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Abstract

Though computing power continues to grow quickly, our appetite to solve larger
and larger problems grows just as fast. As a consequence, reduced-order modeling
has become an essential technique in the computational scientist’s toolbox. By re-
ducing the dimensionality of a system, we are able to obtain approximate solutions
to otherwise intractable problems. And because the methodology we develop is suffi-
ciently general, we may agnostically apply it to a plethora of problems, whether the
high dimensionality arises due to the sheer size of the computational domain, the
fine resolution we require, or stochasticity of the dynamics. In this thesis, we de-
velop time integration schemes, called retractions, to efficiently evolve the dynamics
of a system’s low-rank approximation. Through the study of differential geometry,
we are able to analyze the error incurred at each time step. A novel, explicit, com-
putationally inexpensive set of algorithms, which we call perturbative retractions,
are proposed that converge to an ideal retraction that projects exactly to the mani-
fold of fixed-rank matrices. Furthermore, each perturbative retraction itself exhibits
high-order convergence to the best low-rank approximation of the full-rank solution.
We show that these high-order retractions significantly reduce the numerical error
incurred over time when compared to a naive Euler forward retraction. Through test
cases, we demonstrate their efficacy in the cases of matrix addition, real-time data
compression, and deterministic and stochastic differential equations.

Thesis Supervisor: Pierre F.J. Lermusiaux
Title: Professor, Department of Mechanical Engineering
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Introduction

The complexity of the problems we choose to tackle continuously grows as time
passes. We researchers like to complain that all the “easy” problems have been solved
a few hundred years ago by the likes of Joseph Fourier, Pierre-Simon Laplace, and
Jean le Rond d’Alembert. Among their other invaluable contributions, they solved
the constant-coefficient differential equations on simple domains we study as under-
graduates. But life is not as simple as the nice closed-form expressions they derived
[1]. Domains are rough with intricate geometry. Coefficients are spatially-dependent
and random.

Biological phenomena, quantum mechanics, fluid flow, electromagnetic and acous-
tic wave propagation, climate modeling, and ocean dynamics are among the countless
areas in which computational models are developed to predict future outcomes and
understand underlying truths about the world. The advent of the computer allowed
for a leap forward in terms of the problems we could solve. But the algorithms which
we use to approximate solutions limit the scope of the problems which we can study.
There is typically a trade-off between solution accuracy and computational cost/run-
time. Of course, if we wait long enough – either for a computer to chug along or, on
a longer time scale, for computer engineers to build us faster machines – we may be
able to get an answer to a large problem. But humans are impatient, and for some
cases, the time for a solution could be on the order of years (though it’s easy to think
of a problem that will take arbitrarily long to solve).

The next leap forward is then to come from better computational algorithms
and modeling techniques. One approach is to use reduced-order models, such as
the polynomial chaos expansion [2, 3, 4, 5, 6], where a very high-dimensional model
is projected onto a low-dimensional space. Another typical approach is to use the
Karhunen-Loève expansion or proper orthogonal decomposition [7, 8, 9, 10, 11], which
will be our starting point. We start with a square-integrable stochastic process Φ(𝑥;𝜔)

defined over a probability space (Ω,ℱ ,P) and with 𝑥 ∈ 𝒟 denoting our spatial
variable. Ω is the sample space, the set of all possible outcomes, and 𝜔 represents
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a simple event. ℱ is the 𝜎-algebra, a collection of subsets of Ω satisfying certain
regularity conditions. P is the probability measure, a function on the 𝜎-algebra that
maps to the interval from zero to one. Then, Φ may be represented as follows.

Φ(𝑥;𝜔) = E[Φ(𝑥;𝜔)] +
∞∑︁
𝑖=1

𝜙𝑖(𝑥)𝜁𝑖(𝜔)

Above, E denotes the expectation operator. This decomposition is the stochastic
analogue to separation of variables technique to solve partial differential equations
[12] and for function approximation [13]. That is, instead of expressing a deterministic
function as 𝑓(𝑥1, 𝑥2) =

∑︀∞
𝑖=1 𝑔𝑖(𝑥1)ℎ𝑖(𝑥2), we allow 𝑥2 to denote a simple event in the

event space (denoted 𝜔 ∈ Ω). The modes 𝜑𝑖(𝑥) are deterministic functions given by
the solution to the following eigenvalue problem.∫︁

𝒟
E[Φ(𝑠;𝜔)Φ(𝑥;𝜔)]𝜙𝑖(𝑠)𝑑𝑠 = 𝜆𝑖𝜙𝑖(𝑥)

Because the kernel above is a Mercer kernel, 𝜆𝑖 will be non-negative, and 𝜙𝑖 will be
orthonormal. The stochastic coefficients 𝜁𝑖(𝜔) are defined as the projection of Φ on
the modes 𝜙𝑖.

𝜁𝑖(𝜔) =

∫︁
𝒟

Φ(𝑥;𝜔)𝜙𝑖(𝑥)𝑑𝑥

One can show that 𝜁𝑖 are zero-mean and mutually uncorrelated. That is, E[𝜁𝑖𝜁𝑗] =

𝛿𝑖𝑗𝜆𝑗, where 𝛿𝑖𝑗 denotes the Kronecker delta function. The truncated Karhunen-
Loève expansion yields the best approximation to 𝑌 in that it minimizes the total
mean square error. As such, by truncating the number of modes and stochastic
coefficients in the expansion, we can obtain a very accurate reduced-order model of
the stochastic process. Note that this is the continuous analogue of the singular value
decomposition, which will be discussed later in this thesis.

Sapsis and Lermusiaux extended this framework to the spatially-varying time-
dependent case via the dynamically orthogonal equations [14]. Essentially, the mean,
modes, and the stochastic coefficients in the Karhunen-Loève expansion are allowed
to vary in time.

Φ(𝑥, 𝑡;𝜔) = E[Φ(𝑥, 𝑡;𝜔)] +
∞∑︁
𝑖=1

𝜙𝑖(𝑥, 𝑡)𝜁𝑖(𝑡;𝜔)
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When given a stochastic partial differential equation of the form 𝜕Φ
𝜕𝑡

= L (Φ, 𝑥, 𝑡;𝜔),
we wish to write out differential equations to describe how the modes and coefficients
evolve in time so that a reduced-order model may be evolved without explicitly re-
constructing 𝑌 . Since the coefficients and modes are both allowed to evolve in time,
there are ambiguous degrees of freedom in how the mode and coefficient differential
equations may be written. To get rid of the ambiguity, a gauge condition known
as the dynamically orthogonal condition insists that ⟨𝑦𝑖, 𝜕𝜙𝑗

𝜕𝑡
⟩ = 0 ∀𝑖, 𝑗, where ⟨·, ·⟩

denotes the inner product in space. With this, the following dynamically orthogonal
equations may be written.

𝜕E[Φ(𝑥, 𝑡;𝜔)]

𝜕𝑡
= E[L (Φ;𝑥, 𝑡;𝜔)]

𝑑𝜁𝑖
𝑑𝑡

= ⟨L (Φ, ∙, 𝑡;𝜔)− E[L (Φ, ∙, 𝑡;𝜔)], 𝜙𝑖(∙, 𝑡)⟩

𝜕

𝜕𝑡

⎛⎜⎜⎝
𝜙1(𝑥, 𝑡)

𝜙2(𝑥, 𝑡)
...

⎞⎟⎟⎠
𝑇

= P⊥
𝜙

⎡⎢⎢⎣E
⎡⎢⎢⎣L (Φ, 𝑥, 𝑡;𝜔)

⎛⎜⎜⎝
𝜁1(𝑡;𝜔)

𝜁2(𝑡;𝜔)
...

⎞⎟⎟⎠
𝑇⎤⎥⎥⎦
⎤⎥⎥⎦
⎛⎜⎜⎝
E[𝜁1𝜁1] E[𝜁1𝜁2] · · ·
E[𝜁2𝜁1] E[𝜁2𝜁2] · · ·

...
... . . .

⎞⎟⎟⎠
−1

Above, P⊥
𝜙 [𝐴] denotes the orthogonal projection of 𝐴 onto the modes 𝜙𝑖, which is

formally defined below.

P⊥
𝜙 [𝐴] = 𝐴−

⎛⎜⎜⎝
𝜙1

𝜙2

...

⎞⎟⎟⎠
𝑇 ⎛⎜⎜⎝
⟨𝐴,𝜙1⟩
⟨𝐴,𝜙2⟩

...

⎞⎟⎟⎠
These equations produce a coupled system of differential equations which may be
solved numerically. We note that the terms still include Φ; the Dirac-Frankel varia-
tional principle [15, 16] replaces Φ with its low-rank approximation in calculating the
mode and coefficient time derivatives and will be discussed further in this thesis.

Previously, these equations have been discretized directly (see, e.g., [17, 18]); how-
ever, analogous equations may be derived in the finite-dimensional case where 𝒟 and
Ω are discrete. In contrast to the spatially continuous dynamically orthogonal equa-
tion, the spatially discrete dynamically orthogonal equations allow for a non-intrusive
implementation which flattens the learning curve for reduced-order modeling and
eliminates the mental burden of deriving new reduced-order equations for each test
case. This was first analyzed in [19], where the dynamical low-rank approximation
was proposed to solve time-dependent matrix initial value problems. The connec-
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tion between the dynamical low-rank approximation and the dynamically orthogonal
equations was made in [20]; the dynamically orthogonal equations can be thought of
as instantaneously projecting the full-rank dynamics onto a low-rank manifold. The
following matrix differential equations were proposed.

𝑈̇ = P⊥
𝑈 L𝑍(𝑍𝑇𝑍)−1

𝑍̇ = L 𝑇𝑈

Here, P⊥
𝑈 = 𝐼 − 𝑈𝑈𝑇 , and the columns of 𝑈 , 𝑢𝑖, correspond to 𝜙𝑖. Similarly,

the columns of 𝑍, 𝑧𝑖, correspond to realizations of 𝜁𝑖. Then, 𝑈𝑍𝑇 is our low-rank
approximation to the discrete analogue of Φ. One small difference in these equations
is we have not explicitly included the mean of Φ; this may be included as an additional
column in 𝑈 and a column of ones in 𝑍.

It is here we note that though stochastic differential equations have been our
motivation, our low-rank approximation applies equally as well to a deterministic
case in, for instance, matrix differential equations or two-dimensional time-dependent
partial differential equations. Instead of thinking of Ω as a stochastic event space,
we may replace it with another physical space 𝒟̃. The expectation operator can
be thought of as an inner product weighted by a probability measure; so in the
deterministic case, the expectation operator just becomes an inner product over 𝒟̃.
We’ve already mentioned that the proper orthogonal decomposition is the stochastic
analogue of separation of variables, so this is not a large intellectual leap. As we
will see in the thesis, the interpretation of 𝒟 and Ω are unimportant to our analysis
and may be abstracted away. Now, we have a system of nonlinear matrix differential
equations, and a key question that remains is how to integrate the equations. Should
we hold the right-hand sides constant and integrate 𝑈̇ and 𝑍̇ simultaneously? Should
we fix 𝑍 and integrate 𝑈̇ followed by fixing 𝑈 and integrating 𝑍̇ in an alternating
pattern? For the most efficient and accurate schemes, perhaps we should do something
different altogether.

In this thesis, we discuss time-integration schemes for the discrete dynamically
orthogonal equations. Restricting the rank of the solution introduces a new type
of numerical error when integrating, referred to as retraction error, and concepts
from differential geometry are especially helpful in our analysis. We will assume no
prior knowledge of differential geometry, so chapter one will introduce key concepts
and definitions as they relate to the dynamically orthogonal equations. Chapter two
focuses on retractions, the essential elements in time-integration schemes. Several
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novel algorithms are introduced to efficiently project onto the low-rank manifold.
Furthermore, a new set of retractions, which we refer to as perturbative retractions, is
derived that converges to the projection operator, and each perturbative retraction
exhibits high-order convergence to the best low-rank approximation of the full-rank
solution. Chapter three goes over several applications of these retractions including
matrix addition, real-time data compression, and several differential equations. A
comparative analysis of the retractions is given in each case. Lastly, the strengths
and weaknesses of the retractions are given in the conclusion, and future research
directions are discussed.
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Chapter 1

The low-rank manifold and its
tangent space

1.1 Introductory definitions from differential geom-

etry

We’ll start with some basic definitions and then introduce more terminology as
needed. First, we loosely define what differential geometry is. Many are familiar with
Euclidean geometry, which can be thought of the study of the structure of “flat,” i.e.
non-curved, space. It’s what is taught in middle school and high school. Riemannian
geometry generalizes this study to curved spaces so long as two features hold, which
will be more formally defined below. Riemannian geometry is one branch of the much
broader discipline of differential geometry, which covers the use of calculus and linear
algebra on geometric structures.

Now, the central topological structure of interest is the manifold. It can be thought
of as the generalization of curves and surfaces and must locally resemble a Euclidean,
or “flat,” space [21]. For our purposes, this is not at all restrictive since by the Nash
embedding theorem, every Riemannian manifold can be isometrically embedded into a
Euclidiean space, where isometric means that the distances of all paths in the manifold
are preserved given some metric [22]. In one dimension, examples of manifolds are
curves such as lines and circles. In two dimensions, examples include surfaces such
as planes, ellipsoids, spheres, etc. We will be particularly interested in embedded
manifolds, or submanifolds, which are manifolds that exist in some higher-dimensional
space. Henceforth, in this thesis when we say “manifold,” we are referring to a an
embedded manifold unless otherwise specified. To define a smooth manifold, we first
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Figure 1-1: Tangent & affine tangent spaces of a sphere in R3

need to define a graph, and for both definitions we refer to [21].

Definition 1.1.1. A graph of a function 𝑓 : R𝑛 → R𝑚 takes a set of pairs (𝑥, 𝑦) ∈
(R𝑛 ×R𝑚) such that 𝑓(𝑥) = 𝑦.

Though seemingly abstract, we are quite familiar with graphs in two dimensions,
where we plot univariate functions. For example, the function 𝑓(𝑥) = 𝑥3 has the
graph with the set of pairs (𝑥, 𝑥3), and may be plotted with the first coordinate, 𝑥,
on the 𝑥-axis and the second coordinate, 𝑥3, on the 𝑦-axis.

Definition 1.1.2. M ⊂ R𝑛 is a smooth, 𝑘-dimensional manifold if it is locally the
graph of a 𝐶1 mapping expressing 𝑛−𝑘 variables as functions of the other 𝑘 variables.

Above, 𝐶1 refers to the class of functions that are at least once continuously differ-
entiable. This implies that the graph of a 𝑘-dimensional smooth manifold is a set of
pairs (𝑥, 𝑦) ∈ (R𝑛−𝑘 ×R𝑘).

From [23], we adapt the following definition of a tangent space.

Definition 1.1.3. The tangent space 𝒯𝑋M at point 𝑋 ∈M is the set of all vectors
tangent to M at 𝑋.

Here, the notion of a vector may be generalized, and later in this thesis we’ll consider
a matrix to be a generalized vector. The tangent space is a vector space with the
same dimension as the manifold; hence, the origin is always included. We often want
to define the affine tangent space 𝑋 + 𝒯𝑋M𝑟 at 𝑋, which, instead of including the
origin, includes the point 𝑋.
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Figure 1-2: Tangent bundle of a circle in R2 (adapted from [24])

Definition 1.1.4. The tangent bundle 𝒯M is the disjoint union of all tangent spaces
of M .

𝒯M =
⨆︁

𝑋∈M

𝒯𝑋M (1.1)

Next, adapted from [25], we have the formal definition of a Riemannian metric.

Definition 1.1.5. Given a smooth manifold M , a Riemannian metric 𝑔 on M is a
mapping that associates with each 𝑋 ∈M an inner product 𝑔𝑋 : 𝒯𝑋M𝑟×𝒯𝑋M𝑟 → R

which is differentiable on an open set of M .

Finally, we can define a Riemannian manifold [25].

Definition 1.1.6. A Riemannian manifold is a real, smooth manifold with a given
Riemannian metric.

We note here that a Hermitian manifold is the complex analogue to a Riemannian
manifold, which, instead of assigning a differentiable, real, positive-definite inner
product to the tangent space of each point on the manifold, assigns a differentiable,
Hermitian inner product.
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1.2 Parameterizing the low-rank manifold

Though numerical schemes may seem distant from the field of differential geome-
try, there has been a surge of interest in connecting the two in the recent past. The
optimization community has used Riemannian geometry to develop new methods ap-
plied to manifolds of matrices. This allows for a more efficient search in a constrained
setting where we only consider a particular class of matrices [26, 27, 28, 29]. More
directly applicable to stochastic PDEs is the use of Riemannian geometry for initial
value problems. In particular, we are interested in methods that restrict the solution
to a low-rank manifold.

To be precise, we first state the definition of the rank of a matrix 𝑋 ∈ R𝑚×𝑛, and
we’ll follow [30] for this definition and the upcoming discussion of the singular value
decomposition.

Definition 1.2.1. The rank 𝑟 of matrix 𝑋, denoted rank(𝑋), is the smallest number
such that there exists a decomposition

𝑋 = 𝑈𝑍𝑇 , 𝑈 ∈ R𝑚×𝑟, 𝑍 ∈ R𝑛×𝑟.

Alternatively, the rank of matrix 𝑋 is the maximal number of linearly independent
columns of 𝑋 or the dimension of the column space of 𝑋. Note that the decomposition
above is not unique: one only needs to consider an orthogonal transformation 𝑃

applied as follows.

𝑈̃ = 𝑈𝑃, 𝑍 = 𝑍𝑃

⇒ 𝑋 = 𝑈̃𝑍𝑇

These transformations give equivalent results [31], and the decomposition always
exists, yielding the following lemma [32, 20]. Henceforth, let R𝑛×𝑟

* denote {𝐴 ∈
R𝑛×𝑟 : rank(𝐴) = 𝑟}. Furthermore, let 𝒱𝑚,𝑟 denote the Stiefel manifold, defined
below.

𝒱𝑚,𝑟 =
{︀
𝑌 ∈ R𝑚×𝑟 : 𝑌 𝑇𝑌 = 𝐼

}︀
.

Lemma 1.2.1. Any matrix 𝑋 ∈ M𝑟 can be decomposed as 𝑋 = 𝑈𝑍𝑇 , where 𝑈 ∈
𝒱𝑚,𝑟 and 𝑍 ∈ R𝑛×𝑟

* . This decomposition is unique up to an orthonormal rotation
matrix 𝑄, implying that 𝑄𝑇𝑄 = 𝑄𝑄𝑇 = 𝐼. Moreover, if 𝑈1, 𝑈2 ∈ 𝒱𝑚,𝑟 and 𝑍1, 𝑍2 ∈
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R𝑛×𝑟
* (implying rank(𝑍1) = rank(𝑍2) = 𝑟), then

𝑈1𝑍
𝑇
1 = 𝑈2𝑍

𝑇
2 ⇐⇒ ∃𝑄 : 𝑈1 = 𝑈2𝑄, 𝑍1 = 𝑍2𝑄. (1.2)

One way of obtaining such a low-rank approximation to a matrix 𝑋 is via the
singular value decomposition (SVD). Suppose rank(𝑋) ≤ 𝑘 for some 𝑘 ∈ R. Then,
𝑋 may be decomposed as follows.

𝑋 = 𝑈Σ𝑉 𝑇 =
𝑘∑︁

𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖

Above, 𝑢𝑖 are orthonormal vectors that form the columns of 𝑈 ∈ R𝑚×𝑘, 𝑣𝑖 are or-
thonormal vectors that form the columns of 𝑉 ∈ R𝑛×𝑘, and Σ ∈ R𝑘×𝑘 is a diagonal
matrix with entries 𝜎𝑖 ≥ 0. The number of nonzero singular values corresponds to
the rank of matrix 𝑋. If we order the singular values, 𝜎𝑖, from greatest to least, we
can write an approximation 𝑋𝑟 to 𝑋 as follows for 𝑟 < 𝑘.

Theorem 1.2.1. Let 𝜎1 ≥ ... ≥ 𝜎𝑘 ≥ 0 be the singular values of a matrix 𝑋. For
any 𝑟 < 𝑘, the truncated SVD

𝑋𝑟 =
𝑟∑︁

𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖

provides the best approximation to 𝑋 in the Frobenius norm. Furthermore,

||𝑋 −𝑋𝑟||2𝐹 =
𝑘∑︁

𝑖=𝑟+1

𝜎2
𝑖 ,

and if 𝜎𝑟 > 𝜎𝑟+1, then 𝑋𝑟 is the unique best approximation of rank at most 𝑟.

This is known as the Eckart-Young-Mirsky theorem [33, 34, 35]. In short, it states that
the best approximation with a lower rank to a matrix 𝑋 is given by truncating the
singular value decomposition of 𝑋. This is used in the statistics community for dimen-
sionality reduction in principal component analysis. Taking 𝑈 =

[︁
𝑢1 𝑢2 · · · 𝑢𝑟

]︁
and 𝑍 =

[︁
𝜎1𝑣1 𝜎2𝑣2 · · · 𝜎𝑟𝑣𝑟

]︁
will then yield a low-rank approximation of the

form 𝑋 = 𝑈𝑍𝑇 , and 𝑈𝑇𝑈 = 𝐼.
It is clear that for 𝑟 ≪ 𝑚 or 𝑟 ≪ 𝑛, it is beneficial to store 𝑋 as the pair (𝑈,𝑍)

with the bilinear map (𝑈,𝑍)→ 𝑈𝑍𝑇 since the pair requires the storage of (𝑚 + 𝑛)𝑟

numbers rather than 𝑚𝑛 numbers. It is this fact that motivates the use of low-
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rank approximations; when 𝑚 and/or 𝑛 are extremely large, the best feasible way to
store 𝑋 is through some low-rank decomposition. And if we can only store low-rank
approximations to 𝑋, then we would like to restrict solutions of our problem to the
low-rank manifold. In addition, by restricting solutions to the low-rank manifold,
each computational step or basic linear algebra operation becomes much cheaper to
compute.

Definition 1.2.2. The manifold of 𝑚×𝑛 real matrices of rank 𝑟 is denoted as follows.

M𝑟 = {𝑋 ∈ R𝑚×𝑛 : rank(𝑋) = 𝑟}

From [30], we have that dim(M𝑟) = (𝑚 + 𝑛 − 𝑟)𝑟, and that M𝑟 is a 𝐶∞ smooth
embedded submanifold of R𝑚×𝑛.

1.3 Parameterizing the tangent space

In this section, we show how to paramterize any matrix of the tangent space of
some point 𝑋 ∈ M𝑟. Koch and Lubich showed how to do so for decompositions of
the form 𝑈𝑆𝑉 𝑇 in [19], and Feppon and Lermusiaux derived similar equations for
decompositions of the form 𝑈𝑍𝑇 [20]. Here, we will follow the works above to obtain
equations for the tangent space of a low-rank manifold, and in the next section we will
define how to project onto the tangent space as well as how to define the space normal
to the tangent space. In the process of doing so, we will introduce generalizations of
the derivative, which will also be useful in the sections that follow.

To build some intuition, we’ll first consider some toy problems. Take a curve 𝑆1

defined by 𝑓1 : R→ R. Say we are given a point 𝑥1, and we would like to find the set
of vectors that are tangent to 𝑆1 at (𝑥1, 𝑓1(𝑥1)). That is, we seek the affine tangent
space of 𝑆1 at 𝑥1. From calculus, we know that the vector must have slope 𝑑𝑓1(𝑥1)

𝑑𝑥
.

Hence, we can write the tangent space as follows.

𝒯 (𝑥1, 𝑓1(𝑥1)) =

{︂[︁
𝛿𝑥 𝑑𝑓1(𝑥1)

𝑑𝑥
𝛿𝑥
]︁𝑇

: 𝛿𝑥 ∈ R
}︂

Hence, 𝑑𝑓(𝑥1)
𝑑𝑥

defines the tangent space. Generalizing this idea, imagine a surface 𝑆2

defined by 𝑓2 : R2 → R embedded in R3. Now suppose we are given a point (𝑥2, 𝑦2),
and we would like to find the expression for the tangent plane 𝒯 (𝑥2, 𝑦2, 𝑓2(𝑥2, 𝑦2)). In
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a similar fashion, we can write the following.

𝒯 (𝑥2, 𝑦2, 𝑓2(𝑥2, 𝑦2)) =

{︂[︁
𝛿𝑥 𝛿𝑦 𝜕𝑓2(𝑥2,𝑦2)

𝜕𝑥
𝛿𝑥 + 𝜕𝑓2(𝑥2,𝑦2)

𝜕𝑦
𝛿𝑦
]︁𝑇

: 𝛿𝑥, 𝛿𝑦 ∈ R
}︂

=

{︂[︁
𝛿1 𝛿2 𝛿𝑇∇𝑓2(𝑥2, 𝑦2)

]︁𝑇
: 𝛿 ∈ R2

}︂
Above, 𝛿1 and 𝛿2 refer to the first and second elements of 𝛿, respectively. Moreover,
𝛿 defines the variation in the independent variables, and 𝛿𝑇∇𝑓 defines the variation
in the dependent variables. Hence, we see that the gradient of 𝑓 completely defines
the tangent plane; often times the variation in the independent variables is omitted,
and the tangent space is written simply as follows.

𝒯 𝑓2(𝑥2, 𝑦2) =
{︀
𝛿𝑇∇𝑓2(𝑥2, 𝑦2) : 𝛿 ∈ R2

}︀

To generalize this further, we need to introduce generalizations to the derivative.
We already know that the gradient generalizes the univariate derivative to multi-
variable functions. One step further is to generalize the gradient to vector-valued

functions. For a function 𝐹 : R𝑛 → R𝑚 with 𝐹 =
[︁
𝑓1 𝑓2 · · · 𝑓𝑚

]︁𝑇
, the Jacobian

𝐽 is defined as

𝐽 =
[︁

𝜕𝐹
𝜕𝑥1

𝜕𝐹
𝜕𝑥2

· · · 𝜕𝐹
𝜕𝑥𝑛

]︁
=

⎡⎢⎢⎣
𝜕𝑓1
𝜕𝑥1

· · · 𝜕𝑓1
𝜕𝑥𝑛... . . . ...

𝜕𝑓𝑚
𝜕𝑥1

· · · 𝜕𝑓𝑚
𝜕𝑥𝑛

⎤⎥⎥⎦ .

As expected, the Jacobian will define a tangent space to vector-valued multivariable
functions. We need to go one step further, though, since we want to deal with matrix
functions. The generalization to the Jacobian is known as the Fréchet derivative.
From [36], we can define the Fréchet derivative of 𝑓 , denoted 𝐷𝑓 , as follows.

𝑓(𝑥 + 𝑘) = 𝑓(𝑥) + (𝐷𝑓(𝑥))𝑘 + 𝑜 (||𝑘||)

Above, (𝐷𝑓(𝑥))𝑘 is a generalized matrix-vector product of 𝐷𝑓(𝑥) and 𝑘, and “little-o”
notation describes the asymptotic behavior of a function, defined as follows.

𝑓(𝑥) = 𝑜(𝑔(𝑥)) as 𝑥→ 𝑎 ⇐⇒ lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= 0

That is, the growth in 𝑓 is bounded by the growth of 𝑔. In essentially all of our
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analysis, we implicitly let 𝑎 above be equal to zero as we are interested in the limit
when the step size of the numerical scheme goes to zero. Alternatively, the Fréchet
derivative may be defined if there exists a bounded linear operator 𝐷 of 𝑓 at 𝑥 such
that

lim
||𝑘||→0

||𝑓(𝑥 + 𝑘)− 𝑓(𝑥)−𝐷𝑓(𝑥)||
||𝑘||

= 0.

Again, in the finite-dimensional case with vectors, the Fréchet derivative is simply
the Jacobian. Without proof, we’ll state that if the Fréchet derivative exists for a
function 𝑓 at a point 𝑥, then it is unique [36]. Hence, the Fréchet derivative of a
function gives the tangent space of very general functions.

We are also interested in the generalization to the directional derivative. In vector
spaces, the directional derivative gives how a field will change in a particular direction.
The generalization is known as the Gateaux derivative, or Gateaux differential, which
we’ll denote as 𝐷𝑘 for direction 𝑘.

𝐷𝑘𝑓(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ𝑘)− 𝑓(𝑥)

ℎ
=

𝑑

𝑑ℎ
𝑓(𝑥 + ℎ𝑘)

⃒⃒⃒⃒
ℎ=0

(1.3)

Again without proof, we’ll note that the Fréchet derivative exists at 𝑥 = 𝑎 if and only
if all Gateaux derivatives are continuous functions of 𝑥 at 𝑥 = 𝑎 [36]. This means
that there exist Gateaux differentiable functions that are not Fréchet differentiable
as Fréchet differentiability requires Gateaux differentiability in all possible directions.
If, however, both exist, then we have the following.

𝐷𝑘𝑓 = (𝐷𝑓)𝑘

Now we have the basic tools to understand the tangent space. We’ll loosely follow
the work of [19] and [20] directly below. Consider the low-rank decomposition of
𝑋 ∈ R𝑚×𝑛.

𝑋 = 𝑈𝑍𝑇

For 𝑋 of rank 𝑟, we have that 𝑈 ∈ R𝑚×𝑟 and 𝑍 ∈ R𝑛×𝑟. From definitions 1.2.1
and 1.2.2, we can write any 𝑋 ∈ M𝑟 as 𝑋 = 𝑈𝑍𝑇 , which is defined by the bilinear
map (𝑈,𝑍) → 𝑈𝑍𝑇 . To obtain the tangent space of the manifold, we would like
the Fréchet derivative of the bilinear map. But, it’s easier to compute the Gateaux
derivative of the bilinear map; if we can define the Gateaux derivative in all directions,
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this gives us equivalent information to the Fréchet derivative. We use the following
well-known lemma.

Lemma 1.3.1. Consider an arbitrary linear map 𝑔 : 𝑉 ×𝑊 → 𝑌 . The Gateaux
derivative of 𝑔 in directions 𝑘1, 𝑘2 is as follows.

𝐷𝑘1,𝑘2𝑔(𝑣, 𝑤) = 𝑔(𝑣, 𝑘2) + 𝑔(𝑘1, 𝑤)

Proof.

