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ABSTRACT

A wide variety of operations management problems can be modeled
as co-production with substitutable demand. That is, there are many
situations in which the availability of two or more items are related, and
because of randomness in either supply or demand, it can be advantageous
to substitute one of these items for another.

For example, in the semi-conductor industry, chips are produced in
large batches. Because of the presence of randomness in the process,
individual chips in a given batch can perform differently. Because some
customers have stricter specifications than others. chips are classified and
sold as di.ferent products according to their measurable performance. In
each period, the manufacturer faces a two-stage decision problem. First he
determines the size of his production batch. Then, after the process is run,
and the output is classified into product categories, he allocates chips to
customers. Often this allocation decision involves trading-off the cost of
backordering against the opportunity cost of substituting higher
performance chips than the customer either needs or is willing to pay for.

This production and inventory problem is modeled as a dynamic
programn. Upper and lower bounds are developed for the cost of an optimal
solution. Comparisons are made between these bounds and sclutions that
are obtained through heuristics.

The class of models studied in this dissertation can be applied to a
wide variety of practical pioblems in both manufacturing and service
industries. For example, a flexible machine can, in many cases, be
thought of as a substitutable resource. Consider an expensive CNC flexible
machine that performs both highly complex operations as well as some
very simple operations that are ordinarily performed by less expensive
machines. The production manager's decision to "substitute” the flexible
machine for a less expensive one is analogous to the chip manufacturer's
decision to substitute high performance chips for low ones.

Another example is that of a hotel reservation system. In many
cases, hotels will offer various types of rooms and services for which they
charge different rates. Customers may be willing to pay extra for a luxury
suite, or the privilege of securing a room on short notice. A hotel manager
must often decide whether to substitute a more luxurious room than a
customer is willing to pay for or to turn him away.

The objective of this dissertation is to study these models and develop
new insight and solution methods for a number of practical problems in the
manufacturing and service industries.
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PART ONE: Co-Production in the Semi-Conductor Industry
Chapter 1: Model Development

In the semi-conductor industry, the market for integrated circuits
can be broken into two segments: specialty and commodity. As the name
implies, specialty chips are custom designed and produced for a particular
application. Because these chips are produced in low volumes, the fixed
costs associated with designing the chips and procuring any specialized
equipment that is necessary to produce them dominate the variable costs of
production. As a result of this cost structure, customers often award a
single manufacturer an exlusive contract to supply them with a particular
type of specialty chip.

The process of selecting a manufacturer begins when a customer
announces a "request for proposal" (RFP). An RFP typically includes an
estimate of the volume of chips needed, the date by which they must be
delivered, and a set of technical specifications. The level of detail for these
specifications can range from a set of input and output parameters to a
complete design. A manufacturer can respond to the RFP by preparing a
proposal for producing the chips. A typical proposal might include a high
level design, a discussion of the technical difficulties involved in producing
the chips, and a price for which the manufacturer would be willing to
produce them. The customer then evaluates the proposals from the various
manufacturers on the basis of: price, the technical sophistication of the
design, and the reputation of the manufacturer to deliver a quality product

on schedule.



The market for commeodity chips is much different. Manufacturers
produce general purpose integrated circuits which can be used by a variety
of customers. Because customers purchase "off the shelf", the transaction
beween buyer and seller is much simpler than in the specialized segment.
Here the customer selects an integrated circuit product which matches his
technical requirements from among those that are available. Because
commodity chips are frequently used as components in high volume
consume: products, customers frequently require that delivery match their
own production schedule. They often solicit bids from several different
manufacturers to contract to supply a certain volume of chips per week or
month at a pre-specified price. Contracts are awarded on the basis of price
and the manufacturer's reputation for delivering a consistent product on
time. A manufacturer's ability to succeed in this segment depends stongly
upon how well he is able to reduce the variable costs of production while
maintaining a consistent product quality and level of service.

The processes which manufacturers use to produce commodity
integrated circuits can often be characterized as "co-production.” As
shown in Figure 1, a co-production process is one in which a family of

several different products are produced simultaneously.

Product 1: Yield =q1N

Batch Size
=N
S

Process Product 2: Yield = q2N

Product n: Yield = qnN

Figure 1: Co-production.



Although these products perform the same basic function, they differ from
one another according to one or more key performance parameters. For
example, suppose that several different customers need diodes, but each
requires slightly different electrical performance. When a manufacturer
produces a batch of diodes, the individual units may exhibit electrical
properties which span a certain range. Thus, they can be classified as
different products based upon where they fall within this range.

The first step in the production of semi-conductor chips is the
drawing of ingots of either Silicon or Gallium Arsenidr~. These ingots are
sliced into wafers. After several layers of semi-conducting material are
placed on the wafers, they are cut into individual chips. Depending upon
the complexity of the circuits involved, each wafer may yield between 10 and
100,000 chips. The individual chips can then be measured against one or
more dimmensions of electrical performance and classified as products. A
more detailed description of the production process can be found in
Kothari(84) or Bitran and Tirupati (88).

The electrical performance of semi-conductor chips is extremely
sensitive to changes in temperature, vibration, and the presence of dust
during the manufacturing process. Because manufacturers cannot control
these variables to the extent that they would like to, there can be a good deal
of uncertainty as to the electrical properties that will be exhibited by the
chips in a single production run. For example, suppose that a diode can be
classified as one of three different products (1, 2, and 3) on the basis of two
measureable electrical properties (Property A and Property B). A possible
classification scheme is shown in Figure 2. In this figure, Properties A

and B are respresented on the X and Y axis of a graph. Diodes could be



Property A
A

[

-
Property B

Figure 2: Serially Nested Product Structure
classified as 1, 2, or 3 according to the zone into which their properties map.
A single production batch may contain all three diode products, and the
fractions that can be classified as products A, B, and C are often random
variables.

In the classification scheme that is depicted in Figure 2, the
specifications for a given product are strictly looser than those for products
with lower indices, and strictly tighter than those for higher indices.
Notice that zone 1 is completely contained within zone 2, and zone 2 is
similarly contained within zone 3. This "serially nested" product structure
implies that the demand for a given product i can be satisfied with products
which fall into categories i or lower. For example, a customer who has

product 3 would be equally happy to receive any of the three products; A



customer who has ordered product 2 would be satisfied with either product
2 or 1; A customer who has ordered product 1 can be satisfied only with the
delivery of that specific product.

Such product structures are common in practice. Often, different
customers need the same basic product, but some need tighter tolerances
than others. One example is found in memory chips. Different customers
need different size chips. If there is a defect in a single quadrant of a large
chip, it may not be necessary to scrap the entire unit. The remaining good
quadrants can be separated and supplied as smaller chips. Downgrading
is possible by separating the quadrants of a non-defective large chip.

Another example is found in the production of diodes. These devices
function as electronic valves. When a batch of diodes is produced,
individual units in the batch may demonstrate different levels of resistance
on forward or negaiive bias. Because some customers are willing to accept
higher levels of resistance than are others, it is possible to classify products
according to their measureable performance. Customers with the strictest
specifications accept only those diodes with the lowest levels of resistance.
Here, downgrading is defined as providing a customer with a diode which
satisfies a lower maximum tolerance for resistance than he needs.

Because semi-conductor chips are often supplied in accordance to
long term contractual obligations, demand is known far in advance. The
production manager's job is to minimize the costs of production, inventory,
and backerders. Because random effects influence the relative quantity of
each type of chip in a given batch, two decisions are made in each period.
At the beginning of the period, in the "morning", the production manager

makes a lot sizing decision: how many total chips to produce. After the



batch is produced, he observes the number of chips which fall into each
product classification.

At this point he faces the "afternoon problem": how to allocate chips
to customers. This problem is faced when the yield of a given chip type i
exceeds its demand while, at the same time, there is an insufficient supply
of a less strictly specified (higher indexed) chip type j. In general, the
penalties for backorders are highest for the most strictly specified products.
Thus it would not be advantageous to downgrade a given chip type unless
its own demand was satisfied first. By downgrading product i to satisfy
demand for j, the backorder and holding costs in the current period are
reduced. However, since the production quantity decision for the following
period depends on the inventory levels, the allocation of products to
customers affects the costs in future periods.

Before formulating an analytical model of this problem, let us define
the following notation:

N, : The production quantity in period t.

W;¢ : The amount downgraded from product i to i+1 in period t.

W,- : A vector whose components are Wy;~,..., Wyt~

W;i* : The amount downgraded from product i-1 to i in period t.

W+ : A vector whose components are Wy +,..., Wyt

Jit : The inventory of product i at the end of period t.

Jit : Max{0, ;)

Jit~ : Min(0, Jy}

Ji : A vector whose components are dJyy,..., dp .
dit : Demand for producti in period t.
dt : A vector whose components are dit,...,dnt.

10
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: The yield of product i in period t. (The fraction of the
production quantity in period t which meets the specifications
for product i, but fails to meet the specifications for preducts
i-1,...,1.)

: A vector whose components are qit,...,qnt.

: Per period inventory holding cost for product i.

: Per period backorder cost for.product i.

: Per period discount factor.

: Production cost.

Note that the parameters of the problem consist of demand, the discount factor,

and the costs of production, backorders, and inventory. The decision variables

in each period are the lot size, and the quantity of each product to downgrade.

Although the inventory levels are functions of these decisions and demand,

they are also influenced by the effects of random yields.

The production manager's problem can be modeled as a nested

dynammic program:

S)
M;(Jo) = l\ﬁn {ch +I Ai1(Jo, N1, q1) f (a1)da \
q ’ 1.1
where:
. n n
At(Jt-l’Nh(l}) = Mln {Z hlJ].’(.’. + Z lel.t + erH-l(Jt)}s fort = 19'--’T'1
WeWe Lii i3 1.2
M(Ji1) = NLi‘n j cN; +I Ae(di1, Ne,qe) f (q)dq }
| 13
o ) Min |% 3
AfdriNpap= h:J ¥+ J:
T-pIN AT Wi, Wip {,:21' iJiT ig‘;pl IT} 14
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Jo1-Jd + N + W -We=d;, fort=1,...T 15

W; <Max(0,d.; + @N; + W), fort=1,..,T 1.6
N{20, fort=1,.,T 1.7
Wi = Wi+1,t+: fori=1,..,n-1landt=1,..,T 1.8
Wi+ 20, W, 20, fori=1,.,n-landt=1,..,T 19
Wntt =Wyt =0, fort=1,...,T 1.10

In this formulation, the objective is to minimize the expected costs of
production, inventory, and backorders over a T period horizon. The use of
the expected value function is justified on the basis that the process is
assumed to run for a large number of periods. Under most circumstances,
it can safely be assumed that the production manager is risk neutral. Each
period consists of a two stage dynamic program: M;(dJ; ;) represents the lot
sizing decision that will made at the beginning (in the "morning") of period
t. AyJi1,Ni,qy) represents the downgrading decisions that will be made
after the yields q; are observed in period t (in the "afternoon”). A(Jt.
1-N1,d7) represents the downgrading decisions that are made in the final
period of the planning horizon. In some cases, the costs for inventory and
backorders are different in period T than in earlier ones. We have assumed
that, although the planning horizon is T periods, the actual maanufacturing
process will continue far beyond T. Thus backorder and penalty costs in
period T are the same as in the previous ones. Constraint 1.5 is an
inventory balance constraint. Constraint 1.6 represents the fact that we can
only downgrade an item to the extent that it is physically available. That is,
it does not allow downgrading which would increase the backorders of a
given product in the current period. In most cases, such downgrading

would not occur anyway; penalty costs tend to be higher for the more tightly

12



specified products, so there is no advantage to backordering a product in
order to satisfy demand for a more loosely specified one. Thus, because
constraint 1.6 is unlikely to be binding in an optimal solution, we will
exclude it from this point forward.

Analysis of model (S) is extremely difficult. The yields of the different
products tend to be correlated with one another. Furthermore, because of
the nesting of the two stage dynamic programs, the probability distributions
for the inventory levels in periods 2,...,T are extremely complicated.
However, by approximating and analyzing the model, we can gain insight
to motivate heuristic solution procedures.

