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The importance of swarm robotics systems in both academic research and

real-world applications is steadily increasing. However, to reach widespread

adoption, new models that ensure the secure cooperation of large groups of

robots need to be developed. This work introduces a novel method to encapsu-

late cooperative robotic missions in an authenticated data structure known as

Merkle tree. With this method, operators can provide the “blueprint” of the

swarm’s mission without disclosing its raw data. In other words, data verifi-

cation can be separated from data itself. We propose a system where robots

in a swarm, to cooperate towards mission completion, have to “prove” their

integrity to their peers by exchanging cryptographic proofs. We show the im-

plications of this approach for two different swarm robotics missions: foraging

and maze formation. In both missions, swarm robots were able to cooperate

and carry out sequential operations without having explicit knowledge about

the mission’s high-level objectives. The results presented in this work demon-

strate the feasibility of using Merkle trees as a cooperation mechanism for

swarm robotics systems in both simulation and real-robot experiments, which

has implications for future decentralized robotics applications where security

plays a crucial role such as environmental monitoring, infrastructure surveil-

lance, and disaster management.
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Summary

Robot swarms exploiting Merkle trees achieve secret and secure cooperation in sequential mis-

sions.

Introduction

Swarm robotics systems (1) have the potential to revolutionize many industries, from targeted

material delivery (2) to precision farming (3, 4). Boosted by technical breakthroughs, such

as cloud computing (5, 6), novel hardware design (7–9), and manufacturing techniques (10),

swarms of robots are envisioned to play an important role in both industrial (12) and ur-

ban (13, 14) activities. The emergence of robot swarms has been acknowledged as one of the

ten robotics grand challenges for the next 5-10 years that will have significant socioeconomic

impact. Despite having such a promising future, many important aspects which need to be

considered in realistic deployments are either underexplored or neglected (15).

One of the main reasons why swarms of robots have not been widely adopted in real-world

applications is because there is no consensus on how to design swarm robotics systems that

include perception, action, and communication (15). In addition, recent research points out that

the lack of security standards in the field is also hindering the adoption of this technology in

data-sensitive areas (e.g., military, surveillance, public infrastructure) (16, 17). These research

gaps are motivating scientists to focus on new fields of study such as applied swarm security

(18, 19) and privacy (20, 21) as well as to revisit already accepted assumptions in the field.

From the origins of swarm robotics research, robot swarms were assumed to be fault-tolerant

by design, due to the large number of robot units involved (22–25). However, it has been

shown that a small number of partially failed (with defective sensors, broken actuators, noisy

communications devices, etc.) (26) or malicious robots (27,28) can have a significant impact on
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Figure 1: Towards secure and secret cooperation in swarm robotics missions. (a) Example
of sequential mission (e.g., build a 2-block tower and transport it to a target location) conducted
by a robot swarm that can fail if one of the robots involved is tampered with. If a robot spreads
erroneous information within the system (e.g., the robot in charge of making the bridge cross-
able sends a message confirming the bridge is lowered when it is not) the entire mission can fail.
(b) Merkle tree (MT) used in this work: a hash-based tree structure where each leaf node stores
the hash of an associated operation within the swarm’s mission (i.e., the combination of a robot
action hash (ha) and a sensor input hash (hs)), while each interior node contains the hash of the
combination of its two children. (c) Mission initialization workflow: (I) The swarm’s operator
generates a valid MT where all the operations that the swarm needs to perform to complete
its mission are included in the correct order. (II) The MT is broadcast to all the robots in the
swarm. (III) The mission starts. (d) Workflow for prover (P) and verifier (V) robots when they
exchange queries (Q) and MT “proofs” (⇡) to synchronize and complete their corresponding
MTs copies.
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the overall system reliability and performance. The first surveys of swarm robotics security were

presented in (29, 30). These works identified physical capture and tampering with members as

significant threats to robot swarms. Physical capture of a robot might not only lead to loss of

availability but also to the capture of security credentials or critical details about the swarm

operation (31). For instance, if a robot is tampered with and reintroduced into the swarm, an

attacker might influence the behaviour of the whole system (25, 27) and eventually hinder the

entire mission. Fig. 1(a) depicts an example of such vulnerability, where four operations must

be performed in a sequential order by a group of robots: first, block (1) needs to be pushed to

an assembly area; second, block (2) has to be placed on top of (1) to assemble a tower-shaped

structure; third, the state of a bridge that connects the assembly area and the target location

needs to be determined as crossable (i.e., lowered down); fourth, the tower-shaped structure

must be pushed to the target location at the other side of the bridge. If a robot is tampered

with (e.g., the robot in charge of determining the status of the bridge), it can spread erroneous

information within the system (e.g., tell the other robots that the bridge is crossable when it is

not), therefore hindering the entire mission. This type of attack would be unique to swarm and

multi-robot systems and is particularly critical in situations where robots must share data with

other robots in the swarm or with human operators.

In previous swarm robotics work, researchers hard-coded the complete set of rules that trig-

ger the transitions from operation to operation (24,32,33) in all robots; that is, each robot in the

swarm had a full copy of the information necessary to accomplish its mission. Although this

distributed approach is more robust and fault-tolerant than centralized methods, it significantly

increases the attack surface (i.e., the total sum of vulnerabilities) for an attacker to figure out

the swarm’s high-level goals and disrupt the system’s behavior (31). Due to these concerns, in

this work we aim to find an answer to the following questions: Is there a way to provide the

“blueprint” of a robotic mission without disclosing the raw information describing the mission
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itself? In other words, is it possible for robots in a swarm to fulfill sequential missions without

exposing knowledge about the mission’s high-level objectives? To answer these questions, we

present for the first time a cooperation model based on the idea of encapsulating robotic mis-

sions into Merkle trees. Our approach allows robots in a swarm to cooperate while minimizing

security risks due to issues like physical capture or tampered members. We achieve this by cre-

ating a secure data object that is shared by the robots (i.e., a Merkle tree) instead of protecting

the communication channel among them (e.g., by encrypting the network connections).

