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Chapter 1

Introduction

There has been an increased interest in the computation of unsteady flowfields in recent
years, particularly in the turbomachinery field where the flow is inherently unsteady due
to the relative motion of blade passages. This interest is partly motivated by the contin-
uing increase in available computing power which makes the computation of unsteady
flowfields feasible, but it is also motivated by the need to understand the unsteady
flowfields in the development of new engineering designs. The emphasis here is on the
small-scale flutter or forced response problems which exist in external aerodynamics as
well as turbomachinery. In these problems, the ideal flowfield is steady and undesirable
unsteady effects are introduced through induced fluctuations of the body or fluctuations
in the ambient fluid (corresponding to the flutter and forced response problems, respec-
tively). The structural response to the aerodynamic forces on a blade determines if a
small perturbation in the blade loading will cause the motion of the blade to decay or
to amplify and cause fatigue which can eventually lead to failure. Past experience in
the field has provided empirical correlations which provide the designer with safe oper-
ating zones, but with the present demand for increased performance there is a demand
for higher tip speeds, higher blade loadings, increased efficiencies and noise suppression
which leads to operating regions where these correlations are invalid. The need clearly
exists for computationel models of the unsteady flowfield which accurately predict the
aerodynemic forces to allow the designer to work in areas where there is no past expe-
rience; however, these aerodynamic models must be very efficient so the design precess
will not bankrupt the designer in terms of either computational cost or time. The goal of
this work is to provide a new method for developing these computational aerodynamic

models.
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The interaction between the aerodynamics and structures is part of the field of aeroe-
lasticity. Fortunately, in most cases it is possible to decouple the structural dynamics
from the unstead); aerodynamics, so these two fields can be considered independently.
The decoupling occurs since the blade density is so much higher than the density of the
surrounding fluid, hence the unsteady aerodynamic forces have an insignificant effect on
the blade vibration characteristics. For the forced response problern, the unsteadiness is
due to an external source, such as the preceding blade row. Only when calculating the
aerodynamic damping on the blade must the actual motion of the blade be considered,
since this damping is in direct response to the blade motion. For the flutter problem,
the moving blade is the source of the unsteadiness in the flowfield. The structural char-
acteristics of the blade are found before the flowfield calculation is done, so particular
frequencies and mode shapes of the blade motion become the input for the aerodynamic
calculation. The aerodynamic calculation then determines if energy is transferred from
the flowfield to this blade motion or vice versa, or, in other words, if the structural
mode is amplified or damped by the flowfield. Flutter occurs when the mode is ampli-
fied and, by sweeping through a range of structural modes, the flutter boundary can
be determined. As mentioned earlier, the aerodynamic computation is the focus of this
work, but more information can be found on the structural problem and the coupling

between the aerodynamics and the structures in [3, 10].

The earliest methods for the computation of unsteady flowfields were analytical and
have their roots in what is today referred to as classical fluid dynamics. These tech-
niques aim at finding closed form solutions to the unsteady partial differential equations
which govern the flow and apply several simplification techniques to make this possible.
For example, often the flow is isentropic, incompressible or contains only small pertur-
bations to a uniform flow. From these methods grew the semi-analytical methods which
distribute singularities such as sources or vortices along the blade surface and calculate
the strength of these singularities as part of the solution procedure, given certain con-
straints on the system. Many of these solutions are found with the assistance of the
computer, but the source of these methods is still mostly analytical. Whitehead [30]
provides a good review of these classical analytical methods, many of which provide the

backbone of the design methods which are used today.
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More recent methods in unsteady and steady fluid dynamics involve forming a grid
in the space around the blade or airfoil and solving some governing equations by a finite
difference, finite volume, finite element or spectral element method. The rest of the
methods described here involve this type of computation. While having greater com-
putational cost than the analytical methods, the additional ahility to model geometric
and field effects add to the accuracy of these methods. The governing equations used
range from the isentropic, irrotational potential equations to the Euler or Navier Stokes
equations. As the level of physics involved in the numerical method increases, there is

a corresponding increase in the required computational effort.

The Navier-Stokes eqﬁations are a coupled set of equations which correspond to
the laws of conservation of mass, momentum and energy. By assuming the Reynolds
number is sufficiently high and the Prandtl number is order unity, most of the flow
can be considered inviscid and non-heat-conducting, so these equations can be reduced
to another coupled set of equatious called the Euler equations. By further assuming
that the flow is both isentropic and irrotational, the Euler equations can be reduced
to a single equation which is termed the potential equation. Subsonic or supersonic
flow away from boundary layers is generally inviscid, isentropic, and will be irrotational
as well if there is no means of introducing vorticity into the flowfield, therefore these
flowfields are governed by the potential equations. The addition of a shock introduces
an entropy jump into the flowfield and vorticity is produced behind a curved shock. If
the shock has any significant strength, these effects must be modeled and the potential

equations are no longer valid.

Computational schemes require some special treatment in shock regions. Since there
is a pressure jump across a shock, the correct prediction of the location and movement
of the shock are important in getting accurate results for the forces on a surface. Two
treatments are commonly used: shock fitting and shock capturing. Shock fitting involves
applying a shock jump condition at a grid line which is aligned with the shock. The
jump condition is derived from the equations and enforces the appropriate conservation
laws. Since the shock location is not known before the computation is performed,

the grid line which is aligned with the shock must move as part of the computation.
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This method produces very crisp shocks, but has the disadvantage that some notion
of where the shock will be must exist before the computation starts. The complicated
shock structures which arc inherent in three-dimensional transonic turbomachinery flows
cause current shock fitting schemes to break down. Shock capturing, on the other hand,
produces shocks as part of the computation. The shocks are formed in the flowfield
by a means similar to the physical means for generating shocks in a viscous flowfield.
The location, or even the existence, of a shock no longer must be known before the
computation commences, and complicated shock structures appear naturally in the
computation. Since the location of shocks is not part of the scheme’s data structure,

the coding effort is also simplified.

To find an unsteady solution to the governing equations, the time dependent equa-
tions are advanced forward in time. If a periodic solution is desired, it is necessary to
step through several cycles of the transient solution until the periodic solution is reached.
This method requires a significant amount of computer time [12, 1]. The alternative
for small scale unsteadiness is to assume that the unsteadiness is a linear perturbation
superimposed upon the fully nonlinear steady solution, reducing the computation time
for an unsteady flow solution by a factor of ten or more. This is the method used in

this thesis.

1.1 Linear Solution Methods

Linear methods superimpose a linear perturbation on a fully nonlinear steady state
solution. The steady solution is found independently of the unsteady solution, and the
coefficients in the perturbation equation are functions of this steady solution. Since
the perturbations are linear, each perturbation is assumed to have a single frequency,
and more general solutions are formed by superposition. The complex amplitude of the
perturbation is time independent and well known solution methods for time independent
equations can be used. The zero frequency perturbation may also be used to find the

sensitivity of the solution to some parameter such as outlet pressure or blade geometry.

The first linear perturbé.tion field methods used the isentropic, irrotational potential
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equations. Verdon and Caspar (29, 7, 28] and Whitehead [31] made pioneering efforts
in this field, and their work dominates the literature on these methods. Verdon and
Caspar used a finite volume method with shock fitting. Since the flow is isentropic
and irrotational, the jump conditions used for the shock fitting only conserve mass
and tangential momentum, which makes them appropriate only for weak shock jumps.
Whitehead’s approach used a finite element method with triangular elements and a
shock capturing technique. Again, this method is only appropriate for weak shocks.

In 1974, Ni (23, 24] presented a method which used the isentropic form of the Euler
equations for shock free flowfields. This method was applicabie to flat plate geometries
at zero incident flow angle, so the steady flowfield was uniform. An interesting new
idea introduced in this work was to make the perturbation time dependent, march the
solution in time until there is no change from one iteration to the next, at which point
" the time independent perturbation was found. The use of the Euler equations did not
receive much attention for another decade, until in 1987 Hall [15, 17] used the Euler
equations with shock fitting in a method similar to that of Verdon and Caspar for the
potential equations. Hall’s results were very encouraging, but, as with all shock fitting
methods, the complexity of fitting the shock along a grid line for complicated shock
structures was beyond the then current technology, so this method was limited to cases
with simﬁle shock structures. This project was motivated by the success of Hall’s work,

but extends his idea to the use of shock capturing.

1.2 Overview

The focus of this work is to show that shock capturing techniques are applicable to
the linear perturbation Eﬁler equations, as well as to discuss the applicability to the
full u1'13teady Euler equations. Chapter 2 describes the governing equations used in
this thesis. Chapter 3 locks at the problem analytically and provides the backbone for
justifying the use of shock capturing. The approach which will be taken is to examine
the unsteady Navier-Stokes equations. These viscous equations provide a reasonable
starting place for the analysis, since the artificial viscosity involved in shock capturing

mimics the true viscosity. The major difference between artificial viscosity and true
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viscosity is the magnitude of the viscosity, which in turn governs the width of the
shock. The larger the viscosity, the thicker the shock, sc instead of a shock on the
order of a few mean free paths (as in a true shock), the artificial viscosity produces a
shock with the width of a few computational cells. From the unsteady Navier-Stokes
equations it will be shown that the actual magnitude of the viscosity does not govern
the location or movement of the shock. The linear Navier-Stokes equations produce the
correct integrated value of the flow variables independent of the actual viscosity level
as well, which means that the lift or moment on the body is accurately predicted by
these equations. This analysis then highlights questions involved with the discretization
of the shock motion. These computational issues are explored in Chapter 4 by using
a constant area duct problem. In particular, it is found that the shock shape in the
numerical solution must remain fairly constant as the shock moves. The issues involving
a discrete shock shape apply to the fully unsteady solution as well as to the steady state

and linear perturbation solutions.

After exploring the analytic issues related to the problem and pointing out important
issues which must be addressed, several numerical schemes are developed in Chapter 5.
Since the motion of the shock is essentially a one-dimensional problem, a quasi-one-
dimensional duct is used. Here, the height of the duct varies, but the flow variables are
constant across the duct. First, a finite volume shock capturing scheme is described.
This scheme uses two forms of artificial viscosity, as well as flux vector splitting, to
capture the shock for both the steady state solution and the perturbation. An extension
is made to these methods which allows the grid to move in the computation of the linear
perturbation. The prescribed grid movement is added as a linear perturbation about
the steady grid location. Since the grid can then be moved with the shock, the moving
shock shape maintains its shape, an important requirement pointed out by the analysis
in Chapters 3 and 4. A shock fitting scheme is also described which follows the work of
Hall [15, 17] and is used for comparison purposes. Results from the computational
schemes are presented in Chapter 6, supporting the analytic findings showing that
shock capturing is a viable technique for use with the linear equations. Finally, since
the motivation for using the linear equations is to have a fast computational method,

convergence acceleration methods are described in Chapter 7.
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Chapter 2

Governing Equations

The work in this thesis is mostly concerned with numerical techniques used to model fun-
damental features ir fluid dynamics. The flow geometry used throughout is a ‘quasi-one-
dimensional’ duct where the height of the duct varies so there are some two-dimensional
effects in the flowfield, but the state variables are constant across the duct. In the next
sections the governing equations for the quasi-one-dimensional duct will be derived, first
as the viscous Navier-Stokes equations which will then be simplified to form the inviscid

Euler equations.

2.1 Derivation of the Quasi-One-Dimensional

Navier-Stokes Equations

The Navier-Stokes equations are the governing equations of fluid motion and include
the effects of viscosity and conductivity. In one dimension they consist of three coupled
equations for conservation of mass, momentum and energy. The equations are derived
by enforcing the conservation laws in a control volume, producing an integral equation.
This integral equation can be manipulated to produce a differential equation which is

often easier to conceptualize. Both forms of the equations will be derived in this chapter.

In the case of the quasi-one-dimensional equations, the control volume consists of
a piece of duct of varying height where the flow properties p, pu and pE are constant
across the duct as shown in Figure 2.1. The height varies slowly, so strictly speaking,
the non-streamwise velocity v (where v < u) varies linearly across the duct, because the
velocity must be tangent to the walls. The walls of the duct are treated as slip surfaces,

so the duct can be viewed as a varying height stream tube. For now, the boundaries
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Figure 2.1: Control volume in a quasi one-dimensional duct.

of the control volume are not held fixed, but are allowed to move at some velocity uy.
This added complexity will be used in Section 5.5, where a control volume with moving

boundaries is used in the derivation of discrete equations with a moving grid.

2.1.1 Conservation of Mass

If mass is conserved, then all the mass in a control volume must be accounted for. In

general this accounting can be stated in words as

T (mass in control volume) =
(net mass flux entering control volume) + (2.1)

(net mass flux swept into control volume by moving boundary).

This can be put in mathematical terms by considering a general multi-dimensional
control volume where d) represents a small piece of the volume and dS is a small piece
of the volume surface with its normal vector pointing outward. Equation (2.1) can then

be written as
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d — —~ - —
a//panz= —}{pv-ds+fpu,,.ds. (2.2)

However, the control volume for this case is not just any volumne, but the special
control volume depicted in Figure 2.1. As stated previously, the flow properties p, pu
and pE are assumed constant across the duct. The slight variation in the height of
the duct and the assumption that the vertical velocity v varies linearly across the duct
remove the higher dimensional dependency from the equations. With this description
of the control volume, the following equation can be formed where the subscripts ( ),

and (), refer to the two ends of the duct segment.

%Azphdz = ——[(puh)z—(puh)l] + [(phub)z - (Phub)1] (2.3)

2.1.2 Conservation of Momentum
Conservation of momentum is a statement of Newton’s second law which says that the

rate of change of momentnm is equal to the forces on the object. For a general control

volume, this becomes

(momentum in contrel volume)

IS a

(net momentum flux entering control volume) (2.4)

— (net momentum flux swept into control volume by moving boundary)

= (force on control volume).

It will be assumed that there are no body forces present. Since the flow is viscous,
the forces on the control volume are due to pressure and viscous shear. Casting this

equation into a form similar to Equation (2.2), one obtains
d - o AP ] = o IR - - e
E//dev + fpV(V-dS)V - fpV(u,.-dS) - _}(pds + f-r-dS, (2.5)

26



where T is the shear tensor which in two dimensions is

['ru Tay ]
T= .
Tyz Tyy
Again, the more specific equation for the control volume depicted in Figure 2.1 for
the quasi one-dimensional duct can be found. The assumptions stated earlier do not

allow for the growth of a boundary layer on the edges of the duct, so there is no viscous

stress in these areas, yielding

%A‘zpuhdz + [(Puzh)z—(puzh)ll - [(puhub)g—(puhub)ll (2.6)

= —[(ph)z—(ph)l —/lzpdh] + [(fuh)z—(fuh)l],

~where
ou
Tez = pa—z
After rearranging some terms, this equation becomes \
d [? 2 2
G pundz = =[((o® + pIh)z - ((pu* + IR (2.7)

- [('ruh)z - (Tzzh)1] + [(puhub)z - (puhu,-,)l] + Azpdh.

2.1.3 Conservation of Energy

Similarly, the statement that energy is conserved in a control volume can be stated in

words as
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d ,

— (energy in control volume

o (energ trol volume)

— (net energy flux entering control volume)
(

— (net energy flux swept into control volume by moving boundary) (2.8)

= (heat flux added to control volume) -+

(time rate at which work is done on control volume).

The only heat added to the domain is through conduction. The work done on the
fluid is through both pressure forces and viscous shear. Again, this equation can be put

in mathematical terms:

dit//pEdv + prV-dS'_ prﬁ,,.d.S" = —f«i‘-d-s"'— fp?-d§+ f(r.ﬁ).dg‘,
(2.9)

where E is the total energy per unit mass and ¢ is the heat conduction flux. Again,
considering the control volume depicted in Figure 2.1 for the quasi one-dimensional

duct, this equation becomes

% /lnghdz + [(pEuh)y - (pBuh)t] ~ [(pEhus)z ~ (pEhus),] (2.10)
= —[(th)2 - (qzh)l] - [(P“h)z - (}mh)1] + [(UTzzh)z - (u‘r”h)l],

where

aT
9z = =Ko~

dz’

Introducing, the total enthalpy per unit mass H = E + % and rearranging some terms

gives:

% ,/,2 pEhdz = —[(pHuh)z—(pHuh)l] + [(thu,,),-(thu,,)l]

- [(9:")2 - (th)l] + [(“Tuh)z - (Ungh)l]. (2.11)
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2.1.4 Closure

So far three equations have been found in four variables: p, u, p and E. For closu:: cne

more equation must be found and tiis comes from the equation of state. For a ideui gas
p = pRT,

where R is a constant for each gas. Also in an ideal gas

dh = ¢pdT

de = ¢,dT),

where h and e are the enthalpy and internal energy, and the specific heats ¢, = (55)
at constant pressure, and ¢, = (g,‘.) at constant volume. The ratio of specific heats is
often given, for convenience, as
3

The total energy is the sum of the internal energy and the kinetic energy, and the
total enthalpy has a similar contribution.

E = e+ %u’ (2.12)
= h + %u’ (2.13)

As stated earlier, the relationship between the total energy and the total enthalpy
is known by the definition of enthalpy.

HE=E+?2 (2.14)
P
By assuming ¢, and ¢, are constant and combining these relationships using some

simple algebra, a relationship hziween the four variables p, u, p and E can be found.
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o

p = (Y-1)(pE - }pu?) (2.15)
This is the equation which will be used for closure.
2.1.5 Summary

The three equations for conservation of mass, momentum and energy can be cernbined

into one vector equation. First define the foliowing vectors

p pu 0 e
U= pu | » F = pu2+p ) Fy, = — Tz , P= pl- (2.16)
PE puH —UTzz + Gz ¢
Equations (2.3), (2.8) and (2-11) then become the single vector equation
d r?
G Uhdz = —[(Fh), — (FRY] ~ [(Foh)e - (Foh)]
2
+ [(Uhus)z ~ (Uhw)] + j{ P dh, (2.17)

which together with Equation (2.15) forms the equation set which will be used for the

remainder of this work.

2.2 Differential Equation

At this point the control volume will be assumed to have fixed boundaries and the
differential form of Equation (2.17) will be formed. First, with u; = 0, Equation (2.17)

becomes
4 /:Uhdz = = [(Fh) - (FRR] ~ [(Foh)s - (Fohy] + [ Pdh. (218)
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Now, instead of leaving (Fh); and (Fh);, as independent variables, they are connected

by integrating across the control volume

(Fh); = (Fh), + / (F h) do. (2.19)

By linearizing in a small length dz, the small term dh can be written

6h
dh = = dz. (2.20)

Making these substitutions and taking the time derivative ﬁ inside the integral, Equa-

tion (2.18) becomes

/%(Uh)dz = _/9(81:_")43 - /3(gvh)d N /P_dz 221)

Now each term of the equation includes the integral with respect to z over the control

volume, so it can be written

/ [at(Uh) ( 8(Fh) a(;‘:h) + p%)]da = 0. (2-22)

Since no particular restrictions have been made on the size of the control volume, the
equation must hold for all control volumes, therefore the integrand itself must be zero

for any control volume. In this way the differential form of tke equation is found to be

d(Fh) d(Fvh) Oh
8z 0z +P8z’ (2.23)

9
57(UR) = -

which holds for all points in the domain.
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2.3 Quasi-One-Dimensional Euler Equations

At this point the effects of viscosity and conductivity will be neglected to form the Euler

equations. These assumptions are implemented by setting Fy = 0.

2.3.1 Steady State Equations

The integral Equation (2.17) and the differential Equation (2.23) are nonlinear. For
some initial condition, it is possible to come to a situation where the solution no longer
changes with time, or in other words a steady state is reached. At this point, % =0.

The Euler form of the integral equaticn for the steady state becomes

- [(Fh)z—(F'h)x] + /1 "Pdn = o, (2.24)

and the differential equation becomes

d(Fh) _0h
-5z + }:'3z = 0. (2.25)

An important point is that when this steady state solution exists, whether it is
reached by advancing the Euler form of Equation (2.23) from an initial condition to the
point where there is no change in time or Equation (2.25) is solved directly, the same
solution is found. Computationally, both methods are used to find the steady state.
The solution procedures are very different, but the same result is reached. The choice
of which procedure is used usually depends on which method requires the least amount

of computer resources.

2.3.2 Linear Harmonic Equations

Our interest is in unsteady flowfields. If the perturbations to the flowfield are small, the

equations can be linearized. The perturbations will be about the steady state solution
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The vector U in Equation (2.16) is termed the state vector, since from it the state
of the flowfield at some point is completely defined. Al other quantities which are of
interest are derived from the three elements of this vector. It was previously stated that

the solution is some steady part plus a perturbation, or

U(z,t) = O(z) + Uz, ). (2.26)

The steady state solution, U(z), satisfies Equation (2.25) and will be assumed to be

known. The perturbation term js assumed small compared to the steady state, so the

FO+0) = F@) 4 gg;g}-ﬁ + o(i?) (2.27)
PU+0U) = PO) + %@ﬁ + O(U?), (2.28)

where 2E(0 and 2P(0 are matrices which will be termed 4, and A, respectively. These
8 8

matrices are

0 1 0
= 4(0) = 3(7-3)u? B-7)v  y-1] (229)
TTEUH (-1 yE-3(y-1)u? 44

IF(U)
35"
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aP(U [ " 0 0
l 0 0 0

B =

Substituting Equation (2.26) into the Euler form of Equation (2.17) with fixed
boundaries so u, = 0, linearizing about the steady state solution and subtracting off the

parts from the equation for the steady state, the following equation results:

%-/lz ﬁhdt = —[(.111711)2 - (J‘ilﬁh)l] + ‘/;zfizﬁdh (2.31)

If the process for finding the differential equation from Section 2.2 is repeated, the

following differential equation for the perturbation is found:

8(ATUh) | ; = Bh
-~ AU 92 (2.32)

9 ~
E-(U k) =
As expected, this equation is linear and still dependent on time. Earlier it was said that
the flow would be harmonic, and now that assumption is imposed. The time dependency
of the perturbation will be harmonic in a single frequency represented by the real part

of a complex amplitude multiplied by e*“t. To make a point later, the magnitude of the

perturbation will still contain a dependency on time. The state vector is now

U(z,t) = U(z) + R{U(z,t)e™"}. (2.33)

When this is substituted into Equation (2.32) and the equation is divided through by

the common term e“*, the following equation results:

oh

_HATh) g5 0k
oz’

[i PPN . = s =
E(Uh) + wUh = 92 AU (2.34)
In the previous section the idea of starting with an initial condition and advancing

in time until there was no change in the flowfield to a time independent steady state
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was discussed. If the same concept is used here, Equation (2.34) can be advanced to a

‘steady state’ where the solution actually satisfies the equation:

AUk — =~ h ,
_AAUR) 4ok (2.35)

wUh = dz dz

The solution to this equation is what is wanted and in fact, the state vector then becomes
Uz.t) = U() + R{D(z) e,

where both unknowns U and I/ are only functions of the spatial variable z. This concept
was introduced by Ni in 1976 [24]. To find the perturbation variable {/(z) either the
concept of advancing in time until there is no change in time or the concept of finding

the solution directly from Equation (2.35) is used.

2.4 Shock Jump Conditions

Near discontinuities in the flowfield, where the viscous and convection terms balance,
are called shocks. The internal structure of a shock is discussed in greater detail in
Chapter 3. The discussion here is limited to finding the weak solutions to the Euler
equations found from the integral form of these equations. As such, the analysis will

start with the Navier-Stokes Equation (2.17)

& [ unde = —[(FRY: - (FRL] - [(Foh)s - (Bh)]
+ [(Uhw): - (Uhw)] + /lzpdh. (2.17)

The viscous term Fy is higher order compared to F upstream and downstream of the
shock. When the control volume in Equation (2.17) encompasses the shock, the viscous
term is negligible and can be ignored, thus the jump across the shock is not a function
of the viscous term. If the width of the control volume is then taken to zero as the
viscosity goes to zero, where the control volume velocity is the shock velocity &,, this

becomes
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([Fh-2,Uk]}; =0, (2.36)

where [[-]] indicates the jurnp in a quantity. Equation (2.36) is the jump condition for
a moving shock and applies at the instantaneous location of the shock, indicated by the

subscript .