Although there is a relatively large literature on managing
production systems with random yields, most of the work has focused on
one-stage, one product environments. Mazzola, McCoy, and Wagner (1987)
provide a good review of the Variable Yield Lot Sizing Problem (VYLP)
literature. More recently, Yano and Lee (1989) provide a taxonomy of the
literature in lotsizing with random yields. Several significant contributions
have been made since these surveys. Taking a slightly different perspective
on random yields, Singh, Abraham, and Akella (1990) describe a problem
in which sites on a semi-conductor wafer are allocated to various types of
chips in order to maximize the protability of completing a set of chips by
some due date. Wein and Avram (1990) worked on a similar problem, but
considered multiple set types and used throughput as the objective.

Lee (1990) also studies a problem that differs from most of those in the
literature in that it is assumed that the process operates in one of two
states: in or out of control. He decribes heuristics that perform weli with

respect to an enumerated search optimal solution.



Because models of multi-stage production systems with variable
yields are inherently complex, this literature is much more limited. Tang
(1990) provides an up to date review of the work that has been done.

Unfortunately, the problem which we address is relatively
unresearched. Although co-production of substitutible products is a
phenomena that can be observed in a variety of both high and low tech
manufacturing environments, it has remained relatively unrecognized by
the academic community. The first known reference to the problem is
Bitran and Dasu (1988). Their model seeks tc maximize expected profits in
an environment with deterministic demand, and production, backorder,
and inventory holding costs. Discrete yield distributions to approximate
reality. However the size of the problem grows exponentially in both the
number of possible yield outcorﬁes and the length of the horizon. Bitran
and Leong (1990) considered continuous random variables and modeled the
problem as one of minimizing the expected costs of production and
inventory subject to service level constraints. They construct linear
approximations to these stochastic constraints, and develop heuristic
procedures for solving the problem. Ou and Wein (1990) considered a
closely related problem. In their model, several different processes are
available. Although each one is targeted at producing one of a
hierarchically ordered set of products, it produces lower level products with
some probability. They develop heuristics on the basis of insights gained
from brownian motion approximations of the scheduling problem.
However, their model differs from ours in that they do not allow for the
downgrading of products.

In the sections that follow, we continue the efforts of the

aforementioned authors in analyzing the problem and developing
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heuristics. In section 2, we show how the model can be approximated. In
section 3, we use these approximations, the work of Bitran and Dasu (1988)
and that of Bitran and Leong (1990), as well as the advice of production
managers to derive heuristics for solving the model on a rolling horizon
basis. Section 4 describes a theoretical lower bound on the value of an
optimal solution. Although this bound cannot be calculated in closed form,
we discuss a method for estimating it using Monte Carlo simulation. In
Section 5, we compare the performance of our heuristics to the lower
bounds by using Monte Carlo simulation. Finally, in Section 6, we
summarize our findings and explore potential directions for future

research.



Chapter 2: Model Analysis

Because the nested dynamic programs in M are so difficult to
annalyze, it is necessary to approximate the original model. One approach
is to model the problem as a static production planning problem with
service level constraints. In this approach, the costs of backorders are
removed from the objective function and replaced with service level
constraints. An item's service level is defined as the probability that there

is non-negative inventory of that item at the end of a period. The

constraints require that each item i have a service level of at least o; in each

period, and o; is chosen in such a manner to represent the trade-off

between inventrory holding and backorder costs. Conceptually, this is
similar to the single period newsboy model in which the optimal purchase
quantity is chosen so that the probability of a stockout is equal to h/(h+p),
where h and p are the per unit costs of inventory and shortage respectively.
We use this idea to create a production planning problem with
service level constraints as a surrogate to our original stochastic dynamic
program. By assuming that all production lotsizing and downgrading
decisions are made at the beginning of the horizon, we are left with th

following non-linear stochastic program:

(SC)

n T T
Zsc =Min E[ Y, Y hiJit + ¢ Nt)

i=1 t=1 t=1 2.1
subject to:

t t
Jp1-Jy + N, +WS€‘(2 W{')-Wst(z W;) =d;, fort=1,.,T
=1 1=l 2.2

16




Prob(J¢20) 2 o5, i=1,.,n; t=1,..T 2.3
N;, W-, W+, >0, i=1,.,n-1; t=1,.T 24
where WS+ and WS;- are n dimensional vector valued functions whose ith

components are respectively :

Ws,(z wt) = Max{O Mm{z Wi, 2 (qicNz - diz ) + WSig (i Wi 1;)}}, and

1=l 1=l 1=1 1=1

t

wae(Z Wr‘) Ma"{o M“‘{E f D, (aieNe - dic ) + WSE {2 Wmm

1=1 =1
fori=1,.,n-1,and t=1,..,T.

In this optimization problem, the vector valued functions WS¢(X) are
random variakles representing the total amount downgraded from product
i between periods 1 and t. These functions play the same role in this model
that constraint 1.6 plays in model (S). Recall that in most cases, because
backorder penaities are higher for more strictly specified products, we can
drop constraint 1.6 from model (S). However, because of the probabilistic
constraints in problem (SC), it is less obvious that we can ignore the WSy(X)
functions.

The ith component of the sum of the decision vectors Wy-,...,W¢
represent the total amount that we would like to downgrade from i to i+1 in
periods 1 through t. Similarly, the ith component of the sum of the decision
vectors W1t,...,Wit represents the total amount that we would like to
downgrade from i-1 to iin periods 1 through t. Note that in order to
facilitate vector notation, we have constructed vectors W1-,..., W and
Wit,..,Wi* where: W+, =W+, =0, and WH;; =W~ ;, fori=2,.,n.

Because of the service level constraints (equation 2.3), we will have

negative inventory of product i with a probability of up to 1-o; . When the
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inventory of a given item i is negative, we may be prevented from downgrading
as much as we would like to into item i+1. The actual amount that is
downgraded from i to i+1 by period t is a function of the decision variables Wj;-
ey Wit~ and Wijr+,...,Wjit as well as the availability of product i.
Unfortunately, the random downgrading functions make SC very

difficult to analyze. We can approximate SC with:

(SCA):

n T T
Zsca = Min E(hz Y Ji+c), Nt)

i=1 t=l t=1 2.5
subject to:

t t
Jo1-d+@Ny + D Wi -D Wi=d, fort=1,.,T

=1 1=l 2.6

Prob (J;; 2 0) = B;, i=1,.,n t=1,.T 2.7

i
aiSBiSI,andaiSHBj, i=1,..,n
j=1 2.8

Nt’ Wit 2 0, i= 1,...,11-1; t= 1,...,T

[
w

This formulation differs from (SC) only in that constraint 2.2 has been
replaced with 2.6, and that constraint 2.3 has been replaced with

constraints 2.7 and 2.8.

Claim: A solution that is feasible in (SCA) is also feasible in (SC), and its cost

represents an upper bound on the cost of an optimal solution to (SC).
Proof: The proof is by induction on i. Suppose that (N,W) is a feasible

solution to (SCA). Let us define J(SCA) to be the value of J; as defined in

constraint 2.6 of problem (SCA) given the solution in terms of (N,W).

18




Similarly let us define Jy(SC) to be the value of J; as defined in constraint 2.2
of problem (SC) given the solution in terms of (N,W).

Because Wy 2 WSy (Wyt) 2 0, whenever Jp; (SCA) is non-negative,
d1t(SC) will be non-negative. Thus, because 1 = a1, constraint 2.7 implies
2.3 for product 1.

Now suppose that, for all t = 1,...,T, the solution (N,W) satisfies the

service level constraints in problem (SC) for product i. That is:

[t t t
Prob{Ji(SC) > 0) = Probj Y, (qi<N: - d¢) + wsi_l,(E wi_lﬁ) Y Wi o] > o,

1=1 1=1 1=1

Whenever J;;(SC) is non-negative, we will be able to downgrade as much as

we would like from i to i+1. Thus:

Prob(W&,t(zt: Wi,-;) = i Wi,t) = Prob[J it(SC) 2 0] 2 0.

1=1 1=1
The relationship between constraints 2.7 of (SCA) and constraints 2.3 of

(SC) can be expressed in the following conditional probability statement:

t t
PrOb(Ji+1,t(SC) 20 I Wsi,t(z Wi,‘t) = 2 Wi,‘t) 2 B4

1=1 1=l
Or, equivalently:
Prob{di,1(SC) 2 0| J;(SC) 2 0) > By
In words, this says that, given that there is sufficient inventory of product i

to downgrade as much as we would like to, the likelihood of non-negative

inventory of product i+1 is at least Bj+1. Thus, the likelihood that J;,; ¢, as

defined in equations 2.2 of problem SC, is non-negative is:

Prob{Ji414(SC)20] = Prob[Ji,q,t(SC) >0] Ji+(SC) 2 O]- Prob{J; «(SC) 2 0]




u. u-
2 Bisroy 2 —;lﬂ~ o 2ty = 0.
1
IT8;
j=1

where the last two inequalities follow from constraint 2.8 of (SCA).%

The implication of the above result is that an opumal solution to the
approximation (SCA) will provide an upper bound on the cost of an optimal
solution to problem (SC). Because of the nonlinearity of the convex service
level constraints (equations 2.7), problem (SCA) is difficult to solve.
However, it is possible to derive insight from its formulation, and by using
interior linear approximations of the convex service level constraints
(equations 2.7), it is possible to obtain a bound on the value of its optimal
solution. It can be shown that, by increasing the number of linear
constraints, this bound can be arbitrarily close to the optimal cost.

In order to gain some insight into the the original co-production
problem, it helps to express the service level constraints (2.7) of problem
(SCA) in an equivalent deterministic form. This deterministic equivalent is

based on the following well known result:

Claim: For a continuous random variable X from a known distribution

with non-zero, finite variance oy, and any real numbers N, Y and a
on the open interval (0,1), there exists a real value K, such that: If

N(EX] + K0x) 2 Y, then Prob[Nx2Y]2>a.

For the interested reader, a proof is given in Symonds (1967). We can use
the above result and the fact that:



t t [t t
E[E N‘tqit:l =E[qi]z N, and Va 2 thj{l = E Nfoi2 ,

1=l 1=l 1=1 1=1

to re-write (SCA) in an equivalent deterministic form. Let us first define:

G : The expected value of the yield for product i, assumed to be
time invariant.

q : A vector who's elements are qj, ..., Qn.

o; : The standard deviation of the yield for product i, assumed to
be time invariant.

o : A vector whose elements are ¢y,...,0,.

K; : The number of standard deviates from the mean of the
distribution for g; that corresponds to the fractile a; as shown
above.

K : An n x n diagonal matrix in which the ith element along the

diagonal is equal to K;.

Using these definitions, we the deterministic equivalent to (SCA) is as

follows:
(SCAD):

n T T
Zscap = Min E{ Y, Y hiJ& +c), Nt)

i=l t=1 t=1 2.10
subject to:

t t
Jo1-d+@N; + >, Wi - Wi=d;, fort=1,.,T

1=l 1=l 2.11

t t t t
Y Ned-N SN2 Ko+ [W-Wi2Y d, t=1,..T
1= 1=l 1=l =1 2.12
N, W+, W+, 20, i=1,..n1 t=1,.T 2.13
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Where { is defined as an n dimensional vector such that the i*? element is

equal to E[q;]. Consider this problem under the following conditions:

di =d;, E[qz]=E[q] Vi=1,..,n 214
d;
=R
E[qi] 2.15
o1 Max Ci
Kizvi=z=Ki—=="". Kicvi =Kj——
I T TR { T Hq) } 2.16

Condition 2.14 requires that thie demand and expected yield be constant for
each product. Because chips are often supplied according to long term
contractual obligations, the industry tends to be cyclical with respect to
demand. But the cycles are generally long enough that demand can be
treated as though it were constant for production planning purposes.
Technological breakthroughs can also improve expected yields. But in
between these breakthroughs, yields are very stable. Thus condition 2.14 is
often valid in practice.

Condition 2.15 says that the ratio of demand to expected yield is
constant across products. Although this may not always hold, the
production planning problem is the most difficult, and the most interesting,
when it does. Consider, for example, the product hierarchy shown in
Figure 2. If the ratic of demand to expected yield for product 1 were
considerably higher than for the lower grade products, then the lower
grade products could be considered to be bi-products. Product 1 would drive
lot sizing decisions, and there would tend to be more than enough

production of the lower level products to satisfy demand.
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The other case, where the ratio of demand to expected yield is
considerably lower for the highest grade than for lower grades is not often
found in practice. The highest grades typically command premium prices,
and manufacturers are particularly eager to supply them. However, there
are usually large costs involved in modifying the process to obtain better
yields of these products. Thus, it is most often the case that contractual
obligations, i.e. demand, is at least as high relative to the yields of the
process for the high grade products as it is for the lower grades.