In this paper, we argue that by using Merkle trees (see Fig. 1(b), Materials and Methods,

and Supplementary Materials), swarm operators can provide the “blueprint” of the swarm’s ob-

jectives without disclosing raw or unprotected data about the mission itself (Fig. 1(c)). More

specifically, we introduce for the first time a framework where data verification is separated

from data itself. By exchanging cryptographic proofs, robots in the swarm are able to prove to

their peers that they know specific pieces of information included in the swarm’s mission and

therefore that they are cooperating towards its completion (Fig. 1(d)). This approach was ana-

lyzed in simulation and real-robot experiments for two different sequential missions: foraging

and maze formation. In both missions, robots were able to cooperate and carry out sequential

operations without having explicit knowledge about the mission’s high-level objectives. Our

findings show that larger swarms tend to both increase the performance of the system and to di-

versify the amount of information within the swarm. However, larger numbers of robots as well

as longer missions determine a linear increase in the communication requirements of the sys-

tem. Nevertheless, an analysis of storage usage, communication costs, and computational time

for larger-scale missions where the number of operations takes relatively large values reveals

that the use of Merkle trees is within reach of current robotic technology.
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Results

Foraging mission experiments

Figure 2: Foraging scenario. (a) Simulated arena used for the foraging mission. The scenario
consists of a rectangular area of 2.5 ⇥ 2.5 m2 within which robots, tasks (represented as col-
ored cells), and a target area (0.5⇥0.5 m2) located at the center are placed (see Supplementary
Materials for a detailed description of the simulation experimental setup). A typical simulated
run is displayed in movie M1. (b) Diagram of the e-puck robot together with its sensors layout.
E-puck’s size (13 cm tall and 7 cm in diameter) and features make it an ideal platform for sim-
ulated and real-world swarm robotics experiments. (c) Real-world equivalent of the scenario
shown in (a). In this scenario, colored cells are projected on the arena by using a projector
(see Supplementary Materials for a detailed description of the real-robot experimental setup).
A typical real-world run is displayed in movie M2.

A set of 100 simulation experiments were carried out to analyze our approach in the for-

aging scenario shown in Fig. 2(a). The environment consists of a rectangular area segmented

in a 5 ⇥ 5 grid with a central square representing the target location where e-puck robots (41)

(Fig. 2(b)) need to deliver discovered tasks. In Fig. 2(a) tasks are represented by colored cells.

Tasks have to be discovered by robots and then delivered to the target location following a pre-
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defined sequence of colors. The foraging mission is finished when all tasks in the sequence are

delivered in the right order at the target location. In other words, when a robot in the swarm de-

livers the last task in the sequence. This sequence of colors is encoded by the swarm’s operator

as an MT (Fig. 1(b)) with n operations (i.e., MT length) before the experiment starts (Fig. 1(c)).

Therefore, during the mission, robots do not have explicit information about what is the correct

sequence of colors to be delivered since they only have the encrypted information included in

their MT. In addition, 10 real-robot experiments for a subset of the experimental conditions con-

sidered in the simulation experiments were carried out to validate the approach. Fig. 2(c) shows

the real-robot foraging environment where tasks are represented by colored cells projected on

the arena by using a projector (see Supplementary Materials for the experimental setup of the

real-robot experiments).

In the foraging mission, robots search the environment looking for tasks. Once a tasks

is found, robots identify its color and generate hs. Then, they generate the value ha for all

possible actions.1 Hi is calculated by hashing hs and ha: Hi = H((hs, ha)) and verified against

the current working operation (i) of the robot; i is initialized to 0 at the beginning of the mission

and is an index that points to the operation that the robot is currently trying to fulfill in its local

MT. In case it is possible to generate a valid proof (see Supplementary Materials for details

about MT proofs) with the task’s information (9⇡i, Hi), the robot “grabs” the task color and

delivers it in the target location. If not, the robot keeps wandering. When an operation is

completed successfully, the robot changes the status of i as completed in its local MT. Then,

the robot increases i: i = i + 1 for i 2 (0  i  n � 1). It is important to note that during

the experiments, robots can exchange information with their peers (e.g., i, ⇡). If two robots are

within communication distance, they can exchange their i values. If there is a disparity in the

values (i.e., one i is lower than the other) the robot with the lower i will become a verifier (V ),
1In the considered foraging mission, ha is restricted to the “carry to target” action.
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and will send queries (Q) to the robot with greater i, the prover (P ), asking for proofs (⇡) about

the missing operations as depicted in Fig. 1(d). This process is conducted until the i value is

the same for both robots. By using this method, robots can synchronize their own MT copies

and therefore cooperate towards the fulfillment of the swarm’s mission (see Supplementary

Materials for robot’s interaction and finite state machine diagrams).

Next, we study how the performance of our approach (i.e., how fast and reliably a particular

mission is carried out) changes when varying the MT length and the swarm sizes. We present

results obtained in simulation and real-robot experiments where the MT length n is varied in

the set [2, 4, 5, 6, 7, 8] (simulation) and [2, 4, 8] (real) and the swarm sizes Rn in the interval

1  Rn  16. In addition, the amount of communication (i.e., the total amount of data robots

exchanged during the mission), and information diversity (i.e., how widely spread information

is within the swarm) metrics are calculated and presented. Details about these analysis metrics

and statistical methods used can be found in the Materials and Methods section.

8



Figure 3: Finishing times and probability of success for the foraging mission. (a) Average
Ft (in seconds) and its standard deviations for different MT lengths (n) and robot swarm sizes
(Rn) for both simulation (bars) and real-robot experiments (circles). (b) Probability of success
(Ps) for all simulation configurations shown in (a) for the execution of the foraging mission
with Rn in the interval 1  Rn  16. For each of the Rn values a lower-bound (solid line
representing n = 2), mean of the evaluated interval (dot-dashed line), and the upper-bound
(loosely dashed line representing n = 8) were included. (c-e) Detailed plots for the simulation
experiments depicting the whole n set for (c) Rn = 16, (d) Rn = 4, (e) Rn = 2. (f-g) Detailed
plots for the real-robot experiments depicting the n = [2, 4, 8] subset for (f) Rn = 16, (g) Rn =
4, (h) Rn = 2. 9



Fig. 3(a) shows the finishing time (Ft) and its standard deviation for several MT length

configurations (n) and robot swarm sizes (Rn) for both simulation and real-robot experiments.