𝐷𝑘1,𝑘2𝑔(𝑣, 𝑤) =
𝑑

𝑑ℎ
𝑔(𝑣 + ℎ𝑘1, 𝑤 + ℎ𝑘2)

⃒⃒⃒⃒
ℎ=0

From bilinearity, we have

𝑔(𝑣 + ℎ𝑘1, 𝑤 + ℎ𝑘2) = 𝑔(𝑣, 𝑤) + ℎ𝑔(𝑘1, 𝑤) + ℎ𝑔(𝑣, 𝑘2) + ℎ2𝑔(𝑘1, 𝑘2). (1.4)

Hence,

𝐷𝑘1,𝑘2𝑔(𝑣, 𝑤) =
𝑑

𝑑ℎ

[︀
𝑔(𝑣, 𝑤) + ℎ𝑔(𝑘1, 𝑤) + ℎ𝑔(𝑣, 𝑘2) + ℎ2𝑔(𝑘1, 𝑘2)

]︀⃒⃒⃒⃒
ℎ=0

= 𝑔(𝑘1, 𝑤) + 𝑔(𝑣, 𝑘2).

Now, for this particular bilinear map, 𝑔(𝑈,𝑍) = 𝑈𝑍𝑇 , and we have that all
Gateaux derivatives 𝛿𝑋 ∈ 𝒯𝑋M𝑟 take the following form

𝛿𝑋 = 𝑈𝛿𝑇𝑍 + 𝛿𝑈𝑍
𝑇

for any 𝛿𝑈 ∈ R𝑚×𝑟, 𝛿𝑍 ∈ R𝑛×𝑟. Hence, we can define the tangent spaces as follows.

𝒯𝑋M𝑟 =
{︀
𝑈𝛿𝑇𝑍 + 𝛿𝑈𝑍

𝑇 : 𝛿𝑈 ∈ R𝑚×𝑟, 𝛿𝑍 ∈ R𝑛×𝑟
}︀

The form above, however, is redundant. We could choose (𝛿′𝑈 , 𝛿
′
𝑍) ̸= (𝛿𝑈 , 𝛿𝑍) but

still have 𝑈𝛿′𝑇𝑍 + 𝛿′𝑈𝑍
𝑇 = 𝑈𝛿𝑇𝑍 + 𝛿𝑈𝑍

𝑇 . Furthermore, we would like to have 𝑈 semi-
orthonormal (𝑈𝑇𝑈 = 𝐼) and have tangent matrices that preserve this relationship.
Semi-orthonormality of 𝑈 is equivalent to insisting that 𝑈 ∈ 𝒱𝑚,𝑟, recalling that 𝒱𝑚,𝑟

denotes the Stiefel manifold of real 𝑚× 𝑟 matrices.
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Insisting 𝑈 stays in 𝒱𝑚,𝑟 is equivalent to enforcing that the Gateaux derivative of
𝑈𝑇𝑈 in the direction of 𝛿𝑈 is equal to zero; that way, 𝑈𝑇𝑈 stays constant and equal
to 𝐼. From lemma 1.3.1, we need

𝛿𝑇𝑈𝑈 + 𝑈𝑇 𝛿𝑈 = 0.

Enforcing this condition is not restrictive enough to remove all of the redundant
degrees of freedom. Instead, we can parameterize the tangent space by restricting the
tangent vectors so that 𝑈𝑇 𝛿𝑈 = 0. Clearly, this would imply that 𝑈 remains in 𝒱𝑚,𝑟.
This is known as the dynamically orthogonal condition, and [20] shows that this is a
unique parameterization.

We can define the tangent space of 𝒱𝑚,𝑟 at 𝑈 .

𝒯𝑈𝒱𝑚,𝑟 =
{︀
𝛿𝑈 ∈ R𝑚×𝑟 : 𝛿𝑇𝑈𝑈 + 𝑈𝑇 𝛿𝑈 = 0

}︀
=
{︀
𝛿𝑈 ∈ R𝑚×𝑟 : 𝑈𝑇 𝛿𝑈 ∈ so(𝑟)

}︀
Above, so(𝑟) denotes the set of skew-symmetric, real 𝑟 × 𝑟 matrices. Similarly, we
can define the DO space, 𝒰𝑚,𝑟, as follows.

𝒰𝑚,𝑟 =
{︀
𝛿𝑈 ∈ R𝑚×𝑟 : 𝑈𝑇 𝛿𝑈 = 0

}︀
⊂ 𝒯𝑈𝒱𝑚,𝑟 (1.5)

With this, we can rewrite the tangent space to the manifold as follows.

𝒯𝑋M𝑟 =
{︀
𝑈𝛿𝑇𝑍 + 𝛿𝑈𝑍

𝑇 : 𝛿𝑈 ∈ 𝒰𝑚,𝑟, 𝛿𝑍 ∈ R𝑛×𝑟
}︀

(1.6)

Note that 𝒯𝑋M𝑟 is fully parameterized by (𝛿𝑈 , 𝛿𝑍). Furthermore, the linear map

𝒰𝑚,𝑟 ×R𝑛×𝑟 → 𝒯𝑋M𝑟

(𝛿𝑈 , 𝛿𝑍)→ 𝑈𝛿𝑇𝑍 + 𝛿𝑈𝑍
𝑇 ≡ 𝛿𝑋

defines an isomorphism (a map between structures that may be inverted). One direc-
tion of this map is already clear; below, we will derive the inverse map, going from
𝛿𝑋 → (𝛿𝑈 , 𝛿𝑍).

Theorem 1.3.1. Given 𝑋 = 𝑈𝑍𝑇 ∈ M𝑟 and 𝛿𝑋 ∈ 𝒯𝑋M𝑟, (𝛿𝑈 , 𝛿𝑍) ∈ 𝒰𝑚,𝑟 × R𝑛×𝑟

are given as

𝛿𝑈 = (𝐼 − 𝑈𝑈𝑇 )𝛿𝑋𝑍(𝑍𝑇𝑍)−1, 𝛿𝑍 = 𝛿𝑇𝑋𝑈.
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Figure 1-3: Graphical intuition for projection

Proof. From the definition of 𝛿𝑋 , we can easily find an expression for 𝛿𝑍 .

𝛿𝑋 = 𝛿𝑈𝑍
𝑇 + 𝑈𝛿𝑇𝑍

⇒ 𝑈𝑇 𝛿𝑋 =��
��*

0
𝑈𝑇 𝛿𝑈𝑍

𝑇 +��
��*𝐼

𝑈𝑇𝑈𝛿𝑇𝑍

⇒ 𝛿𝑇𝑋𝑈 = 𝛿𝑍

Now, we seek 𝛿𝑈 ; we first take the orthogonal projection of 𝛿𝑋 on 𝑈 , given by the
operator (𝐼 − 𝑈𝑈𝑇 ).

(𝐼 − 𝑈𝑈𝑇 )𝛿𝑋 = 𝑈𝛿𝑇𝑍 + 𝛿𝑈𝑍
𝑇 − 𝑈𝑈𝑇 (𝑈𝛿𝑇𝑍 + 𝛿𝑈𝑍

𝑇 )

= 𝑈𝛿𝑇𝑍 + 𝛿𝑈𝑍
𝑇 − 𝑈𝛿𝑇𝑍

= 𝛿𝑈𝑍
𝑇

Now, to get rid of the 𝑍𝑇 on the RHS, we multiply by 𝑍 and then the resulting matrix
inverse. Note that this is just the Moore–Penrose right inverse.

𝛿𝑈 = (𝐼 − 𝑈𝑈𝑇 )𝛿𝑋𝑍(𝑍𝑇𝑍)−1

With this, we have a bijective map between (𝑈,𝑍) and and element in the tangent
space.
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1.4 Projection onto the tangent space

Now, we may derive the differential equations for a dynamical system. Suppose
we have the following initial value problem.

𝜕𝐴(𝑡)

𝜕𝑡
≡ 𝐴̇(𝑡) = L (𝑡, 𝐴(𝑡)) (1.7)

𝐴(0) = 𝐴0 (1.8)

We seek

𝑋̇(𝑡) ∈ 𝒯𝑋(𝑡)M𝑟 (1.9)

𝑋(0) = 𝑋0 ∈M𝑟 (1.10)

such that ||𝑋̇(𝑡) − L (𝑡)|| and ||𝐴0 − 𝑋0|| are minimized in some norm (which for
us will be the Frobenius norm). We seek 𝑋̇ ∈ 𝒯𝑋(𝑡)M𝑟 so that 𝑋(𝑡) remains on the
low-rank manifold. Note that minimizing ||𝑋̇(𝑡) − L (𝑡)|| such that (1.9) holds is
equivalent to the condition below [30].

⟨𝑋̇ −L , 𝛿𝑋⟩ = 0 ∀𝛿𝑋 ∈ 𝒯𝑋M𝑟 (1.11)

Above, ⟨·, ·⟩ denotes the inner product. This is a typical Galerkin condition insisting
that the residual 𝑋̇ − L is orthogonal to the tangent space (or every element 𝛿𝑋

in the tangent space). This forces, instantaneously, the best approximation to L

possible in the tangent space.

Many papers start from (1.9) without further justification. However, for pedagog-
ical purposes, we’ll provide further motivation as to why we seek a low-rank solution
𝑋(𝑡) whose derivative in the tangent space attempts to match L . The best ap-
proximation to the solution 𝐴(𝑡) to the initial value problem (1.7, 1.8) would be the
projection of 𝐴(𝑡) onto the low-rank manifold at all times 𝑡. This notion may actually
be used as the definition of the projection operator, PM𝑟 . More precisely, for some
arbitrary matrix 𝑊 ∈ R𝑛×𝑚,

PM𝑟𝑊 = arg min
𝑊̃∈M𝑟

||𝑊 − 𝑊̃ ||. (1.12)
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Figure 1-4: Orthogonal projection of 𝑋 + L onto affine tangent space of manifold

Back to our problem, we seek 𝑋 such that

𝑋(𝑡) = PM𝑟𝐴(𝑡). (1.13)

From here, we can deduce the initial condition for (1.10): 𝑋0 = PM𝑟𝐴0. But, that’s
as far as we can get so easily since we don’t a priori know the solution 𝐴(𝑡) for 𝑡 > 0.
However, we do know how 𝐴(𝑡) changes with time, so we differentiate (1.13) with
respect to time.

𝜕𝑋

𝜕𝑡
=

𝜕

𝜕𝑡
PM𝑟𝐴(𝑡)

To proceed, we’ll follow [20, p. 526]. Consider the definition of the derivative.

𝜕

𝜕𝑡
PM𝑟𝐴(𝑡) = lim

ℎ→0

PM𝑟𝐴(𝑡 + ℎ)−PM𝑟𝐴(𝑡)

ℎ

Now, we can rewrite 𝐴(𝑡 + ℎ) using our knowledge of its derivative.

𝜕

𝜕𝑡
PM𝑟𝐴(𝑡) = lim

ℎ→0

PM𝑟

[︁
𝐴(𝑡) +

∫︀ 𝑡+ℎ

𝑡
𝜕𝐴(𝑠)
𝜕𝑠

𝑑𝑠
]︁
−PM𝑟𝐴(𝑡)

ℎ
(1.14)

= lim
ℎ→0

PM𝑟 [𝐴(𝑡) + ℎL (𝑡, 𝐴(𝑡))]−PM𝑟𝐴(𝑡)

ℎ
(1.15)

Above, we have used the fact that in the limit, the integral can be expressed as
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ℎL (𝑡, 𝐴(𝑡)) – think of this as approximating the integral in a Riemannian sense,
using one box to approximate the area under the curve. Now, it’s clear that this is
just the Gateaux derivative of the projection operator in the direction of L (𝑡, 𝐴(𝑡))

(see the definition of the Gateaux derivative, (1.3)). In other words, our expression
is equivalent to how the projection of 𝐴 changes in the direction of L .

𝜕

𝜕𝑡
PM𝑟𝐴(𝑡) = 𝐷L (𝑡,𝐴(𝑡))PM𝑟𝐴(𝑡)

It is known that at a point 𝑋 ∈ M𝑟, 𝐷PM𝑟 = P𝒯𝑋M𝑟 [37, Lemma 4]. Intuitively,
this is the case since we consider only an infinitesimal step in the L direction; then,
since the manifold is smooth, it may be approximated (arbitrarily well as the step
gets smaller and smaller) as a tangent space. How does the projection of 𝐴(𝑡) change
in the direction of L on a tangent space? Well, since projecting onto tangent spaces
is a linear process, the change in the projection onto the manifold is equal to the
projection of L onto the tangent space. It may, in fact, be clearer if we go back to
(1.15).

lim
ℎ→0

PM𝑟 [𝐴(𝑡) + ℎL (𝑡, 𝐴(𝑡))]−PM𝑟𝐴(𝑡)

ℎ

= lim
ℎ→0

P𝒯𝑋M𝑟 [𝐴(𝑡) + ℎL (𝑡, 𝐴(𝑡))𝑑𝑠]−P𝒯𝑋M𝑟𝐴(𝑡)

ℎ

Here, we’ve just used the fact that the manifold may be approximated as a tangent
space in the limit. Next, we’ll use the linearity of projection onto linear spaces.

= lim
ℎ→0

P𝒯𝑋M𝑟𝐴(𝑡) + P𝒯𝑋M𝑟ℎL (𝑡, 𝐴(𝑡))−P𝒯𝑋M𝑟𝐴(𝑡)

ℎ

= lim
ℎ→0

ℎP𝒯𝑋M𝑟L (𝑡, 𝐴(𝑡))

ℎ

= P𝒯𝑋M𝑟L (𝑡, 𝐴(𝑡))

Hence, we have shown that we seek to solve 𝑋̇ = P𝒯𝑋M𝑟L (𝑡, 𝐴(𝑡)). Depending on
the problem, we may not know 𝐴(𝑡), so if we use 𝑋 to approximate 𝐴, we have 𝑋̇ =

P𝒯𝑋M𝑟L (𝑡,𝑋(𝑡)). This is known as the Dirac-Frenkel time-dependent variational
principle [15, 16]. In either case, this is equivalent to satisfying (1.11).

Theorem 1.4.1. For 𝑋 = 𝑈𝑍𝑇 ∈M𝑟, 𝑈 ∈ 𝒰𝑚,𝑟, and 𝑍 ∈ R𝑛×𝑟
* , (1.11) is equivalent
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to

𝑋̇ = 𝑈̇𝑍𝑇 + 𝑈𝑍̇𝑇 ,

where

𝑈̇ = P⊥
𝑈 L𝑍(𝑍𝑇𝑍)−1

𝑍̇ = L 𝑇𝑈

with P⊥
𝑈 = 𝐼 − P𝑈 , P𝑈 = 𝑈𝑈𝑇 , P⊥

𝑍 = 𝐼 − P𝑍 , and P𝑍 = 𝑍(𝑍𝑇𝑍)−1𝑍𝑇 .
For a matrix 𝐴, we’ll define P⊥

𝒯𝑋M𝑟
(𝐴) = P⊥

𝑈𝐴P⊥
𝑍 , and, naturally, P𝒯𝑋M𝑟(𝐴) =

𝐼 −P⊥
𝒯𝑋M𝑟

(𝐴). Then, we can express 𝑋̇ as follows.

𝑋̇ = P𝒯𝑋M𝑟(L )

Proof. Since we require 𝑋̇, 𝛿𝑋 ∈ 𝒯𝑋M𝑟, by (1.6), we let 𝑋̇ = 𝑈̇𝑍𝑇 + 𝑈𝑍̇𝑇 and
𝛿𝑋 = 𝛿𝑈𝑍

𝑇 + 𝑈𝛿𝑇𝑍 for some 𝑈̇ , 𝛿𝑈 ∈ 𝒰𝑚,𝑟 and 𝑍̇, 𝛿𝑍 ∈ R𝑛×𝑟.

⟨𝑈̇𝑍𝑇 + 𝑈𝑍̇𝑇 −L , 𝛿𝑈𝑍
𝑇 + 𝑈𝛿𝑇𝑍⟩ = 0 (1.16)

In the Frobenius norm with real matrices 𝐴 and 𝐵, ⟨𝐴,𝐵⟩ = Tr(𝐴𝑇𝐵) = Tr(𝐵𝑇𝐴)

where Tr(·) denotes the trace. Note that the trace is a linear mapping. Since this
must be true for all 𝛿𝑈 , we may set it to zero and we’ll have the following.

Tr(𝑍��
��*0

𝑈̇𝑇𝑈𝛿𝑇𝑍) + Tr(𝑍̇��
��*𝐼

𝑈𝑇𝑈𝛿𝑇𝑍) = Tr(L 𝑇𝑈𝛿𝑇𝑍)

⇒ Tr(𝑍̇𝛿𝑇𝑍) = Tr(L 𝑇𝑈𝛿𝑇𝑍)

Now, we’ll specify 𝛿𝑍 to take the following form.

𝛿𝑍 = 1𝑖𝑗

⇒ (𝛿𝑍)𝑘𝑙 =

⎧⎨⎩1, 𝑘 = 𝑖, 𝑙 = 𝑗

0, otherwise
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Lemma 1.4.1. For a real matrix 𝐴,

Tr(𝐴𝑇1𝑖𝑗) = 𝐴𝑖𝑗

Proof. The proof follows directly from the definition of the trace operation.

Tr(𝐴𝑇1𝑖𝑗) =
∑︁
𝑘𝑙

𝐴𝑘𝑙(1𝑖𝑗)𝑘,𝑙 = 𝐴𝑖𝑗

With lemma 1.4.1, we have the following.

𝑍̇𝑖𝑗 = (L 𝑇𝑈)𝑖𝑗

This is true for all 𝑖, 𝑗, so we have shown that 𝑍̇ = L 𝑇𝑈 . What remains is to find
the expression for 𝑈̇ . This time, we’ll set 𝛿𝑍 = 0 and solve for 𝛿𝑈 .

We require 𝛿𝑈 ∈ 𝒰𝑚,𝑟, and from (1.5), we know this means 𝑈𝑇 𝛿𝑈 = 0. Let
𝛿𝑌 ∈ R𝑚×𝑛 be some matrix. Then, we’ll let 𝛿𝑈 = P⊥

𝑈 𝛿𝑌 . Note that immediately, we
see 𝛿𝑈 ∈ 𝒰𝑚,𝑟 since 𝑈𝑇 𝛿𝑈 = 𝑈𝑇 (𝐼 − 𝑈𝑈𝑇 )𝛿𝑌 = 𝑈𝑇 𝛿𝑌 − 𝑈𝑇 𝛿𝑌 = 0. We’ll also let
𝛿𝑍 = 0.

⟨𝑈̇𝑍𝑇 + 𝑈𝑍̇𝑇 −L ,P⊥
𝑈 𝛿𝑌𝑍

𝑇 ⟩ = 0

Using the definition of the Frobenius product, we obtain the following.

Tr(𝑍𝑈̇𝑇P⊥
𝑈 𝛿𝑌𝑍

𝑇 ) + Tr(𝑍̇����
��:0

𝑈𝑇P⊥
𝑈 𝛿𝑌𝑍

𝑇 ) = Tr(L 𝑇P⊥
𝑈 𝛿𝑌𝑍

𝑇 )

Now, we’ll use the cyclic permutation property of the trace operator, where Tr(𝐴𝐵𝐶)

= Tr(𝐶𝐴𝐵) = Tr(𝐵𝐶𝐴).

Tr(𝑍𝑇𝑍𝑈̇𝑇P⊥
𝑈 𝛿𝑌 ) = Tr(𝑍𝑇L 𝑇P⊥

𝑈 𝛿𝑌 )

Again, since 𝛿𝑌 ∈ R𝑛×𝑟 is arbitrary, we can set it to 1𝑖𝑗. Applying lemma 1.4.1, we
obtain the following.

(𝑍𝑇𝑍𝑈̇𝑇P⊥
𝑈 )𝑗𝑖 = (𝑍𝑇L 𝑇P⊥

𝑈 )𝑗𝑖
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Again, this is true for all 𝑖, 𝑗. Also note that since 𝑈̇ ∈ 𝒰𝑚,𝑟, 𝑈̇𝑇P⊥
𝑈 = 𝑈̇𝑇−��

��* 0

𝑈̇𝑇𝑈𝑈𝑇 =

𝑈̇𝑇 . Upon inverting the square matrix 𝑍𝑇𝑍, we have shown the following result.

𝑈̇ = P⊥
𝑈 L𝑍(𝑍𝑇𝑍)−1

Simply multiplying out 𝑋̇ = 𝑈̇𝑍𝑇 + 𝑈𝑍̇𝑇 , we now prove the last result.

𝑋̇ = 𝑈̇𝑍𝑇 + 𝑈𝑍̇𝑇

= P⊥
𝑈 L P𝑍 + P𝑈L

= P⊥
𝑈 L P𝑍 + L −P⊥

𝑈 L

= L −P⊥
𝑈 L P⊥

𝑍

= (𝐼 −P⊥
𝒯𝑋M𝑟

)L

= P𝒯𝑋M𝑟L

Another way of completing this proof is using matrix calculus, differentiating
1
2
||𝑈̇𝑍𝑇 + 𝑈𝑍̇𝑇 − L ||2 with respect to 𝑈̇ and 𝑍̇ subject to 𝑈̇𝑇𝑈 = 𝐼, and then

setting the derivatives equal to zero (see appendix C). Nevertheless, we have defined
operators that project onto the tangent and normal spaces of the low-rank manifold.
Hence, as a bonus, we may define the normal space to the low-rank manifold at 𝑋 as
the set of matrices whose normal projection is equal to the matrix itself (i.e. has no
tangent component).

𝒩𝑋M𝑟 =
{︀
𝑁 ∈ R𝑚×𝑛 : P⊥

𝒯𝑋M𝑟
𝑁 = 𝑁

}︀
Another way to view the normal space is to consider tangent vectors in the form (1.6).
As stated in [30], tangent vectors are in the sum of two overlapping linear spaces: the
row space of 𝑍𝑇 and the column space of 𝑈 . So, for a matrix 𝑁 to be in the normal
space, we must have that 𝑁 is not in the row space of 𝑍𝑇 nor in the column space of
𝑈 . So, from [20], we have an equivalent definition of the normal space.

𝒩𝑋M𝑟 =
{︀
𝑁 ∈ R𝑚×𝑛 : 𝑈𝑇𝑁 = 0, 𝑁𝑍 = 0

}︀
To conclude, we’ll write out a formulation to solve the initial motivating problem
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in approximating (1.7, 1.8).

𝑋̇ = P𝒯𝑋M𝑟L (𝑡, 𝐵(𝑡)) (1.17)

𝑋(0) = PM𝑟𝐴0 (1.18)

Above, we’ve introduced the term 𝐵(𝑡) to allow for two cases. When we know 𝐴(𝑡)

(e.g. in data compression, see section 3.2), we set 𝐵(𝑡) = 𝐴(𝑡). When we do not
know 𝐵(𝑡) (e.g. in solving stochastic partial differentials, see section 3.4), we set
𝐵(𝑡) = 𝑋(𝑡). We can expand (1.17) using the equations just derived for the tangent
space, letting 𝑋 = 𝑈𝑍𝑇 .

𝑈̇ = (𝐼 − 𝑈𝑈𝑇 )L𝑍(𝑍𝑇𝑍)−1, 𝑍̇ = L 𝑇𝑈 (1.19)

𝑈(0)𝑍(0)𝑇 = PM𝑟𝐴0 (1.20)

Equation (1.20) can be computed by computing the singular value decomposition
of 𝐴0, letting 𝑈(0) be the left singular vectors, and letting 𝑍(0) equal to the right
singular vectors right multiplied by the singular values. In the next section, we will
address how to solve (1.19).
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Chapter 2

Retractions onto the low-rank
manifold

2.1 Motivation and preliminaries

With projections onto the tangent space defined, retractions (which will be defined
soon) come into play. To motivate this discussion, let’s consider a naive first attempt
at solving (1.19). This is a nonlinear coupled system of matrix ordinary differential
equations. Not only is there nonlinearity in 𝑈 and 𝑍 directly, but L may (and
almost always does) depend on 𝑈 and 𝑍. For now, though, let’s focus on a simple
example from [18]: updating 𝑈 and 𝑍 independently by a forward Euler discretization.
Henceforth, we’ll use a subscript to denote a discrete time index such that 𝑈𝑛 = 𝑈(𝑡𝑛)

for 𝑡𝑛 = 𝑛∆𝑡 (for some ∆𝑡 ∈ R) and similarly for 𝑍, where, without loss of generality,
we’ve assumed our time interval of interest is [0, 𝑇𝑓 ]. We define 𝑈̇ and 𝑍̇ as follows.

∆𝑡𝑈̇ ≡ 𝑈𝑛+1 − 𝑈𝑛 ≈
∫︁ 𝑡𝑛+1

𝑡𝑛

(𝐼 − 𝑈𝑈𝑇 )L𝑍(𝑍𝑇𝑍)−1𝑑𝑡 (2.1)

∆𝑡𝑍̇ ≡ 𝑍𝑛+1 − 𝑍𝑛 ≈
∫︁ 𝑡𝑛+1

𝑡𝑛

L 𝑇𝑈𝑑𝑡 (2.2)

Now, in the continuous limit where ∆𝑡→ 0, it suffices to use (1.19) in defining 𝑈̇

and 𝑍̇ where L is evaluated at time 𝑡𝑛. For non-infinitesimal ∆𝑡, from (1.7) we have
the following.

𝐴(𝑡𝑛+1)− 𝐴(𝑡𝑛) =

∫︁ 𝑡𝑛+1

𝑡𝑛

L (𝑡)𝑑𝑡
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Of course, it is seldom possible to exactly evaluate that integral, so we may use
any number of classic time integration schemes (e.g. Euler, leapfrog, Runge-Kutta,
et cetera) to approximate that integral; we will denote the approximation of that
integral divided by ∆𝑡 as L .

L =
1

∆𝑡

∫︁ 𝑡𝑛+1

𝑡𝑛

L (𝑡)𝑑𝑡 +𝒪(∆𝑡𝑘)

Hence, L may be obtained via a 𝑘th-order time integration scheme, and we may also
assume that any error due to spatial discretization is built into L . So henceforth,
when dealing with discrete time intervals, we will use L instead of L in our analysis,
which gives the following slightly modified definitions for our retractions.

𝑈̇ = (𝐼 − 𝑈𝑈𝑇 )L𝑍(𝑍𝑇𝑍)−1, 𝑍̇ = L
𝑇
𝑈 (2.3)

In our Euler forward retraction, we are assuming that 𝑈̇ and 𝑍̇ are functions of
information known at time 𝑡𝑛 and that L is given. That is, the time stepping is
explicit. With this, consider the next point 𝑋𝑛+1.

𝑋𝑛+1 = 𝑈𝑛+1𝑍
𝑇
𝑛+1 = (𝑈𝑛 + ∆𝑡𝑈̇)(𝑍𝑛 + ∆𝑡𝑍̇)𝑇

= 𝑈𝑛𝑍
𝑇
𝑛 + ∆𝑡

[︁
𝑈𝑛𝑍̇

𝑇 + 𝑈̇𝑍𝑇
𝑛

]︁
+ ∆𝑡2𝑈̇ 𝑍̇𝑇

= 𝑋𝑛 + ∆𝑡P𝒯𝑋M𝑟L⏟  ⏞  
consistent integrator

+ ∆𝑡2𝑈̇ 𝑍̇𝑇⏟  ⏞  
retraction error

The first two components form a consistent integrator. However, we have an 𝒪(∆𝑡2)

error. One may ask why not just exclude the last term in the scheme? But, this is
tricky to do – the term arose naturally from the integration scheme. Simply removing
that term would not allow us to write 𝑋𝑛+1 = 𝑈𝑛+1𝑍

𝑇
𝑛+1 in a factored form, and, in

general, removing the error term would cause 𝑋𝑛+1 to depart from the low-rank
manifold (though there are exceptions). This is intuitive, as taking a finite-sized
(by which we mean not infinitesimally small) step along the affine tangent space will
cause the solution to depart the low-rank manifold since the low-rank manifold has
higher-order curvature. In some sense, this reveals the “purpose” of what we have
called the retraction error: it keeps the solution on the low-rank manifold.

At this point, it is important to recognize that there are four main errors when
integrating along the low-rank manifold. There is time-integration error, spatial dis-
cretization error, model closure error, and manifold curvature error. We are lumping
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our first two errors into L , and the work we present is agnostic to whether or not
L is exact or approximate. Model closure error is somewhat inevitable and arises
due to the truncation of the solution; some of the closure error may be described
via the Dirac-Frenkel time-dependent variational principle, which will be expounded
upon in section 3.3. The manifold curvature error is what we seek to minimize in this
thesis. Because the low-rank manifold has high-order curvature, projecting onto the
affine tangent space ignores high-order curvature, and the methods discussed in this
chapter take the high-order curvature into account. We also re-emphasize that in the
continuous time limit as ∆𝑡→ 0, the manifold curvature error is exactly zero. That
is, the DO equations (1.19) are exact. But when dealing with discrete time, we need
a richer formulation to better advance our low-rank solutions through time.

Using an alternative parameterization of the low-rank manifold elucidates how the
retraction error changes with the singular values of 𝑋. We can always switch between
𝑋 = 𝑈𝑍𝑇 , 𝑈 ∈ 𝒱𝑚,𝑟, 𝑍 ∈ R𝑛×𝑟

* and 𝑋 = 𝑈𝑆𝑉 𝑇 , 𝑈 ∈ 𝒱𝑚,𝑟, 𝑆 ∈ R𝑟×𝑟
* , 𝑉 ∈ 𝒱𝑛,𝑟 by

keeping 𝑈 the same and setting 𝑍 = 𝑉 𝑆𝑇 or [𝑉, 𝑆𝑇 ] = qr(𝑍). With this, we’ll write
out the retraction error and switch parameterizations to prove the following theorem.

Theorem 2.1.1. Consider a point 𝑋 = 𝑈𝑍𝑇 ∈M𝑟 with the retraction error defined
as 𝜀ret(𝑋) ≡ ∆𝑡2𝑈̇ 𝑍̇𝑇 , where 𝑈̇ and 𝑍̇ are defined by (2.3). The retraction error is
bound by the following inequality

||𝜀ret(𝑋)||2
||L ||22

≤ ∆𝑡2

𝜎min(𝑋)
, (2.4)

where 𝜎min(𝑋) denotes the smallest singular value of 𝑋.

Proof.