Condition 2.16 concerns the safety margins that are required to meet
the service level constraints for the various products. In order to satisfy the
service level constraints for a given product, it is necessary that the
expected production yield exceed demand by a certain safety factor. When
the yield distribution is known, this safety factor can be determined as a
function of the required service level for the product, and the variance of the
yield distribution. Condition 2.16 says that the the ratio of this safety
margin to the expected yield be at least as large for product 1 as for any
other product. In practice, it is often the case that, the service level
requirements are at least as high, if not higher, for the best grade products
than for the others. Because the coefficient of variation for the yield of this
product may also be high, Condition 2.16 is valid in a large number of

practical cases.

Claim: Suppose that conditions 2.14, 2.15, and 2.16 hold, and that the yield
distributions of products i = 1,...,n share the same stable distributional
form. (See Allen, Braswell, and Rao (1974) for a discussion of the

characteristics of stable probability distributions.). If h; < hj,1, and cv; >




cvis+1, fori=1,..,n-1, then in any optimal solution to SCAD , Wj; = 0, for all

i=1,..,n-1,andt=1,.,T.

Proof: Because no other product downgrades to product 1, the service level

constraints 2.11 for product 1 imply that every feasible solution vector N =

(N1y, ..., N7) must satisfy:

/ t / t
tdl + W1 +K10'1 2 Nf tdl +K10’1 Z Nf

t
=1 1=1
> N2 : >
a E[qj] E[qy]

, t=1,.,T.

Because Kjcv; 2 Kjev;, for i = 2,...,n, we can now use condition 2.15 to show
that any N = (Nj, ..., Ny) which satisfies the service level constraints for

product 1 automatically satisfies the corresponding constraints for the

other products when the vectors W-; and W+, are forced to zero, i.e.

downgrading is not allowed. We have:

[t [t
¢ td; +K 01 Z N? td; +Kjo; z Nt2

N; 2 = tR+Kjevi2tR+ K ovi= =l
?i " E[q] ' ‘ Elql
for all i= 1,...,n.

Because the objective function penalizes XN¢, the service level
constraint for product 1 in period T will be binding in any optimal solution.
Since downgrading cannot reduce the total amount of production that will
be required to satisfy this final service level constraint for product 1,

downgrading will only be done if it reduces the expected holding costs.




Let N = (N, ..., N7) be a vector that satisfies the service level

constraints for product 1, and consider the sum of the expected holding

costs for products i = 1,...,n in period t:

(X - tdi - g W&"‘Z Wit)ft (x)dx

n I =
i=1 ":tdi‘i Wit"’i Wit
=" 2.17
Note that, because of the redundancy of the two downgrading vectors, we

can simplify 2.17 eliminating one of them. Eliminating W+¢ gives:

hlf : (X -t -3 Wn) fi(x)dx
X= td1+§ Wie =

n-1 * t L
+ Z hif . ) (x - td; - g, w-i‘t+§ W-i-l,‘t)fi (x)}dx

i=2 x=tdi+Y Wi-Y Wiz
= 2.18

+ hn. I . ‘x - tdn + i Wn-].,‘l' )fn(xﬂx
X=tdn‘§ v‘rn-l,t =

t
where f{x) is the p.d.f. for ¥, Niqy.

1=1
To show that downgrading does not reduce the expected holding costs, it
suffices to show that the partial derivatives of (2.18) with respect to W-

1,t»--»Wn ¢ are all non-negative when evaluated at W-y = 0. For each

downgrading variable Wit fori = 1,...,n, the partial derivative of (2.18) is:

9 = hi+lf finlx)dx - hi[ fix)dx
xtd iy 1+ W, W‘u-l,t

a‘Ni-,t xtdj+ Wi ¢-Wig

2.19




Evaluating (2.19) at W+, = 0 for i = 1,...,n and substituting R = d;/E[q;] =
d;,1/Elq;, 1] into the limits of integration gives:

=hija f fin(x)dx - h; I filx)dx
= g1 R Fg]R 2.20

To show that (2.20) is non-negative for alli = 1,...n and t = 1,...,T, we first
note that f; (x1),...,f, (x,) share the same distributional form, although they
may have different means and standard deviations. This fact follows from
our assumption that the probability distributions for qy,...,q, all have the
same stable distributional form. Stable distributions are completely
specified by their means and variances. A linear combination of random
variables from a stable distributional form has the same distributional
form. (See Allen, Braswell, and Rao (1974) for a discussion of the properties

of stable distributions.)
Let Nq; and (No); be the mean and standard deviation for the pdf f;

(%;). It can easily be shown that:

L t t
Ngi = Z NtQi+l,‘r] =E[Qi+l]z N:, and

=1 1=1

t t
(No) = Std. Dev| 3, NtQi+l,1::| =oiaN Y, N7

1=1 1=1
Because the service levels are close to 1, and our N vector satisfies the

service level constraints, it follows that the lower limits of integration of

both terms in 2.20 are less than the expected values of the respective

distributions. That is: E{q] tR = td; < Nq;, and E[q;,1] tR = tdjs1 < Naj,1.




For both of the terms of 2.20, the lower limit of integration can be
expressed in terms of a "standardized variate", or number of standard
deviations below the mean. Let a be the standardized variate that is
associated with the lower limit of integration in the first term, and let b be
the standardized variate that is associated with the lower limit of

integration in the second term.

_Nagi -Elga] tR _Ng;-E[q]tR
4= (Noka rand b= (Nok

We can now express 2.20 in terms of a normalized distribution f (x) which

has the same functional form as f; (x1),....f, (x,) with mean = 0 and

standard deviation = 1:

O —hin| Flde-hi| Flxdx
oWiy =a x=b 221

Because hj;1 2 hj, expression 2.21 is positive if a >b. To see that this is the

case, recall that, by assumption, cv; 2 cv;,1, or (cv;)-! < (evj, 1)1, We can

multiply through by a constant to obtain:

2~

After substituting for cv; and cv;, 1, we have:

g

1=1

R

1=1

(evipr)? 2 (evi)L.

t t
Hqgi41) (z N; - tR) Haq] (2 N; - tR)
\121 > 1=1
(Nok.1 B (No);

Or equivalently:




a=NQS+l‘E[Qi+IJtR > W'E[Qi]m =b.
(Nok (No)

It follows that the gradient of total holding costs with respect to

downgrading from i to j = i+1 is positive for all W-jt >0, fort=1,.... t.
Thus, there will be no downgrading from product i to product j =i+1 in an
optimal solution to SCA when conditions 2.14, 2.15, and 2.16 hold and the
vield distributions of products i = 1,...,n share the same stable distributional
form..%

This result agrees with intuition. Because the ratio of expected yield
to quantity demanded is constant for all products, a given value of N
provides a higher service level for products with low coefficients of
variation. Downgrading from product i to product j = i+1, where cv; > cv;,
would decrease the service level of one product (i) in order to increase that of
another product (j) which is already higher. This could only increase total
cost because as the service level for a product increases, so does the

marginal expected inventory cost.

Claim: Under conditions 2.14, 2.15, and 2.16, there exists an optimal

solution t¢ SCAD in which:

t t-1
d1+K10\('\/ Y N?-'\/ > NE)
= 1=l 1=l , t=1,..T
Haqi] 2.22

N

where Kj is the number of standard deviations that are implied by the

service level for product 1.




Proof: From the previous result, we know that it is not optimal to
downgrade under conditions 2.14, 2.15, and 2.16. When we eliminate the

downgrading variables from the deterministic service level constraints

/ t
. td; +K0; Z N«%

t
Pro Z N:Qir 2 td;] 2 q; isequivalent to 2 N; 2 =1

2.11, we have:

Because Kicv; is at least as large as Kcv; for all producis i = 1,...,n, any
vector N = {Ny,... N7} that satisfies the above service level constraints fo
oroduct 1 in all periods t = 1,...,T, automatically satisfies the service level
constraints for products i = 2,...,n. Thus, the solution that is defined in
equation 2.22 is feasible in SCAD. It remains to show that this solution is
optimal.

Because the objective function penalizes both production and
inventory, the constraint for product 1 for the final period T will be tight in
any optimal solution to (SCAD):

T
T td; +Kio1A Y, N2
=1

2 No= Elq]

Now, let us modify the way in which we express this equality:

,\/ T 2T 0 T T .
T td; +Koy 2 N; % X7 td; +K10'1(z N1) 2 X5
1=1 1= 1=1

2 Ne Biad - Bal -




where X; = Ne , for t = 1,...,T. Some algebraic maniplulations on 2.23 yield:

1=1
i Nt = T dl
1=l / L
Hal-KjoV Y, X2
1=l 2.24
We can now consider the following opti~ization prouiem:
. Td
Min N= 1 = D ¢
in = g(Xy )
Hal-Kioiv/ Y, X?
1=l 2.25

8.t. (NX) € Q, where Q=

/ t
T d1 + K10'1N z X‘%

T t
N,X>0; =1;N > =l t=1,.,T
2% =LN) X, ol

Optimization problem 2.25 seeks to allocate production to each period in
order to minimize the total production (N) that is required to satisfy all T of

the service level constraints for product 1. N represents the sum of the

production in periods 1,..., T. X; represents the fraction of this production

that is allocated to period t.

T _ N1 NT
Let X'=| =1 1|,
LN 2N
1=l 1=l

/ t / t1
d1 + chl( 2 N-? - Z N¢2
1=l =

1=1 ) -
o] , t=1,...,T.

where N; =




By construction, the vector X is feasible in Q. To show that X is optimal, we

compute the gradient with respect to g(X):

VeX)T = { ag] Td KoL [%,....X1]

X, 7 9Xe (F_[ql] Ko Ji‘;) /z' X2

2.26

Let 3 be a vector that such that X + 8 € Q. Recall that the vector X

repres¢ ‘> a feasible allocation of total production N among periods 1,...,T
such that everything is produced as late as possible without violating the
service level constraints. Therefore, any feasible perturbation 8 of X must

shift production to earlier periods. In other words, there must exist a

positive real number € such that for some time period index k:

k T
Y 8 =e>0,and Y, &=-£<0
=1 t=k+1 227

We can now consider the first order optimality condition for the

minimization of a convex function over a convex region:

VX" 5= T4, (Z Kbt 3 m)

(HQI] K o1 "/—i;) =1 1=k+1

TR SO N
2 X O + X+ &
(E[(h] -Kj101 3 X2 )2 kt=1 ‘ 1t=k+1

Td;

) [Fad- Koo /3

(Xk - Xk+1)€>0

2.28

31



Equation 2.28 follows from the relationship shown in 2.27 between positive
real number € and time period index k and the fact that vector X has been

constructed such that X; > X; for i < j. Thus X is an optimal solution to 2.25,

and, under conditions 2.14, 2.15, and 2.16,there exists an optimal solution to

SCAD in which:

t t-1
d;e!(ol('\/z N2 -«/Z N%)
- =] 1=1

= , t=1,..T
Haqi) 0

N,

Corollary: When conditions 2.14, 2.15, and 2.16 hold, an optimal solution to
SCAD will have N ---> di/E[q1] ast --->,

The intuition of the results above can be explained as follows: In
each period, the expected production yield exceeds demand by a certain
safety margin. Recall from the equations defined in 2.11 that this safety
margin is at least as large as K standard deviations of the cummulative

production yield, where the standard deviation can be expressed as:
A/ S g2
1=1

As t, the length of the pianning horizon, increases to infinity, the standard
deviation of the cummulative production yield increases, but at a slower
and slower rate. Thus, the expected cummulative production approaches
cummulative demand in the limit as the length of the planning horizon

goes to infinity.



It can also be noted that, for a given amount of total production N =
N; + ...+ Ny, the standard deviation of the cummulative production yield of
product i i8 minimized when production is distributed as evenly as possible
over the periods 1,...,t. Thus, it may be desireable to avoid lotsizing decision

rules which result in large variances in production quantities from period

to period.



Chapter 3: Heuristics

Because the chip co-production problem is difficult to solve optimally
in the presence of random yields, it is necessary to resort to heuristics. The
heuristics that we describe in this section have been motivated by three
things: industry practice, the analytic results described above, and the
linear approvimations of the service level version of the problem that has
been studied by Bitran and Dasu (1988) and Bitran and Leoigt 1990).