According to Fig. 3(a), Ft decreases when robots are added to the swarm, regardless of the

length of the MT. These results also suggest that once a certain number of robots is present

(Rn � 8), the length of the MT (n) has little impact on the Ft of the system. Fig. 3(b) shows

how the probability of success (Ps) curves change when changing the number n of tasks for all

simulation configurations presented in Fig. 3(a). One can also see that adding robots increases

Ps since the curves become steeper and converge to higher values sooner. However, these results

also suggest that as we increase n (the mission becomes longer), Ps reaches higher values later

(especially for Rn  3). This effect can be seen in both simulation Fig. 3(c-e) and real-robot

experiments Fig. 3(f-h). It is important to note that Ps does reach 1 (the maximum value) in all

configurations as experiments were run up to a Time Cap (TC), which was never reached (see

Supplementary Materials for a detailed description of the experimental setup).

Fig. 4 shows average results and standard deviations for the amount of communication (AC)

in KB and information diversity measured by Shannon’s equitability index (Ie) for different

simulation and real-robot experiments. In particular, Fig. 4(a) reports simulation results for the

Rn (1  Rn  16) and n 2 {2, 4, 6, 8} configurations, while Fig. 4(b) reports results of real

robot experiments for Rn = [2, 4, 8, 16] and n 2 {2, 4, 8} configurations. In both figures, Ie 2

[0, 1] gives information on the variability in the number of operations performed by each robot

in the swarm during the mission. Lower values indicate more uneven distributions (e.g., one

single robot completing all operations) while higher values indicate more uniform distributions

(e.g., all robots completing the same number of operations). Figs. 4(a-b) also show that AC

increases linearly with Rn since there are more robots exchanging MT proofs. Moreover, MTs

with larger n values make the proofs robots exchange “heavier” (i.e., ⇡ is longer), which also

contributes to increase AC. However, larger Rn values tend to increase information evenness
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Figure 4: Amount of communication (AC) and information diversity (Ie) metrics for the
foraging mission. The AC and Ie metrics are depicted in blue and red colors, respectively, for
different Rn and n values used in simulation (a) and real-robot (b) experiments. The upper-
bound limit for the Ie metric is depicted in both figures with a dashed grey line. Averaged
results and standard deviations in both scenarios suggest a direct relationship between the two
metrics in the foraging mission.
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(Ie) in the swarm. In other words, sequential operations are more evenly distributed. Results

for both simulation and real-robot experiments suggests that, as we increase Rn, the number

of operations fulfilled by the robots tends to become more uniform. Fig. 4 also suggests that

information diversity might need a really large Rn value to converge to 1 (i.e., to complete

“evenness”).

Maze formation mission experiments

In the second experiment, we gave the robot swarm a maze formation mission (Fig. 5(a)-(c))

where we conducted 100 simulations and 15 real-robot experiments for each considered con-

figuration. Fig. 5(a) represents the “blueprint” of a 5 ⇥ 5 maze where 0 represents an empty

space, 1 a wall, and * and @ the entrance and the exit of the maze, respectively. As in the

foraging mission, robots first wander around the arena. However, instead of looking for colored

cells, in this mission robots search for (x,y) maze coordinates. By knowing the cell dimensions

(0.5⇥ 0.5 m2) robots can calculate the (x,y) coordinates of cells they are located at. Every time

a robot discovers a new (x,y) coordinate pair (e.g., (1,1)), it uses it to generate hs. Then, it

generates the value ha for all possible actions.2 Like in the foraging mission, Hi is calculated

by hashing hs and ha: Hi = H((hs, ha)) and verified against the current i of the robot. In

case it is possible to generate a valid proof ⇡ with this information (9⇡(i,Hi)) the robot finds the

center of the cell and stops there (Fig. 5(b-c)). If not, the robot keeps wandering. In the same

way as in the foraging mission, robots avoid already completed operations (in this case, they

avoid stopping in already occupied cells) by receiving the proof that i was already completed.

Additional information about robot’s behavior in the maze formation mission can be found in

the Supplementary Materials.

As with the foraging experiment, the maze formation mission is finished once all operations
2In the considered maze formation mission, ha is restricted to the “stop” action.
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Figure 5: Maze formation scenario. (a) 5⇥ 5 matrix used to represent a maze. Four different
elements are included in the array: 0 (black) represents an empty space, 1 (red) represents a
wall, @ and * (blue) represent the entrance and the exit of the maze, respectively. (b) The
maze depicted in (a) built by a swarm of simulated robots (a typical simulation run is displayed
in movie M3) where the path between entrance and exist is depicted with a dashed line. (c)
The maze depicted in (b) built by a swarm of real e-puck robots (a typical real-robot run is
displayed in movie M4). (d) Average Ft (in seconds) and its standard deviation for the maze
formation mission with different robot swarm sizes for both simulation (blue) and real-robot
(orange) experiments. All results were obtained with a 16 operations (n = 16) maze as shown
in (a-c). (e) Amount of communication (AC) and information diversity (Ie) metrics in blue and
red colors, respectively, for both simulation (circles) and real robots (triangles and squares) and
for different Rn values for the maze formation mission. Upper-bound limit values for both AC
(star) and Ie (line) are depicted with dashed black lines respectively. Average results suggest no
relationship between the two metrics. 13



have been completed. In this maze formation mission, n was fixed to 16 in order to match the

number of cells where the value 1 is present in Fig. 5(a). In addition, we explored a wider

Rn range (16  Rn  28). Fig. 5(d) shows average Ft and standard deviations for the maze

formation mission for both simulation and real-robot experiments: as it was the case in the

corresponding foraging experiment (Fig. 3(a)), larger Rn values reduce Ft. However, beyond

a certain Rn value (Rn � 24), the impact on Ft becomes very small. Fig. 5(e) shows the AC

and Ie metrics for the maze formation mission. Fig. 5(e) follows the same pattern as Fig. 4:

AC increases linearly with Rn. Fig. 5(e) includes the AC upper limit following equation 1

(see Statistical methods). According to Fig. 5(e), both simulation and real-robot AC fall under

the limit and suggest that real-robot experiments require a lower amount of communication than

their simulation counterparts. Finally, Fig. 5 (e) shows that in this scenario complete “evenness”

of information (i.e., Ie = 1) is achieved.