For the steady state, the shock does not move, so the jump condition in Equa-

tion (2.36) becomes

[(Fh)] = o. (2.37)

Since the height of the duct, h, is constant across the shock (the shock has no thickness),

it can be removed from this jump condition.

Now it is possible to linearize the unsteady jump conditior from Equation (2.36)
about both the steady state flow solution and the steady state shock location to get the
jump condition for the perturbation equation. As in Equation (2.33), the state vector
is U = U + R{Ue™*}. The shock location wili be set to z, = z, + R{Z,e'*}, so it has
a linear harmonic unsteady component as well. The jump condition in Equation (2.36)

then becomes

([ Fh+ R{ A The™t} — R{iwz,The“t}]); = 0, (2.38)

where 4, = _if as defined in Equation (2.29). This equation must still be applied at the

instantaneous shock location, so it is further linearized about the steady shock location.

[Fh+®{ (A,Uh+z.a(1:h) ~Ohiwg,) e H] = o (2.39)

After subtracting off the steady jump condition Equation {2.37) and dividing by

e'“t, the perturbation jump condition becomes
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(Fh
0z

[[4:0h + 2, )—t‘fhiws.]] = 0. (2.40)

There are now two jump conditions for the steady equations and the perturbation

equations given in Equations (2.37) and (2.40) respectively.

2.5 Lift Calculation

The previous sections presented the equations which govern the solution to the quasi-
one-dimensional duct problem. If the flowfield in question is shock free, the Euler or
Navier-Stokes equations are solved for the steady state and the perturbation. Once the
solution is found, it is possible to find the integral of the pressure along the duct. Since
the vertical force due to the integrated pressure on an airfoil or blade is termed the lift,
this term will be used here as well. In general, for a nonlinear flowfield, the lift will be
defined as

() = / oz, 1) dz. (2.41)

Since the flow variables have been defined as a steady state plus a harmonic pertur-

bation, p(z,t) = p(z) + R{pe™“!}, so likewise the lift is

Ut) = I + R{Ze™t}, (2.42)

where
{ = /p(z)dz (2.43)
{ = /ﬁ(:)dz. (2.44)
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If the flow is transonic, then the steady and perturbation lift are calculated from the
solution of the Navier-Stokes equations. There is, however, another method for finding
the transonic flowfield which must be discussed. The shock jump conditions presented
in Section 2.4 can be used in conjunction with the Euler equations to find the Euler
solution to the flowfield. The jump conditions become an internal boundary condition in
the flowfield, thus the jump conditions become part of the governing equations. From
the solution to these equations, the steady shock location, Z,, and the perturbation
shock muvement, Z,, are known along with the flowfield away from the shock. This
information is used to find the lift, so the steady and perturbation lift are

/ “5(2)de + /’ 5(z)ds (2.45)

)

[ perde - 5050 + [ ple)de, (2.46)

where the shock location and the perturbation in that location come into the calculation

of the lift.
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Chapter 3
Analysis of the Navier-Stokes Equations

Before turning to discretization and computational issues associated with modeling an
unsteady transonic flowfield, more must be understood about the flowfield to be mod-
eled. In particular, our interest is in unsteady shock motion, so this will be the focus
of the analysis presented here. Since viscosity plays an important role in the detailed
characteristics of a shock, the analysis will start with the Navier-Stokes equations. The
simplest transonic flowfield to study is a shock in a constant area duct, so this flowfield
will be examined first. Next, a variable area duct, which has a gradient in the flow
upstream and downstream of the shock, will be studied te more realistically represent
two and three-dimensional flowfields.

3.1 Shock Motion in a Constant Area Duct

A moving shock in a constant area duct is usually referred to experimentally as a shock-
tube and is often used to probe the internal structure of a shock. Here it will be used
te isolate and explore the effect of viscosity on a moving shock. An understanding of
the analytic solution to the shock-tube problem will point to features of the flowfield
which must be modeled.

Since the eftect of viscosity is of interest, the viscous form of the equations presented

in Chapter 2 are used where the height of the duct, k, is assumed to be unity:

il 0Fy oF, _
ot + Bz + 9 - 0, (3.1)

where
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P pu 0
U= pu | » Fy = puz+p y F, = —Trz . (3.2)
pE puH —UTzz + 9z

In the above expression for the viscous flux Fy, 7. is the viscous stress with viscosity

@ and ¢ is the heat conduction term with conductivity «:

=
14 8z

& = =2
tJ azi

which causes the viscous term to involve the second derivative of a flow variable.

3.1.1 Steady Shock

The steady solution lends insight to the unsteady problem, therefore it will be examined

first. The steady state equations are:

OF, , OF,
dz dz

= 0. (3.3)

Integrating these equations from one end of the duct to the other gives

Fy + Fy (Fa + Fy)upstream

(FH + Fy )downstream

= constant. (3.4)

For a given constant of integration, it is possible to have a solution where the upstream
and downstream states are different and still satisfy Equation (3.4), as well as the
obvious trivial solution where the states are the same. Here, the more complicated

and interesting case where the states are different is considered. One assumption in
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the following analysis is that the gradients are zero at the upstream and downstream

boundaries:

(5) ™ (52 ) o™ ° ©3)
0z upstream 0z downstrea.m_ . )

By assuming the gradients are zero, the viscous flux, Fy, in these regions of the duct is
also zero. Since tke constant in Equation (3.4) which governs the flowfield is now only a
function of the Euler fluxes, the magnitude of the viscosity does not govern the nature
of the flowfield. What this provides is a flowfield where the solution near the boundaries

is inviscid, and the viscous region is restricted to the interior regions of the flowfield.

Fy+ Fy, = (Fs)upatrenm = (Fl)downstream = constant (3.6)

Now, if the equations are rescaled by creating a new variable £ = ;T-.;’ where ..y is
some reference viscosity, the equation in £ no longer has a dependence on the viscosity
4 but only on a non-dimensionalized viscosity ;'l‘.—’, which further says that the role of
the viscosity is only to scale the viscous region. The role of the conductivity x is similar
to that of the viscosity and now becomes the scaled quantity “‘_L.! Since the role of the
conductivity is similar to the role of the viscosity, future references to the viscosity will

likewise hold for the cenductivity. Equation (3.3) in the new coordinate system is now

oF, , OF,

where now F, is
0
Fy = ~7ee
—uTee + q¢

and
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An inviscid, or Euler, solution can be found by taking the limits ;f:—! — 0 and
“,Ld — 0. In this Euler flowfield the flow upstream and downstream are constant and
invariant along the duct, so the only possibility is that the two regions are joined by a
true discontinuity. The role of the viscosity is merely to provide a smooth form of this
discontinuity, and it is the actual level of the viscosity which cetermines how wide this
region is. From Equation (3.6) it can be seen that the jump across the discontinuity,

called a shock, is given by

(Fl)upstreun = (Fn)downstream, (3'8)

which can be re-written in a shorthand notation as

([(Fsll=0, (3.9)

where [[-]] means the jump across the shock. Some computational schemes use this
jump condition as an internal boundar> condition in the flowfield and model the shock

as a true discontinuity; this is referred to as shock fitting.

Since, in the steady case, the viscosity only plays a role in scaling the shock region
and not in the determi.nat:ion of the nature of the flowfield away from the shock, the
level of viscosity can be changed, yet the overall nature of the solution will remain the
same. Computationally, this means the shock region can be modeled with an artificial
viscosity which only needs to model the nature of the true viscous terms. This is helpful
when computing a discrete solution, since the true viscosity would produce shocks with
widths of a few mean free paths which cannot be captured on a larger computational

grid where we require shocks with widths of a few computational cells.
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3.1.2 Unsteady Shock

The analysis presented thus far is only for a stationary shock. What happens if the
shock mecves? Does the level of the viscosity again only play the role of scaling the
width of the shock region? These are important questions which must be addressed
when we consider unsteady flowfields. To model the flowfield computationally, the role
of the viscosity must be known. It would be nice to be able to use the artificial viscosity

model for unsteady flowfields as well as for steady flowfields.

The analysis starts with the unsteady equations:

oau OF, OF, _
r TR R (3.1)

As before, these equations can be integrated along the duct, but now there is a time

derivative tezm:

d
ElUdz + (Fs + Fy)downstream — (Fs + Fv)upstream = 0. (3-10)

Once again, the gradients at the upstream and downstream boundaries are assumed to
be zero, so the viscous flux there is also zero. There exists an unsteady solutio 1 where
the flow variables at the upstream and downstream boundaries are constant, as in the
steady case. For given upstm and downstream conditions, the integrated equation is

now

%jUdz = —((Fl)downstrcam - (Fl)npatm)

constant. (3.11)

What happens to this equation when time is advanced from 0 to 7? The time

derivaiive can now be written in terms of the solution at time 0 and 7.
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Figure 3.1: Displacement of a shock in an unsteady shock-tube.

/U(37T)dz - /U(z,O)dz = _T((Fl)downstremn - (Fn)upstream)

(3.12)

The only solution to this equation is a constant moving flowfield which is, in fact, a

steady state flowfield moving at some velocity. In the time from 0 to 7, the steady

flowfield has moved some distance X, as shown in Figure 3.1, which as an equation can

be written

U(z,T) = U(z - X,0),

where the shock is moving at velocity

2, = = constant.

N~

Putting this information together gives

&, (Udomttem - Uupstrea.m) = ((F l)downstream - (F l)upstrenm),

which in the notation earlier for the jump across the shock is

[[Fl -2,U]] =0,
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(3.16)
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where the shock velocity is

. _ [[Fel]
z, = ——[[U]]’ (3.17)

which is not a function of the viscosity. Equation (3.16) is the same unsteady jump
condition discussed in Section 2.4. As in the steady case, the magnitude of the viscosity
only plays a role in scaling the shock regionu so it is possible to use artificial viscosity to

computationally model the moving shock.

3.2 Variable Area Duct

In the previous section, several issues concerning the shock-tube, or true one-dimensional
duct, problem were investigated. In particular, it was found that the viscosity only
plays the role of scaling the viscous shock region in both the steady and unsteady cases.
But to more accurately model the real problems in which shocks are encountered, the
case where the flow upstream and downstream of the shock varies will be discussed.
The shock position and strength are now clearly dependent on the viscosity because
the gradients away from the shock region are no longer zero. But how strong is this
dependence? Is it part of a higher order effect that can be neglected? These are the

questions which will be answered in this section.

3.2.1 Dominant Terms

For the time being, consider the quasi-one-dimensional problem discussed in Chapter 2
whose governing differential equation is given in Equation (2.23). The flowfield will be
unsteady and transonic with the unsteadiness imposed at the boundaries. A transonic
region is divided into three subregions; the region upstream of the shock, the viscous
region around the shock, and the region downstream of the shock. The state vector in
each of these regions will be called Uy, Uy, and U, respectively. The shock’s location

is again marked by z, which is a function of time. Each of these regions is shown in
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Figure 3.2: Regions around a shock for analysis.

Figure 3.2. There exists an overlap region between the viscous region and the upstream
and downstream solutions indicated by the dashed lines which will be mentioned later.

For now, let each region be considered in turn.

The equations are written in conservation form with the flux vector divided into
two terms, one which represents the Euler terins and the other the viscous terms. The

unsteady Navier-Stokes equations are written

(UK) . B(Fsh) . O(Fh) _ 0k

ot 9z 9z % - O (3.18)

where
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p pu 0 0
U= pu | » Fa= pu2+p y Fy= -Tzz y P=1p]|- (3.19)
pE pulH —UTzz + gz 0

As before, in the expression for the viscous flux F,, 7., is the viscous stress with viscosity

u and g is the heat conduction term with conductivity x,

, o ,0u
= az
_ aT
= = =K dz’

which both cause the viscous term to involve the second derivative of a flow variable.

First consider the equations for the steady state regions away from the shock repre-
sented by Uy and Up. In the momentum equation, let the velocity u go as U/ and vary
over a length L, a characteristic length scale for the geometry. The steady convection
speed is ¢ and the kinematic viscosity v is u/p. Given these parameters, each term of

the equation is scaled:

O(Fyh . O(Fvh oh
b AT Pl
(3.20)
E%’! u%’}: Eg[h-
L (:Uh
Re\" 'L

For high Reynolds number (Re = 2£), the second term is much smaller than the first
and third terms, therefore the steady solution in the region away from the shock is
dominated by the Euler fluxes. Now, if an unsteadiness is added where the scale of the
unsteadiness is given by w, let the difference in the velocity u from the steady state go

as U. Again, each term in the equation is scaled:
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a(Uh d(Fph O(Fyh dah
: + z. 1 =~ Ta
[ (3.21)
U’“i;h: E%’—z u%’}: E%
k(fjr) 1 (:Th
Re\“ L

For reduced frequency (k = % of order 1 (which is the region of interest in turboma-
chinery) the first, second and fourth terms balance. This is actually true for k < O{Re).
As in the steady equation, for high Reynolds humber the third term is much smaller
than the other terms. From this it is clear that, to leading order, U, and U, are rep-
res;anted by the Euler solution, where the viscous terra is neglected in both the steady
and the unsteady solution. This is similar to the shock-tube problem where the flow

outside the shock regicn is inviscid and should come as no surprise.

Next, consider the viscous shock region represented by U,. Again the analysis starts
with the steady equation. Let « go as U as before, but now U varies over the length
§, the shock width. The kinematic viscosity v is as defined before, as is the steady

convection speed &. Each term in the steady equation is scaled in turn:

0(Fgh (Fvh _ oh
AZR + z P52
[ (3.22)
E%’—‘: u%: EQJ&=
~Uh L i ~Uh L
L bh(<BE) B4

The shock is defined as the region in which these terms balance which, irnplies that
$ = O(Re'). All the terms are necessary to find the steady solution in the shock
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region. Next, consider the shock region where the flow is unsteady. In this case the
shock will move, so the frame of reference is changed to one moving with the shock,
where the new spatial variable is X = z — z,(t). The shock velocity is given by the time
rate of change of z,. To change frames of reference, the time derivative 8% is replaced
by g—t - é,%, and the spatial derivative 582- is replaced by %. Now, let the change in
u from the steady state solution U go as U, which again varies over the length 4, the
shock width. The shock moves some distance Z, from its steady location. The scale of
the unsteadiness is given by the same w as before, as is the kinematic viscosity v. The
steady convection speed ¢ is also the same. The changes from steady state of each term

of the governing equations can be scaled:

] Uth - 0UM L B(Fah) . (Fyh 3 p %
[ (3.23)
Uhw = wz, Oh Ok - u%: L
-Uh) ‘ -~ - -
k\¢c L(-Uk L1\L(-Uh L{-Uk
k2 'b'("‘L") ("JRE e ) T
= Re(E szh) = Re(E—ﬁi’—‘) = Re (E _{7[&)

From the steady case it was found that % = O(Re™!), so as before the last three
terms balance. w and ¢ are the same as before, but for ¥ < O(Re), the first term is
much smaller than the last three, and can be neglected with respect to the other terms.
From this it is argued that the leading order term of the unsteady shock shape U, is
quasi-steady. At any instant in time, the shape of the shock is a steady function given
the boundary conditions upstream and downstream of this region, similar to the true

one-dimensional moving shock.

Again, like the shock-tube problem in Section 3.1, a coordinate transformation can
be made such that ¢{ = “'Ld,, which is merely a scaling of the shock region. This trans-
formation renders the equations unchanged except the parameter p is replaced by the

non-dimensional F;“T;' This again implies that the shock width is a function of the
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viscosity, but the shape of the shock is not.

What has been learned is that, as with the steady flowfield, the region away from
the shock is not governed by the full Navier-Stokes equations, but the inviscid Euler
equations. In the shock region the shape of the shock is governed by the boundary
conditions on the shock region, but the viscosity only governs the width. Other than
the unsteady boundary conditions, the shock region has no temporal dependence, but

is a quasi-steady function of the upstream and downstream solutions.

3.2.2 Estimation of Errors in the Leading Order Term

In the previous section, the leading order term of the solution was found for each of the
three regions: Uy, Uy and Up. An argument was made for neglecting certain terms of
the equations in favor of others. In this section the error in the solution imposed by

neglecting these terms will be estimated.

In the regions away from the shock the viscous term %iz was neglected in Equa-
tion (3.18), and oniy the convection and unsteady terms were kept. The region upstream

of the shock has a leading order solution given by U, which then satisfies the equation

d(Uuh) + O(Fy(

Uv)h)
ot 0z

il
- P(Uy)5- = 0. (3.24)
The solution of the full Equation (3.18) is now taken to be the leading order term plus a
correction U = Uy(1 + €y). To find the next order perturbation, the convection term is
compared to the leading order term from the previously neglected viscous term. From

Equation (3.20) and (3.21) the following scaling results:

F Uuh (173 Uuh

A A (3.25)

This balance, considering Re = %, shows that ey = O(g;). Clearly, the same holds for
Up.
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A similar analysis can be performed for the unsteady viscous region where the first
order solution is given by U,. The term % was neglected in Equation (3.23). In the
frame of reference moving with the shock, the leading order solution U, satisfies the

equation

_ . O(UR) | B(Fsh) | (Fh)  _8h
tx v Tax t Tax Pos =0 (3.26)

As before, a correction term is added to the leading order term such that U = Uy (1+¢,).
The leading order contribution which was previously neglected from the unsteady term
is compared to the next order perturbation for the viscous term. The tollowing scaling

results:

ﬁvhk-;: ~ VUV;:GV = ﬁvheV%Re. (3.27)

This balance shows that e, = O(£). For k <« O(Re), which is the case considered
here, the next order correction for all terms in the solution is much less than O(1).
In conclusion, the solutioﬁ, given the approximations presented here, is in error by a
contribution of O(4.) away from the shock and < O(1) in the shock region, which are
both negligibly small for large Reynolds numbers.

3.2.3 Matching The Euler And Shock Regions

The three regions described above are joined together using asymptotic matching prin-
ciples [27, pages 64-68). In the viscous equations for U,, the second derivative terms
are multiplied by the small parameter x. The scaling described above is performed so
that { = ¢, In this transformed coordinate system, the leading order solution U, (£)

can be found. The matching between U, and U, is performed as follows:

1. Take a one term expansion of U, and write this in terms of the shock variable
§, then take the limit as the small parameter 4 — 0 and the shock variable £ is
held fixed. This can be performed using a two-term Taylor series about the shock

location z,.
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U = LmUy(£)
u—0

= lim (Uu(a‘:,) + (z—z,)aUU(z,))

u—0 0z
, Uy
= tim (Ve + ¢ G20z )

= Uy(z,)

2. Take a one-term expansion of Uy, and transform from the shock variable ¢ into
the Euler variable z, and again take the limit as 4 — 0 and the Euler variable z
is held fixed. Note that for the matching with Uy, z < z,.

U = limUy(§)
u—0

= lim Uv(” "')
n

B—0

= Uy(-o0) for z<z,
3. These two limits are equated to get the matching condition

Us(zs) = Uy(~o0).

The matching between Up and Uy clearly produces the similar result

Up(z,) = Uy().
A composite solution for the whole region will be defined as [27, pages 94-97)

U Uy+ Uy —Uy(z,) for z<e,
c —
Up + Uy —Up(z,) for z > z,,

which displays several desirable traits. In the Euler region, the term Uy, (z,) balances
the vterm Uy due to the matching condition, so what remains is the Euler solution. In
the shock region the same term balances the Euler solution leaving U,,. The solution
is clearly continuous at z =z,, although the derivative with respect to z is not. What
results is a first-order solution which is valid for the whole region and is continuous.

The error in this first-order solution < O(1) for Re™! < O(1).
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3.2.4 Lift Calculation

For many calculations it is important to knew the unsteady forces on the moving blade
due to the unsteady fiuid motion to determine if the fluid causes the flutter mode to
amplify or decay. Model the flow as a steady flow with an unsteady perturbation so
that in one dimension the unsteady state vector becomes U(z,t) = U(z)+ U(z,t). Does
the viscous flowfield just discussed conform to this assumption? This question will be
answered by determiuing if the lift perturbation, £, in the shock region is linear with

the forcing perturbation when the fiow away from the shock is in the linear regime.

The lift perturbation as described in Section 2.5 is the integral of the unsteady
pressure perturbation given by {= JPdz. In Figure 3.3, four possibilities for the lift
perturbation with a perturbation shock movement Z,(t) are shown. In each case the

question of linearity between the lift perturbation and the shock movement is discussed.

6 = width of shock |
L = length of geometry

~)

n

—_—— —— — —
—_— — — ——— —

Z,K6 zZ,=0(%) §<z, KL z,=0(L) z,
linear linear? linear nonlinear
viscous inviscid

Figure 3.3: Lift perturbation for different levels of shock movement.

z, € &: In this region the shock movement is much smaller than the width of the

shock. An example is given in the first case of Figure 3.4. The shock moves,
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but the strength of the shock remains nearly constant. To leading order, the lift
perturbation due to the movement of the shock is just minus the strength of the
shock times the movement of the shock, so tlie lift perturbation is clearly linear
with the shock movement. This case is what would be considered ‘linear viscous’
since the effect of unsteadiness is small and the effect of viscosity is large, and

represents a solution of the linear Navier-Stokes equations.

6 € Z, € L: In this region, the lift perturbation can also be shown to be linear. This
is the third case in Figure 3.4. The change in the shape of the shock is negligible
compared to the area over which the shock traveled, so the lift perturbation due
to the movement of the shock is again minus the strength of the shock times the
movement of the shock, the same linear function found before. The lift perturba-
tion from influences other than the shock movement is linear by definition since
the rest of the flowfield is linear. This can essentially be considered as the inviscid
limit for the shock and will be called ‘linear inviscid’, and represents a solution of

the linear Euler eauations.

Z, = O(L): When the shock movement is on the same order as the length scale of the
geometry, the rest of the flowfield will probably be in the nonlinear regime, so in

this region the lift perturbation is not linear with the shock movement.

What remains is the region where the shock movement is of the same order as the
shock width (Z, = O(§)). This case is more complicated than the previous three cases

and makes use of the scaling analysis presented earlier in this chapter. In particular:

1. The viscosity only determines the scaling of the shock shape.

2. The shock shape itself is a quasi-steady function of Uy(z,) and Up(z,), the Euler
solution at the shock. |

As shown in the middle case of Figure 3.4, when the shock moves some Z,, the
contribution to the lift can be divided into two parts, one due to the movement of the

shock and the other due to the change in strength of the shock. The contribution to the
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Z, L6
linear viscous

z, = 0(6)
<z, <L 25 I 2.
linear inviscid = [[1’” +
m ~~~~~~~~~~ ~=zh~. %
movement of shock =  displacement < amplitude change

Figure 3.4: Shock movement for various relative levels of shock width and shock motion.
To leading order the change in integrated lift £ = —[[p]]Z, in all cases.

lift perturbation from the shock movement is as before, minus the change in strength
of the shock times the shock movement. Here, there is also a contribution from the
amplitude change of the shock. Since the shock shape is a quasi-steady function of the
flow upstream and downstream of the shock and the steady shock shapes are similar, the
two unsteady shock shapes in this figure are also similar. Therefore, the contribution
from the amplitude change goes like the pressure perturbation on the upstream or
downstream sides of the shock times the width of the shock. This is a higher order
effect compared to the contribution from the movement of the shock since, away from
the shock, the pressure pei-turbations are small as is the shock width. This case really
draws the linear viscous and linear inviscid cases together. Considering the limit of

this case where the viscosity decreases to zero, the width of the <hock decreases and



the linear inviscid case is reached. In the limit as unsteadiness goes to zero, the lineas
viscous case is reached. The conclusion is that the unsteady lift of a transonic flow has
a lift distribution which is linear in the forcing perturbation, and the linear function is
the same as for the two previous cases, { = ~[{[pllZ,. As long as the portion of the
flowfield away from tne shock is in the linear regime, the shock portion will be as well.
Therefore, if either a linear viscous solution from the linear Navier-Stokes equations or
a linear inviscid solution from the linear Euler equations is found, due to linearity the

solution in the intermediate region is known as well.

