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Joined Probabilistic Load Flow and Sensitivity
Analysis of Distribution Networks based on

Polynomial Chaos Method
Giambattista Gruosso, Roberto S. Netto, Luca Daniel, and Paolo Maffezzoni

Abstract— Due to the statistical uncertainty of loads and power
sources found in smart grids, effective computational tools for
probabilistic load flow analysis and planning are now becoming
indispensable. In this research, we describe a unified simulation
framework that allows quantifying the probability distributions
of a set of observation variables as well as evaluating their
sensitivity to potential variations in the power demands. The pro-
posed probabilistic technique relies on the generalized Polynomial
Chaos algorithm and on a region-wise aggregation/description
of the time-varying load profiles. It is shown how detailed
statistical distributions of some important figures of merit, which
includes voltage unbalance factor in distribution networks, can be
calculated with a two-orders of magnitude acceleration compared
to standard Monte Carlo analysis. In addition, it is highlighted
how the associated sensitivity analysis is of guidance for the
optimal allocation and planning of new loads.

Index Terms— Polynomial Chaos method, Probabilistic load
flow, Sensitivity analysis, Unbalanced networks, Uncertainty
quantification.

I. INTRODUCTION

Smart distribution grids are expected to provide new types
of services, e.g. charging of electrical vehicles, while exploit-
ing new forms of distributed power generation, e.g. higher
penetration of renewable energy sources. An increasing active
role of consumers is also envisaged: they will be able to alter
their usage patterns in order to follow the trends of electricity
prices [1].

Distribution network evolution and the management of the
bidirectional power flow will require a large number of moni-
toring devices able to provide data/information about the status
of the network and the quality of service at several points. A
massive deployment of (smart) meters and monitoring systems
is thus expected in the near future [2]–[5], moving from a
situation where little information is known to a situation where
data is available at many points. This will allow achieving
a better understanding of the network performance and will
enable the use of statistical techniques to characterize and
predict the comprehensive behavior of the grid. Even the
power flow will no longer be directed in a single prevailing
direction, but it will have a greater variability due to the
presence of storage systems or electric vehicles that represent
bidirectional loads.
In this context, a relevant role is also envisaged for novel
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robust/efficient simulation tools for probabilistic analysis and
planning [6], [7]. In fact, uncertainty-aware computational
tools can provide a comprehensive view of the overall network
in the presence of uncertain power demand and generation,
e.g. they can predict bus voltages and line currents statistical
variations at network points that can hardly be measured.
Furthermore, these techniques can be used for the analysis
of the sensitivity with respect to the direction of the power
flow, starting from the grid description and a limited set of
measurement.

Probabilistic Load Flow (PLF) analysis methods consist in
using probabilistic models for the power loads as well as
in replacing deterministic load flow simulation with proper
stochastic analysis methods. The basic and reference stochastic
method remains Monte Carlo (MC) simulation even though it
can be computationally demanding due to the great numbers
of samples it requires to represent uncertain inputs. MC
simulation combined with advanced sampling methods [8] can
alleviate the computational burden for statistical problems of
small size.

Efficient analytical/approximate stochastic techniques have
been recently investigated in the field of power systems
[9]–[13]. Among them, the point estimate method [9], [10]
provides approximations of the raw statistical moments of
some observation variables, while the cumulant method [11],
[12] works for linear (or almost linear) problems. In this paper,
instead, we will focus on the category of Polynomial Chaos
(PC) methods [13] since such techniques work for nonlinear
problems and provide the detailed Probability Density Func-
tion (PDF) of the desired observation variables.

The polynomial chaos method has been recently employed
to efficiently derive the PDF and cumulative probability of line
voltages by considering constant power loads at a fixed time
instant [13].

In this paper, we build on these recently presented tech-
niques as well as on generalized Polynomial Chaos (gPC)
Theory [14] to extend its application/usage. In our analysis, we
consider realistic load power profiles, described by quasi static
time series (QSTS) over given observation time windows, and
we aggregate the profiles in areas, or geographic regions, of
the network infrastructure.
The original contributions of the proposed method could be
summarized in the following issues:

1. We propose a region-wise uncertainty quantification anal-
ysis where load uncertainty in each region and for each
one of the three phase lines is represented by a single in-
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dependent random variable. This approach allows dealing
with the relevant case of 1-phase loads.