Experiments with larger-dimension missions

Figure 6: LEGO R� models with their corresponding piece count. LEGO R� models are a
good example of complex sequential missions that could be encapsulated in Merkle trees.

Encouraged by these results, we found appropriate to analyze the feasibility of our approach

in complex missions where the number of operations takes relatively large values. Fig. 6 shows
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Table 1: Memory, maximum amount of communication per robot (AC/Rn), and computation
times for the models depicted in Fig. 6. Time measures (in seconds) are averages (standard
deviations in brackets) over 100 runs using the Gumstix Overo board, the on-board computer
mounted on the e-puck robots.

Model in Fig. 6 Memory (KB) AC/Rn (MB)
Average computation

times⇤ (s)

(a) Millennium Falcon
(7541 pieces)

235 KB 3.39 MB
G: 0.35 (0.001)

P: 0.0017 (0.0002)
V: 0.002 (7.96 10�5)

(b) Taj Mahal
(5923 pieces)

185 KB 2.54 MB
G: 0.28 (0.004)

P: 0.0016 (7.40 10�5)
V: 0.002 (0.0003)

(c) Bugatti Chiron
(3599 pieces)

112 KB 1.46 MB
G: 0.16 (0.001)

P: 0.0015 (3.61 10�5)
V: 0.0018 (9.37 10�5)

⇤ G: time to generate the complete Merkle tree; P: time for the generation of a proof; V: time for the verification of a proof.

different LEGO R� models where a sequential set of operations is required to achieve the final

outcome (i.e., build the replica). These models3 are good projections of the missions presented

previously, especially since n takes a relatively large value. Due to the possibility of accurately

calculating the upper limit of AC required to make all robots complete their MTs (see Statis-

tical methods, Eq. 1) as well as the overall size of the MT stored by robots, we can compute

Fig. 6’s corresponding MTs and measure their memory, maximum amount of communication

per robot (AC/Rn) requirements. We also computed the average computation time to generate

the complete Merkle tree (G), the time for the generation of a proof (P), and for the verification

of a proof (V). Results for the aforementioned models are given in Table 1.
3Three of the replicas with the largest piece count according to the current LEGO R� catalog:

https://shop.lego.com/en-US/
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Discussion

We showed that two of the main MT properties (i.e., correctness and security) open a new path

towards secure and secret cooperation in robot swarms. Regarding the security aspect, by using

this approach, in order to cooperate, the robots in a swarm are required to prove to their peers

that they fulfilled certain actions or that they know or own some particular information (i.e.,

proof-of-ownership (34)), rather than merely rely on information received from other robots

(sensor data, votes, etc.). This approach makes robots resistant against potential threats such as

tampering attacks since any change in the operation’s data (i.e., s, a) will necessarily change

the proof’s outcome. Regarding the secrecy component, with the use of MTs robot swarms are

now able to separate the mission data from its verification. This allows robots to verify that

an operation was carried out by a member of the swarm without knowing what this operation

entailed or which robot took part in its completion. This makes physical capture attacks ineffi-

cient since individual robots might not have enough raw or unprotected information to describe

the high-level swarm’s missions and goals, especially in large systems. However, this does not

prevent robots in a swarm from cooperating to fulfill complex missions since robots can still

prove to their peers that certain operations were identified and completed.

This approach was tested in two different scenarios: a foraging and a maze formation mis-

sion. In the foraging case, results suggest that increasing the swarm size has a positive impact

on the performance of the system: larger swarm size have lower finishing time (Ft) and a higher

probability of success (Ps). Results also show that the amount of communication (AC) grows

linearly with the swarm size (Rn), which in extreme situations (e.g., very large swarms) could be

detrimental to the system since individual robots might not be able to cope with the bandwidth

requirements. In contrast, increasing Rn has the positive effect of increasing the information

diversity (Ie) since we are increasing the probability of reaching more uniform distributions of
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completed operations within the swarm.

In the maze formation mission, where Rn and n take larger values, results also suggest that

Rn maintains an inverse relationship with Ft. In the maze formation mission, Ie is maximized

(i.e., Ie = 1), which is possible since in this mission, when robots find a cell where they can

generate a valid ⇡ proof, they stop at its center, in this way making robots capable of fulfilling

only one operation per mission, in contrast to the foraging scenario, where one robot might be

able to complete several operations. Even though AC grows linearly with Rn, this still does

not represent a challenging situation for the swarm (e.g., 72 and 70 KB are exchanged in a 28

robots system for both simulation and real-robot experiments). Counterintuitively, real-robot

experiments require a lower amount of AC to complete the maze-formation mission than their

simulation counterparts. This effect is due to the incapability of the simulation engine to take

into account network lag: delays in the network produce situations where robots are able to find

and complete the mission, while other robots in the swarm are still trying to synchronize on

previous completed operations. Finally, it is interesting to emphasize that, due to these proper-

ties, robot swarms can complete complex missions such as the maze formation one without the

means to infer high-level details such as where the entrance or the exit might be located.

Finally, Table 1 shows that neither the memory, nor the communication requirements per

robot, nor the average computation times of the corresponding MTs are out of reach of current

commodity hardware (e.g., Overo Gumstix) and therefore our approach is feasible for current

robot platforms. It is important to note that more than 99% of the computation time is taken by

the generation (G) of the MT that only takes place at the beginning of the mission, while the

proof assembly (P) and validation (V) take a nearly insignificant amount of time.
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Limitations and future work

The complete set of operations (and its order) must be known at design time

It is important to note that, as described previously, the current approach needs a swarm

operator to design and encode the complete sequence of operations included in the MT before

the mission starts. Therefore, any deviation from the original sequence included in the MT

might be difficult to adapt to. Possible improvement: it is possible to make incremental updates

to the mission and encapsulate the outdated MT within a newer version that takes into account

all necessary changes. In that situation, a new MT root might be necessary to reflect the up-

dated mission sequence. However, the most critical point for this solution is to trust the source

that distributes the new root node hash. Fortunately, new methods such as blockchain-based

communication are showing a promising way to make robots rely on trusted sources (27, 28).