𝑈̇ 𝑍̇𝑇 = (𝐼 − 𝑈𝑈𝑇 )L𝑍(𝑍𝑇𝑍)−1𝑈𝑇L

= (𝐼 − 𝑈𝑈𝑇 )L 𝑉 𝑆𝑇 (𝑆𝑉 𝑇𝑉 𝑆𝑇 )−1𝑈𝑇L

= (𝐼 − 𝑈𝑈𝑇 )L 𝑉 𝑆−1𝑈𝑇L

Now, we’ll note that the Frobenius and 𝐿2 norms are invariant under unitary opera-
tions such as multiplication by 𝑈 and 𝑉 . Also, for a matrix 𝐴, note that the triangle
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Figure 2-1: This figure illustrates how a retraction maps a vector, projected onto the
affine tangent space, to the low-rank manifold. This incurs a finite-sized error, which
in the case of the Euler forward retraction, is of order 𝒪(∆𝑡2).
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inequality imply the following.

𝐴 = P⊥
𝑈𝐴 + P𝑈𝐴

⇒ ||P⊥
𝑈𝐴|| = ||𝐴−P𝑈𝐴||

≤ ||𝐴||+ ||P𝑈𝐴||

≤ ||𝐴||

Together with the Cauchy-Schwartz inequality, we have the following

||𝑈̇ 𝑍̇𝑇 || = (𝐼 − 𝑈𝑈𝑇 )L 𝑉 𝑆−1𝑈𝑇L

≤ ||L ||2||𝑆−1||

In the 𝐿2 norm, ||𝐴||2 = 𝜎max(𝐴). That is, the 𝐿2 norm of the matrix is equal to
the max singular value of that matrix. Hence, ||𝐴−1||2 = 1

𝜎min(𝐴)
. Also note that

𝜎(𝑆) = 𝜎(𝑋): the singular values of 𝑋 are the singular values of the current point
on the manifold.

This theorem concurs with the fact that the curvature of the manifold scales
with the smallest singular value of 𝑋 [20]. The retraction error is essentially just
the difference between a flat approximation of the manifold and the curved manifold
itself, i.e. its curvature.

With that, we dive into the formal definition of a retraction. First defined in [38],
a retraction maps a tangent vector/matrix back to the manifold. From [30], we have
that a retraction ℛ at point 𝑋 ∈ M𝑟 of an element 𝜉 ∈ 𝒯𝑋M𝑟 can be expressed as
follows.

ℛ𝑋(𝜉) = 𝑋 + 𝜉 + 𝑜(||𝜉||) (2.5)

What distinguishes one retraction from another is the 𝑜(||𝜉||) term, which determines
how to get back to M𝑟. Below, we more rigorously define a retraction from [39].

Definition 2.1.1. A retraction ℛ : 𝒯M𝑟 → M𝑟 on M𝑟 is a smooth mapping from
the tangent bundle to the manifold such that

1. ℛ is defined and smooth on a neighborhood of the zero section in 𝒯M𝑟,

2. ℛ𝑋(0) = 𝑋 ∀𝑋 ∈M𝑟,

3. 𝑑
𝑑𝑡
ℛ𝑋(𝑡𝜉)

⃒⃒
𝑡=0

= 𝜉 ∀𝑋 ∈M𝑟 and 𝜉 ∈ 𝒯𝑋M𝑟.

43



The zero section of the tangent bundle is the submanifold of that bundle that consists
of all the zero matrices. This guarantees that for any point 𝑋 ∈ M𝑟, there is a
neighborhood of points in 𝒯𝑋M𝑟 around the zero matrix where the retraction is
smooth and exists. The second condition simply states that if our tangent vector is
zero, the retraction should map back onto the original point. And the third condition
is essentially the same as equation (2.5).

Definition 2.1.2. Adopting the terminology of [39], an extended retraction ℛ : ℰ →
M𝑟 is a mapping such that

1. ℛ is defined and smooth on a neighborhood of the zero section in 𝒯M𝑟,

2. ℛ𝑋(0) = 𝑋 ∀𝑋 ∈M𝑟,

3. 𝑑
𝑑𝑡
ℛ𝑋(𝑡𝜉)

⃒⃒
𝑡=0

= P𝒯𝑋M𝑟𝜉 ∀𝑋 ∈M𝑟 and 𝜉 ∈ ℰ .

Note that the first two conditions are exactly the same. The extended retraction
simply allows for 𝜉 to be any vector/matrix rather than being restricted to the affine
tangent space of the manifold at 𝑋. The derivative condition is similar, just that
now we must project the matrix 𝜉 onto the tangent space at 𝑋. We use the same
notation for retractions and extended retractions since they accomplish the same feat,
and whether the retraction itself is extended or not may be determined implicitly by
the argument.

For a survey of retractions onto the low-rank manifold, see [39]. One retraction
is mapping onto a geodesic of M𝑟. A geodesic is the generalization of a straight
line onto curved spaces. Imagine driving along a curved road where you (and the
car) are much, much smaller than the curvature of the road such that, locally, the
road appears flat. If you were to drive in (what appeared to you as) as straight line,
this would trace out a geodesic on the manifold. It is commonly said that using
geodesics as a retraction would be “theoretically ideal.” In some ways, it is the most
agnostic choice; considering our driving example, if we are told to drive ten miles
and only provided with an initial velocity and a direction in which to drive, driving
in that direction at the same speed for the entire ten miles would be the “natural,”
most obvious thing to do without inferring extra information. Unfortunately, moving
along geodesics is computationally expensive [40]. Although there is a closed-form
expressions for a particular Riemannian metric on M𝑟 [41], most other metrics do
not admit such expressions and the geodesics often must be solved numerically from
differential equations.
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Fortunately, retractions abstract away from geodesics by insisting only that they
match geodesics to the first order. This allows for a cheaper approximation to the
geodesic, and the higher-order terms are typically unimportant for small step sizes
anyways. That said, the higher-order terms are a new source of error we must consider.
This brings us to another definition of a new type of retraction.

Definition 2.1.3. A second-order retraction ℛ : 𝒯M → M𝑟 is a retraction whose
second-order error belongs to the normal space of M𝑟 at 𝑋. More precisely, the
following holds.

𝑑2

𝑑𝑡2
ℛ𝑋(𝑡𝜉) ∈ 𝒩𝑋M𝑟 (2.6)

We note that the idea of a second-order extended retraction is naturally defined by
just extending the domain of ℛ𝑋 to the embedding Euclidean space. Also, (2.6) may
be thought of in another way. Denoting the 𝑜(||𝜉||) term in (2.5) as 𝜀, we have the
following.

ℛ𝑋(𝑡𝜉) = 𝑋 + 𝑡𝜉 + 𝜀(𝑡)

⇒ 𝑑

𝑑𝑡
ℛ𝑋(𝑡𝜉) = 𝜉 +

𝑑

𝑑𝑡
𝜀(𝑡)

⇒ 𝑑2

𝑑𝑡2
ℛ𝑋(𝑡𝜉) =

𝑑2

𝑑𝑡2
𝜀(𝑡)

If we assume 𝜀 is 𝒪(𝑡2), which is consistent with the 𝑜(||𝑡𝜉||) condition from (2.5), then
we can express it as 𝜀 = 1

2
𝑆𝑡2+𝑜(𝑡2) for some 𝑆 which may depend on 𝑋 and 𝜉. Then,

for ℛ to be a second-order retraction, we must have that 𝑆 ∈ 𝒩𝑋M𝑟. This condition
is also motivated by matching geodesics, as the second derivative of a parameterized
geodesic 𝛾(𝑡) lies in the normal space. Intuitively, we may return to our driving
example. If, locally, we drive in a straight line, certainly we are not accelerating in
the plane of our reference frame – we are not turning or increasing our speed. But,
we may still be accelerating due to the curvature of the manifold upon which we are
driving. Recall from physics that the acceleration of a particle with velocity 𝑣 and
path curvature 𝑅 is 𝑣2/𝑅 in the direction normal to the velocity. Hence, the only
acceleration will be normal to the car’s current velocity, and extending this idea more
generally to geodesics, we would expect a geodesic path to have “acceleration” only
in the direction normal to the tangent space at a given point. With these ideas, we
will proceed in defining a few simple retractions followed by new retractions derived
using perturbation theory.
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2.2 Projective retractions

We’ve already seen what we call the Euler forward retraction from equation (2.5).
Below, we’ll quickly show a lemma as to why it is not ideal.

Lemma 2.2.1. The Euler forward retraction is not a second-order retraction.

Proof. It is equivalent to show that 𝑈̇ 𝑍̇𝑇 /∈ 𝒩𝑋M𝑟 ⇔P⊥
𝒯𝑋M𝑟

𝑈̇ 𝑍̇𝑇 ̸= 𝑈̇ 𝑍̇𝑇 .

P⊥
𝒯𝑋M𝑟

𝑈̇ 𝑍̇𝑇 = P⊥
𝒯𝑋M𝑟

(𝐼 − 𝑈𝑈𝑇 )L𝑍(𝑍𝑇𝑍)−1𝑈𝑇L

= (𝐼 − 𝑈𝑈𝑇 )(𝐼 − 𝑈𝑈𝑇 )L𝑍(𝑍𝑇𝑍)−1𝑈𝑇L (𝐼 − 𝑍(𝑍𝑇𝑍)−1𝑍𝑇 )

= (𝐼 − 𝑈𝑈𝑇 )L𝑍(𝑍𝑇𝑍)−1𝑈𝑇L (𝐼 − 𝑍(𝑍𝑇𝑍)−1𝑍𝑇 )

Hence, P⊥
𝒯𝑋M𝑟

𝑈̇ 𝑍̇𝑇 ̸= 𝑈̇ 𝑍̇𝑇 in general.

From this, it is clear that the Euler forward integration scheme induces a retraction
error that can be reduced with a different choice retraction. The natural next step
may be to think about an Euler backward, or implicit Euler, scheme. The Euler
backward retraction could be defined in writing 𝑈̇ and 𝑍̇ as functions of 𝑈𝑛+1 and
𝑍𝑛+1. But, recall this would yield nonlinear systems of equations which may prove
costly to solve.

While the Euler forward scheme is perhaps the simplest, cheapest scheme one
can implement, we consider the other end of the spectrum: the extended projective
retraction, or the projection onto the manifold. The extended projective retraction
is as it sounds – the retraction is defined by taking the projection of 𝑋 + ∆𝑡L

onto the low-rank manifold. In some sense, this can be thought of the ideal retraction
(instead of the “theoretically ideal” geodesic retraction) because it minimizes the total
retraction error by definition. It may be implemented via a standard truncation of
the singular value decomposition (as similarly done in principal component analysis).
A cheaper implementation would be the (non-extended) projective retraction, where
we project 𝑋 + ∆𝑡P𝒯𝑋M𝑟L onto the low-rank manifold.

ℛext proj
𝑋 (𝜉) = PM𝑟(𝑋 + 𝜉) (2.7)

ℛproj
𝑋 (𝜉) = PM𝑟(𝑋 + P𝒯𝑋M𝑟𝜉) (2.8)
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Figure 2-2: This figure shows an extended projective retraction. 𝑋+∆𝑡L is projected
onto the low-rank manifold, and hence the line connecting 𝑋+∆𝑡L to the retraction
is orthogonal to the affine tangent space at ℛ𝑋(∆𝑡L ).
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As good measure, we’ll show property three of the extended projective retrac-
tion; the first property is true (see [42, Prop. 6]) and the second is obviously
true. Consider the singular value decompositions 𝑋 =

∑︀𝑟
𝑖=1 𝜎𝑖𝑢𝑖𝑣

𝑇
𝑖 = 𝑈Σ𝑉 𝑇 and

L =
∑︀𝑟𝐿

𝑖=1 𝜎̃𝑖𝑢̃𝑖𝑣
𝑇
𝑖 = 𝑈̃Σ̃𝑉 𝑇 . It suffices to show that ℛ𝑋(𝑋 + ∆𝑡L ) = 𝑋 +

∆𝑡P𝒯𝑋M𝑟L + 𝒪(∆𝑡2). Now, we can take ∆𝑡 small enough such that the singu-
lar values of ∆𝑡L , ∆𝑡𝜎̃𝑖 are all smaller than the singular values of 𝑋, 𝜎𝑖. Then, the
contribution from ∆𝑡L only comes from the projection of 𝑈̃ onto 𝑈 and 𝑉 onto 𝑉 .

𝑋 + ∆𝑡L =
𝑟∑︁

𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖 + ∆𝑡

𝑟∑︁
𝑖=1

𝑢𝑖𝑢
𝑇
𝑖

(︃
𝑟𝐿∑︁
𝑗=1

𝜎̃𝑗𝑢̃𝑗𝑣
𝑇
𝑗

)︃
𝑣𝑖𝑣

𝑇
𝑖

=
𝑟∑︁

𝑖=1

(︀
𝜎𝑖 + ∆𝑡𝑢𝑇

𝑖 L 𝑣𝑖
)︀
𝑢𝑖𝑣

𝑇
𝑖

= 𝑈
(︀
Σ + ∆𝑡𝑈𝑇L 𝑉

)︀
𝑉 𝑇

= 𝑈Σ𝑉 + ∆𝑡𝑈𝑈𝑇L 𝑉 𝑉 𝑇

Indeed, this is equivalent to 𝑋 + ∆𝑡P𝒯𝑋M𝑟L , just in a different parameterization of
the low-rank manifold.

It is shown in [42] that the projective retraction is a second-order retraction. How-
ever, the extended projective retraction is not second-order. To be second-order, we
would need the ∆𝑡2 component of the retraction to be in the normal space of the
low-rank manifold at 𝑋. Because we know the (non-extended) protective retrac-
tion is second-order, we have that PM𝑟

(︀
𝑋 + ∆𝑡P𝒯𝑋M𝑟L

)︀
= 𝑋 + ∆𝑡P𝒯𝑋M𝑟L + 𝑑,

where 𝑑 ∈ 𝒩𝑋M𝑟 encompasses all of the 𝒪(∆𝑡2) terms. For the extended projective
retraction to be second-order, we would need

PM𝑟

(︀
𝑋 + ∆𝑡P𝒯𝑋M𝑟L + ∆𝑡P⊥

𝒯𝑋M𝑟
L
)︀

= 𝑋 + ∆𝑡P𝒯𝑋M𝑟L + 𝑑

with 𝑑 ∈ 𝒩𝑋M𝑟 encompassing all 𝒪(∆𝑡2) terms. This would indeed be the case if
PM𝑟 were a linear operator; however, PM𝑟 is highly nonlinear – if it were linear, our
life would be much, much easier and this thesis would be quite short. Due to this
nonlinearity, 𝑑 /∈ 𝒩𝑋M𝑟. To illustrate this further, consider figure 2-4. To generate
this test case, random 𝑈 ∈ R10×9, 𝑍 ∈ R12×9, and L ∈ R10×12 were generated. 𝑈

was orthonormalized, and we set 𝑋 = 𝑈𝑍𝑇 . Then, for various ∆𝑡, we considered
𝑋 + ∆𝑡L and performed both projective and extended projective retractions via
the truncated SVD. To obtain the 𝒪(∆𝑡2) component of the retraction, which we’ll
denote 𝑑, we set 𝑑 = ℛ𝑋(𝑋 + ∆𝑡L ) − (𝑋 + ∆𝑡P𝒯𝑋M𝑟L ). Then for each ∆𝑡, we
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Figure 2-3: This figure shows a projective retraction. After projecting onto the affine
tangent space, 𝑋 + ∆𝑡P𝒯𝑋M𝑟L is projected onto the low-rank manifold. Conse-
quently, the line connecting 𝑋 + ∆𝑡P𝒯𝑋M𝑟L and ℛ𝑋(∆𝑡L ) is orthogonal to the
affine tangent space at ℛ𝑋(∆𝑡L ).
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Figure 2-4: The Frobenius norm of the projection of the 𝒪(∆𝑡2) terms of the pro-
jective retraction onto the affine tangent space at 𝑋 decay as 𝒪(∆𝑡3) because it is a
second-order retraction. However, the extended projective retraction exhibits 𝒪(∆𝑡2)
convergence because the 𝒪(∆𝑡2) has some components in the affine tangent space at
𝑋.

projected 𝑑 onto the tangent space and took the norm of that projection. Hence,
we have numerically shown an example where the extended projective retraction is
not second-order. So while a second-order retraction matches a geodesic quite well,
if we would rather approximate the projection operator, it is not a criterion of great
interest.

The downside of the projective retractions is that computing the singular value
decomposition can be quite expensive for large problems. Recall we would be taking
the SVD of 𝑋0 + ∆𝑡P𝒯𝑋M𝑟L , which is assumed to be an 𝑚× 𝑛 matrix. An efficient
implementation of taking this SVD is addressed in [43, p. 1222] and [42, p. 21] using
a 𝑈𝑆𝑉 𝑇 matrix parameterization, which reduces the computation to computing the
SVD of a 2𝑟 × 2𝑟 matrix. This is feasible since 𝑋0 and P𝒯𝑋M𝑟L are both rank
𝑟, so their sum must be have at most rank 2𝑟. To see why, consider the following
implementation of adding to matrices 𝐴 and 𝐵, both of which we’ll assume have 𝑟

linearly independent columns.

𝐴 + 𝐵 =
[︁
𝐴 𝐵

]︁ [︃𝐼
𝐼

]︃

Above, 𝐼 is an 𝑟×𝑟 identity matrix. Clearly, rank
(︁[︁

𝐴 𝐵
]︁)︁
≤ rank

(︂[︁
𝐼 𝐼

]︁𝑇)︂
≤ 2𝑟.
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A similar implementation is addressed in [18, p. 610] for a 𝑈𝑍𝑇 matrix param-
eterization, which reduces the computation to taking the SVD of an 𝑚 × 𝑟 matrix.
An iterative approach is also proposed in [18]. Below, we derive a similar technique
for the 𝑈𝑍𝑇 matrix parameterization using only the SVD of an 2𝑟× 2𝑟 matrix given
the current point 𝑋0 and 𝑈0, 𝑍0 as defined in (2.3).

Algorithm 1: Projective retraction
Input: 𝑈0 ∈ 𝒱𝑚,𝑟, 𝑍0 ∈ R𝑛×𝑟

* , 𝑈̇ ∈ 𝒰𝑚,𝑟, 𝑍̇ ∈ R𝑛×𝑟,∆𝑡 ∈ R
Output: 𝑈1 ∈ 𝒱𝑚,𝑟, 𝑍1 ∈ R𝑛×𝑟

1

[︁
𝑄1 𝑅1

]︁
= qr(∆𝑡𝑈̇),

[︁
𝑄2 𝑅2

]︁
= qr

(︁[︁
𝑍0 ∆𝑡𝑍̇

]︁)︁
2 𝐾 =

[︃
𝑅2(:, 1 : 𝑟)𝑇 + 𝑅2(:, 𝑟 + 1 : 2𝑟)𝑇

𝑅1𝑅2(:, 1 : 𝑟)𝑇

]︃
3 𝑈̃𝑆𝑉 𝑇 = svd(𝐾)

4 𝑈̃ ← 𝑈̃(:, 1 : 𝑟), 𝑆 ← 𝑆(1 : 𝑟, 1 : 𝑟), 𝑉 ← 𝑉 (:, 1 : 𝑟)

5 𝑈1 =
[︁
𝑈0 𝑄1

]︁
𝑈̃ , 𝑍1 = 𝑄2𝑉 𝑆𝑇

Note above that 𝑆𝑇 = 𝑆, so in reality the transpose need not be computed. Further-
more, 𝑅2 is a 2𝑟× 2𝑟 matrix, making 𝐾 a 2𝑟× 2𝑟 matrix. We say 𝑍1 ∈ R𝑛×𝑟 instead
of 𝑍1 ∈ R𝑛×𝑟

* because if 𝐾 has rank less than 𝑟, then we cannot guarantee that 𝑍1

has rank 𝑟. However, in practice, this would be a rarity, and 𝑍1 ∈ R𝑛×𝑟
* in essentially

all realistic, non-pathological examples.

From [44, p. 75], the qr decomposition can be computed using the Householder
algorithm in 2𝑎𝑏2− 2

3
𝑏3 flops for an 𝑎× 𝑏 matrix. For us, 𝑏 = 𝑟 ≪ 𝑚,𝑛, and so the qr

decomposition is very cheap. From [44, p. 237], the SVD may be computed via Golub-
Kahan bidiagonalization in about 4𝑎𝑏2 − 4

3
𝑏3 flops, twice that of qr. Note that faster

algorithms are available if 𝑎 ≫ 𝑏 (e.g. Lawson-Hanson-Chan bidiagonalization); the
two algorithms can in fact be combined in what’s called three-step bidiagonalization.
But since we are operating on a 2𝑟 × 2𝑟 matrix, Golub-Kahan bidiagonalization is
suitable, and it’s cheap since 𝑟 is (relatively) small!

Lemma 2.2.2. Algorithm 1 returns 𝑈1𝑍
𝑇
1 = PM𝑟(𝑈0𝑍

𝑇
0 + ∆𝑡𝑈0𝑍̇

𝑇 + ∆𝑡𝑈̇𝑍𝑇
0 ) with

𝑈1 ∈ 𝒱𝑚,𝑟.
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Proof. First, we’ll show 𝑈1 ∈ 𝒱𝑚,𝑟.

𝑈1 =
[︁
𝑈0 𝑄1

]︁
𝑈̃

⇒ 𝑈𝑇
1 𝑈1 = 𝑈̃𝑇

[︃
𝑈𝑇
0

𝑄𝑇
1

]︃ [︁
𝑈0 𝑄1

]︁
𝑈̃

= 𝑈̃𝑇

[︃
𝑈𝑇
0 𝑈0 𝑈𝑇

0 𝑄1

𝑄𝑇
1𝑈0 𝑄𝑇

1𝑄1

]︃
𝑈̃

Now, we have that 𝑈𝑇
0 𝑄1 = 0 since 𝑄1 is a basis for 𝑈̇ ∈ 𝒰𝑚,𝑟 → 𝑈𝑇

0 𝑈̇ = 0.

𝑈𝑇
1 𝑈1 = 𝑈̃𝑇

[︃
𝐼 0

0 𝐼

]︃
𝑈̃

= 𝑈̃𝑇 𝑈̃ = 𝐼

Now, we’ll show that 𝑈1𝑍
𝑇
1 = PM𝑟(𝑈0𝑍

𝑇
0 + ∆𝑡𝑈0𝑍̇

𝑇 + ∆𝑡𝑈̇𝑍𝑇
0 ).

𝑈1𝑍
𝑇
1 =

[︁
𝑈0 𝑄1

]︁
𝑈̃𝑆𝑉 𝑇𝑄𝑇

2

We’ve already shown that 𝑈0 and 𝑄1 are orthogonal. Plus, they’re (semi-)ortho-
normal, so

[︁
𝑈0 𝑄1

]︁
is semi-orthonormal. 𝑄2 is also orthonormal. Then,

[︁
𝑈0 𝑄1

]︁
𝑈̃ ,

𝑆, and 𝑉 𝑇𝑄𝑇
2 form a valid singular value decomposition, which indeed orthogonally

projects onto the low-rank manifold.

𝑈1𝑍
𝑇
1 =

[︁
𝑈0 𝑄1

]︁
PM𝑟 (𝐾)𝑄𝑇

2

= PM𝑟

(︁[︁
𝑈0 𝑄1

]︁
𝐾𝑄𝑇

2

)︁
= PM𝑟

(︃[︁
𝑈0 𝑄1

]︁ [︃𝑅2(:, 1 : 𝑟)𝑇 + 𝑅2(:, 𝑟 + 1 : 2𝑟)𝑇

𝑅1𝑅2(:, 1 : 𝑟)𝑇

]︃
𝑄𝑇

2

)︃
= PM𝑟

(︀
𝑈0𝑅2(:, 1 : 𝑟)𝑇𝑄𝑇

2 + 𝑈0𝑅2(:, 𝑟 + 1 : 2𝑟)𝑇𝑄𝑇
2 + 𝑄1𝑅1𝑅2(:, 1 : 𝑟)𝑇𝑄𝑇

2

)︀
Note that 𝑄2𝑅2(:, 1 : 𝑟) = 𝑍 and 𝑄2𝑅2(:, 𝑟 + 1 : 2𝑟) = ∆𝑡𝑍̇ by construction.

𝑈1𝑍
𝑇
1 = PM𝑟

(︁
𝑈0𝑍

𝑇
0 + ∆𝑡𝑈0𝑍̇

𝑇 + ∆𝑡𝑈̇ 𝑍̇𝑇
)︁
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Below, we describe a novel retraction by generalizing the retraction above to be
an extended retraction. We assume that L can be factored into a form L 𝑈L

𝑇

𝑍 with
rank 𝑟𝐿. For differential equations, this is often feasible as the rank of the derivative
term may stay low. For example, consider a simple example 𝑑

𝑑𝑡
𝐴(𝑡) = 𝐴(𝑡). We

would let L = 𝐴, and if 𝐴 = 𝑈𝑍𝑇 , then L 𝑈 = 𝑈 and L 𝑍 = 𝑍. This example is
admittedly trivial, but in more realistic examples the principle holds even if 𝑟𝐿 ≫ 𝑟,
and we hope that 𝑟𝐿 ≪ 𝑚,𝑛.

Algorithm 2: Extended projective retraction
Input: 𝑈0 ∈ 𝒱𝑚,𝑟, 𝑍0 ∈ R𝑛×𝑟

* , L 𝑈 ∈ R𝑚×𝑟𝐿 , L 𝑍 ∈ R𝑛×𝑟𝐿 ,∆𝑡 ∈ R
Output: 𝑈1 ∈ 𝒱𝑚,𝑟, 𝑍1 ∈ R𝑛×𝑟

1

[︁
𝑄1 𝑅1

]︁
= qr

(︁[︁
𝑈0 L 𝑈

]︁)︁
,

[︁
𝑄2 𝑅2

]︁
= qr

(︁[︁
𝑍0 ∆𝑡L 𝑍

]︁)︁
2 𝐾 = 𝑅1𝑅

𝑇
2

3 𝑈̃𝑆𝑉 𝑇 = svd(𝐾)

4 𝑈̃ ← 𝑈̃(:, 1 : 𝑟), 𝑆 ← 𝑆(1 : 𝑟, 1 : 𝑟), 𝑉 ← 𝑉 (:, 1 : 𝑟)

5 𝑈1 = 𝑄1𝑈̃ , 𝑍1 = 𝑄2𝑉 𝑆𝑇

Here, 𝐾 is (𝑟 + 𝑟𝐿)× (𝑟 + 𝑟𝐿). So, if 𝑟𝐿 ≪ 𝑚,𝑛, the SVD is still cheap.

Lemma 2.2.3. Algorithm 2 returns 𝑈1𝑍
𝑇
1 = PM𝑟(𝑈0𝑍

𝑇
0 + ∆𝑡L 𝑈L

𝑇

𝑍) with 𝑈1 ∈
𝒱𝑚,𝑟.

Proof. First, we’ll show 𝑈1 ∈ 𝒱𝑚,𝑟.

𝑈1 = 𝑄1𝑈̃

⇒ 𝑈𝑇
1 𝑈1 = 𝑈̃𝑇𝑄𝑇

1𝑄1𝑈̃

= 𝑈̃𝑇 𝑈̃ = 𝐼

Now, we’ll show that 𝑈1𝑍
𝑇
1 = PM𝑟(𝑈0𝑍

𝑇
0 + ∆𝑡L 𝑈L

𝑇

𝑍).

𝑈1𝑍
𝑇
1 = 𝑄1𝑈̃𝑆𝑉 𝑇𝑄𝑇

2

𝑄1 and 𝑄2 are orthonormal, so 𝑄1𝑈̃ , 𝑆, and 𝑉 𝑇𝑄𝑇
2 form a valid singular value de-
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composition, which orthogonally projects onto the low-rank manifold.

𝑈1𝑍
𝑇
1 = 𝑄1𝑈̃PM𝑟 (𝐾)𝑄𝑇

2

= PM𝑟

(︀
𝑄1𝐾𝑄𝑇

2

)︀
= PM𝑟

(︀
𝑄1𝑅1𝑅

𝑇
2𝑄

𝑇
2

)︀
= PM𝑟

(︃[︁
𝑈0 L 𝑈

]︁ [︃ 𝑍𝑇
0

∆𝑡L
𝑇

𝑍

]︃)︃
= PM𝑟

(︁
𝑈0𝑍

𝑇
0 + ∆𝑡L 𝑈L

𝑇

𝑍

)︁

Though this retraction is essentially ideal, it can be quite expensive if 𝑟𝐿 is large.
So, in the next section, we discuss a perturbative method that will approximate the
extended projective method.

2.3 Perturbative retractions

In this section, we develop new retractions that exhibit high-order convergence in
∆𝑡. But to what are we converging? We cannot hope to converge to the full-rank
solution; at each time step, there is a local 𝒪(∆𝑡) error (and hence a global 𝒪(1)

error) in the normal space which we cannot reduce unless we increase the rank of
our solution. But if the full-rank solution stays close to the low-rank manifold, the
error between the best low-rank approximation and the full-rank solution may be
bounded [19, 20]. The goal, then, is to approximate and to converge to the best low-
rank approximation at each time step given by PM𝑟(𝑋0 + ∆𝑡L ); the Euler forward
method discussed in previous sections is a first-order approximation by projecting
onto the affine tangent space. Indeed, [45] shows that projection onto the tangent
space is the first-order perturbation expansion of the truncated SVD. Here we develop
higher-order approximations, which we can interpret as projecting onto a higher-order
polynomial approximation of the low-rank manifold.

To proceed, recall (1.16). Geometrically, this says that the residual P𝒯𝑋M𝑟L −L

must be orthogonal to the affine tangent space at 𝑋0 = 𝑈𝑍𝑇 . This is actually not
what we would like to enforce for two reasons. First, this condition says nothing about
the retraction error 𝑈̇ 𝑍̇𝑇 ; it’s completely ignored. Second, we want our residual to
be orthogonal to the affine tangent space at 𝑋1, not at 𝑋0. Incorporating these new
ideas into the original formulation, we seek to find 𝑈̇ ∈ 𝒰𝑚,𝑟, 𝑍̇ ∈ R𝑛×𝑟 such that the

54



following holds for all 𝛿𝑈 ∈ 𝒰𝑚,𝑟, 𝛿𝑍 ∈ R𝑛×𝑟.