2. We exploit the gPC paradigm to evaluate the PDF of a
set of Quantities of Interest (QoIs) that affect the quality
of the network. Such QoIs can include the peak and
minimum voltage at some observation nodes, and over
some observation time windows, as well as the peak value
of other figures of merit such as the Voltage Unbalance
Factor (VUF).

3. The last issue considered in this paper is connected with
the analysis of the impact that new loads can have on
the grid. The analysis aims at identifying the regions
where new loads insertion could be useful, e.g for voltage
balancing. The increase or decrease in power demand at
a given line phase in one of the regions, for instance
due to the allocation of new 1-phase loads, reverberate
on the nodal voltages in other regions (and phase lines)
in a way that is not easy to be predicted. This is the
case when a storage system is integrated in the grid,
or in general a stochastically dependent load or source
is considered: therefore operational planning and proper
allocation of new loads require region-wise and phase-
wise sensitivity analysis tools able to efficiently foresee
the effects that variations in the aggregated loads of a
region can have on the whole network. Several numerical
methods for sensitivity analyses in power distribution
lines have been provided in the literature that exploit
the Jacobian matrix used in power flow calculation [15]
or adopt a perturb and observe approach [16]. The first
category of techniques are intrusive methods that need
the access to the simulation code. In this paper, we
concentrate on the second category of methods. We show
how an efficient region-wise sensitivity analysis can be
naturally derived by exploiting the same gPC simulation
framework used for PLF. As a result, the PLF analysis
and region-wise sensitivity can be implemented in a
homogeneous framework.

The remainder of this paper is organized as follows: in Sec.
II we shortly review the deterministic power flow problem
and illustrate, with an example, the aims and importance of
variability analysis. In Sec. III, the region-wise approach is
outlined, while in Sec. IV the gPC-based uncertainty quantifi-
cation method and sensitivity analysis are described. In Sec.
V, we provide more details about the gPC implementation
in connection with the Stochastic Testing (ST) selection of
sampling points. Finally, in Sec. VI we report simulation
results for a IEEE benchmark distribution network case study.
In particular, we prove how the proposed methodology can
be of guidance for the optimal allocation of new loads in the
network.

II. POWER DEMAND VARIABILITY AND MOTIVATION OF

THE WORK

For the sole purpose of demonstrating the application of
the method, a low-voltage IEEE test network is used, mainly
consisting of three-phase or single-phase loads. In addition, the
low-voltage grid helps to define quality factors with which it is

possible to demonstrate the validity of the proposed approach
even in unbalanced three-phase simulations. The methodol-
ogy can be extended without any substantial modification
to networks powered at higher voltages or when there are
power sources. In the following, the considered low voltage
distribution network is made of Nl lines and N buses and
designed to provide the prescribed power flows at the network
terminals. Deterministic load flow analysis is mathematically
formulated as a set of nonlinear equations of the type:

Fn(�V) = Sn −Vn

N∑
i=1

YniV
∗
i = 0 (1)

for n = 1, . . . , N . In (1), Sn = Pn+jQn denotes the complex
power injection at node n where Pn and Qn are the active
and reactive powers respectively at network terminations. Vn

denotes the nth node voltage phasor, while Yni are the
entries of the bus admittance matrix. Node voltage phasors
are collected into vector �V. Power demand at terminations
vary in time and thus powers Pn(t), Qn(t) are functions of
time. For a given observation time window (e.g. a day or a
week), that is discretized into a sequence of Nt equally-spaced
time instants tm = m · Δt, power demand is thus specified
as given power profiles P 0

n(tm), Q0
n(tm) for m = 1, . . . , Nt.

Node voltage waveforms Vn(tm) are thus calculated for such
nominal load conditions by repeatedly solving the nonlinear
problem (1) over the sequence of time instants tm using
the simulation platform OpenDss [17]. This software performs
quasi-static time series (QSTS) simulations, i.e. the chronology
of loads at adjacent time points is accounted for by enforcing
the dependency of the solution on the history of loads.

Due to the uncertainty of power demand, actual power
profiles exhibit variations around their nominal values that can
be described statistically. Such a statistical variability of power
loads induces fluctuations in the node voltages that may bring
them out of the safe limits and compromise the quality of the
service. The peak and minimum magnitude values assumed
by node voltages over some observation time windows are
thus crucial QoI in order to check if the network is operating
properly.