As discussed in the shock-tube problem, it has become common practice to model
a flowfield computationally with the Euler equations and use an artificial viscosity to
‘capture’ the shock. For a small, unsteady perturbation of the flowfield, shock capturing
with the linear Euler equations is similar to the linear viscous case presented above,
where the movement of the shock is much smaller than the width of the shock. When
shock fitting is used, the shock has no thickness, so shock fitting is similar to the linear
inviscid case. The important point is that whether shock fitting or capturing is used,
there is still the same linear relationship between the shock motion Z, and the lift
perturbation Z. To find the solution in the region between the linear viscous and linear
inviscid regions, either solution can be found for the lift perturbation. This is the basis

for the computationai schemes used here.

3.3 Linear Perturbation Equations

Another method of examining the information just presented is in the frame of reference
of the perturbation equations themselves. It was just shown that the perturbation in lift
is linear with the movement of the shock. Here it will be shown that this information
can be found in the perturbation equations by showing that the perturbation shock

jump conditions Equation (2.40) can be derived from the perturbaticn equations.

This analysis will start with the nonlinear, unsteady differential Equation (2.23) for
the quasi-one-dimensional duct. The viscous term F, will be modeled by an artificial
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viscosity term which simulates the true viscosity. The coefficient for this simulated
viscosity will be e.

aUh)  B(Fh) _8h % Uh) |
- t e ~Pa = pa (3.28)

The addition of the simulated viscosity term must be made to the linear perturbation
equation as well. A slightly different version of the perturbation equation than was
derived in Chapter 2 will be used for this analysis, where now the constant matrices
will be left as derivatives in the equation.

(3.29)

.
iobn 4 2 (a(ph)vh) oP oh _ _9*(TUk)

a(Tr) 4{Uh) U” € 922

In Section 3.2.4, it was shown that to leading order the shock motion is a pure
translation of the shock profile. This shock profile translation is represented by

a(0'h)
dz ’

Th = -3, (3.30)

which can be shown to be a solution to the perturbation Equation (3.29) where Z,
is the constant shock movement. To show this, Equation (3.30) is substituted into

Equation {3.29).

(Fh) 0P - Oh _ 00K
iwlh + —(8(Uh) ") a@m " oe T oot
oz, OR) _ 8 (8(FR) . o(Th) 0P _ alh)on » __ 8%z %)
OB Ty T Bz \a(Th) > 3z ) Y aTm > 8z 92 ¢ 622
. OOR) 0 (AP  oPOh : _ 8T
T8 T 9z\ oz 8z 8z~ 8z°
a( . . B(FR) _ 50h _ 8(OW) 1 8%
E(—‘IUU'I) - 5( 82 Paz 032 ) = P-o—;i (3.31)
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This equation includes the equation for the steady state solution which is identically
zero. The rest of the terms in this equation can be shown to be higher order than these
terms. First, consider a balance of the terms % (— iwl h) and é‘% (Q(a%hl). Let the state
vector U vary over the shock width § and define the reduced frequency k = %, where

L is some geometric length scale for the problem.

-iwlh < 9(Fh)
dz
l !
wUh #
1 |
ke(?h ¢UR
L )

Since £ = Re and k <« O(Re), clearly the first term is higher order than the second
term. Now check the balance of the terms:

d Aa(F_'h) A _ 0%k 8F 6h 8*F =
E(zo‘—az )—%(Fw'FzE'a—z'l'hw — z,P

2

D
&>

z2

Q

F and P are similar, as are any higher derivatives of these functions. In the shock these
higher derivatives are not negligible. If the height of the duct, A, is slowly varying, than
derivatives higher than the first derivative are negligible when compared to the constant
and linear term. It can be seen that the first term given above is much larger than the
second term since g—:’,‘- < %@. Neglecting these higher order terms, Equation (3.31) is

now

Kl (’a(;‘-*..) _ poh Bz(ﬁh))
z

equation for s?eady state = (

which is identically true, so Equation (3.30) does indeed provide a solution to the

perturbation Equation (2.29).

This solution will now be used to derive the jump conditions from the perturbation

" equation. First, each term of the perturbation equation is examined in turn.
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unsteady shock jump conditions.
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Puiting these manipulated terms together gives
. s d(Fh) ~ B(Fh) . 0*Uh)
twZ,Uh + ——=—= 3(Uh) Oh + z 32 + Z,¢ 322 z,P

As discussed before, the last term is of higher order and can be neglected. The simulated

viscosity terms away from the shock are negligible, so integrating over the shock gives

which is the same jump condition showna in Equation (2.40) found by linearizing the

It should be noted that a naive approach to finding the perturbation shock jump

conditions from the perturbation equations can yield an incorrect result. Starting with
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the integral Equation (2.31) with the addition of the moving control volume term where

Uy = twZ, gives

2_ -~ o~ _ _ 2
iw| Uhdz = - [(A&Th); - (4,Th)] + [(iw2,0h), ~ (w2, 0h)] + / 4,0 dh..
1 1
(3.32)

If the integration interval is then taken to zero, it would be possible to think the resulting

jump condition would be

(4, 0h - Uhiwz,]] = 0, (3.33)

which is incorrect. This was a mistake which was made by earlier researchers in this
field [20], convincing them that using the perturbation equations with shock capturing

would be impossible.

3.4 Conclusions

The shock-tube problem discussed in Section 3.1 showed that the location and movement
of the shock are independent pf the viscosity, which only governs the width of the shock
profile. Next, in Section 3.2, it was shown that to leading order this is true for a variable
area duct as well. Finally, the question of linearity was addressed, and it was found that
the perturbation in lift is linear with the moveinent of the shock to leading order in the
linear viscous and linear inviscid regions as well as the region in between. If the linear
relationship is the same, than either solution can be found and linear scaling provides
the solution for the other regions. Shock fitting represents the linear inviscid solution.
For shock capturing the linear viscous solution is found. If there is a linear relationship
between the shock movement and the lift perturbation, then it is possible to use the

perturbation equations to find the unsteady perturbation directly.
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Chapter 4

Computational Issues in Modeling

the Euler Equations

Chapter 3 looked at the analytic issues associated with a moving shock, emphasizing
the need to understand the flowfield before a computational model can be developed.
In this chapter, computational issues will be addressed to ensure that the numerical
solution is consistent with this analysis. Again, the discussion starts with the constant
area duct since it provides a simple model of a flowfield in which the shock motion can
be examined. Next, the issues which were found to be important in the constant area

duct problem will be investigated in a variable area duct problem.

4.1 Constant Area Duct

In Section 3.1, the analytical solution to the shock-tube problem was discussed. It was
found that, for both the steady solution and the unsteady solution, the viscosity only
Plays the role of scaling the shock region and not in the location or strength of the shock.
Here, this knowledge will be used to model the shock computationally using artificial

viscosity.

The computational methods used here will store the flow variables at discrete loca-
tion;, or nodes, and use linear interpolation to find the values between the nodes. Aside
from the usual concerns associated with numerical schemes, such as stability or accu-
racy, there are concerns in this problem associsted with the shock region. If the shock
is modeled as a highly stretched viscous region, the shape of the shock will still only

be captured in a few cells. As a shock moves, the location of the shock in the discrete
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Figure 4.1: Change in the discrete shock shape as the shock moves.

approximation lands at a different place with respect to the computational nodes. By
only knowing the solution at the nodes, the discrete shape of the moving shock will be
different depending on its location with respect to the nodes as shown in Figure 4.1.
What kind of error does tlﬁs cause? The analytical solution is a true translation of the
shock profile. Does the error due to the changing shock shape diminish in the integral
of the quantity? As discussed earlier, the integrated solution is of interest since the
integrated pressure represents the force on the surface, and would correspond to lift or

drag in a multi dimensional application.

The first computational scheme which will be discussed uses the Euler equations
and artificial viscosity, a term similar to the true viscous terms, to model the shock
region. This is a nonlinear scheme with finite volume spatial discretization, constant
grid spacing and a four-stage Runge-Kutta method to advance the solution in time.
When artificial viscosity is used to capture the shock, the shock is smeared over several

cells; the exact nature of the shock is dependent on the level of the coefficient.

The analytical versicn of the governing equation with an added artificial viscosity

term is

where € is the artificial viscosity coefficient. The term Az is a measure of the grid
spacing and is added to the equation to make the width of the shock proportional to
the grid spacing. This term intentionally has a second derivative, as in the true viscosity

terms, to model the nature of true viscosity.
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The discretization in time is a four-stage Runge-Kutta scheme which will be written

v® = ut,)
v = y® _ o At R(UO)
v® = y©® _ a0 AtRUM) (4.2)

U® = y _ a3 AtR(U?)
U = U® _ a At RU®)
Ultnpr) = UG

where

=

) az = 3, ag =1

(210

’ az =

Bl

a =

Each time through Equation (4.2) the solution is advanced forward by some time At,
whose magnitude is limited due to stability considerations. The term R(U) is a discrete
representation of Qg—';l plus the artificial viscosity and is called the residual. In this case

Fry —Fpy _ WU -Uy) = (Us - Upa)
Az, Azy ’

R(U)y = (4.3)

where
Fpi = 3(Fm + Fy) Fy sy = 3(Fy + Fia).

Figure 4.2 shows a representative shock shape for this kind of scheme. The shock region
covers about eight cells in this case and produces a smooth transition between the

upstream and downstream states.

Another important aspect of this scheme is that it is conservative. Conservation
is a way of stating that Equation (3.11) holds regardless of what the control volume
is when the analytical equations are modeled computationally. In other words, the
flowfield becomes fully governed by the boundary conditions. In devising the numerical
scheme, the control volume may be a single cell. For the case which will be discussed

here, the control volume will be the computational space composed of several cells. In
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Figure 4.2: Pressure for relative inlet Mach number 1.2 shock with shock speed 0.1 and
artificial viscosity coefficient 0.075.

a computational space where the index J represents the computational nodes and goes

from 1 to Jmax, Equation (3.11) becomes

Jeax U Jmax
21: (W)JM = - ; R(U);Az = F - Fp,,. (4.4)

Now, to determine if a scheme satisfies this equation, it is merely a matter of putting in
the values for the residual from Equation (4.3). Here the boundary nodes are excluded
from the summation, since boundary conditions provide a method for setting the values

at these nodes.

Jmaz~-1 Jmax -1
Y RUAz = - ) {F.,_FE—FJ_% - 6[(UJ+1—UJ)"(UJ“‘UJ—1)]}
2 2

~Fy-1t Pyt €((Uspu=Utase-1) — (U2-U1)]  (4.5)

The important thing to notice is that the sum is only a functicn of the fiuxes at the
boundary cells. This is similar to the analytical resuit stated previously which said the
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flowfield is governed solely by the boundary conditions. Cancellation of the fluxes in

the interior is the basis for this result.

There are computational methods which do not capture the shock with artificial
viscosity, but rely on censervation to make the rest of the flowfield independent of the
internal shape of t'ie shock region. One such method which will be described here is
similar to the on already described, but uses van Leer flux vector splitting [26]. The
flux vector split scheme produces a nice crisp shock with two nodes in the shock, one

each supersonic and subsonic. Upwinded differences are used such that the residual is

now
-F,.
I I
R(U); az; , (4.6)
where
Fyy = F*(Us) + F~(Usy) Fyy = F¥(Ups) + F~(Uy).

The fluxes F* and F- are the upwinded fluxes which, depending on the local Mach

number, are found from:

M<1: I-fli

F*= fit L(ﬂ)#] where fE= tipc(1+ M)?
?
fi Lo gl

M>1: [ ou

0
F¥=|pu4p|, F~ =19
0

- puH

One important feature of these upwind fluxes is that F* + F~ = F. The representative

shock shape for the flux vector split scheme is shown in Figure 4.3.

It can be shown, as in the previous scheme, that the flux vector split scheme is conser-

vative. The internal structure of the shock is merely a function of the scheme, similar
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Figure 4.3: Pressure for relative inlet Mach number 1.2 shock with shock speed 0.1 for
flux vector split scheme.

to the artificial viscosity scheme where the internal structure of the shock is a function

of the artificial viscosity.

4.1.1 Computational Results

Since the two numerical scheme: -esented here are conservative, we are guaranteed that
the overall solution follows the exact solution. But what is the effect of changing shock
shape due to discretization as the shock moves? If the discrete shock is smooth enough,
then this effect should be smﬂ because the shock shape is well resolved regardless of
its lqcation relative to the grid. Using artificial viscosity the shock is smeared out and
keeps a similar profile from one iteration to the next. The scheme which produces the
most crisp shocks is flux vector splitting, which forces only two points to be in the shock,
and therefore has a more radically changing shock shape. This scheme should have a
larger error due to discretization, and in fact represents a worst case for shock capturing

schemes.
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Figure 4.4: Time rate of change of integrated pressure normalized by the exact solution
vs. time for relative inlet Mach number 1.2 shock with shock speed 0.1 for the flux

vector split scheme.

To quantify the effects of discretization on the solution, the results are presented
as the difference in the integral over the whole domain frora one timestep to the next.
The shock-tube problem has an exact solution given in Equation (3.11), which is only
a function of the boundary values, to which the discrete value can be compared. For
the conserved quantities in the state vector p, pu and pE, the difference in the integral
should be a constant in the computational results (by the definition of conservatior).
Any other quantities may waver about the exact solution, but as the shock moves
over several cells, will track with the exact solution since they are a function of these
conserved quantities. As an example, the computational rate of change in integrated
pressure normalized by the exact solution is shown in Figure 4.4 as a function of time for
the flux vector split scheme. This is the same case for which the shock profile is shown
in Figure 4.3. For small time, the shock shape is settling into its natural shape. As time
progresses the function takes the shape of a periodic oscillation about the exact solution.
The period of the oscillation is the time for the shock to move one computational cell.

Roberts [25] found that this error can cause entropy waves to appear in the solution
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away from the shock. These waves have been seen in some of the cases run for this

thesis as well.

To illustrate the effects of shock shape, both schemes were run for a range of Mach
numbers. The rate of change of the integral of some quantity over the domain ( -j’—t J(*)dz)
was found for several quantities. The effect of shock speed and CFL number were in-
vestigated, but the results were found to have a weak dependence on these parameters.
The percent deviation from the exact solution (or error) as shown in Figure 4.4 was then
computed, and is shown in Tables 4.1 to 4.6 and illustrated graphically in Figure 4.5.
The conserved quantities, p, pu and pE, are not shown since they do not have a pertur-
bation about the exact value, which is as it should be for a conservative scheme. It can
be seen that when artificial viscosity is used, the shape of the shock is better preserved
from one iteration to the next than it is in the flux vector split schemes, so the mag-
nitude of the error is reduced. With the artificial viscosity scheme, as the coefficient is
increased there are more nodes in the shock, and again the shape of the shock is better
preserved, so the error is reduced. As the Mach number increases, the magnitude of the
jump over the shock increases, and the error likewise increases. In most cases the error

is quite small, particularly for the pressure integral.

4.1.2 Discussion of Computational Results

The results shown ir the previous section are quite remarkable. For moderate relative
Mach numbers, especially when artificial viscosity is used, the error due to the changing
shock shape is much less than one percent. In this section the reason for this small error
will be explored.

One method for analyzing the effect of the discretization on the governing equations
is to produce the modified form of the analytical differential equation which is actually
being solved computatiorally. The modified equation should have terms which include
the grid spacing Az and approach zero as the grid spacing is reduced to zero, producing
the analytical equation in this limit. The Taylor series representation used to form the

modified equation is only valid for a smooth function, so one limitation of the analysis
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integrated | magnitude | exact percent
quantity of error value error

p none -0.03416 0.%
pu none -0.00342 0.%
pE none -0.10284 0.%

u 1.5564e-4 | 0.03615 | 0.43049%
M 2.2603e-4 | 0.03628 | 0.52308%
pu? 2.5670e-4 | 0.05099 | 0.50342%

P 5.1863e-5 | -0.05133 | 0.10103%

Table 4.1: Errors due to the changing shock

M. =1.2.

shape for flux vector split scheme with

integrated | magnitude | exact percent
quantity of error value error
P none -0.16667 0.%
pu none -0.01667 0.%
pE none -0.70083 0.%
u 3.7522¢-3 | 0.14790 | 2.5370%
M 5.2626e-3 | 0.14421 | 3.6492%
pu? 1.5403e-2 | 0.34833 | 4.4220%
P 3.0760e-3 | -0.35000 | 0.8789%

Table 4.2: Errors due to the changing shock

M, =2.0.

shape for flux vector split scheme with

integrated | magnitude | exact percent

quantity of error value error
P none -0.35714 0.%
pu none -0.03571 0.%
pE none -3.50180 0.%

u 1.2981e-2 | 0.36975 | 3.5108%

M 9.7999e-2 | 0.36075 | 27.1651%

pu? 1.4097e-1 | 1.74643 | 8.0717%

P 2.8196e-2 | -1.75000 | 1.6112%

Tablev4.3: Errors due to the changing shock shape for flux vector split scheme with

M, = 4.0.
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integrated | magnitude | exact percent
quantity of error value error
p none -0.03416 0.%
pu none -0.00342 0.%
pE none -0.10284 0.%
u 1.3738e-5 | 0.03615 | 0.03800%
M 2.1255e-5 | 0.03628 | 0.05859%
pu? 1.945Ce-5 | 0.05099 | 0.03815%
P 3.8910e-6 | -0.05133 | 0.00758%

Table 4.4: Errors due to the changing shock shape for artificial viscosity coefficient

€ = 0.075 with M, = 1.2.

integrated | magnitude | exact percent
auantity of error value error
p none -0.16667 0.%
pu none -0.01667 0.7%
pE none -0.70083 0.%
u 9.8373e-4 | 0.14790 | 0.6651%
M 4.4097e-3 | 0.14421 | 3.0578%
pu? 3.7018e-3 | 0.34833 | 1.0627%
P 6.4416e-4 | -0.35000 | 0.1840%

Table 4.5: Errors due to the changing shock shape for artificial viscosity coefficient

€ = 0.075 with M, = 2.0.

integrated | megnitude | exact percent

quantity of error value error
p none -0.16667 0.%
pu none -0.01667 0.%
pE none -0.70083 0.%

u 2.2064e-4 | 0.14790 | 0.14918%

M 1.1591e-3 | 0.14421 | 0.80377%

pu? 7.0762e-4 | 0.34833 | 0.20314%

D 1.5561e-4 | -0.35000 | 0.04446%

Table 4.5: Errors due to the changing shock shape for artificial viscosity coefficient

€ = 0.1 with M, = 2.0.
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Figure 4.5: For various schemes, the percent error in i:— J{x)dz from the exact solution

for the quantities u, M, pu? and p. The data for this graph is given in Tables 4.1 to 4.6.
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is that the flowfield must be reasonably smooth; in other words, the analysis is only
valid for the scheme which uses artificial viscosity. Forming the Taylor series for U and
F at nodes J+1 and J—1 gives:

s = Ur+ da(8), + 1007 (88), + 10" (88), + uat(5), 4
O = U= aa(§), + 301 (88), - dae'(8), + uaet(5), -
Fra = Fr+ 8z(3) + 1a2*(25) + 3a:°(%F) + Lot (25) + -
Fioy = By aa(8), + 1002 (5F), - 4a2°(85), + %ae(55), -

Placing these functions into Equation (4.3), the discrete equation for the artificial vis-

cosity scheme, and assuming Az is constant gives:

Fog —Foy . U =Us) = (Us - Up,)

R(U), = Azy Azy
_ 1 Fyp-Fpy, ¢ U —2U;+ Uy,
T2 Azy Az,
1 2 "

—ei[U; + Az(g—g)J + %Azz(%t,’-)] + %Aza(%?).] + %A:"(%’{-)J +
- 2U;
+ Us - Az(%g)J+ %Ae’(%%‘{-).' - %Aza(%:g-)J + %Az‘(%‘;?)l - ]

_ 0F 8 0U 2(8%F € 36U

- - () ol st
The first bracketed expression in this equation is the analytical expression which ic
modeled. The second expression is an infinite series in increasing powers of Az and is
the truncation error for the ecquation, the error induced in the discrete formulation of

the analytical equation. One very important point is that in the limit as Az goes to

zero, the truncation error also goes to zero and the original equation is obtained.
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Now look at the truncation error term in more detail. Since the mesh spacing Az

is constant, this term can be rewritten as

(1, ,/0F € . 40U

w(a“ (7) ST i (a_) o)
which is zero away from the shock region. This term acts similarly to the viscosity
term in the analytical equation, and only contributes to the shape of the shock. What
this shows is that the effect of the truncation error is to add another conservative term
which has ro effect on the location or strength of the shock. This modified equation

analysis contributes to an explanation of why the artificial viscosity scheme has such

small errors, since discretization does not introduce global errors into the solution.

Another explanation for why the errors are small can be seen by looking at the
trapezoidal integration formula [8, pages 290-301]. Trapezoidal integration of a function
is described on the interval [a, b] witk grid spacing Az as

b -
/f(z)dz ~ T(Az) = Az(-;-fo +th+ft-+fra+ %f;). (4.7)

This formula is based on piecewise linear interpolation in the intervals (z;_;,z;), j =

1, 2,..., J as shown in Figure 4.6.

f(2)t
[T~

I

"\

Figure 4.6: Representation of trapezoidal integration.
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We are interested in the error associated with trapezoidal integration. For some

value of p, this error is defined by the Euler-Maclaurin summation formula:

/ f(z)dz = T(Az) - ZC,H(Az)'“(f\')(b Q) - ZQ,, (4.8)
where

|EQ,| < lees(Bepl- [ 1fO(e)] da.

i=1
Equation (4.8) shows that the first error term in the trapezoidal integration is a function
of the derivative of the integrand at the boundaries. In most cases this would be the
dominant error, but in the shock-tube case the spatial derivatives of the solution at
the boundaries go to zero. This produces the result that the error in the integration
Approaches zero faster than any power of Az for a shock of fixed shape. For a shock
with artificial viscosity parameter ¢, f(P)(z) = O((eAz)~?) in the shock region of width
O(eAz), so | Q| = O(Az €' ~F) and the error essentially goes to zerc faster than any

power of ¢~}

Another very interesting feature of these results is that the integrated pressure, or
lift, has a smaller relative error than other non-conserved integrated values. The lift is
of more interest than ay other integral value, so this is a particulaily pleasing result.
This result appears to come fromn the relation between the pressure and the conserved
quantity pE, total energy. The time rate of change of integrated pressure can be written

as

dez = (y- 1)[35 pEdz — 5% puzd:c]. (4.9)

In the case of a zero width, inviscid shock, this is another staternent of the shock jump

relations

(Pl = (r-1)([[pE] - }lleu?]). (4.10)
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Manipulating the shock jump relations in Equation (3.16),

[[pu?+p~2,pu]] =0 and [[pu-,p]] = 0,

produces

[[pu2+p—.~':,pu]] =0
[(p]] = ~[[pu?]] + &,[[pu]]

= =[lpu®]] + £[[p]).

When v = 1.4 and the shock speed is small, the second term in Equation (4.10) con-

tributes an amount which is only 20% of the total jump in pressure,

fa—

~1(-1)l[?)
i)

so the conserved quantity pE contributes 80% to the rate of change of the integral.

- %(7-1)—2'3{%2}] ~ 0.20, (4.11)

Since this larger term does not contribute to the errors, due to conservation, all these

errors come from the much smaller % pu? contribution.

4.2 Variable Area Duct

In Section 3.2 the leading order relationship between the integrated pressure, or lift,
and the location of the shock was shown to be linear. An important point in this
analysis is that analytically the shock shape would remain similar as it moved. Here,
the effects of discretization on this result will be examined. In particular, since the
discrete solution is only known at computational nodes and linear interpolation is used
between these nodes, a discrete shock shape does not remain similar as it moves relative
to the mesh. As with the constant area duct or shock-tube problem in Section 4.1, the
effect of the changing shock shape will be quantified, except now there will be variation
in the flowfield upstream and downstream of the shock.
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In Section 4.1, the effect of the changing shock shape on an integrated quantity
was found to be very small for the shock-tube problem. In essence, the results from the
shock-tube problem are directly applicable to the variable area duct (since it is the effect
of changing shock shape which is in question) but to justify this statement an example
will be presented. The problem will be a quasi-steady, quasi-one-dimensional duct
problem with variable exit pressure. The focus will be on the definition of linearity, or
that cne solution multiplied by some constant is another solution. Here the relationship
between the lift and the exit pressure for a transonic duct will be examined. If there is

a linear relationship between these variables the following relationship will hold.