Recall from the original dynamic programming formulation that the
chip co-production problem involves two stages in each period. In the first
stage, the Morning problem, a lot size is determinéd. In the second stage,
the Afternoon problem, the random yields have been observed, and
downdgrading decisions are made. Thus two types of heuristics are
necessary, lot sizing heuristics, and downgrading heuristics.

We have studied two types of lot sizing heuristics: single period,
myopic rules and multi period, look ahead rules. The first rule that we

consider is defined as follows:

L1
Step 1: Determine a service level a; = p; /(hij+pj).
Step 2: Compute ¢i(1) : Prob (qjt = ¢;(1)) = o, for all i.
Step 3: Compute NetD(i,t) = Demand(i,t) - Inventory(i,t-1), for all i.

MAX }NetD(i,t)

Step 4: N;= ; \ o)



Note that steps 1 and 2 need to be done only once. In each period it is
necessary only to make the calculation in steps 3 and 4. This lot size rule
considers only the direct yields of the individual products, it does not
account for the effects of downgrading. The following rule attempts to do
this by using the aggregate net demand and yield for each product. For
example, the aggregate yield of product j is equal to the sum of the yields of
all of the products 1,...,j that can be downgraded to product j. Naturally,
this aggregate yield must be compared to the aggregate net demand of
product j, i.e. the sum of the net demands for products 1,..j. We define the
rule as follows:

L2:

Step 1: Determine the service levels o; = p; /(h;+p;), for all i.
Step 2: Compute A¢i(1): Prob (qyt + ... + qj¢ 2 A¢i(1)) = o, for all i.

Step 3: Compute NetD(,t) = Demand(,t) - Inventory(i,t-1), for all i.

12 NetD(i,t)\

Step4: N = MAK\PL
1 Adi(1)

Again it is necessary to perform steps 1 and 2 only once.

Note that in both of these first two lot-sizing rules, the decision is
based only upon the net demand for only the next period. This can lead to a
large variance in batch sizes from one period to the next, increasing the
total variance of production over the planning horizon. For example,
suppose that a total of N = N; + N2 units are put into the process in two
consecutive units. Recall that the yield vectors q; and g2 are composed of

random variables. The variance of Ni1q; + N2q2 is minimized when N1 = N2



= N/2, and is maximized when either Ny = N, No=00or N; =0, Ng = N. Itis
therefore desirable to try to smooth production.

The following lotsizing rule attempts to smooth production by
considering two periods of demand.
L3:

Step 1: Determine the service levels o; = p; /(hj+p;), for all i.

Step 2: Compute A¢i(1) : Preb (qyt + ... + qit 2 A¢i(1)) = o, for all i,

Step 3: Compute NetD(,t) = Demand(,t) - Inventory(i,t-1), for all i.

MAx’ 2 (NetD(;',t) + dj,b{-l) \

Step4: N.= H
! 2-A0i(1)

Note that steps 1 and 2 need to be done only once. In each period it is
necessary only to make the calculation in steps 3 and 4. As in L2, L3
attempts to capture the effects of downgrading by using aggregate demands
and yields for all products downgradeable to i.

L3 differs from L2 in that it is concerned with the service level at the
end of the second period of future production instead of at the end of the
first. It is conservative in that it uses the single period fractile for the
yields. This is equivalent to assuming that the same quantity will be
produced in each of the next two periods, and that the yields will be the

same in both production batches. However, this ignores the following fact:

If x; and x5 are two independent identically distributed occurances
of the random variable X, and y < E[X], then:

Prob (x; +x9 22y)22Prob(x;2y)




4
(Note that this result is widely known as the Central Limit Theorem.)

The following lotsizing rule attempts to smooth production by considering

two periods of demand.

L4:

Step 1: Determine the service levels a; = p; /(h;+p;), for all i.

i
Step 2: Compute Ady(2): Pro 2 (gt + Qjte1) 2 A¢i(2)) = q;, for all i.
~

Step 3: Compute NetD(,t) = Demand(i,t) - Inventory(i,t-1), for all i.

i
Y (NetD(G,t) + djs1) \
MAX| =1

i Ad{(2) ‘

Step 4: Nt=

The next lotsizing rule goes one step further, and considers three periods of

demand:

Leé:

Step 1: Determine the service levels a; = p; /(h;+p;), for all i.

i
Step 2: Compute A¢;(3): Pro Z (qje + Qjte1 + Gjee2) = Adi(3) | = o, for all i,
=1

Step 3: Compute NetD(,t) = Demand(,t) - Inventory(i,t-1), for all i.

i
AX 21, (NetDG,t) + djte1 + dje2)
J:
|

Step 4: Nt =
A0i(3)




The heuristics described above, L1, L2, L3, L4 and L6, are for use in
solving the "morning"” problem. That is, they all determine the size of the
batch which should be put into the process. We have also developed another
set of heuristics for solving the "afternoon” problem. These are employed
after the yields from the process have been realized to determine how much
to downgrade when the yields of one or more products are insufficient to

satisfy demand. The first rule that we propose is extremely myopic:

D1: For each of the items 1 = 2,...,n.

Jit =dit-1+ Niait - dit.
If Jjt 2 0 then next i.

Else forj=i-1to 1:
While (J;¢ <0)
W;it = MAX(0, MIN(jt, - Jit))
it = Jjt - Wit
it = Jit + Wit

where Wijit is used to represent the amount downgraded from j to i in period
t. Note that this is a slight abuse of our earlier notation where the
downgrading variables were defined only for adjacent items.

The effect of L1 is that if there is an insufficient supply of item i, we
downgrade from excess inventory of product i-1 until either the shortage of
i or the inventory of i-1 is exhausted. If the shortage of i has not been
eliminated, we attempt to downgrade from inventories of products i-2, i-
3,..., 1, stopping as soon as either the shortage of i or the inventories of all of

i's predessesors have been exhausted. This rule never allows an item to go



into backorder unless there is no inventory of any higher level item
available. Its shortcoming is that it does not consider the impact that the
downgrading decision could have upon the production costs in the following
period.

The immediate benefit of downgrading a unit of product i to fll a
backorder for product i+1 is pj.+1 + hj, the sum of the backorder and holding
costs that are saved. The cost of downgrading the item is a function of its
effect upon the lotsizing problem in the following period. For example,
suppose that we are using lotsize rule L1. Downgrading a single unit of
item j in period t has the effect of increasing its net demand in period t+1 by
one unit. Ifitem jis the one which satisfies the maximization in Step 3 of
L1, then the marginal cost of downgrading is rc/¢;(1). It follows that if
rc/$;(1) > pjs1 + by, it may be not be wise to downgrade indiscriminantly.

The following rule attempts to trade off the increased production
costs in the following period against the decrease in the immediate

backorder and holding costs before automatically downgrading:
D2: For each of the items i = 2,...,n.

dit =dit-1+ Niqit - dit.
If it 2 0 then next i.

Else forj=i-1to 1:
While (Jit <0)
IF (rc/¢j(1) < pi + hj ) THEN: W;i¢ = MAX(0, MIN(Jjt, - Jit))

ELSE:
Ny = MAX [(diger - Jie)|
R Y6V I

Wiie = MAX(0, MIN{J, -Jit, Nes10(1) - (dje1 - Iie)))



Jjt = Jjt - Wijt
Jit = dit + Wijt
Note that variations of this rule can be used in conjunction with the other

lotsizing rules. The following variation is appropri~te when D2 is used

with L2:
D2 (to be used with L2): For each of the items 1 = 2,...,n.

dit =dit-1+ Niqit - dit.
If Jit 2 O then next i.

Else forj=i-1to 1:
While (J;¢ < 0)
IF ( rc/A¢j(1) < pi + hj ) THEN: Wjit = MAX(0, MIN(J;jt, - dit))

ELSE:

i
’_ (dje1 - dit)
Ny = MAX |

1 \J A¢i{1)

j
Wit = MAX(O, MIN{th, Jit, Nea1A0(1) - D, (a1 - Jkt)})
k=1
Jjt = Jjt - Wit
Jit = Jit + Wit

The heuristics that are described in this section are intended to be
used for solving the lotsizing and downgrading problems as they arise in
practice. In the following section, we discuss a lower bound on the expected
cost of an optimal solution to the original dynamic program. By simulating
the performance of the heuristics in a randem yield environment, it is

possible to statistically estimate the expected costs of using them. We can



evaluate the performance of the heuristics relative to the lower bound. In
Section 5, we discuss specific Monte Carlo simulations that have been used

to test the heuristics.
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Chapter 4: A Lower Bound for the Dynamic Program

In order to evaluatc the performance of heuristics, it is necessary to
obtain a lower bound on the value of an optimal solution to the criginal
dynamic programming formulation of the co-production planning problem.
The bound that we present belongs to one of the classes of bounds that are
discussed by Birge (1982).

Recall the original dynamic program, problem (S), which was
presented in Chapter 1. In this formulation, M;(J;.1) represents the lot
sizing decision that will made at the beginning (in the "morning") of period
t. Ay(J;.1,N¢,q¢) represents the doewngrading decisions that will be made
after the yield vector q ¢ is observed in period t (in the "afternoon”). The
problem is difficult to solve because of the randomness that is associated
with these yield vectors. Lotsizing and downgrading decisions must
consider not only the direct effects of the random yields, but also the
secondary effects of future decisions which will be made after some of the
random yield outcomes are observed.

Recall from our discussion of the original dynamic program that, in
practice, the structure of the costs generally discourages downgrading that
would increase the backorders of 2 product in the current period. That is,
the backorder costs are generally non-decreasing in the stringency of
product specifications. Thus, the original formulation can usually be

simplified by ignoring constraints 1.6.

Claim: Consider the modified version of the dynamic program Mj(Jp) in

which constraints 1.6 are ignored. If the backorder and holding costs are
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non-increasing and non-decreasing in the product indices, , then there

exists an optimal solution to the modified problem in which:

W; < Max(0, i1 + qN; + W), for t=1,...,T 1.6

Proof: The proof is by contradiction. Suppose that an optimal solution has:

W,.=5- Max(O, Jit1 +qitNe + W;), for some i,t, and & > 0. 41

Let Z be the value of this optimal solution. By equation 4.1, J;t < 0. Without
loss of generality, let us assume that, the result of downgrading preduct i
was to decrease the backorders of product j (> i) by 8. If we decrease Wy by
6, the change in the costs would be:

(pj = pi)s + Mt+1(J1,t ’ Ji,t + 8;---’ Jj,t - 8:---) - Mt+]_(J1’t , Ji,t goaey Jj’t ,...) 4.2

Because pj < pj, the first term in 4.2 is non-positive. Recall that M¢,1(J¢ ) is
the optimal cost of periods t+1. ..., T given an initial inventory vector of Ji.
Because a solution to Mt,1J1t, Jit ..., djt »...) would always be feasible in
Mt+1(d18, dig + 9,..., Jjt - 8,...), the result of the subtraction in equation 4.2 of
the third term from the second is also non-positive. Thus, the value of the
modified solution is no larger than Z. Ifit is equal to Z, then it is an
alternate optimum. Ifit is less than Z, then the optimality of the original
solution is contradicted. QED



Claim: Cousider the modified version of the dynamic program M;(dJp) in
which constraints 1.6 are ignored. The value of an optimal solution to this
problem is at least as low as that for the original.

Proof: The modified version is more tightly constrained than the original.
Thus an optimal solution to the original is feasible in the modified version.
Because the two problems have the same objective function, the value or an

optimal solution to the less constrained problem must be less than or equal

to that of the original. QED

Although the modified version is itself very difficult to solve, it
facilitates the development of a lower bound. Note that a lower bound on the
value of the optimal solution to the modified version is also be a lower bound
on the original problem. It is in this spirit that we propose the following
lower bound on the cost of an optimal solution to the original stochastic

dynamic program Mi(J).