In our analysis, and in the results presented in Sec. VI,
we will consider 3-phase distribution networks with 1-phase
loads connected to the three-phase lines. In this case, the power
demand variation of the total load connected to a given phase
line can affect the node voltages on the three phase lines with
fluctuations in the peaks and minima that are difficult to be
predicted a priori. Node voltage fluctuations can depend on
power load variations in a nonlinear way and with different
sign (i.e. positive or negative) on the three phase lines thus
introducing possible voltage unbalance. Such a problem for
instance occurs when charging electrical vehicles in residential
dwelling [18].

III. REGION-WISE PROBABILISTIC ANALYSIS

The method that we propose in this paper is independent
of the simulation scenario, the loads behavior and the grid
topology. However, for the sake of illustration, we focus on
an example based on Low Voltage distribution grids. In our
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Region 1

Region 2

Region M

Fig. 1. Example of subdivision of the grid into M Regions, each one of
them containing loads connected to the 3 phases.
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Fig. 2. Example of load variation produced by the model (2). In each time
instant, it is reported the mean value (i.e. the nominal load profile) and the
standard deviation.

probabilistic analysis, we suppose to partition the network into
M disjunct geographic regions Rk, with k = 1, . . . ,M as
shown in Fig. 1. Each region represents an aggregation of
loads, e.g., the loads of the same building or block. However,
other choices may be considered as well.

The active power profiles Pni
(t) at all of the nodes ni

internal to a given region Rk, i.e. ni ∈ Rk, and connected
to a given phase line are modeled in the following way:

Pni
(t) = p0ni

(t) [1 + σni
ξr] (2)

where p0ni
(t) is the known nominal power profile at node ni.

In (2), ξr is a zero-mean unitary-variance random variable
described by the PDF ρr(ξr) that incorporates the power
demand uncertainty (in the frame of uncertainty quantification
such a random variable is commonly referred to as a parameter
uncertainty). In this paper, we will mainly focus on Gaussian-
distributed random variables ξr since this is the type of load
model most frequently derived by field measurements [19].
However, it is worth observing how the gPC method illustrated
in the next Section allows handling statistical parameters with
several nonGaussian statistical distributions, as described in
[14], and complex combinations of them [20]. The random
variable ξr produces a distribution (i.e., either a reduction or
increase) of the actual active power Pni

(t) around the nominal
profile p0ni

(t). Fig. 2 shows an example of load variation
produced by the model described in (2). The quantity σni

is
a scaling constant that determines the degree of uncertainty at
node ni. In general, two nodes aggregated in the same region
may have different degrees of uncertainty. In this way, the
active power Pni

(t) is a stochastic process whose mean value

and standard deviation are given by [21]:

〈Pni
(t) 〉 = p0ni

(t)
√
〈 (Pni

(t)− p0ni
(t) )2 〉 = σni

p0ni
(t).

(3)

It is worth observing that for a network partitioned in M
regions, the number l of independent statistical parameters
ξr is l = 3 × M . By changing M it is possible to vary the
detail of the analysis from the simple case with a single region
(and 3 statistical parameters modulating total loads at each
phase) to the extreme case where the power demand at each
single (1-phase) load is weighted by an independent statistical
parameter.

While power demands (2) represent the inputs of the proba-
bilistic analysis, the outputs are given by a set of q observation
variables, that are expected to affect the quality of service,
generically denoted as V j , with j = 1, . . . , q. In this case the
set of q observation variables are specifically chosen voltages,
but they could be every Quantity of Interest.

Such variables can include the peak and minimum values
assumed by the phase voltages (or line currents) over some
observation time windows. For the case of 1-phase loads,
which is considered in this paper, another relevant observation
variable is the peak value of the VUF. The percentage VUF
is defined as the ratio of the negative voltage sequence
component Vn to the positive voltage sequence component
Vp [22], i.e.

VUF =
|Vn|
|Vp| · 100. (4)

IV. UNCERTAINTY QUANTIFICATION AND SENSITIVITY

ANALYSIS WITH GPC METHOD

A. Uncertainty Quantification

We formalize the probabilistic problem where the uncertain
load power profiles are described by means of l random
Gaussian-distributed variables ξr as in (2). Such quantities are
collected into the vector �ξ = [ξ1, ξ2, . . . , ξl]. In view of (2),
each realization of the random variables ξr corresponds to well
determined power profiles and thus to well determined voltage
profiles calculated by solving the load flow problem (1). As a
result, the jth observation variable V j(�ξ) (e.g. a node voltage)
is a nonlinear function of the random variables �ξ and thus it
is a random variable as well.