~ dl
7= ( e )*w- 4.12
dpcxit Pexit ( )

The example given here will test the validity of Equation (4.12) for an analytic and a

computational problem.

In Figure 4.7, two similar transonic flow solutions are shown for two exit pressures
Pexit = 0.4893 and p.,i = 0.4983. Since the steady, variable area duct has an exact
solution, this is essentially what is plotted here. All that was varied to find these
solutions was the exit pressure. A solution with an exit pressure between these two
bounds would fall somewhere between these solutions, which in essence form an envelope
for a whole set of solutions. In Figure 4.8, the steady lift for these solutions is plotted
as a function of exit pressure in this envelope. Notice that the relationship between
these variables is nearly linear. When a linear function is subtracted from the steady
lift, £, to create a new variable £/, it can be seen that the relationship is not exactly
linear, but contains some sligBt nonlinearity. It can now be said that to leading order the
relationship between lift and exit pressure follows Equation (4.12), and the flow is linear.
This. is the result that would be expected given the analysis in Section 3.2. In Figure 4.9,
a set of symbols has been added to the plots shown in Figure 4.8. These symbols present
results from several computational solutions, where each symbol represents a separate
steady calculation. The computational scheme uses second difference artificial viscosity

of the type discussed in the previous section with coefficient € = 0.1 (described in more
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Figure 4.7: Mach number and pressure distribution for two flow solutions defined by
two different exit pressures which form an envelope for solutions with exit pressures
between these bounds.
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Figure 4.8: Steady lift as a function cf exit pressure in the envelope defined by solutions
shown in Figure 4.7 for exact solutions and this function after the linear terms are
removed.
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Figure 4.9: Steady lift as a function of exit pressure for the envelope defined by solutions
shown in Figure 4.7 for exact solutions and computational solutions, and this function
after the linear terms are removed. The computational solution is only sampled at the
symbols.



detail in Section 5.1.1). More samples were taken in the center of the domain, illustrated
by the greater clustering of the symbols. In this region, the symbels deviate from the
exact solution. This is due to the changing shock shape which was seen in the shock-tube
problem in Section 4.1.1 and this pattern of deviation from the exact solution should
continue through the whole domain. The error due to the changing shock shape in
this solution is approximately 0.04%. This computational error represents such a small
deviation from the linearity that linearity can be assumed to exist for the computational

solution as well as the exact solution.

Again, the effect of changing shock shape in the variable area duct is the same
effect illustrated with the constant area duct shock-tube. The errors associated with
this changing shock shape are of the same magnitude as the errors found for similar

shock-tube problems.

4.3 Conclusions

The effect of discretization on the results presented in Chapter 3 were presented in
this chapter. Computationally, a shock profile will have a different shape as the shock
moves relative to the grid, since the solution between grid nodes is found by linear
interpolation. The changing shock shape in the computational solution introduces errors

into the unsteady solution.

When the error in the solution is measured in terms of the integral of a quantity,
conservation says the conserved quantities, p, pu and pE, will have no error. The non-
conserved quantities, however, do have errors due to the changing shape of the shock.
These errors were shown to be small for the shock-tube, particularly in the integrated
pressure, or lift, which is of great interest in fluid mechanics. The error is larger for
the flux vector split scheme than for the scheme where artificial viscosity is used to
capture the shock. The error in the artificial viscosity schemes decreases as the artificial
viscosity is increased. This result was expected since a smoother shock is more likely to

retain its shape as it moves, but can be explained in other ways as well. The net result
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concerned about them in our calculations. This result applies equally to the shock-tube
and variable area duct problems and should extend to higher dimensjona] problems as

well.

The results in this chapter are important since they mean it is possible to model
the small movement of the shock with a computational scheme. The fact that the
error due to a changing discrete shock shape is small implies that the results found in
Chapter 3 not only hold analytically, but for a discrete problem as well. At this point,
computational schemes which assume the flow field is linear will be formed and results

from these schemes will be presented.
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Chapter 5

Numerical Scheme

In Chapter 2 the governing equations for a quasi-one-dimensional duct were derived.
Two sets of equations, one for the steady state and the other for a linear harmonic
perturbation were then formed. In Chapter 3 it was shown that the role of viscosity
in the steady solution was to scale the width of the shock and not to determine the
location or strength of the shock. In the unsteady solution it was shown that the
integrated solution, such as the lift, was linear with the unsteady perturbation imposed
on the flowfield, again independent of the level of the viscosity. Since the absolute level
of the viscosity only governs the width of the shock, artificial viscosity can be used in
the solution to form a shock with a width on the order of a few computational cells. In
this chapter, the discrete forms of the governing equations will be found. Two different
forms of artificial viscosity as well as flux vector splitting will be used to capture the
shocks. A shock fitting scheme is also described, since this represents the zero shock
width limit. Finally, a method of solving for the perturbation where the computational

grid moves is described.

5.1 Artificial Viscosity Schemes

The computation of the steady state and perturbation solutions decouple. First the
steady state solution is found, then the perturbation solution can be calculated using
the known steady solution to find the ccefficients for the perturbation equation. For
the artificial viscosity scheme, the spatial discretization for the steady state will be
explained in detail, then the spatial discretization for the perturbation will be given.
The two procedures are similar and, in fact, the discrete perturbation equations are

a true linearization of the unsteady discrete equations used to find the steady st-¢e.
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The Runge-Kutta temporal discretization which is used to find both solutions is then
described.

5.1.1 Steady State

To develop a finite volume numerical scheme, the computational domain is divided into
several control volumes of a size determined by the mesh spacing. Since the discrete
equations will be found for these control volumes, the integral form of the governing
equations are used instead of the differential form. The unsteady, nonlinear integral

Equation (2.17) with no control volume movement is

% /1 Uhde = —[(Fh)z—(Fh)l] + /1 *p dh. (5.1)

A schematic of the computational mesh is given in Figure 5.1, where the node indices
go from 1 to Jmao. The state vector is stored at each of the nodes (represented by dots),
and the finite volume discretization involves the neighboring nodes. The control velume
for each of the nodes is denoted by the dashed lines in Figure 5.1. When applying
Equation (5.1) to the computational control volume, the solution will be assumed to
vary linearly between the nodes, so the value at the edge of the control volume is the

average of the adjacent nodes.

The spatial discretization will be dealt with first. For now the semi-discrete repre-

sentation of Equation (5.1) is

dit[%(h""'% + hJ__} )UJAzJ] =

—[h_,_,_%F_,_l_i —hy1Fyy] + 3Py +Ppa)(hyyy —hya).  (52)

For simplicity in writing and understanding of the finite volume discretization, the

following have been defined:
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Figure 5.1: Computational mesh for a quasi one-dimensional duct.

Azy = }(zan — 241),
hJ.+J’. = %(hl + hn), F
hJ_i = ‘;'(hl + hJ—1)1 FJ

= 3(F1 + Fr), P
= {Fr+Fr,), P

&
K

1 = 3(Py + Prp),
= %(.PJ + Pj,).

The steady state is reached when there is no change in time, or 38‘: = 0. The steady

solution then satisfies the equation

- [h""'%i“”i —h_,_%i'}_%] + %(PJ_‘% +PJ_%)(h_H_% —hJ_%) = 0. (5.3)

The height of the duct and the mesh spacing are set in the problem definition and
are not a function of time, therefore they may be taken outside the time derivative in
Equation (5.2). When the equation is rearranged such that all that remains on the left

hand side is the time derivative of the state vector, this equation can be written

ou :
(E), - _R(Y), (5.4)

where R(Uj;) represents what will be termed the flux residual
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1
R(Uy) = (Az;%(h,% n "—L—%)) x (5.5)

((hJ-f-%FH% —hJ_;_FJ_%) - %(PJ-P% +PJ_%)(hJ+% - hJ_%)).
This discretization is second order accurate.

The temporal discretization of Equation (5.4) will be deseribed in Secticn 5.1.3.

Second Difference Artificial Viscosity

To capture shocks, a term which looks similar to a viscosity term is added to the
equation. This new term will be called artificiai viscosity. As a first approximation, the
artificial viscosity term will be modeled with & second difference which bears a large
resemblance to the true form of viscosity.

o2 (2]

€3 is the artificial viscosity coefficient which takes values in the range 0.0001 — 0.1 and
is held constant. The difference Az is used rather than the derivative gi’ to make
the smoothing of sawtooth modes independent of the mesh size. The factor h(z2 At) is

necessary to make the artificial viscosity term scale correctly with the flux term, and is
appropriately placed to ensure that the scheme will be conservative. The computation

these timestep terms is discussed in more detail in Section 5.1.3.

Similar to the discretisation of the governing equation, the artificial viscosity term
is also discretized

. 1
DUs) = e (Au% g ¥ "-'—%)) X (5.7)

(h-"h} r&)m(Um Us) - h.x_;( ) (UJ UJ—I))'
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This term has a discretization error ~ e2Az, which is to say it is first order accurate.

When the artificial viscosity is added to Equation (5.4), the equation becomes

(aa—({) = —-R(Uy) + D(Uy). (5.8)
J

Fourth Difference Artificial Viscosity

In order to have sufficient levels of artificial viscosity near the shock using just second
difference artificial viscosity, the smooth regions of the flowfield tend to get more artificial
viscosity than is necessary. To remedy this, the second difference artificial viscosity
is only turned on in regions where there are shocks and a fourth difference artificial
viscosity is used in the rest of the flowfield. It has been found that detccting the
second difference of pressure and using this as a switch for the second difference artificial
viscosity works well in practice. The fourth difference artificial viscosity is turned off in
the shock region, since it over-damps the high frequency nature of the shock. This type
of artificial viscosity has the analytical form

h[ 640 ((1-5)1.( .)Am?:t:) +Q%(5h( 2 ) Az %%)], (5.9)

where S is the switch which has a maximum value of 1 in the shock and is zero in smooth
regions away from the shock. €2 and ¢4 are the two artificial viscosity coefficients. For
this type of artificial viscosity the term defined in the previous section as D(U;) now

becomes

86

il Rl i o B

-~ R ]

g -

w

o T B - R




D(U;) = (Aa.]%(h;'l‘hj_%))x

[—e.. ((1 ~ Sz1) by (Af:u)l%(pzv_m - D*U;)

(A? ) _%(DZUJ - DzUJ-l)) +

fi(s,nih_].pl( ) |(U-’+l UJ)
~Saghay (&05) 4 (U - U ))] (5.10)

where the numerical second difference is defined as

D"U; = (U1 —Us) - (Us - Uyy) (5.11)

This artificial viscosity has an error ~ ¢4Az® in regions of the flowfield away from the
shock. The switch is given by

= 3
Sy = maz(s))’ (5.12)

where

3y = abs[(p‘,+1 —ps)- (5.13)

(s — P12 )] .
pJ

Some characteristics of the switch are that it is small in regions where the fowfield is
smooth and it is strictly positive so the second difference artificial viscosity is turned
on equaﬂy. in regions of positive and negative curvature. By dividing by max(syz), the

maximum value of Sy is 1.
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§.1.2 Linear Perturbation

In Chapter 2, to find the linear perturbation, the unsteady state vector was assumed to

take the form
U(z,t) = U(z) + R{T(z,t) e},

for which U(z) is the steady state solution found in the previous section, and the

governing equation for U(z,t) in integral form with no mesh movement is

2 2 - A - 2
% / Ohde + iw / Ohdz = ~[(ATh); - (AiThY| + / (A,0)dh.  (5.14)
1 1 1

This equation will be advanced in time until there is no change in time so that
eventually U(z) will only be a function of space. The linearization matrices 4, and 4,

are functions of the steady state solution.

-

. 0 1 0
- OF(U
aw =28 - | g-ae B-y)u -1
| —7Eu+(y-1)u®  E-§(v-1)u* yu
- [ 0 0 o |
_ P(0)
A(0) = _O(ff_l = (r-1)u? ~(7-1)u 7-1
0 0 o |

Although the discrete perturbation equation is a discretization of Equation (5.14),
it is moze appropriate to step back to the discrete form of the time dependent nonlinear
Equatioil (5.2) to find the discrete perturbation equation. This is done to ensure that
this equation is a true linearization of the discrete equation for the steady state. The

discrete state vector is then set to

Us(t) = Uy + R{U;(t) e}, (5.15)
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from which Equation (5.2) becomes

%[%(h_,_'_% + hJ__;_ )R{ﬁjeiwt}AZJ] + tw %(h.,_% + hJ_% )R{ﬁjei”t}AzJ =
- [h.n_; (F.n;; + R{(Lﬁ)_,_%e"""}) = hy s (Fyy + R{(“Ilfj).t-% CM})] (5.16)
+ 3[(Prs + RUAD) 1Y) + (Pry + RU(A2D) g D) (s — hya)-

After subtracting off the steady state Equation (5.3) and dividing through by e*“, the

discrete perturbation equation is found. This equation can be written as

U -
(W)J = —-R(Uy), (5.17)
where
~ = ' 1
R(U;) = wU; + (Ai,y%(h_,_}_% +hJ_%)) X (5.18)

((hrg (B = By (A1) = H(Aa) g + (AaD) )y~ Bry))-
Again for simplicity, the following have been defined:
ﬁj_’_% = %(ﬁ] + ﬁJ.H),
[7;_* = %(ﬁl + ffJ—l),

D) 4 = H(A1D)s + D)), (A20) 51 = 3((@20)s + A2D)1n1),
(jxﬁ).y_; = {((A1D)s + AD)sa), (jzi}).,_; = }((A20)5 + A20)12).

The temporal discretization of Equation (5.17) will be described in Section 5.1.3.

Second Difference Artificial Viscosity
To find the form of the linearized artificial viscosity term, one follows the same steps

which were used to find the discrete linear harmonic equations. First, the form of

the state vector for the linear harmonic solution in Equation (5.15) is substituted into
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the nonlinear form of the second difference artificial viscosity term in Equation (5.7);
next the steady state contribution is subtracted off, and finally what remains is divided
through by the common term e*t. For the form of the second difference artificial
viscosity given in Equation (5.6), this procedure produces the discrete artificial viscosity

term

D(Uy) = ( .Y (5.19)

(.47( ) (UJ+1 UJ)-h,_;(;ﬁ)J_%(ﬁ,—ﬁ,_,)).

Because the second difference artificial viscosity term is linear, this process is quite
simple and produces a numerical artificial viscosity term which is similar to the term

for the steady state.

When artificial viscosity is added to Equation (5.17), the equation becomes

(‘;_?) = —R(U;) + D(Uy). (5.20)
J

Fourth Difference Artificial Viscosity

The fourth difference artificial viscosity term with the switched second difference ar-
tificial viscosity is more complicated to linearize than the second difference artificial
viscosity term. The fourth difference artificial viscosity term by itself, like the second
difference term, is linear so it is easy to linearize. With the addition of the switch, there

is a nonlinear term in the equation.

In general, the switch is now written as

Sy =S8+ 65, (5.21)

The form of the switch given in Equation (5.12) canzot be linearized, but this is
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certainly not the only form of the switch which could be used. The steady state term

Sy is
s _ 3
S5 = max(3;)’ (5.22)
where
5.] - abs[(p-"{'l - PJ)}; (ﬁJ - ﬁ]—l)] . (5.23)
J

Since the switch cannot be linearized, the perturbation switch is set to §y = 0. Chapter 6
will discuss the effects on the solutions associated with not linearizing the switch. The

equation for the artificial viscosity term, however, will retain the S, for generality.

The perturbation artificial viscosity term becomes quite complicated. After dropping

any higher order contributions, this term is

D(U;) = ( By

Srshry (A.A_'_,) N l7.:-1)) } ' (5.24)

where the numerical perturbation second difference is



Dzﬁj = ((7,1.,.1 - ﬁ]) - (ﬁj - ﬁj_l)- (5.25)

5.1.3 Temporal Discretization

To model the time derivative for both the steady state and the perturbation, either a
four-stage or five-stage Runge-Kutta scheme will be used. For the perturbation, the

variables are complex numbers, but otherwise the formulations are the same.

The four-stage scheme presented here is often referred to as “the fourth order Runge-
Kutta method” when R(U) — D(U) is a linear function. To reduce the required storage
when R(U) — D(U) is nonlinear, this fourth order accuracy in time has been sacrificed.
For the nonlinear schemes used here, the interest is in the steady state, so the loss of

temporal accuracy is of no concern.

The semi-discrete equations from Equations (5.4) and (5.17) are then modeled by

v = U(ts)
v = U® - o At[RUO) - DEUO)]
v® = pO _ g, At 'R(U(l))_p(u(l))] (5.26)

U® = UO - oyat[RU®) - DUD)]
vW = v _ o At[REU®) - D(U(3))]
U(tayr) = UW

where D(U) = 0 for the flux vector split scheme and

=

’ az = 3, ag=1.

U

’ az =

L

a =

There is a limit on the size of At which is a function of R(U). Only the results of
the stability analysis used to determine At are given here, the full analysis is presented
in Appendix A. Define At,,, as the characteristic time for information to cross one

computational cell:
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Atmay = : (5.27)

The multistep integration scheme given here allows a larger timestep, given by

At = CFL - Atpa,, (5.28)

where CFL stands for the Courant-Friedrichs-Lewy number. The stability limit for
the steady state equations gives CFL < 2v/2. The perturbation equation requires
wAt + CFL < 2v/2, which when combined with Equation (5.28) gives

22 Atmax

At < 1+ WAty

(5-29)

In practice, wAtmax € 1, so the stability limit for the steady state is used for the

perturbation equations as well.

It should be noted that the same value of Aty,, must be used in the steady and
perturbation solutions to ensure that the linear form of the artificial viscosity is a true
linearization of the nonlinear artificial viscosity term, since Equations (5.6) and (5.9)

are functions of (ﬁ-)

The five-stage Runge-Kutta scheme is similar to the four-stage scheme, with the
major modification, other than the addition of another stage, of holding the dissipation
term fixed after the first stage. By not continuously re-computing the dissipation, the
computational requirement {or the scheme is reduced. The addition of the extra stage
and the choice of coefficients make the scheme particularly suited for use with multigrid
schemes. Section 7.2 describes the multigrid process and the benefits of this five-stage
scheme in detail. The five-stage scheme is then
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U® = U(t,)

v = po _ o At :R(U(")) — D(U®)]

YO = U0 — oy at[REUW) - DEW)]

Ue = U - agAt[R(UD) - DWUM)] (5.30)

v = UO - o at[RWUP) - DEUW)]

U® = UO - o At[R(UW) - DWY)
U(tny) = U®

where

a5=1.
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- The stability limit for the five-stage scheme is slightly larger than the four-stage scheme,
where now CFL < 4 for the steady scheme and wAt + CFL < 4 for the perturbation.
In practice, a much lesser value of CFL than is allowed is used, such as CFL = 3, te
obtain the desired temporal damping effects of this scheme.

5.2 Flux Vector Splitting Schemes

Flux vector split schemes take into account more of the physics in the problem than
the artificial viscosity schemes presented in the previous section. They use upwinded
differences which impose the knowledge of the information propagation in the flowfield
on the numerical scheme. The hope for these schemes is that by using mere physics, the
schemes will be more robust and have fewer overshoots in the solutions. The particular
upwinding scheme described here is van Leer’s flux vector splitting [26]. This scheme
is essentially the same as the flux vector split scheme described in Chapter 4. Also
discussed is the MUSCL (Monotone Upstream-centered Scheme for Conservation Laws)
modification to this scheme (2).

The solution procedure for the flux vector split scheme is similar to that used for
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the artificial viscosity schemes. The time integration is the same Runge-Kutta method

described in Section 5.1.3, but the computation of the residual is done differently. For

this reason, only the spatial discretization will be described.

5.2.1 Steady State

Equation (5.6) (which is repeated here) still holds for the flux vector split scheme, but
the fluxes FH-;— and F, 1 are now defined with the direction of the characteristics in

mind.

R(Uy) = ( - )X (5.6)

Az"%(h-’-l-% +h_,_%)

((h.H-%F.H-s ~h;yFpy) - 3Py +Py1)ihpy - hJ_;))-

Unlike the artificial viscosity scheme, now
Fry = FY(U3) + F7(U,) Fyy= F+(U;_%)+ F(U},).

The fluxes F* and F~ are the upwinded fluxes which, depending on the local Mach

number, are found from

M>1:
pu 0
F*=(pultp|, F =0
0

puH
Mc<1
[ st
Ft=|f* (ﬂ("—l%Mi 2]) where ff =11pe(1+ M)?
+ (Cl(p-1)M £ 2
L i ( 2(72 -1) ) 4
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The state vector for the MUSCL modification to van Leer’s original scheme is ex-
trapolated to the cell faces before the evaluation of the fluxes so that

Usyr1 — Usya

Ut, =Um + v > )

T U

where 9 is called the flux limiter. When 1) = 0, the scheme reduces to the original first
order accurate flux vector split scheme proposed by van Leer, and when ¢ = 1, the
scheme is second-order accurate. The value of ¢ can vary throughout the flowfield from
% = 0 to ¢ = 1. This variation is used to turn off the second-order accurate differencing
in the shock so that the added damping from the first order accurate formulation reduces
oscillations in the shock region. Although this effect is more noticeable for higher
Mach number flows, it is still used heze. The form of the flux limiter is similar to the
switch used with the fourth difference artificial viscosity to turn on the second difference

artificial viscosity in the shock. Since the limiter should be zero in the shock,

Y =1- 8, (5.31)

where S; was given in Equation (5.12) as

3y
= — .12
where
sy = abs (i1 — p.t)p— (ps — ps1) . (5.13)
J

5.2.2 Linear Perturbation

As with the steady state, the computational equations used to find the perturbation do
not change significantly from the artificial viscosity scheme. Equation (5.19) (which is
repeated here) still holds, but the method of computing (111(7 ) Hh and (filff )J. 1 is a

linearization of the upwinded fluxes used for the steady state solution:
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m + AU ff;_;
UL + Ar(07,) 17;_%.
A" and A are functions of the steady state solution defined by

- oF+ -_  OF-
A1+ = -W' Al = —0—(7—1

which, just like the steady upwinded fluxes, vary depending on the local Mach number.

M>1:
0 1 0 0 0O
AX(D) = 2(y-3)u? (3=7)u y-1|, A7 (U)=]10 0 0
-1But(y-1)u®  yE-3(v-1u*  7u 000

Mc<1:

The expression for ZI* when the flow is subsonic is quite complicated. To simplify
matters and better define the method for finding these matrices, the process will be
split into several steps. Instead of taking the derivative with respect to the state vector
directly, the chain rule will be used with the intermediate variables p, ¢ and M.

a
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As with the steady state, the perturbation state vector is extrapolated to the cell

faces before the evaluation of the fluxes, so that

i

= Uy + 1;.1%((71—[71_1) + JJ%(UJ -Uj-1)

)
A}:_; = Um + 301 - Usp2) + $oa3(Ur1 - Uspa).

The steady flux limiter 1) and the perturbation 1 are both included in this equation. In
terms of the switch used for the artificial viscosity scheme, the perturbation flux limiter

is now

Yy = -5 (5.33)

'As mentioned earlier, the switch which is used cannot be linearized. Because of this
limitation, to find the perturbation for the artificial viscosity schemes, Sy = 0. This will
be the approach taken here as well, although the perturbation of the switch has been'

included in the equations for generality.

5.3 Farfield Boundary Conditions

The farfield boundary conditions are applied at the inlet and outlet boundary nodes.
The boundary conditions on hyperbolic equations must correctly close the system of
equations. Linear characteristic theory determines the direction of wave motion in and
out of the domain, and thus exactly which boundary conditions must be imposed. The
following analysis for the s;teady state boundary conditions is described in more detail
in (12, 19, 9]. Since the basis of the analysis is in linearized characteristic theory, the

steady state and perturbation boundary conditions are similar.
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5.3.1 Steady State

To simplily the analysis, primitive state vector variables U, are used where

Up=|u]l. (5.34)

The differential form of the governing equations in terms of these primitive variables

will be used to find the boundary conditions. First the equations are linearized.