LB1(Jp) =
Min ’ T n . n \
NyoNr 1Y reNg+ 2 hiJ; + 2 pid; ’f(ql,..,qT)dq 15-dQT
aar Wi Wi Wi, Wy L& =l =l 1
such that:
t t
Jo-F +) Neg + Wi -Wy)<d &, fort=1,..T
1=l 1=1 4.2a
t t
Jo-Ji- Y (Neq + Wi -W;) < &y, fort=1,..T
1=1 1=l 4.2b
Wit =W ¢*, fori=1,..,n-1andt=1,.,T 4.3a
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Whit = Wit =0, fort=1,...,T 4.3b
Wyt 20, Wy 20, fori=1,..,n-1andt=1,..,T 4.4a
Ny 20, fort=1,.,T 4.4b

Note that the term inside of the integration is a linear program in 3nT
variables and 2nT constraints.
Claim: LB1(Jp) is a lower bound on the value of an optimal solution to

problem Mi(Jy).

Proof: In order to prove the claim, we need only show that LB1(Jg) is a
lower bound on the value of an optimal solution to the version of the original
dynamic program in which constraints 1.6 are ignored. This can be shown
by induction on the number of periods in the horizon. Consider first a

single period problem:

Mr(dra)= "o Nr + f o, {Z hidip+ 2, piJ;T}f(qT) qu\.

qr i=1 i=1 !

45
where:
Ve =Max{0, Jir.1 + Nra + Wip- Wip- diT), fori = 1,...,n. 4.5a
T =Max{0, -Ji1 - Nrar - Wi+ Wip +di) g g - 1,...n. 4.5b
Wi <Max{0, J11 + qrNT + Wi d1) 45¢
Nt =20 4.5d
Wit = Wi, 1t fori=1,.,n-1 4.5e
W;rt 20, Wi 20, fori=1,.,n-1 ‘ 4.5f
Wirt = Wi =0 4.5¢




Note that we can move the first term in 4.5 inside of the integral to obtain

the following equivalent expression:

Min Min [& S \
Mr{dra)= " Nr+ o \Z hidip+ 2, PiJ;T‘f(QT)d(IT
T YT \i=l i=1l
qr

n n
cNt + z hiJ;-T*' 2 piJ;T f(qT)dQT

i=1 i=1

_Min Min
Nt Wi,Wr
qr

4.6

Let N* be an optimal solution to problem 4.6. By the definition of optimality,

we have, for any random vector qr :

Min ’cN'+ih-J-+ L3, o] ‘
Wi,Wr \ ST gr IT‘
Min .
> N h;d; id s
NoWiWi | T+i§’ 1 ’T+i§Tp' T 47

Where Jitand Jit are functions of g1, N1, WiT, and Wit as described above.

By integrating both sides of 4.7 with respect to qt :
Wi,Wr i=1 i=1

f oin {CN' + 2 hidip+ 3, PiJ{T}f(QT)qu 2

n n
Min . )
f NoWiWa | T+ 2, hidip+ 2 pidipflar)dar
" 4.8

i=1 i=1



The left hand side of 4.8 is an optimal solution to the single period dynamic
program. The right hand side is LB1. Thus, L.B1 is a lower bound on the value
of an optimal solution to a single period problem.

It remains to be shown that if LB1 is a valid lower bound on the cost of a t

period problem, then it is also valid for a t+1 period problem. Our inductive
assumption is as follows: Given an initial inventory vector of Jy.t, LB1(J7.¢) is a

lower bound on Mr.¢,1(JT.t), the value of an optimal solution to the t period

~\problem. Using this assumption, we have:

Mr.{Jred) = I‘g:‘ cNT. + f [Ar.{Ire s, NT.pardf (ar-d dQT-t\
[+ X3

|

= Min {CNT.t +

~ N
Min < c
S A Wi, + Y pid;p, + TMTa(I1e); [F(are)dg e
Wr.,Wr. \ ’ i=1 ’
qrt

i=1

i=1 i=1

Min ’ Min J& . + & \
% Nr \CNT't ¥ WT*.t,w&.,\Z hidipe + 2 Pidie + TLBUJT) { (qredg s
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As in the single period case, we can shift the first term inside of the

integral te obtain:
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+
T W {ig i=1

Mi Min
N:l f [CNT-t"' . {z th,Tt + Z leth-l- rLB1{Jr.) :lf(QTt)dQTt
qar:

Min Min f S + S \
=N . «. \CNTt+ Z hid; . + z pid;re + TLBYI 1) f (are)dg e
Tt Wr. ,Wr.t \ i=1 ’ i=1 ’ I

qrs

4.10

Let N* be an optimal solution to 4.10. For any random vector qr.¢ , we have,
by the definition of optimality.

. n n
1}‘"‘_ N+ hiJip, + 2 pidip, + rLBl(JT.t)\
Wr.,Wr, i=1 ’ i=1 ’ ‘

v

Min
NT-! ’ w;-t,w 'i'-l

n n
cNrt + z h;d : Tt + 2 pid ;,T-t +rLB l(JT.t}}

i=1 i=1 411

Integrating both sides of 4.11 with respect to q7.¢ gives:

Min Min | . c \
N s w. \CNTe+ Y hidin, + Y pidip, + TLBYJrs) f (greldgrs
T-t WT.g'WT,l \ i=1 » =1 ] l
qr4

. n n
= Ifi"‘_ eN"+ Y hidip, + D pidip, + rLBl(JT.t)\f(qr.t)qu.t
Wr, Wi ’ g ’
qr

i=1 i=1
> M1+n -
N1, Wr W,
qr4

= LB1(JT-t-1). 4.12

n n
cNre+ ), hidin, + D, pidin, + rLBYJ 1) if (Qre)dgrse
i=1l i=1




Obtaining this lower bound is equivalent to evaluating the expectation (with

respect to the yield vectors qj,...,qT) of the optimal cost of the following

linear program:

T n n
Min ) rff'{cNt+ > hidi+ Y pid;
t=1 i=1 i=1
such that:

t t
Jo-J + Y, (Neq + Wi -W)<>Y d;, fort=1,.T
1=l

1=1

t t
Jo-Ji- Y, (Neg + Wi -W;)<-> &, fort=1,.,T
1=l T=l

Wi =Wt fori=1,..n-1andt=1,..,T
Wntt=Wy =0, fort=1,...,T

Wit 20,W,- 20, fori=1,.,n-landt=1,.,T
N; 20, fort=1,..,T

4.13

4.13a

4.13b
4.13c
4.13d

4.13e
4.13f

This linear program has 3nT variables and 2nT constraints. Because the

distributions for the yields are continuous, an exact computation of the
expected optimal cost of 4.13 is quite difficult. However we can obtain a
statistical esimate ot LB1 by using Monte Carlo simulation. This

estimation procedure involves iteratively generating sets of the vectors

q1,....aT from the appropriate distributions, and solving 4.29 for each set.

Each time a set of yield vectors is generated, and the linear program is

solved represents a single sample.. By the Central Limit Theorem, as the

number of these samples goes to infinity, our estimate converges in
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expectation to LB1. We can use statistical estimation techniques to

determine the appropriate number of samples for any desired accuracy.
The following section describes the Monte Carlo simulations that are

used to evaluate the performance of the heuristics that are developed in

Chapter 3 against the above lower bound.



Chapter 5: Computational Results

In order to evaluate the performance of the heuristics that are
described in Chapter 2, we used Monte Carlo simulation. We simulated the
performance of each of the pairing of lotsizing and downgrading heuristics
in an environment with random yields. By measuring the costs of
production, backorders, and inventory over many simulations, we were
able to obtain a statistical estimate of the expected total cost of each of the
heuristic pairs.

We also used Monte Carlo simulation to determine a statistical
estimate of our lower bound. Recall that the lower bound is the expected
optimal value of a linear program in which the coefficients in the
constraint matrix are random. We "estimated” this expected optimal value
by repeatedly generating realizations of the random coefficients and solving
the resulting linear programs. This "estimate” of the lower bound on the
expected cost of an optimal solution to the original dynamic program
provides a benchmark against which we can evaluate the performance of
the various heuristic pairs.

In the Monte Carlo simulations, we assumed that the distributions of
the conditional-aggregate yields of the items can be represented by the Beta
distributions. The conditional -aggregate yield of a given product i is the
fraction of items that satisfy the specification for item i+1 which also satisfy
the specification for item i. Suppose for example, that there are three
serially nested products. The fraction of a production batch which satisfies

the loosest tolerences, i.e. grade 3, is a Beta distributed random variable,

say B3. The fraction of of that fraction which also satis’fies the next tighter
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specification is another Beta distributed random variable, say 9. Still

another Beta distributed random variable, B;, describes the fraction of those

items inside of item 2's specifications which also satisfy the specifications

for item 1. If By, By, and B3 are three independent random variables

representing conditional-aggregate yields, the actual yields of items 1, 2,

and 3 would be:

q1 =P1 B2 B3
a2 = B2 B3-q1
a3 =PB3-q1-q2

Beta distributions have been widely used in the literature to represent
uncertain yields. By setting the parameters appropriately, the first and
second moments can be set to match almost any situation we have observed
in practice. By using the Beta distributions to represent conditicnal-
aggregate yields as described above, we are also able to capture the
correlations between yields of various products that are common in
practice.

We ran the simulations with several different sets of data. One of the
objectives of the investigation was to determine the robustness of the
heuristics with respect to:

- Relative costs of production, holding inventory, and backordering.

- Ratios of demand to expected yields for different products.

- Coefficients of variation in yields.

We attempted to determine the conditions under which various
combinations of lotsizing and downgrading rules perform well.

For the first series of tests, we assumed that the cost structure is the
following:

- Production Cost: $8 / unit for products 1, 2, and 3.
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- Holding Cost: $1 / unit for products 1, 2, and 3.
- Backorder Cost: $19/ unit for products 1, 2, and 3.

These costs are representative of the situation in the facility that motivated
our research. Note the absense of a discount factor. Because the time
periods that we observed are generally on the order of a day or a week, the
discount factor does not play a significant role in the total costs. For this
reason, we implicitly assumed that it is zero.

We considered six different sets of yield distributions, the parameters
of which are given in Tables 5.1 and 5.2. In each of these tables, three
related sets of yield distributions are defined. The first two columns show

three different settings of the o; and ay for each of the three beta

distributed conditional-aggregate yields described above. The next two

columns indicate the expected values of B; and q; . Finally, the last two

columns provide indications as to the level of uncertainty associated

Yield Dist. i o oy EB]  Elgl 90%CI ey
1A 1 3 77| 03 0162 | (42,317)  0.546
HIGHcv 2 6 4 | 0.6 0378 (1756100  0.336
3 9 1 | 09 036 | (136593  0.384
1B 1 30 70| 03 0162 | (118211)  0.176
MEDcv 2 60 40 | 0.6 0378 | (312,448)  0.110
3 9 10| 09 036 | (288434) 0.126
1C 1 300 700| 0.3 0.162 | (148,177)  0.060
LOWev 2 600  400| 0.6 0378 | (357,399)  0.030
3 900 100 0.9 036 | (337.384)  0.040
Table 5.1

with the yields. The column titled "90% CI" represents a 90% confidence

interval on the number of units in a batch of 1000 that meet the specification
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for product i, but not for product i-1. For example, in Yield distribution 1A,
we would be 90% confident that between 42 and 317 of the units in a batch of
1000 would meet the specification for product 1. Similarly, we would be 90%
confident that between 175 and 610 units would meet the specification for

product 2, but not that for product 1. The column titled "cv;" contains the

coefficient of variation for the yields q;. Note that the expected values of the

vield vectors are the same across Yield Distributions 1A, 1B, and 1C, but the
coefficients of variation decrease. Similarly, the expected values of the yield
vectors are the same across Distributions 2A, 2B, and 2C, but the coeficients

of variation are decreasing.