The generalized polynomial chaos (gPC) method consists
in approximating each observation variable with an order-β
truncated series expansion of the type [14]

V j(�ξ) ≈
Nb−1∑
i=0

cji Hi(�ξ), (5)

formed by Nb multi-variate basis functions Hi(�ξ) weighted
by unknown polynomial chaos coefficients cji .

Each multi-variate basis function is given by the product

Hi(�ξ) =

l∏
r=1

φir (ξr) (6)

where φir (ξr) is a univariate orthogonal polynomial of degree
ir [23]. The form of the univariate polynomials depends on
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the density function of the rth parameter ξr. For Gaussian-
distributed variables ξr, the associated φir (ξr) are the Hermite
polynomials

φ0(ξr) = 1
φ1(ξr) = ξr
φ2(ξr) = ξ2r − 1
φ3(ξr) = ξ3r − 3ξr

...

(7)

The PC polynomials satisfy the orthogonality property

〈φi, φj〉 =
∫
R

φi(ξr)φj(ξr)ρr(ξr)dξr = δi,j , (8)

where 〈·, ·〉 denotes the scalar product operator, and δi,j is the
Kronecker delta function.

For a given number of parameters l and series expansion
truncation order β, the degrees ir of univariate polynomials
in (6) forming Hi(�ξ) , for r = 1, . . . , l, satisfy the following
relation

l∑
r=1

ir ≤ β. (9)

As a consequence, for truncation order β and number of
parameters l, the number of gPC basis functions in (5) is given
by [23]

Nb =
(β + l)!

β! l!
. (10)

Once the coefficients cji are computed, the mean value and
standard deviation of the jth observation variable V j(�ξ) can
easily be deduced [23]. In addition, the gPC expansion (5)
provides a surrogate compact model for the multi-dimensional
relationship V j(�ξ) that links observation variables to random
Gaussian parameters. The compact gPC model (5) can then be
used in connection with the MC method in order to determine
the detailed PDF shape of V j(�ξ). This is achieved by gener-
ating a very large number Nmc of uncertainty vectors �ξk =
[�ξk1 ,

�ξk2 , . . . ,
�ξkl ], i.e. the realizations, accordingly to the joint

probability distribution of variables in �ξ. For each realization
�ξk, the corresponding realization of the observation variable
V j(�ξ) is evaluated by means of (5) in a numerically efficient
way (much more efficiently than running a LF analysis). As the
number Nmc of evaluations grows, at limit tending to infinity,
the distribution of values calculated with the gPC model tends
to the statistical distribution of V j(�ξ). As a result, the detailed
PDF shape of V j(�ξ) can be determined in very short times,
i.e. one million evaluations take a few seconds on a quad-core
computer.

B. Sensitivity Analysis

For notational simplicity, we denote V (�ξ) = V j(�ξ) the
jth observation variable while, in order to further explain the
meaning of the gPC formulation presented in the previous
subsection, we restrict to the case of expansion order β = 2
and l = 3 random parameters. For such a case, the gPC

expansion (5) of V (�ξ) subject to the constraint (9) reads

V (ξ1, ξ2, ξ3) ≈ c0 + c1 ξ1 + c2 ξ2 + c3 ξ3

+c4 ξ1 ξ2 + c5 ξ1 ξ3 + c6 ξ2 ξ3

+c7 (ξ
2
1 − 1) + c8 (ξ

2
2 − 1) + c9 (ξ

2
3 − 1).

(11)
The sensitivity of V (�ξ) versus the rth parameter ξr results:

∂V (�ξ)

∂ξr

∣∣∣∣ �ξ = �0
= cr (12)

and thus it simply corresponds to the rth linear term coefficient
in the gPC expansion.

V. COMPUTING THE GPC COEFFICIENTS

There are two mainstream approaches for computing the
gPC expansion coefficients in (5): Galerkin Projection (GP)
and Collocation Method (CM) [24]. Galerkin projection is an
intrusive numerical technique that requires modifying the LF
code (1). GP is numerically robust, however the formation
and solution of the projection equations require a significant
computational effort which limits the practical applicability to
problems of small size and with a few statistical parameters (2-
3). For such reasons, in this paper we will focus on Collocation
methods.