U, av,

L2 +AL2 =0 (5.35)
A is a constant matrix evaluated at some reference state. The reference state for
evaluation of the matrix A will be the flow on the boundary at the cld timestep denoted

by the subscript ( )o1q. The constant matrix A is then

u p 0
A=1]0 u % (5.36)
2
0 pe v old
The matrix A can be diagonalized by a similarity transformation,
u 0 0
T'AT = | 0 u+c 0 = A, (5.37)
0 0 u—c

old
where the matrix T is the matrix of right eigenvectors of A. Matrix A is a diagonal

matrix whose elements are the eigenvalues of matrix A.
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T=|0 ¢ c , T ' =0 & o . (5.38)
2 _pe? 1 =1
0 pe PE Jota 0 2 old

Multiplication of Equation (5.35) by T~ produces the equation

%? + A % =0, (5.39)
where ¢ = T~!U,. Variation from the values at the old timestep will be considered,
therefore for a constant matrix T~!, §¢ = T~16U,. The three equations in the system
of Equations (5.39) are new independent. The elements of ¢ are the linearized charac-
teristic variables and the corresponding elements of A indicate the direction of the flow
of information. For subsonic flow (where 0 < u < c) the first two characteristics show
waves propagating downstream (since the corresponding elements of A are positive)
and the third propagating upstream (since the third element of A is negative). For
supersonic flow (where u > ¢) all waves propagate downstream since all elements of A

are positive.

Subsonic Inlet Boundary

For subsonic flow two pieces of information must be specified at the inlet boundary;

here they will be the stagnation pressure, p,, and the logarithm of the entropy, s.

P = po(72——71u’+§) (5.40)
s = log(%), (5.41)

where given p, and s = log(f,), Po is known.

A third piece of information comes from the interior of the flowfield and will be

taken from the values the numerical solver predicts, therefore denoted by the subscript
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( )pred- Let the subscript ( ),pec stand for the value which is specified by the inlet
flow conditions. The subscripts ( )oid and ( )new will stand for the values at the old
and new time steps. The amount needed to bring the old values of p, and s on the
boundary to the specified values can be written in terms of a two term Taylor series
in ¢. The constant coefficient of the series can be changed by using the chain rule to

contain elements of Up.

(po)apcc = (p")new

0 pou &J 56 (5.42)
P lold

Sspec = Sold + [_—7 0 0] 6¢ (543)
P old

The change in the third characteristic 6(¢3) is equal to the change that the flowfield
predicts, 6(¢3)pred. Since §¢ = T~16U,, the predicted change in the characteristic

variable 6(@3)preq is

8(da)prea = (2%)014 Stpred — (#)ou 6Pprea: (5-44)

There are now three Equations (5.42), (5.43) and (5.44) for the change in the char-

acteristic variable ¢ which can be written in matrix form:

(Po) spec = (Po)ota 0 poc(ute) —pe(u+ec) 8(¢1)
Sspec — 3old = 3t 0 0 6(¢2) | - (5.45)
6(¢3)pred 0 0 1 old 6(¢3)

Using the relation §U, = T §4, §¢ in Equation (5.45) can now be changed back into

primitive state vector values U,.
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6(,’) m%m :—y2 0 (po)apec - (po)old
5Up = 6(11.) = P_o(:_"‘cj 0 2 Sspec — Sold

s ], Lt 0 0,1 6o

(5.46)

To transform the change in the primitive state vector variables §U, back into the change

in the state vectcr 6U, the following transformation is performed.

(o) 10 0 5(p)
6Unew = | 6(pu) = u p 0 8(u)
6(pE) new % uz pu ;%T old 6(P) new

So finally the new value of the state vector at the inlet nodes is

Unew = Uold + 6Unew-

Subsonic Outlet Boundary

(5.47)

(5.48)

For subsonic flow, the outlet boundary is handled in a similar manner as the inlet bound-

ary, except now only one piece of information must be specified; here static pressure

Papec Will be used. Once again the amount needed to bring the old value of p to the

specified value on the boundary can be written in terms of a two term Taylor series in

®.

Pspec = Pnew

dp
= Pod + | 75| &
pot (aoﬁ)ou ?

dp )
= poid + | 577 | Té¢
(BUP old
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The changes in the first and second characteristics are equal to the change the
flowfield predicts. Again, since §¢ = T~1§U,, the predicted change in the characteristic

variables §(@1)pred and 8(¢2)preq are found to be

1
6(¢1)pred = 6ppfed - (C_z)old6ppred (550)

6(¢’2)p1'ed = (512)014611'?'64 + (ﬁi)oldép""d' (5.51)

As in the subsonic inlet condition, there are now three Equations (5.49), (5.50) and
(5.51) for the change in the characteristic variable ¢.

6(¢1 )pfcd 1 0 0 : 6(¢1)
&(b2)prea | = |0 1 0 8(¢2) (5.52)
Pspec — Pold 0 Pcz _pc2 old 6(¢3)

Using the relation §U, = T §¢, §¢ in Equation (5.52) can now be changed back into

primitive state vector values U,,.

U, = | §(u) =10 2 8(d2)prea | - (5.53)

§(p) 1 0 % 8(P1)pred
6(?) new 0 0 DPspec — Pold

The primitive state vector variables, §U,, are transformed to the state vector, U, by

Equation (5.47) and the update is performed as in Equation (5.48).

Supersonic Inlet Boundary

Since for supersonic flow all waves flow downstream, to implement the inlet boundary
condition it is simply necessary to prescribe the flow conditions. The inlet Mach number
M,pec and the stagnation quantities p, and p, are all that is needed to find the inlet

conditions.
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2
=1
v 1 y-1
p = po(l + ( 2 )Mazpcc)
u = Mapec E
P
The state vector is fixed at
p
U = pu . (5.54)
1
a2

Supersonic Outlet Boundary

For the supersonic outlet all waves flow out of the boundary, so the change in the state

vector predicted by the scheme is used here.

§Unew = 6Uppeq (5.55)

5.3.2 Linear Perturbafion

Once again primitive variables are used, but now the state vector has a steady state
and a perturbation, U, = ﬁp +R{U,e'“*}. The steady and perturbation primitive state

vectors are

p P
U, =|al, U, = |a (5.56)
p P

Equation (5.35), which is used for the steady state analysis, is already a linear
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equation, so the equation for the perturbation is clearly

)

-~

90,
Jz

0Up

+ A = 0. (5.57)

¥|
L

Since A is the same matrix given in Equation (5.36), then T and A are the same ma-
trices described in Equations (5.37) and (5.38), and much of the analysis for the steady
state carries over directly for the perturbation, except now these matrices are evaluated

with the previously calculated steady state solution. The characteristic perturbation is

defined by ¢ = T-17,.

Subsonic Inlet Boundary

At the subsonic inlet, the perturbation in the stagnation pressure, p,, and the logarithm

of the entropy, § will be specified. These quantities are given by

Po = ‘o(ﬁﬁ+g) (5.58)
(5.59)

Again, the specified value for these quantities will be written in terms of a two term

Taylor series in ¢.

(50) spec = (ﬁo)vww

= (Po)oa + [0 Poil p—,_;’]6$ (5.60)

Supec = Sola + ['7" 0 0]6$ (5.61)
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The change in the third characteristic perturbation 6($3) is equal to the change
that the fiowfield predicts, 6(53),,"4. Since §¢ = ‘i“léﬁp, the predicted change in the

characteristic variable 6($3)P"d is found to be

6($3)#=d = (2—1‘:) blpred — (271;) 8Dpred- (5.62)

So, as in Equation (5.45), there are now three equations for the change in the

characteristic pertdrbation variable $:

(5°)|p¢ - (ﬁo)old O ﬁoE(‘l_l + E) -[)E(ﬁ T E) 6(31)
Supec — Sold = | F 0 0 5(¢2) | - (5.63)
8(83)pred 0 0 1 5()

which can now be changed back into primitive perturbation state vector values using

the relation Jﬁp =T 63.

ﬁ?(;iL-l—cj _-y (ﬁo)npc - (ﬁo)old
= 6("’) G+E 0 2c 3epec - gold (5'64)
's(5) s 0 0 §(@3)pred

To transform the change in the primitive perturbation state vector variables §, back
into the change in the perturbation state vector 60, the following transformation is

performed.

é(p) 1 0 0 8(p)
Unew = | 6(p0)) | =| & 5 0 §() (5.65)
5(oE) @ P g || 6(P)

new new

So finally the new value of the state vector at the inlet node is

Unew = Uota + 6Unew. (5.66)

107



Once again it should be noted that, since the model equation used for the steady

state analysis was linear, the perturbation analysis followed along a parallel track. The

difference being that instead of linearizing about the previous iteration state vector,

here the flow was linearized about the steady state solution.

Subsonic Outlet Boundary

For subsonic flow at the outlet boundary, the pressure perturbation p,,.. will be spec-

ified. Once again the amount needed to bring the old value of p to the specified value

on the boundary can be written in terms of a two term Taylor series in c;‘;

Pspec

ﬁnew

~ p\ .~

(] i 6
Potd + (845) [

_ 8 \ s 2
Dold + (BI-IP)T6¢

Pold + [0 pe’ ;,52]55 (5.67)

The changes in the first and second characteristic perturbations are equal to the

changes the flowfield predicts. Again, since 5¢ = 'i“ldﬁ_,,, the predicted change in the

characteristic variables 6(31 )pred and 6(52),,,,4 are found to be

6($1 )prcd

6($2 )pr:d

$orea = (55)5Pmes (5.65)
(zlé) S8pred + (271?) 8Bpred- (5.69)

As in the steady state calculation for the subsonic outlet boundary, there are now

three equations for the change in the characteristic perturbation variable é.
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5(81) pred 1 0 0 &(41)
§B)mea | = |0 1 0 §(32) (5.70)
ﬁapec - ﬁald 0 ﬁaz —[352 6( ¢3)

Using the relation Jffp = T 6¢, 6¢ can now be changed back into primitive state vector

values U,.

6(p) 1 0 3 8(81)pred
é P = J(ﬁ) = 0 2 % 6($Z)pred (5'71)
6(5) 0 0 1 ﬁapcc - ﬁold

new

The primitive state vector variables, 6(7,, are transformed to the state vector, §U, by

Equation (5.65) and the update is performed as in Equation (5.66).

Supersonic Inlet Boundary

Since for supersonic flow all waves flow downstream, the supersonic inlet boundary
condition is merely the specification of the perturbation variables at the inlet. The
cases which have supersonic inlets shown here do not have a flow perturbation at a

supersonic inlet, therefore the state vector perturbation is fixed at

0
U=|o : (5.72)
0

It would be possible, however, to specify another boundary condition for the supersonic

inlet.
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Supersonic Outlet Boundary

For the supersonic outlet all waves flow cut of the boundary, so the change in the

perturbation state vector predicted by the scheme is used here.

6Unew = 6Upred (5.73)

5.4 Shock Fit Scheme

In Section 2.4, the jump conditions for the Euler equations were derived for both the
steady state and the linear perturbation. These jump conditions can be used as an
internal boundary condition in the numerical scheme where the jump condition is ex-
plicitly imposed at the shpck location. As part of the solution procedure, the grid is
moved so that a grid line falls exactly along the shock location. This kind of method is
called shock fitting.

The numerical scheme described here which uses shock fitting is a box scheme which
uses a twc point difference stencil [11]. The solution procedure does not time-march to
a steady state, but uses a Newton solver which is very efficient computationally for a

one-dimensional scheme.

5.4.1 Steady State

Before describing the Newton solution procedure, the computational equations for dif-
ferent sections of the flowfield will be derived. As well as the gencral computational cell,
there are equations for the shock jump and the iunlet/outlet boundary conditions. The
set of these equations forms a closed system which can then be solved for the unknown

variables.
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Interior Domain Cells

As before, the derivation of the computational equations comes from the integral form

of the Euler equations, but now the steady Equation (2.24) is used.

~[(FR). — (Fh)] + /ldeh =0 (2.24)

Given an initial guess at the solution, U™, we wish to find another solution, U™*!,
which satisfies Equation (2.24). To do this, the equations are cast into ‘delta form’ by
linearizing about the current solution such that U"*t! = U™ + AU™. By keeping only

the first two terms in a Taylor expansion

F(U™+AU™ = F(U") + (?-ggjﬂ)"w" (5.74)
dP(U)

oUu

P(U™ + AU™) = P(U™) + ( )nAU", (5.75)

where %-g]—) and %‘Q are the same matrices defined earlier as A; and A4,.

0 1 0o |
dF(U
PO - aw) = | 3-9w G-mu  y-1| (579)
| —7But(v-1)®  yE-J(y-1)u*  yu
0 0 0 |
aP(U
% = A (U) = F(y=-1)u? -(y-1)u y-1| (5.77)
_ 0 0 0

Making these substitutions, Equation (2.24) then becomes
2
- [(F"h + ATAU™h); — (F"h + A'I‘AU"h)ll + /(P" + AZAU")dh = 0. (5.78)
1

Now taking the control volume to be one computational cell which goes fromm J—1 to

J, where the solution varies linearly in the cell, and moving the known quantities from
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the current solution to the right hand side of the equation gives

[~ (ATh)s + HAD)s(hs - haa)|AUT + [(ATR)s + 3(AD)sa (ks - hs)] AU,

= [(Fh)s - (Fh)sa] ~ 2[P7 + PR (s ~ ). (5.79)

Shock Jump

The shock jump becomes an internal boundary cundition for the equations just presented
for the internal domain cells. The location of the shock must be part of the computation
and the jump across the shock is a function of the flowfield upstream and downstream
of the shock. To do this, an additional variable z,, the shock location, is added to the
unknowns which nmrust be found in the solution to the problem. At this location there
are two grid nodes, one on either side of the shock but located at the same location, over
which the jump conditions are applied. Since the location of the shuck is net known,
the computational mesh must move to compensate for the movement of the shock. In
the method used here, the grid upstream and downstream of the shock re-adjusts after
each iteration so the grid spacing on either side of the shock is constant.

The shock jump condition which must hold for the converged steady solution was
given in Equation (2.37).

[FR]) = 0 (2.37)

As with the computational cells upstream and downstream of the shock, Equation (2.37)
must be linearized about the current solution to give the jump condition at iteration
n+l.

[(F**'h]] = ([F*h]} + [[ATAU™A]] = 0. (5.80)

The shock location, however, is not known at iteration n+ 1, but an estimate exists
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at iteration n. To account for this, Equation (5.80) is now linearized about the shock

location at iteration n so z7+1 = z7 + Az? to give

[[A’l‘hAU"+ Az:(%)"” = —[[F"h]], (5.81)

where % is found using a one-sided three point difference stencil.

(th) ~ (Fh)s-2 = 4(Fh)s1 + 3(Fh)s ahead of shock

Oz J 2Azx

(BFh) ~ =3(Fh)s + 4(FRh)s1 — (Fh) 342 behind shock.
0z J; 2Az

Equation (5.81) can be written in a similar form to that given in Equation (5.79).

((azmy]avy + [(a(alih)): _ (ﬁag""Th)):_l]Azg + [ (ah)ra]aus,

= —(F*Rh); + (F"R)s_1, (5.82)

where the nodes J and J -1 are the two nodes at the shock location.

Boundary Conditions

The boundary conditions used here are similar to those used in the shock capturing
schemes in that the same quantities are specified at the boundaries, but the implemen-

tation is slightly different.

For a subsonic inlet boundary the stagnation pressure p,, and the logarithm of the
entropy s are specified.

-1
Po po(7 u? + 2) (5.83)

2q p

s = log (p—z) (5.84)
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As with the computational scheme away from the boundary, the boundary condition

is cast inte ‘delta form’ so

ittt = Py + Po[(M)AP + ((—27—)H)A(Pu) + (1;—1)A(PE)] (5-85)

2p
- — 2 - -
sl = g (_l +(7_1)_")Ap + ((_7__11’_‘)[;(,,“) + (M)A(pg), (5.86)
p P p p
where p, and s are driven to specified values, so pi** = (Po)spec and 8™ = S4pec. In
matrix form this becomes
Ap
u’ u n
) G 22 su| = (Po)epec — (Po) (5.87)
=2 4+ (rt)? (r-1)u (r1) P Sspec s . .
P 4 14 P A(pE)

For a subsonic outlet bourndary, the pressure p is specified. Again, the ‘delta form’

is used to write the value of p at iteration n+1.

™t = pt 4 (%(7—1)u2)Ap + (—(7—1)u)A(pu) + (7—1)A(pE), (5.88)

where p is to be driven to a specified value, p™*t! = p,pec. In matrix form this becomes

n

[ a
[%(1—1)u’ ~(1-1)u 7—1] A(;:t) = [p.m—p"]- (589)
A(pE)

For a supersonic inlet, it is simply necessary to prescribe the flow conditions. Again,
the inlet Mach number M,;,,c and stagnation quantities p, and p, are all that are needed
to find the inlet conditions.

-1
-1 v-1

114

A

i

T T AT T S R

m— = e : -3



(r=1) 12 7
b = po(l + _2__—Mapec)

u = Mapec\/i) N
p

The state vector is fixed at

p
Uttt = pu : (5.90)
P o 1,2
7-1 + 2up spec

In the same matrix form given above, this condition is

n

1¢0 Ap Pnpec—Pn
0 1 0| ]|A(pu)| = | (Pt)spec — (o)™ | - (5.91)
0 0 1) [A(pE) (PE)spec — (PE)"

Solution Procedure

What has been derived is a set of equations to find AU™ for the boundary conditions,
the shock jump and the rest of the flow region. It should be noted that no treatment has
been added for a non-shock sonic point. There are methods for treating a sonic point
(15, 11], but for the applications presented here this point will simply be avoided. These
equations can be written in terms of a matrix equation where a know matrix times an
unknown vector of ‘delta’ quantities is equal to a known vector. Examples of this matrix
equation are given in Figure 5.2 for a subsonic case which does not include the shock
jump conditions and Figure 5.3 for a transonic case. Notice that for the transonic case
the variable Az, is part of the matrix equation, but there is still the correct number of

equations for unknowns.

To solve these equations for AU™, a direct matrix solver must be used. This is easy
in one dimension where the matrix is small and banded, but can require considerable

computer resources when extended to two and three dimensions.
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o F* * }subsonic inlet
*x Kk K * *
* ok K|k K K * *
* Kk K||*x * K * *
* Kk k||k * X * *
* x x|[* x * *
* Kk K[|k Kk K * *
* Kk k|| k K K * *
* % x|[x * > |[*
* Kk K||Kx Kk K *_*
* Kk K||Kk K K * *
x h k(A Kk K * *
* % x||*x x * * *
* % K[k K* * * *
* ok [k A Kk * *
* k k||k * * * *
* ok k{k Kk Kk * *

i [* * x] * [*h }subsonic ontlet

Figure 5.2: Representation of the matrix equation for the direct solver for both subsonic
inlet and outlet.

1
J
1
J
|
J

supersonic inlet

* o+ %t % %
* % % % %

* * % % A %

* % % % * *

* A % % * %

* o % % *
* o % F o

* % % % ¥ %
* % * % % %
»*

*
* % % X % %
* % % %+ %

* % % o ¥
* A X ¥ ¥ *
* 4 x ¥ * %
* * * * * %
*
*

* A A ok * A % * A B A * A % % ok A * *
O o kA A ok ok * k k F A ok * * * * *

*
* o % %

[* *) } subsenic outlet

f—
|—

i
{
[
{

Figure 5.3: Representation of the matrix equation for the direct solver for a supersonic
inlet, a shock jump and a subsonic outlet.

116



Due to linearization effects, one pass to find AU™ is not sufficient to find the desired
solution, therefore the AU™ found from Equation (5.79) is used to update the current
solution to U™t Now this updated value becomes the current solution and the proce-
dure is repeated until the computed value of AU"™ is below some tolerance. Convergence

generally requires only a few iterations.

5.4.2 Linear Perturbation
The perturbation equations are similar to the steady state equations, but now, since

the equation is linear, the solution can be found in one iteration. Again, the equations

for each portion of the flowfield are derived in turn.

Interior Domain Cells

The integral form of the perturbation equation comes from Equation (2.31). For a

harmonic time dependency this equation becomes

zA - -~ - -~ 2— -~
iw / Ohde = —[(A,0h); - (4,Th),] + / 4,0 dh. (5.92)
* 1 1

Again using a control volume of one computational which goes from J—1 to J where

the solution varies linearly in the cell gives

[ iwihy(zy—2z5a) + (Aih)s - 3(A2)s(hy - hia) ]17.1 +

[ih’%h.l-l(z.l —25a) — (Aih)sa - 3(A2)sa (ks - hJ—-l)] Ura = 0. (5.93)

Shock Jump

The steady shock location, Z, is already known from the computation of the steady

solution. What will be found here is the unsteady perturbation on the shock location
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due to the unsteadiness in the flowfield, therefore z,(t) = z, + R{Z,e'“}.

The linear shock jump condition which must hold was given in Equation (2.40).

d(Fh)

[[Alﬁh+5,< . )—t‘fhiws,H =0 (2.40)

88—1'.:‘ is found using the same one-sided three point difference stencils given for the steady

solution.

Equation (2.40) can be written in a similar form to that given in Equation (5.93).

[(@maas + [(S2) - (B2) - iw(@h - @)a)]
+ [ (Ar)sa|Us = 0. (5.94)

]
where the nodes J and J —1 are the same two nodes at the shock location from the

steady solution.

Beoundary Conditions

Again, the boundary conditions used here are similar to those used in the shock cap-
turing schemes. The equations will also look similar to those used for the steady state
shock fitting scheme just described, because the Newton solver used involves the same

linearization of the nonlinear boundary conditions used to find the perturbation.

For a subsonic inlet boundary, the perturbation stagnation pressure p, and logarithm

of the entropy 3 are specified.

~ (-~ , D

Po = PolBU+Z 5.95)

,, 7) (

§ = 12, P (5.96)
p P
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Written in terms of the perturbation state vector in matrix form where (5,),p.c and

logarithm of the entropy 3,p. are specified, this becomes

n

-~

(r3)a? (2—)a 1 p ~
Y F F 7| = (Po)spec (5.97)
=7, ()@l (s (o) pu 5 .
7 7 5 3 — spec
(PE)

For a subsonic outlet boundary, the pressure perturbation p is specified to be p,,...

In terms of the state vector perturbation in matrix form this becomes

ta-0# -8 y-1] [(pu) o P BT
(pE)

For a supersonic inlet, the inlet perturbation state vector is fully specified. The
cases shown here do not have a flow perturbation at the supersonic inlet, therefore the

state vector perturbation is fixed at

0
=10/, (5.99)
0
which in the matrix form used thus far becomes
100 P 0
o1 0| =|o]- (5.100)
0 6 1] |(pE) 0
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Solution Procedure

As with the solution procedure for the steady state, there is now a set of equations for
U for the boundary conditions, the shock jump and the rest of the flow region. These
equations can be written in similar matrix equations to those shown in Figures 5.2 and
5.3 for the steady state. Again, the perturbation in the shock location, Z, is part of the

matrix equation.

Since the perturbation equation is linear, the resulting matrix equation gives the

desired solution in one pass.

5.5 Moving Grid

The computational methods just described in this chapter were for fixed control vol-
umes. Here, the grid will move in the comr 'tation of the perturbation solution, a
concept which is well accepted for nonlinear calculations. The steady state control
volume will be considered fixed, and a prescribed grid mevement is added as a pertur-
bation about this fixed steady grid. Since the linear perturbation computation is for
a perturbation in the flow variables, this is in keeping with the present computation.
There are several reasons why a moving control volume might be desired. The most
obvious is the introduction of a moving body, such as the blade in two or three dimen-
sions, which could be implemented through the movement of the grid surrounding the
blade. Another reason is to implement a grid movement, which corresponds to a shock
movement, with the result that the shock then does not move with respect to the grid.
These reasons for the use of grid movement as well as the method of implementing this
grid movement in the context of the methods already described will be addressed in this

section.

