to carry safety stock. The first one is because of the uncertainty or variability
within the operating environment. The second reason for safety stock is because of
limitations, or constraints on the production capacity. The factors that contribute to
the stochastic variability of a manufacturing operation are manifold. As we had briefly
stated earlier, the forecasts for the demand are likely to change over time and the
production scheduling may have been done previously using different forecasts. The

yield of the process may be variable or the production lead times may be random.

!The author had a helpful conversation with Prof. Jeff Rummel of Duke University on this subject
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There might be uncertainties in the supply of raw materials or components from

vendors.

Even if the operating environment were entirely deterministic, there might exist
restrictions on production capacity that necessitate safety stock. In a manufacturing
operation where several different products compete for limited production resources,
safety stock may protect against known surges in demand when the system cannot
react quickly enough. Graves calls this the inflezibility of the manufacturing system.
He proposes a measure of the flexibility of a production stage that we use in later
chapters of this thesis. This measure is different from another class of measures of
flexibility called entropic measures (see Kumar [Kum87]). Other sources of inflexi-
bility may include power outages or other work stoppages, union rules (which may

dictate periodic work breaks) and so on.

Safety stocks help “preserve lot size integrity and keep the number of setups from
growing, particularly at bottleneck workcenters” (Lambrecht et al. [Lam84]). They
also play a smoothing or decoupling role among the different stages in a manufacturing
operation (Graves [Gra88b]). This latter function that safety stocks perform, enables
us to analyze a multistage operation by looking at each stage in isolation, and letting
the production for the downstream stages serve as the demand for the upstream
stages. By looking at these stages sequentially, the safety stock requirements at each

stage can be determined.

In mos" of the literature on inventory thecry, the paradigm is to set the inventory
at that level where the cost of holding inventory plus the production cost is at a
minimum. The inventory carrying costs, as well as production costs, are typically
convex. While the cost of carrying excess inventory could be determined (it would
simply be the dollar value of inventory times the opportunity cost of capital), it is
much more difficult to quantify the cost of stockouts. If the firm is unable to meet the
demand of certain customers, what is the cost that one associates with the resulting
loss of goodwill, if any? It might happen that the customers regard a vendor, who

faces frequent stockouts, as being too unreliable and decide to discontinue purchases
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from that particular vendor, in which case the cost is the expected present value of
the lost profits over a certain time horizon. If the component is used in the ascembly
of another product, a stockout for that component means delays in the assembly
operation for the product, higher work-in-process inventories, idle workers and higher
costs due to overtime. These delays could cause ripple effects throughout the.system

and the effects of these, in terms of costs, could be hard to mcasure.

In view of this difficulty of quantifying the cost of stockouts, an alternative ap-
proach is to impose service level constraints on the system. That is, a certain fraction
of the time, say 95%, the demand for the item can be met from the safety stock. This
fraction corresponds to the level of service that is being provided. Clearly, as this
fraction increases, so will the level of safety stock. The tradeoff now is between the
level of safety stocks and the level of service that they provide. This concept of service
level has been around for some time now and it serves as “a surrogate for stockout

costs in determining inventory policies.”(Von Lanzenauer and Noori [Von86)).

In the preceding paragraphs, we had defined safety stocks in a manufacturing
system and looked at the role that they play. We had also seen how different factors
affect the level of safety stocks. In this thesis, we study in greater detail, some of

these factors and develop models to analyze their effects.

The first problem that we consider is a problem related to capacity allocation.
Consider a single stage in a manufacturing system. A single stage in the system
consists of (i) a production stage (modeled as a black box) and (ii) a buffer containing
the end-item inventory (see Figure 1.1). Items produced at the stage are stored in
the buffer as end-item inventory and the demand is met from the end-item inventory.
We will explain the model in greater detail in subsequent chapters. In Chapter 2,
we consider the problem of capacity allocation in a multistage manufacturing system.
The level of safety stock at a stage depends on the amount of production capacity at
the stage. The greater the production capacity, the lower is the level of safety stock
required since the stage is able to react to changes in demand much more quickly.

Suppose there are two production stages in tandem as shown in Figure 1 2 and we
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— Demand Dt

Work-in-Process End-item
Inventory Inventory

Figure 1.1: A single stage in a manufacturing system

Stage 2 Stage |

Figure 1.2: Two stages in tandem

have a fixed amount of capacity to assign between the two stages. If the objective
is to minimize the total safety stock at both stages, the optimal capacity assignment
will ensure that the line is balanced, i.e., neither stage becomes a bottleneck. The
question is: What capacity allocation will minimize the total of the work-in-process
inventory and safety stock in this configuration. One could extend this problem to a
system that comprised a network of stages. We will look at this problem in greater
detail in Chapter 2. We will also compare some of the analogous problems that arise

in the context of queueing networks.

In Chapter 3, we consider the following problem: suppose that there are two items
produced at this single stage. There could be one or multiple machines at this stage
and we assume that the units of production capacity are infinitely divisible. That is,
given a fixed capacity allocation, the amount of capacity alloted for the production
of each item could take on values in a continuum, provided the sum of the capacitics

equals the total available capacity. The question that the decision maker faces is the
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following: Should the two items be processed on two separate, dedicated machines?
Or should they be processed on a single flexible machine, and the input streams for
the two items be merged? The advantage of having flexible machines is that the total
idle time on the two machines is minimized. In the queueing parlance, the sojourn

time in the system is minimized.

However, there are benefits from having separate, dedicated lines for each item.
First, the cost of installing two dedicated lines may be lower than the cost of installing
one flexible line with the same production capacity. In some cases, there might be
certain benefits associated with having two separate lines. If the demand for item 1
is fairly stable, i.e., the coefficient of variation is very low, and the demand for item
2 is highly variable, it may be better not to merge the two streams. By merging
the two streams, the production output stream for item 1 may become much more
variable because of the demand for item 2 is highly variable. Since the production
output stream for item 1 is more variable when the two streams are merged, the safety
stock level for item 1 may be higher. However, since the lines are dedicated, the idle
times on the machines are bound to be higher because of incompatibility between the
two machines, i.e., if a machine in line 1 is idle, item 2 cannot be processed on this
machine. This model is meant to serve as building block for a model that addresses
the broader question of dedicated versus flexible factories. We will discuss some of

the broader issues that arise in this context in Chapter 2 or 3.

In all of the analysis in Chapters 2 and 3, we assume that the system operates
according to a proportional production rule. Earlier, we had argued why a rule of this
nature characterizes the actual behavior of many manufacturing systems. The rule
that we use is linear, i.e., at a given time, the production rate is set equal to a fixed
fraction of the work-in-process inventory at the stage at that time. In other words,
if, in every time period, we decide to produce 20% of the work-in-process, then the
production, as a function of the work-in-process inventory, is shown in Figure 1.3. The
production function is linear with slope 0.2. The advantages of assuming such a rule

are obvious; the resulting system is linear and the analysis is simplified considerably.



Chapter 1. Introduction 9

Production
Function

P(x) P(x) = 0.2 X

-
WIP Inventory x

Figure 1.3: The Linear Production rule

(In general, linear systems are far more tractable than nonlinear systems). Besides,
a rule of this nature can be shown to be optimal when the production and inventory
holding costs are quadratic (See Holt et al. [Holt55] and Graves [Gra88b] ). The only
drawback of this rule is that the production capacity is assumed to be unbounded.
For example, if there are 100 units of work-in-process inventory and one decides to
process 20% of the work-in-process , then in that period, 20 units would be assumed
to be produced even though the capacity of the stage is, say, 10 units. This can be
remedied by an appropriate choice of the slope of the production function. We will talk
about this rule in greater detail in subsequent chapters. In Chapter 4, we propose
a proportional production rule that explicitly takes into account the constraint on
production capacity. Consequently, the resulting rule is nonlinear. Using this rule,
the model can be analyzed for a single stage and expressions can be obtained for the
mean and the variance of the work-in-process inventory. The linear rule can be seen

to be a special case of the nonlinear rule that we propose.

In Chapter 5, we summarize the main results of this thesis and point out some

directions for future work.

The main body of this thesis comprises Chapters 2, 3 and 4. It is not necessary

to read the chapters in a sequential fashion; they have been written so that they can
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be read fairly independent of each other. While the inevitable consequence of this is

a certain degree of overlap, we have tried to keep this to a minimum.

To conclude this chapter, this thesis looks at work-in-process inventories and safety
stocks in manufacturing systems and the different factors that affect them. We have
developed different models to study the effect of these factors. We have formulated
models in both discrete time and continuous time. We will justify the assumptions
as well as the methodologies when we describe the models in the later chapters. In
previous work (see Graves [Gra88b)), for a single stage with the demand process
and maximum processing capacity given, the lead time and consequently, the WIP
inventory and safety stock at the stage can be determined. In this thesis, we examine
how these measures could be affected by changing the available capacity at the stage.
We show that the optimal capacity allocation for the multistage problem is a closed
form expression that is similar to expressions that have been obtained earlicr for

queueing networks (see Kleinrock [Klei64] and Wein [Wein89]).

In this thesis, we also show that under certain conditions, when many products
are being manufactured at a facility, and when the demand for a certain product is
stable, it may be advantageous to manufacture this product separately. We argue
that the queueing model is inappropriate in this scenario and demonstrate how this

could be modeled using the linear production rule that we had described earlier.

We also illustrate how different models of production systems that have been pro-
posed in literature can be viewed as asymptotic or special cases of a production system
that we propose. Using this production rule to model system behavior, we obtain a
closed form expression for the WIP inventory. It can be shown that the expressions
obtained previously using other models correspond to different components of the
expression in our model. Besides, the rule is parameterized which allows us to model
the system behavior more closely. This is a summary of the major thesis findings
and these points will become clearer as we delve into the issues in greater detzil in

subsequent chapters.



Chapter 2

Capacity Allocation, Work-in-Process Inventories and Lead
Times

2.1 Introduction

In many manufacturing organizations, there has been a renewed commitment to ex-
cellence in manufacturing over the last decade. In order to evaluate their manufactur-
ing operations, maximize operating efficiency and measure costs, firms have different
control mechanisms in place. These mechanisms are used to provide managers with
timely feedback, assist in the day-to-day decision making as well a: help in devising

the overall long-term strategy of the firm.

Included in these mechanisms are several performance measures that enable firms
to evaluate performance and one of them is the average inventory level. Inventories
comprise a significant amount of a firm’s working capital. The benefits of having
lower levels of inventory are manifold: lower cost of carrying inventory, smaller factory
areas, reduced material handling and transport, smaller percentages of defects etc.
Organizations strive to keep their inventories under control and they employ a vast

array of methods to achieve this.