A. Stochastic Collocation

Stochastic collocation, is an approximate technique that
allows the application of gPC method to problems with a
greater number of statistical parameters. Furthermore, Stochas-
tic collocation is a non-intrusive and thus it can be combined
with any LF formulation (1) without modifying the imple-
mentation codes. According to collocation method, a gPC
expansion of the type (5) is adopted for each observation
variables V j . Then, the expansion coefficients cji in the series
(5) are calculated by properly selecting a set of testing points
where the series expansions (5) are enforced to fit the values
of observation variables V j

k . Stochastic collocation is very
efficient however its accuracy depends on the way testing
points are selected. In this paper, we will focus on a recently-
proposed robust method referred to as Stochastic Testing
(ST) method which allows implementation as a non intrusive
collocation method [23]. According to ST method the Nb

unknown coefficients cj in the series (5) are calculated by
selecting Ns = Nb testing points �ξk, for k = 1, . . . , Ns

with the method outlined in the next Sec. V. In each one of
the testing points, the observation variable Vk(t) = V (�ξk)
is evaluated by running a deterministic LF analysis. Hence,
the series expansions (5) are enforced to fit exactly (i.e., the
polynomials interpolate the samples) the values V j

k at the
testing points. For the jth observation variable, this results
in the following linear system

M�c j = �V j , (13)

where �cj = [cj1, . . . , c
j
Nb

]T and �V j = [V j
1 , . . . , V

j
Ns

]T are the
column vectors collecting the unknown coefficients and obser-
vation variable values respectively.
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The Nb × Nb square matrix M = {ak,i} = {Hi(�ξ
k)}

collects the gPC basis functions evaluated at the testing points,
i.e.

M =

⎡
⎢⎣

H0(�ξ
1) . . . HNb−1(�ξ

1)
...

. . .
...

H0(�ξ
Ns) . . . HNb−1(�ξ

Ns)

⎤
⎥⎦ . (14)

It is worth observing that matrix M, sometimes referred to as
the experiment matrix, remains the same for each observation
variable, so it is precalculated, inverted and used for any j as
follows:

�cj = M−1 �V j . (15)

Generalizations of (15) have also been presented in the litera-
ture where a number of testing points greater than the number
of basis is selected, i.e. Ns > Nb, [25].

In this case, the overdetermined system (15) can be solved
with a linear regression technique such as the least-squares
method:

�cj = (MTM)−1 MT �V j . (16)

B. Testing points selection

According to gPC+ST method, the selection of the testing
points �ξk in the stochastic space is done as to preserve its
robustness compared to Galerkin projection method. To this
aim, the scalar product (that implements projection) between
two polynomials of the series expansion (i.e. the product of
such polynomials has degree β at most) is best approximated
by a Gauss quadrature formula with β + 1 nodes

〈φi, φj〉 =
∫
R

φi(ξr)φj(ξr)ρr(ξr)dξr ≈
β+1∑
k=1

φi(ξ
k
r )φj(ξ

k
r )w

k
r ,

(17)
where ξkr denotes the kth quadrature node and wk

r the corre-
sponding weight. The β+1 quadrature nodes ξkr are thus good
testing points for the single uncertainty parameter ξr (i.e. the
univariate problem). As an example, for a Gaussian-distributed
variable ξr and expansion order β = 3, the β + 1 = 4
quadrature nodes are given by

ξ1r = −2.33, ξ2r = −0.74, ξ3r = 0.74, ξ4r = 2.33 (18)

and the associated weights are

w1
r = 0.046, w2

r = 0.45, w3
r = 0.45, w4

r = 0.046.
(19)

When the multivariate case with l parameters is concerned,
the testing points vectors �ξk = [ξk1 , ξ

k
2 , . . . , ξ

k
l ] are determined

by considering the multi-dimensional grid of all of the pos-
sible combinations (i.e. the tensor product) of the univariate
quadrature nodes. In the case of two random variables ξ1, ξ2,
for instance, and 4 univariate quadrature nodes as in (18), the
nodes in the two-dimensional grid are 42 = 16 and include
the following (ξ1, ξ2) value couples

(−2.33,−2.33), (−2.33,−0.74), (−2.33, 0.74), (−2.33, 2.33),
(−0.74,−2.33), (−0.74,−0.74), . . .

(20)
Each point in the multi-dimensional grid has also associated
a Gauss weight which is given by the product of the related

Fig. 3. Topology of the IEEE LV European test feeder. Nodes (207,695,898)
in three different regions are monitored in order to determine the effect of
the load variation. Mark legend: square= Region I, Circle= Region II, cross=
Region III. Color Legend: Red=Phase A, Black=Phase B, Green = Phase
C.

univariate weights. In the example (20) the associated weigths
are

0.002, 0.02, 0.02, 0.002,
0.02, 0.2, . . .