⟨(𝑈𝑍𝑇 + ∆𝑡𝑈̇𝑍𝑇 + ∆𝑡𝑈𝑍̇𝑇 + ∆𝑡2𝑈̇ 𝑍̇𝑇 )− (𝑈𝑍𝑇 + ∆𝑡L ),

(𝑈 + ∆𝑡𝑈̇)𝛿𝑇𝑍 + 𝛿𝑈(𝑍 + ∆𝑡𝑍̇)𝑇 ⟩ = 0

⇔ ⟨𝑈̇𝑍𝑇 + 𝑈𝑍̇𝑇 + ∆𝑡𝑈̇ 𝑍̇𝑇 −L , (𝑈 + ∆𝑡𝑈̇)𝛿𝑇𝑍 + 𝛿𝑈(𝑍 + ∆𝑡𝑍̇)𝑇 ⟩ = 0 (2.9)

For graphical intuition, contrast figures 2-1 and 2-2. We really want the residual
orthogonal to the affine tangent space in red rather than blue. So, the condition can
be read as minimizing the residual between the ideal new point 𝑈𝑍𝑇 + ∆𝑡L and
the retracted point (𝑈𝑍𝑇 + ∆𝑡𝑈̇𝑍𝑇 + ∆𝑡𝑈𝑍̇𝑇 + ∆𝑡2𝑈̇ 𝑍̇𝑇 ) at the affine tangent space
defined at the new retracted point.

Before we proceed, we must address that we have defined 𝛿𝑈 ∈ 𝒰𝑚,𝑟, which is in
the space of matrices that are orthogonal to 𝑈 . But, we are using 𝛿𝑈 to define an
affine tangent space at 𝑈 + 𝑈̇ , so do we need to insist that 𝛿𝑇𝑈(𝑈 + 𝑈̇) = 0 instead of
𝛿𝑇𝑈𝑈 = 0? The answer is no because we are able to paramaterize the affine tangent
space at (𝑈 + 𝑈̇)(𝑍 + 𝑍̇)𝑇 with matrices orthogonal to 𝑈 .

Lemma 2.3.1. Let 𝑋̃ = (𝑈 + ∆𝑡𝑈̇)(𝑍 + ∆𝑡𝑍̇)𝑇 with 𝑈̇ ∈ 𝒰𝑚,𝑟, 𝑍̇ ∈ R𝑛×𝑟. Any
𝛿𝑋 ∈ 𝒯𝑋̃M𝑟 can be expressed as

𝛿𝑋 = 𝛿𝑈(𝑍 + ∆𝑡𝑍̇)𝑇 + (𝑈 + ∆𝑡𝑈̇)𝛿𝑇𝑍 ,

where

𝛿𝑈 = (𝐼 − (𝑈 + ∆𝑡𝑈̇)𝑈𝑇 )∆𝑈 , 𝛿𝑍 = ∆𝑍 + (𝑍 + ∆𝑡𝑍̇)∆𝑇
𝑈𝑈

for some ∆𝑈 ∈ 𝒱𝑚,𝑟 and ∆𝑍 ∈ R𝑛×𝑟
* . As such, 𝛿𝑈 ∈ 𝒰𝑚,𝑟.

Proof. Note that the first statement that any 𝛿𝑋 ∈ 𝒯𝑋̃M𝑟 can be expressed as 𝛿𝑈(𝑍+

∆𝑡𝑍̇)𝑇 + (𝑈 + ∆𝑡𝑈̇)𝛿𝑇𝑍 would be nothing new if we insisted that 𝛿𝑇𝑈(𝑈 + 𝑈̇) = 0. The
fact that a tangent vector may be written as above is addressed in previous sections
of this thesis. We are just using a new point (𝑈 + ∆𝑡𝑈̇)(𝑍 + ∆𝑡𝑍̇)𝑇 instead of 𝑈𝑍𝑇 .
What is new is insisting that 𝛿𝑇𝑈𝑈 = 0 instead of 𝛿𝑇𝑈(𝑈 + ∆𝑡𝑈̇) = 0. In an argument
similar to that of [20, p. 517], we will substitute in our expressions for 𝛿𝑈 and 𝛿𝑍 into
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our expression for 𝛿𝑋 .

𝛿𝑋 = 𝛿𝑈(𝑍 + ∆𝑡𝑍̇)𝑇 + (𝑈 + ∆𝑡𝑈̇)𝛿𝑇𝑍

= (𝐼 − (𝑈 + ∆𝑡𝑈̇)𝑈𝑇 )∆𝑈(𝑍 + ∆𝑡𝑍̇)𝑇 + (𝑈 + ∆𝑡𝑈̇)(∆𝑇
𝑍 + 𝑈𝑇∆𝑈(𝑍 + ∆𝑡𝑍̇)𝑇 )

= ∆𝑈(𝑍 + ∆𝑡𝑍̇)𝑇 −
((((

((((
((((

((((

(𝑈 + ∆𝑡𝑈̇)𝑈𝑇∆𝑈(𝑍 + ∆𝑡𝑍̇)𝑇+

(𝑈 + ∆𝑡𝑈̇)∆𝑇
𝑍 +

((((
((((

(((
((((

(

(𝑈 + ∆𝑡𝑈̇)𝑈𝑇∆𝑈(𝑍 + ∆𝑡𝑍̇)𝑇

= ∆𝑈(𝑍 + ∆𝑡𝑍̇)𝑇 + (𝑈 + ∆𝑡𝑈̇)∆𝑇
𝑍

Since we have allowed ∆𝑈 and ∆𝑍 to be free, we have shown that 𝛿𝑋 can represent
any tangent vector in the above parameterization. What remains to show is that
𝛿𝑈 ∈ 𝒰𝑚,𝑟.

𝑈𝑇 𝛿𝑈 = 𝑈𝑇 (𝐼 − (𝑈 + ∆𝑡𝑈̇)𝑈𝑇 )∆𝑈

= (𝑈𝑇 − (𝐼 + 0)𝑈𝑇 )∆𝑈 = 0

Now, we have justified our parameterization of the affine tangent space at (𝑈 +

∆𝑡𝑈̇)(𝑍 + ∆𝑡𝑍̇)𝑇 . For the purpose of completeness, we’ll go a step further and define
the mapping from 𝛿𝑋 → (𝛿𝑈 , 𝛿𝑍) since we already have the mapping (𝛿𝑈 , 𝛿𝑍)→ 𝛿𝑋 .

Lemma 2.3.2. Given 𝑋̃ = 𝑈𝑍𝑇 ∈ M𝑟 with 𝑈 ∈ 𝒱𝑚,𝑟, 𝑍 ∈ R𝑛×𝑟
* , 𝑈̇ ∈ 𝒰𝑚,𝑟, and

𝑍̇ ∈ R𝑛×𝑟 such that 𝑍 + ∆𝑡𝑍̇ ∈ R𝑛×𝑟
* , and 𝛿𝑋 ∈ 𝒯𝑋̃M𝑟, (𝛿𝑈 , 𝛿𝑍) ∈ 𝒰𝑚,𝑟 × R𝑛×𝑟 are

given as

𝛿𝑈 = (𝐼 − (𝑈 + ∆𝑡𝑈̇)𝑈𝑇 )𝛿𝑋(𝑍 + ∆𝑡𝑍̇)
[︁
(𝑍 + ∆𝑡𝑍̇)𝑇 (𝑍 + ∆𝑡𝑍̇)

]︁−1

, 𝛿𝑍 = 𝛿𝑇𝑋𝑈

Proof. First, we’ll find 𝛿𝑍 by taking the left matrix product of 𝛿𝑋 with 𝑈𝑇 .

𝑈𝑇 𝛿𝑋 = 𝑈𝑇 (𝑈 + ∆𝑡𝑈̇)𝛿𝑇𝑍 + 𝑈𝑇 𝛿𝑈(𝑍 + ∆𝑡𝑍̇)𝑇 = 𝛿𝑇𝑍
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Next, to find 𝛿𝑈 , we’ll take the the left matrix of product of 𝛿𝑋 with (𝐼−(𝑈+∆𝑡𝑈̇)𝑈𝑇 ).

(𝐼 − (𝑈 + ∆𝑡𝑈̇)𝑈𝑇 )𝛿𝑋 = (𝐼 − (𝑈 + ∆𝑡𝑈̇)𝑈𝑇 )(𝑈 + ∆𝑡𝑈̇)𝛿𝑇𝑍

+ (𝐼 − (𝑈 + ∆𝑡𝑈̇)𝑈𝑇 )𝛿𝑈(𝑍 + ∆𝑡𝑍̇)𝑇

= (𝑈 + ∆𝑡𝑈̇)𝛿𝑇𝑍 − (𝑈 + ∆𝑡𝑈̇)
���

���
��:𝐼

𝑈𝑇 (𝑈 + ∆𝑡𝑈̇)𝛿𝑇𝑍 + 𝛿𝑈(𝑍 + ∆𝑡𝑍̇)𝑇

− (𝑈 + ∆𝑡𝑈̇)��
��*

0
𝑈𝑇 𝛿𝑈(𝑍 + ∆𝑡𝑍̇)𝑇

= 𝛿𝑈(𝑍 + ∆𝑡𝑍̇)𝑇

After taking the Moore-Penrose inverse, we have the following.

𝛿𝑈 = (𝐼 − (𝑈 + ∆𝑡𝑈̇)𝑈𝑇 )𝛿𝑋(𝑍 + ∆𝑡𝑍̇)
[︁
(𝑍 + ∆𝑡𝑍̇)𝑇 (𝑍 + ∆𝑡𝑍̇)

]︁−1

Before proceeding, one further step of justification is needed. Can we represent
any point 𝑌 ∈M𝑟 in the form 𝑋1 = (𝑈+∆𝑡𝑈̇)(𝑍+∆𝑡𝑍̇)𝑇 for 𝑈̇ ∈ 𝒰𝑚,𝑟, 𝑍̇ ∈ R𝑛×𝑟? If
we cannot, then perhaps this retraction will not be accurate for some 𝑌 . Essentially,
we would like our retraction to be surjective, or onto, in M𝑟 so that we can cover
the whole manifold. To answer this question, consider 𝑌 = 𝑈̃𝑍𝑇 for some 𝑈̃ ∈ 𝒱𝑚,𝑟,
𝑍 ∈ R𝑛×𝑟

* . If 𝑈̇ were not restricted to 𝒰𝑚,𝑟, we could simply define 𝑈̇ = (𝑈̃ − 𝑈)/∆𝑡

and 𝑍̇ = (𝑍−𝑍)/∆𝑡, and then 𝑋1 = 𝑌 . But, of course, life is not that easy. We’ll try
to construct a bijective mapping (therefore implying a surjective mapping) between
(𝑈̇ , 𝑍̇) and (𝑈̃ , 𝑍) given (𝑈,𝑍). If such a mapping exists, then there will always be
one 𝑋1 (which is fully determined by (𝑈̇ , 𝑍̇) and (𝑈,𝑍)) for one 𝑌 (which is fully
determined by (𝑈1, 𝑍1)), and vice versa.

First, we’ll postulate a mapping (𝑈̇ , 𝑍̇)→ (𝑈̃ , 𝑍) defined below.

(𝑈 + ∆𝑡𝑈̇)(𝑍 + ∆𝑡𝑍̇)𝑇 = 𝑈𝑍𝑇 + ∆𝑡𝑈̇𝑍𝑇 + ∆𝑡𝑈𝑍̇𝑇 + ∆𝑡2𝑈̇ 𝑍̇𝑇 = 𝑈̃𝑍𝑇

The question then, is can we find a mapping (𝑈̃ , 𝑍) → (𝑈̇ , 𝑍̇)? First consider left-
multiplying the equation above by 𝑈𝑇 .

𝑍𝑇 + ∆𝑡𝑍̇𝑇 = 𝑈𝑇 𝑈̃𝑍𝑇

⇒ 𝑍̇ =
1

∆𝑡

(︁
𝑍𝑈̃𝑇𝑈 − 𝑍

)︁
(2.10)
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Now, left-multiply the same equation by P⊥
𝑈 .

∆𝑡𝑈̇(𝑍 + ∆𝑡𝑍̇)𝑇 = P⊥
𝑈 𝑈̃𝑍𝑇

Now, we substitute in (2.10).

∆𝑡𝑈̇𝑈𝑇 𝑈̃𝑍𝑇 = P⊥
𝑈 𝑈̃𝑍𝑇

⇒ 𝑈̇ =
1

∆𝑡
P⊥

𝑈 𝑈̃𝑍𝑇𝑍𝑈̃𝑇𝑈
(︁
𝑈𝑇 𝑈̃𝑍𝑇𝑍𝑈̃𝑇𝑈

)︁−1

(2.11)

In (2.11), we have assumed that 𝑈𝑇 𝑈̃𝑍𝑇𝑍𝑈̃𝑇𝑈 is invertible. We can dig deeper
into this assumption: we’ve already assumed 𝑍 ∈ R𝑛×𝑟

* , which implies that 𝑍𝑇𝑍 is
invertible. Since the product of two square invertible matrices is also invertible, we
only need to assume that 𝑈𝑇 𝑈̃ is invertible. If this is the case, we can simplify (2.11).

𝑈̇ =
1

∆𝑡
P⊥

𝑈 𝑈̃
(︁
𝑈𝑇 𝑈̃

)︁−1

(2.12)

Unfortunately, this is not always true; just pick columns of 𝑈̃ that are orthogonal to
the columns of 𝑈 for a counterexample. So, we cannot create a bijective mapping
for all 𝑌 . However, we can create a bijective mapping for a set M̃𝑟(𝑋 = 𝑈𝑍𝑇 ) ≡{︁
𝑌 = 𝑈̃𝑍𝑇 ∈M𝑟 : rank(𝑈𝑇 𝑈̃) = 𝑟

}︁
.

Lemma 2.3.3. For any 𝑋 = 𝑈𝑍𝑇 ∈M𝑟 with 𝑚 ≥ 2𝑟, M̃𝑟(𝑋) is dense in M𝑟.

Proof. Consider a point 𝑌 = 𝑈̃𝑍𝑇 in M𝑟. If 𝑈𝑇 𝑈̃ is invertible, then it is in M̃𝑟(𝑋).
Otherwise, rank(𝑈𝑇 𝑈̃) < 𝑟 and 𝑌 /∈ M̃𝑟(𝑋). But, consider a point 𝑌 =

√︀
1− 𝜀20𝑌 +

𝜀0𝑈𝑄𝑍𝑇 for some 0 < 𝜀0 < 1 and some orthonormal 𝑟×𝑟 𝑄 with columns orthogonal
to the columns of 𝑈𝑇 𝑈̃ . Defining such a 𝑄 is possible assuming 𝑚 ≥ 2𝑟 by the rank-
nullity theorem, which, in practice is always the case since we’ve assumed 𝑚 ≫ 𝑟.
Note the following.

||𝑌 − 𝑌 ||2 = 𝜀20||𝑈𝑄𝑍𝑇 ||2 +

(︂
1−

√︁
1− 𝜀20

)︂2

||𝑈̃𝑍𝑇 ||

= 2

(︂
1−

√︁
1− 𝜀20

)︂
||𝑍||2

The last equality is because 𝑈 , 𝑄, and 𝑈̃ are semi-orthonormal, and we’ve chosen a
norm such as the 𝐿2 or Frobenius norm that is unitarily invariant. In the limit where
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𝜀0 → 0, the expression simplifies.

lim
𝜀0→0
||𝑌 − 𝑌 ||2 = 𝜀20||𝑍||2

Note that 2
(︁

1−
√︀

1− 𝜀20

)︁
≤ 2𝜀20 for |𝜀0| ≤ 1, hence we can use that upper bound

without the limit. So, we can make the norm as small as we want by shrinking 𝜀0

to be arbitrarily small. If we define an epsilon-ball ℬ𝜀(𝑌 ) = {𝐴 : ||𝐴− 𝑌 || < 𝜀}, we
have that 𝑌 ∈ ℬ𝜀(𝑌 ) ∀𝜀 > 0 so long as we choose 𝜀0 <

√
2𝜀

2||𝑍|| . We can write write 𝑌

in the following form.

𝑌 =

(︂√︁
1− 𝜀20𝑈̃ + 𝜀0𝑈𝑄

)︂
𝑍𝑇

Define 𝑈̂ =
√︀

1− 𝜀20𝑈̃ + 𝜀0𝑈𝑄. Is 𝑌 ∈ M̃𝑟(𝑋)? First, we’ll ensure it’s in M𝑟. 𝑈̂ and
𝑍 are dimensionally correct, but is 𝑈̂ semi-orthonormal?

𝑈̂𝑇 𝑈̂ =
(︀
1− 𝜀20

)︀
��

��*𝐼
𝑈̃𝑇 𝑈̃ + 𝜀20���

���:
𝐼

𝑄𝑇𝑈𝑇𝑈𝑄 + 𝜀0

√︁
1− 𝜀20��

���:0
𝑈̃𝑇𝑈𝑄 + 𝜀0

√︁
1− 𝜀20��

���:
0

𝑄𝑇𝑈𝑇 𝑈̃

= 𝐼

So, 𝑌 ∈M𝑟. What remains to check is if rank(𝑈𝑇 𝑈̂) = 𝑟.

𝑈𝑇 𝑈̂ =
√︁

1− 𝜀20𝑈
𝑇 𝑈̃ + 𝜀0𝑄

Let 𝜆𝑗(∙) denote the 𝑗th eigenvalue of ∙. Recall that the eigenvalues of an orthonormal
matrix are on the unit circle in the complex plane. By the spectral mapping theorem,
we have the following

𝜆𝑗(𝑈
𝑇 𝑈̂) = 𝜀0𝑒

𝑖𝜃𝑗 +
√︁

1− 𝜀20𝜆𝑗(𝑈
𝑇 𝑈̃)

for some 𝜃𝑗 ∈ R. Since we’ve assumed that 𝑌 /∈ M̃𝑟(𝑋), we know there exists at
least one 𝜆𝑗(𝑈

𝑇 𝑈̃) = 0. But, by adding some small 𝜀0 to the zero eigenvalue, we
will have that for all 𝑗 𝜆𝑗(𝑈

𝑇 𝑈̂) ̸= 0. One may ask, how do we know that we aren’t
setting another eigenvalue to zero by adding 𝜀0? Well if we are, just take 𝜀0 = 𝜀0/2,
and this will rectify the situation. Since there are a finite number of eigenvalues, we
can ensure that there exists some 𝜀0 > 0 such that all of the eigenvalues of 𝑈𝑇 𝑈̂ are
nonzero, and hence 𝑈𝑇 𝑈̂ is invertible. Therefore, 𝑌 ∈ M̃𝑟(𝑋), and we have shown
that ∀𝑌 ∈M𝑟, there exists a 𝑌 in any neighborhood of 𝑌 such that 𝑌 ∈ M̃𝑟(𝑋).
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With that lemma, we can say that there is either a bijective mapping for any point
𝑌 ∈M𝑟 or some point arbitrarily close to 𝑌 . Numerically, this is good enough – as
long as we can get arbitrarily close to 𝑌 , we are happy. Putting this all together, we
have the following theorem.

Theorem 2.3.1. Given a point 𝑋 = 𝑈𝑍𝑇 ∈M𝑟 with 𝑈 ∈ 𝒱𝑚,𝑟, 𝑍 ∈ R𝑛×𝑟
* , 𝑚 ≥ 2𝑟,

and a point 𝑌 ∈M𝑟, for any 𝜀 > 0, one can always write 𝑌 = 𝑈̃𝑍𝑇 = (𝑈 +∆𝑡𝑈̇)(𝑍+

∆𝑡𝑍̇)𝑇 with 𝑈̃ ∈ 𝒱𝑚,𝑟 and 𝑍 ∈ R𝑛×𝑟
* for some 𝑈̇ ∈ 𝒰𝑚,𝑟 and 𝑍̇ ∈ R𝑛×𝑟 such that

||𝑌 − 𝑌 || < 𝜀.

Proof. From lemma 2.3.3, we know that we can choose 𝑌 ∈ M̃𝑟(𝑋) arbitrarily close
to 𝑌 ∈M𝑟. Let the following expressions hold.

𝑈̇ =
1

∆𝑡
P⊥

𝑈 𝑈̃
(︁
𝑈𝑇 𝑈̃

)︁−1

𝑍̇ =
1

∆𝑡
(𝑍𝑈̃𝑇𝑈 − 𝑍)

Clearly, 𝑈̇ ∈ 𝒰𝑚,𝑟. Now, evaluate 𝑌 .

𝑌 =

(︂
𝑈 + P⊥

𝑈 𝑈̃
(︁
𝑈𝑇 𝑈̃

)︁−1
)︂(︁

𝑍 + 𝑍𝑈̃𝑇𝑈 − 𝑍
)︁𝑇

= 𝑈𝑈𝑇 𝑈̃𝑍𝑇 + (𝐼 − 𝑈𝑈𝑇 )𝑈̃
��

���
���

�:𝐼(︁
𝑈𝑇 𝑈̃

)︁−1

𝑈𝑇 𝑈̃𝑍𝑇

= 𝑈𝑈𝑇 𝑈̃𝑍𝑇 + (𝐼 − 𝑈𝑈𝑇 )𝑈̃𝑍𝑇

= 𝑈̃𝑍𝑇

So, we have shown that our retraction may perform arbitrarily well in that it can
access a dense set of the whole manifold. At this point, we return to the main problem
of finding what 𝑈̇ and 𝑍̇ should be to minimize a residual. The following theorem
digs deeper into that idea.

Theorem 2.3.2. Given 𝑈 ∈ 𝒱𝑚,𝑟, 𝑍 ∈ R𝑛×𝑟
* , and L ∈ R𝑚×𝑛, the solution to (2.9)

is given by 𝑈̇ ∈ 𝒰𝑚,𝑟 and 𝑍̇ ∈ R𝑛×𝑟 that satisfy the following nonlinear equations.

(𝑈 + ∆𝑡𝑈̇)𝑇∆𝑡L = ∆𝑡2𝑈̇𝑇 𝑈̇(𝑍 + ∆𝑡𝑍̇)𝑇 + ∆𝑡𝑍̇𝑇 (2.13)

P⊥
𝑈 ∆𝑡L (𝑍 + ∆𝑡𝑍̇) = ∆𝑡𝑈̇(𝑍 + ∆𝑡𝑍̇)𝑇 (𝑍 + ∆𝑡𝑍̇) (2.14)
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Proof. Because (2.9) is valid ∀𝛿𝑈 , we set 𝛿𝑈 equal to zero first. We also scale the first
argument by ∆𝑡 to more clearly show the order of each term.

⟨∆𝑡𝑈̇𝑍𝑇 + ∆𝑡𝑈𝑍̇𝑇 + ∆𝑡2𝑈̇ 𝑍̇𝑇 −∆𝑡L , (𝑈 + ∆𝑡𝑈̇)𝛿𝑇𝑍⟩ = 0

⇔ Tr
(︁
𝛿𝑍(𝑈 + ∆𝑡𝑈̇)𝑇

[︁
∆𝑡𝑈̇𝑍𝑇 + ∆𝑡𝑈𝑍̇𝑇 + ∆𝑡2𝑈̇ 𝑍̇𝑇 −∆𝑡L

]︁)︁
= 0

We use a similar argument as in the proof of theorem 1.4.1, which is that because 𝛿𝑍

can be anything, we can remove the argument from the trace and set it equal to zero.

(𝑈 + ∆𝑡𝑈̇)𝑇
[︁
∆𝑡𝑈̇𝑍𝑇 + ∆𝑡𝑈𝑍̇𝑇 + ∆𝑡2𝑈̇ 𝑍̇𝑇 −∆𝑡L

]︁
= 0

So, the first final equation is as follows.

(𝑈 + ∆𝑡𝑈̇)𝑇∆𝑡L = ∆𝑡2𝑈̇𝑇 𝑈̇(𝑍 + ∆𝑡𝑍̇)𝑇 + ∆𝑡𝑍̇𝑇

This equation is nonlinear in 𝑈̇ , 𝑍̇. In principle, it can be solved iteratively, but, as
we shall see, perturbation theory also works.

Now, we return to (2.9) and let 𝛿𝑍 = 0. Furthermore, since 𝛿𝑈 ∈ 𝒰𝑚,𝑟, let
𝛿𝑈 = P⊥

𝑈 𝛿𝑌 for 𝛿𝑌 ∈ R𝑛×𝑟.

⟨∆𝑡𝑈̇𝑍𝑇 + ∆𝑡𝑈𝑍̇𝑇 + ∆𝑡2𝑈̇ 𝑍̇𝑇 −∆𝑡L , 𝛿𝑈(𝑍 + ∆𝑡𝑍̇)𝑇 ⟩ = 0

⇔ Tr
(︁
𝛿𝑇𝑌 P⊥

𝑈

[︁
∆𝑡𝑈̇𝑍𝑇 + ∆𝑡𝑈𝑍̇𝑇 + ∆𝑡2𝑈̇ 𝑍̇𝑇 −∆𝑡L

]︁
(𝑍 + ∆𝑡𝑍̇)

)︁
= 0

⇔P⊥
𝑈

[︁
∆𝑡𝑈̇𝑍𝑇 + ∆𝑡𝑈𝑍̇𝑇 + ∆𝑡2𝑈̇ 𝑍̇𝑇 −∆𝑡L

]︁
(𝑍 + ∆𝑡𝑍̇) = 0

Our second final equation is as follows.

P⊥
𝑈 ∆𝑡L (𝑍 + ∆𝑡𝑍̇) = ∆𝑡𝑈̇(𝑍 + ∆𝑡𝑍̇)𝑇 (𝑍 + ∆𝑡𝑍̇)

The goal, henceforth, is to solve (2.13) and (2.14). We’ll assume that L , 𝑈, 𝑍 ∼
𝒪(1), and we’ll let 𝑈̇ and 𝑍̇ take the following forms.

∆𝑡𝑈̇ =
∞∑︁
𝑖=0

∆𝑡𝑖U̇𝑖, ∆𝑡𝑍̇ =
∞∑︁
𝑖=0

∆𝑡𝑖𝒵̇𝑖
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By including 𝑖 = 0 in our summation, we allow for there to be a zeroth-order correction
to 𝑈 and 𝑍 if necessary. We also assume that U̇𝑖, 𝒵̇𝑖 ∼ 𝒪(1) ∀𝑖. Now, we’ll plug
these expressions into (2.13) and (2.14).(︃

𝑈 +
∞∑︁
𝑖=0

∆𝑡𝑖U̇𝑖

)︃𝑇

∆𝑡L =(︃
∞∑︁
𝑖=0

∆𝑡𝑖U̇𝑖

)︃𝑇 (︃ ∞∑︁
𝑖=0

∆𝑡𝑖U̇𝑖

)︃(︃
𝑍 +

∞∑︁
𝑖=0

∆𝑡𝑖𝒵̇𝑖

)︃𝑇

+

(︃
∞∑︁
𝑖=0

∆𝑡𝑖𝒵̇𝑖

)︃𝑇
(2.15)

P⊥
𝑈 ∆𝑡L

(︃
𝑍 +

∞∑︁
𝑖=0

∆𝑡𝑖𝒵̇𝑖

)︃
=(︃

∞∑︁
𝑖=0

∆𝑡𝑖U̇𝑖

)︃(︃
𝑍 +

∞∑︁
𝑖=0

∆𝑡𝑖𝒵̇𝑖

)︃𝑇 (︃
𝑍 +

∞∑︁
𝑖=0

∆𝑡𝑖𝒵̇𝑖

)︃ (2.16)

Theorem 2.3.3. Given 𝑈 ∈ 𝒱𝑚,𝑟, 𝑍 ∈ R𝑛×𝑟
* , L ∈ R𝑚×𝑛, and ∆𝑡 ∈ R the zeroth

through fourth order solutions to (2.15) and (2.16) are given by the following linear
equations.

U̇0 = 0 (2.17)

𝒵̇0 = 0 (2.18)

U̇1 = P⊥
𝑈 L𝑍

(︀
𝑍𝑇𝑍

)︀−1 (2.19)

𝒵̇1 = L
𝑇
𝑈 (2.20)

U̇2 =
[︁
P⊥

𝑈 L 𝒵̇1 − U̇1(𝑍
𝑇 𝒵̇1 + 𝒵̇𝑇

1 𝑍)
]︁ (︀

𝑍𝑇𝑍
)︀−1 (2.21)

𝒵̇2 =
(︁
L

𝑇 − 𝑍U̇𝑇
1

)︁
U̇1 (2.22)

U̇3 =
[︁
P⊥

𝑈 L 𝒵̇2 − U̇2(𝑍
𝑇 𝒵̇1 + 𝒵̇𝑇

1 𝑍) −

U̇1(𝑍
𝑇 𝒵̇2 + 𝒵̇𝑇

2 𝑍 + 𝒵̇𝑇
1 𝒵̇1)

]︁ (︀
𝑍𝑇𝑍

)︀−1
(2.23)

𝒵̇3 = L
𝑇

U̇2 − 𝑍(U̇𝑇
1 U̇2 + U̇𝑇

2 U̇1)− 𝒵̇1U̇𝑇
1 U̇1 (2.24)

U̇4 =
[︁
P⊥

𝑈 L 𝒵̇3 − U̇3

(︁
𝑍𝑇 𝒵̇1 + 𝒵̇𝑇

1 𝑍
)︁
− U̇2

(︁
𝑍𝑇 𝒵̇2 + 𝒵̇𝑇

2 𝑍 + 𝒵̇𝑇
1 𝒵̇1

)︁
−U̇1

(︁
𝑍𝑇 𝒵̇3 + 𝒵̇𝑇

3 𝑍 + 𝒵̇𝑇
2 𝒵̇1 + 𝒵̇𝑇

1 𝒵̇2

)︁]︁ (︀
𝑍𝑇𝑍

)︀−1
(2.25)

𝒵̇4 = L
𝑇

U̇3 − 𝑍
(︀

U̇𝑇
1 U̇3 + U̇𝑇

2 U̇2 + U̇𝑇
3 U̇1

)︀
−

𝒵̇1

(︀
U̇𝑇

2 U̇1 + U̇1U̇2

)︀
− 𝒵̇2U̇𝑇

1 U̇1

(2.26)
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Proof. First, we’ll only consider the zeroth order terms of ∆𝑡. The left-hand sides of
(2.15) and (2.16) go to zero.

0 = U̇𝑇
0 U̇0𝑍

𝑇 + 𝒵̇𝑇
0 + U̇𝑇

0 U̇0𝒵̇𝑇
0

0 = U̇0(𝑍 + 𝒵̇)𝑇 (𝑍 + 𝒵̇0)

The solution to which is U̇0 = 𝒵̇0 = 0.

Now, we proceed to the first-order correction. We start with (2.15).