Generation of a valid MT proof does not imply execution

Another limitation of the system is that even if a robot discovers a valid combination of ha

and hs values, thus being able to generate a valid MT proof, there is no guarantee the robot

fulfills the corresponding operation in the physical world (e.g., deliver discovered colors to a

target location or stop at the right coordinates). Possible improvement: it is possible to add

additional variables to the operation encoding process, for instance, forcing the robot to do the

right action a, with the right sensor input s, at the right location l such as Hi = H((hs, ha, hl)).

Another possible way to tackle this problem is the addition of robot “validators”, which verify

that every operation claimed by the robots is completed.

Perhaps the most promising direction for future research is the possibility to implement

missions where heterogeneous swarms with different sensing, computation, and actuation ca-

pabilities can cooperate and collaborate. Along these lines, the increasing amount of attention

that swarm robotics is gaining envisages a future where different swarms run by different types

of institutions (e.g., private, public) can co-exist in a same location (e.g., urban and disaster
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areas, battlefield). The method described in this research offers a path to make different swarms

cooperate without exposing sensitive data about their internal processes, goals, and organiza-

tions. Finally, a new type of service where the robot commands are encapsulated within an MT

and whose output is the cryptographic proof that the job has been completed is now a possibil-

ity. In the last section of the supplementary materials of this work is described an early-stage

example in this direction where a web-based marketplace allows a robot swarm to form shapes

on-demand. In the example, potential customers upload an MT describing the desired shape and

send it to a smart-contract in the Ethereum blockchain, which returns a proof when the work is

being completed by the robots.

Materials and Methods

Merkle trees for robot swarms

A Merkle tree (MT) (37) is a hash-based tree structure where data is not stored in the inner

nodes but in the leaves (Fig. 1(b)). Every leaf node (i.e., operation) encapsulates the combined

hash of two hashes: hs (hash of the robot sensor’s input) and ha (hash of the robot’s action).

These two hashes describe an atomic step within the swarm’s high-level mission. For instance,

the hash of the action “push” (ha) and the hash of the sensor input “block (1)” (hs) are included

in the first operation by using the hash function H: H(ha, hs). In this work, we assume that

an external entity (e.g., the swarm’s operator) encodes a valid MT before the swarm robotics

mission can take place. This MT contains all needed information about the operations that the

swarm has to execute to fulfill the mission in the correct order (Fig. 1(c) - I). The resultant MT

is broadcast to all the robots (Fig. 1(c) - II) before the mission starts (Fig. 1(c) - III). Since

MTs are an encrypted data structure, robots do not have direct access to the raw information

concerning the mission, but only to the hash values comprising the MT are known.

At the beginning of the mission, all robots aim to fulfill the first operation. However, only
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one will succeed in doing so. The successful robot, first, wanders around the environment;

second, when it perceives a new sensor input (e.g., block (1)) it generates a hash (hs) from

it; third, it generates another hash (ha) for an action it can perform (e.g., “push”); fourth, it

combines hs and ha and rehashes them to obtain the hash string H(hs,ha); fifth, it matches

H(hs,ha) against the hash value that corresponds to the first operation of the MT. At this point,

the robot executes the resulting command (e.g., “push block (1)”). The robot that fulfills this

operation, can regard the operation as completed. Once the operation is completed, the (prover)

robot has the ability to generate cryptographic “proofs” (⇡) that demonstrate to other (verifier)

robots that it actually carried it out that operation because it has information corresponding to

that operation that it could not have otherwise (i.e., hs and ha). In this case, the proof ⇡ is a list

of hashes that verifier robots can use to calculate the MT root node hash (shared by all robots

in the swarm) by using ha and hs as inputs. These proofs can be sent and received by robots in

the swarm, allowing them to synchronize, check, update, and complete their corresponding MT

until the whole mission is completed. It is important to note that these proofs can be exchanged

without disclosing any raw or unprotected data about the mission itself. The typical workflow

between prover (P) and verifier (V) follows the pattern depicted in Fig. 1(d): (1) V sends a

query Q to P regarding a particular operation in the MT (e.g., operation 0). (2) P sends a proof

⇡ (list of hashes) that demonstrates knowledge about the requested operation. (3) V verifies

the proof by computing in a bottom-up fashion the received information. The proof is regarded

as valid if V can generate the root node hash it keeps in its memory (shared by P and V) by

using ⇡. More details about MT structure, proofs, and data encapsulation are provided in the

Supplementary Materials.
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Statistical methods

To evaluate and analyze our approach we rely on three metrics:

Performance. These measures show the speed and reliability with which a mission is car-

ried out. In this paper, we use the mission’s finishing time Ft to measure the amount of time

required to fulfill the swarm’s mission. In addition, we use an estimate Ps of the probability that

the system attains its target objective in an amount of time ⌧ (38). Formally, let j 2 {1, . . . , k}

be the index of an experiment, rj be the run time of experiment j, and experiments where

rj < TC are considered successful experiments. The estimate Ps of the probability of success

of the system over time (up to TC) is defined as Ps(⌧  t) = {j|rj  t}/k.

Amount of communication. The amount of communication (AC) is computed by mul-

tiplying the number of times the prover-verifier workflow (Fig. 1(d)) takes place during the

mission by the size (in bytes) of the proof (⇡) the robots exchanged. When the MT is perfectly

balanced (i.e., the number m of leaves is a power of 2), the size of the proof ⇡ is log2(m) + 2:

the number of hashes to reach the root node plus the hs, ha hashes. In missions with n opera-

tions where all robots need to complete their MTs, an upper limit ACul of the AC metric can

be calculated with the following equation:

ACul = Pn · Pl·|H| (1)

where Pn = ((Rn � 1) · n) is the total number of proofs exchanged, Pl = log2(n̂) + 2 is the

length of the proof, n̂ is the smallest power of 2 that is greater or equal to n, and |H| is the

size (in bytes) of the hash function used. The hash function used in this work (SHA256) has

a hash size (|H|) of 32 bytes. It is important to note that the hash size can be increased (e.g.,

SHA3-512, SHA3-1024) in order to achieve improved security.