Yield Dist. i Q. Q) E[B;]  Elql 90% CI cvj
2A 1 3 3 0.5 0.25 (73,502) 0.494
HIGHcv 2 6 3 0.67 0.25 (69,476) 0.494
3 6 2 0.75 0.25 (71,477) 0.494
2B 1 30 30 0.5 0.25 (184,316) 0.162
MED cv 2 60 30 0.67 0.25 (186,317) 0.162
3 60 20 0.75 0.25 (184,313) 0.162
2C 1 300 300 0.5 0.25 (229,271) 0.0514
LOW cv 2 600 300 0.67 0.25 (229,272) 0.0514
600 2001 0.75 0.25 (229,271) 0.0514

Table 5.2
Notice that, for distributions 1A, 1B, and 1C, the coefficient of variation is
much higher for the yield of product 1 than for those of products 2 or 3. In
contrast, for distributions 2A, 2B, and 2C, the coefficients of variation are
the same for all three products. In practice, the relationship found in the
first set of distributions (1A, 1B,and 1C) seems to be more common.
In the first test, the ratio of demand to expected yield is constant for

all products. In particular, we have assumed that:



i __ 1000, fori=1,2, and 3.
Haqi

Thus, for yield distributions 1A, 1B, and 1C, the demands for the three
products are 162, 378, and 360 in each period. Similarly, for distributions
2A, 2B, and 2C, the demands are 250, 250, and 250. We have made this
assumption because this is the most difficult case for production managers
to deal with. Suppose, for example, that the ratio of demand to expected
yield is much higher for the most stringently specified product than for the
others. In this case, the problem reduces to one of a single product . The
less stringently specified products are essentially bi-products and can be
ignored in lot sizing decisions. Because the "high grade" product is
"difficult” to obtain, downgrading is neither necessary nor desirable. The
other case, where the ratio of demand to expected yield is lower for the most
stringently specified product than for the others simply does not occur
frequently in practice. Because there is usually a trade-off between the cost
of the process and the expected yields of "high grad=" products, it is rare for
production managers to face situations in which they have abundant

quantities of these items relative to demand.

Yield Dist. 12D} L3D} LAD1 L6D1 LB
1A $44,889 $43,220  $39,739 $42,164 $36,991
Cest= 33124 Cest= $2200 Oest= $1749 Cest= 51876 Cest= $793
1B $34,393 $34,403 $34,531 $34,633 $33,156
Oest= $445 Gest= $392 Cest= $441 Oest= 3338 Gegt= $222
1C $32,521 $32,960  $32,736 $32,983 $32,363
Oegt= $159 Cest= $148 Gesi= 3102 Oest= S109 Gegi= $62

Demand for products 1, 2, and 3 equals 162, 378, 360 respectively.
Table 5.3



Yicld Dist. __L2D2 L3D2 L4D2 L6D2 LB

1A $44,625 $43,033 $39,358 $42,136 $36,991
Gest= $2893 Gegt= $2133 Gest= $1683 Cest=51869  Gegi= $793
1B $34,216 $34,405 $34,215 $34,633 $33,156
Oegi= $435 Gest= $390 Gegi= $437 Ges=5338  Oegi=$222
1C $32,742 $32,958 $32,741 $32,983 $32,363
Oest= $154 Oest= $148 Oest= $155 Oest= $108 Oest= $62

Demand for products 1, 2, and 3 equals 162, 378, 360 respectively.
Table 5.4

The performance of the different lotsizing rules can be compared in
Tables 5.3 and 5.4. The first two letters of the column headings correspond
to the lotsizing rule, and the second two correspond to the downgrading
rule which was used. Note that the downgrading rule was held constant in
each table. D1 was used to obtain the results in Table 5.3, and D2 was used
for table 5.4.

Each entry in these tables contains two values. The upper one is a
statisistical estimate, and the lower one is the standard deviation of this
estimate. The first four columns of the table contain the estimates (along
with their standard deviations) of the expected costs of using the heuristics
for four periods while the system is in steady state. The fifth column
contains an estimate (and its standard deviation) of the lower bound on the
expected cost of an optimal solution to the four period problem.

We obtained these estimates by using Monte Carlo techniques to
simulate the performance of the heuristics in the presence of random
yields. For each heuristic pair, we repeatedly simulated its operations for

eight periods, starting with zero initial inventory. In order to capture the

56



system in steady state, we measured the costs only over periods 5, 6, 7, and
8. Although the simulations were truncated after period 8, the heuristics
were operated as though demand continued indefinitely. Thus, there was
no boundary effect in period 8. The values in the tables are based on 40
iterations of this 8 period simulation.

In both Tables 5.3 and 5.4, we can observe that all of the lotsizing
rules perform very well vis-a-vis the iowerbound for yield distributions 1B
and 1C. For distribution 1B, all of the heuristics result in costs which are
within about 4.5% of the lower bound. For 1C, they all result in costs which
are within about 1%. Thus, when the coefficients of variation of the yields
are low or moderate, all of the heuristics perform well.

However, all the heuristics do not perform uniformly well when the
coefficients of variation are high. Although L4D1i and L4D2 get within 7.4%
and 6.4% of the lower bound, the other rules do not, perform nearly so well.
Comparing the estimated expected costs associated with L2D1, L3D1, and
L6D1 with that of L4D1, we obtained t-statistics of 1.66, 1.32, and 1.05
respectively. Thus, we can reject the null hypothesis that the costs
associated with L4D1 are at least as high as those of L.2D1, L3D1, and L6D1
with 95%, 90%, and 85% confidence respectively. The t-statistics for the
comparisons of the estimated expected costs associated with L2D2, L3DZ2,
and L6D2 with that of L4D2 are 1.70, 1.39, and 1.36 respectively. We can
reject the hypothesis that the costs associated with L4D2 are at least as high
as those of L2D2, L3D2, and L6D2 with 96%, 95%, and 91% confidence
respeactively.

The performance of L4 suggests that there is an advantage associated
with considering two periods of demand instead of one. However, the fact

that L6 does not perform as well as L4 suggests that it is counter-productive
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to consider too many periods of demand. A possible explanation is the
following: The consideration of additional period's demand has a
smoocthing effect upon the lot size. Some smoothing is beneficial in the
sense that variability in lot sizes increases to the total variablity of
production output. However, too much smoothing "over-damps"” the
system's ability to respond to extremely low or high yields.

By comparing the results in Table 5.3 to those in 5.4, we observe that,
in nearly all cases, the more far-sighted downgrading rule marginally
outperforms the myopic one. However, this difference was only significant
when lotsizing rule L4 was used. The t-statistic for the comparison of the
estimated expected costs of L4D1 to L4D2 was 1.77. Thus, we can reject the
null hypothesis that the expected cost of using L4D1 is less than or equal to
that of using L4D2 with 96% confidence. The fact that the difference was
only significant for lotsizing rule L4 might suggest that the benifit from a
far-sighted downgrading rule can only be realized when the lotsizing rule
is good.

The results for the second set of distributions, in which the
coefficients of variation were the same across the yields of all three

products, are given in tables 5.5 and 5.6:




Yicld Dist.  L2D1 L3D1 L4D1 L6D1 LB

2A $45,913 $42,036 -$37,630 $41,880 $36,062
Cest= $2676 Gest=$1762 Cest= $1051 Oest= $1786 Oesi= $989

2B $34,508 $34,697 $34,286 $34,521 $33,055
Gegi= $564 Gesi= $352 Gegt= $350 Gesi=$352  Gogi=$219

2C $32,673 $32,685 $32,634 $32,966 $32,469
Cest=$123 Oest= $115 Cest= $106 Gest= $110 Oest= $82

Demand for products 1, 2, and 3 eguals 250, 250, 250 respectively.

Table 5.5
Yicld Dist.  1.2D2 L3D2 L4D2 L6D2 LB

2A $44,335 $41,768 $37,687 $41,880 $36062
Cest= $2434 Oest= $17C4 Oest= $1038 Cest=$1786 Oest= $989

2B $34,104 $34,712 $34,286 $34,521 $33,055
Oest= $560 Cest= $437 Oest= $350 Cest= $352 Oest= $219

2C $32,673 $32,693 $32,634 $32,966 $32,469
Cest= $103 Cest= $102 Cegst= $106 Cest= $110 Cest= $82

Demand for products 1, 2, and 3 equals 250, 250, 250 respectively.
Table 5.6

As in the first set of distributions, L4 was clearly the dominant lot sizing
rule. Using it results in expected costs that are within 4.5%, 3.7%, and and
0.5% of the lower bounds for yield distributions 24, 2B, and 2C respectively.
However, there seems to be even less difference between the two
downgrading rules here than there is for distributions 14, 1B, and 1C.

In cases where the ratio of demand to expected yield is lower for the
most stringently specified product than for the others, downgrading is
"systematic”’. That is, some downgrading would occur even if the yields

were deterministic. Large imbalances of this sort are rare because it is
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usually expensive to maintain high yields of the tightly specified products.
However, it is not unusual for slight imbalances to be found, particularly in
the short term.

To test our heuristics in situations where the ratio of demand to
expected yield is lower for the most stringently specified product than for
the others, we have modified the original sets of demand that were used
with yield distributions 1A, B, and C, and 2A, B, and C. In the first

modification, we set:

Haill  Haa Hogl
Thus, for yield distributions 1A, B, and C, the demands in each period were
112, 378, and 410 respectively. For distributions 2A, B, and C, the demands
were 200, 250 and 300. The results of the tests for the first modification are
shown in tables 5.7, 5.8, 5.9 and 5.10.

Yield Dist. L.2D1 L3D1 L4D1 L6D1 LB
1A $34,260 $33,537 $33,942 $34,355 $34,303
Test= $1549 Oest= $1450 Cagst= $731 Cest= $840 Cest= $511
1B $32,194 $32,384 $32,269 $32,455 $31,997
Oest= $78 Oest= $56 Cegt= 347 Gest= $38 Cest= 388
1C $32,148 $32,202 $32,113 $32,133 $32,044
Cest= $22 Cest= $18 Cest= $17 Cest= $114 Gest= $54

Demand for products 1, 2, and 3 equals 112, 378, 410 respectively.
Table 5.7




Yield Dist. L2D2 L3D2 L4D2 L6D2 LB

1A $34,675 $33,544 $33,830 $34,346 $34,303
Cest= $1344 Oest= 3825 Cest= $643 Cest= $815 Cest= $511

1B $32,193 $32,384 $32,269 $32,466 $31,997
Cesi= 378 Cest= $56 Gest= $60 Cagt= $68 Gest= $88

1C $32,134 $32,202 $32,113 $32,133 $32,044
Oest= $25 Oest= $18 Oest= $20 Cest= $23 Cest= $54

Demand for products 1, 2, and 3 equals 112, 378, 410 respectively.
Table 5.8

The data in tables 5.7 and 5.8 indicate that the heuristics all perform very
similarly when the ratio of demand to expected yield is higher for product 3
than for product 1. Note that all of the heuristics perform very well. Even
for the high coefficient of variation (yield distribution 1A), all of the
heuristics are all within about 1% of the lower bound. These results
support the idea that the problems are easier to solve when the ratio of
demand to expected yield is the same across all of the products. We can
think of the production system as being driven by the aggregate yield of all
of the products that can be used to satisfy the demand for whichever item is
in shortest supply. Because the coefficients of variation of the aggregate
yields tend to be lower than those for individual yields, the least stable
systems are those in which the ratio of demand to expected yield is highest
for item 1. Thus these are the systems that are the most difficult , and the

most expensive, to manage.
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i D1 L4D1 LoDl
2A $37,398 $35,733 $32,672 $36,639 $33,614

Cest= $1846 Gest= $1050 Cest= $596 cest= $1029 Cest= $685
2B $32,242 $32,614 $32,329 $32,928 $32,001

Cest= $254 Cest= $139 Oest= $110 Gegt= $120 Cest= $169
2C $32,181 $32,249 $32,160 $32,272 $32,096

Cest= $55 Gest= $36 Gest= $43 Cest= $50 Cest= $55

Demand for products 1, 2, and 3 equals 200, 250, 300 respectively.

Table 5.9
ield Dj L2D2 L3D2 L4D2 L6D2 LB
2A $36.707 $35,667 $32,650 $36,639 $33,614
Oest= $1538 Gest=$1015 Cest= 3575 CGeg= $1029 Gest= $685
2B $32,242 $32,614 $32,329 $32,928 $32,091
Oest= 3254 Oest= $139 Cest= 3107 Oest= $120 Oest= $169
2C $32,181 $32,249 $32,160 $32,272 $32,096
Oest= $55 Oest= $36 Oesi= $43 Cest= $50 Cest= $55

Demand for products 1, 2, and 3 equals 200, 250, 300 respectively.
Table 5.10

The data in tables 5.9 and 5.10 also support the idea that it is less costly to
manage a system in which the item that is in short supply is other than the
most stringently specified one. However, in contrast to the data for yield
distributions 1A, 1B, and 1C (tables 5.7 and 5.8), here we see that the
heuristics do not all perform uniformly well. In fact there seems to be a
significant advantage to using lot size rule L4. For the high coeficient of
variation case, the estimates of the expected costs of L4D1 and L4D2 are

statistically indistinguishable from that of the lower bound. However, the




expected costs of the other heuristics are about 10% to 12% higher than the
lower bound.
We also tested a case in which product 2 was the one which was in

the shortest supply. In particular, we set:

d;+50 _do-50 _ ds _
Ha - Ha ~ Hag - 0%

Thus, for the first set of yield distributions, the demands in each period

were 112, 428, and 360 respectively. For the second set, they were 200, 300
and 250. The results of these tests are given in tables 5.11, 5.12, 5.13, and
5.14.