(21)

respectively. In general, the number (β + 1)l of nodes in
the multi-dimensional grid is greater than the number Nb of
basis functions defined in (10). A subset of quadrature nodes
can thus be selected as testing points to form systems (15) or
(16). Stochastic testing selection strategy consists in preferring
those quadrature nodes associated to largest Gauss weights
and leading to the best (smallest) condition number for the
experiment matrix M [23].

VI. NUMERICAL RESULTS

In this section, we focus on low voltage networks having
radial topology where the impact of load unbalance is expected
to be particularly significant. However, the proposed analysis is
general and can easily be extended to other types of electrical
systems and other topologies, such as looped or weakly looped
ones. The considered network is the IEEE European low
voltage test feeder [26] described by the circuit reported in
Fig. 3 that represents a benchmark case study. This test feeder
is radial with a base frequency of 50 Hz, at 230 V (phase
voltage)/416 V (line to line voltage). The medium voltage
system supplying the substation is modeled as a voltage source
with an impedance (Thevenin equivalent) according with [26].
The three-phase network has 906 low voltage nodes that are
connected by 905 branches. The value of the line impedance
and shunt admittance used are defined in [26], but due to the
short length of lines (the branches are shorter than one hundred
meters) the shunt admittance is neglected and just the series
impedance is considered. The original benchmark is provided
with 55 1-phase loads that are applied to the nodes represented
by marks in Fig. 3 and subdivided as follows: 21 for the phase
A (red), 19 for the phase B (Black), 15 for the phase C (Green).

A. Probabilistic analysis

The proposed region-wise uncertainty quantification anal-
ysis is applied by partitioning the 55 given loads into three



6

TABLE I

NUMBER OF LOADS FOR REGIONS AND PHASES

I-A I-B I-C II-A II-B II-C III-A III-B III-C
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Fig. 4. Time domain evolution of the three phases at node 207: (Square
Marker) Phase A, (Triangle Marker) Phase B, (Circle Marker) Phase C.

geographic regions as shown in Fig. 3: Region I contains 19
loads (square mark in Fig. 3) distributed among the three phase
lines as reported in Table I, Region II has 19 loads (circle
mark) while Region III includes 17 loads (cross mark).

In what follows, load flow simulations are performed using
quasi-static time series power profiles made of 1440 samples
(i.e., 24 hours × 60 minutes) that change for the different
loads.

Fig. 4 reports the waveforms of the three phase voltages
at node 207, used here as the monitoring node for Region I,
simulated with OpenDSS with the nominal load profiles pro-
vided with the benchmark. Voltage waveforms exhibit sharp
fluctuations in time, from 6:00 A.M. on, due to the variations
in the load profiles. A first set of QoI is thus represented by the
peaks and minima values assumed by the phase voltages over
given observation time windows. As an example, we consider
the time window from 9:00 A.M to 10:00 A.M. (corresponding
to samples from 540 to 600) and with the proposed gPC+ST
method, we calculate the statistical distribution of the minima
and peak values, assumed over the time window, for the three
phase voltages, A, B and C. To this aim, the uncertainty in
the load profiles is modeled as in (2) by means of l = 9 zero-
mean, unitary-variance Gaussian distributed parameters ξr that
randomly scale the given nominal power profiles. The degree
of uncertainty at each node ni is fixed to σni

= 0.2 for all of
the loads and phase lines.

In view of (10), for l = 9 stochastic parameters and gPC
expansion order β = 2, the gPC series expansion is made
of 55 basis functions. In our implementation we generate 56
testing points in the space of parameters using the stochastic
testing method reviewed in Sec. V.A and for each one of
them a deterministic load flow solution is performed. The
extra sample point is used in a leave-one-out cross validation
error method to check the accuracy of the gPC expansion with
β = 2. Fig. 5 shows, as an example, the curve provided by
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Fig. 5. The line represents the curve of the Phase-C peak value provided
by th gPC model vs ξ5 with the other ξr equal to 0. The red square Marker
represents the extra sample used for verification.
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Fig. 6. (Histogram) Statistical distribution of the minimum and peak values
for the Phase A at node 207 on the 9:00-10:00 time window.

the gPC model for one observation variable considered in what
follows (i.e. the peak value of the Phase-C at node 207) as a
function of one of the parameter uncertainty (i.e. parameter ξ5)
with the other parameters fixed to zero. The red square marker
represents the extra sample (i.e. not used to calculate the gPC
model). Two observations are in order: (i) the peak voltage
dependence versus parameter ξ5 is truly nonlinear; (ii) the gPC
model with truncation order β = 2 provides a good fitting at
the extra sample meaning that, for the example considered,
expansion order β = 2 is adequate.