In the past, most linear methods have implemented blade movement through the
use of & stationary blade with the desired boundary condition extrepolated back to

this stationary point. This amounts to applying a velocity perturbation at the steady
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blade location. This method involves finding gradients of the steady solution for the
extrapolation process. These gradient terms can be difficult to compute accurately,
especially in regions such as the leading edge of the blade where there is a large variation
in the gradients, and can amplify errors in the steady computation and inject these
into the computation of the perturbation. To avoid these difficulties, Whitehead [31]
introduced a method for implementing the blade movement by rotating the whole mesh
and performing the extrapolation process just mentioned away from the blade where
the variation of the gradient of the flowfield is less severe. His results show the rational
for using this method. Hall [16, 14] uses a variation on this method which uses a
continuously deforming mesh. Although these issues apply to two and three-dimensional
problems, the techniques described here for the quasi-one-dimensional duct problern
directly extend to the higher dimensional problems.

In Chapters 3 and 4 the importance of keeping a similar shock shape as the shock
moves was discussed. The computational shock shape is a function of the shock’s lo-
cation with respect to the grid, as shown in Figure 4.1. Since the computation of the
linear perturbation finds a linearization of the fully nonlinear discrete solution, these
problems will exist there as well. One method of ensuring that the shock shape will
remain the same as the shock moves is to move the grid with the shock. Of course, the
shock movement is not known before the computation is begun and its computation
must be part of the solution procedure. Given a computation where there is no grid

movement, it is possible to estimate the shock movement, Z,, from

dU ~
(3%) z, ~ -0, (5.101)
where (%), is the steady state gradient in the shock. This expression merely states that
the variable U, represents a translation of the steady shock. This approximate shock

movement is then used as the grid movement, Z,, for a new computation. The solution

procedure then becomes:
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eset Z, =0

—~> o calculate solution U

repeat « find shock movement relative to the grid movement from
1-2 _
. aUu ~
times ——\(z ~ —(U,)re
(di )‘(zl)fcl ( .) 1

— s 3set (Bg)new = (Zg)old + (Zo)rel

In practice, a region of computational cells which enclose the shock is moved. It is
in principle possible to extend this procedure to two and three-dimensicnal problems.

The detection of the shock region becomes more complicated, but is clearly possible.

5.5.1 Computational Procedure

To develop the perturbation equations which include the terms for a moving mesh, the
nonlinear Equation (2.17) which includes the effect of a moving control volume will be

used as a starting point.

% /12 Uhdz = ~[(Fh)z - (Fh)] + [(Uhus)z - (Uhus)] + /lzpdh (2.17)

The discrete form of this equation is similar to Equation (5.2), except for the addition

of the moving control volume boundary.

d
S [3(hsy + by )UsAs| = —[hyyFry —hyy Fypy] (5.102)
+ [Unghnstng - Usahyadps] + HPus + Pra)bpy —hyy)
The process of taking this nonlinear discrete equation and forming the linear per-
turbation equation is similar to the process described in Section 2.3.2, except now there
is a perturbation in the node locations as well as a perturbation in the flow variables.

As a result of the perturbation in the node locations, there is also a perturbation in the

height of the duct which is found from
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Ry = (—) 2. :
J (di)_,zj (5.103)

Therefore, adding to the list of substitutions made in Section 2.3.2

z;(t) = Z; + R{Zse™'} (5.104)

hy + R{hje“t}, (5.105)

-
S
—~—

o~
~

Il

and after subtracting off the steady state equation, the perturbation equation for a
moving mesh is found. This equation contains Equation (5.19), so the new form of this

equation will be written:

7\ ¢ .
(‘?_U) = —R(0s) - Sn, (5.106)
ot /;

where R(U;) is given in Equation (5.19) and

— 3Py + Py Ry - By ))- (5.107)

SR is a source term, since it is solely a function of the steady state solution and the
prescribed grid motion. This source term is found at the beginning of the computation
and does not change from one iteration to the next, hence adding little extra computa-
tional cost. Equation (5.107) is applicable to both the astificial viscosity and flux vector
split schemes, where F-H—% and F'J 1 are given in Section 5.2, but the artificial viscosity

schemes require a source term from the additional artificial viscosity terms.

After adding Equations (5.104) and {5.105) to the substitution list for the artificial

viscosity terms, Equation (5.20) becornes
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(%g) = —R(U;) + D(Us) - Sr + Sp, (5.108)
J

where for second difference artificial viscosity

(5.109)

Nln—l

SD=62( = = )X
Az (_'_; h_%)

( Ik (Atm. ) 4—;(U"+1 - Us) - EJ-% (A?:u) J—%([_jJ Bl [7"—1))’

and for fourth difference artificial viscosity where the second difference artificial viscosity

is turned on in the shock

Spahsy (3%)]_%(&1 - L'r,,_l)) ] (5.110)

Similar source terms can be added to the shock fit scheme described in Section 5.4.

Results which include grid movement are giver in Sectivn 6.3.
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Chapter 6
Results

In Chapter 5, several computational schemes were described. The schemes were designed '
for a quasi-one-dimensional duct where the height of the duct varies, but the flow
variables are constant across the duct. Using these assumptions, a one-dimensional
equation which includes some two dimensional effects is found. This chapter presents

some results from these schemes for this quasi-one-dimensional duct problem.

The focus of this thesis is on transonic flowfields, but to isolate the effects of the
scheme from the effects of the shock, a subsonic case will be examined first. Next, the
more interesting transonic cases will be examined. Finally, results which include grid
movement in the linear perturbation solution procedure, as described in Section 5.5,

will be examined.

6.1 Subsonic Case

A subsonic case is used to illustrate the basic capabilities of the numerical schemes
described in Chapter 5. These schemes include a finite volume discretization of the Euler
equations with the addition of second or fourth difference artificial viscosity described
in Section 5.1. When the fourth diffe-ence artificial viscosity was described, there was a
switch which caused a change to second difference artificial viscosity in the shock. The
cases used here freeze the switch at § = 0, so only fourth difference artificial viscosity is
used. The flux vector split scheme described in Section 5.2 was designed for transonic
flowfields, but it can be used for subsonic flowfields as well. Some subsonic results are
shown here using the flux vector split scheme with and without MUSCL upwinding. As
with the fourth difference artificial viscosity scheme, when MUSCL upwinding is used
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there is a switch which turns off the MUSCL upwinding in the shock. For the subsonic
cases, the switch which turns off the MUSCL upwinding in the shock is frozen at § = 0
so there is only MUSCL upwinding. Throughout, the direct solver :::'.>me which uses
shock fitting when the flowficld is transonic (as described in Section '.4) is used as a
baseline sclution. This direct solver solution is run using double precision while the
other schemes use single precision, unless otherwise indicated. It should be noted that
there is also an exact solution for the steady state found from the equations for a varying
height isentropic sireamtube.

1.600 1

0.900 -

0.809 -

0.700 v . T r r . T
-0.50 -0.25 0.00 0.25 6.50

Figure 6.1: Duct height [h = 1 — 0.25(cos(x z))?] used for the subsonic case.

The subsonic case has a unit length duct whose domain is —0.5 < z < 0.5. The
height distribation in this domain is given by the fanction k = 1--0.25(cos( z))? which
is shown in Figure 6.1. The duct has equal inlet and outlet heights and converges
smoothly to a throat which is 75% of the inlet height. The case has inlet Mach number
M;, = 0.5. The steady state Mach number distribution is shown in Figure 6.2 and
the steady state pressure distribution in Figure 6.3 for 380 cells along the duct and
second difference artificial viscosity with coefficient ¢ = 0.0005. These figures also
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include the solution from the direct solver, but it is hard to tell the diff+rence between
the two lines in these plots since they lie almost directly on top of eacih other. In
the unsteady perturbation, the frequency of the unsteadiness is w = 1.729 introduced
through a perturbation in the exit pressure of $ = 0.001 which is 0.14% of the steady
exit pressure. In Figure 6.4, the real and imaginary parts of the cownplex pressure
perturbation are shown, again for the second difference artificial viscosity scheme along

with the direct solver. Once again, there is no perceivable difference in the solutions.

1.0
0.8 -
M p
0.6 -
0-4 T T T L T T T
-0.50 ~0.25 0.00 0.25 0.50
T

Figure 6.2: Subsonic steady state Mach number, for €, = 0.00605 and 360 cells.

The accuracy of the numerical schemes can be addressed with the subsonic to provide
a baseline for the transonic case. As with all CFD methods, the more ceils in the
comptational domain, the more accurate the solution. The question becomes, how many
cells are required to achieve some acceptable error in the solution. The resolution in
the solutions given here provide errors which are far less than required for engineering
accuracy, but the desire is to examine the nature of the scheme itself, not produce
engineering solutions. In Figure 6.5 the steady state integrated pressure, which will be
called lift, Z, is shown as a function of the number of cells in the domain for two different
second difference artificial viseosity coefficients. The solutions have been normalized by

the finest resolution direct solver solution with 720 cells, Z = 0.534405, to provide a
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Fignre 6.3: Subsonic :teady state pressure, for ez = 0.0005 and 360 cells.

clearer indication of the error in the solutions. Netice that the error for the resolution
shown here is less than 0.06%. The discretization of tne flux for the artificial viscosity
scheme is second order accurate, which is to say the error ~ Az?, but this accuracy is
deteriorated by the addition of second difference artificial viscosity term whose error
~e€3Az. This effect can be seen in Figure 6.5 where the introduction of the O(Az) term
from the second difference artificial viscosity becomes more apparent with the larger
artificial viscosity coefficient. Figure 6.6 shows the same trend for the magnitude and
phase of the lift perturbation, 7 defined by Jpdz, again normalized by the shock fit
solution with 720 cells, Z = 0.00027578 £68.391°.
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f Figure 6.4: Real and lmngmary parts of the pressure perturbation with w = 1.729 for
the subsonic case shown in Figures 6.2 and 6.3 where € = 0.0005 in a 360 cell domain.
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‘ number of cells

’ Figure 6.5: Steady state lift vs. the number of cells in the domain, for the subsonic
case normalized by £ = 0.534405, for two different second difference artificial viscosity
coefficients and the direct solver used for the shock fit scheme.
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Figure 6.6: Magnitude and phase (in degrees) of lift perturbation vs. the number of
cells in the domain, for the subsonic case normalized by { = 0.00027578 £68.391°, for
two different second difference artificial viscosity coefficients and the direct solver used
for the shock fit scheme.
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Similar results can be shown when fourth difference artificial viscosity is used instead
of second difference artificial viscosity. The solution accuracy should not deteriorate
as much now since the error from the fourth difference artificial viscosity ~ e;Az3.
Figure 6.7 shows the steady state lift as a function of the number of cells in the domain
on the same scale as the corresponding Figure 6.5 for second difference artificial viscosity.
Again the solutions have been normalized by the finest resolution direct solver solution
with 720 cells, £ = 0.534405. Notice that the error is much smaller now. Figure 6.8
shows similar results for the perturbation, again on the same scale as Figure 6.6 for
second difference artificial viscosity and normalized by the shock fit solution with 720
cells, Z = 0.00027578 £68.391°.
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Figure 6.7: Steady state lift vs. the number of cells in the domain, for the subsonic
case normalized by £ = 0.534405, for two different fourth difference artificial viscosity
coefficients and the direct solver used for the shock fit scheme.
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Figure 6.8: Magnitude and phase (in degrees) of lift perturbation vs. the number of
cells in the domain, for the subsonic case normalized by f = 0.00027578 £68.391°, for
two different fourth difference artificial viscosity coefficients and the direct solver used
for the shock fit scheme.
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The flux vector split scheme described in Section 5.2 without MUSCL upwinding
is actually only first order accurate, or in other words the error ~ Az. When the
MUSCL upwinding is used, the scheme is increased te second order accurate so the
error ~ Az?. In Figure 6.9 the first and second order error for each of the versions of
this scheme can easily be seen for the steady state lift. Again, the solutions have been
normalized by the finest resolution direct solver solution with 720 cells, £ = 0.534405.
Notice that this figure has a different scale from the corresponding artificial viscosity
figures. The increased accuracy of the MUSCL upwinding version of the flux vector
split scheme is clear from this figure. Figure 6.10 shows the magnitude and phase of
the lift perturbation which have errors of corresponding meagnitude, again normalized
by the shock fit solution with 720 cells, Z = 0.60027578 £68.391°. Notice that the tzend,
although not the magnitude, of the errors for the first order accurate flux vector split
scheme is similar to the trend in the errors when second difference artificial viscosity,

which is also first order accurate, is used in Figures 6.5 and 6.6.
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e—=a flux vector split
1.0129 - o—eo flux vector split with

MUSCL upwinding
a—= direct solver
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Figure 6.9: Steady state lift vs. the number of cells in the domain, for the subsonic case

normalized by / = 0.534405, for the flux vector split scheme with and without MUSCL
upwinding and the direct solver used for the shock fit scheme.
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Figure 6.10: Magnitude and phase (in degrees) of lift perturbation vs. the number of
cells in the domain, for the subsonic case normalized by Z = 0.00027578 £68.391°, for
the flux vector split scheme with and without MUSCL upwinding and the direct solver
used for the shock fit scheme.
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6.2 'Transonic Cases

In this section, the transonic cases are presented. These cases use the same numerical
schemes used for the subsonic case except now they have some additional method for
dealing with the shock region. The artificial viscosity schemes either use snly second
difference artificial viscosity, or fourth difference artificial viscosity where a switch causes
a change to second difference artificial viscosity in the shock. Since the switch used here
cannot be linearized, the perturbation equations do not include the linearization of the
switch, as discussed in Section 5.1.2. Results for the flux vector split scheme are shown
as well where, similar to the artificial viscosity schemes, either MUSCL upwinding is
uot used at all or it is used in most of the flowfield and turned off in the shock with the
use of a switch as described in Section 5.2. Throughout, the scheme which uses shock

fitting as described in Section 5.4, is used as a baseline solution.
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-0.50 --0.25 0.00 0.25 0.50

Figure 6.11: Duct height [A = 0.10663 + 0.00359 sin(7 z)] used for transonic case with
M,=1.2.

The first transonic case once again has a one urit long domain in the region —0.5 <
z < 0.5, but now the duct is purely diverging and has a height distribution given by
the function A = 0.10663 + 0.00359 sin(x z) as shown in Figure 6.11. This transonic
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case has inlet Mach number M;, = 1.2. The steady state Mach number distribution is
shown in Figure 6.12 and the steady state pressure distribution in Figure 6.13 for 360
cells along the duct and second difference artificial viscosity with coefficient e; = 0.1.
The shock in this case is moderate, having a jump from M = 1.30 to M = 0.78,
which is representative of the strongest shocks appearing in turbomachinery flowfields.
These figures also include the solution from the shock fit direct solver which car be
seen in the shock region where the artificial viscosity scheme smears the shock. In
the unsteady perturbation, the frequency of the unsteadiness is v = 1.729 introduced
through a perturbation in the exit pressure of = 0.001 which is 0.22% of the steady
exit pressure. In Figure 6.14, the real and imaginary parts of the complex pressure
perturbation are shown, again for the second difference artificial viscosity scheme along
with the direct solver shock fit sckeme. The solution found using the artificial viscosity
scheme has a peak in the shock region which does not appear in the shock fit solution.
The shock fit solution, however, has an additional piece of information which comes
from the shock jump condition, the explicit movement of the shock Z,. To get the lift
due to the moving shock, this shock movement is multiplied by the steady pressure jump
across the shock, —Z,[[ p]]. The peak in the shock capturing scheme represents this same
shock movement and is actually a smeared out delta function, where the delta function
is defined by its integral. As the width of the shock geis narrower, the height of the
peak gets correspondingly higher to maintain a constant integral over this region which,
in the limit of an infinitely thin shock, is —~Z,[[p]], the same extra piece of information
from the shock fit scheme which does not have a peak in the solution. Since the shock
fit scheme represents this limit of an infinitely thin shock, it becomes a good baseline
for comparison. To compare the two schemes, the unsteady lift perturbation, Z, which
is defined as the integral of the pressure perturbation in the domain, [#dz, is found for
both schemes where, again, the shock fit schems has the added contribution from the
shock movement included in the lift.

As with the subsonic case, the accuracy of the schemes can now be studied. An
important point in the justification of using the linear perturbation scheme is whether
the shock capturing schemes approach the shock fit scheme with increased resclution.

The shock width in the sheck capturing schemes is proportional to the cell size, therefore
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Figure 6.12: Transonic steady state Mach number for case with M;, = 1.2 for ¢; = 0.1
and 360 cells.
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Figure 6.13: Transonic steady state pressure for case with M;, = 1.2 for ¢ = 0.1 and
360 cells.
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Figure 6.14: Real and imaginary parte of the pressure perturbation with w = 1.729 for
“the transonic case with M;, = 1.2 shown in Figures 6.12 and 6.13 where ¢ = 0.10 in &
360 cell domain.

the limit of Az — 0 corresponds to the zero shock width shock fit scheme. In Figure 6.15
the steady state lift, , is shown as a function of the number of cells in the domain for
two different second difference artificial viscosity coefficients. The solutions have been
normalized by the finest resolution direct solver solution with 720 cells, { = 0.379319,
so what is actually seen is relative error from this solution. Although the trend in the
artificial viscosity scheme is away from the shock fit scheme with increased resolution, the
error does not vary by more than 0.015%. Recall that the shock fit scheme was run using
double precision and the artificial viscosity schemes were run using single precision, so
this trend away from the shock fit scheme is clearly the effect of computer roundoff which
dominates the error. Figure 6.16 shows the magnitude and phase cf the lift perturbation,
again normalized by the shock fit solution with 720 cells, 7 = 0.00013321 £ — 87.653°.
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Figure 5.15: Steady state lift vs. the number of cells in the domain, for the transonic
case with My, = 1.2 normalized by £ = 0.379319, for two different second difference
artificial viscosity coefficients and the direct solver shock fit scheme.
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Figure 6.16: Magnitude and phase (in degrees) of lift perturbation vs. the num-
ber of cells in the domain, for the transonic case with M;, = 1.2 normalized by
7 = 0.00013321 £ — 87.653°, for two different second difference artificial viscosity coeffi-
cients and the direct solver shock fit scheme.
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The perturbation pressure distribution in Figure 6.17 has the same steady state
solution as the case just discussed with second difference artificial viscosity, except now
the frequency in the perturbation has been doubled to w = 3.458. Figure 6.18 shows
the effect of changing the resolution in the domain. The solutions have been normalized

with the shock fit solution with 720 cells, £ = 0.00008157 £ — 95.5484°.
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Figure 6.17: Real and imaginary parts of the pressure perturbation with w = 3.458 for
the transonic case with M;, = 1.2 shown in Figures 6.12 and 6.13 where ¢; = 0.10 in a
360 cell domain.
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Figure 6.18: Magnitude and phase (in degrees) of lift perturbation vs. the number of
cells in the domain, for the transonic case with M;, = 1.2 and w = 3.458 normalized
by £ = 0.000008157 £ — 95.5484°, for two different second difference artificial viscosity
coefficients and the direct solver shock fit scherne.
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Figures 6.19 and 6.20 show the effect of using a mix of second and fourth difference
artificial viscosity. In Figure 6.19 the effect of using double and single precision is
again illustrated where the shock fit scheme is run in double precision. Once again, the
frequency in the perturbation is w = 1.729. Recall that the switch is not linearized in the
perturbation solution, so there will be some error associated with this assumption. This
error in the perturbation can be seen in Figure 6.20 where the artificial viscosity solution
with the switch seems to asymptote to a constant error. This not only illustrates the
errors associated with not linearizing the switch, but more fundamentally it illustrates
the errors of an incorrect linearization in deriving the perturbation equations. If the
discrete perturbation equations are not a true linearization of the nonlinear discrete
equations, there will be an error in the solution. In this case, however, it would be
possible to devise an effective switch which could be linearized, or since the errors
illustrated here are quite small, they may be acceptable for an engineering application.
‘In the next section it will be shown that by moving the grid with the shock, it is possible

to reduce the error associated with not linearizing the switch.
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Figure 6.19: Steady state lift vs. the number of cells in the domain, for the transonic
case with M, = 1.2 normalized by £ = 0.379319, for fourth difference artificial viscosity
with €4 = 0.001 in most of the domain and second difference artificial viscosity with
€2 = 0.2 turned on in the shock by a switch and the direct solver shock fit scheme.
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Figure 6.20: Magnitude and phase (in degrees) of lift perturbation vs. the num-
ber of cells in the domain, for the transonic case with M;, = 1.2 normalized by
7 = 0.00013321 £ — 87.653°, for fourth difference artificial viscosity with ¢4 = 0.001
in most of the domain and second difference artificial viscosity with €, = 0.2 turned on
in the shock by a switch which has not been linearized and the direct solver shock fit
scheme.
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Figure 6.21 illustrates the use of the flux vector split scheme on the steady state
solution. Again, the results indicate the effect of using double and single precision, since
the shock fit scheme is run in double precision, rather than the effect of the schemes
themselves. In Figure 6.22 the perturbation is shown as a function of resolution. Here,
when MUSCL upwinding is used in a transenic case it is turned off in the shock by a
switch which, as for the artificial viscosity scheme, is not linearized in the perturbation
scheme. The strange results in Figure 6.22, however, are not due to not linearizing the

switch, but a more interesting aspect of the MUSCL flux vector split scheme.
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Figure 6.21: Steady state lift vs. the number of cells in the domain, for the transonic
case with M;, = 1.2 normalized by £ = 0.379319, with flux vector splitting and the
direct solver shock fit scheme.

Similar to the analysis in Section 4.2, eleven different steady state solutions were
found using the MUSCL flux vector split scheme where the exit pressure was slightly
different for each solution. The same transonic problem used previously in this section
is used here where there are 360 cells in the domain, except the exit pressure for these
solutions range from p.yjt = 0.49345 to p.yj: = 0.4937 to provide a slight variation in the
shock shape. Figure 6.23 shows the Mach number distribution for each of these eleven
solutions in the shock region. The solution of interest is highlighted and is distinguished

from the rest by having a node near M = 1, the break between subsonic and supersonic
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flow which are dealt with differently in the flux vector split scheme. These solutions were
run using both single and double precision versions of the code. The residual for this
solution would not decrease to the levels the other solutions would reach. Figure 6.24
shows the pressure at this M = 1 node, in a pattern which continues indefinitely, for a
double precision solution at the point where the residual would no longer decrease. To
show that this behavior is particular to this solution, each of the eleven solutions were
examined. Each of the solutions were run in single and double precision to the point
where the residual would no longer decrease. At this peint the solution was run for
an additional 2000 iterations while the code kept track of the maximum and minimum
values of pressure at each of the nodes. Figure 6.25 shows the maximum change in
pressure over these nodes for each solution. The solution for exit pressure p..j; = 0.49455
is clearly different from the other solutions and is the same solution whose shock profile
had a node near M = 1. The value of this variation in the solution is the amplitude of
the perturbation seen in Figure 6.24. It is interesting to note that the amplitude of the
variation for this solution is the same in single precision and double precision. What
this is illustrating is a limit-cycle in the solution. This limit-cycle is only noticed when
a node in the shock lies near M = 1 and MUSCL upwinding is used with the flux vector
split scheme, even though it is turned ‘off’ in the shock. Actually, the switch does not
turn the MUSCL upwinding off completely in the shock region, but merely turns its
effect down. Since the solution is in a limit-sycle, a perturhation at any point in this
‘converged’ state will not cause the solution to return to the initial solution. For this
reason the concept of finding a steady state and superimposing a linear perturbation
on this steady state no longer holds, and the results shown in Figure 6.22 no longer
seem strange. In Figure 6.22 the solutions with 240 and 480 cells in the domain have
a shock node near M = 1. The next section will show that moving the grid with the
shock reduces the effect of the the limit-cycle.
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Figure 6.23: Shock profiles for several exit pressures ranging from p.y;: = 0.49345 to
Dexit = 0.4937 by an increment of Ap.yi; = 0.000025 where the profile with p.yi =
0.49355 is highlighted.
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Figure 6.24: Pressure at the shock node for the highlighted shock profile shown in
Figure 6.23.
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Figure 6.25: Maximum amount by which the pressure changes at a node over 2000

iterations.
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A second transonic case was also examined. This case has a smaller shock jump
than the first transonic case. The geometry is similar to the diverging duct used in
the first case, but now the height distribution of the duct is given by the function
h = 0.10 + 0.000778 sin(7 z) as shown in Figure 6.26. This case has inlet Mach number
M;, = 1.01. The steady state Mach number distribution is shown in Figure 6.27 and
the steady state pressure distribution in Figure 6.28 for 360 cells along the duct and
second difference artificial viscosity with ccefficient € = 0.03. The shock in this case
is moderate, having a jump from M = 1.10 to M = 0.91, which is representative of a
more common shock appearing in turbomachinery flowfields. Once again, these figures
include the shock fit direct solver solution as well. In the unsteady perturbation, the
frequency of the unsteadiness is w = 1.729 introduced through a perturbation in the
exit pressure of p = 0.001 which is 0.27% of the steady exit pressure. In Figure 6.29,
the real and imaginary parts of the complex pressure perturbation are shown, again
for the second difference artificial viscosity scheme along with the direct solver shock
fit scheme. As with the previous transonic case, the solution found using the artificial
viscosity scheme has a peak in the shock region which does not appear in the shock fit

solution which explicitely includes the shock movement.