Some authors have argued that there are serious flaws in the manner in which
costs are allocated. These allocations cause systems to behave in a manner that is far
from beneficial. For example, consider an investment in a new machine. There is a
desire to keep the utilization of the machine as high as possible in order to justify the

investment. But the investment in the machine is a sunk cost and it is independent

11
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of the production volume at the machine. Second, using utilization as a measure of
performance implies that the firm can sell everything that it produces. While this

may be true, few firms find themselves in this enviable position.

Some authors have argued that the traditional cost accounting systems that are
currently in place in most companies are archaic. Kaplan [Kapl83] has argued that
besides their inability to provide key nonfinancial information, they also distort prod-
uct costs. These control systems were developed several decades ago when the nature
of the markets, as well as the production techniques, were vastly different. These
systems were designed to produce data for external reporting, but they fail to convey
the reality of the operational environment. The use of these measures in the decision
making process causes managers to choose strategies that are not in the best inter-
est of the organization. Moreover, managers being evaluated on the basis of these
measures would adopt a short term focus rather than develop long term strategies.
Goldratt [Gold86] has proposed three operational measures of performance in his

manufacturing accounting system: throughput, inventories and operational expense.

One measure that has been proposed in the literature, yet seldom used in practice,
is lead time. The necessity of a firm to quote delivery dates results in the notion of
planned lead times. Of equal importance is the ability to deliver the product within
the given time window (see Harrison et al. [Har90}). This measure is different {from
the traditional measures that are currently in place. In a certain sense, this measure is
antithetical to the measure of performance described earlier, namely, machine utiliza-
tion. Since lead times are proportional to (1 —p)~! where p in the machine utilization,
usually associated with high utilizations are high lead times. Karmarkar [Karm90]
provides a comprehensive survey on the literature on lead time management. Al-
though this measure by no means encompasses every attribute of an organization,
there are many other desirable characteristics associated with systems with low lead

times.

In a competitive market, firms need the ability to respond to market changes and

customer needs quickly. This is not the same thing as flexibility although many flexi-
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ble manufacturing systems have low lead times. Lower lead times also result in lower
levels of work-in-process (WIP) inventory and safety stocks. In the model that we
present in subsequent sections, we explicitly show how the work-in-process inventory
and safety stocks vary with lead times. If the lead time were to be incorporated
among the other measures of performance, one may be able to justify an investment
in a machine that leads to a substantial reduction in lead times — something that

the traditional measures may not provide.

In the case where the quality of the product (in terms of defective or nondefective)
can be determined only after the completion of production, lower lead times also
provide faster feedback to trace the cause of defects. In addition, since the levels of
WIP inventory and safety stock are reduced, the number of defectives in the pipeline

are also reduced.

In the preceding paragraphs, we have tried to provide a cogent argument for
including lead times among the measures of performance. In the analysis that follows,
we use a model where the planned lead time is a decision variable and the lead times
are considered when determining the levels of WIP inventory and safety stock. We
examine the question of how to allocate capacity among the different stations and
how it affects the lead time. We also provide tradeoff curves that describe how the
overall processing capacity affects the lead time as well as the WIP inventory and

safety stock in the system.

Kleinrock [Klei64] considered the problem for an n-stage Jackson network where
i = (ji1,---,jtn) is the vector of mean arrival rates (ji; being the effective arrival
rate to stage ¢). If C = (Cy,...,C,) is the corresponding vector of processing rates
and the sum of the processing rates must not exceed K, then the allocation of the
processing rates that minimizes the expected equilibrium number of customers in the

system is given by

. _ pi _
c; = ﬂ.-+——\/——_—(1(—2#j)
Hi J

t ;f'

This is the well known square root formula. It says that the optimal processing rate
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for station z is equal to the effective arrival rate to station : plus an amount that is

proportional to the square root of the effective arrival rate to the station.

Wein [Wein89] considered a generalized Jackson network which could be analyzed
using a Brownian approximation. This is a two-moment approximation and he showed
that the optimal capacity allocation in this formulation is similar to the square root
formula, but the square root factor is replaced by another factor that captures the

variability. (We will discuss this in greater detail in Section 2.4.)

Bitran and Tirupati [Bitr88] use the open network of queues model to derive
tradeoff curves for the lead times and the WIP inventory as a function of the total
capacity in the system. In this chapter, we show how one could derive the tradeoff
curves for a system (with a linear production rule) that we shall describe in subsequent
sections. The outline of this paper is as follows: In section 2.2, we describe the linear
model in discrete and continuous time. In section 2.3, we show how this can be
extended to the multistage framework. In section 2.4, we obtain the steady state
equations and formulate the optimization problem. In section 2.5, we provide a few

tradeoff curves as well as a discussion of the overall model.

2.2 The Basic model

2.2.1 The discrete time model

The model that we describe below is due to Graves [Gra88b]. Consider a single
stage in a manufacturing system where a single item is produced (see Figure 2.1).
The model can be extended to the situation where multiple items are produced at
the stage. The single item case that we consider here can be thought of either as
a single item being produced, or multiple items that are considered in aggregrate.
The inventory at the stage is of two types: work-in-process inventory (WIP) and
end-item inventory. The end-item inventory, also known as safety stock, is used to
satisfy the demand at the stage and any excess demand is assumed to be backordered.

The original model is a discrete time model and was later extended to the continuous
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— Demand Dt

Work-in-Process End-item
Inventory Inventory

Figure 2.1: A single stage in a manufacturing system.

time framework [Gra88a]. We shall describe the model in discrete time and then show
how the extension to continuous time can be performed. We choose to present the

model in this manner because we believe that it is much more understandable when

presented in this way.

The demand for the item in time period ¢ is D, and is normally distributed with
mean p and variance 2. Moreover, the demands in the different time periods are
independent and identically distributed . The process is assumed to have an infinite
history and to have reached steady state. The demand in each period occurs at the
beginning of the period. Let I, be the end-item inventory at the start of period ¢ after
the demand for the period has been satisfied. Whenever a certain number of units
of the item is taken from the end-item inventory in order tc meet the demand, an
identical amount of raw material is added to the work-in-process inventory. Thus, in
period t, D, units are taken from the end-item inventory to meet the demand and so
the amount of raw material R, released into the system in period ¢ is set equal to D;.
Let X, be the work-in-process inventory at the start of period ¢ after the amount of
raw material R, is released into the system. Let P, be the amount of WIP inventory
processed in period ¢ and this becomes available at the end of period t. In this model,
the control rule that we use for production is linear. The production function is given

by

Pg = aX, Ogagl (2.1)
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The amount produced in period ¢ is a linear function of the amount of WIP at the
start of period £. In every period, a fraction « of the WIP at the start of the period
is processed. Therefore, the flow balance equations for the WIP inventory and the

safety stock, respectively, are
X: = Xeev—-Pii+ Ry (2.2)
and
I, = L1+ P_,— D (2.3)
Using the fact that R, = D, and by adding equations (2.2) and (2.3), we get
Xe+ 1, = X+ 1L

= B (constant) (2.4)

The total of the WIP inventory and safety stock in the system is called the base stock

and is denoted by B. Since R, = Dy, from equation (2.2), we get

X: = Xeein =P+ Dy

= (1 —-a)Xi-1+ Dy since P_; = aX;y
— Z(l _ a)’Dt—s (2.5)
s=0

since the process has an infinite history. Taking the expected value of both sides in
equation (2.5) and using the fact that £[D] = p for all ¢, we get

E{X] = i(l—a)’y

s=0

= £ (2.6)
(04

In a similar manner, taking the variance of both sides in equation (2.5) and using
the fact that Var[D,] = o2 for all ¢ and the demands in different time periods are

independent, we get

Var|X,] = 2(1—@%2

o?

200 — a?
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From equation (2.5), we see that X, is the sum of independent, normally distributed
random variables and hence, X; has a normal distribution. Therefore, the mean
E[X,] and the variance Var [X,| completely characterize the distribution of X,. As
the value of a decreases, both the mean and variance of X, increase. In other words,

as the fraction a of the WIP inventory processed becomes smaller, the inventory level

follows-the-demand-less-closely-and-so-it-fluctuates-more-widely: e -

Since X, + I, = constant, I, also has a normal distribution and Var [[;] = Var [X,).
Now it remains to choose the value of E[I;], which is equivalent to setting B. When
choosing the expected value E [I;], we would like to ensure that 95% of the time, the
demand can be met from the safety stock. For instance, if we set the service level to

0.95, then

P[I,>0] = 095

The service level of 95% that we choose here is arbitrary. A firm may decide that a
service level of, say, 99.5% is more appropriate and accordingly, would set the levels of
safety stock. For the remainder of this discussion, we shall use a service level of 95%.
qualifying it with the comment that this choice is a reasonable one in this setting.
The value zero corresponds to the 5th percentile of the distribution of I; and so we

set

E [Iz] = k0.95\/ Var (1)

o
= 1.645———
V2a — a?

Therefore, the level of base stock can be determined from equation (2.4).
B = E[X]+E[lL]

7

V2a —a?

‘T'here is one thing that still remains: How does one choose the value of a? Since

= £ + ko.os (2.9)
a

the production function in this model is linear, it is unbounded. The idea in this

model is to choose !iie value of « so that the production rate dictated by the model
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is consistent with the maximum production capacity. Since P, = aX;, P, is normally
distributed with mean g and variance ;f—_’:; As a decreases, Var [P;] decreases.
Since the level of base stock B decreases as « increases, to minimize inventory, we
would like the value of « to be as large as possible. In this case, we choose the largest
value of a such that 95% of the time, the production rate dictated by the model is
less than the maximum processing capacity. That is, choose the largest value of « so

that

FE [Pg] + ko_95\/VaT (Pt) S C (210)

where C is the maximum processing capacity at the stage. Again, the value of 95%
that we have chosen here is arbitrary. This is different from the service level for
setting safety stocks that we had talked about earlier. We choose a level of 95% here
to ensure that the lead times provided by the model are realistic and descriptive of
the actual system behavior. Moreover in this analysis, the levels that we choose, both
for setting safety stocks (equation (2.8) ) and setting lead times (equation (2.10)),
are identical, but this need not always be the case. Since in the stage, a fraction a of
the WIP inventory is processed, on average, it will take % time periods for work to

be processed. Therefore, - can be interpreted as the lead time for the stage.

2.2.2 The extension to continuous time

We now extend the results of this model to the case of a continuous time framework.
In this case, the scenario is almost identical to the one described previously. The
cumulative demand upto time ¢ is D, and this is assumed to be normally distributed

with mean pt and variance o?t, i.e.,
D, = ut+ oW, forallt >0 (2.11)

where W, is a standard one-dimensional Brownian motion. In other words, D, is
a diffusion process with drift x and dispersion o. Unlike in the discrete time model

where p is the mean demand in a period, p in the continuous time model is a drift rate
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so that the mean demand in the interval (t,t+ dt) is pdt. X, is the WIP inventory at
time ¢t and I; is the end-item inventory at time t. P, is the instantaneous production
rate at time ¢ and it is set equal to aX;. As in the discrete model, the cumulative
amount of raw material released upto time ¢ is equal to Dy, i.e., R, = D,. Thercfore,

we can write the flow balance equations for the WIP in the time interval (¢, ¢ + dt).