Information diversity. In this research, robots are only in contact with the raw sensor
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and action information from the operations they carry out themselves (i.e., input data for the

ha and hs hashes). However, in swarm robotics applications, it is difficult to fully ensure a

uniform distribution of operations or tasks among the robots. In this scenario, certain robots

might be able to accumulate raw or unprotected information that could be stolen if they are

subject to attacks (e.g., physical capture). To analyze this phenomenon, we introduce Shannon’s

equitability (Ie) to measure “evenness”, that is, to measure how widely spread raw information

is within the swarm.

Shannon’s equitability (Ie) can be calculated by dividing Shannon’s index I by Imax:

Ie =
I

Imax

(2)

where Shannon’s index I = �
P

S

i=1 pi ln pi (i.e., Shannon’s entropy (39)) is a mathematical

measurement used to characterize diversity in a community. In this case, S represents the total

number of robots that took part in the mission (Rn), pi is the percentage of operations robot i

conducted compared to the mission’s length (n), and Imax = lnS. Ie assumes a value between

0 and 1. Lower values indicate more uneven distributions while higher values indicate more

uniform distributions. In this case, 1 represents complete “evenness”: all robots carried out the

same number of operations and therefore were exposed to the same amount of raw information.
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Supplementary materials

S1 - Detailed description of an MT structure, proof, and data encapsulation

Figure S1: Description of a typical Merkle tree (MT) structure and proof. (a) Merkle tree
implementation (d = 3) with 4 leafs, 2 interior, and 1 root nodes. Each leaf node (green)
encapsulates the hash of two hashes: a robot action (ha) and a robot sensor input (hs). Each leaf
node represents one atomic operation that robots should complete sequentially (i = 0, i = 1,
. . . , i = m � 1) in order to fulfill the swarm’s mission. Interior nodes encapsulate the hash
of their two children, and the root node encapsulates the hashes of its two interior nodes. (b)
Describes the path (in color) in order to get the proof for leaf node i = 1.

A Merkle tree (MT) of depth d is a tree with m = 2d�1 leaf nodes, each one with an index

i 2 [0,m � 1]. Each leaf node encapsulates a hash string of an associated operation, while

each interior node contains the hash of the combination of its two children. A depiction of a

complete MT for d = 3 is given in Fig. S1(a). Each operation (green blocks) encapsulates

the combined hash of two hashes: hs (hash of the sensor’s input s) and ha (hash of the robot

action a). These two hashes describe an atomic step within the swarm’s high-level mission.

For instance, the hash of the action “push” (ha) and the hash of the sensor input “block (1)”

(hs) would be included in one of the operations by using the hashing function H: H(ha, hs).

As outlined in Fig. 1(d), when a verifier (V ) robot queries a prover (P ) robot with updated

S1



information (i.e., P ’s index i is greater than V ’s index i), P returns a chain of digests ⇡ needed

to compute the root node digest (red block). V keeps (at least) a copy of the root node hash

itself (computed before the experiment starts), and checks ⇡ by trying to recompute the root

node hash in a bottom-up manner.

Fig. S1(b) shows the proof ⇡ for a fetch at operation i = 1. It consists of four elements

in sequence, the two hashes ha and hs, the hash H4, and the hash H3. Then, the verification

proceeds bottom up: V computes the hashes of the two hashes hs and ha, which is H5, and con-

catenates it with the hash of H4 provided in ⇡. Next, it concatenates H4 and H5 and computes

the hash of the digest for node H2. Then, it concatenates H3 provided in ⇡, with the computed

H2, and hashes the result. Finally, it checks whether this computed digest equals H1 (root node

hash).

In this research, we are interested in two properties derived from the workflow between P

and V robots depicted in Fig. 1(d): correctness and security. First, correctness implies that when

P executes a query Q over its own MT, the generated proof ⇡ requires knowledge of ha and

hs and can be easily verified by V locally. This property opens the path to secret cooperation

between robots since encrypted verification and validation of data (e.g., by using cryptographic

hashes) can be exchanged within the swarm without disclosing any raw or unprotected informa-

tion. Second, security implies that a computationally limited, deceiving P 0 cannot induce V to

accept a faulty answer. The basis of this property is the use of collision-resistant hashes: if P 0

can cause V to accept an incorrect answer then the proof returned by P 0 will yield a collision

(i.e., two different inputs produce the same output hash value). This research assumes the hash

generation method used (SHA256) is collision-free, that is, that the probability that different in-

puts produce the same output is negligible. This property leads to secure cooperation between

robots.

S2



S2 - Detailed description of the real-robot experimental setup

Figure S2: Experimental setup for the real-robot experiments. (a) arena (with measures)
used during the real-robot experiments. (b) Information workflow for the real-robot experi-
ments. The diagram shows how robot tags’ location are captured by a vision-based tracking
system, coordinates for each tag are calculated, and used by the robots connected in a network.
Then, relevant information such as robot’s sensor input or status can be projected on the arena
where experiments are being run in real-time. (c) Tag with ID number 34 encoded in binary
as a matrix of black and white squares. (d) Diagram with the physical disposition of the sens-
ing (camera) and actuation (projector) elements introduced in (b). (e) Image of a real-robot
experiment for the foraging mission using the information workflow described in (b).

Fig. S2(a) shows a bird’s eye view of the arena built for the real-robot experiments. The arena

is a rectangular area of 2.5 ⇥ 2.5 m2 built by 4 wooden planks attached to each other using

hot melt glue. Each one of these planks has the following measures: 2.5 m (length) ⇥ 0.15 m

(height) ⇥ 0.05 m (depth). The experimental area is divided into a 5 ⇥ 5 grid where each cell

corresponds to a 0.5 ⇥ 0.5 m2 area. The black lines between the cells were created by using

black duct tape which also covers the rim of the linoleum tiles underneath.
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Fig. S2(b) shows the information workflow that takes place during the real-robot experi-

ments. First, each robot carries a tag (Fig. S2(c)) on top of its omnidirectional camera cylinder;

this tag encodes a specific robot ID used in the system. Second, tags are recognized by a

vision-based tracking system (45) using a camera (Prosilica GC 1600C) right on top of the

arena (Fig. S2(d)). Third, (x,y,z) coordinates for each tag are calculated with respect to the

bottom-left corner of the arena and sent to a ROS (46) multi-master (47) instance connected to

the robots through a WiFi router. With this configuration, robots can access their own position

and orientation and use them during the mission (e.g., locate the target location, find the center

of each cell, etc.). The WiFi network is used as a low-level communication medium for the

robots. In order to keep the decentralized aspect of the robot swarm, we designed a higher-level

protocol where each robot uses its own ROS multi-master instance to communicate with other

robots (e.g., send queries, receive proofs, etc.). This topology avoids that the system relies on

a single ROS master for data exchange. Robots communicate in a peer-to-peer fashion with

each other since their own multi-master instances can only exchange data if robots are within

communication range (Crange).