Again the accuracy of the solution can be studied. In Figure 6.30 the steady state
lift, £, is shown as a function of the number of cells in the domain for second difference
artificial viscosity coefficient e = 0.03. The solutions have been normalized by the
finest resolution direct solver solution with 720 cells, £ = 0.391436, so what is actually
seen is relative error from this solution. Figure 6.31 shows the magnitude and phase
of the lift perturbation, again normalized by the shock fit solution with 720 cells, {=
0.00006727 £ — 92.444°.
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Figure 6.26: Duct height [k = 0.10 + 0.000778 sin(r z)] used for transonic case with
M;, = 1.01.
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Figure 6.27: Transonic steady state Mach number for case with M;, = 1.01, with
€3 = 0.03 and 360 cells.

151



0.44

0.40
P -
0.36 1
0-32 T § 1 H 1 1 1
—-0.60 -0.25 0.00 0.25 0.50
z

Figure 6.28: Transonic steady state pressure for case with M;, = 1.01, with ¢; = 0.03
and 360 cells.
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Figure 6.29: Real and imaginary parts of the pressure perturbation with w = 1.729 for
the transonic case with M;;, = 1.01 shown in Figures 6.27 and 6.28, where ¢; = (.03 in
a 360 cell domain. :

152

e —



1.0030

§—>a €2 = 0.03
1.0024 - o——o direct solver

1.0018 1

z
1.0012-

1.0006

1.0000

0-9994 L L T 1 T T
0 120 240 360 480 600 720 840
number of cells

Figure 6.30: Steady state lift vs. the number of cells in the domain, for the transonic case
with M;, = 1.01 normalized by ¢ = 0.291436, for second difference artificial viscosity
coefficient €5 = 0.03 and the direct solver shock fit scheme.
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Figure 6.31: Magnitude and phase (in degrees) of lift perturbation vs. the number
of cells in the domain, for the transonic case with M, = 1.01 normsalized by ¢ =
0.00006727 L — 92.444°, for second difference artificial viscosity coefficient €, = 0.03 and
the direct solver shock fit scheme.
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6.3 Moving Grid

In Section 5.5 the addition of a moving grid was made to the basic numerical schemes
used in this work. Although there are many reasons for moving a grid, the Primary mo-
tivation here was to reduce the error from a changing shock shape due to discretization
effects. Other benefits of meoving the grid in the shock region were also found, including
reducing the effect of not linearizing a switch in the shock region and reducing the effect
of the limit-cycle in the MUSCL upwinding flux vector split scheme.

The distribution of the complex perturbation grid movement is the same function
of z for all the cases Presented here, regardless of the number of cells in the domain.
Maintaining this consistency aids in the comparison of results with different resolutions.
This distribution is given in Figure 6.32 where the specified value for the grid movement
is the value in the center of the domain. The grid movement then tapers off linearly

away from this center region.

-0.50 —~0.25 0.00 ' 0.25 0.56
4

Figure 6.32: Distribution of grid movement function Z, along the duct.

8.3.1 Subsonic Case

As before, the subsonic case will be examined first to isolate the effects of the shock from

the effects of the scheme. The subsonic case is the same case discussed in Section 6.1.
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Figure 6.33 shows the subsonic flow solution for the perturbation with 360 cells in
the domain and second difference artificial viscosity coefficient ¢; = 0.0005 with grid
movement with £, = (=5 x 1074, —5 x 10~*) and without grid movement. The solution
for the perturbation with grid movement is actually the solution on the moving grid,
not at the stationary grid locations, therefore the two solutions are connected by the

relationship

0.015

—0.015 T T
-0.50 -0.25

T
0.00 0.25 0.50

Figure 6.33: Real and imaginary parts of the pressure perturbation with w =z 1.729 for
the subsonic case shown in Figures 6.2 and 6.3 where ¢; = 0.0005 in a 360 cell domain
with grid movement Z; = (—5x107*, =5 x10~*) (dark line) and without grid movement
(Light line).

To compare che solutions with and without grid movement, Figures 6.34 and 6.35
show the effect of resolution on the perturbation for both second and fourth difference
artificial viscosity, as well as for the direct solver used for the shock fit scheme. To
calculate the lift perturbation where there is grid movement, the effect of the grid

movement must be added so now Z = [pdz + [PdZ,. The results for the subsonic case

with and without grid movement are nearly identical.
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Figure 6.34: Magnitude and phase (in degrees) of lift perturbation vs. the number of
cells in the domain, for the subsonic case normalized by £ = 0.00027578 £68.391°, for
two different second difference artificial viscosity coeflicients and the direct solver used
for the shock fit scheme. Both grid movement (GM) Z, = (-5 x 1074, -5 x 107%) and
no grid movement are shown.
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Figure 6.35: Magnitude and phase (in degrees) of lift perturbation vs. the number of
cells in the domain, for the subsonic case normalized by Z = 0.00027578 £68.391°, for
two different fourth difference artificial viscosity coefficients and the direct solver used
for the shock fit scheme. Both grid movement (GM) 2, = (-5 x 1674, -5 x 10~%) and
no grid movement are shown.
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6.3.2 Transonic Case

Figure 6.36 shows the solution for the transonic case presented in Section 6.2 for 360
cells in the domair. and €; = 0.10 with grid movement Z, = (-2 x 1074, -7.4 x 10™%).
Notice that there is no longer a peak in the shock region for the solution. The grid
is now moving at approximately the magnitude of the shock mevement, so there is
very little shock movement relative to the grid which would be represented by the
peak. The perturbation in the solution upstream of the shock is solely due to the grid
movement in this region since there should otherwise be no perturbation upstream of the
shock. Figure 6.37 shows the effect of adding grid movement to the transonic case \.vith
second difference artificial viscosity. Again, this is the same transomic case presented
in Section 6.2 with the addition of grid movement Z, = (—-2 x 1074, —7.4 x 1074). For
both values of the artificial viscosity coefficient, the magnitude of { is increased and
the phase of £ is decreased when grid movement is added, but the solutions have not

changed significantly.
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Figure 6.36: Real and imaginary parts of the pressure perturbation with w = 1.729 for
the transonic case with M;, = 1.2 shown in Figures 6.12 and 6.15 where € = 0.1G in a
360 cell domain with grid movement 2, = (-2 x 1074, 7.4 x 107%).
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When a combination of second and fourth difference artificial viscosity are used,
where a switch turns on the second difference artificial viscosity in the shock, moving
the grid with the shock reduces the effect of not linearizing the switch in the shock
region. Figure 6.38, shows this effect quite effectively. Since the moving grid picks up
most of the shock movement, the contribution to the lift from the perturbation pressure

in the shock region as well as the errors in this contribution are decreased.

Finally, there is the effect of moving the grid with the flux vector split scheme. Since
the errors associated with moving a crisp flux vector split shock relative to its grid
location is larger than the errors from the artificial viscosity schemes, one would assume
the effect of moving the grid would produce the largest benefit with the flux vector split
scheme. The effects of this scheme are shown in Figure 6.39. When MUSCL upwinding
is not used the scheme is only first order accurate, and this first order accuracy still
dominates the errors, so little or no benefit is seen in moving the grid. When MUSCL
upwinding is used, two effects can be seen. First, the errors associated with the limit-
cycle in the steady solution are dramatically reduced since, again, the bulk of the moving
shock effect is captured with the moving grid. Second, the desired reduction in error is
seen for the rest of the perturbation solutions which do not have a problem with the

steady state solution.
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Figure 6.37: Magnitude and phase (in degrees) of lift perturbation vs. the num-
ber of cells in the domain, for the transonic case with M;, = 1.2 normalized by
¢ =0.00013321 £ - 87.653°, for two different second difference artificial viscosity coef-
ficients and the direct solver used for the shock fit scheme. Both grid movement (GM)
Z,=(~2x107%,-7.4 x 107*) and no grid movement are shown.
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Figure 6.38: Magnitude and phase (in degrees) of lift perturbation vs. the num-
ber of cells in the domain, for the transonic case with M;, = 1.2 normalized by
{ = 0.00013321 / — 87.653°, with fourth difference artificial viscosity e; = 0.001 in
most of the domain and second difference artificial viscosity with €2 = 0.2 turned on in
the shock by a switch which has not been linearized and the direct solver used for the
shock fit scheme. Both grid movement (GM) z, = (-2x16™*, —7.4 x 10~*) and no grid

movement are shown.
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Figure 6.39: Magnitude and phase (in degrees) of lift perturbation vs. the num-
ber of cells in the domain, for the transonic case with M;, = 1.2 normalized by
7 = 0.00013321 . — 87.653°, with flux vector splitting and the Direct solver shock
fit scheme. Both grid movement (GM) Z, = (—2 x 1074, -7.4 x 10*) and no grid
movement are shown.
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6.3.3 Conclusions

By moving the grid with the shock, the desire was to decrease the errors associated
with a changing shock shape as a discrete shock moves. This effect was indeed seen in
the MUSCL upwinding flux vector split scheme where the changing shock shape would
be most predominant. Other benefit of moving the grid with the shock were to reduce

errors in the shock region associated with the scheme itself. Most importantly, the effect

of not linearizing a switch in the shock region was reduced so the complexities associated -

with incorporating the linearization of a switch in the code can be eliminated as is the
need to find a switch which can be linearized. Finally, the effect of a limit-cycle in the
shock region of the steady state solution to the MUSCL upwinding flux vector split
scheme are also reduced. This result is not as important since the initial limitations in

the scheme may make it difficult to find the desired shock movement in the first place.
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Chapter 7

Convergence Acceleration Techniques

The solution technique used in this thesis for the shock capturing schemes described in
Chapter 5, is to advance a time dependent equation until there is no longer a change
in time. At this point the steady state solution or the time independent amplitude
of the perturbation solution is found. In this process, the actual time history tc the
converged solution is not important, merely the converged state itself. There are several
methods of convergence acceleration which speed the process of reaching this solution.
In general, the idea is to change the path taken to this state, but again the actual
time history to convergence is not important to the solution. Here the methods cf local
timesteps, multigrid and GMRES (Generalized Minimal Residual algorithm) are used.
The next three sections describe these methods in detail while the last section in this
chapter illustrates the effectiveness of these methods by comparing the computational

requirements for each of them.

7.1 Local Timesteps

The concept of local timesteps is the most simple of convergence acceleration tech-
niques and is widely used when advancing a solution in time to the steady state. The
computational timestep in Equation (5.27),

_ Az
ax — |u|+c’

Aty (5.27)

can be different for each cell in the computational domain, determined only by the local
stability limit for the cell. The true time history of the computation will not be retained,
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but convergence in each part of the domain will happen at the maximum rate allowed
by the stability of the scheme. The benefit of using of local timesteps is most significant
when there are large variations in the grid spacing, or when the Mach number variance
in the flowfield is large, for example when there is a stagnation point or in the boundary

layer of a viscous calculation.

7.2 Multigrid

Multigrid is another method of speeding up the convergence to a steady state. Once
again, the time history is not retained, and the goal is to reach a converged state as
quickly as possible. The theoretical foundation for multigrid has been well developed for
elliptic problems [4], however the theory for the hyperbolic Euler equations used here
is less con&ete. Nevertheless, the success of multigrid used with the Euler equations is
clear. Ni [21, 22, 9] first demonstrated this use of multigrid in 1981. His method was
based on the idea of speeding wave propagation through the domain. In 1983 Jameson
(18, 22] provided another method of using multigrid which is more closely related to
classical multigrid methods.

Multigrid methods are founded on two pieces of information which are true for most

time-marching computational schemes.

1. The spatial error in a scheme is proportional to a function of the mesh spacing
(generally Az or Az?). Which is to say, the finer the inesh the more accurate the

solution.

2. The timestep (At) limit given by stability is proportional to the mesh spacing
(Az). This means that the finer the mesh, the more computational time will be

required to reach a converged solution.

Since we want accurate solutions, but we do not want to use a lot of computer time to
find these solutions, it is usually necessary to make a compromise between accuracy and

computer time. The idea behind the multigrid strategy is to get the best of both worlds.
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Figure 7.1: Successive grids used for different levels in the multigrid cycle.

A series of meshes is created, as shown in Figure 7.1, and the solution procedure involves
computing on all mesh levels. Information is passed between mesh levels to ensure that
the effect of the coarser meshes is to drive the fine mesh solution, but by using coarser
meshes faster convergence rates are achieved. The result is that the accuracy of the fine

mesh can be obtained at the convergence rate of the coarse mesh.

In practice, there are several issues which must be considered in the appli:ation
of this process to a real problem. The stability of the whole process and appropriate
interpolation of the solution and fluxes between the meshes must be considered. Most
importantly, the multigrid process must drive the solution to the same solution which

would be obtained by only using the fine grid.

To form a set of multigrid meshes, successive nodes are removed from the mesh as
shown in Figure 7.1. To help in the description of the multigrid process, each level of
the mesh has been given a number. The finest mesh is level 0 and has a mesh spacing
Az = d. Each successively coarser mesh has an increasing level number and a mesh

spacing which is some factor of two times the finest mesh spacing.

The actual multigrid method used here is based on Jameson’s method. The timestep-
ping schemes using artificial viscosity described in Section 5.1.1 for the steady state and
Section 5.1.2 for the linear perturbation will be used to illustrate this multigrid method.
The description of this method applies equally for the steady state or the perturbation.
The ﬁve—staée Runge-Kutta scheme described in Section 5.1.3 is repeated here with the
addition of the function P which provides the means to force the solution to the fine

mesh solution.
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To describe the multigrid strategy, the two processes of transferring information to
‘a coarser mesh and interpolating back up to & finer mesh will be described.

Transfer: When transferring from a fine mesh level to the next coarser level it is
important to not only transfer the solution but the residual. To transfer the
solution, direct injection is used. The coarse mesh nodes take the state vector
values of their corresponding fine mesh nodes.

ab

p O

fine mesh

U.=Ub

coarse mesh

) a
U‘ = Ua l
A

B

The function P carries the fine mesh residual down to the coarser meshes. This is
what drives the solution to the fine mesh level. It is importaat that the residual
transfer be conservative. To do this, the contribution from the fine nede between
the coarser nodes is split evenly between the neighboring coarse nodes after mul-
tiplying by AAz, the control volume for the node. R, D and P are the values on
the coarse mesh after the transfer from the fine mesh.
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Py on the coarse mesh is now defined as

PB = Ey—ﬁa'i'?g - (RB—DB)
where Rp and Dy are evaluated at the transferred coarse mesh state vector Ug.

Notice in Equation (7.1) that in the first stage, the term (R — Dp) cancels with

the same term in P and the transferred fine mesh residual drives the scheme.

This is what guarantees that in convergence, the fine mesh solution is reached.
“ Before transferring tc a coarser mesh, the change AU from the fine mesh iteration
is saved. This change wili be added to the reference value of the state vector

before the multigrid cycle is performed.

Interpolate: When interpolating to a finer mesh, the saved AU on the fine mesh is
corrected with the AU from the coarse mesh solution. The coarse inesh correction

AU is linearly interpolated between the coarse mesh cells.

(zab—2a)AUp + (25— 2ap) AU,

Zp—Z4

(AUab)new = (AUab)old +

(AU-b)new = (AUb)old + AUB
(Zbe—2zb)AUc + (2. —2be ) AUR

Ta—Tpg

(Ach)new' = (Ach)old 4
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level 0, Az = d: iterate

( iterate )

T I \T

iterate

‘ level 1, Az = 2d: iterate

level 2, Az = 4¢: iterate

level 3, Az = 8d: iterate

iterate

T = solution is transferred to a coarser mesh
I = corrections are interpolated to a finer mesh

! Figure 7.2: The multigrid cycle.

/\/\

The multigrid cycle starts with an iteration on the finest mesh, level 0. For this

o fine mesh

coarse mesh

h'—>»h

level the function P is zero. The solution before this iteration is saved since it serves
as a reference for the update in the multigrid cycle. The solution and residual are then
transferred to the next coarser mesh while the change from this iteration is stored.
This cycle of iterate then transfer to a higher level is repeated until the third level of
multigrid, with eight times fewer cells, is reached. The changes in the state vector on
the way down are then interpolated back up to the finest mesh level. The reference
value of the state vector is then updated. This represents one multigrid cycle and is
illustrated in Figure 7.2.
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The time-marching methods used to drive the Euler equations to a steady state
actually involve the propagation of transient waves through the computational domain.
By enforcing the desired boundary conditions, transient waves are driven out of the
domain and eventually the steady state is reached. By using successively coarser meshes
in the multigrid cycle, the transient waves are both damped and more rapidly driven to
the boundaries where they can be expelled from the domain. One set of undesired waves
are the high frequency, odd-even mode waves which are introduced in the process of
interpolation the corrections back to the fine mesh using linear interpolation. Therefore,
one requirement for a good multigrid strategy is that the scheme have the ability to
damp high frequency waves. As mentioned in Appendix A, the five-stage Runge-Kutta
scheme described in Section 5.1.3 has this ability. Figure A.5 shows the amplification
factor for this scheme. The point of interest is # = n which represents the sawtooth,
odd-even mode. At this point the amplification factor is |g| = 0 so these waves are
damped. This scheme uses a CFL number which is much smaller than the limit for
stability. Since the accelerated convergence rate achieved frorn multigrid is due to the
damping of waves through the use of several meshes rather than the timestepping process
itself, obtaining the smallest amplification factor for the scheme is more important than

obtaining a larger timestep.

Finally, there are a few notes which should be made about the multigrid strategy
used here. In particular, the CFL number and the artificial viscosity coefficients are held
constant througl. all levels of the multigrid and local timesteps are used. Results from
both subsonic and transonic cases are shown which use different methods of artificial
viscosity. When the artificial viscosity used has a fourth difference formulation away
from a shock and a second difference turned on in the shock region by a switch, as
described in Section 5.1.1, it is important to freeze the switch at the fine mesh level.
The solution on the coarse meshes is driven by the fine mesh solution through the
introduction of the function P, but while solving on the coarse mesh the solution cannot

be ‘pulled’ away from this solution. Hence the reason for freezing the switch.
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7.3 GMRES

GMRES is an acronym for Generalized Minimal Residual Algorithm. The idea is te
reduce the dimension of the problem from several thousand down to 20 — 40 and use
minimization methods in this reduced space to find the problem solution. The reduced
subspace used, called Krylov space, is where the minimization is performed using Givens
rotation procedure. While the size of the Krylov space is specified for the linear GMRES,
the nonlinear version requires a range for the size of the Krylov space as input, and as
part of the computation the size of this space is adjusted based on the need, or lack
of need, to increase the number of search directions for the minimization process. An
underlying iterative method is used as a preconditioner for the method. The original
GMRES algorithm was designed for linear problems and is a leading iterative method
for the solution of nonsymmetric systems of linear equations. The nonlinear version of
GMRES was developed by Wigton, Yu and Young [32] to solve the nonlinear problems
arising in aerodynamics, acoustics, etc. Given a good preconditioner, GMRES can
increase convergence significantly. Here, GMRES is used as a packaged program which
is distributed by Boeing Computer Services [6, 5].

Only the complex variable version GMRES is used to accelerate convergence of the
linear perturbation problem, although in practice a version for real variables could also
be used to find the steady state. Although the problem is linear, the nonlinear version
of the code was actually used since it proved to be more robust while requiring the
same, if not less, computation time. The preconditioner which is used is one multigrid
cycle described in Section 7.2. With one multigrid cycle, GMRES required 60% of the
total computation time outside the preconditioner cycle, and it was found that using,
for example, two multigrid cycles in the preconditioner did not reduce the total time to

convergence.

Integrating this version of GMRES into the existing code was very straight forward,
making it a fairly easy to add to an existing code. In the schematic shown in Figure 7.3,
the preconditioner routine consists of most of the original code. The input to this routine

from GMRES is a current value of the state vector and the output is a new, predicted
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main initialize program

code and set parameters
GMRES
preconditioner perform one multigrid
routine cycle preconditioner

Figure 7.3: Schematic of the code using GMRES.

.value for this same state vector. The main code consists of basic startup procedures
such as reading parameters and other initialization procedures which would normally
be performed before any computation commenced. The inputs to GMRES consist of
the range in size of the Krylov space and other tolerance parameters. In effect, GMRES

merely splits the original code in two pieces and fits itself in between.
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7.4 Results

As before, a subsonic case will be used first to examine the nature of the numerical
scheme without a shock. The subsonic case shown in Section 6.1 wili be used for this
purpose. Figure 6.1 gives the height distribution along the duct for this case, where
Figures 6.2 and 6.3 give the steady Mach number and pressure distributions. Figure 6.4
gives the perturbation pressure distribution for this case, where the unsteadiness is
introduced though a pressure perturbation at the duct exit with w = 1.729. The case
for which the convergence is examined has only fourth difference artificial viscosity
with ¢4 = 0.04, uses the five-stage Runge Kutta scheme with CFL = 3, and has 240
cells. Figure 7.4 gives the convergence histories when a global timestep, local timesteps,
mulcigrid, and, for the pertlurbation scheme, GMRES are used. The computational time
is given in seconds on a Decstation 5000/200 workstation. For consistency, the error is
measured as the logarithm base 10 of the fine grid residual, R — D, which is driven to
zero. The converged state, when the residual is no longer decreasing, corresponds to the
point in the calculation when computer roundoff will not allow the residual to continue
to decrease. Each iteration in the perturbation scheme requires approximately twice
the computation time as the steady state scheme, mostly due to the use of complex
variables. From Figure 7.4 it can be seen that the convergence rate for the steady state
is about half that of the perturbation, so in terms of iterations, the schemes converge
at the same rate. Notice that for both the steady state and the perturbation, there
is not much difference between using local timesteps or a single global timestep. This
is because the Mach number variation in the domain is very slight and there is no
variation in the cell size. Using multigrid, approximately a factor of 10 speedup can
be achieved over using a global timestep. GMRES, however, does not have much effect
on convergence. The benefits of using GMRES will be more apparent in the transonic

cases.

Figure 7.5 shows the effect of using the five-stage Runge-Kutta scheme over the
four-stage Runge-Kutta scheme for this same subsonic case. Since the dissipation is

only calculated in the first two stages of the five-stage scheme, it requires only 85%
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Figure 7.4: Convergence history for the steady state and perturbation for the subsonic
case for only fourth difference artificial viscosity with ¢4 = 0.04, 240 cells and CFL=3
for the five-stage Runge-Kutta scheme.
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of the computation time of the four-stage scheme per iteration. The motivation for
using the five-stage scheme is to provide better damping of undesirable modes which
would increase the convergence rate, and since less time is required per iteration and
the CFL limit is higher as well, the five-stage scheme, it is more desirable to use than

the four-stage scheme.
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Figure 7.5: Convergence history for the steady state and perturbation for the subsonic
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for the five-stage Runge-Kutta scheme and CFL=2.5 for the four-stage Runge-Kuita

scheme.
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The transonic case with inlet Mach number M;, = 1.2 shown in Section 6.2 will
be examined next. Figure 6.11 gives the height distribution along the duct for this
case, where Figures 6.12 and 6.13 give the steady Mach number and pressure distribu-
tions. Figure 6.14 gives the perturbation pressure distribution, where the unsteadiness
is introduced though a pressure perturbation at the duct exit with w = 1.729. The
case shown here has only second difference artificial viscosity with e, = 0.15, uses the
five-stage Runge Kutta scheme with CFL = 3, and has 240 cells. Figure 7.6 gives
the convergence history when a global timestep, local timesteps, multigrid, and, for the
perturbation scheme, GMRES are used. Again, the computational time is seconds on
a Decstation 5000/200 workstation. For consistency, the error is measured as the loga-
rithm base 10 of the fine grid residual. As with the subsonic case, each iteration in the
perturbation scheme requires approximately twice the computation time as the steady
state scheme. From Figure 7.6 it can be seen that the rate of convergence (although
not the time to convergence) in terms of computation time for the perturbation scheme
is about twice that of the steady state, so in terms of iterations, the schemes converge
at the same rate. Notice that for both the steady state and the perturbation, there is
not much difference between using local timesteps or a global timestep. As with the
subsonic case, this is because the Mach number variation in the domain is very slight
and there is no variation in the cell size. By using multigrid, approximately a factor
of 7 speedup for the steady state and a factor of 12 speedup for the perturbation is
achieved over using a global timestep. Unlike the subsonic case, there is also a signifi-
cant speedup when GMRES is used. The explanation for this speedup will be given in
the next paragraph.