Change in WIP = Amount released into — Amount processed

in (t,t + dt) system in (t,t + dt) in (¢,t+ dt)

Therefore,

dX, = dR, - Pdt

= th - Pl(lt since d[f, = (ll)g
= pdt + odW, — aX,dt since P, = aX,
= (/l - aX,)dt + O’d"Vl, n > 0, >0 (2.12)

It can be shown that.the ergodic distribution of X, is normal with mean £ and

variance %f; In other words, for the continuous time model, the mean level of WIP

inventory is

tyv L Iy
E{X] = ‘; (2.13)

and the variance of the WIP inventory level is given by

' 0-2
Var (X)) = % (2.14)
Therefore, the level of base stock is
7 o

B = =+k
a+0.95\/é:;

If we compare the results of the discrete time model and the continuous time model,

(2.15)

we see that the mean value for E[X)] for both models is the same while the variance
Var[X,] differs by a factor of (1-2). We claim that the results for the base level stock

that both models provide are extremely close and the reader is referred to Chapter
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4 for a more detailed cxplanation. In the discrete model, @ was the fraction of the
WIP inventory that was processed in a given period. Since we could not process more
WIP inventory than there was present in the system, a had to be less than one in
the discrete model. Moreover, since the lead time is equal to 1, if o was greater than
one, the lead time is less than one. If, on average, the WIP inventory became part of
the end-item inventory in less than one time period, it simply meant that the choice
of the length of a time period in the model was inappropriate. In the continuous time
model, P, is the production rate. Therefore, there is no upper bound on the value of
a since P, is a rate and not the actual amount produced. Besides, we are using the
continuous time framework so there is really no problem if the value of the lead time

ﬁ falls below one.

In this chapter, we shall use the continuous time framework in extending the
results to the multistage case. The linear production rule facilitates the analysis in
the multistage case. The system is much more difficult to analyze when the production

function is nonlinear.

2.3 The Multistage System .

In this section, we shall develop the model for the multistage system assuming that
each stage behaves like the single stage that we had described in the previous section.

We shall use the continuous time setting to describe this model.

2.3.1 The model of the multistage system

Consider a network with n stages labelled 1,...,n. The single stage that we described
earlier is used as a building block in this multistage network and the model uses the
continuous time framework. The cumulative exogeneous demard upto time ¢ is D,
and it is an n X 1 vector where D;, is the exogeneous demand for the item produced at
the ith stage,? = 1,...,n. It can be represented by an n-dimensional diffusion process

with an n X 1 drift vector p,x; and an n x n dispersion matrix [',x,. Therefore, the




Chapter 2. Capacity Allocation, Work-in-Process Inventories and Lead Times 21

Stage 2 Stage |

Figure 2.2: A two stage network.

cumulative demand process can be written in differential form as
dD, = jax1dt + TpyxndW, (2.16)

where W, is a vector of n independent, one-dimensional Brownian motions.

Let X, = (X1ty..-,Xne) be the vector of work-in-process inventories at time ¢
where X;, = WIP inventory at stage ¢ at time ¢, ¢ = 1,...,n. Similarly, let I, =
(L, .., In) be the vector of end-item inventories at time ¢. Let Ry = (Ryy. .., Ruy)
be an n-dimensional vector where R;; = Cumulative amount released into stage ¢ upto
timet,i=1,...,n. Let P, = (Py,..., Py) be the vector of instantaneous production
rates. If P; is the instantaneous production rate at stage 7 at time ¢, then the amount

processed at stage 7 in the interval (¢,¢ + dt) is P;dt.

The relationship between the different stages is given by a matrix A = [ai;], .,
where ¢,; = number of units of item 7 required to process one unit of item j. Consider
a two stage network as shown in Figure 2.2. Suppose two units of item 2 are required
to assemble one unit of item 1. (When we say item j, we actually mean the item pro-

cessed at stage 7, but since each stage processes only one item, there is no ambiguity.)

The cumulative induced demand upto time t is given by

Cumulative induced demand upto timet = D,+ AD, + A(AD,) +...
= [I+A+ A%+ ...|D,

i

(I - A)™'D, (2.17)




22  Chapter 2. Capacity Allocation, Work-in-Process Inventories and Lead Times

In this example, A = (g g). Suppose there is an exogeneous demand that occurs at
stage 1 and no exogeneous demand at stage 2. Then, the end-item inventory at stage
2 is raw material for stage 1. In addition, suppose the exogeneous demand for item
1 upto time ¢ is 10 units. Then the amount taken from the end-item inventory of
stage 2 upto time ¢t must be 20 units since two units of item 2 are required to process
cach unit of item 1. In this example, D, = (1(?). Therefore, from equation (2.17), the

cumulative induced demand upto time ¢ is given by

Cumulative induced demand upto time t = (I — A)™'D,
1 0 10
~\2 1) \o
10
20

The cumulative amount released into stages 1 and 2 upto time ¢ are 10 and 20 units

respectively. If we write this in vector form, we get
Rt = (1 bt A)_lbt

i.e., the vector of cumulative releases upto time ¢ must be equal to the cumulative
induced demand upto time ¢. Although the demand at stage 2 upto time ¢ is 20 units,
the amount released into stage 1 upto time ¢ is 10 units. We measure the cumulative
amount released in terms of the number of units of the item in the stage into which
it is released, and not the number of units of the item in the predecessor stage. In
this analysis, we allow the end-item inventories at a stage to go negative. In other
words, we assume that even if the inventory at the upstream stage falls below zero,
units of the end-item inventory can still be released into the downstream stage. We

will set base stocks, though, so that the probability of this event is small.

If D, is a diffusion process with drift vector gn.x; and dispersion matrix I'nxn,
then the cumulative induced demand process (I — A)~'D; is a diffusion process with
drift i = (fry...sjin)" = (I = A Vpnxy and dispersion matrix T' = [3;5],,, =

(I — A)"'Tpxn. It should be noted that T is the dispersion matrix for the cumulative
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induced demand process. Therefore, the corresponding covariance matrix is I'TT

which is"symmetric. - Indifterential form; thiscan-be-written-as
d[(I-=A)7'D) = [(I-A) " pma]dt+ [(I = A)7'Txa| dW,

= jdt+ [dW, (2.18)

Let BL be the lead time at stage ¢, 2 = 1,...,n. Since each stage obeys the lincar
production rule, we have

P,'t = CY,',\’,', 1= l,...,n. (219)
If we let [0'].1g = diag(ay,...,a,), we can write equation (2.19) in vector form as

Po = la]y, X (2.20)

In the next subsection, we obtain the flow balance equations for the work-in-process

and the end-item inventories.

2.3.2 Flow Balance Equations

The flow balance equations for the work-in-process inventories can be written by
considering the change in the WIP in the time interval (¢,¢ + dt). I'or the work-in-

process inventory, we have

Change in WIP = Amount released into — Amount processed
system in (¢,¢ + dt) system in (t,¢ + dt) in (¢,¢t+ dt)
Therefore,
dX, = dR, - Pdt (2.21)

Similarly, the flow balance equations for the end-item inventories can be written as

follows:

Change in end-item = Amount processed — Amount released into

inventory in (¢,t + dt) in time (¢,t + dt) successor stages in ({,t + dt)
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Therefore, the stochastic differential equation for the end-item inventory is
dl, = Pdt—(I-A)"'dD, (2.22)

We choose dR, = (I — A)~'dD,. In other words, the amount that is released into
the work-in-process inventory at each stage is equal to the induced demand in the
time interval (¢,¢ + dt). Adding equations (2.21) and (2.22), we get dX,+dIl, =0 or
X, + I, = constant for all . The equations for the work-in-process inventory can be

rewritten as

dX, = (I —A)™'dD, - Pdt
= jdt + TdW, — P.dt from equation (2.18)
= (ﬁ - [a]dg):'t) dt + ['dW, from equation (2.20) (2.23)

We have shown that the WIP inventory can be represented by a system of n lincar
stochastic differential equations, namely (2.23). Since the equations are linear, they
are relatively easy to solve. In the next section, we obtain the mean and the variance

of the vector X, in steady state.

2.4 The Optimization Problem

In this section, we obtain the mean and the variance of the vector X, in steady state.
We do not present the proofs leading to these results here, but have deferred them to
the appendix. The interested reader can always refer to them there. The result for

the mean of the WIP inventory vector is stated in the following theorem.

Theorem 1 The mean vector of the WIP inventory level is given by

E[X]

Il

ey, 2
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Proof: See the appendix. o

This result says that the mean WIP inventory level at stage  is equal to ’;—: This is
similar to the result for the mean WIP level for a single stage. The only difference is

that the mean demand is replaced by the mean induced demand for the stage.

EXq = E i=1,...,n (2.25)

1

We obtain an expression for the variance of the WIP inventory level at each stage
similar to the expression for a single stage that we had obtained carlier. The result

is stated in the following theorem.

Theorem 2 The variance of the WIP inventory level al each stage is given by

g2
Var [ Xyl = — 1=1,...,n 2.26
[Xi] o, (2.26)
where 6} = ¥5_, 7% and = (Fiil,xn 78 the dispersion matriz of the induced demand
process.
Proof: See the appendix. m]

The result is similar to the expression for the single stage case. The only difference

2

is that we replace o2 in equation (2.14) by a7 = ¥;%%, ¢ = 1,...,n which are the

diagonal terms on the induced demand covariance matrix (I — A)~'T'[(/ — A1)

We have obtained expressions for the mean and variance of the inventory level
at each stage. As in the case of a single stage, the idea is to choose the value of a;
so that the lead time at each stage is consistent with the production capacity at the
stage. Let d; be the average cost per unit of inventory at stage ¢, 7 = 1,...,n. We
are now in a position to state the basic optimization problem. Suppose there were
a total of K units of capacity available. How does one assign this capacity among
the n stages so that the total dollar value of the WIP inventory plus safety stock

in the system is minimized? And given the different capacities that are assigned to
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different stages, what are the lead times for this optimal capacity allocation? To state
it slightly differently, how does one allocate these I units of capacity among these n
stages and choose lead times consistent with the capacity allocation at each stage so
that the total dollar value of base stock in the system is minimum? Therefore, the
optimization problem (P) is

n

Minimize > d; B; Problem (P)

1=1

subject to

C; i=1,....n. (Pl

E[Py)+ ko.sm\/ Var(P;)

We would like to make a few remarks about the optimization problem (). The
decision variables in this problem are C; and a;, 1 = 1,...,n. The problem is a
NLP and it is very diflicult to obtain a closed form solution for the optimal capacity
allocation C; and the corresponding lead times ;".-, i=1,...,n. Since £[Py] = jy

.52
and Var[P,] = %”-, constraint Pl can be rewritten as

572
A+ 1645\ 2L = ¢, i=1,....n

Note that we have substituted the value of kggs = 1.645 in the above equation.