Yield Dist.  1.2D1 L3D1 L4D1 L6D1 LB
1A $37,775 $36,333 $36,540 $36,754 $35,761
Oest= $1428 Cest= 3954 Oest= 3802 Cegt= 3818 Cest= 3748
i1B $33,138 $33,388 $33,122 $33,391 $32,660
Tesi= $254 Oest= $199 Cest= 3110 Gest= $120 Oest= $157
1C $32,441 $32,537 $32,436 $32,552 $32,265
Test= $76 Oest= N Cest= $43 Oest= $56 Oest= $55

Demand for products 1, 2, and 3 equals 112, 428, 360 respectively.
Table S5.11



] 2 L4D2 L6D2

1A $37,207 $36,458 -$36,518 $36,6591 $35,761
Oag= $1281 Cest= $937 Cest= 3783 Cest= $812 Cest= $748

1B $33,138 $33,388 $33,122 $33,391 $32,660
Oest= $254 Oest= $199 Oest= $110 Oest= $120 Oest= $157

1C $32,441 $32,537 $32,436 $32,552 $32,265
Oest=$7 Oest= $71 Cest= $43 Oest= $56 Cegt= $55
Demand for products 1, 2, and 3 equals 112, 428, 360 respectively.

Table 5.12

i L4D L6D1 B

2A $37,650 $38,045 $34,918 $38,114 $34,708
Oest=$1778 Oest= $1242 Test= $879 Cest= $1029 Cest= $800

2B $33,019 $33,411 $33,160 $33,636 $32,658
Oest= $326 Cest= $235 Test= $195 Oegi= $200 Oest= 5211

2C $32,453 $32,550 $32,422 $32,513 $32,328
Oegt=$70 Gest= 371 Cegt= $69 Cest= $80 Cest= $70
Demand for products 1, 2, and 3 equals 200, 300, 250 respectively.

Table 5.13
Yield Dist, 1.2D2 L.3D2 L4D2 L6D2 LB

2A $38,328 $38,101 $34,918 $38,114 $24,708
Oest= $1754 Gest= $1200 Gest= 3879 Oest= $1029 Oest= $800

2B $33,019 $33,411 $33,160 $33,636 $32,658
Cest= $326 Cest= $235 Cest= $195 Oest= $200 Cest= 21

2C $32,453 $32,550 $32,422 $32,513 $32,328
Oest= $70 Oest= LYal Oest= $69 Oest= $80 Oest= $70

Demand for products 1, 2, and 3 equals 200, 300, 250 respectively.
Table 5.14



From Tables 5.11, 5.12, 5.13, and 5.14, we can see that L4D1 and L4D2 once
again dominate the other heuristics. It is also of interest to compare the
costs for this demand scenario with the other two that we have tested. In
particular, the costs are highest when the ratio of demand to expected yield
is constant across all three products. The costs are somewhat lower when
item 2 is the one which is "rare" relative to its demand, and lowef yet when
item 3 is the "rare” one. This is consistent with the intuition that the lower
the rare item is within the product hierarchy, the more flexibility there is.
That is, it becomes easier to adjust to shortages by downgrading.

In order to test the heuristics under a different cost structure, we
decreased our original backorder cost from $19 to $9. Thus the modified

cost structure is as follows:

- Production Cost: $8 / unit for products 1, 2, and 3.
- Holding Cost: $1 / unit for products 1, 2, and 3.
- Backorder Cost: $9 / unit for products 1, 2, and 3.

To test the heuristics with this cost structure, we revisited distributions 1A,

1B, and 1C, and assumed that the ratio of demand to expected yields is

i 2D1 L3D1 L4D]1 L6D] LB
1A $43,476 $42,283 $39,628 $41,957 $34,530
Gesi= $2807 Gest= $2026 Gogi= $1744 Gest=$1775  Gegy= $454
1B $34,226 $34,210 $34,450 $34,397 $32,411
Cest= $434 Oest= $368 Cegt= $426 Oest= $317 Oegt= $122
1C $32,730 $32,882 $32,691 $32,894 $32,130
Oesl= $154 Cagi= $143 Oesi= $96 CTesi= $103 Oegt= $33

Demand for products 1, 2, and 3 equals 162, 378, 360 respectively.
Table 5.15



i 2 L.3D2 L4D2 L6D2 LB
1A $43,886 $41,526 $38,915 $41,817 $34,530

Cest= $2663 Gesi= $1864 Uest= $1570 Cest=$1770 Oest= $454
1B $34,098 $34,213 $34,443 $34,391 $32,411

Oest= $428 Cest= $366 Cest= $425 Cest= $314 Cest= $122
1C $32,732 $32,868 $32,688 $32,880 $32,130

Cest= $151 Oest= $143 Gest= $97 Oest= $100 Cest= $33

Demand for products 1, 2, and 3 equals 162, 378, 360 respectively.
Table 5.16

constant across all three products. The results of these tests are shown in
Tables 5.15 and 5.16.

These results are similar to the previous ones. All of the heuristics
perform very well vis-a-vis the lower bound when the coeficient of variation
of the yields is either moderate or low, distributions 1B and 1C. When the
coefficients of variation are high, lotsizing rule L4 dominates the others,
and it performs slightly better when used in conjuction with the far-sighted
downgrading rule D2.

However, it is also interesting to note that, with the modified cost
structure, the best heuristic, L2D2, results in costs that are 12% higher
than the lower bound. This is not nearly as good as the 6.4% that was
attained with the original cost structure. A possible explanation could be
the following: In the original cost structure, backorder costs were about 2.5
times as high as unit production costs. In the modified cost structure, they
were only 1.125 times as high. Recall that the lower bound is based on the
benefit of omniscience. That is, the lower bound reflects the expected coste

of running the system if all decisions could be made with advance
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knowledge about the realizations of the random yield outcomes. Because
the costs of holding inventory are low relative to those of production and
backorders, if the yield realizations are higher in the early periods than in
later ones, the omnicient decision maker can produce a lot in these periods
and then hold inventory for subsequent periods. In contrast, due to the fact
that backorders are generally very expensive, it rarely benifits the
omniscient decision maker to satisfy demands in the early periods with
later production. Thus, when the yield realizations are higher in the later
periods, omniscience provides little advantage. As the costs of backorders
are reduced, the omniscient decision maker becomes better able to take
advantage of high yield realizations that occur late in the horizon. He can
produce a lot in periods with high yields and either backorder or hold
inventory for other periods. In other words, the lower the costs of inventory
and backorders, the more benefit there is in having advance knowledge of
the yield outcomes. As a result, the lower bound is not as tight when these

costs are low.



Chapter 6: Discussion

The management of co-production processes in the presence of
random yields is an important problem that has received surprisingly little
attention in the literature. In many manufacturing environments, a single
process produces multiple products simultaneously. Such situations
frequently occur when the various products are differentiated from one
another by some quantitative measure of performance. For example, the
specifications for two semi-conductor chips (A and B) may be identical to
one another with the exception that they must operate at different speeds.
Because the individual chips in a single process batch may perform at
different speeds, some of them may meet the specification for A, while
others may meet the specification for B. When there is uncertainty
associated with the proportions of the production batch that will fall into the
various product categories, managing these co-production processes
becomes quite difficult. It becomes even more difficult when there are
opportunities to substitute one product for another.

We have formulated the problem as a dynamic program in which the
objective is to minimize the expected costs of meeting contractual
obligations. In each production period, two decisions are made. After a
lotsizing decision is made, the process is run, and the random yields are
observed. At this point the output must be either allocated to customers or
stored as inventory for future periods. We describe a method for obtaining a
lower bound on the optimal solution to this model, and propose several
heuristics for solving the problem in practice.

The results of Monte Carlo simulations of our proposed heuristics

indicate that the choice of a lot-sizing heuristic has a much more
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significant effect upon costs than does the choice of a downgrading rule.
We have shown that, for a cost structure that is similar to what we have
observed in practice, one of our lotsizing heuristics (L4D2) performs much
better than the others, and that it performs very well vis-a-vis the lower
bound.

Although these results are encouraging, there are many
opportunities for further research. These opportunities can be found by
both generalizing the assumptions and broadening the scope of the
problem. We have assumed that the yield distributions are parameters of
the problem. In practice, management is likely to have some control over
these distributions. For example, in semiconductor manufacturing, it may
be possible to improve the expectation and variance of the yields by using
better materials, decreasing the impurities in the manufacturing
environment, or gaining better control over temperatures. An improved
understanding of how the costs of running the process are influenced by the
yield distributions would aid managers in making process change
decisions.

We have also assumed that the yield distributions are well
understood by the production manager. In practice, this is often not the
case. New technologies replace one another so rapidly that each
observation of the current process provides valuable information about the
yield distributions. Often, it is desirable to run smaller batches simply to
speed up the learning process. This trade-off between the costs of more
frequent set-ups and the benefits of more rapid learning needs to be
modeled. One method of capturing this trade-off would be to embed a
Bayesian update of the yield distributions in each stage of the dynamic



programming formulation that we have proposed. However, this would not
be a trivial modification.

Another area for future research is the relationship between
production and downgrading decisions and the marketing of the various
products. We have assumed that the contractual obligations to supply the
products are given a priori, and that the objective is to minimize the
expected costs of living up to these obligations. In many situations, demand
is not known in advance and maximization of expected profit is a more
suitable objective function. A number of interesting research questions
arise in this domain. For example, how should pricing decisions be made?
What is the best number of product categories to distinguish? Does
downgrading have an adverse effect upon demand for the highest grade
products? etc.

The problem of managing co-producticn processes in the presence of
random yields is both important and intriguing. Further study of the
issues described in this paper can potentially provide significant benefits to
a wide variety of both manufacturing and service industries. Because of the
wide variety of disciplines that can be brought to bear on the solution of the
co-production problem, it should provide a rich frontier for further

research.
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PART TWO: Managing Hotel Reservations with Uncertain Arrivals
Chapter 7: The Short Term Hotel Problem

The problem that hotel managers face in managing the demand for
reservations is quite difficult. They must respond to requests for a variety of
types of reservations in order to balance the expected loss of revenue from
unsold rooms against both the tangible and intangible costs of "walking"
customers, i.e. failing to honor reservations. Since customers who have
booked rooms may either cancel or fail to show up with some probability, it
is not unusual for hotels to "overbook", i.e. to accept more reservations than
they have rooms. Doing this successfully reguires a therough
understanding of market dynamics and consumer behavior in several
different segments of the market.

This "yield management" problem is similar in concept to the problem
of co-production of substitutable products with random yields. In the co-
production problem, several different grades of an item are produced
simultaneously in a single process. Often, there is uncertainty as to the
relative quantities of the various grades in any given batch. Although there
are demands for each grade, demand for a particular grade can be satisfied
with a higher grade item. Managing such a process involves two decisions in
each period. At the beginning of each period, the size of the batch is
determined. Then, after the realizations of the random yields are observed, the
various items must be allocated to customers.

It is interesting to note the similarities between these two problems. If a
hotel's products are "room-nights,” then it "co-produces" room-nights of
luxury suites, double rooms, singles, etc. Moreover, when identical rooms are

rented at different rates, their availability is a form of "co-production.” The
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total number of reservations that are accepted is analogous to the lotsize. The
fraction of those reservations to show up as guests can be compared to the
production yield. Also note that the hotel has different “grades” of room. A
customer with a reservation for a given "grade" of room will gladly accept a
higher grade, i.e. larger or more luxurious, room if it is offered to him at the
same price.

Clearly, the two problems are not identical. The most significant
differences are that the hotel faces uncertainty in demand rather than in
supply, and that room-nights cannot be held in inventory. But there are
enough similarities to try to use what has been learned in the manufacturing
context to solve the yield management problem.

In discussions with managers of the Marriott and OMNI Hotels, it has
been revealed that the reservations planning process can be broken into a long
term and a short term problem. In the long term planning problem,
reservations are viewed in terms of blocks of rooms. The horizon of this
problem can begin several years before a target date.