𝑈𝑇L = 𝒵̇𝑇
1

⇒ 𝒵̇1 = L
𝑇
𝑈

Now, we deal with (2.16).

P⊥
𝑈 L𝑍 = U̇1𝑍

𝑇𝑍

⇒ U̇1 = P⊥
𝑈 L𝑍

(︀
𝑍𝑇𝑍

)︀−1

With that, we have recovered the original DO projection onto the tangent space from
theorem 1.4.1! It is now clear that this is a first-order correction to the nonlinear
solution.

We now proceed to a second-order correction with the same procedure.

U̇𝑇
1 L = U̇𝑇

1 U̇1𝑍
𝑇 + 𝒵̇𝑇

2

⇒ 𝒵̇2 =
(︁
L

𝑇 − 𝑍U̇𝑇
1

)︁
U̇1

P⊥
𝑈 L 𝒵̇1 = U̇2𝑍

𝑇𝑍 + U̇1𝑍
𝑇 𝒵̇1 + U̇1𝒵̇𝑇

1 𝑍

⇒ U̇2 =
[︁
P⊥

𝑈 L 𝒵̇1 − U̇1(𝑍
𝑇 𝒵̇1 + 𝒵̇𝑇

1 𝑍)
]︁ (︀

𝑍𝑇𝑍
)︀−1

We now have a second-order correction, which goes beyond the current methodology.
Note that U̇1 and 𝒵̇1 both are functions of L , so U̇2 is a second-order polynomial of
L , and the same is true of 𝒵̇2. This allows for the interpretation that we project-
ing onto a quadratic approximation of M𝑟. It’s also worth it to take a moment to
appreciate how auspicious it is that U̇2 and 𝒵̇2 can be solved for explicitly; the only
nonlinear terms appear as lower degrees of 𝑈̇ and 𝑍̇. Furthermore, U̇2 is orthogonal
to 𝑈 since the first term in (2.21) is multiplied by P⊥

𝑈 and the second term is mul-
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tiplied by U̇1, which is also orthogonal to 𝑈 . These observations will continue to be
true for arbitrarily high orders of approximation. Below, we’ll derive the third and
fourth order corrections, but we note that this process can easily be done indefinitely.

U̇𝑇
2 L = U̇𝑇

2 U̇𝑇
1𝑍

𝑇 + U̇𝑇
1 U̇2𝑍

𝑇 + 𝒵̇𝑇
3 = U̇𝑇

1 U̇1𝒵̇𝑇
1

⇒ 𝒵̇3 = L
𝑇

U̇2 − 𝑍(U̇𝑇
1 U̇2 + U̇𝑇

2 U̇1)− 𝒵̇1U̇𝑇
1 U̇1

P⊥
𝑈 L 𝒵̇2 = U̇3𝑍

𝑇𝑍 + U̇2𝑍
𝑇 𝒵̇1 + U̇1𝑍

𝑡𝒵̇2 + U̇1𝒵̇𝑇
2 𝑍 + U̇2𝒵̇𝑇

1 + U̇1𝒵̇𝑇
1 𝒵̇1

⇒ U̇3 =
[︁
P⊥

𝑈 L 𝒵̇2 − U̇2(𝑍
𝑇 𝒵̇1 + 𝒵̇𝑇

1 𝑍) −

U̇1(𝑍
𝑇 𝒵̇2 + 𝒵̇𝑇

2 𝑍 + 𝒵̇𝑇
1 𝒵̇1)

]︁ (︀
𝑍𝑇𝑍

)︀−1

U̇𝑇
3 L =

(︀
U̇𝑇

3 U̇1 + U̇𝑇
2 U̇2 + U̇𝑇

1 U̇3

)︀
𝑍𝑇 + 𝒵̇4 +

(︀
U̇𝑇

2 U̇1 + U̇1U̇2

)︀
𝒵̇𝑇

1 + U̇1U̇1𝒵̇𝑇
2

⇒ 𝒵̇4 = L
𝑇

U̇3 − 𝑍
(︀

U̇𝑇
1 U̇3 + U̇𝑇

2 U̇2 + U̇𝑇
3 U̇1

)︀
−

𝒵̇1

(︀
U̇𝑇

2 U̇1 + U̇1U̇2

)︀
− 𝒵̇2U̇𝑇

1 U̇1

P⊥
𝑈 L 𝒵̇3 = U̇4𝑍

𝑇𝑍 + U̇3𝑍
𝑇 𝒵̇1 + U̇2𝑍

𝑇 𝒵̇2 + U̇1𝑍
𝑇 𝒵̇3+

U̇3𝒵̇𝑇
1 𝑍 + U̇2𝒵̇𝑇

2 𝑍 + U̇1𝒵̇𝑇
3 𝑍 + U̇2𝒵̇𝑇

1 𝒵̇1 + U̇1𝒵̇𝑇
2 𝒵̇1 + U̇1𝒵̇𝑇

1 𝒵̇2

⇒ U̇4 =
[︁
P⊥

𝑈 L 𝒵̇3 − U̇3

(︁
𝑍𝑇 𝒵̇1 + 𝒵̇𝑇

1 𝑍
)︁
− U̇2

(︁
𝑍𝑇 𝒵̇2 + 𝒵̇𝑇

2 𝑍 + 𝒵̇𝑇
1 𝒵̇1

)︁
−U̇1

(︁
𝑍𝑇 𝒵̇3 + 𝒵̇𝑇

3 𝑍 + 𝒵̇𝑇
2 𝒵̇1 + 𝒵̇𝑇

1 𝒵̇2

)︁]︁ (︀
𝑍𝑇𝑍

)︀−1

The power of these retractions is that we can get an arbitrarily high order of con-
vergence at relatively low cost. In fact, for each additional element of the perturbation
series we compute, we obtain an additional order of accuracy. It is simple to show
that this method converges linearly. The rate of convergence for a sequence {𝑎𝑘}
that converges to 𝑎 is defined as 𝑞* = sup𝑞

{︁
𝑞 : lim𝑘→∞

|𝑎𝑘+1−𝑎|
|𝑎𝑘−𝑎|𝑞 = 0

}︁
[46, 47]. For

the perturbative retractions, we have that |𝑎𝑘+1−𝑎|
|𝑎𝑘−𝑎|𝑞

⃒⃒⃒
𝑞=1

= 𝒪(∆𝑥); increasing 𝑞 would
cause the fraction to blow up as ∆𝑥→ 0. One may ask: why not use a second-order
iterative method like Newton-Raphson? Recall that this would require a large ma-
trix inversion at each step, whereas each perturbative retraction is quite cheap (only
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(a) Taylor series approximations (b) Error in approximations

Figure 2-5: For a function 𝑓(𝑥) = 1 + log(𝑥 + 1) [cos(𝑥) + sin(2𝑥)], we plot first-,
second-, and third-order approximations centered at 𝑥 = 0. We also plot their ab-
solute error. For |𝑥| ≪ 1, the third-order approximation is best, followed by the
second-order approximation, and finally the first-order approximation. But, as 𝑥
grows, the higher-order approximations overshoot, and the approximation with the
least error of the three is actually the first-order approximation.

requiring the inversion of an 𝑟× 𝑟 matrix), especially for low-order corrections. Once
we fix the number of terms (𝑝) in the perturbation series to compute, the given per-
turbative retraction will be a 𝑝-th order time integrator when considering the global
error.

Another benefit of these retractions is that there is no qr decomposition nor any
SVD to compute; there are only matrix multiplications. The caveat to this efficiency,
however, is in the assumptions. Namely, we’ve assumed L = 𝒪(1), and the series
(2.15, 2.16) may only be valid for ∆𝑡 ≪ 1. We have not shown that the series
will converge; instead, we assume that at finite truncation of 𝑖, the series becomes
more and more accurate. More precisely, we require that ∆𝑡𝑖||U̇𝑖|| ≪ ||𝑈 || and
∆𝑡𝑖||𝒵̇𝑖|| ≪ ||𝑍|| for all 𝑖. Otherwise, the asymptotic series may overshoot, and we
could be better off taking a lower-order approximation.

Hence, we propose an adaptive perturbative retraction which adjusts the order of
the retraction depending on the norms of the terms above (see algorithm 3). To de-
termine where to truncate the series, the values Δ𝑡𝑖

||𝑈 || ||U̇𝑖|| and Δ𝑡𝑖

||𝑍|| ||𝒵̇𝑖|| are computed;
we want these values to be much less than 1. Practically, this requires a hyperparam-
eter 𝜀 ≪ 1 to indicate whether or not the aforementioned value is much less than 1.
Heuristically, we have found that if max

(︁
Δ𝑡𝑖

||𝑈 || ||U̇𝑖||, Δ𝑡𝑖

||𝑍|| ||𝒵̇𝑖||
)︁
< 𝜀 ∈ [0.025, 0.1] works

well. If it is deemed that the terms of the asymptotic series are appropriately scaled,
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the next perturbation is computed; otherwise, a lower-order truncation is used.

Algorithm 3: General adaptive perturbative retraction
Input: 𝑈0 ∈ 𝒱𝑚,𝑟, 𝑍0 ∈ R𝑛×𝑟

* , L ∈ R𝑚×𝑛, ∆𝑡 ∈ R, 𝜀 ∈ R
Output: 𝑈1 ∈ 𝒱𝑚,𝑟, 𝑍1 ∈ R𝑛×𝑟

1 𝑈1 = 𝑈0, 𝑍1 = 𝑍0, U̇0 = 0, 𝒵̇0 = 0,
𝛼0 = ||𝑍0||, 𝛼 = 0, 𝑛 = 0

2 while 𝛼 < 𝜀 do
3 𝑈1 ← 𝑈1 + ∆𝑡𝑛U̇𝑛, 𝑍1 ← 𝑍1 + ∆𝑡𝑛𝒵̇𝑛

4 𝑛← 𝑛 + 1

5 Compute U̇𝑛 and 𝒵̇𝑛

6 𝛼 = Δ𝑡𝑛

𝛼0
max

(︁
||U̇𝑛||, ||𝒵̇𝑛||

)︁
7 𝑈1, 𝑍1 ← re-orthonormalization procedurea on 𝑈1, 𝑍1

aSee Appendix D.1 for details as to why re-orthonormalization is necessary and for imple-
mentation details.
In practice, however, we essentially always want to keep the first-order retraction.

Furthermore, we don’t want to indefinitely compute higher-order terms even if they
are increasingly small and converge – if they are getting increasingly small, then the
computational cost is not worth the marginal increased accuracy. Hence, algorithm
10 in appendix D.2 is proposed as a more realistic implementation.

Finally, we will show that the higher-order corrections are not second-order retrac-
tions. Here we note that the terminology of “second-order retraction” and “second-
order correction” is unfortunate and confusing. A second-order retraction refers to
(2.6), and a retraction with a second-order correction refers to theorem 2.3.3. Our
higher-order retractions (now referring to retractions with higher-order corrections)
have 𝒪(∆𝑡2) components that are not in the normal space of M𝑟 at 𝑋. This is not a
surprise as we showed that the extended projective retraction (which we are asymp-
totically approximating) is not a second-order retraction. It suffices to show that the
retraction with a second-order correction is not a second-order retraction since the
third- and higher-order corrections only add 𝒪(∆𝑡3) terms. We refer back to (2.19,
2.20, 2.21, 2.22).

P⊥
𝒯𝑋M𝑟

(︁
U̇2𝑍

𝑇 + U̇1𝒵̇𝑇
1 + 𝑈𝒵̇𝑇

2

)︁
= P⊥

𝑈

(︁
U̇2𝑍

𝑇 + U̇1𝒵̇𝑇
1 + 𝑈𝒵̇2

)︁
P⊥

𝑍

= U̇2��
���:0

𝑍𝑇P⊥
𝑍 + U̇1𝒵̇1P

⊥
𝑍 +��

��*
0

P⊥
𝑈𝑈𝒵̇2P

⊥
𝑍
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Recall that all U̇𝑖 are invariant under P⊥
𝑈 . Now, we’ll expand the last remaining

term.

U̇1𝒵̇1P
⊥
𝑍 = P⊥

𝑈 L𝑍
(︀
𝑍𝑇𝑍

)︀−1
𝑈𝑇L P⊥

𝑍 (2.27)

With that, we must show that U̇2𝑍
𝑇 +U̇1𝒵̇𝑇

1 +𝑈𝒵̇𝑇
2 differs from the expression above.

We’ll go term-by-term and then add them.

U̇2𝑍
𝑇 =

[︁
P⊥

𝑈 L L
𝑇
𝑈 −P⊥

𝑈 L𝑍(𝑍𝑇𝑍)−1𝑍𝑇L
𝑇
𝑈−

P⊥
𝑈 L𝑍(𝑍𝑇𝑍)−1𝑈𝑇L𝑍

]︀
(𝑍𝑇𝑍)−1𝑍𝑇

= P⊥
𝑈 L P⊥

𝑍 L
𝑇
𝑈(𝑍𝑇𝑍)−1𝑍𝑇 −P⊥

𝑈 L𝑍(𝑍𝑇𝑍)−1𝑈𝑇L P𝑍 (2.28)

U̇1𝒵̇𝑇
1 = P⊥

𝑈 L𝑍(𝑍𝑇𝑍)−1𝑈𝑇L

𝑈𝒵̇𝑇
2 = 𝑈(𝑍𝑇𝑍)−1𝑍𝑇L

𝑇
P⊥

𝑈 L − 𝑈(𝑍𝑇𝑍)−1𝑍𝑇L
𝑇
P⊥

𝑈 L P𝑍

= 𝑈(𝑍𝑇𝑍)−1𝑍𝑇L
𝑇
P⊥

𝑈 L P⊥
𝑍 (2.29)

Now, the term in (2.29) and the second term in (2.28) combine such that the sum is
as follows.

U̇2𝑍
𝑇 + U̇1𝒵̇𝑇

1 + 𝑈𝒵̇𝑇
2 = P⊥

𝑈 L P⊥
𝑍 L

𝑇
𝑈(𝑍𝑇𝑍)−1𝑍𝑇+

𝑈(𝑍𝑇𝑍)−1𝑍𝑇L
𝑇
P⊥

𝑈 L P⊥
𝑍 + P⊥

𝑈 L𝑍(𝑍𝑇𝑍)−1𝑈𝑇L P⊥
𝑍

(2.30)

The last term in (2.30) matches (2.27). So in order for the perturbative methods to
second-order retractions, we would need P⊥

𝑈 L P⊥
𝑍 L

𝑇
𝑈(𝑍𝑇𝑍)−1𝑍𝑇 +

𝑈(𝑍𝑇𝑍)−1𝑍𝑇L
𝑇
P⊥

𝑈 L P⊥
𝑍 = 0. And while there is symmetry between those two

terms, the sum is not zero in general. Because of this, in the next chapter where the
higher-order retractions are investigated with numerical examples, the term second-
order or higher-order retraction will not refer to (2.6) but to theorem 2.3.3.

To close off this chapter, we will re-emphasize that in the case of solving differential
equations, we have broken the time integration schemes into two steps. The first step
is to use a classical time integration scheme to compute L ≈ 1

Δ𝑡

∫︀ 𝑡𝑛+1

𝑡𝑛
L 𝑑𝑡 with

any numerical scheme. This step essentially tells the scheme in what direction in
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the embedding Euclidean space we would like to go. The second step is to apply a
retraction in order to stay on the low-rank manifold. By using a high-order retraction,
we can preserve the order of accuracy of the time integration scheme used in step one.
In the following chapter, we will show that these retractions do indeed preserve high-
order convergence to the best low-rank approximation in several test cases.
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Chapter 3

Results and applications

3.1 Matrix addition

In this example, we consider the simple case of adding two matrices, 𝑋 and ∆𝑡𝐿.
We normalize 𝑋 and 𝐿 such that they have Frobenius norm one; hence ∆𝑡 controls
the relative scaling between the norms of 𝑋 and 𝐿. In particular, 𝑋,𝐿 ∈ R50×100, and
𝑋 has rank 10. For 𝑋 = 𝑈𝑍𝑇 , uniformly random 𝑈 and 𝑍 are chosen, and then 𝑈

is orthonormalized. This typically yields a condition number of approximately seven.
To see how the retraction performs in the near-singular case, we took the singular
value decomposition of 𝑍. Then, we set the last five singular values of 𝑍 equal to
𝜎1/1000, where 𝜎1 denotes the max singular value of 𝑍. This yields an 𝐿2 condition
number of 1000.

We see that the 𝑛-th order perturbative retraction exhibits ∆𝑡𝑛+1 convergence lo-
cally. This is as expected since the 𝑛-th order correction has ∆𝑡𝑛+1 error unaccounted
for. Note that for time-dependent problems, the global error will be ∆𝑡𝑛 since the
number of time steps in a fixed time interval scales as 1/∆𝑡. Furthermore, when
∆𝑡 ≫ 1, all the retractions tend to overshoot as discussed in the previous section,
which shows why the adaptive method is necessary. The adaptive method roughly
has the minimum retraction error at all ∆𝑡 by analyzing when the asymptotic series
converges, and for this example we choose hyperparameter 𝜀 = 0.1.

In figures 3-1a and 3-1b, we see high-order convergence all the way to machine
precision. These plots measure the error between the projection of 𝑋 + ∆𝑡𝐿 and the
retraction onto the low-rank manifold. Because the error between 𝑋 + ∆𝑡𝐿 and its
projection lie in the normal space to the manifold at the projection, figures 3-1a and
3-1b roughly correspond to error in the tangent space; the error in the normal space is
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(a) Error with respect to projection,
cond(𝑋) ≈ 7

(b) Error with respect to projection,
cond(𝑋) = 1000

(c) Total error, cond(𝑋) ≈ 7 (d) Total error, cond(𝑋) = 1000

Figure 3-1: We compare the convergence of first-, second-, third-, and fourth-order
perturbative retractions along with the adaptive method (see algorithm 10) for two
𝑋’s with different condition numbers in the 𝐿2 norm.
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inevitable unless we increase the rank of our solution. As such, we have accomplished
our goal in asymptotically approximating the projection onto the manifold.

Figures 3-1c and 3-1d measure the total error between 𝑋+∆𝑡𝐿 and the retraction.
For ∆𝑡 relatively large, we observe high-order convergence, but then all the methods
only converge at first-order rates. This is due to the error in the normal space to the
low-rank manifold at the projected point. For ∆𝑡 small, the normal error dominates
– that is, we have already done a decent job of approximating the tangent error. As
∆𝑡 is reduced, the normal error is also scaled down, which is why we see first-order
convergence at all.

In both the tangent error and total error cases, by increasing the condition number
of 𝑋, we see the retractions require a smaller ∆𝑡 for the same accuracy. This is
because the low-rank manifold has larger curvature. So, these low-order polynomial
approximations to the low-rank manifold are less accurate. Furthermore, the higher-
order corrections more easily overshoot. This further elucidates the utility of the
adaptive method since the lower-order corrections are less sensitive to small singular
values in 𝑋.

One may ask why we even attempt using these higher-order corrections if the total
error is dominated by the normal error. There are three potential answers to this.
First, in a situation such as matrix differential equations, there could exist an operator
that ignores the error normal to the low-rank manifold. As such, approximating the
error in the tangent space alone is enough to obtain an accurate dynamical low-
rank approximation. Second, consider a matrix differential equation 𝑑𝑋

𝑑𝑡
= 𝐴1(𝑋) +

𝐴2(𝑋)+· · ·+𝐴𝑛(𝑋) ≡ 𝐿(𝑋), where 𝐴𝑖 are some functions that operate on the current
state 𝑋. It’s reasonable to choose a scheme that projects 𝐿 onto the tangent space
at every step and then retracts back onto the tangent space. But, computing and/or
storing 𝐿 in memory may be difficult as the rank of 𝐿 could be

∑︀
𝑖 rank(𝐴𝑖(𝑋)),

which may be very large. As such, it’s reasonable to first project each addition
onto the tangent space, i.e. 𝐿 ≈ P𝒯𝑋M𝑟 (𝐴1(𝑋) + P𝒯𝑋M𝑟(𝐴2(𝑋) + · · · )). Because
the operator we have chosen is linear, in this case, the approximation is actually an
equality; however, more complicated choices of 𝐿(𝑋) will yield some approximation
error. In this case, because we would already be projecting 𝐿 onto the tangent
space at the end anyways, we don’t care about the normal error so much; we are
really trying to approximate 𝐿 in the tangent space, and so our perturbative method
would be highly effective. Third, this whole methodology assumes that 𝑋 + ∆𝑡𝐿

stays close to the low-rank manifold, which requires that 𝐿 is well-represented by its
projection onto the affine tangent space at 𝑋. In the examples described already,
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Figure 3-2: Total error when 𝐿 = P𝒯𝑋M𝑟𝐿 + 𝛿

𝐿 is chosen randomly, and so it has a large component in the normal space. This
suggests adaptively increasing the rank of the approximation, but this goes beyond
the scope of this thesis. Instead, consider another example where 𝐿 does not have a
large component in the normal space.

Figure 3-2 depicts the total error between 𝑋 + ∆𝑡𝐿 and the retraction when 𝐿

has a small normal component. To construct this example, we projected a random
𝐿 onto the tangent space at 𝑋 and then added a uniformly random matrix times
1/100, denoted 𝛿. We see that there is a significant range of ∆𝑡 for which higher-
order retractions significantly reduce the error from the first-order correction. It
appears that the second-order correction captures most of the total error. So in some
applications, the second-order retraction may be most attractive without considering
higher-order retractions.

Here we plot how the projective retractions compare with the adaptive pertur-
bative retraction. Of course, the extended projective retraction has machine zero
error with respect to the projection – the singular value decomposition gives the pro-
jection onto the low-rank manifold. Recall that the extended projective retraction
may be thought of as the ideal retraction in some ways. Perhaps surprisingly, the
(non-extended or “vanilla”) projective retraction does not do as well as the adaptive
perturbative retraction in reducing the error with respect to the projection (see figure
3-3a). Even though it projects from the tangent space to the low-rank manifold, it
still incurs error from the initial projection onto the tangent space in which informa-
tion about the normal space of 𝑋 + ∆𝑡𝐿 is lost. Figure 3-3b tells a different story.
The vanilla projective retraction is near ideal and outperforms the perturbative re-
traction for large ∆𝑡. This is likely because it avoids the overshoot problem that
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(a) Error with respect to projection (b) Total error

Figure 3-3: We compare the convergence of the adaptive retraction with the projective
retractions.

the perturbative approximations are subject to. So, the vanilla projective retraction
seems to do well in avoiding error in the normal space.

3.2 Real-time data compression

Another application of higher-order retractions is real-time data compression.
Imagine we have high-definition video (e.g. 4k or 8k) recording in real-time, and
we want to broadcast it to many viewers; however, we don’t have the bandwidth to
send the full data stream, at least not in an uncompressed format. Now, one may
consider taking the truncated SVD at each frame of the video, but this is extremely
costly to do for such high resolution video, especially in real time. We may not have
the computational power to compress 30 or even 60 frames per second. So, we need
a cheaper way to compress the data.

Consider this solution: compute the truncated SVD on the first-frame (maybe
inducing a small, acceptable time delay/lag at the beginning of the stream), and then
for each subsequent frame, use higher-order retractions to stay in the compressed
format. This would require only looking at the changes from frame-to-frame, and
then retracting these differences onto the low-rank manifold. In other words, we
would treat the difference between frame 𝑖 and frame 𝑖 + 1 as the analogue to the
time derivative in a differential equation.

To test this, we took a roughly four-second video recorded at 4k (3840 × 2160)
60 frame per second of a peacock walking across a road in Split, Croatia. Though
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(a) True image

we could apply the compression methodology to each of the red, green, and blue
data streams, for simplicity we converted the video to grayscale. Starting from a
truncated SVD of ranks 100 and 500, we applied retractions on the frame-to-frame
differences and compared the error with respect to the true video and with respect
to the best truncation given by taking the truncated SVD of each frame. Before
analyzing the error, we’ll show the last frame of the video (figure 3-4a) along with
the reconstructed last frames from the best approximation (figures 3-4b and 3-4c),
the extended projective retraction (figures 3-4d and 3-4e), the adaptive perturbative
retraction with 𝜀 = 0.025 (figures 3-4f and 3-4g), and the first-order retraction (figures
3-4h and 3-4i), each for ranks of 100 and 500.

We can see that clearly a rank of 100 is sufficient for an acceptable image. At a
rank of 500, more details are present in the best approximation (see the cobblestone
in the image). The extended projective retraction has a fair amount of error with
𝑟 = 100 but significantly less with 𝑟 = 500. This is because errors compound over
time; so small errors at the beginning of the video grow over time and affect the last
frame. Nevertheless, even at 𝑟 = 100, the image still captures the main feature of
the scene. The extended projective retraction can be viewed as our baseline – it’s
computationally expensive but in some ways ideal in that it minimizes the Frobenius
error at each step. The adaptive perturbative retraction does worse than the extended
projective retraction, but, again, it captures the main features of the video despite
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(b) Best approximation, 𝑟 = 100 (c) Best approximation, 𝑟 = 500

(d) Extended projective retraction, 𝑟 = 100 (e) Extended projective retraction, 𝑟 = 500

(f) Adaptive perturbative retraction, 𝑟 = 100 (g) Adaptive perturbative retraction, 𝑟 = 500

(h) First-order retraction, 𝑟 = 100 (i) First-order retraction, 𝑟 = 500

Figure 3-4: Comparison of retractions at the last frame of a 4k 60 Hz video
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the strong noise. What’s interesting is in the 𝑟 = 500 case, the noise seems to
be more granular, and the image is definitely more interpretable. Lastly, the first-
order retraction loses almost all of the information after four seconds at 𝑟 = 100.
For 𝑟 = 500, we can make out the general shape of the fence if we squint, but
the peacock is gone. This is a great demonstration of how much more effective the
adaptive perturbative retraction is than the first-order retraction. The higher-order
corrections make a big difference after 240 frames.

For further analysis, we look to plots of error vs time. In figure 3-5, we plot the
Frobenius norm of the error at each frame normalized by the Frobenius norm of the
first frame of the video. Notably, the fourth-order retraction does quite poorly in the
𝑟 = 500 case. It seems to overstep very early on and cannot recover. Meanwhile,
the first-order retraction does well at first but then the error continues to grow with
time. This highlights the efficacy of the adaptive scheme; it filters out the oversteps of
the higher-order methods but still captures the slow error growth as time continues.
The adaptive perturbative method is also plotted with the projective retractions for
reference. Surprsingly, the adaptive method is more effective than the projective
retraction, though the extended projective retraction still beats it. Unlike the matrix
addition case, the error with respect to the best approximation tells the same story
as the error with respect to the true video. This suggests that there is error in
both the normal and tangent spaces to the low-rank manifold at the point of best
approximation.

Realistically, the retractions cannot be used straight out of the box for real-time
video compression – they just don’t perform well enough. Video codecs like MPEG
are very complex and are specialized to compress videos, whereas these retractions
are far more general. Perhaps a combination of the methodologies could be used,
specializing the retractions for the video compression setting. Another suggestion
would be to take the truncated SVD every few frames or however often is affordable
in a real-time environment. This would prevent the compressed video from departing
too far from the true video. In any case, the adaptive perturbation has proven itself
to be far more effective than the first-order retraction at a much cheaper cost than
the extended perturbative retraction.
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(a) Perturbative retractions, 𝑟 = 100 (b) Perturbative retractions, 𝑟 = 500

(c) Perturbative retractions wrt best approx.,
𝑟 = 100

(d) Perturbative retractions wrt best approx.,
𝑟 = 500

(e) Projective retractions, 𝑟 = 100 (f) Projective retractions, 𝑟 = 500
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(g) Projective retractions wrt best approx.,
𝑟 = 100

(h) Projective retractions wrt best approx.,
𝑟 = 500

Figure 3-5: Error due to different retractions as a function of time for movie com-
pression
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3.3 Matrix differential equations

Next, we turn our attention to matrix differential equations. A motivating ex-
ample is 2𝑚 systems of coupled of linear oscillators 𝐴 ∈ R2𝑚×2𝑚 with the following
differential equation governing their motion.

𝐴 = −Λ𝐴, 𝐴(0) = 𝐴0, 𝐴̇(0) = 𝑉0 (3.1)

Consider a solution given by

𝐴(𝑡) = 𝑅(𝑡)𝑄𝑆 (3.2)

where 𝑄 is an orthonormal 2𝑚 × 2𝑚 matrix and 𝑆 is an 2𝑚 × 2𝑚 diagonal matrix
with non-increasing entries {𝑠𝑖}𝑚𝑖=1. 𝑅(𝑡) is a rotation (and hence orthogonal) matrix
given as follows.

𝑅(𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(𝜔1𝑡) − sin(𝜔1𝑡)

sin(𝜔1𝑡) cos(𝜔1𝑡) 0
cos(𝜔2𝑡) − sin(𝜔2𝑡)

sin(𝜔2𝑡) cos(𝜔2𝑡)
. . .

0 cos(𝜔𝑚𝑡) − sin(𝜔𝑚𝑡)

sin(𝜔𝑚𝑡) cos(𝜔𝑚𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note we can write out the derivatives of 𝑅 explicitly.

𝑅̇(𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝜔1 sin(𝜔1𝑡) −𝜔1 cos(𝜔1𝑡)

𝜔1 cos(𝜔1𝑡) −𝜔1 sin(𝜔1𝑡) 0
. . .

0 −𝜔𝑚 sin(𝜔𝑚𝑡) −𝜔𝑚 cos(𝜔𝑚𝑡)

𝜔𝑚 cos(𝜔𝑚𝑡) −𝜔𝑚 sin(𝜔𝑚𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− sin(𝜔1𝑡) − cos(𝜔1𝑡)

cos(𝜔1𝑡) − sin(𝜔1𝑡) 0
. . .

0 − sin(𝜔𝑚𝑡) − cos(𝜔𝑚𝑡)

cos(𝜔𝑚𝑡) − sin(𝜔𝑚𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.3)
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We define Ω = diag(𝜔1, 𝜔1, 𝜔2, 𝜔2, . . . , 𝜔𝑚, 𝜔𝑚). With this, we have the following.

𝑅̈(𝑡) = −Ω2𝑅(𝑡)

To ensure (3.2) is a solution to (3.1), we differentiate with respect to time.

𝐴 = 𝑅̈𝑄𝑆 = −Ω2𝑅𝑄𝑆 = −Ω2𝑌

Hence, setting Λ = Ω2, 𝐴0 = 𝑄𝑆, and 𝑉0 = 𝑅̇(0)𝑄𝑆 with 𝑅̇ defined by (3.3), we have
found a closed-form solution to the matrix differential equation.