The increase in computer tirae required to converge the perturbation over the steady
state, as well as the benefit of using GMRES, for the transonic case can be explained
by looking at what is actually happening as the computation progresses. Most of the
computational domain does not change and reaches the converged state very quickly.
However, the amplitude of the peak in the shock region, similar to that shown in Fig-
ure 6.14, oscillates about the time independent solution for the perturbation. Figure 7.7
shows the amplitude of the three components of the state vector for the global timestep

computation shown in Figure 7.6b. The amplitude of the peak oscillates at a nearly
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Figure 7.6: Convergence history for the steady state and perturbation for the transonic
case with inlet Mach number M;, = 1.2 for only second difference artificial viscosity

with €3 = 0.15, 240 cells and CFL=3 for the five-stage Runge-Kutta scheme.
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constant frequency and has a nearly exponential decay to the time independent solu-
tion. This is a physical phenomena since the physical time frequency and decay rate do
not vary as either the CFL number, artificial viscosity coefficient or the number of cells
in the domain are changed, but they do change when a different transonic problem is
explored. The frequency of the oscillations is very nearly the frequency imposed on the
problern and doubling this input frequency, doubles the oscillation frequency as well.
The peak in the solution around the shock region is a smeared delta function which
represents the movement of the shock times the steady strength of the shock, so physi-
cally the change in the solution represents the movenient of the shock. This quantity is

exhibiting the behavior which is seen in an equation of the form

4 = Ciy + C,, (72)

where C; and C, are complex numbers, which is solved to give

Cit 02

y=2¢€ - E’ (73)
1

where R{C;} gives the decay rate and S{C} gives the frequency of oscillation as seen
in Figure 7.7. —% is the time independent solution which is eventually reached. By
analyzing the plots in Figure 7.7 it can be seen that they exhibit almost exactly a solution
of the form in Equation (7.3). Since the frequency of oscillation in Figure 7.7 are the
input oscillations represented by a term e*“t, physically only an exponential decay is
represented by this phenomena. The minimization in GMRES takes this predictable
behavior and finds the solution for the converged state, hence the large increase in
convergence rate achieved with GMRES. Since the decay is represented by a single mode,
a simple method which performs the same task as GMRES, by predicting this mode
and setting the solution to the converged state, could be implemented. This physical
convergence mode will exist in higher dimensional problems as well, where the decay
rate will vary along the shock, therefore some method for increasing the convergence

could be devised for these problems as well.
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The last case iy the same transonic case just discussed, except a different method
of sheck capturing is used. Here, fourth difference artificial viscosity with € = 0.04
is used in most of the domain except in the shock region where the second difference
artificial viscosity wisth €2 = 0.15 is turned on by a switch. A3 discussed in Section 6.3,
the switch is not linearized in this case and there is no grid movement for the case
given here. The convergence histories for this case shown in Figure 7.8 are similar to
those given in Figure 7.6, so the effect of the switch does not have a large effect on the

convergence characteristics of the scheme.
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Figure 7.8: Convergence histcry for the steady state and perturbation for the transonic
case with inlet Mach number M;, = 1.2 for mixed second difference artificial viscosity
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the rest of the domain, 240 cells and CFL=3 for the five-stage Runge-Kutta scheme.
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Chapter 8

Concluding Remarks

The focus of this work is on the fundamental issues associated with the use of the linear
perturbation Euler equations with shock capturing in the computation of unsteady
transonic flowfields. As a justification for this method, an analytical discussion of the
Navier-Stokes equations and the effect of discretization on a moving shock was presented.
Based on this discussion, several numerical schemes were developed and computational
results using these schemes were presented. One of the major motivations for the use of
the linear ﬁertu.rbation equations is the reduction in computational resources required
for these schemes over full nonlinear calculations. One linear calculation can require well
over a factor of ten less computation time than the nonlinear calculation. Since reduced
computation time is an issue, convergence acceleration techniques were alsoc explored.
What will follow is an expanded summary of the important findings presented in this
work and a discussion of future work which would be based on the research presented

here.

8.1 Summary

There is nothing new about the use of perturbation methods. For several years the linear
perturbation potential equations have been used to compute unsteady flowfields. In
these methods the steady state solution is first found and the unsteadiness is introduced
into the flowfield as a linear perturbation on this steady solution. The perturbation
normally has a single frequency dependency, since linearity allows a full solution to
be composed of the superposition of several frequencies. Ni was the first to present
a linear perturbation method for the Euler equations, but this method was limited to
shock free flowfields. In 1987, Hall used the Euler equations for transonic flowfields with
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shock fitting, but there are limitations to all sheck fitting schemes, especially in three
dimensional flow. Shock capturing has been long accepted for use with both steady
and unsteady flowfields, but many researchers have convinced themselves that shock
capturing with the linear perturbation equations was infeasible for all but the weakest
shocks. This work provides the first justification for the use of shock capturing with the

linearized Euler equations.

The analysis began in Chapter 3. For a steady transonic flowfield it is easy to show
that the location and strength of the shock are not functions of the viscosity and that
the viscosity merely governs the width of the shock. In a true flowfield, however, the
width of the shock is on the order of a few mean free paths, which would be unrealistic
to model computationally. This necarly zero width shock motivates the use of shock
fitting which explicitly sets the shock width to zero. Knowing that the magnitude of
the viscosity can be changed without affecting the location and strength of the shock
allows for the use of artificial viscosity, a function which simulates the true viscosity
terms but allows for a shock with a width on the order of a few computational cells.
This method is called shock capturing, since the existence and location of the shock
becomes part of the computation, as for the true viscosity, and has been accepted
for steady problems for several years. The challenge here was to show that artificial
viscosity could be used for the linear perturbation equations as well. Like the argument
for its use with the steady equations, the analysis involved the use of the Navier-Stokes
equations. It was shown that if the unsteadiness in the flowfield has reduced frequency
on the order of the Reynolds number or less, the unsteady shock shape is a quasi-steady
function of the flow upstream and downstream of the shock and, like the steady case,
the level of the viscosity only governs the width of the shock. With this information
it was then found that the perturbation of the integral of the flow solution is a linear
function of the perturbation imposed on the flowficld, agzin independent of the level of
the viscosity. This result follows from showing that the leading order contribution to
the integrated solution in the shock region is purely due to a translation of the shock.
This information is used to justify the use of artificial viscosity with the perturbation
equations which represent a linear viscous solution, where any other integrated solution

can then be found by linear scaﬁng.
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The next question which needed to be asked was, what is the effect of discretization
on this analysis? This question was addressed in Chapter 4. The major computational
issue is associated with the changing discrete shock shape as the shock moves relative
to the mesh. This changing shock shape comes about since in the discrete flowfield,
the solution is known at several nodes in the flowfield and linear interpolation is used
to find the solution between these nodes. This is an important issue, since part of
the analysis previously described required that the shock maintain a similar shape as
it moved, and this must hold for the computational solution as well. A constant area
duct, or shock-tube, was used to concentrate on the effects of the moving shock. It was
found that the error associated with the changing shock shape on the integrated solution
was quite small. The more smeared the shock, the smaller the error, so the flux vector
split scheme which put only two nodes in the shock produced the largest errors. It was
concluded that computational errors associated with the problem were again small and
the concept of finding a linear perturbation solution with shock capturing could still be
considered valid.

Based on this analysis, several computational sc-<mes were developed in Chapter 5
to solve for the steady state and the amplitude of the linear perturbation. As dis-
cussed earlier, the linear perturbation has an imposed harmonic time dependency, so
the perturbation amplitude is not a function of time. In the solution method, the time
dependency was left in the equations for the steady state as well as the equations for
the amplitude of the harmonic perturbation and the solution was advanced until there
was no change in time and the time independent steady state or perturbation ampli-
tude were reached. These schemes were based on the Euler equations and in the shock
region use shock capturing with either artificial viscosity or flux vector splitting. For
comparison purposes, a direct solver sheck fitting scheme was developed as well. The
computational geometry was a quasi-one-dimensional duct which simplified the problem
while at the same time allowing the relevant computational issues to be addressed. A
method which adds a perturbation grid movement to the perturbation equations was
also described. This method allows the shock to move with the grid with the aim that
this will reduce the errors associated with the changing shock shape of a discrete moving

shock.
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As with all CFD methods, there is always a question of how many cells are necessary
to achieve a desired level of accuracy. Fcr example, it may be acceptable to have a
1% error in the solution, so for that particular problem the question becomes, how
many cells are necessary to achieve this level of accuracy? In Chapter 6 the goal of
studying the effect of grid resolution was to show that the computational methods
were mathematically rigorous and that, in the limit of an infinite number of cells in
the domain, the solution approaches some appropriate limiting solution. In the shock

capturing schemes, the shock width is proportional to the size of the computational

cells, so in the limiting case the shock width will go to zero. The limiting solution for

these schemes is then comparable to the shock fit scheme which has zero shock width, so
this becomes a good comparison for the schemes. When only second difference artificial
viscosity was used, the effect of the first order accuracy of this scheme dominated the
results. When secund difference artificial viscosity was only used in the shock region and
switched to fourth difference artificial viscosity, which made the scheme second order
accurate, in the rest of the flowfield, the error was reduced. This scheme has a constant
error in the perturbation associated with not linearizing the switch which can be seen in
the perturbation results, but this error is quite small and was then eliminated by moviag
the grid with the shock. Flux vector splitting produced some interesting results. To
make the scheme second order accurate, MUSCL upwinding was added to the scheme,
but this kept particular steady solutions from converging by putting them into a limit
cycle. Since this behavior is inconsistent with the assumptions made in the method,
the results for the perturbation for this special case bad a very large error. For the
solutions which did not have a limit cycle in the steady solution, the desired effect
moving the mesh with thebshock to reduce the errors associated with a changing shock
shape were clearly evident. The flux vector split case produces two point shocks, so
this is the case where the most advantage was expected as well. All in all, the results
confirmed what the analysis had shown, that accurate solutions could be found using
shock capturing to find the linear perturbation. Similar results are expected for higher
dimensional problems.

The major motivation for using perturbation schemes is to reduce the computational

cost of finding unsteady flow solutions. For this reason, several convergence acceleration
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techniques were examined in Chapter 7 for use with the schemes presented here. Since
the computational schemes involved advancing an unsteady equation in pseudo-time
until the solution became time independent, the actual time history to convergence is
unimportant. All the convergence acceleration techniques used here took advantage
of this point by changing the path taken to convergence. Timesteps based on local
stability restrictions have been used for several years to increase the rate of convergence.
For the problems examined here, local timesteps only provided a small acceleration of
convergence since the Mach number variation in the problems was small and the cell sizes
were constant. However, when there is a large Mach number variation in the flowfield
and a large range of cell sizes, local timesteps can provide a considerable savings of
computational time. The use of multigrid, however, did provide a large savings in
computational time by speeding convergence by a factor of seven to twelve, depending
on the problem. GMRES was the last method of convergence acceleration examined.
This method provides a minimization process which was particularly useful for finding
the perturbation solution for the transonic cases. These cases shew an oscillation of the
solution in the shock region which has a particularly slow decay rate which was greatly
increased by the use of GMRES.

8.2 Future Work

All the discussion in this thesis was in the context of a one-dimensional or quasi-one-
dimensional duct. This provided an excellent arena to examine analytical and compu-
tational issues associated with unsteady shock motion, which is essentially a quasi-one-
dimensional phenomena. All the issues which were discussed here are easily extended
to two and three dimensions where the important physical problems are defined. This
is clearly one of the next paths to follow in this research, and in fact the development
of a three-dimensional scheme by Giles [13] is currently under way. In these higher
dimensional problems, the cemputational savings associated with time-marching to a
time independent solution for the steady state and perturbation over a direct solver will

be more apparent.
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tions in twe and and especially three dimensions js so prohibitive that these methods
are hardly ever used. There s no roadblock to extending the schemes described here
to include viscous effects other than those associated with the shock region, since these
viscous terms are already linear. The computational savings would be comparable to
the savings associated with the solution of the perturbation Euler equations and could

make the computation of unsteady viscous flowfields more accessible.

Preliminary work by Hall [15, 17] found that linear perturbation methods can be
valid up to levels where the perturbation was 10% of the steady flowfield. More studjes
must be performed to more rigorously define a region within which flowfields are linear.
Both experimental and numerical data could be used in these studies. Preliminary
results do show that acceptable levels of perturbatjon can be quite large, making linear
methods aﬁplicable to inlet distortion problems and stator/rotor interaction problems,
as well as flutter problems where the interest is in the small perturbation of the regime,

and perturbation methods are clearly valid.
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Appendix A
Stability Analysis

The temporal stability of a particular scheme can be studied by considering a model
linear scalar equation. When analyzing time-marching to find the steady solution, the

wave equation is used.

ou ou
E + aa—z =0 (A.l)

When time-marching to find the linear perturbation there is an added term which must

be considered, so now the model equation becomes

ou . du
¥ + wu + 6o = 0. (A.2)

The numerical stability analysis considers whether Fourier modes in the solution
amplify or decay as the solution procedure progresses. In particular, the transient

computational modes must decay so the solution can converge.

A.1 Steady State

First consider the discretization of Equation (A.l) which represents the equation used
to find the steady state solution. Since a Runge-Kutta scheme is used, the discretization
in time is separated from the discretization in space. In gereral, the governing equation

can be written as
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(du

I)J = —-Ry, (A.3)

where R; represents some spatial discretization. In particular, for the equation used

here where central differencing is used, Ry from Equation (A.1) is

Ujy1 — UJ-1
20z

R; = (A.4)

The temporal discretization at node J is now performed using a four-stage Runge-
Kutta time-marching scheme. Given some function R(u), this scheme can be written

as

u® = u(t,)

u® = o® - LAt R(u®)

u® = u® _ 1At R(u(®) (A.5)
u® = o - 1AtR(u(®)

u® = 4O - AtR(u®)

u(t,.+1) = u“)

Since the interest is in the amplification or decay of discrete modes, the equation
is cast in Fourier space by setting uy = tpe' (7)) where 6, = kAz. From now on
the subscript k in 0y and #; will be implied. Let z % be the transform of the spatial

discretization —At Ry, so in Fourier space, Equation (A.5) is
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a® = a(t,)

ﬁ(l) = ﬁ(o) + :_Zﬁ(o)
‘l-l(z) = ﬁ(o) + %Zﬁ(l) (A.ﬁ)
a® = 7O 4 1 za(?)
ﬁ“) = ﬁ(o) + Zﬁ(a)

ﬁ(tn-{-l) = ﬁ(4)

Putting the steps of the multi-stage scheme together gives
U(tny1) = G(ta)(1+2z+ ';'Zz + %23 + 55 2%)
= 4(t,) g(2), (A.T)

where g(z) is the amplification factor. If |g(z)| < 1, then the Fourier modes decay from
time ¢, to t,4, and the scheme is stable. In Figure A.1, contours of |g(z)| are shown for
lg(z)] < 1 as a function of the complex variable z. These contours were formed using
a contour generation program where the function |g(z)| was evali:ated in a discretized

domain.

The stability of a particular scheme depends on the value of z for that scheme. For
the scheme in question, Ry is given in Equation (A.4) and the Fourier transform of

At R is found by replacing uy by ie*(/9). After some algebra tiiis gives

z = —iXsin6, (A.8)

where A = "AA; is. the CFL number. For 0 < @ < 2r, the value of z for this scheme
can be plotted along with the stability contours shown in Fizure A.1 This is shown
in Figure A.2 for A = 2/2. If A > 24/2 then the solid line will go outside the contour
|g(z)| = 1, which defines the stability bounda.y, and the scheme is unstable, hence this

represents the limit on A for stability.
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1.0

Figure A.1: Contours of |g(z)| for the four-stage Runge-Kutta time-marching scheme.

Three particular values of @ will be examined to gain more insight into the informa-

tion in Figure A.2.

0 = 0: In this case, very long wavelengths are considered. Upon evaluation, z = 0
which gives g(z) = 1. 8 = 0 can be interpreted as the case where Az — 0 since
0 = kAz, which implies that At — 0 at the same rate for a bounded A. In this
limit of At — 0 the solution must not advance in one iteration, or in other words
g(z) = 1. Since this is true, this result confirms that the scheme is consistent, and
-since it is also stable then in the limit of Az — 0 the difference equation — the

differential equatiown.
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Figure A.2: Contours of |g(z)| for the four-stage Runge-Kutta time-marching scheme
and z = —i ) sin@ (solid line) for A = 2v/2.

0 = +7%: This case gives z = Fi A. Since z is purely imaginary, the maximum value of A
for z to remain inside the |g(z)| < 1 contours is A = 2¢/2. This gives the stability
limit for the scheme, A < 24/2.

6 = 7: This is the sawtooth mode, or in other words the wavelength is 2Az. For this
case z = 0 and |g(z)] = 1. Since |g(z)| = 1, these sawtooth modes are not damped
by the scheme, and they must be damped for the scheme to be stable. For this

reason some damping must be added to the scheme for stability.
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Now consider a new scheme where damping is added to the governing equations. Two

forms of damping will be considered by adding » dissipative term to Equation (A.1).

Ou ou 0%u

1) 5t +ea 32 = VA::-Bz—z second difference damping
R U4l —UJ-1 W 2uy +uy_,
J 2Az Az

A
z = —iAsinf - %1—2(1——c050)

34
2 Ou + aa—u = Az fourth difference dampin
ot oz dz* 8
R, US4l —UJ-1 W42 — dujgiy +6uy —4duy_ +uy-z
2Az Az

z = —-tAsinf - V—A4(1 — cos 8)?
a

Figure A.3 shows the effect of adding damping to the scheme. Notice that now for
0 = =, |g(z)] # 1 and there is some damping of the sawtooth modes. To maintain
stability, A has been reduced from 2v/2 to 2.5 to keep the contour of z inside the
|g(z)| € 1 domain. The change made by adding the damping terms is important to the

stability characteristics of the scheme.
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23.0 —2.0 ~1.0 0.0 1.0

Figure A.3: Contours of |g(z)| for the four-stage Runge-Kutta time-marching scheme
for A = 25and z = -tAsinf - "%2(1 — cos0) with £ = 0.16 (solid line) and
z = —iXsind - 2 4(1 - cosf)? with £ = 0.04 (dashed line).
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Now consider another scheme which has the same spatial discretization, but a slightly

different temporal discretization. A five-stage Runge-Kutta scheme where the damping

term is held constant after the first two stages is now analyzed. The contribution to

the residual from the flux term and the diffusion term are now separated into R{u) and

D(u) respectively.

e
«®

o

u(tnt1)

ul®)

1at (R u(°)) D(u”))
1At (R(u®) - D(uW))
3 At (R(u(z) ~ D(uM))
LAt (R(ul) - D(um)
At (R(u®) - D(u™))

(A.9)

As before, z u is the Fourier transform of the spatial discretization —At(Ry — Dy),

but since R(u) and D(u) are not always evaluated at the same value of u, it is not possible

to lump them together and deal with the problem as before. But, in consideration of

the Fourier transforms of At Dy and At R; from before, it is clear that they contribute

purely real and purely imaginary parts to z respectively. This allows the definition of

where

z=z -1y,

iy is the Fourier operator for R(u)

z is the Fourier operator for D(u),

so in Fourier space, Equation (A.9) is
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a® = at,)

gV = #® 4 Lz al® —iyal®)
a® = g0 . é(zu(l)_zyu(l))
a® = a® 4 (za® - iya®) (A.10)
@ = ® o (zal) —iya®)
a® = @@ 4 (za® —iyal)
W(tny) = u®

Putting the steps of the multi-stage scheme together and performing a lot of algebra

gives

o Wtn) (z-iy)(1-3iy(1-Fiy(1-3iy(1~3iy))))

ez —iy)(1-Z1y(1-Fiy(1-3iy)) (A.11)

where g(z) is again the amplification factor. In Figure A.4, contours of this |g(z)| are
shown for |g(z)| < 1 as a function of the complex variable z. Also shown are the traces
of z with the two forms of dissipation discussed previously. The stability limit for this
scheme is increased to A < 4, but for this plot A = 3.

The reason for using the five-stage scheme can be seen in Figure A.5. When the
value of the amplification factor is plotted along the line for z shown in Figures A.3
and A.4 where fourth difference dissipation is added to the scheme, the actual value
of the amplification factor for the scheme can be seen. The point of interest is § =
which, as discussed earlier, represents t‘he odd-even oscillation mode of the scheme. The
five-stage scheme has |g| = 0, or in other words it critically damps this mode. This is
highly desirable for the multigrid method discussed in Section 7.2. It is not possible

with the four-stage scheme to reduce the amplification factor to zero for this mode.
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5.0

3.04

"~5.0 -3.0 R(z) -1.0 1.0

Figure A.4: Contours of |g(z)| for the five-stage Runge-Kutta time-marching scheme
for A\=3and z = —iXsinf - 22 2(1 - cosf) with ¥ = 0.16 (solid line) and z =
—iAsin6 — 22 4(1 - cosd)? with ¥ = 0.04 (dashed line).
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Figure A.5: Amplification factor |g| with fourth difference dissipation £ = 0.04 for the
four-stage scheme with A = 2.5 (dashed line) and the five-stage scheme with A = 3 (solid
line). .
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A.2 Linear Perturbation

The analysis for the perturbation Equation (A.2) is similar to the analysis in the previous

section, except now Ry i3 slightly different.

. uy41 — UJ-1
R; = _ .1
J = twuy + a TAz (A.12)

When the dissipation terms are added to Equation (A.12), the relevant equations

become

0 a 9?

1) 5% + iwu + 055 = uA:c-a—;’; second difference damping

. uypr —UJ-1 o UIH1 T 2uy 4+ ujy-1

Ry = wus + 47582 v bz
' A
z = iwAt —iXsinf — %2(1—c050)
a i) o*

2) 79—1: + wu + 0-5% = —vA:csgﬁ fourth difference damping
Ry = iwuy + @ urypl —WI-1 o, ugpz — Augqr +6us — 4wyt us-2

2Az Az

z = iwAt—iAsinb - 1?—t‘l(l—cosO)z

The effect of the new term in the perturbation equation is to shift the curves in
Figure A.3 and A.4 along the imaginary axis by an amount wAt. Figure A.6 shows this
effect for the four-stage Runge-Kutta scheme. This changes the stability limit slightly
50 now this scheme is stable for w At + A < 2v/2 and the five-stage scheme is stable for

w At + A € 4 when there is no artificial viscosity.
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3.0

1.0

Figure A.6: Contours of |g(z)| for the four-stage Runge-Kutta time-marching scheme
for \=25endwAt=0.1and z = iwAt—iXsind — 22 2(1 - cosf) with £ = 0.16
(solid line) and z = iwAt — i) sinf — 22 4(1 — cos8)? with ¥ = 0.04 (dashed line).
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A.3 Conclusions

The steady and perturbation equations have different bounds for stability. These bounds

were found in the previous two sections.

4-stage Runge-Kutta l 5-stage Runge-Kutta

steady equation A< 2V2 A< 4
perturbation equation | wAt + A < 2v/2 wAt + A < 4

Section 5.1.3 talks about the use of these stability limits in conjunction with the

nonlinear and linear perturbation Euler equations.
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