Figs. 6, 7, and 8 show the calculated PDF for the three
phases A, B, C, respectively at node 207.

We see how, for the load arrangement provided by the
benchmark, Phase-B reaches the lowest voltage levels and
exhibits the greatest uncertainty in the minimum value that
ranges within the interval (242, 245) V with 90% probability.
By contrast, Phase A reaches the highest voltage levels with
the peak value that ranges within the interval (253.5, 255) V
with 90% probability. Finally, Phase C fluctuates within nar-
rower intervals but its peak value is non-Gaussian distributed.
This result can be better seen with the aid of Fig. 9 where the
statistical distributions of the peak value of Phase-C computed
with the proposed gPC and with the reference MC method are
reported and compared with the Gaussian distribution of equal
mean value and variance.

The reference MC method uses 10, 000 runs (i.e. deter-
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Fig. 7. (Histogram) Statistical distribution of the minimum and peak values
for the Phase B at node 207 on the 9:00-10:00 time window.
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Fig. 8. (Histogram) Statistical distribution of the minimum and peak values
for the Phase C at node 207 on the 9:00-10:00 time window.

ministic load flow Solutions) selected with a latin-hypercube
sampling. With this setting, the peak value distributions pro-
vided by the proposed gPC and reference MC method are
almost superimposed and the associated standard deviations,
i.e. σgPC = 0.3080 V and σMC = 0.3071 V respectively,
match within a relative accuracy of 2%. Since the gPC+ST
method only requires 55 deterministic analyses, it introduces a
180× computational speedup factor compared to the reference
MC analysis for the same accuracy. Considering that the
computational effort is due mainly to the OpenDss simulation
of the QSTS that takes around 5 seconds, the speed up factor
is proportional to the number of samples. Table II reports
the standard deviations predicted by the MC method for a
growing number of samples and the relative error compared
to the value provided by the reference MC (i.e. with 10, 000
samples). If a lower order of accuracy for MC method, e.g. a
5% accuracy (which requires about 6000 samples), is accepted
the computational cost of MC remains about 100x greater than
that of gPC. It is thus reasonable to say that, for our example,
gPC results to be about two orders of magnitude faster than
MC.
As a further check, we also use the point estimate scheme
described in [9], which adopts a numerically efficient samples
selection method, to estimate the raw moments of the output
variables of interest. The standard deviation predicted by the
numerically-efficient point estimate method for the peak value
of Phase-C is σPEM = 0.225 V so that the relative error
compared to reference MC analysis is about 27%.
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F

Fig. 9. Detail of the distributions of the Phase-C peak value as computed
with: (Red Square Marker) gPC and (Blue Triangle Marker) MC method (with
10, 000 samples). (Green Dashed Line) Gaussian distribution of equal mean
value and variance.

TABLE II

CONVERGENCE OF MC VS NUMBER OF SAMPLES

Number of Samples 2500 5000 10000
σMC 0.351 0.324 0.3071
error 14% 5.5% -
CPU time for 1440 point timeserie [sec] 12500 25000 50000
Intel Core i5 - 3.20 GHz

B. Sensitivity analysis: a strategy for load guidance

The probability distributions of the peaks and minima for
the three phases at a given observation node provide a measure
of their statistical uncertainty over the considered observation
time window. Phase voltage uncertainty corresponds to an
analog statistical uncertainty in the voltage unbalance factor
VUF defined in (4) which represents another relevant QoI.
The statistical distribution of the VUF can be derived with the
proposed gPC+ST method by using the same 55 deterministic
load flow Solutions described in the previous subsection VI.A.
Furthermore, according to (12), the linear coefficients of the
gPC expansion for the VUF observation variable provide de-
tailed information about its sensitivity with respect to possible
variations of the power demands in each region and phase line.

Table III reports the sensitivity coefficients for the three
observation nodes 207, 695 and 898 in the three Regions.
For a compact notation, such values are reported multiplied
by a factor 100. A first important information contained in
Table III is the sign of the sensitivity coefficients: a negative
sign indicates that an increase in power demand, at that phase
and Region, corresponds to a decrease of the VUF and thus to
a beneficial effect on load balancing. Viceversa, a positive sign
of the sensitivity coefficient indicates that an increase in power
demand will move the network towards greater unbalance.