By construction, the solution has particular properties. Because 𝑅 and 𝑄 are
orthonormal, the singular values of 𝑌 do not vary in time. In fact, the singular
values are simply the diagonal entries of 𝑆. This will allow for a clear analysis of the
retractions.

For the test case, we take 𝑚 = 13 (so 𝐴 is 26× 26) and construct 𝑆 with 16 large
entries and 10 small entries defined below

𝑆𝑖𝑖 =

⎧⎨⎩100 + 10𝑧𝑖 𝑖 ≤ 16

10−3+ 𝑖−17
9 𝑖 > 16

where 𝑧𝑖 are iid standard normal random variables. After construction, the diagonal
entries of 𝑆 are sorted from greatest to least for simple analysis. 𝑄 is constructed
by orthonormalizing (via MATLAB’s orth function) a 26 × 26 matrix of uniformly
distributed random numbers. For our numerical experiment, we consider the case of
truncating 𝑌 to a rank of 16. This allows us to capture almost all of the variability in
𝑌 , and because the singular values of 𝑌 (𝑡) do not change, the whole solution trajectory
will stay very close to the low-rank manifold. In order to solve this system of ODEs,
we use a sixth-order symplectic Yoshida integrator [48], which is a generalization of
the common leapfrog integrator (see algorithm 4. We’ll compare the true solution as
well as the best approximation to the solution to each of the retractions from times
𝑡 = 0 to 10. Note that the best approximation in this case is given by 𝑅(𝑡)𝑄(:, 1 :

16)𝑆(1 : 16, :). We’ll denote a low-rank approximation to 𝑌 .

Figure 3-6 shows the error from perturbative and projective retractions as a func-
tion of time. In appendix B, extra figures (see figure B-1) are given of the error with
respect to the best approximation. They are not given here since they tell the same
story as figure 3-6. Again, the 𝑦-axis corresponds to the normalized Frobenius error,
where the normalization constant is equal to the norm of 𝐴(0). In figure 3-6a, the
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Algorithm 4: Sixth-order integrator
Input: 𝑋 ∈ R𝑚×𝑛, 𝑋̇ ∈ R𝑚×𝑛,∆𝑡 ∈ R, 𝐹 : R𝑚×𝑛 → R𝑚×𝑛

Output: 𝑋, 𝑋̇
1 𝑤1 = −1.17767998417887
2 𝑤2 = 0.235573213359357
3 𝑤3 = 0.784513610477560
4 𝑤0 = 1− 2(𝑤1 + 𝑤2 + 𝑤3)

5 𝑏 =
[︀
𝑤3 𝑤2 𝑤1 𝑤0 𝑤1 𝑤2 𝑤3

]︀
6 𝑎 = 1

2

[︀
𝑤3 𝑤3 + 𝑤2 𝑤2 + 𝑤1 𝑤1 + 𝑤0 𝑤1 + 𝑤0 𝑤2 + 𝑤1 𝑤3 + 𝑤2 𝑤3

]︀
7 for 𝑖 = 1 : 7 do
8 𝑋 = 𝑋 + ∆𝑡𝑎𝑖𝑋̇

9 𝑋̇ = 𝑋̇ + ∆𝑡𝑏𝑖𝐹 (𝑋)

10 𝑋 = 𝑋 + ∆𝑡𝑎8𝑋̇

(a) Perturbative retractions (b) Projective retractions

Figure 3-6: Error due to different retractions as a function of time for matrix differ-
ential equations, ∆𝑡 = 0.01

81



Figure 3-7: Convergence plots of perturbative retractions for matrix differential equa-
tions

adaptive (with 𝜀 = 0.025), third-, and fourth-order retractions are all stacked on top
of each other. We can see that the third-order correction is very effective in reducing
the error relative to the first- and second-order corrections. The oscillatory nature of
the adaptive error is likely related to the oscillatory nature of the solution itself. The
projective retractions seem to have almost no error whatsoever. In fact, their error
is very slightly greater than the sum of the singular values not included in 𝑋. So in
contrast to the movie compression example where the adpative method outperformed
the projective retraction, the projective retraction easily beats the adaptive retrac-
tion in this system of ODEs. The error with respect to the best approximation tells
mostly the same story as error with respect to the true solution.

In addition, we do a convergence study of each for each of the retractions by taking
smaller and smaller time steps. For additional figures, see figure B-2. In figure 3-7,
we see that the first-order correction exhibits convergence of order 𝒪(∆𝑡), the second-
order corrections exhibits convergence of order 𝒪(∆𝑡2), and the adaptive, third-, and
fourth-order corrections exhibit convergence of order 𝒪(∆𝑡3). As the adaptive, third-,
and fourth-order methods approach the best approximation, the convergence slows
slightly, which is not a concern since we are seeing the effects of the model error from
truncation.

One may wonder why we don’t see fourth-order convergence in the adaptive and
fourth-order retractions. But recall there is, in general, an 𝒪(∆𝑡) error (locally) in-
duced by the Dirac-Frenkel time-dependent variational principle. That is, the deriva-
tive information we obtain at each step is from the truncated solution on the low-rank
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manifold instead of the derivative from the full solution. In other words, denoting the
low-rank approximation to 𝐴 as 𝑋, we are solving 𝑋̈ = −P𝒯𝑋M𝑟Ω

2𝑋(𝑡) instead of
𝑋̈ = −P𝒯𝑋M𝑟Ω

2𝑌 (𝑡). It is this information gap that ruins our convergence at higher
orders.

Another way to view this error is in the discrete sense. Suppose we start on the
low-rank manifold with 𝑋0 and march the solution one step. Before retracting, we’ll
call the point 𝑋̃1 = 𝑋0+∆𝑡L (𝑡0, 𝑋0), where L is an approximation of a time average
of our differential operator. After retraction, we obtain 𝑋1 = ℛ𝑋0(∆𝑡L (𝑡0, 𝑋0)).
Now we take another step from each of these points without retraction.

Stepping from 𝑋̃1 : 𝑋1 + ∆𝑡L (𝑡1, 𝑋1)

Stepping from 𝑋1 : 𝑋1 + ∆𝑡L (𝑡1, 𝑋1)

Even before retracting the second step back onto the low-rank manifold, we see the
problematic difference. Of course we expect to start from different points 𝑋̃1 and
𝑋1. The problem is in calculating our differential operator L , we are evaluating at
different points 𝑋̃1 and 𝑋1, which is shown in figure 3-8. We have shown that using
our 𝑛-th order perturbative retractions, we have that 𝑋1 = PM𝑟𝑋̃1 + 𝒪(∆𝑡𝑛). If
we assume that the full-rank solution stays close to the low-rank manifold such that
||𝑋̃1 −PM𝑟𝑋̃1|| < 𝜀, then ||𝑋1 − 𝑋̃1|| = 𝒪(𝜀,∆𝑡𝑛). Finally, if we assume that L

is Lipschitz continuous (and so L is also Lipschitz continuous), then we have that
∆𝑡||L (𝑡1, 𝑋̃1)−L (𝑡1, 𝑋1)|| = 𝒪(𝜀∆𝑡,∆𝑡𝑛+1). Hence, we have shown that there is a
local first-order error using the Dirac-Frenkel time-dependent variational principle.

One may ask why the aforementioned error doesn’t ruin second- or third-order
convergence. Well because we’ve constructed 𝑆 such that the truncated singular
values of 𝑌 are very small, 𝜀 in the analysis above is also very small. Hence, the
first-order error is not observable until the error becomes very small, which is only
achieved in the higher-order retractions for these values of ∆𝑡.

The next logical question would then be to ask what would happen if we did not
use the Dirac-Frenkel time-dependent variational principle; that is, what if we used
the full-rank derivative information from 𝑌 in our calculation of 𝑋. We would then
expect to see higher-order convergence in the fourth-order and adaptive methods.
Indeed we do see higher-order convergence, but before discussing the results, we
need to describe the modified integrator. The sixth-order Yoshida integrator can be
thought of as having eight semi-implicit steps; we alternate integrating the velocity
and the position. So the question is where do we provide the full-rank derivative
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Figure 3-8: Comparison of two steps with and without the Dirac-Frenkel time-
dependent variational principle. Note that L (𝑡1, 𝑋̃1) ̸= L (𝑡1, 𝑋1).

information? It is sufficient to only change the first step of integrating both 𝑋

and 𝑋̇. The integration algorithm is written out in algorithm 5, and it should be
contrasted with algorithm 4. Henceforth, we will not include the coefficients 𝑤𝑖, 𝑎, or
𝑏 in the algorithm; they are the same as in algorithm 4. The key note here is to use
𝐹 (𝐴+∆𝑡𝑎1𝐴̇) instead of 𝐹 (𝑋) and to use 𝐴̇ instead of 𝑋̇ in the first integration of 𝑋̇;
otherwise, the error from 𝑋 and 𝑋̇ pollutes the higher-order convergence. Hence, we
must effectively integrate 𝐴̇ one step using the full-rank 𝑌 and 𝐴̇. As a consequence,
we don’t really need to return 𝑋̇ since it will be calculated from the full-rank solution
in the next step. Contrasting figure 3-9a with figure 3-6a, we see that providing
the full-rank derivative information reduces the error for the first- and second-order
retraction and gets rid of the oscillations in the error for the higher-order retractions.
But what’s more interesting is looking at the convergence plots. Figure 3-9b shows
“cleaner” convergence than figure 3-7. We recover fourth-order convergence for both
the fourth-order and adaptive methods. However, the error does not decrease all the
way down to the best approximation when the full-rank derivative is given.The reason
for this error is subtle.

Recall we have shown that for 𝑋 = PM𝑟𝐴, given 𝐴̇ = L , the reduced-order
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Algorithm 5: Sixth-order integrator with full-rank derivative information
Input: 𝑋 ∈ R𝑚×𝑛, 𝑋̇ ∈ R𝑚×𝑛, 𝐴 ∈ R𝑚×𝑛, 𝐴̇ ∈ R𝑚×𝑛,∆𝑡 ∈ R, 𝐹 : R𝑚×𝑛 →

R𝑚×𝑛

Output: 𝑋, 𝑋̇
1 𝑋 = 𝑋 + ∆𝑡𝑎1𝐴̇

2 𝑋̇ = 𝐴̇ + ∆𝑡𝑏1𝐹 (𝐴 + ∆𝑡𝑎1𝐴̇)
3 for 𝑖 = 2 : 7 do
4 𝑋 = 𝑋 + ∆𝑡𝑎𝑖𝑋̇

5 𝑋̇ = 𝑋̇ + ∆𝑡𝑏𝑖𝐹 (𝑋)

6 𝑋 = 𝑋 + ∆𝑡𝑎8𝑋̇

(a) Error as a function of time with full-rank
derivative information, Δ𝑡 = 0.01

(b) Convergence plots for perturbative re-
tractions given full-rank derivative informa-
tion

Figure 3-9: Error plots for perturbative retractions when using algorithm 5
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differential equation we seek to solve is 𝑋̇ = P𝒯𝑋M𝑟L (𝑡, 𝐴(𝑡)). That is, we project
the full-rank dynamics onto the tangent space at 𝑋. Let 𝑋̃ denote our approxima-
tion to PM𝑟𝐴; as we integrate 𝑋̃, we accumulate error, so when we are project-
ing L (𝑡, 𝐴(𝑡)) onto the tangent space, we are really computing P𝒯𝑋̃M𝑟L (𝑡, 𝐴(𝑡)) ̸=
P𝒯𝑋M𝑟L (𝑡, 𝐴(𝑡)). How might one fix this error? The first thought may be to use
𝑋 instead of 𝑋̃ to project the dynamics and then add the projected dynamics to the
previous value of 𝑋̃. For the moment, ignore the computational feasibility of such an
algorithm (since if we could compute PM𝑟𝐴 at every step, we would have no need
to use these retractions in the first place). However, this does not work – we would
be projecting the dynamics onto a mismatched tangent space. In other words, the
geometry of the manifold is different at 𝑋 and 𝑋̃, so we cannot swap their tangent
spaces without incurring an additional error.

An alternative approach is to correct the full-rank derivative to reflect the dif-
ference between 𝑋 and 𝑋̃. By definition, L (𝑡𝑛, 𝐴(𝑡𝑛)) ≈ 𝐴(𝑡𝑛+1)−𝐴(𝑡𝑛)

Δ𝑡
. In defining

𝑋 = PM𝑟𝐴, the difference between 𝑋𝑛 and 𝐴(𝑡𝑛) exists only in the normal space to
the affine tangent space at 𝑋𝑛. Hence, we have the following.

P𝒯𝑋M𝑟

[︂
𝐴(𝑡𝑛+1)− 𝐴(𝑡𝑛)

∆𝑡

]︂
=

𝑋𝑛+1 −𝑋𝑛

∆𝑡

A simple numerical scheme would then be to take 𝑋̃𝑛+1 = ℛ𝑋̃𝑛

(︀
∆𝑡P𝒯𝑋̃M𝑟L (𝑡𝑛, 𝐴(𝑡𝑛))

)︀
.

To first-order, we have 𝑋̃𝑛+1 ≈ 𝑋̃𝑛 + (𝑋𝑛+1 − 𝑋𝑛). If 𝑋̃ = 𝑋, this scheme would
work well, but instead we have a 𝑋̃𝑛 − 𝑋𝑛 error. So, we correct for this with the
following scheme.

𝑋̃𝑛+1 = ℛ𝑋̃𝑛

(︃
P𝒯𝑋̃M𝑟

[︃
L (𝑡, 𝐴(𝑡)) +

𝑋𝑛 − 𝑋̃𝑛

∆𝑡

]︃)︃

This corrects the direction of L for the point which we are actually at. Of course, the
full-rank derivative and 𝑋𝑛 are typically not known, but for the pedagogical purposes,
we show that the error indeed vanishes with this scheme, written out in algorithm
6. Figure 3-10 indeed shows that the perturbative retractions converge to the best
approximation.
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Algorithm 6: Sixth-order integrator with full-rank derivative information
corrected for the current point
Input: 𝑋 ∈ R𝑚×𝑛, 𝑋̇ ∈ R𝑚×𝑛, 𝐴 ∈ R𝑚×𝑛, 𝐴̇ ∈ R𝑚×𝑛,∆𝑡 ∈ R, 𝐹 : R𝑚×𝑛 →

R𝑚×𝑛

Output: 𝑋, 𝑋̇
1 𝐴̇← 𝐴̇ +

𝑋−PM𝑟𝐴

Δ𝑡

2 𝑋 = 𝑋 + ∆𝑡𝑎1𝐴̇

3 𝑋̇ = 𝐴̇ + ∆𝑡𝑏1𝐹 (𝐴 + ∆𝑡𝑎1𝐴̇)
4 for 𝑖 = 2 : 7 do
5 𝑋 = 𝑋 + ∆𝑡𝑎𝑖𝑋̇

6 𝑋̇ = 𝑋̇ + ∆𝑡𝑏𝑖𝐹 (𝑋)

7 𝑋 = 𝑋 + ∆𝑡𝑎8𝑋̇

Figure 3-10: Convergence plot for perturbative retractions given corrected full-rank
derivative information
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Algorithm 7: Sixth-order integrator with internal retractions
Input: 𝑋 ∈ R𝑚×𝑛, 𝑋̇ ∈ R𝑚×𝑛,∆𝑡 ∈ R, 𝐹 : R𝑚×𝑛 → R𝑚×𝑛

Output: 𝑋, 𝑋̇

1 for 𝑖 = 1 : 7 do
2 𝑋 = reOrtha(ℛ𝑋(∆𝑡𝑎𝑖𝑋̇))

3 𝑋̇ = reOrth(ℛ𝑋̇(∆𝑡𝑏𝑖𝐹 (𝑋)))

4 𝑋 = PM𝑟(𝑋 + ∆𝑡𝑎8𝑋̇)

aSee Appendix D.1 for the re-orthonormalization algorithm.
Now we consider another use case for retractions: using them internally in the

calculation of L . This is desirable because if L contains many additions (where
the ranks of the summands add) and/or Hadamard products (where the ranks of
the product terms multiply), retracting L back to the manifold may be extremely
expensive since the rank will be huge. In the Yoshida integrator, we have 15 inte-
gration steps, all of which have additions. What’s more, the ranks will compound
since each integration step depends on the last. Needless to say, retracting back to
the manifold internally in the calculation of L is well-motivated and may in some
cases be necessary. This idea is investigated in Runge-Kutta methods in [49]. So, we
consider algorithm 7 as an integrator. For a fair comparison, for the last retraction
of 𝑋 we use the extended projective retraction (i.e. the projection onto the low-rank
manifold via truncated SVD) no matter the internal retraction chosen.

Figure 3-11b depicts the convergence of using the internal retractions. The first-
order correction exhibits first-order convergence. The second- and third-order cor-
rections exhibit third-order convergence, and the fourth-order and adaptive methods
exhibit fifth-order convergence, at least at first. Recall that just because a numerical
method is 𝑛-th order does not mean it cannot exhibit higher-order convergence – the
coefficient on the 𝒪(∆𝑡𝑛) term may be very small and not affect the overall conver-
gence order for relatively large ∆𝑡. Interestingly, figure 3-11a shows the error from
the third- and fourth-order methods separate (in contrast to figure 3-9a). So, using a
higher-order method in internal retractions may be more important than when just
using them once per time step; this could be because we are applying the retraction
so many times in each step of integration.

Lastly, we consider a method with internal retractions and full-rank derivative
information provided. There is an important, non-obvious distinction between algo-
rithms 8 and 7. We must project 𝐴̇ onto the low-rank manifold so that we can use
it to retract in the first integration step of 𝑋̇, letting ˆ̇𝐴 = PM𝑟𝐴̇ This may prove
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(a) Error as function of time with internal
retractions, Δ𝑡 = 0.01

(b) Convergence of perturbative retractions
used internally (see algorithm 7) and the ex-
tended projective retraction as the final step

Figure 3-11: Error plots when using algorithm 7

too expensive to implement in some examples. An approximate method would be to
use ℛ𝑋̇(∆𝑡𝑏1𝐹 (𝑌 + ∆𝑡𝑎1𝐴̇)) instead of ℛ ^̇𝐴

(∆𝑡𝑏1𝐹 (𝐴 + ∆𝑡𝑎1𝐴̇)); however, this may
induce error that ruins higher-order convergence.

Algorithm 8: Sixth-order integrator with internal retractions and full-rank
derivative information
Input: 𝑋 ∈ R𝑚×𝑛, 𝑋̇ ∈ R𝑚×𝑛, 𝐴 ∈ R𝑚×𝑛, 𝐴̇ ∈ R𝑚×𝑛,∆𝑡 ∈ R, 𝐹 : R𝑚×𝑛 →

R𝑚×𝑛

Output: 𝑋, 𝑋̇

1
ˆ̇𝐴 = PM𝑟𝐴̇

2 𝑋 = reOrtha(ℛ𝑋(∆𝑡𝑎1𝐴̇))

3 𝑋̇ = reOrth(ℛ ^̇𝐴
(∆𝑡𝑏1𝐹 (𝐴 + ∆𝑡𝑎1𝐴̇)))

4 for 𝑖 = 2 : 7 do
5 𝑋 = reOrth(ℛ𝑋(∆𝑡𝑎𝑖𝑋̇))

6 𝑋̇ = reOrth(ℛ𝑋̇(∆𝑡𝑏𝑖𝐹 (𝑋)))

7 𝑋 = PM𝑟(𝑋 + ∆𝑡𝑎8𝑋̇)

aSee Appendix D.1 for the re-orthonormalization algorithm.

Figure 3-12a again shows the error oscillations in time are gone, and figure 3-12b
shows that the error does not decay all the way down to the best approximation for
the same reasons as before. One may employ the same full-rank derivative correc-
tion scheme for better results (not depicted). For the first-order retraction, we see
first-order convergence. For the second-order retraction, we have convergence some-
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where between second- and third-order, and for the third-order retraction, we have
convergence somewhere between third- and fourth-order. The fourth-order and adap-
tive methods exhibit sixth-order convergence, at least for relatively large ∆𝑡 before it
quickly converges to its minimum error value.

(a) Error as function of time with internal
retractions, Δ𝑡 = 0.01

(b) Convergence of perturbative retractions
used internally (see algorithm 8) and the ex-
tended projective retraction as the final step

Figure 3-12: Error plots when using algorithm 8

To calculate the orders of convergence, we use three metrics different measures of
the slope of the log-log plots. We calculate the slope between the first and second
points, the second-to-last and last points, and the average slope over the whole ∆𝑡

interval. These, in general, give different values since in some circumstances, the error
converges to a fixed value for small ∆𝑡; at the other end, the asymptotic analysis may
not hold for the larger values of ∆𝑡. So, each value must be taken in context. For
each of the aforementioned algorithms and retractions, the orders of convergence are
tabulated in tables 3.1, 3.2, and 3.3.

Table 3.1: Convergence order calculated from the errors at the largest two ∆𝑡 values

1st-Order 2nd-Order 3rd-Order 4th-Order Adaptive
Vanilla 1.2119 2.0524 2.9879 2.8496 2.8496

Full-rank derivative 0.98083 1.9987 3.0508 4.0366 4.0366
Corrected derivative 2.0303 3.0162 4.0079 3.0395 3.0395
Internal retractions 0.82845 3.5909 2.7764 4.961 4.961
Internal + full-rank 0.94297 2.7632 3.6729 5.9292 5.9292
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Table 3.2: Convergence order calculated from the errors at the smallest two ∆𝑡 values

1st-Order 2nd-Order 3rd-Order 4th-Order Adaptive
Vanilla 1.0159 1.9977 0.8736 0.86432 0.86432

Full-rank derivative 1.0015 1.8862 -6.7847E-4 -3.2331E-3 -3.2331E-3
Corrected derivative 1.7054 7.9466E-4 4.2583E-08 2.4139E-11 2.4139E-11
Internal retractions 1.1372 2.4182 2.0712 0.46944 0.46944
Internal + full-rank 0.99995 0.55581 -3.2837E-3 -3.5073E-3 -3.5073E-3

Table 3.3: Convergence order calculated from the errors over the whole ∆𝑡 interval

1st-Order 2nd-Order 3rd-Order 4th-Order Adaptive
Vanilla 1.0941 2.0097 2.3137 1.9403 1.9403

Full-rank derivative 0.9984 1.985 1.7309 1.1777 1.1777
Corrected derivative 1.9605 1.555 0.99643 0.455 0.455
Internal retractions 1.0839 3.0058 2.7925 2.4003 2.4003
Internal + full-rank 0.98458 1.8407 1.6145 1.1331 1.1331

3.4 Stochastic partial differential equations

Here, we apply the new retractions to a stochastic partial differential equation.
We consider a variant of Burgers’ equation [50, 51] with periodic boundary conditions.

𝜕𝑢

𝜕𝑡
+ 𝛽(𝜔)𝑢

𝜕𝑢

𝜕𝑥
= 𝜈

𝜕2𝑢

𝜕𝑥2
+ 𝑓(𝑥, 𝑡;𝜔), 𝑥 ∈ 𝒟 = [−1, 1], 𝑡 ≥ 0, 𝜔 ∈ Ω

𝑢(−1) = 𝑢(1),
𝜕𝑢

𝜕𝑥

⃒⃒⃒⃒
𝑥=−1

=
𝜕𝑢

𝜕𝑥

⃒⃒⃒⃒
𝑥=1

, 𝑢(𝑥, 0;𝜔) = 𝑢0(𝑥;𝜔)

Above, we’ve introduced a new stochastic parameter 𝛽 that scales the nonlinear
advection speed where 𝜔 denotes a simple event in the event space Ω. The forcing
function is also stochastic, as are the initial conditions. The kinematic viscosity
𝜈 is deterministic and taken to be 0.01 – allowing 𝜈 to vary stochastically could
potentially lead to numerical instabilities due to shock waves. For our example, we
let 𝛽 be uniformly distributed from −3

4
to 3

4
, i.e. 𝛽 ∼ 𝑈

(︀
−3

4
, 3
4

)︀
. It’s important to not

let 𝛽 become too large, otherwise the numerical scheme, again, becomes unstable due
to shocks. The forcing function is described as two stochastic Gaussian sources/sinks
that oscillate in time. That is,

𝑓(𝑥, 𝑡;𝜔) =
1

100
𝛾1(𝜔) sin(𝑡)𝑒−100(𝑥+ 1

2)
2

+
1

100
𝛾2(𝜔) cos(𝑡)𝑒−64(𝑥− 1

2)
2
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where 𝛾1, 𝛾2 ∼ 𝑈
(︀
−3

4
, 3
4

)︀
. Lastly, we’ll define our initial conditions as follows. First

define a function

𝑔(𝑥) =
1

2
sinc(4𝜋𝑥) +

3

4
sin(15𝜋𝑥),

where sinc(𝑥) = sin(𝑥)
𝑥

. It is clear that at 𝑔(±1) = 0, so 𝑔 can be represented with
a shifted Fourier sine series on the interval [−1, 1]. Note that it in the continuous
sense, it may seem more natural to represent 𝑔 with a Fourier cosine series (that is not
shifted) since sinc(𝑥) is even about zero. However, when we go to the discrete problem,
we have a discrete set points of {𝑔𝑘}𝑁𝑘=1 (with 𝑁 equal to the number of discretized
points in 𝑥) which start and end at zero, and the most natural representation is
given by the discrete sine transform. Let 𝑔𝑞 = DST(𝑔𝑘) denote the coefficients of the
discrete sine transform of 𝑔𝑘. Then, we define 𝑢0 as follows.

𝑢0 = IDST
(︂
𝑔𝑞

(︂
1 +

1
√
𝑞
𝜀𝑞(𝜔)

)︂)︂
IDST stands for the inverse discrete sine transform, and 𝜀𝑞 ∼ 𝒩 (0, 1). 𝛽, 𝛾1, 𝛾2, and
{𝜀𝑞}𝑞 are all independent. In defining 𝑢0 like so, we ensure that the initial conditions
are smooth, and the high frequencies are not as random as the low frequencies due to
the 1/

√
𝑞 scaling. This scaling will become relevant later in this section when looking

at random realizations of the solution.

First, we solve the PDE in a Monte Carlo (MC) sense, taking 10, 000 random
samples and solving them in parallel until 𝑡 = 𝑇 = 10. We use the following semi-
implicit numerical scheme from [52], denoting 𝑢(𝑥𝑖, 𝑡𝑛) = 𝑢𝑛

𝑖 for points (𝑥𝑖, 𝑡𝑛) ∈
𝒟 × [0, 𝑇 ].

𝑢𝑛+1
𝑖 − 𝑢𝑛

𝑖

∆𝑡
= −𝛽

𝑢𝑛
𝑖−1 + 4𝑢𝑛

𝑖 + 𝑢𝑛
𝑖+1

6

𝑢𝑛
𝑖+1 − 𝑢𝑛

𝑖−1

2∆𝑥

+ 𝜈
𝑢𝑛+1
𝑖+1 − 2𝑢𝑛+1

𝑖 + 𝑢𝑛+1
𝑖−1

∆𝑥2
+ 𝑓𝑛+1

𝑖 (3.4)

This scheme is unconditionally stable. And because the only implicit term is linear,
each time step only requires a tridiagonal matrix inversion. Unlike previous cases,
the numerical scheme is not in a conducive form for retractions. We typically set
𝑢𝑛+1 = ℛ𝑢𝑛(𝜉) for some value 𝜉, requiring that in our numerical scheme 𝑢𝑛+1 = 𝑢𝑛+𝜉.
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We may rewrite (3.4) in matrix/vector form by defining the following matrices.

𝐷1 = 𝐼 + 𝜈
∆𝑡

∆𝑥2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0 −1

−1 2 −1 0 · · · 0
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

−1 0 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐷2 =
1

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 · · · 0 1

1 4 1 0 · · · 0
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

1 0 0 0 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐷3 =
1

2∆𝑥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 −1

−1 0 1 0 · · · 0
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

1 0 0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Then, our scheme is as follows, letting ⊙ denote the Hadamard (element-wise) prod-
uct.

𝑢𝑛+1 = 𝐷−1
1

(︀
𝑢𝑛 − 𝛽(𝐷2𝑢

𝑛)⊙ (𝐷3𝑢
𝑛) + 𝑓𝑛+1

)︀
(3.5)

To use the dynamical low-rank approximation, we first consider how to use retrac-
tions at each step of the numerical scheme. Let 𝜒 denote the right-hand side of (3.5),
and let 𝜒̃ equal the right-hands side of (3.5) without 𝐷−1

1 . That is, 𝜒̃ = −𝛽(𝐷2𝑢
𝑛)⊙

(𝐷3𝑢
𝑛) + 𝑓𝑛+1. We have two options for the retractions. Either 𝑢𝑛+1 = ℛ𝑢𝑛(𝜒− 𝑢𝑛),

or 𝑢𝑛+1 = 𝐷−1
1 ℛ𝑢𝑛(𝜒̃). The former choice is quite general and may be used for es-

sentially any implicit or nonlinear numerical scheme. The latter choice may be more
natural in that the current state is not subtracted from 𝜒̃; we essentially retract before
applying the inverse differential operator 𝐷1. Note, however, that the latter choice
would require re-orthonormalization after left-multiplying by 𝐷−1

1 . The numerical

93



error from each method of retracting was nearly the same. So for the rest of this
example, we will only consider the former retractive method as it is the most general
procedure. We will, however, include the numerical errors from the latter retractive
method in appendix A.