S2.1 - Supporting features of the system

In order to better understand the robot swarm behavior during an experiment, we built a system

capable of collecting relevant information—such as the robots’ internal states and the inter-

action patterns within the swarm—from the robots during the mission and of displaying it on

the robot swarm working space in real-time. Following the workflow depicted in Fig. S2(b),

information about the robots’ location, sensor input and internal state is extracted from the

multi-master network at a frequency of 10 Hz and sent to an agent-based simulation software

named Gama (48). With this information, Gama is able to create a virtual representation of the

current state of the arena which is projected on the arena itself by using a short throw projector
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(Optoma EH460ST). Fig. S2(d) shows a diagram of the arrangement of the tracking system

camera and of the projector with respect to the arena. Fig. S2(e) shows a real-robot foraging

experiment where the virtual representation of the arena (e.g., colored cells, communication

patterns between the robots, robot’s internal variables, etc.) are projected on the arena and

robots in real-time. Detailed information about the amount of information displayed in both

foraging and maze-formation missions is included in the M2 and M4 movies.

The idea of building a close-loop control where a camera (e.g., performing tag tracking,

pattern recognition, etc.) acts as the sensing part and a projector is the actuation component can

be extended to other uses and scenarios. For that reason, we designed a tool named Tangible

Swarm4 that has the aim to display in a real-time fashion relevant information about a swarm

robotics system at the same place where the swarm is conducting its mission. Information such

as IDs, sensor inputs, robot trajectories, distance between robots in a formation scenario, battery

status, communication patterns, etc. can be easily coded, displayed and customized for different

robot swarm missions. Movie M5 shows several of the aforementioned capabilities and gives

an overview of the tool capabilities.

S3 - Detailed description of the simulation experimental setup

For the results obtained in the simulated foraging mission, the following parameters were used:

the color k of a task is chosen in the set {green, magenta, blue, yellow, red, cyan, lime, orange}.

Only one task of each color k is placed in the arena at the beginning of each run. For example,

in the run where the MT has 4 operations (n = 4), a total of 4 tasks were randomly scattered in

the arena. For the robot communication and interaction space (as depicted in Fig. S3) we used

the following parameters: The robot communication range (Crange) was set to 1 m (maximum

range of the range and bearing device of the e-puck robots), the vision sensing distance (Vrange)
4https://github.com/edcafenet/TangibleSwarm
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Figure S3: Robot interaction diagram. Every robot controller relies on three main thresholds:
Orange represents the range where obstacles are detected by robots in order to avoid collisions.
Vrange represents the robot’s maximum vision range to detect tasks (i.e., see LED markers) in
the arena. Crange represents the maximum required distance for robots to communicate with one
another. Finally, robots are able to locate themselves in the arena’s 2D space either to find the
target location (foraging mission) or to obtain the (x,y) coordinates of the grid (maze formation
mission).

was set to 0.35 m (maximum range to detect an LED marker from within the same cell). LEDs

are used in the foraging mission to help robots visually locate the cell and define its color. The

robot obstacle detection range (Orange) was set to 0.10 m. In addition, robots are able to locate

themselves (Fig. S3) in the 2D arena by using the simulator positioning sensor, this information

is used to travel to the center of the cell of the target location. Finally, the Time Cap (TC) for

each experiment was set to 5,100 seconds (maximum battery duration5). All the parameters

mentioned previously were used also for the maze formation mission, excluding those concern-

ing the discovery of tasks. In contrast to the foraging mission, in the maze formation mission,
5According to manufacturer: https://www.gctronic.com/doc/index.php/Overo Extension#Consumption
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robots are able not only to locate themselves in the 2D arena (2.5⇥2.5 m2), but also to calculate

the (x,y) coordinates of the grid which they used as input to generate the hs hash. All simula-

tion experiments presented in this paper were conducted in ARGoS (38), a modular multi-robot

simulation and development environment.

S4 - Description of the finite state machines controlling the robots

Figure S4: Robot FSM diagrams. (a) Finite State Machine (FSM) controller for the foraging
mission. Three behaviors —Wander, Check, and Handle—are coded in every robot. (b) FSM
controller for the maze formation mission. This FSM differs from the one in (a) in two ways.
First, the Handle behavior is substituted by the Stop behavior, which makes robots stop at the
center of a grid cell instead of carrying a token to the target. Second, the return condition to the
Wander behavior is only executed if robots receive proof that the cell they are trying to occupy
has been already filled.

Fig. S4(a) depicts the finite state machine (FSM) that controls the robot for the foraging

mission, which relies on three basic behaviors:

Wander. The robot performs a random walk searching for tasks in the arena. If the robot

detects a task within its vision range (Task.distance  Vrange), it executes the Check

behavior; otherwise it continues searching. During the execution of this action the robot is able

to detect obstacles such as walls or other robots (within distance Orange) and avoid them.
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Check. Once a task is within the robot’s vision range, the robot can sense the color of the

LED marker associated with it. This information is used by the robots in order to generate the

sensor input hash (hs). For the considered foraging mission, the action hash ha encodes the

“carry to target” action. Robots executing the Check behavior combine hs and ha to generate

a hash (Hi = H((hs, ha))) that is used to generate the proof ⇡. In case a proof ⇡ exists for

the current working operation i: 9⇡(i,Hi), the combination of task color and action (i.e., opera-

tion) can be verified as part of the MT. Otherwise (9!⇡(i,Hi)), the robot returns to the Wander

behavior.