In equation (2.10), we had said that the value of a; is chosen so that

E[Py) + ko.951/ Var[Py] < C

In the optimization problem, it is not hard to see that this constraint would be tight
for any optimal solution. Because the LHS is equal to ji; + ko,gs%\/(.T;, making the
constraint tight by increasing the LHS increases the value of a;, which decreases the
WIP and safety stock at stage z. Hence we write this constraint as a tight constraint

in the optimization problem.
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In this model, d; is the cost per unit of inventory at stage :. Given the relationship
between the different stages in the network, it may be that the items in one stage
are assembled using components from different ' .ges. The cost of ¢ single unit of
the assembled item would be greater than the cost of the component parts so the
objective function may be regarded as the dollar value of the inventory in the system.
Since we are in the continuous time domain, P is a vector of production rates and
so strictly speaking, I\ is the total capacity rate and C; is the maximum processing
rate at stage 7. Henceforth, in this chapter, when we refer to the total capacity A
and the capacity at stage ¢, we are actually referring to a rate or processing capacity

per unit time.

Suppose we look at a slightly different problem. Instead of considering the base
stock at each stage, suppose we only consider the WIP inventory. So instead of the
objective function being >7n, di Bi = Y=, d; (‘;—jf + 1.645 a—;’i), we consider the
function Y 7, d;;L:. How can we justify this approach where we merely look at the
WIP inventory instead of looking at both the WIP inventory and safety stock in the
objective function? For many manufacturing systems, %'L < 1,1 =1,...,n, that is,
the coefficient of variation of the induced demand at each stage is lower than one.
Also, the WIP term has a factor of al. and the safety stock has a factor of \/—'o_‘- which
is smaller for values of a; € (0,1). If ; > 1, the levels of WIP inventory and safcty
stocks may be comparable, but the absolute levels for both are lower for higher values
of ;. What we are trying to say is that the WIP component of the base stock is
usually larger than the safety stock component. Even if they were the same, both
the WIP inventory and the safety stock exhibit the same behavior as a function of
a (although they may vary at different rates). The advantage of considering only
the WIP for the modified problem is that we are able to get closed form expressions
for the optimal capacity allocation and the lead times at each stage for any network

configuration. The modified optimization problem (P') is
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Minimize Y d; ol Problem (P’)
=1 Q@i
subject to
ﬂ;+k0_95 a;':ﬁ = C,' ?:=1,...,TI.. (P'l)
> Ci = K (P'2)

=i

The result in the next theorem provides the optimal capacity allocation and the

corresponding lead times for the problem (P’).

Theorem 3 The optimal capacity allocation for the problem (F') is given by

c_ o (dadief " . g
C; = ,ll,‘-l'n——_—l'j 1(—2[11' t=1,...,n. (227)
L (dif;)30; i=1
and the optimal lead time for this configuration is given by
(S @aiaf)
5 \3 iti)*0;
51; "‘2)95 (d"‘; ) = i=1,...,n (2.28)
i 2 ifki K-S i
jz=:1 Hj
Proof: See the appendix. o

Looking at equation (2.27), we see that in the optimal capacity assignment, the
capacity at each stage is at least equal to the mean production rate at the stage. In
order for the entire system to be stable, the total capacity K must be greater that
the total mean induced demand at all stages in the system }_; fi;. The excess capacity
K —Y" , i is distributed among the n stages and the proportionality factor for stage

11is

(2.29)

We can compare this result with the results of Kleinrock [Klei64] and Wein [Wein89)].

In the Kleinrock case, the system is a Jackson network with n nodes and the effective
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arrival rate vector is (fI;,... ,ﬁn)T. The optimal capacity assignment that minimizes

the expected equilibrium number of customers in the system is

(K = 3 )
djp; i=1

Ci = pi+

s

1

J
Wein looked at the capacity allocation for a generalized Jackson network which can
be analyzed using a Brownian approximation. When the probability density function
for the Brownian network has a product form, he showed that the optimal capacity

assignment that minimizes the expected number of customers is given by

L aG (14, )

The &;’s in the Brownian network formulation are not the same as in our net-
work, but they capture different sources of variability. (For further details, refer
to Wein [Wein89].) This basically says that in the optimal configuration, the more
variable stations gei compensated by receiving more capacity.

Let us take a closer look at the proportionality factor in this model as stated in

equation (2.29).

This can be rewritten in terms of the mean and the coefficient of variation %J- of the

induced demand at each stage as
L 2
d} i (CV;)3
n 1
X & B (CV))3

where CV; =

El LQ_.

which is the coelficient of variation of the induced demand for stage
i,2 =1,...,n. This says that in the optimal assignment, the portion of the excess
capacity assigned to stage ¢ is proportional to the mean production rate ji;, the two-
thirds power of the coefficient of variation CV; and the one-third power of the cost

of inventory at the stage d;. For stages where the mean production rate is higher, a
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greater portion of the excess capacity is assigned to the stage. If the coefficient of
variation of the induced demand at a particular stage is higher, the portion of the
excess capacity assigned to that stage is higher. In this model, the optimal capacity
measures the variability in terms of the coefficient of variation. For stages where the
cost of inventory is higher, the fraction of the excess capacity assigned is greater to
allow for lower levels of base stock at those stages.

The lead time for each stage is known once the amount of capacity allocated is

known. From equation (2.28), we see that the optimal lead time for stage ¢ is given

by

For a given network, the expression

2

2
: . is constant and so we have
2 K- =1 Hy

1 o a;
aj d; i

L. (%)?‘
d;

the lead time for stage ¢

W

This can be rewritten as

In other words, as the coefficient of variation of the demand for stage ¢ increases, the
lead time for stage ¢ would increase. As d;, the cost of inventory at stage ¢ increases,
the lead time at the stage i decreases. In the next section, we look at an example
as well as tradeoff curves of how the base stock in the system and the lead times vary

as the total capacity in the system is varied.

In comparing these results with Kleinrock’s expression and Wein’s expression for
the optimal capacity allocation for queueing networks, a few remarks would be appro-
priate at this point. First, the system that we have analyzed here is a make-to-stock
system as opposed to the make-to-order systems that we have seen for queueing net-

works. The make-to-order queueing networks that we described earlier have a product
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form, but this is not true of the make-to-stock queueing networks. Second, the model
that we present in this paper is tactical in nature, whereas the models for queueing
networks are more detailed descriptions of the system behavior at the operational

level.

There is another point that needs to be mentioned here. In all of the analysis
so far, we have assumed that there is complete buffering between the st.zc.. But is
this a valid acemption to make? Qr is there another method of releasing inventory
from stage to stage that would reduce the total base stock in the system beyond the
levels for this method. Two points need to be mentioned here. First, this method
of analysing a multistage system is consistent with the role that safety stocks play.
In earlier work (see Graves [Gra88b]), it has been argued that safety stocks play
a decoupling role between stages. This decoupling function enables us to look at
each stage in isolation and use the analysis for a single stage that was discussed
earlier.Second, if there were a better method of releasing safety stock from one stage
into the WIP inventory of a successive stage, this might lead to nonstationarity that

would make the analysis extremely difficult.

2.5 Tradeoff Curves: An Example

In this section, we look at an example of capacity assignment for a multistage network.
We also provide tradeoff curves that show how the base stock and lead times vary as

a function of the total capacity K.

The network that we consider in this example is shown in Figure 2.3. There

are eight stages in this network and the relationship between the different stages is
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Exogeneous demand
foritem |

Exogeneous demand
foritem 2

Figure 2.3: A multistage network.

indicated by the matrix A.

/000000 0 0)
000O00OCO0T OO
10000000
L 11000000
01000000
00100000
00010000
\O 0 0 0 1 00 0/

The exogeneous demand occurs only at stages 1 and 2. The mean and standard devi-
ation of the demand rate for item 1 are ."200 and 30 respectively, and the corresponding
numbers for item 2 are 200 and 40. For now, let us also assume that the demands are
.ihdependent. Therefore, the vector /.znxl in this ~ex:a,mple is (20020000000 O)T and
the vector T'nxn is given by diag(30 40 0 0 0 0 0 0). The drift vector 2 = [T — A '
is equal to (200 200 200 400 200 200 400 200). In a s‘imilar manner, the dispersion
matrix T = [I — A] 'Tuxn can be computed. The vector of ;s (see Theorem 2) is

(30 40 30 50 40 30 50 40). Furthermore, in this example, d; =1 forz = 1,...,8.

For the problem to be feasible, there must be at least Z?:] Z; units of capacity
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| available, so K > 2000. Once the optimal capacity allocation and lead times are
determined from Theorem 3, the WIP inventory and safety stocks can be determined.
In Figure 2.4, we provide a tradeoff curve which shows how the WIP inventory varies
as the total capacity in the system changes. As we expect, when the total capacity
K increases, the total WIP inventory in the system decreases. Figures 2.5 and 2.6
show similar tradeoff curves for the total safety stock and the total base stock. Il we
compare the WIP inventory and safety stock tradeoff curves in Figures 2.4 and 2.5
respectively, we find that the safety stock is about one-tenth of the WIP on average.
In this example, the WIP is the dominant component of the base stock and this was
the rationale behind us chocsing only the WIP component in the objective function
of the modified problem (/'). We hasten to add that in this example, the coeflicients
of variation of the demands for the two items are low, but it can be argued that this
is true of many manufacturing systems. Since the safety stock is a small compeaent
of the base stock in this example, the tradeoff curves for the WIP inventory and the

base stock, in Figures 2.4 and 2.6 respectively, are quite similar.

In Figure 2.7, we look at the tradeoff curve of the total lead time versus the total

capacity in the system N'. In this example, the total lead time is defined as

1 1
mase (d4dodh drrderdy ity e dy)

ag ' aj az' ap az’ ap

In essence, this takes each of the four paths in the netwerk (starting from raw
material and terminating at the end-item inventory for items 1 or 2) 1-3-6, 1-1-T,
2-4-7 and 2-5-8, and sees which one among these has the longest lead time. Another
way of looking at this would be the following: Suppose we tag all items at stage 6,
7 and 8 when they enter the work-in-process inventory. On average, how much time
would elapse before thesc items appeared as components in items in the end-item
inventory of stages 1 or 2and the longest of these times is chosen as the total lead

time.