In order to check this result, we repeat the probabilistic
analysis with 10 new loads, randomly selected among those
provided with the benchmark, connected to the distribution
network. Two different allocation strategies, referred to as Case
a) and Case b) and described in Tables IV and Tables V,
respectively, are investigated. The allocation of Case a) is done
by exploiting the information provided by the gPC-based sen-
sitivity analysis and concentrates the new loads in the Regions



8

TABLE III

VUF SENSITIVITY COEFFICIENTS × 100

I-A I-B I-C II-A II-B II-C III-A III-B III-C

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9

N. 207 -0.25 3.48 -0.82 -0.65 6.98 -0.25 -0.31 5.79 -0.08

N. 695 -0.13 3.68 -1.08 -1.02 12.18 -0.51 -0.41 9.19 -0.14

N. 898 -0.11 3.7 -1.13 -0.98 12.22 -0.54 -0.47 11.63 -0.15
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Fig. 10. Statistical distribution of the VUF at node 207.

and phases having negative sensitivity coefficients with large
module. Viceversa, allocation of Case b) is done in defiance
of sensitivity analysis, i.e. putting new loads in the Regions
and phases with large positive sensitivity coefficients. Figs. 10,
11, 12 show the statistical distributions of the maximum VUF,
computed over the time window 9:00-10:00 A.M., for the two
different allocation cases and the three observation nodes. It
is apparent how Case b) results in a balance deterioration: the
mean value and the standard deviation of the VUF increase
significantly. At node 898, the allocation of Case b) leads to
a 40% probability that the peak VUF will exceed the upper
bound of 2%. A similar violation is seen for VUF at node 695.
By contrast, the allocation of Case a) results in a reduction of
the mean value and standard deviation of the VUF in all of
the three observation nodes compared to the baseline case (i.e.
55 loads distributed as in Table I). This shows how sensitivity
analysis can help allocating new loads while preserving, or
even improving, load balancing in the network.

TABLE IV

NUMBER OF LOADS FOR CASE A)

I-A I-B I-C II-A II-B II-C III-A III-B III-C

7 7 8 11 5 7 10 7 3

TABLE V

NUMBER OF LOADS FOR CASE B)

I-A I-B I-C II-A II-B II-C III-A III-B III-C

7 10 5 7 9 7 7 10 3
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Fig. 11. Statistical distribution of the VUF at node 695.
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Fig. 12. Statistical distribution of the VUF at node 898.

We conclude our analysis by recalculating the VUF at node
898 in the baseline case and in the load re-allocation Cases
a), b) when the uncertainty of load profiles in (2) is modelled
by nonGaussian distributed random variables ξr. In particular,
we show the results when the 9 random variables ξr are all
uniformly distributed into the interval [-1, 1]. This case is
shown in Fig. 13. Comparing Fig. 13 with Fig. 12 we see how
changing the load profiles distribution does not affect the final
qualitative result, i.e. load reallocation a) improves the VUF
while reallocation b) results in a significant VUF deterioration.
We conclude that the loads reallocation strategy based on
gPC and sensitivity analysis works well independently of the
statistical distribution of the load profiles.

VII. CONCLUSION

In this paper, we have described a unified computational
framework for probabilistic load flow and sensitivity analyses
in distribution networks with uncertain load profiles. Our
approach relies on a region-wise uncertainty quantification
analysis that aggregates loads within geographic regions of
the network and on the usage of the generalized Polynomial
Chaos method. We have shown how the detailed PDF of
several QoI affecting the quality of service can be calculated
with a speed-up factor of ≈ 100× compared to standard
Monte Carlo analysis for the same accuracy. In particular,
the numerical results have been focused on evaluating the
statistical distribution of node voltage peak and minima over
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Fig. 13. Statistical distribution of the VUF at node 898 in the case of
uniformly-distributed power loads.

a given observation time window and on voltage unbalance
factor. Finally, we have proved with an example how the
proposed sensitivity analysis can be exploited to properly
allocate new (1-phase) loads in the network while preserving,
or even improving, load balancing. The proposed methodology
relies on a non-intrusive Polynomial Chaos technique that
can be combined with any code implementing power flow
analysis. As a result, the method can be mixed with advanced
unbalanced distribution power flow techniques that integrate
the information provided by remote terminal units and achieve
high efficiency by breaking the grid topology into simpler
subsystems [5]. In future works, we plan to extend the method
so as to include storage systems that behave as loads or
generators and renewable sources.
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