In this problem, the higher-order retractions became unstable. Although the time
integration scheme is unconditionally unstable, that stability analysis does not fully
apply to the coupled system that arises from the dynamical low-rank approximation.
In evolving the low-rank solutions, the realizations of 𝜕𝑢

𝜕𝑡
= L are, in some sense,

mixed by the right-multiplication of 𝑍(𝑍𝑇𝑍)−1 in (2.19). When the PDE is nonlin-
ear, the superposition principle does not apply, and we cannot guarantee that linear
combinations of solutions will remain stable. Furthermore, when the solution becomes
singular, taking the matrix inverse introduces significant numerical noise into the sys-
tem. This appears as high-frequency noise in the solution, which numerical schemes
are often sensitive to; when the scheme blows up, it’s typically these high-frequency
oscillations that are the root cause of the instability. Others have noted that often
with standard integrators, a CFL-like condition arises with the dynamical low-rank
approximation that becomes excruciatingly restrictive [53, 54]. This appears to be
the situation here – if we take ∆𝑡 small enough, the higher-order retractions should
stabilize because the manifold will locally represent a flat. But, doing so would be
extremely computationally expensive. One may ask why the higher-order retractions
are more sensitive to large time steps than the first-order retraction. The answer
lies in their inherent construction. Because the higher-order retractions build off of
the lower-order retractions, any numerical error and/or sensitivity in the lower-order
retractions is compounded as the higher-order retractions are computed, especially
since each higher-order retraction has another matrix inverse. Both the third- and
fourth-order retractions were unstable even for 𝑟 = 5 with 1001 time steps. However,
the adaptive method remained stable just as the first- and second-order retractions
did. This shows the true strength of the adaptive retraction. In previous examples,
the adaptive retraction seemed to always line up with the fourth-order retraction
as it was always best; but in this example, it jumps around, often employing the
first-order retraction in order to maintain stability. In this example, we again set the
hyperparameter of the adaptive method 𝜀 = 0.025.
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Table 3.4: Normalized error with respect to Monte Carlo run with 𝑟 = 5

1st-Order 2nd-Order Adaptive Proj. Ext. Proj.
Mean 𝐿2 Error 0.17615 0.18027 0.1757 0.17685 0.17783
𝐿2 Mean Error 0.024533 0.023788 0.022944 0.023855 0.023671

𝐿2 Variance Error 0.01708 0.018528 0.018078 0.017503 0.017781

Table 3.5: Normalized error with respect to Monte Carlo run with 𝑟 = 10

1st-Order 2nd-Order Adaptive Proj. Ext. Proj.
Mean 𝐿2 Error 0.016666 0.015258 0.016139 0.016667 0.016595
𝐿2 Mean Error 1.6508E-3 1.6838E-3 1.3404E-3 1.5466E-3 1.2666E-3

𝐿2 Variance Error 8.9853E-4 8.0744E-4 8.5267E-4 9.5329E-4 8.3406E-4

Table 3.6: Normalized error with respect to Monte Carlo run with 𝑟 = 15

1st-Order 2nd-Order Adaptive Proj. Ext. Proj.
Mean 𝐿2 Error 3.5369E-3 4.0246E-3 3.3733E-3 3.5055E-3 1.9144E-3
𝐿2 Mean Error 8.1585E-4 8.3887E-4 3.2831E-4 4.2303E-4 2.0323E-4

𝐿2 Variance Error 1.8548E-4 1.2507E-4 1.3786E-4 1.7472E-4 3.4425E-5

In tables 3.4, 3.5, and 3.6, we have three different error metrics. Each error is
normalized by the 𝐿2 norm of 𝑔(𝑥) defined previously. The mean 𝐿2 error is defined
by taking the expected value of the 𝐿2 error between the low-rank approximation
and the Monte Carlo simulations. This measures the error realization-by-realization,
and 𝐿2 convergence implies convergence in probability. The 𝐿2 mean error is defined
as the spatially averaged (in the 𝐿2 sense) error in the sample mean. Similarly,
the 𝐿2 variance error is defined as the spatially averaged in the sample variance.
These two measures look at the error between the statistical moments of the different
simulations and are related to convergence in distribution, or weak convergence. Note
that convergence in probability implies convergence in distribution. We can see that
the second-order retraction does not universally perform better than the first-order
retraction in this case, especially for low rank. This is because it is on the verge
of becoming unstable, which introduces numerical error due to overshoot. Similarly,
the adaptive, projective, and the extended projective retractions are not universally
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better than the first-order retraction. If we take small enough time steps to stabilize
the higher-order methods, there will not be a computational advantage to using the
higher-order retractions since the low-rank manifold will locally resemble a flat. And if
we take relatively large time steps, then the higher-order retractions become unstable.
So in this example where we are restricted by a CFL-like condition, the first-order
retraction performs competitively with the others. But in general, without knowledge
of a particular system, it seems that the adaptive retraction should be the go-to since
it maintains stability and also reaps the benefits of higher-order retractions when
possible.

(a) MC at 𝑡 = 0 (b) MC at 𝑡 = 10

(c) 𝑟 = 5 at 𝑡 = 0 (d) 𝑟 = 5 at 𝑡 = 10
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(e) 𝑟 = 10 at 𝑡 = 0 (f) 𝑟 = 10 at 𝑡 = 10

(g) 𝑟 = 15 at 𝑡 = 0 (h) 𝑟 = 15 at 𝑡 = 10

Figure 3-13: Realizations of MC and adaptive retraction solutions

97



Since no retraction was particularly better, we’ll show figures from the adaptive
retraction in this section and add the sames figures for the first-order retraction in
appendix B. Figure 3-13 shows the Monte Carlo and adaptive retraction realizations
at the initial conditions and at 𝑡 = 10. We can see that what started off as just a
little stochastic variability in the initial conditions led to a large amount of variability
at 𝑡 = 10. While the low-rank (𝑟 = 5) case captures the general shape of the initial
conditions, the high frequencies are not well represented. We can see that the 𝑟 = 5

realizations do not oscillate in the same way as the MC realizations. This is expected
since the high-frequency noise is of lower magnitude by construction, so we lose that
variability after truncation. It is, however, recovered at 𝑟 = 10 and 𝑟 = 15. At 𝑡 = 10,
the 𝑟 = 5 realizations seems to have lost some variability, especially near 𝑥±1. Again,
this is recovered at higher ranks.

Figure 3-14 plots the marginal mean and standard deviation of the realizations
at 𝑡 = 10. Clearly, the stochastic field is non-stationary with respect to 𝑥 and 𝑡.
Again, we see that the 𝑟 = 5 simulation underestimates the variance at 𝑥± 1 which
is recovered at higher ranks. It also seems that, at least visually, after 𝑟 = 10, there
is not much information to gain by increasing the rank.

(a) MC (b) 𝑟 = 5
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(c) 𝑟 = 10 (d) 𝑟 = 15

Figure 3-14: Marginal mean and standard deviation of Monte Carlo and adaptive
retraction solutions at 𝑡 = 10

Figure 3-15 shows how the spatial covariance changes between 𝑡 = 0 and 𝑡 = 10.
The spatial covariance of the initial conditions is a little smeared for 𝑟 = 5, and some
details are recovered as the rank is increased. The same is true at 𝑡 = 10, but it is
nice to see that the covariance plots do not completely change at low ranks; we just
get a coarser picture.

Finally 3-16 shows histograms of the MC runs and the adaptive retraction dy-
namical low-rank approximation of 𝑢 at 𝑥 = 0, 𝑡 = 10. At low-rank, we see that
the histogram is certainly different from the MC runs – the low-rank approximation
has a narrower distribution. However, at 𝑟 = 10, the distributions match quite well,
and they are almost the same at 𝑟 = 15. As such, increasing the rank improves the
accuracy of the dynamical low-rank approximation, but even a cheap, very low-rank
model captures the main features of a stochastic simulation.

99



(a) MC at 𝑡 = 0 (b) MC at 𝑡 = 10

(c) 𝑟 = 5 at 𝑡 = 0 (d) 𝑟 = 5 at 𝑡 = 10

(e) 𝑟 = 10 at 𝑡 = 0 (f) 𝑟 = 10 at 𝑡 = 10
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(g) 𝑟 = 15 at 𝑡 = 0 (h) 𝑟 = 15 at 𝑡 = 10

Figure 3-15: Spatial covariance of Monte Carlo and adaptive retraction solutions

(a) 𝑟 = 5 (b) 𝑟 = 10

(c) 𝑟 = 15

Figure 3-16: Histograms of MC and adaptive retraction solutions at 𝑥 = 0, 𝑡 = 10
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3.5 Two-dimensional partial differential equations

In this example, we examine a diffusion equation with imaginary diffusivity in two
dimensions.

𝜕𝑢

𝜕𝑡
=

𝑖

2𝑘
∇2𝑢, (𝑥, 𝑦) ∈ 𝒟 = [0, 250]× [0, 300], 𝑡 ≥ 0

𝑢|𝜕𝒟 = 0, 𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦),

We let 𝑘 vary spatially. On different length and mass scales than solved in this
example, this may correspond to the Schrödinger equation in an infinite potential
well with spatially-varying mass. This is physically relevant in crystal impurities,
semiconductor heterostructure, and more [55, 56, 57, 58, 59, 60]. Alternatively, if we
let 𝑘 be constant and switch 𝑡 to a range variable such as 𝑧, this would correspond to
the paraxial (or parabolic) wave equation used extensively in optics [61, 62, 63, 64]
and acoustics [65, 66, 67]. Note that in the parabolic wave equation interpretation,
we would then be solving a three-dimensional (time-independent) partial differential
equation.

We consider times 𝑡 ∈ [0, 𝑇 = 500], and let 𝑢0 be the normalized sum of two-
dimensional Gaussians as follows.

𝑢̃0(𝑥, 𝑦) = 𝑒−(𝑥−50
25 )

2

𝑒−( 𝑦−100
25 )

2

+
1

2
𝑒−(𝑥−75

25 )
2

𝑒−( 𝑦−100
25 )

2

− 3

4
𝑒−(𝑥−50

25 )
2

𝑒−( 𝑦−150
25 )

2

− 2

3
𝑒−(𝑥−175

15 )
2

𝑒−( 𝑦−200
15 )

2

+
2

3
𝑒−(𝑥−175

15 )
2

𝑒−( 𝑦−100
15 )

2

+
1

4
𝑒−(𝑥−75

15 )
2

𝑒−( 𝑦−100
15 )

2

− 5

3
𝑒−(𝑥−60

10 )
2

𝑒−( 𝑦−80
10 )

2

+
1

3
𝑒−(𝑥−160

10 )
2

𝑒−( 𝑦−180
10 )

2

− 5

3
𝑒−(𝑥−160

40 )
2

𝑒−( 𝑦−180
40 )

2

+
1

5
𝑒−(𝑥−130

32 )
2

𝑒−( 𝑦−140
32 )

2

𝑢0 =
𝑢̃0∫︀∞

−∞

∫︀∞
−∞ |𝑢̃0(𝑥, 𝑦)|2𝑑𝑥𝑑𝑦

Furthermore, define 𝑘 as follows.

𝑘(𝑥, 𝑦) =
240𝜋

1500 + 500 exp
(︁
−
(︀
𝑥−125
62.5

)︀2)︁
exp

(︁
−
(︀
𝑥−150
75

)︀2)︁
To solve this problem, we employ the Dufort-Frankel finite difference scheme [68]

since it is explicit and unconditionally stable, and we extend it to two dimensions.
We denote 𝑢(𝑥𝑖, 𝑦𝑗, 𝑡𝑛) = 𝑢𝑛

𝑖𝑗 for points (𝑥𝑖, 𝑦𝑗, 𝑡𝑛) ∈ 𝒟 × [0, 𝑇 ] and similarly for
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Figure 3-17: Initial conditions for diffusion equation

𝑘(𝑥𝑖, 𝑦𝑗) = 𝑘𝑖𝑗. Furthermore, let 𝜆𝑥 = Δ𝑡
Δ𝑥2 and 𝜆𝑦 = Δ𝑡

Δ𝑦2
.

𝑢𝑛+1
𝑖𝑗 =

1

1 + 𝑖
𝑘𝑖𝑗

(𝜆𝑥 + 𝜆𝑦)

[︂
𝑖

𝑘𝑖𝑗
𝜆𝑥(𝑢𝑛

𝑖−1,𝑗 + 𝑢𝑛
𝑖+1,𝑗) +

𝑖

𝑘𝑖𝑗
𝜆𝑦(𝑢

𝑛
𝑖,𝑗−1 + 𝑢𝑛

𝑖,𝑗+1)

+

(︂
1− 𝑖

𝑘𝑖𝑗
(𝜆𝑥 + 𝜆𝑦)

)︂
𝑢𝑛−1
𝑖𝑗

]︂
(3.6)

We remark here that when solving this PDE numerically, the usual reshaping of the
2D solution into a vector is not necessary. Instead, we keep the solution as a matrix
𝑢𝑖𝑗. Then to apply a finite difference operator 𝐷, e.g.

𝐷 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0

1 0 1 0 · · · 0
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
to 𝑢𝑖𝑗, one would simply left-multiply 𝐷 by 𝑢𝑖𝑗 to compute operations on the index
𝑖 corresponding to 𝑥 (i.e. taking linear combinations of the rows of 𝑢𝑖𝑗) and right
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(a) Real part of solution (b) Imaginary part of solution

Figure 3-18: Numerical solution to diffusion equation at final time 𝑡 = 𝑇

multiply by 𝐷𝑇 to compute operations on the index 𝑗 corresponding to 𝑦 (taking linear
combinations of the columns of 𝑢𝑖𝑗). Lastly, notice that the solution is complex-valued,
so this example demonstrates that these retractions work just as well on the Hermitian
manifold as the Riemannian manifold. In short, the only way the algorithms change
is that the transpose operator becomes the conjugate transpose operator. Figure 3-18
depicts the full-rank solution at 𝑡 = 500. This will be a reference as to how low-rank
solutions compare using different retractions. We may also look at different slices of
the solution, holding 𝑥 or 𝑦 constant, depicted in figure 3-19.

(a) Real slice of solution, 𝑥 constant (b) Imaginary slice of solution, 𝑥 constant
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(c) Real slice of solution, 𝑦 constant (d) Imaginary slice of solution, 𝑦 constant

Figure 3-19: Slices of solution to diffusion equation holding 𝑥 or 𝑦 constant

Now, we investigate the low-rank solutions given by various retractions at ranks
𝑟 = 1, 2, 4, 8 with the adaptive hyperparameter 𝜀 = 0.025. Note that as in the
stochastic PDE example, the scheme (3.6) is not directly in a form conducive to a
retraction. Letting 𝜒 denote the right-hand side of (3.6), for this scheme, we let
𝑢𝑛+1 = ℛ𝑢𝑛−1(𝜒− 𝑢𝑛−1).

In figure 3-20, we show how the time-averaged error converges as we increase
the rank of the solutions. Figure 3-21 shows how the error evolves over time for
different ranks. The normalized error plotted is measured by the Frobenius norm of
the difference between the full-rank and low-rank solutions normalized by the norm
of the initial conditions (which is one in this case). At very low ranks of 𝑟 = 1, 2, the
retractions are indistinguishable. This is because the modeling error overwhelms any
retraction error. But, at 𝑟 = 4 and 8, we see the modeling error from the low-rank
approximation becomes small enough for us to distinguish the first and second-order
retractions from the rest.

From this, it is clear that past the second-order retraction, it will not be visually
distinguishable which retraction we choose. So for the next figures, we’ll only show
examples from the adaptive scheme, and we’ll include examples from the first-order
scheme in appendix B. While the adaptive scheme is more accurate than the first-
order scheme, the visual differences in the plots are marginal – essentially only the
interference patterns are slightly different. The goal here is more to show how the
solution becomes more accurate with larger rank than to compare the retractions.
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Figure 3-20: Time-averaged error for retractions at different rank

(a) Rank-one error (b) Rank-two error

(c) Rank-four error (d) Rank-eight error

Figure 3-21: Error vs time for retractions at 𝑟 = 1, 2, 4, 8

106



(a) 𝑟 = 1 (b) 𝑟 = 2

(c) 𝑟 = 4 (d) 𝑟 = 8

Figure 3-22: Initial conditions at 𝑟 = 1, 2, 4, 8
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Figure 3-22 shows how the truncated rank affects the initial conditions. We can see
that by 𝑟 = 8, we have recovered essentially the full solution. The initial conditions
with 𝑟 = 4 is close to correct, but there are some visible aberrations in the blue
splotch at the bottom right.

Figures 3-23 and 3-24 show how rank affects the final solution. The low-rank
solutions are not able to capture the interference pattern from wave interactions. But
it is nice to see that the solution integrity seems to decay smoothly. That is, there is
not a large jump in solution correctness with a small change in 𝑟. And even at 𝑟 = 1,
it is promising that the main solution features are retained.

Finally, we plot slices holding 𝑥 and 𝑦 constant in figures 3-25, 3-26, 3-27, 3-28.
In these, we see that we don’t capture a lot of the energy in the problem at low-rank.
One partial remedy would be to renormalize the initial conditions after truncation,
but because this is a linear PDE, we would just be rescaling the solution. As the rank
grows, the solution slices become more and more detailed. But again, at low rank,
the solution still makes sense and seems to preserve the physics.

(a) 𝑟 = 1 (b) 𝑟 = 2
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(c) 𝑟 = 4 (d) 𝑟 = 8

Figure 3-23: Real part of solution using adaptive retraction at 𝑟 = 1, 2, 4, 8

(a) 𝑟 = 1 (b) 𝑟 = 2
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(c) 𝑟 = 4 (d) 𝑟 = 8

Figure 3-24: Imaginary part of solution using adaptive retraction at 𝑟 = 1, 2, 4, 8

(a) 𝑟 = 1 (b) 𝑟 = 2

(c) 𝑟 = 4 (d) 𝑟 = 8

Figure 3-25: Real slices of solution using adaptive retraction at 𝑟 = 1, 2, 4, 8, 𝑥
constant
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(a) 𝑟 = 1 (b) 𝑟 = 2

(c) 𝑟 = 4 (d) 𝑟 = 8

Figure 3-26: Imaginary slices of solution using adaptive retraction at 𝑟 = 1, 2, 4, 8, 𝑥
constant

(a) 𝑟 = 1 (b) 𝑟 = 2

(c) 𝑟 = 4 (d) 𝑟 = 8

Figure 3-27: Real slices of solution using adaptive retraction at 𝑟 = 1, 2, 4, 8, 𝑦
constant
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(a) 𝑟 = 1 (b) 𝑟 = 2

(c) 𝑟 = 4 (d) 𝑟 = 8

Figure 3-28: Imaginary slices of solution using adaptive retraction at 𝑟 = 1, 2, 4, 8, 𝑦
constant

112



Conclusion

In this thesis, chapter one provided an overview of ideas and terminology from
differential geometry to familiarize the reader with concepts relevant to retractions.
Most importantly, the tangent space of the low-rank manifold was parameterized, and
projections onto the low-rank manifold were explicitly characterized. In chapter two,
we adapted a projective retraction from the literature to the 𝑈𝑍𝑇 parameterization
(rather than the 𝑈𝑆𝑉 𝑇 paramaterization) of a low-rank matrix allowing for a direct
implementation without changing parameterizations or diving into complex numerical
integration schemes. For partial differential equations of the form 𝜕𝑢

𝜕𝑡
= L , where L

may be a stochastic or deterministic operator on 𝑢, if L ≈ 1
Δ𝑡

∫︀ 𝑡𝑛+1

𝑡𝑛
L (𝑡)𝑑𝑡 factors

into a low-rank form L𝑈L 𝑇
𝑍 , we derived an efficient extended projective retraction

that exactly projects a matrix (up to numerical precision) onto the low-rank manifold.
Next, we showed that the perturbative retractions form a dense set on the low-rank
manifold implying that any point may be reached arbitrarily closely by these new
methods. The perturbative retractions are derived, and in doing so, shown to exhibit
high-order convergence to the projection operator without the need for a singular
value decomposition; only typical matrix operations are required. In chapter three,
we showed that the new projective and perturbative retractions are highly effective
for matrix addition and real-time data compression as well as for deterministic and
stochastic differential equations. We show higher-order convergence in local error for
matrix addition as well as in global error for matrix differential equations. And for the
stochastic partial differential equation and the two-dimensional deterministic partial
differential equation, we show how even at low-rank, the simulations capture most of
the variability and respect the physics of the full-rank solution.

The dynamical low-rank approximation has the potential to vastly speed up simu-
lation run-time. Fewer operations need to be computed, and even writing the low-rank
solution at each time step to RAM is much faster due to the reduced solution size.
Furthermore, in the case of even moderately large simulations, we cannot store the
solution at each time step in an uncompressed form, especially not in RAM. Even
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small Monte Carlo simulations can end up being hundreds of gigabytes, and a low-
rank representation is necessary if we want to know the solution at intermediate time
values. Orthonormality and other properties can also be maintained numerically with
appropriate methods [69]. So if we need a low-rank solution at the end, it certainly
makes sense to use the dynamical low-rank approximation from the start.

There are, however, some weaknesses of the perturbative retractions. In partic-
ular, for uncertainty quantification and stochastic differential equations, the higher
Karhunen-Loève modes have high spatial frequency. These can induce instabilities
in numerical schemes, especially explicit schemes, and the problem is worsened when
the coefficient matrix 𝑍 is ill-conditioned. Of course, the time discretization may
be refined to avoid instabilities, but this sometimes makes the simulation extremely
computationally expensive and can nullify any computational gain from the low-rank
representation. These issues are not insurmountable. With regards to ill-conditioned
matrices, the rank of the solution may be adaptively increased and decreased using
metrics given in [70, 20, 71]. A more rigorous stability analysis of the retractions is
necessary to develop sufficient stability criteria similar to the work done on projector-
splitting methods [53, 54] in [72]. Implicit time marching schemes would resolve
numerical stability issues, but implementing these naively would necessitate recon-
structing the big matrix 𝑋 = 𝑈𝑍𝑇 in order to implement matrix inversion. As such,
we have restricted the test cases in this thesis to explicit schemes, which is quite pro-
hibitive, especially for nonlinear problems. In order to implement implicit methods
cheaply, an avenue of future research will be how to efficiently invert matrices of the
form 𝐼 + 𝐴, where 𝐴 is low-rank. There has already been some work on iterative
methods for implicit time marching (see, e.g., [49]).

There are also two clear generalizations to be made from this work. First, higher-
order time derivatives may be evaluated using a phase space representation. For
example, the wave equation of the form 𝜕2𝑢

𝜕𝑡2
= ∇2𝑢 may be implemented by letting

𝑣 = 𝜕𝑢
𝜕𝑡

. Then we’ll have a coupled system of first-order PDEs, and the framework
developed may be directly applied. In fact, a symplectic low-rank integrator was
proposed to solve the stochastic wave equation in [73]. Second, low-rank tensors are
a direction of future research. This would allow us to solve PDEs of arbitrary dimen-
sion in low-rank form without vectorizing the physical and stochastic dimensions. Not
only would we gain efficiency in not forming huge matrices as a result of vectoriza-
tion, oftentimes the symmetry of solutions is destroyed when flattening tensors into
matrices, and so a low-rank tensor may admit a more efficient representation. These
ideas are explored in [74, 75, 54]. In addition to these generalizations, retractions
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may be applied to other fields such as constrained optimization problems [76, 77, 78].

Another challenge of these reduced-order methods is when spatially-dependent
or stochastic coefficients have large ranks. Even if we reduce the rank of the solu-
tion, spatially-dependent or stochastic coefficients numerically express themselves as
Hadamard (element-wise) products; the rank of the product is equal to the product
of the ranks of factors. As such, the rank of the solution may grow exceptionally
quickly when computing L making retractions expensive. Often, the rank of a co-
efficient however may be reduced via a change of variables. For instance, if we have
a spatially-dependent coefficient with a gradient that is slanted with respect to the
axes of the problem, a linear transformation aligning the slanted gradient with the
axes will greatly reduce the rank. Such decompositions are employed, for example, to
represent sound-speed in stochastic underwater sound propagation [79, 80, 81]. An
area of future interest is to find the variable transform that will yield the lowest rank
for a given spatially-dependent or stochastic coefficient, or perhaps there is a way do
a change of variables non-intrusively for reduced-order models. A similar problem is
when stochastic coefficients are non-separable. That is, they do not exhibit a low-rank
form expressed as the sum of the products of deterministic and stochastic functions.
Such is the case when dealing with stochastic bathymetry in ocean acoustics problems
(e.g. [82]). As such, perhaps there is another representation that efficiently encodes
non-separability.

We emphasize that the discrete dynamically orthogonal equations admit a non-
intrusive method, and these new retractions allow for fast and accurate time inte-
gration. To implement the examples in this thesis, a new class in MATLAB was
written where the basic mathematical operations (e.g. addition, matrix and element-
wise multiplication, matrix norms) were overloaded. In addition, the retractions were
coded as methods of the class. This allowed for great ease in solving new and different
problems. Instead of deriving and discretizing a new set of differential equations for
every problem we seek to solve, which can take days of careful calculations and is very
error-prone, we can code new problems in a low-rank form as easily as the full-rank
form while still reaping the benefits of reduced-order models. Admittedly, there are
some problems where deriving the dynamically orthogonal equations intrusively may
yield improved efficiency. This can occur through cancellation of certain terms in the
differential equation due to orthogonality of the modes and uncorrelatedness of the
coefficients. However, any problem with nonlinearity, spatially-dependent coefficients,
or stochastic coefficients will likely not have significant cancellations, and these are
often the problems of interest. What’s more, by intrusively projecting the dynamics of
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the PDE onto the low-rank manifold, we lose information about the dynamics in the
normal space. This means that, without reformulation and future research to include
higher-order approximations to the low-rank manifold, the intrusive methodology is
limited to the first-order perturbative retraction and cannot make use of extended
retractions. So, not only is the non-intrusive method easier to code and requires
much less of a human time investment, there is high-order convergence to be gained.
It is our hope that these methods will not only improve reduced-order modeling but
will also increase the accessibility of the dynamically orthogonal equations and their
variants.

116



Appendix A

Extra Tables

A.1 Convergence of matrix differential equations

Table A.1: Convergence order calculated from the errors (with respect to the best
approximation) at the largest two ∆𝑡 values

1st-Order 2nd-Order 3rd-Order 4th-Order Adaptive
Vanilla 1.2119 2.0524 2.9879 2.8496 2.8496

Full-rank derivative 0.98083 1.9987 3.0509 4.0391 4.0391
Corrected derivative 2.0303 3.0166 4.0627 5.0659 5.0659
Internal retractions 0.82845 3.5909 2.6375 4.961 4.961
Internal + full-rank 0.94297 2.7632 3.7635 5.961 5.961

Table A.2: Convergence order calculated from the errors (with respect to the best
approximation) at the smallest two ∆𝑡 values

1st-Order 2nd-Order 3rd-Order 4th-Order Adaptive
Vanilla 1.0159 2.0002 2.0302 2.0015 2.0015

Full-rank derivative 1.0015 1.9035 -8.0789E-4 -3.8509E-3 -3.8509E-3
Corrected derivative 2.0016 3.0025 3.9994 2.0945 2.0945
Internal retractions 1.1372 2.7667 2.9512 2.0012 2.0012
Internal + full-rank 0.99995 0.6551 -4.2241E-3 -4.512E-3 -4.512E-3
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Table A.3: Convergence order calculated from the errors (with respect to the best
approximation) over the whole ∆𝑡 interval

1st-Order 2nd-Order 3rd-Order 4th-Order Adaptive
Vanilla 1.0941 2.0101 2.5371 2.1614 2.1614

Full-rank derivative 0.9984 1.9879 1.7562 1.203 1.203
Corrected derivative 2.0109 3.0102 4.0212 4.2664 4.2664
Internal retractions 1.0839 3.0597 2.9301 2.7408 2.7408
Internal + full-rank 0.98458 1.8722 1.6508 1.1695 1.1695
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A.2 Error in stochastic partial differential equations

Table A.4: Normalized error with respect to Monte Carlo run with 𝑟 = 5 and 𝑢𝑛+1 =
𝐷−1

1 ℛ𝑢𝑛(𝜒̃)

1st-Order 2nd-Order Adaptive Proj. Ext. Proj.
Mean 𝐿2 Error 0.17734 0.18176 0.17678 0.17853 0.18042
𝐿2 Mean Error 0.024548 0.022689 0.024476 0.023654 0.023386

𝐿2 Variance Error 0.017682 0.019197 0.01814 0.018073 0.018764

Note that the second-order retraction performs worse for 𝑟 = 5 since it is on the
verge of becoming unstable.

Table A.5: Normalized error with respect to Monte Carlo run with 𝑟 = 10 and
𝑢𝑛+1 = 𝐷−1

1 ℛ𝑢𝑛(𝜒̃)

1st-Order 2nd-Order Adaptive Proj. Ext. Proj.
Mean 𝐿2 Error 0.016339 0.016271 0.016175 0.01663 0.01597
𝐿2 Mean Error 1.314E-3 1.3063E-3 1.1613E-3 1.4789E-3 1.0882E-3

𝐿2 Variance Error 9.2795E-4 8.5754E-4 8.5514E-4 9.5298E-4 8.1713E-4

Table A.6: Normalized error with respect to Monte Carlo run with 𝑟 = 10 and
𝑢𝑛+1 = 𝐷−1

1 ℛ𝑢𝑛(𝜒̃)

1st-Order 2nd-Order Adaptive Proj. Ext. Proj.
Mean 𝐿2 Error 3.0323E-3 3.3386E-3 5.0294E-3 3.5006E-3 2.1391E-3
𝐿2 Mean Error 3.8022E-4 1.2605E-3 5.9611E-4 4.1723E-4 2.0320E-4

𝐿2 Variance Error 1.6455E-4 1.6092E-4 1.0698E-4 1.7951E-4 4.8319E-5
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Appendix B

Extra Figures

B.1 Matrix differential equations

(a) Perturbative retractions wrt best approx. (b) Projective retractions wrt best approx.

Figure B-1: Error with respect to best approximation due to different retractions as
a function of time for matrix differential equations, ∆𝑡 = 0.01
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(a) Projective retractions (b) Projective retractions wrt best approx.

(c) Perturbative retractions wrt best approx.