For this curve, we see that as the total available capacity increases, the total lead

time decreases. When K is low, this lead time could be as high as 40 time units,
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Figure 2.4: Tradeoff curve of total WIP inventory versus total capacity K
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Figure 2.5: Tradeoff curve of total safety stock versus total capacity I
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Figure 2.6: Tradeoff curve of total base stock versus total capacity i’
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Figure 2.7: Tradeoff curve of total lead time versus total capacity /{
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which says that as the utilization at the different stages gets very high, so do the lead

times.

In the previous section, we looked at a modified version of the optimization prob-
lem and found the optimal capacity allocation and lead times. The reason we did
this was that we were able to obtain closed form expressions for the optimal deci-
sion variables and we argued that there was a good intuitive basis for looking at the
modified problem. But we have not yet really answered the question: How do the
optimal values for the modified problem compare with those for the original problem?
In other words, is this optimum anywhere near the optimum for the problem that we

started out looking at?

In Figure 2.8, we have compared the total base stock in the system for the original
problem and the modified problem. The optimal solution for the original problem was
obtained by writing out the Kuhn-Tucker conditions for this problem, and using a
numerical approach to find the optimal decision variables that satisfy these equations.
As we can see from the figure, the two curves are almost identical. In the calculations
that were performed, the difference between the levels of total base stock for the two

methods did not exceed one unit of base stock.

In Figures 2.4-2.7, we had assumed that the demand processes for items 1 and
2 are independent. Suppose the demand processes for items 1 and 2 are correlated.
What is the effect of correlation between the demands in the network? When the
correlation between the demands is negative, the variance of the demand for items 4
and 7 is lower and hence the base stock for each of these stages would be lower. On
the other hand, when the correlation is positive, the variance for these items increases
so the base stock increases at each of these stages. In Figures 2.9 and 2.10, we provide
tradeoff curves for the total base stock and the total lead time as a function of the
coefficient of correlation between the two demands. We see that as the correlation
increases, both the total base stock and the total lead time increase. In the case of

both these curves, the value of the total capacity is fixed at K = 2250.
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Figure 2.8: Total base stock for the heuristic and optimal capacity allocation.

.............. Heuristic capacity allocation.
++++++++++  Optimal capacity allocation.
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Figure 2.9: Total base stock versus coefficient of correlation between the demands
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Figure 2.10: Total lead time versus coefficient of correlation between the demands



42  Chapter 2. Capacity Allocation, Work-in-Process Inventories and Lead Times

This completes our discussion of the example. In the next section, we summarize
the work in this chapter. The proofs leading to the results are presented in the

appendix.

2.6 Concluding Remarks

In this chapter, we have examined the problem of capacity allocation for a multistage
network in a manufacturing system. We developed a multistage model and formulated
the optimization problem. We then obtained expressions for the optimal capacity
allocation and the corresponding lead time at each stage. Later, we showed how
these could be used to provide tradeoff curves for the work-in-process inventories,

safety stocks, base stocks and lead times.
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Appendix

In this section, we derive the steady state results for the linear system of stochas-
tic differential equations in equation (2.23). (See Karatzas and Shreve [Kara88].)

Rewriting this system of equations, we have
dX, = (-lolygX:+ ) dt +TdW, Xo=0 (2.30)

In addition, we have imposed the condition that Xy = 0. Let us define an n x n

matrix Z; by the following expression

2 = exp|-lolu

et 0
= (2.31)
0 e~ont
Lemma 4 The solution to equation (2.30) is given by
_ ¢ t _
X = z [ [ 7:tds + | Z;‘PdW,] 0<t<oo (2.32)
0 ()

Proof: In equation (2.32), Z, is an n X n matrix, i and W, are n x 1 vectors. The

first term on the RHS of equation (2.32) is
t
(2 [ 125 el ds
and the second term is

[Z‘] ,/:[Z’_l]nxn[f‘]nxn[dﬂ,t]nxl

Differentiating both sides of equation (2.32) with respect to ¢ and using the fact that

Z, = —[a]dyZ:, we obtain equation (2.30). O

We obtained an expression for X, for all 0 € t < 0co. Now we can obtain the mean

and the variance of X, in steady state.
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Theorem 5 The mean of the process in equation (2.80) in steady state is given by
E [Xt] = [
(I-A)w (2.33)

Proof: The solution to equation (2.30) is the expression on the RHS of equa-
tion (2.32). Taking the expected value of both sides in equation (2.32), we get

E[X] = z [ Ji ' Z;‘ﬁds] (2.34)

since F

t
/ zZ; ‘f‘dW,] = 0 for all ¢. Differentiating both sides of equation (2.34) with
0

respect to i, we get

& (elel) = (sl s2fz

= —[a]eE [Xg] + i since Z, = —[a]a, Z,
In steady state, % (E [Xg]) = 0. Therefore, the result follows. o

Theorem 6 The variance of the process in equation (2.30) in steady state satisfies

the equation
[e]e, Var (X,) + Var (X,) [@]lsy = TIT (2.35)

Proof: The proof of this theorem is similar in spirit to the previous one. Taking the

variance of both sides in equation (2.32), we get
Var(X) = Z [ i Z;‘I‘I‘TZ;“ds] Z,
0
Differentiating both sides of the above equation with respect to ¢, we get
d 5 5 b IRRAT -1 b 1RRT -1 ;
= Ver[&]) = 2 [/0 2T 2 ds] 7+ 2, [/0 21T Z; ds] Z
z, |27 17 77 2,
= —[a)s Var [X',] —Var [X] [aag + T

In steady state, 3‘-’; (Var [)—( ¢]) = 0. Therefore, the result follows. a
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Theorem 7 The optimal capacity ellocation for the problem (P’') is given by

n

1 kbos ( a; )§ _El(djﬁj)

d;ji;

Proof: Let 7;, ¢ = 1,...,n be the Lagrange multipliers corresponding to the con-
straints (P’1) and let B be the Lagrange multiplier corresponding to the constraint

(P'2). The KKT conditions are

difi;  1.645 5;

—a? +2\/§ \/CT.‘Ti =0 1=1,...,n (2.36)
_1"-+ﬂ = 0 (2.37)

The constraints Y_; C; = K and C; = p; + ko.gsf%- o; must be satisfied. The value of

B that satisfies these constraints is given by

n 1 _2 3
2 ng(djpj)s af
ﬂ = k'g.ss n_
(K -2 #J)

Substituting this value of # in equation (2.36) (since B = 7; for all ), we get the

optimal values of o} and C7. o






Chapter 3

Capacity Allocation and Manufacturing Flexibility

3.1 Introduction

A Flexible Manufacturing System (FMS) can be broadly defined as a network or
group of automated workstations that are connected by a material handling system
which is used to transport parts between different workstations. These automated
workstations are capable of producing jobs with diverse characteristics and in general,
an FMS is appropriate for production systems where there is a high overall mix of

products that are produced in small to medium size batches.

There are several reasons in favor of using an FMS. They are able to achieve
efficiency and high utilization levels that one normally associates with a flow shop or
an assembly line. At the same time, they provide the flexibility of a job shop. Since
they are capable of producing a wide variety of job types, an FMS can be extremely
useful when the product life is short or changes in the design are frequent. In this
case, if an investment were to be made in a machine that is designed specifically for
the manufacture of a product with a short life, it may be hard to recoup the initial
investment over the life of the product. Besides, it is not clear what the residual value
of the machine would be at the end of the product life given the obsolescence of the

product.

While there are several advantages of using an FMS, there are some disadvantages
that have somewhat restricted their use. One of them is the high initial investment

necessary to set up the system. The costs of operating the system may be higher

47
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as well. These may take the form of higher retooling costs, operating training costs'
and maintenance costs due to the increased system complexity. There is an added
dimension of complexity because of information management. Since an FMS is de-
signed to handle diverse part types, information tracking and control policies for the
system are much more difficult. The nonuniformity of job types and variability in the

machine operation times makes job scheduling a much harder task.

There is a sizeable body of literature that deals with modeling the behavior of
FMS. One approach is to model the FMS as a closed network of queues. In this
approach, there are a fixed number of workstations and each workstation has one
or more identical servers. Each station has a queue with a FCFS discipline and the
service times are exponentially distributed. There is a fixed quaniity of jobs in the
system and the routing matrix is independent of the system state. It is possible to
compute the queue length density function and other useful performance measures
such as the utilization, mean queue lengths and throughput. This approach has
been taken by several authors (see Gordon and Newell [Gord67], and Vinod and
Solberg [Vin85]).

An alternative approach is to model the system as an open queueing network
(see Buzacott and Shanthikumar [Buza80]). Stecke [Stec83] formulates a number
of production planning problems for an FMS as nonlinear 0-1 mixed integer pro-
grams. Stecke and Solberg [Stec81] examine some loading and control policies using
a simulation study. Schweitzer and Seidmann [Schw89] consider a problem where the
processing rate at each station is a decision variable. For example, the tooling cost
is a nonlinear function of the processing speed since the speed affects the tool wear.
The objective in their approach is to choose the processing rates so as to minimize

the total operating cost subject to a certain minimum throughput rate constraint.

There has also been a considerable amount of work done in the area of optimization

in queueing networks. If one had to allocate capacity among the different workstations

'However, since these workstations are highly automated, the total labor costs might still be lower in an
FMS.
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and a certain performance measure is a function of this capacity allocation, how does
one assign this capacity so that this measure is optimized? The square root formula
of Kleinrock [Klei64] is perhaps the most well known. In this case, the objective is
to minimize the average number of custo ners in the system in equilibrium subject
to a linear constraint on the processing rates. More recent work includes that of Yao
and Buzacott [Yao85], and Vinod and Solberg [Vin85]. Wein [Wein89] considers a
Brownian network with a product form density and shows that the optimal capacity

allocation has a form that is comparable to the square root formula.

In the discussion so far, we have discussed some of the modeling approaches for
flexible manufacturing systems. The importance of these models lies in their ability to
identify bottlenecks and indicate the operating strategies that would perform better
in a given system. If there are two available technologies, how does one evaluate
which one is more flexible? To answer this question, one needs a good measure for
the flexibility of a system. This is difficult to do because there are many attributes
in a system that make a total ordering almost impossible. In addition, in a multi-
attributed system, it is very difficult to map the set of attributes into a set of rewards

because there are many intangible entities that cannot be quantified.