Handle. In case the robot generates a valid proof for the visible task, the robot travels to

the center of the cell. Then, the robot delivers the color to the target located at center of the

arena. Once the robot reaches its destination (Task.location = Target.location),

the robot releases the task information and changes the status of i as completed in its local MT.

Then, the robot increments the pointer of the current working operation index: i = i + 1 for i

2 [0, n-1]. In case the robot receives a proof that the i has been already completed by another

robot while carrying the task, the robot updates its own MT with the received information and

returns to the Wander behavior.

Fig. S4(b) depicts the FSM that controls the robot for the maze formation mission. There are

three differences with respect to the foraging mission. First, robots use the (x,y) coordinates of

visited cells to generate hs. Second, the action hash ha encodes the “stop” action. Third, in case

a valid proof ⇡ is generated with hs and ha, robots execute the Stop behavior, which makes

them find the center of the visited cell and stop there. After the Stop behavior is executed,

robots cannot run other commands and they remain moveless until the end of the run.
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S5 - IRIDIA Swarm Marketplace

Academic and industry leaders agree that we are currently on the verge of the fourth indus-

trial revolution (49–51), one that may be marked by the omnipresence of networks instead of

stand-alone systems. More and more machines are interconnected in these networks, objects

such as sensors, smart devices, factories, and so on, are gradually creating a global industrial

Internet of Things (IoT) (52). It is expected that this fourth industrial revolution will create new

ways for people, machines, and organisations to be interconnected and communicate with each

other by exchanging and sharing information. At the core of this new set of technologies there

is a fundamental shift from centralized and human-mediated systems to decentralized and au-

tonomous systems (53). Autonomous robots (54,55) and cyber-physical systems (56) belong to

a growing category of devices that can be programmed to perform tasks with little or no human

intervention. They can vary significantly in size, functionality, mobility, dexterity, intelligence,

and cost, to provide from robotic process automation to data capturing capabilities.

In the meantime, in the blockchain space, new concepts such as the Decentralized Au-

tonomous Organization (DAO) (57–59) are starting to gain popularity. A DAO is an organi-

zation that is run through rules encoded as smart contracts (i.e., computer code embedded in

a blockchain that directly controls the transfer of digital assets between parties under certain

conditions) (60). In these organizations, machines and people can cooperate without the need

to be incorporated into traditional business identities (61). Such autonomous organizations can

charge users for the services they provide, in order to pay others for the resources they need.

Essentially, DAOs are entities that often need minimal or no input at all to be able to operate,

and that are used to execute smart contracts and record activity on the blockchain.

In recent years, the DAO field has also explored the combination with robotics creating a

type of decentralized entity where part of the control logic resides in a smart contract while the

actuation part resides in the physical world (62). However, there is still no example in the liter-

S9



ature of how an institution can start offering autonomous systems services and match the needs

of potential customers that might require those services on demand. With the aim to explore

this path, we present the IRIDIA6 Swarm Marketplace: a web-based service marketplace whose

logic is coded in a smart contract and uploaded in the Ethereum blockchain. In the proposed

approach, staff from IRIDIA advertises the robotics services available (number of robots, du-

ration of service, and price). Then, customers are able to purchase these services and pay the

price with their own crypto-wallets. Then they can upload an MT with the list of operations

the robots need to complete. Once the service is completed, customers get the cryptographic

proof that the robots completed all the operations included in the MT, which allows them to

trust the system and understand the service was not faked. Finally, customers get pictures and

video footage of the final work the robots conducted. Videos are uploaded by the system to the

public IRIDIA Youtube playlist together with the root of the provided MT.

Fig. S5 shows the general framework and main components of the IRIDIA Swarm Market-

place: a web-based marketplace for swarm robotics services built on blockchain technology.

Fig. S5(a) depicts the main workflow of the proposed application. Let’s consider an example of

how this market place could be used. In the planning of research activities there are periods of

time in which IRIDIA’s robot swarm remains idle. When this happens, the IRIDIA staff mem-

bers taking care of the robot swarm allocation to the different research activities will broadcast

the robot swarm availability through a market-based website as the one depicted in Fig. S5(b).

In this website, IRIDIA staff can log into the platform by using lab-controlled Ethereum ac-

counts and the MetaMask interface (a popular Ethereum wallet that allows your browser to

connect to the Ethereum blockchain). Then, a new service can be added where the number of

robots available, the amount of time they are available for, and the price charged for their use

are indicated. Once the service is broadcast, potential customers interested in using the robot
6IRIDIA is the name of the artificial intelligence lab of the Université Libre de Bruxelles, where the real-robot

experiments presented in this paper took place.
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Figure S5: IRIDIA Swarm Marketplace. (a) Information flow for the proposed application
where: (1) IRIDIA staff adds services to the smart-contract by using the web interface depicted
in (b). (2) Customers can purchase available services (i.e., a certain number of robots, for a
time, for a price) by providing a valid MT as input and paying the price listed in cryptocurrency
(i.e., Ethers). (3) Then, the smart-contract sends the MT to the robot swarm and the mission
starts. (4) When the job is finished, the resultant hashes that prove that the robots did the job
requested are sent to the smart-contract and displayed in the results section of the web interface.
(5) The smart-contract displays the results video of the job done by the robots in a public site
where the customer can retrieve it. (b) Web interface where services are added by IRIDIA staff
and purchased by customers.
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swarm can purchase the service and upload their own MT in the system. After the received MT

is validated, the smart-contract implementing the Swarm Marketplace sends the information to

the robots so that they can start working. Robots complete the set of actions the same way it was

described in the real-robot experiments of this work. In our initial demonstration example, we

provide customers robots that have the maze-formation set of actions so that, when they upload

their MTs, they can choose which kind of pattern to create. Once the mission described in the

uploaded MT is completed by the robots, the complete set of proofs with their correspondent

ha, hs values is sent to the smart-contract and stored there. Finally, customers can make sure

their job has been completed by the robots since the values that were used as inputs for the MT

have been discovered by the robots. Additionally, a video of the robots performing the mission

is uploaded to the IRIDIA Youtube playlist and available for the customer. Fig. S5(b) shows the

web interface where the buyer and seller broadcast and purchase services. A live demo of the

IRIDIA Marketplace is accessible at www.blockchainswarm.eu.
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