Figure B-2: Convergence plots of perturbative and projective retractions for matrix
differential equations
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(a) Error with respect to best approximation
as a function of time with full-rank derivative
information, Δ𝑡 = 0.01

(b) Convergence plots of error given full-rank
derivative information

Figure B-3: Plots of error with respect to the best approximation for projective
retractions when using algorithm 5

(a) Error with respect to best approximation
as a function of time with full-rank derivative
information, Δ𝑡 = 0.01

(b) Convergence plots of error with respect to
best approximation given full-rank derivative
information

Figure B-4: Plots of error with respect to the best approximation for perturbative
retractions when using algorithm 5
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(a) Error with respect to best approximation
from perturbative retractions given corrected
full-rank derivative information

(b) Convergence plots of error from projective
retractions given corrected full-rank deriva-
tive information

(c) Convergence plots of error with respect
to best approximation from projective retrac-
tions given full-rank derivative information

Figure B-5: Convergence plots of error when using algorithm 6
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(a) Error with respect to best approximation
as a function of time with full-rank derivative
information, Δ𝑡 = 0.01

(b) Convergence plots of error with respect to
best approximation given full-rank derivative
information

Figure B-6: Plots of error with respect to the best approximation for projective
retractions when using algorithm 5

(a) Error as function of time with internal
retractions, Δ𝑡 = 0.01

(b) Convergence plots with retractions used
internally (see algorithm 7) and the extended
projective retraction as the final step

Figure B-7: Plots of error projective retractions when using algorithm 7
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(a) Error with respect to best approximation
as function of time with internal retractions,
Δ𝑡 = 0.01

(b) Convergence plots of error with respect
to best approximation with retractions used
internally (see algorithm 7) and the extended
projective retraction as the final step

Figure B-8: Plots of error with respect to best approximation for perturbative retrac-
tions when using algorithm 7

(a) Error with respect to best approximation
as function of time with internal retractions,
Δ𝑡 = 0.01

(b) Convergence plots of error with respect
to best approximation with retractions used
internally (see algorithm 7) and the extended
projective retraction as the final step

Figure B-9: Plots of error with respect to best approximation for projective retractions
when using algorithm 7
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(a) Error as function of time with internal
retractions, Δ𝑡 = 0.01

(b) Convergence plots with retractions used
internally (see algorithm 7) and the extended
projective retraction as the final step

Figure B-10: Plots of error projective retractions when using algorithm 8

(a) Error with respect to best approximation
as function of time with internal retractions,
Δ𝑡 = 0.01

(b) Convergence plots of error with respect
to best approximation with retractions used
internally (see algorithm 8) and the extended
projective retraction as the final step

Figure B-11: Plots of error with respect to best approximation for perturbative re-
tractions when using algorithm 8
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(a) Error with respect to best approximation
as function of time with internal retractions,
Δ𝑡 = 0.01

(b) Convergence plots of error with respect
to best approximation with retractions used
internally (see algorithm 8) and the extended
projective retraction as the final step

Figure B-12: Plots of error with respect to best approximation for projective retrac-
tions when using algorithm 8
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B.2 Stochastic partial differential equations

(a) 𝑟 = 5 (b) 𝑟 = 10

(c) 𝑟 = 15

Figure B-13: Realizations of first-order retraction solutions at 𝑡 = 10
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(a) 𝑟 = 5 (b) 𝑟 = 10

(c) 𝑟 = 15

Figure B-14: Marginal mean and standard deviation of first-order retraction solutions
at 𝑡 = 10
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(a) 𝑟 = 5 (b) 𝑟 = 10

(c) 𝑟 = 15

Figure B-15: Spatial covariance of first-order retraction solutions at 𝑡 = 10
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(a) 𝑟 = 5 (b) 𝑟 = 10

(c) 𝑟 = 15

Figure B-16: Histograms of first-order retraction solutions at 𝑥 = 0, 𝑡 = 10
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B.3 Two-dimensional partial differential equations

(a) 𝑟 = 1 (b) 𝑟 = 2
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(c) 𝑟 = 4 (d) 𝑟 = 8

Figure B-17: Real part of solution using first-order retraction at 𝑟 = 1, 2, 4, 8

(a) 𝑟 = 1 (b) 𝑟 = 2
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(c) 𝑟 = 4 (d) 𝑟 = 8

Figure B-18: Imaginary part of solution using first-order retraction at 𝑟 = 1, 2, 4, 8

(a) 𝑟 = 1 (b) 𝑟 = 2

(c) 𝑟 = 4 (d) 𝑟 = 8

Figure B-19: Real slices of solution using first-order retraction at 𝑟 = 1, 2, 4, 8, 𝑥
constant
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(a) 𝑟 = 1 (b) 𝑟 = 2

(c) 𝑟 = 4 (d) 𝑟 = 8

Figure B-20: Imaginary slices of solution using first-order retraction at 𝑟 = 1, 2, 4, 8,
𝑥 constant

(a) 𝑟 = 1 (b) 𝑟 = 2

(c) 𝑟 = 4 (d) 𝑟 = 8

Figure B-21: Real slices of solution using first-order retraction at 𝑟 = 1, 2, 4, 8, 𝑦
constant
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(a) 𝑟 = 1 (b) 𝑟 = 2

(c) 𝑟 = 4 (d) 𝑟 = 8

Figure B-22: Imaginary slices of solution using first-order retraction at 𝑟 = 1, 2, 4, 8,
𝑦 constant
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Appendix C

Alternate Proofs

C.1 Alternate Proof to Theorem 1.4.1

Proof. We seek to minimize ||𝑋̇−L ||. This is equivalent to minimizing 𝐽 ≡ 1
2
||𝑈̇𝑍𝑇 +

𝑈𝑍̇𝑇−L ||2. Recall we choose the Frobenius norm. First, we differentiate with respect
𝑍̇. (︂

𝜕𝐽

𝜕𝑍̇

)︂𝑇

= 𝑈𝑇 (𝑈̇𝑍𝑇 + 𝑈𝑍̇𝑇 −L )

= 𝑈𝑍̇𝑇 −L = 0

Using the orthonormality of 𝑈 , we have the following by left multiplying by 𝑈𝑇 and
taking the transpose.

𝑍̇ = L 𝑇𝑈 (C.1)

Now, we differentiate with respect to 𝑈̇ .

𝜕𝐽

𝜕𝑈̇
= (𝑈̇𝑍𝑇 + 𝑈𝑍̇𝑇 −L )𝑍 = 0

Multiplying on the left by (𝐼 −𝑈𝑈𝑇 ) and using orthogonality of 𝑈 and 𝑈̇ , we obtain
the following.

𝑈̇𝑍𝑇𝑍 = (𝐼 − 𝑈𝑈𝑇 )L𝑍

⇒ 𝑈̇ = (𝐼 − 𝑈𝑈𝑇 )L𝑍(𝑍𝑇𝑍)−1

The rest of the proof is the same as the original.
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Appendix D

Additional Algorithms

D.1 Re-orthonormalization procedure

For a retraction of the form 𝑈1𝑍
𝑇
1 = (𝑈 + ∆𝑡𝑈̇)(𝑍 + ∆𝑡𝑍̇)𝑇 , a re-orthonormal-

ization procedure is necessary to ensure that 𝑈1 is orthonormal. As in the rest of
this thesis, we’ll assume 𝑈 ∈ 𝒱𝑚,𝑟 and 𝑍 ∈ R𝑛×𝑟

* and that 𝑈̇ ∈ 𝒰𝑚,𝑟 and 𝑍̇ ∈ R𝑛×𝑟.
Consider the following.

𝑈𝑇
1 𝑈1 = (𝑈 + ∆𝑡𝑈̇)𝑇 (𝑈 + ∆𝑡𝑈̇)

=��
��*𝐼

𝑈𝑇𝑈 +��
��*0

𝑈𝑇 𝑈̇ +��
��*0

𝑈̇𝑇𝑈 + ∆𝑡2𝑈̇𝑇 𝑈̇

= 𝐼 + ∆𝑡2𝑈̇𝑇 𝑈̇

So, there is a 𝒪(∆𝑡2) term that ruins orthonormality. This is an artifact of discrete
time stepping. In the continuous limit where ∆𝑡 → 0, this is not a problem. Even
when ∆𝑡 is extremely small and that 𝒪(∆𝑡2) term is negligible, we still accumu-
late floating-point error as time-stepping continues, and so a re-orthonormalization is
necessary to avoid numerical error overwhelming the solution.

As presented in [69], the main idea is to find a matrix 𝑈̃1 that is as close as possible
to 𝑈1 while maintaining that 𝑈̃𝑇

1 𝑈̃1 = 𝐼. We seek some matrix some matrix such that
𝑈̃1 = 𝑈𝐴, 𝑍1 = 𝑍𝐴−𝑇 . Then, we will have the following.

𝑈̃1𝑍
𝑇
1 = 𝑈𝐴𝐴−1𝑍𝑇 = 𝑈𝑍𝑇

Hence, we are not modifying the solution; we are only modifying the low-rank de-
composition. An algorithm is presented below to accomplish this feat. Note that
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Algorithm 9: Re-orthonormalization procedure
Input: 𝑈 ∈ R𝑚×𝑟, 𝑍 ∈ R𝑛×𝑟

*
Output: 𝑈 ∈ 𝒱𝑚,𝑟, 𝑍 ∈ R𝑛×𝑟

*
1 𝐺 = 𝑈𝑇𝑈
2 𝐺 = 1

2
(𝐺 + 𝐺𝑇 ) // ensure 𝐺 is symmetric

3 𝑉,Λ = eig(𝐺) // compute eigendecomposition
4 Λ←

√
Λ

5 𝑈 ← 𝑈𝑉 Λ−1𝑉 𝑇

6 𝑍 ← 𝑍𝑉 Λ𝑉 𝑇

the square root and reciprocal of Λ may be computed component-wise because Λ is
diagonal.

D.2 Fourth-order adaptive perturbative retraction

Here, we have an algorithm written out explicitly for a fourth-order adaptive
perturbative retraction. For details on the re-orthonormalization procedure, see ap-
pendix D.1. For a more general algorithm for an 𝑛th-order adaptive pertrubative
retraction, see algorithm 3.
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Algorithm 10: Fourth-order adaptive perturbative retraction
Input: 𝑈0 ∈ 𝒱𝑚,𝑟, 𝑍0 ∈ R𝑛×𝑟

* , L ∈ R𝑚×𝑛, ∆𝑡 ∈ R, 𝜀 ∈ R
Output: 𝑈1 ∈ 𝒱𝑚,𝑟, 𝑍1 ∈ R𝑛×𝑟

1 𝛼0 = ||𝑍0||
2 U̇1 = (𝐼 − 𝑈0𝑈

𝑇
0 )L𝑍0

(︀
𝑍𝑇

0 𝑍0

)︀−1
, 𝒵̇1 = L 𝑇𝑈0

3 U̇2 =
[︁
(𝐼 − 𝑈0𝑈

𝑇
0 )L 𝒵̇1 − U̇1(𝑍

𝑇
0 𝒵̇1 + 𝒵̇𝑇

1 𝑍0)
]︁ (︀

𝑍𝑇
0 𝑍0

)︀−1,

𝒵̇2 =
(︀
L 𝑇 − 𝑍0U̇𝑇

1

)︀
U̇1

4 𝛼2 = Δ𝑡2

𝛼0
max

(︁
||U̇2||, ||𝒵̇2||

)︁
5 if 𝛼2 < 𝜀 then
6 U̇3 =

[︁
(𝐼 − 𝑈0𝑈

𝑇
0 )L 𝒵̇2 − U̇2(𝑍

𝑇
0 𝒵̇1 + 𝒵̇𝑇

1 𝑍0) −

U̇1(𝑍
𝑇
0 𝒵̇2 + 𝒵̇𝑇

2 𝑍 + 𝒵̇𝑇
1 𝒵̇1)

]︁ (︀
𝑍𝑇

0 𝑍0

)︀−1,

𝒵̇3 = L 𝑇 U̇2 − 𝑍0(U̇𝑇
1 U̇2 + U̇𝑇

2 U̇1)− 𝒵̇1U̇𝑇
1 U̇1

7 𝛼3 = Δ𝑡3

𝛼0
max

(︁
||U̇3||, ||𝒵̇3||

)︁
8 if 𝛼3 < 𝜀 then
9 U̇4 =

[︁
(𝐼 − 𝑈0𝑈

𝑇
0 )L 𝒵̇3 − U̇3

(︁
𝑍𝑇

0 𝒵̇1 + 𝒵̇𝑇
1 𝑍0

)︁
−

U̇2

(︁
𝑍𝑇

0 𝒵̇2 + 𝒵̇𝑇
2 𝑍0 + 𝒵̇𝑇

1 𝒵̇1

)︁
−

U̇1

(︁
𝑍𝑇

0 𝒵̇3 + 𝒵̇𝑇
3 𝑍0 + 𝒵̇𝑇

2 𝒵̇1 + 𝒵̇𝑇
1 𝒵̇2

)︁]︁ (︀
𝑍𝑇

0 𝑍0

)︀−1

𝒵̇4 = L 𝑇 U̇3 − 𝑍0

(︀
U̇𝑇

1 U̇3 + U̇𝑇
2 U̇2 + U̇𝑇

3 U̇1

)︀
−

𝒵̇1

(︀
U̇𝑇

2 U̇1 + U̇1U̇2

)︀
− 𝒵̇2U̇𝑇

1 U̇1

10 𝛼4 = Δ𝑡4

𝛼0
max

(︁
||U̇4||, ||𝒵̇4||

)︁
11 if 𝛼4 < 𝜀 then
12 𝑈1 = 𝑈0 + ∆𝑡U̇1 + ∆𝑡2U̇2 + ∆𝑡3U̇3 + ∆𝑡4U̇4,

𝑍1 = 𝑍0 + ∆𝑡𝒵̇1 + ∆𝑡2𝒵̇2 + ∆𝑡3𝒵̇3 + ∆𝑡4𝒵̇4

13 else
14 𝑈1 = 𝑈0 + ∆𝑡U̇1 + ∆𝑡2U̇2 + ∆𝑡3U̇3,

𝑍1 = 𝑍0 + ∆𝑡𝒵̇1 + ∆𝑡2𝒵̇2 + ∆𝑡3𝒵̇3

15 else
16 𝑈1 = 𝑈0 + ∆𝑡U̇1 + ∆𝑡2U̇2, 𝑍1 = 𝑍0 + ∆𝑡𝒵̇1 + ∆𝑡2𝒵̇2

17 else
18 𝑈1 = 𝑈0 + ∆𝑡U̇1, 𝑍1 = 𝑍0 + ∆𝑡𝒵̇1

19 𝑈1, 𝑍1 ← re-orthonormalization procedure on 𝑈1, 𝑍1

143



144



References

[1] Paul Fieguth. An Introduction to Complex Systems. Springer International Pub-
lishing, 2017. isbn: 978-3-319-44606-6.

[2] Norbert Wiener. “The Homogeneous Chaos”. In: American Journal of Mathe-
matics 60.4 (1938), pp. 897–936. issn: 00029327, 10806377.

[3] N. Wiener. Nonlinear Problems in Random Theory. M.I.T. paperback se-
ries. Technology Press of Massachusetts Institute of Technology, 1958. isbn:
9780262230049.

[4] Robert H Cameron and William T Martin. “The orthogonal development of
non-linear functionals in series of Fourier-Hermite functionals”. In: Annals of
Mathematics (1947), pp. 385–392.

[5] Dongbin Xiu and George Em Karniadakis. “The Wiener–Askey polynomial
chaos for stochastic differential equations”. In: SIAM journal on scientific com-
puting 24.2 (2002), pp. 619–644.

[6] Dongbin Xiu and George Em Karniadakis. “Modeling uncertainty in flow simu-
lations via generalized polynomial chaos”. In: Journal of computational physics
187.1 (2003), pp. 137–167.

[7] Zhendong Luo and Goong Chen. Proper orthogonal decomposition methods for
partial differential equations. Academic Press, 2018.

[8] Gal Berkooz, Philip Holmes, and John L Lumley. “The proper orthogonal de-
composition in the analysis of turbulent flows”. In: Annual review of fluid me-
chanics 25.1 (1993), pp. 539–575.

[9] DD Kosambi. “Statistics in function space”. In: DD Kosambi. Springer, 2016,
pp. 115–123.

[10] Kari Karhunen. Über lineare Methoden in der Wahrscheinlichkeitsrechnung.
Vol. 37. Sana, 1947.

145



[11] M Loéve. Probability Theory II. 4th ed. Vol. 2. Graduate Texts in Mathematics.
Springer-Verlag New York, 1978.

[12] J David Logan. Applied partial differential equations. Springer, 2014.

[13] Jaromír Šimša. “The bestL 2-approximation by finite sums of functions with
separable variables”. In: Aequationes mathematicae 43.2-3 (1992), pp. 248–263.

[14] Themistoklis P. Sapsis and Pierre F. J. Lermusiaux. “Dynamically orthogonal
field equations for continuous stochastic dynamical systems”. In: Physica D:
Nonlinear Phenomena 238.23–24 (Dec. 2009), pp. 2347–2360.

[15] P. A. M. Dirac. “Note on Exchange Phenomena in the Thomas Atom”. In:
Mathematical Proceedings of the Cambridge Philosophical Society 26.3 (1930),
pp. 376–385.

[16] Christian Lubich. From quantum to classical molecular dynamics: reduced mod-
els and numerical analysis. European Mathematical Society, 2008.

[17] M. P. Ueckermann, P. F. J. Lermusiaux, and T. P. Sapsis. “Numerical schemes
for dynamically orthogonal equations of stochastic fluid and ocean flows”. In:
Journal of Computational Physics 233 (Jan. 2013), pp. 272–294.

[18] Florian Feppon and Pierre F. J. Lermusiaux. “Dynamically Orthogonal numer-
ical schemes for efficient stochastic advection and Lagrangian transport”. In:
SIAM Review 60.3 (2018), pp. 595–625.

[19] Othmar Koch and Christian Lubich. “Dynamical Low-Rank Approximation”.
In: SIAM Journal on Matrix Analysis and Applications 29.2 (2007), pp. 434–
454.

[20] Florian Feppon and Pierre F. J. Lermusiaux. “A Geometric Approach to Dy-
namical Model-Order Reduction”. In: SIAM Journal on Matrix Analysis and
Applications 39.1 (2018), pp. 510–538.

[21] John H. Hubbard and Barbara Burke Hubbard. “Manifolds, Taylor polynomi-
als, quadratic forms, and curvature”. In: Vector Calculus, Linear Algebra, and
Differential Forms: A Unified Approach. 4th ed. Ithaca, NY: Matrix Editions,
2009. Chap. 3, pp. 284–392.

[22] John Nash. “The Imbedding Problem for Riemannian Manifolds”. In: Annals of
Mathematics 63.1 (1956), pp. 20–63. issn: 0003486X.

[23] Andrew N Pressley. Elementary differential geometry. Springer Science & Busi-
ness Media, 2010.

146



[24] Wikimedia Commons. File:Tangent bundle.svg — Wikimedia Commons, the
free media repository. [Online; accessed 8-November-2020]. 2020.

[25] Isaac Chavel. “Riemannian Manifolds”. In: Riemannian Geometry : A Modern
Introduction. Vol. 2nd ed. Cambridge Studies in Advanced Mathematics Vol.
98. Cambridge University Press, 2006. Chap. 1, pp. 1–55. isbn: 9780521853682.

[26] Alan Edelman, Tomás A. Arias, and Steven T. Smith. “The Geometry of Algo-
rithms with Orthogonality Constraints”. In: SIAM J. Matrix Anal. Appl. 20.2
(Apr. 1999), pp. 303–353. issn: 0895-4798.

[27] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms
on matrix manifolds. Princeton University Press, 2009.

[28] Raghu Meka, Prateek Jain, and Inderjit S. Dhillon. “Guaranteed Rank Min-
imization via Singular Value Projection”. In: Neural Information Processing
Systems (NIPS). Dec. 2010.

[29] Michael Steinlechner. “Riemannian Optimization for High-Dimensional Tensor
Completion”. In: SIAM Journal on Scientific Computing 38.5 (2016), S461–
S484.

[30] André Uschmajew and Bart Vandereycken. “Geometric Methods on Low-Rank
Matrix and Tensor Manifolds”. In: Handbook of Variational Methods for Nonlin-
ear Geometric Data. Ed. by Philipp Grohs, Martin Holler, and Andreas Wein-
mann. Cham: Springer International Publishing, 2020, pp. 261–313.

[31] Bamdev Mishra et al. “Fixed-rank matrix factorizations and Riemannian low-
rank optimization”. In: Computational Statistics 29 (2014), pp. 591–621.

[32] Robert Piziak and P.L. Odell. “Full Rank Factorization of Matrices”. In: Math-
ematics Magazine 72 (June 1999), pp. 193–201.

[33] Erhard Schmidt. “Zur Theorie der linearen und nichtlinearen Integralgleichun-
gen”. In: Mathematische Annalen 63.4 (1907), pp. 433–476.

[34] Carl Eckart and Gale Young. “The approximation of one matrix by another of
lower rank”. In: Psychometrika 1.3 (1936), pp. 211–218.

[35] L. Mirsky. “Symmetric Gauge Functions and Unitarily Invariant Norms”. In:
The Quarterly Journal of Mathematics 11.1 (Jan. 1960), pp. 50–59. issn: 0033-
5606.

[36] Kevin Long. Gateaux differentials and Frechet derivatives. Jan. 2009.

147



[37] P.-A. Absil and Jérôme Malick. “Projection-like Retractions on Matrix Mani-
folds”. In: SIAM Journal on Optimization 22.1 (2012), pp. 135–158.

[38] Roy L Adler et al. “Newton’s method on Riemannian manifolds and a geometric
model for the human spine”. In: IMA Journal of Numerical Analysis 22.3 (2002),
pp. 359–390.

[39] P-A Absil and Ivan V Oseledets. “Low-rank retractions: a survey and new re-
sults”. In: Computational Optimization and Applications 62.1 (2015), pp. 5–29.

[40] David G Luenberger. “The gradient projection method along geodesics”. In:
Management Science 18.11 (1972), pp. 620–631.

[41] P-A Absil, Luca Amodei, and Gilles Meyer. “Two Newton methods on the
manifold of fixed-rank matrices endowed with Riemannian quotient geometries”.
In: Computational Statistics 29.3-4 (2014), pp. 569–590.

[42] P.-A. Absil and Jérôme Malick. “Projection-like Retractions on Matrix Mani-
folds”. In: SIAM Journal on Optimization 22.1 (2012), pp. 135–158.

[43] Bart Vandereycken. “Low-Rank Matrix Completion by Riemannian Optimiza-
tion”. In: SIAM Journal on Optimization 23.2 (2013), pp. 1214–1236.

[44] L.N. Trefethen and D. Bau. Numerical Linear Algebra. Other Titles in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM, 3600
Market Street, Floor 6, Philadelphia, PA 19104), 1997. isbn: 9780898719574.

[45] Trung Vu, Evgenia Chunikhina, and Raviv Raich. Perturbation expansions and
error bounds for the truncated singular value decomposition. 2020.

[46] FA Potra. “On Q-order and R-order of convergence”. In: Journal of Optimization
Theory and Applications 63.3 (1989), pp. 415–431.

[47] Laurent O Jay. “A note on Q-order of convergence”. In: BIT Numerical Math-
ematics 41.2 (2001), pp. 422–429.

[48] Haruo Yoshida. “Construction of higher order symplectic integrators”. In:
Physics letters A 150.5-7 (1990), pp. 262–268.

[49] Emil Kieri and Bart Vandereycken. “Projection methods for dynamical low-
rank approximation of high-dimensional problems”. In: Computational Methods
in Applied Mathematics 19.1 (2019), pp. 73–92.

[50] Harry Bateman. “Some Recent Resarches On the Motion Of Fluids”. In: Monthly
Weather Review 43.4 (Apr. 1915), pp. 163–170.

148



[51] J.M. Burgers. “A Mathematical Model Illustrating the Theory of Turbulence”.
In: ed. by Richard Von Mises and Theodore Von Kármán. Vol. 1. Advances in
Applied Mechanics. Elsevier, 1948, pp. 171–199.

[52] Kaysar Rahman, Nurmamat Helil, and Rahmatjan Yimin. “Some new semi-
implicit finite difference schemes for numerical solution of Burgers equation”. In:
2010 International Conference on Computer Application and System Modeling
(ICCASM 2010). Vol. 14. IEEE. 2010, pp. V14–451.

[53] Christian Lubich and Ivan V Oseledets. “A projector-splitting integrator for dy-
namical low-rank approximation”. In: BIT Numerical Mathematics 54.1 (2014),
pp. 171–188.

[54] Emil Kieri, Christian Lubich, and Hanna Walach. “Discretized dynamical low-
rank approximation in the presence of small singular values”. In: SIAM Journal
on Numerical Analysis 54.2 (2016), pp. 1020–1038.

[55] A. de Souza Dutra and C.A.S. Almeida. “Exact solvability of potentials with
spatially dependent effective masses”. In: Physics Letters A 275.1 (2000), pp. 25–
30. issn: 0375-9601.

[56] Jiang Yu and Shi-Hai Dong. “Exactly solvable potentials for the Schrödinger
equation with spatially dependent mass”. In: Physics Letters A 325.3 (2004),
pp. 194–198. issn: 0375-9601.

[57] Gang Chen and Zi-dong Chen. “Exact solutions of the position-dependent mass
Schrödinger equation in D dimensions”. In: Physics Letters A 331.5 (2004),
pp. 312–315. issn: 0375-9601.

[58] J.M. Luttinger and W. Kohn. “Motion of Electrons and Holes in Perturbed
Periodic Fields”. In: Physical Review 97.4 (1955). cited By 2224, pp. 869–883.

[59] O. Rojo and J.S. Levinger. “Integrated cross section for a velocity-dependent
potential”. In: Physical Review 123.6 (1961). cited By 16, pp. 2177–2179.

[60] Gerald Bastard et al. “Wave mechanics applied to semiconductor heterostruc-
tures”. In: (1988).

[61] Melvin Lax, William H Louisell, and William B McKnight. “From Maxwell to
paraxial wave optics”. In: Physical Review A 11.4 (1975), p. 1365.

[62] Rebecca H Jordan and Dennis G Hall. “Free-space azimuthal paraxial wave
equation: the azimuthal Bessel–Gauss beam solution”. In: Optics letters 19.7
(1994), pp. 427–429.

149



[63] G Nienhuis and L Allen. “Paraxial wave optics and harmonic oscillators”. In:
Physical Review A 48.1 (1993), p. 656.

[64] G Daniel Dockery. “Modeling electromagnetic wave propagation in the tropo-
sphere using the parabolic equation”. In: IEEE Transactions on Antennas and
Propagation 36.10 (1988), pp. 1464–1470.

[65] Denis J Donohue and JR Kuttler. “Propagation modeling over terrain using the
parabolic wave equation”. In: IEEE Transactions on Antennas and Propagation
48.2 (2000), pp. 260–277.

[66] Fred D Tappert. “The parabolic approximation method”. In: Wave propagation
and underwater acoustics. Springer, 1977, pp. 224–287.

[67] Finn B Jensen et al. Computational ocean acoustics. Springer Science & Business
Media, 2011.

[68] “Model Equations”. In: Time-Dependent Problems and Difference Methods.
John Wiley & Sons, Ltd, 2013. Chap. 1, pp. 1–46. isbn: 9781118548448.

[69] Jing Lin and Pierre F. J. Lermusiaux. “Minimum-Correction Second-Moment
Matching: Theory, Algorithms and Applications”. In: Numerische Mathematik
(2020). Sub-judice.

[70] Themistoklis P. Sapsis and Pierre F. J. Lermusiaux. “Dynamical criteria for the
evolution of the stochastic dimensionality in flows with uncertainty”. In: Physica
D: Nonlinear Phenomena 241.1 (2012), pp. 60–76.

[71] Jing Lin. “Bayesian Learning for High-Dimensional Nonlinear Dynamical Sys-
tems: Methodologies, Numerics and Applications to Fluid Flows”. PhD thesis.
Cambridge, Massachusetts: Massachusetts Institute of Technology, Department
of Mechanical Engineering, Sept. 2020.

[72] Yoshihito Kazashi, Fabio Nobile, and Eva Vidličková. Stability properties of
a projector-splitting scheme for dynamical low rank approximation of random
parabolic equations. 2020.

[73] Eleonora Musharbash. Dynamical Low Rank approximation of PDEs with ran-
dom parameters. Tech. rep. EPFL, 2017.

[74] Boris N Khoromskij, Ivan V Oseledets, and Reinhold Schneider. “Efficient time-
stepping scheme for dynamics on TT-manifolds”. In: (2012).

150



[75] Gianluca Ceruti and Christian Lubich. “Time integration of symmetric and anti-
symmetric low-rank matrices and Tucker tensors”. In: BIT Numerical Mathe-
matics (2020), pp. 1–24.

[76] Junyu Zhang and Shuzhong Zhang. “A Cubic Regularized Newton’s Method
over Riemannian Manifolds”. In: arXiv preprint arXiv:1805.05565 (2018).

[77] D. A. Kolesnikov and I. V. Oseledets. “Convergence analysis of projected fixed-
point iteration on a low-rank matrix manifold”. In: Numerical Linear Algebra
with Applications 25.5 (2018). e2140 nla.2140, e2140.

[78] P-A Absil, Luca Amodei, and Gilles Meyer. “Two Newton methods on the
manifold of fixed-rank matrices endowed with Riemannian quotient geometries”.
In: Computational Statistics 29.3-4 (2014), pp. 569–590.

[79] Wael Hajj Ali. “Dynamically Orthogonal Equations for Stochastic Underwa-
ter Sound Propagation”. MA thesis. Cambridge, Massachusetts: Massachusetts
Institute of Technology, Computation for Design and Optimization Program,
Sept. 2019.

[80] Wael H. Ali and Pierre F. J. Lermusiaux. “Dynamically Orthogonal Equations
for Stochastic Underwater Sound Propagation: Theory, Schemes and Applica-
tions”. In: (2020). In preparation.

[81] Wael H. Ali and Pierre F. J. Lermusiaux. “Acoustics Bayesian Inversion with
Gaussian Mixture Models using the Dynamically Orthogonal Field Equations”.
In: (2020). In preparation.

[82] Wael Hajj Ali et al. “Stochastic Oceanographic-Acoustic Prediction and
Bayesian Inversion for Wide Area Ocean Floor Mapping”. In: OCEANS 2019
MTS/IEEE SEATTLE. IEEE. Seattle, Oct. 2019, pp. 1–10.

151


	Introduction
	The low-rank manifold and its tangent space
	Introductory definitions from differential geometry
	Parameterizing the low-rank manifold
	Parameterizing the tangent space
	Projection onto the tangent space

	Retractions onto the low-rank manifold
	Motivation and preliminaries
	Projective retractions
	Perturbative retractions

	Results and applications
	Matrix addition
	Real-time data compression
	Matrix differential equations
	Stochastic partial differential equations
	Two-dimensional partial differential equations

	Conclusion
	Appendix Extra Tables
	Convergence of matrix differential equations
	Error in stochastic partial differential equations

	Appendix Extra Figures
	Matrix differential equations
	Stochastic partial differential equations
	Two-dimensional partial differential equations

	Appendix Alternate Proofs
	Alternate Proof to Theorem 1.4.1

	Appendix Additional Algorithms
	Re-orthonormalization procedure
	Fourth-order adaptive perturbative retraction

	References