While it is hard to define flexibility in a manner that enicompasses all its attributes,
nevertheless we can describe some of its intuitive properties. The main property (or
axiom) is that if there are two technologies, one of them is said to be more flexible than
the other if as the operating environment becomes more diverse, the first technology
performs better than the second. (For a nice discussion, see de Groote [deGr90].)
This increase in diversity may assume the form of an increase in the variability of the
demand process or the product mix, an increase in the frequency of design changes
or product volume etc. In some sense, the notion is related to the idea of the number
of available choices. That is, how many alternatives does the present configuration
afford? For example, suppose there are n machines at a station that can be used to
perform a certain task. Let p; be the processing capacity of machine ¢ as a fraction

of the total processing capacity at the station, ¢ = 1,...,n, and 7., pi = 1. If
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the utilization at the station is high, then on average, the fraction of work that is
processed by machine 7 is p;. A system where the largest fraction p; is 0.9 is less
flexible than one where the largest fraction is 0.5, all other things being the same.
The system is more dependent on the machine that processes 90% of the jobs because
it leaves the system vulnerable to breakdowns that may occur at that machine. One
measure of flexibility that has been proposed is the negative of the system entropy, i.c.,
— Y iy piln p;. This measure is the same as the entropy function in thermodynamics.
It was used by Shannon [Shan48] in communication theory and has since been used in
many other fields (see Kumar [Kum87]). If we wish to maximize this function subject
to the constraint ., p; = 1, the optimum solution is p; = % forallz =1,...,n.
According to this measure, the most flexible system is the one where the workload is

evenly distributed among the n machines.

In the discussion above, we have tried to illustrate how the flexibility is related
to the availability of choices and described a measure that captures this effect. In
other fields, there exist similar measures that try to capture this idea of flexibility
(although they do not explicitly refer to it as such). Consider, for example, a market
in which n firms compete. Let p; be the market share of firm 7,7 = 1,...,n. The
Herfindahl-Hirshmann index (HHI) is defined as the sum of the squares of the market
shares of the n firms, i.e.,

n

HHI = Y p?

i=1
where 3", p; = 1. DBasically, this measures the degree of competition in a given
market with lower values corresponding to a higher levels of competition. (If one firm
had a 100% share of the market, the value of the index is 1.) The HHI can take on
values between 1 and 1 and is minimum when all firms have an equal market share,
i.e., p; = Lforall i =1,...,n. In this example, the vector (pi,...,ps) corresponds to
the choices available to the consumer. In fact, the U.S.Department of Justice uses
this as one measure to decide whether a merger between two firms would significantly

reduce the level of competition (See Rose [Rose89)]).
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In this chapter, we consider a problem of capacity allocation that is different {from
those that have been studied before. To illustrate the problem, let us describe it in
its simplest form. Suppose there exists a workstation that consists of one or more
parallel machines and there are two products, A and B, that are produced at this
workstation. Should separate machines be dedicated for the production of item A
and separate machines be dedicated for the production of item B? Or should there

exist machines that are capable of processing both items?

Earlier, we had mentioned that the diversity in product characteristics and pro-
cessing requirements in an FMS adds another level of complexity to the task of infor-
mation management. The question that we consider is the following: Suppose thcre
were two products being manufactured at a certain facility. Is it better to have sep-
arate lines for product A and B, or to merge the flows and have a common line that
processes both items? We are examining the question solely from the operational
standpoint. That is, either configuration does not entail a significantly higher cost in
terms of the initial investment or the effort required to reach operational readiness.
The broader question that we are trying to address is that of dedicated versus flexi-
ble factories. Which among these two alternatives would reduce the total amount of

work-in-process inventory?

In this case, it is not at all clear that having a single facility that processes both
items will reduce the amount of work-in-process inventory. Suppose the demand for
product A is well known and stable. Then it may not be a good idea to make both
products in a single facility. If the two streams are combined and the demand for
product B is more variable, then the cutput stream for product A could become
much more variable than it would have been if there were a dedicated line for each
product. In addition, the total work-in-process inventory could be higher because of

the instability that has been introduced in the flow stream of product A.

It is possible to model this scenario as a two server queue with two types of
customers. In the situation where we have two dedicated machines, we can model

this as two queues, each with a single server. Customers of type A join the first



52 Chapter 3. Capacity Allocation and Manufacturing Flexibility

queue and customers of type B join the second queue. (The customer cannot choose
which queue to join — the queue that each customer enters is determined by the
customer type.) In the case where we have a single facility that produces both items,
we can model it as a single queue with two servers. Customers join the queue when
they arrive and they are processed in a FCFS order. If one were to use this model
to choose between the two alternatives using the average number of customers as a
yardstick to measure performance, clearly the preferable alternative is to have a single
queue. In the case when there are two queues, customers from one queue cannot join
the other even if the server is idle. When there is a single queue, a server will never
be idle if there is a customer waiting for service. Therefore, the weighted average
waiting time for the two queues will be higher than that of a single queue with two

SEervers.

Yet, as we had argued earlier, it is not evident why this alternative is better.
Besides, if the demand processes are positively correlated, the benefits of merging
the two streams would be lower. This is because if the customer arrivals for the
two streams are positively correlated and the two queue configuration is maintained,
when one server is busy, it is more likely that the other server is busy as well. We are
not trying to be critical of queueing models here — all we are saying is that in this

particular scenario, they may not provide the right alternatives.

The structure of this chapter is as follows: In section 3.2, we describe the basic
model. In sections 3.3 and 3.4, we look at the two cases of dedicated machines and
a single flexible machine. In section 3.4.1, we compare the two alternatives and try
to provide some insights on why a given alternative is preferable under a certain set
of conditions. In section 3.6, we show how the conditions change when one considers

setup times for the single flexible machine.
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e # Demand Dt

Work-in-Process End-item
Inveniory Inventory

Figure 3.1: A single stage in a manufacturing system

3.2 The Model

The model that we use is one proposed by Graves [Gra88b]. We shall describe the
model for one product, but the extension to the multi-product case is straightforward.
Consider a single stage in a manufacturing system (See Figure 3.1). The notion of a
stage, as we describe it, is fairly general. If the system is a factory or an assembly
line, a stage could mean a single machine or a group of similar machines. On the
other hand, if the system was a network of manufacturing plants in a region, an entire
plant in this network could be modeled as a stage. The inventory at a stage is of two
types: work-in-process inventory and end-item inventory. The end-item inventory,
also known as safety stock, is used to satisfy demand and any excess demand is
assumed to be backlogged. The demand in period ¢ is D, and this occurs at the
beginning of the period. Any of the work-in-process inventory that has been processed
completely becomes a part of the end-item inventory at the end of the period in which
it is processed. Whenever a certain amount of inventory is taken from the safety stock
buffer to meet the demand, an identical amount of raw material is added to the work-
in-process inventory. Thus the total of the work-in-process inventory and end-item

inventory is always kept constant.

Let I, be the end-item inventory at the start of period t after the demand for
period t has been satisfied. Let X; be the work-in-process inventory at the start of

period t after the amount of raw material R; has been released into the system. (Note
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that we have set B, = D, for all t.) The flow balance equations for the work-in-process

inventory are

Xt = Ximv+ R — Py (3.1)
Similarly, the flow balance equations for the end-item inventory are

I, = LLi+P_,-D, (3.2)
Using the fact that R, = D, and adding equations (3.1) and (3.2), we get

Xg + Ig = Xt—l + I¢_1 for all t.

= B (constant)

In this model, the control rule for production is a linear function of the work-
in-process inventory. The merits of this rule have been discussed extensively in
Graves [Gra88b] and in Chapter 4 of this thesis. We shall state them here very briefly.
First, the resulting system becomes linear and this simplifies the analysis consider-
ably. Second, a rule of this form can be shown to be optimal when the production
and inventory holding costs are quadratic (see Holt, Modigliani and Simon [Holt55}).
Third, this rule is an asymptotic case of a more general class of rules proposed in

Chapter 4. Let
Pt = an (3.3)

In each time period, we process a fraction 1 of the work-in-process inventory. There-

fore, from equations (3.1) and (3.3), we get

Xe = Xia+ R —aXiy

= (1-a)X,+ D, since Ry = D;.
= Z(l — a)"Dt_s (34)
s=0

assuming that the process has an infinite history. Using the fact that {D,} are

independent and normally distributed with mean u and variance o2, we get

2

EX)=L£ and Var[X)=—

a 2a — o
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We shall now consider the case where there is more than one item being produced
at the stage. Suppose that there is a single machine in a job shop and a two product
mix. When we refer to a single machine, we actually mean that there is a single cluster
which may consist of one or more than one machine, all of the same type. Each of
the items require processing at exactly one machine in this cluster, and any of the
machines in the cluster could be used to process either item. After processing, an item
enters its final product inventory and the items are assumed to be nonsubstitutable.
In other words, the inventory for item 1 cannot be used to satisfy the demard for

item 2, and vice versa. In this model, time is assumed to be discrete.

We assume that the demand for both items is satisfied at the beginning of each
time period and any excess demand is backlogged. Let the demand for item 1 in
period ¢ be D,;. We assume that {Dy,}, are independent and normally distributed

random variables with
E[Dy)=p and Var[Dy] =a? (3.5)

In a similar manner, let {D,}; be the demand for item 2 in perind t. We as-
sume that the demands for the two products are independent?, so Cov(D;;, Do) =

0 for all ¢. {D}: are independent and Gaussian random variables with

E[Dy) = p2 and Var[Dy) = o2 (3.6)

Consider a scenario where the demand for item 1 is relatively stable, whereas the
demand for item 2 is more variable. The question that we would like to address is the
following: Should we process both items on a single machine, or should we split the
capacities between two machines and have dedicated lines for each product? There
are tradeoffs that have to be considered when we make these decisions. There are
advantages to processing both items on a single machine. The benefits of having both
items on a single machine is that the resources are pooled and the amount of time

that a job would require for processing would be lower.

2Later, we shall relax the assumption that the demands for the two items are independent in a
single period. However, we would still require that the inter-temporal demands be independent, i.e.
Cov(Dis, Dje) =0V s5 tand i,j € {1,2}.
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There are advantages to dedicating machines for individual products. First, since
the demand for item 1 is relatively stable, we preserve the stability of the production
process for item 1. As a result, we reduce the amount of work in process inventory,
or safety stock that is required of item 1. If the cost of carrying inventory for item 1
is higher, the benefits would be even greater. If the demand for item 1 is relatively
stable while the demand for item 2 is highly variable, if we process both items on a

single machine, the production rate for item 1 would be more variable .

The issues that we try and address are the following: How does the overall machine
flexibility affect the decision to merge flows, or dedicate lines? And how does the mean

volume and the coeflicient of variation for the two products affect this decision?

3.3 Dedicated versus Flexible Machines

3.3.1 Case I: A Single Flexible Machine

Suppose we decide to produce both items on a single machine. We do not assume
any setup costs and do not concern ourselves with detailed issues like scheduling of
the items on the machines, setup times etc.

Let X;, be the work-in-process inventory for item 2, z = 1, 2, at the start of period
t, and let I; be the end product for item ¢ at the start of period ¢. Let P be the
amount of item ¢ produced in period t, D;; be the demand for item ¢ (which is satisified
at the start of period t), and R;; be the amount of item ¢ released into the system (as
WIP) at the start of period ¢. (Note that R;; = D;, fori=1,2V t.)

The flow balance equations for the WIP and end product inventory for item ¢,

i = 1,2, are given below:
Xa = Xppmr+ Ry —Piyr 1=1,2. (3.7)
and

Iy = Lya+Pyu1—-Dy 1i=12 (3.8)
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Suppose, as in the single product case, the amount that we release into the system
in a period is equal to the demand for the product in that period. In other words,
this is a pull type system. The inventory level for item ¢ determines the amount of
item ¢ to be released into the system. Letting R;; = Dy, and adding equations (3.7)
and (3.8), we get

Xa+ly = Xigaa+ Loy 1=1,2. (3.9)

= B; (Base Stock for item z)

Upto this point, the analysis is the same as in section 3.2. We would now like to

specify a control rule for the production of item 1.
P,‘ = aX,-, 1= 1,2. (310)

According to this rule, the amount that we process in period ¢t is a fraction a of
the WIP inventory for that item in period ¢. Since a fraction « of the WIP inventory
is processed in each period, on average, it will take ;i- periods for inventory to be
processed. Therefore, i is the lead time for the stage. By choosing a smaller value of
a, the effect is that the production for the stage becomes more smooth. But smaller
values of a also result in higher levels of WIP inventory and safety stock. Using

equations (3.7) and (3.10) and the fact that R = D;,, we get
Py = aDy+ (1 —a)Piy,
ad (1-a)Di, (3.11)

5=0

Taking the expected value and the variance of both sides in equation (3.11) and

assuming that the process has an infinite history, we get

a’o?
E[Py)=pi and Var[Py]= m i=1,2 (3.12)

In other words, this says that the mean production rate for item 7 must equal
the mean demand g;. As o?, the variance of the demand for item ¢ increases, the
variance of production Var[P;] for item 7 also increases. However, as a decreases,

the production becomes more smooth and this reduces the variance of production.
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If D; = Dq; + Dy is the total demand in period ¢, then D, is normally distributed
with mean g := p; + p2 and variance 0? = g% 4 02. Let P, be the total production of
items 1 and 2 in period ¢. Since the time series of demand for the two items, {D;,},
and {Dy}:, are independent, from equation (3.11), {Py:}: and { Py}, are independent.
From the definition of F,,

P, = P+ Py (3.13)

Therefore, taking the expected value and variance of both sides in equation (3.13),

we get
E[P] = E[Pu]l+ E[P] (3.14)
= fr e (3.15)
= pu by the definition of . (3.16)
and

Var [P = Var[Py]+ Var[Pa)

a?o? a’o? .
= 5 _102 + 5 _2012 since  Cov(Pyy, Py) = 0.
a?a?
= 5o by the definition of o. (3.17)
200 —

Let C be the capacity of the machine and let us define the excess capacity by x =
C — p. Let k, be a factor that corresponds to a certain level of service. A factor of
service k, means that one is able to meet the demand for items 1 and 2 for 100a% of
the time. For example, kygs = 1.645 corresponds to the 95% service level. In other
words, 95% of the time, the production rate dictated by the model is less than the
processing capacity. Through the rest of this chapter, we shall denote this factor by
k. We would like to set the value of a such that the probability that che production
requirement exceeds the available capacity is no greater than 0.05. Since P is the
sum of independent Gaussian random variables (see equation (3.11)), the production
rate for item ¢ as dictated by the model has a Gaussian distribution. Therefore, the

mean E [P,] and the variance Var [P;] completely characterize the distribution of P;.
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From equation (3.17), we see that Var [P] is a function of . Clearly, we would
like the va'ue of the lead time « to be as high as possible. On the other hand, as
« increases, the variance of the production increases. Since the production rule is
linear, it is unbounded. Therefore, it is important that the production rate dictated
by the model is consistent with the actual processing capacity at the stage. The idea

is to choose the smallest value of n is chosen such that

E[P]+kyVar[P] = C

Since E [P) = p, we get

x = kyVar[P]

kay/o? + o2

V2a — ot
kao
— — (3.18)

We can now define the flexibility of a the machine in terms of a dimensionless constant.

Let

F = Flexibility of the machine

X (3.19)

ko

The flexibility is the ratio of the excess capacity over the mean to the standard
deviation of the demand times the service factor. This is a measure of the ratio of
the ability of the system to respond, x, to the amount of the response required to
maintain a certain level of service, ko. Intuitively, this says that as the excess capacity
increases, the system is able to respond to variability in the operating environment
better and so the flexibility increases. When the standard deviation o of the demand
increases, the variability of the demand increases and so the flexibility would decrease.

From equations (3.18) and (3.19), we get

F = ——> (3.20)
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Since 0 < a < 1, the flexibility of the machine is a number between 0 and 1. It
2

2F
14 F?°

lead time varies with machine flexibility. As the machine flexibility decreases, the lead

follows from equation (3.20) that o = The plot in Figure 3.2 shows how the
time i increases dramatically. When the flexibility of the machine is 1, the leadtime
is 1. But why can’t the flexibility of the machine be greater than one? If the flexibility
of the machine is greater than 1, the lead time is less than 1. Although it is possible
that x could be greater than ko, in terms of this model, it means that the choice of
the duration of a time period is inappropriate. One should then choose a time period
of a shorter duration so that any WIP entering the system in a given period leaves
the system at least one period later. Since P; = aXj;, from equation (3.10), we have

that

E[Xi] = % and Var[Xy] = -C-:;Var [Pi]

o?

—— ' .—
iy 1=1,2

Upto this point, we know E[X},] and Var[X},], the mean and the variance of the WIP
inventory level and this is sufficient to characterize the distribution of X, since it is
Gaussian. We also know that I, has a Gaussian distribution and Var[[;;] = Var[X;]
since Xy, + I;; = B; for all ¢, 1 = 1,2. So the only thing that remains is to set the
value of E[I;], the mean level of safety stock for item . The idea here is to set the
mean level so that a certain percentage of the time, say 95%, of the time, the demand

for item ¢ can be met from the safety stock. Another way of saying this is
PlI;;>0] = 0.95

The mean level of safety stock for item 2 that satisfies this is

E[I“] = k\/ Var[I;,]

g

The base stock for item 7 is given by

By = E[Xu]+ E[L]
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= -Cl;[p,- + kFa] t=1,2 from equation 3.20
Therefore, the total base stock is given by

B = B+ B,

" algnesrred

14 F?
= Top? lE"""kF Z"‘] (3:22)

3.3.2 Case II: Splitting Capacity between Two Machines

In the previous subsection, we had looked at the case where both the items were
processed on a single machine and both items have the same lead times. In this
case, we had obtained the expression for the total base stock at the stage. In this

subsection, we model the case where there are dedicated machines for each product.

Suppose we decide to dedicate machines according to product. The question then
remains: How should the capacity be distributed between the two machines? If y
is the total excess capacity on both machines, let x; be the excess capacity assigned
to machine 1 and y, be the capacity assigned to machine 2, i.e, the capacities on
machines 1 and 2 are g; + x; and ps + x2 respectively. The sum of the two excess

capacities must equal the total excess capacity. Therefore,

Xt+x2 = X

Rewriting this in terms of machine flexibility , we have

X1 X2 _ _X
ko T koy — ko

a1

Using the definition of machine flexibility (for the definition, see equation (3.19)), we

get

0'1F1+0'2F2 = oF (323)
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Figure 3.3: Plot of Base Stock vs. Machine Flexibility for a Single Machine
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If F is fixed, then the RHS of equation (3.23) is constant. If one were to plot [;,the

flexibility of machine 2 versus Fj, the flexibility of machine 1, the relationship between

the two flexibilities is a straight line (See Figure 3.4).

We now consider each machine separately. Let a; be the fraction of WIP inventory
processed in each period for machine 1. The control rule for production for machine

1 is identical to the linear rule that we had described earlier.
P = Xy

Using an analysis similar to the one that we had described earlier, we get E [P;] = 1,
2
and Var [P,] = ,ﬁ}?} Since P,; = a; Xy, the mean and variance of the inventory
1

level for item 1 is

E(X.] =& d Var(X,] = —21 3.24
== an ar[X,] = 3 (3.24)

I 20n — o

Therefore, the level of base stock for item 1 is given by

Bl = E[Xu]-i‘k\/VaT[Xu]

= #—] + k il
ag 201 - a?
1

= _[l‘l + kFlo'l]
a;
1+ F?

o2 ["‘ R ‘”‘]

Upto this point, we have said the following: Suppose we knew the value of F, the
flexibility of machine 1. Then the lead time o}—x is known and the base stock for item
1 can be determined. Once F, is known, F; can be determined from equation (3.23)
since the flexibilities must satisfy this relationship. Using the value of F3, the lead

time for item 2 and the base stock for item 2 can be determined.

1
B, = [#2 + sza"z]

(24}

Therefore, the total base stock is given by

B = B+ B,
1+ F? 1+ F?
_ T};[p, +kFlal] + 5 [,u2+kF202] (3.25)
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How would one choose the value of Fj so that the total base stock at the two stages
in minimized? As F) increases, the base stock for item 1 decreases. But the value
of F, decreases so the base stock for item 2 would increase. A plot of the total base
stock versus the flexibility of machine 1 is shown in Figure 3.5. There will be an
optimal value of F; for which the total base stock is minimized. While it is difficult
to obtain a closed form expression of the optimal value of F}, the minimum can easily
be computed using a line search procedure (the Fibonacci search procedure works

well in this case). The optimization problem can be written as

Minimize Bl + Bg
FlvF'l
s.t. o F\+ o0,/ =0F
0<F <1
0<I<1

where the value of F is fixed.

3.4 Flexibility or Dedicated Machines

The question now arises as to why it would be better to dedicate machines for the
different products. After all, if we consider machine to be a server, from the queucing
standpoint, the average waiting time in steady state, and hence by Little’s law, the
average number of customers in the system would be lower if the two streams were
merged. To get some insight, let us go back to equation (3.22). In the case of one

machine, the total base stock is

2

2
p = L [Z i + kFZa;J (3.26)
In the case of two machines, the total base stock is given by

B = B +DB,
1+
22
1+ F?
217

(11 + kFyo]

+ [ﬂg + szO'g] (327)
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3.4.1 Correlation between the demands for the two items

In the analysis so far, we had assumed that the demands between the two products
are independent. Suppose we now assume that the demands between the two items in
a single period are correlated. We shall still assume that the inter-temporal demands

for each item are independent, that is, for s # ¢, Cov(Dis, Djy) =0, j = 1,2.

The analysis would be slightly different for the case where we process both items
on a single machine. If we process the two items on separate machines, the correlation
between the demands does not affect the analysis because we consider each machine

as an isolated unit. Let 5 be the coefficient of correlation between the demands for

COU(Dm Dzz)

0102

. The variance of the total demand in a period

the two items, i.e.,, n =

becomes

Var [Dg] = Var [Du + D2t] (3.28)
= of + 03 + 270,02

= o? (3.29)

When the demands were independent, o? was equal to the sum of the variances of
the demands but in this case, there is a covariance term. The rest of the analysis
and the results stay the same. From equation (3.29) and the definition of flexibility
in equation (3.19), we find that for a fixed excess capacity, x, as the coefficient of
correlation, 7, becomes more negative, the variance of the total demand o? decreases.
Therefore, the flexibility of the single machine F increases. On the other hand, when
n becomes positive, o increases and so the flexibility of the machine F' decreases.
When 7 is negative, it means that as the demand for one item increases, the demand
for the other item is going to be lower. In that case, it might be advantageous to

process both items on a single machine.

When the demands are positively correlated, it is less clear which choice would
be preferable. In the case of a single machine, the flexibility is going to decrease.

Therefore, the lead time, %, is going to increase, and the total base stock would
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increase. We would expect that given the values of p,, 2 and x, the values of o; and
o, for which dedicated machines would be preferable, would consitute a larger set as

the correlation increases.

Would it be better to have two dedicated machines instead of a single machine?
This is best discussed by means of an example. Consider a situation where the
coefficient of variation of the demand for item 1 is relatively low whereas the coefficient
of variation for the demand for item 2 is high. In this example, the mean and standard
deviation of the demand for item 1 is 100 and 5 respectively, while the corresponding
numbers for item 2 are 100 and 40 respectively. The coefficient of variation for the
demands for items 1 and 2 are 0.05 and 0.40 respectively. Let a total of 40 units of
excess capacity be available. For this problem, g, = 100, g, = 100, oy = 5, o2 = 40,
\ = 40 and o2 = /5? 4 40% = 40.31.

Item 1 | Item 2
Mean Demand 100 100
Standard Deviation 5 40
Excess Capacity 40
Flexibility 0.6031.
Lead Time 1.88
Base Stock 197.32 | 262.60

Table 3.1 : Base stock for items processed on a single

machine: an example

When there is one machine present, the lead time n, machine flexibility F' and the
levels of base stock for items 1 and 2 can be determined. See Table 3.1. When there
are two machines present, one has to decide how to assign capacity between the two
machines. Once the capacity has been assigned, the machine flexibilities F} and I,
can be determined but they must satisfy the relation o1 Fy + 0,F, = oF. In this

example, this corresponds to the equation 5F; + 40F; = 40.31F. Suppose we assign
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8.25 units of capacity to machine 1. Then the machine flexibilities, lead times and

levels of base stock for the two items are shown in Table 3.2.

Item 1 | Item 2
Mean Demand 100 100
Standard Deviation 5 40
Excess Capacity 7.86 | 32.14
Flexibility 0.955 | 0.489
Lead Time. 1.05 2.60
Base Stock 113.04 | 342.94

Table 3.2 : Base stock for items processed on two

separate machines: an example

If we look at Tables 3.1 and 3.2, we see that in the case of a single machine, the lead
time is 1.88. Suppose we have two machines. Since item 1 has a low coefficient of
variation, we could try and reduce the lead time for item 1 without assigning a large
amount of capacity there. By allocating 7.86 units of capacity to machine 1, the lead
time is 1 and the base stock for item 1 is 113.04. The result is that the lead time
for item 2 is 2.60. The base stock for item 2 increases, but a decrease in the level of
one might more than offset an increase in the level of the other. The total base stock
when there are two dedicated machines is 455.98, while the total base stock for the
case of a single machine is 459.93. The difference in this example is minor but a few
points need to be mentioned. First, in this example, the demands were assumed to be
independent. If the demands were positively correlated, the total base stock would
be the same for the two machine case, but it would increase when there is a single
machine. Second, if the objective function, instead of being B, + B,, was ¢, B; + c2 By
where ¢; and ¢, are the costs per unit of inventory for items 1 and 2 respectively, the

differences could be greater or smaller depending on the values of ¢; and c,.
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Figure 3.6: Plot of the Separating Regions

3.5 Analysis of the Results

In Figure 3.6, the variable on the x-axis is the coefficient of variation of the demand
for item 1 (CV;) and the variable on the y-axis is the coefficient of variation of the
demand for item 2 (CV;). For each ordered pair (CV,, CV;), we would like to know
whether the preferable configuration, that corresponds to those values of CV; and
CV,, is the flexible machine or the dedicated machine configuration. The way the
issue was decided was the following: The values of the mean demands g and pu., the
correlation between the demands 7, the excess capacity x and the service factor k are
known. Given the values of o, and o9, the standard deviation of the total demand,
o, can be calculated. Therefore, the flexibility of the single rﬁachine, F, and the total
base stock for the single machine, B, can be determined. Suppose we decide to go
in for two machines. In the case of two machines, the optimal capacity allocation
that would minimize the total safety stock is determined (See Figure 3.5). If the
safety stock in the latter case is lower, the decision is made to go for two dedicated

machines. Otherwise, one decides to process both items on a single flexible machine.
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If one were to do that for each ordered pair (CV;, CV,) and demarcate the regions
on the plane, the plot would look like the one shown in Figure 3.6. There are two
regions that correspond to the dedicated machine case: when CV, is low and CV,
is high and vice versa. When both the variables are approximately the same level,

the single machine case is preferable (which corresponds to the central band in the
graph).

As the correlation between the demands increases, we would expect the dedicated
machine set to be larger. The line A1 would rotate in the counterclockwise direction
and the line A2 would rotate in the clockwise direction. In Figures 3.7, 3.8, 3.9 and
3.10, we provide plots that indicate how one should go about deciding the issue of
flexibile versus dedicated machines. For example, in Figure 3.7, the mean values of the
demand, g, and p, are both equal to 100. The excess capacity x is 40 and the service
level is 95% (Service factor kogs =1.645). Suppose the coefficient of correlation,
n = —0.5. We find that for most values of oy and o;, one would choose a single

flexible machine.

As 7 increases, the set of values of CV; and CV,, for which the choice of dedi-
cated machines would be preferable, increases. In all cases, we find that when both
coefficients of variation are low, a single machine is more appropriate. As we would
expect, when the value of o, is low and o, is high, or vice versa, the decision would
be to dedicate lines for each item. In the examples that we consider, we allow the

values of 7 to range from —0.5 to 0.8.

In Figure 3.7, the variables on the x-axis and y-axis are the coefficients of variation
of the demands for item 1 and 2 respectively. In Figure 3.7, p; = 100, g2 = 100,
x = 40 and k = 1.65. Since g, and p, are known, given the values of the coefficients

of variation, o, and o7 can be determined.

In Figure 3.7, we had taken a look at two demand processes where both the
demands had the same mean, i.e., u; = po. Without loss of generality, suppose

that the demsnd for item 2 had a higher mean. In Figure 3.8, we examine the case
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Flexibility vs. Dedicated Machines
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Flexibility vs. Dedicated Machines
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when g; = 100 and g, = 200. The excess capacity is 40 and the service level factor,

k = 1.65.

Comparing Figures 3.7 and 3.8, we see that one would prefer dedicated machines
for slightly higher values of o,. The values of o, would have to be scaled down by a

corresponding factor to account for the higher mean demand rate of item 2.

In Figures 3.7 and 3.8, we had taken a look at how the relative values of the mean
demands affect the decision to allocate fixed capacity, when the excess capacity is
fixed. The next question that we could ask is the following: How does the availability
of excess capacity affect the decision to allocate capacity? In Figure 3.9, the values
of uy, g2, x and k are 100, 100, 80 and 1.65 respectively. (Recall that in Figure 3.7,
the corresponding values were 100, 100, 40 and 1.65 respectively). Comparing the
two plots, we see that a single machine would be flexible over a larger set of values of
o1 and o,. In retrospect, the reason for this seems apparent. To see why this is the
case, let us take a look at the values of o; = 3, 02 = 50 and 1 = —0.5. The standard
deviation of the total demand, 0 = 48.57. In the former case, when x == 40, the
flexibility of a single machine F' = 0.499, and the lead time n = 2.54. If one decides
to split the capacity between two machines, the optimal excess capacity allocation
x1 = 4.93 and x, = 35.07. The flexibilities for the two machines are 0.9963 and 0.425
respectively, and the lead times are 1.003 and 3.27 respectively. The choice of two
machines is preferable because one is able to reduce the lead time for itern ! and
reduce its safety stock. In case 2, the flexibility is 0.99. Hence, there is not much

potential for reduction in the lead time by splitting the capacity across two machines.

In Figure 3.10, we had compared plots for different values of u,, g2, x and 7, but
for a fixed service factor, k = 1.65. One might ask the following question: Docs the
service level affect the decision to allocate capacity. In Figure 3.11, we see this for
two different service levels, a 95% service level with & = 1.65, and a 99% service level
with £ = 2.33. In this plot, we find that the demarcating lines are identical. We

could not find any evidence that setting the service level affects the decision making
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process.

3.6 Capacity Allocation in the presence of setups

In the model that we have described, we have not considered the effect of setups and
how their presence would alter the configuration. In this section, we would like to
describe how we model setups and how the plots that we had shown earlier would

change as a result.

In the case of a single flexible machine, two items are being processed on the same
machine and they are processed in batches. Depending on the nature of the machine
and how these batches are sequenced, the setup time could vary. On the other hand,
when there are dedicated machines for each item, the configuration of each machine
could be customized so that the setup times are considerably lower. As a result, the
total processing capabilities when there are two dedicated machines could be higher
than when there is a single flexible machine. In this case, in addition to the advantage
of preserving the stability of the streams for the two products, dedicated machines
have a higher processing rate. Intuitively, we would expect that the domain of the set
(where the two machine alternative is preferable) to be larger when the setup times

are considered and as these times increase, we would expect this set to increase.

Going back to section 3.3, let C be the capacity when there is a single machine
and let Cy and C; be the capacities when there are two machines. Since C, +C; > C

and gy + p2 = g (the mean production rate must be the same), it follows that

X1+Xx2 2 X

Therefore, the constraint o, Fy + 02F% = oF is no longer valid. This is because the
flexibility of the single machine F" is lower than what it would have been if there were
no setups because we have less excess capacity. Therefore the optimization problem

for the two machine case is simply
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Minimize B, + B,
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