In this long term planning stage, a hotel manager considers several
different classes of reservations: "Airline and Government Agencies" contract
for a certain number of room nights throughout a year. These customers do
not specify exact dates, they are buying availability. "Corporate” reservations
are made by groups who are willing to commit to specific dates and number of
rooms. "Associations" negotiate a group rate for a block of rooms over a set of
dates. However, they are not willing to commit themselves to rooms. They
simply want the hotel to set aside an "inventory" of rooms for their association.
Individual members may then call and make reservations against this
inventory at the negotiated rate. Often the contracts made with these

associations call for reducing the size of the block of rooms after a certain date
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if tco few members have reserved rooms for themselves. A special case of the
Association class of reservations is "discount”. If demand for rooms is
expected to be low, management may set aside a block of rooms at a reduced
rate. Customers who call early enough can claim reservations from this
block. The final class of reservations, "Transients"”, is composed of individuals
who pay top dollar for rooms. Although these customers usually do not make
reservations until a few days before they need a room, expectations about
demand from transients influences the decisions about the numbers of the
other tyvpes of reservations to accept.

The short term probiem covers a horizon of only 30 to 90 days prior to a
target date. The manager's concerns in this problem are very different from
those in the long term plan. When there are only a few weeks remaining
before a target date, the blocks of reservations which were being held for
association and discount groups have either been claimed by specific
individuals, or they have been made available to customers in general. Some
of the customers have guaranteed their reservations with a credit card. This
type of reservation represents an implicit contract between the hotel and the
customer in which the hotel promises to provide a room, and the customer
promises to pay. Although in practice customers may not always be forced to
pay if they do not show up, the "show rate" for guaranteed reservations is very
high. Other customers have asked for 6 p.m. holds. This type of reservation
entitles the customer to a room, as long as he arrives before 6 p.m., but costs
him nothing if he does not show up. This arrangement is attractive to
customers who either are uncertain as to whether they will actually need the
room or are able to arrive before the 6 p.m. deadline. Naturally, the "show

rate" is lower for 6 p.m. holds than for guarantees.
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If all else was equal, management would prefer to have guaranteed
reservations instead of 6 p.m. holds. But because requests for both new
reservations and cancellations of those previously booked flow in randomly
over the horizon preceding the target date, it may be desirable to accept some 6
p.m. holds to hedge against the possibility that there will be insufficient
requests for guaranteed reservations to fill the hotel. On the other hand, if too
many 6 p.m. holds are accepted, it may become necessary either to turn down
a later request for a guarantee or, even worse, to walk a customer. Clearly, the
yield management problem of balancing the inventories of these two types of
reservations is a difficult one.

A number of authors have studied different versions of the short term
yield management problems in airlines, hotels, rental vehicles, and a variety of
other service industries. All of these problems share a common thread:
uncertain demand for products which cannot be inventoried. Yet each specific
application of yield management has unique features.

The airline yield management problem has been particularly well
studied. Rothstein (1985} and Belobaba (1987) provide detailed reviews of
mathematical approaches which have been taken to the problem of maximizing
the expected revenue associated with a given flight in which capacity is fixed.
Much of this work studies the allocation of sales of a single product to
customers paying different fares. Belobaba (1989) has taken a marginal pricing
approach in what he calls the Expected Marginal Seat Revenue (EMSR) model.
In this model, he assumes that lower fare classes purchase before high ones.
He shows that for each fare class i1, seats should be "protected” or withheld in
such a way that the marginal revenue (with respect to the number of seats
withheld) from sales to higher paying classes is exactly equal to the fare for

class i. Although he extends this work to account for "no shows", the emphasis

74



is placed upon the allocation of a fixed number of tickets to different fare
categories.

Rothstein (1974) did some early work in bridging the gap between the
hotel and the airline yield management problems. He contrasts the two, and
proposes a Markovian sequential decision model. His focus is upon how to
adjust overbooking limits at various decision points leading up to a target date.
Requests for reservations, cancellations, and show rates are all sources of
uncertainty.

Ladany (1976) proposes a dynamic decision model for a hotel with both
single and double rooms. In each stage of his dynamic program, a random
number of reservation requests and cancellations are received. The controls
are the limits on the number of each type of reservation to accept. The model
assumes that, on the date of the rental, no rooms are allocated until after all of
the customers, both with reservations and without, have arrived. This is
equivalent to assuming that all customers arrive at the same time. In practice,
customers arrive throughout the day. If a room is not available when a given
customer arrives, he may not be willing to wait for several hours to find out
whether he will be given a room. In spite of this questionable assumption,
Ladany provides a concise dynamic programming formulation of the problem.
He demonstrates the application of this formulation by complete enumeration
of a small problem.

Alstrup et. al. consider a similar model in an application to airlines with
two types of seats. However, because of the computational effort required to
solve the dynamic prcgram for an airplane with 110 seats, they suggest that an
approximation problem be solved instead. In the approximation model,

passengers are treated as groups rather than individually. That is, the limits
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on ticket sales can only be set at multiples of the group size. They show that it is
possible to obtain accurate results using a group size of 5 or fewer.

Liberman and Yechiali(1978) propose another dynamic decision model.
Although they consider only one type of room, they assume that in addition to
limiting the number of reservations to accept, management can either cancel
previously confirmed reservations, or acquire additional bookings at some
specified cost. They show that the optimal strategy is a 3-region policy. In each
period, upper and lower limits on reservation inventory create three regions.
The optimal action depends only upon where the current reservation inventory
lies within these regions.

Williams (1977) considers a slightly different perspective than these other
authors. He models a particular date that represents a peak in demand. He
assumes that demand for rooms on this date comes from three sources, listed
in decreasing order of priority: (1) stayovers - guests occupying rooms on the
day preceding the critical date. (2) reservations - guests arriving on the critical
date with reservations. (3) walk-ins - guests arriving without reservations. He
further assumes that the occupancy of the hotel on the day before the critical
one is known with certainty, and calculates the expected costs of forgone
revenues and overbooking that are associated with various numbers of
reservations. Although Williams' suggests methods of designing decision
aids, his model is concerned more with estimating the costs of specific policies
than with optimization.

In the short term hotel problem, the mix of 6 p.m. holds and guaranteed
reservations has a tremendous impact upon the extent to which the hotel
should be "overbooked". For example, the higher the proportion of total
reservations that are represented by the "low show rate" 6 p.m. holds, the

more the hotel should be "overbooked". We are unaware of any previous work
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that has addressed this particular aspect of the reservations problem.
Although the model which we propose is conceptually similar to that of
Ladany (1976), ours explicitly models the fact that the hotel must begin
allocating rooms to customers before the complete arrival process has been
observed.

In our investigation of this short term problem, we will focus our
attention upon a "target date" T periods in the future in which the total
demand for rooms on this date is likely to meet or exceed the hotel's capacity.
In practice, a even the most successful hotels can expect to be filled only about
four or five evenings per week. It is only for these "target dates" that the
reservations problem is difficult. For other dates, when demand is expected to
be less than the capacity of the hotel, the best strategy is obviously to accept all
requests for reservations.

For the sake of simplicity, we will consider only one type of room.
Although in practice hotels may have single rooms, double rooms, luxury
suites, etc., it is not unusual for them to have most of their capacity
concentrated in rooms which are indistinguishable from the customer's
perspective. We will discuss an extension of our model for situations where
this is not the case.

We will assume that reservations are for single night stays only. In
practice, customers do make reservations for multiple (usually two or three)
day stays. Hotels have even attempted to increase their utilization on low
demand dates by issuing reservations for target dates only to customers
requesting multiple day stays. However, customers have circumvented this
policy by requesting a multiple day reservation, and subsequently canceling
the dates that they do not need. Even when such gaming is not taking place, it

is not unusual for a customer to show up for only a subset of the dates in his
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reservation. They may either arrive late or depart early. In general, the
probability that a guest will show up for a given day of his reservation does not
depend upon whether he showed up the preceding day. Obviously, this
assumption may be invalid in hotels that cater to long term guests. But when
reservations for multi-day stays are relatively few, it is reasonable to treat
them as a series of indepencdent single night reservations.

We also assume that, during any given period, the probability that a
reservation will be cancelled is independent of when it was made. The validity
of this assumption was shown for airline reservations by Sanchez and
Martinez (1970). Leong (1991) suggests that it is also valid for hotel
reservations.

The final assumption that we make is that each reservation request is
for a single room. In practice customers (tour groups, conferences, etc.) can
reserve blocks of rooms. Naturally there is some dependence among the
individual reservations in a block. For example, the whole group may fail to
show up. However, because business travelers can be inconvenienced by large
groups, many hotels accept large group reservations only on weekends when
the total demand is low. Thus, it is often reasonable to assume that, on peak
demand target dates, each reservation cancels or fails to show up
independently.

The problem can be modeled as a series of decision points leading up to a
target date. At each of these points (indexed from T, T-1, ..., 1, 0), the hotel

manager sets limits on the number of each type of reservation to accept. For

example, at thebeginning of the tth period prior to the target date, G¢,; and
H,,; guaranteed and 6 p.m. hold reservations are held in inventory. That is,

Gi,1 and H,,; reservations have already been recorded, net of any

cancellations. Based upon expectations about future requests for reservations,
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cancellations, and show rates, the hotel manager sets a policy, characterized

by two numbers, NG, and Ny, which will be followed until the beginning of

period t-1. According to this policy, at most Ng and Ny, new requests for

guaranteed and 6 p.m. hold reservations will be accepted during period t. On

the target date, decisions must be made about allocating rooms to arriving

guests, including both those with reservations and walk-ins. Before

presenting the formal model, we introduce the following notation:

Parameters:

G, TH :

PG; PH -

C:

Gt41, Hret

The per room revenue net of variable cost for renting a room
to a guaranteed or 6 p.m. hold customer.

The per room cost of failing to honor a guaranteed or 6 p.m.
hold reservation.

The capacity of the hotel in # of rooms.

The number of guaranteed and 6 p.m. hold reservations that
are outstanding at the beginning of the planning horizon.

Random Variables:

I'Gt-

TH¢:

rw-

l't;t= 1,.. ,T:

Sgu:it=1,..,T:

The number of requests for guaranteed reservations received
during period t. Recall that the target date is period 0.

The number of requests for 6 p.m. hold reservations received
during period t.

The number of room requests from "walk-in" customers on
the target date.

Two dimensional vectors whose components are rg; and ryy.
The number of guaranteed reservations that "survive" period

t, i.e. the number that are held at the beginning of period t
and do not cancel by the end of t.
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Syyt=1,..,T:

Sao:

SHo:

S;t=0,..,T:

Gt;t=1,..,T2

Ht;t=1,..,T:

The number of 6 p.m. hold reservations that "survive" period
t, i.e. the number that are held at the beginning of period t
and do not cancel by the end of t.

The number of guests with guaranteed reservations to show
up on the target date.

The number of guests with 6 p.m. hold reservations to show
up on the target date.

A 2 dimensional vector whose components are Sg; and Sgy.

The number of guaranteed reservations that are outstarding
at the end of the tth period prior to the target date.

The number of 6 p.m. hold reservations that are outstanding
at the end of the tth period prior to the target date.

The number of rooms that remain available for walk-ins and
guaranteed reservations after the arrival of 6 p.m. hold
guests.

The number of rooms that remain available for guaranteed
reservations after the arrival of walk-ins and 6 p.m. hold
guests.

Decision Variables:

NGt;t=1,..,TI

NHt;t"' 1,..T:

NHA :

Nga:

The limit on the number of guaranteed reservations to accept
during the tth period prior to the target date.

The limit on the number of 6 p.m. hold reservations to accept
during the tth period prior to the target date.

The number of rooms that are assigned to customers

arriving with 6 p.m. hold reservations on the target date.

The number customers with 6 p.m. hold reservations who
arrive on the target date, but do not receive a room.

The limit on the total number of walk-in requests that will be
accepted on the target date.

The number of rooms that are assigned te customers
arriving with guaranteed reservations on the target date.
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Ngw: The number customers with guaranteed reservations who
arrive on the target date, but do not receive a room.

Let us also define the notation f x(x) as the probability mass function (or,
more generally, the probability density function) for the random vector X

evaluated at the point x. Consider the following model:

Max

MERt(G HIHHI’C) = Nat NH;‘ERt(G HlHti—l»C:NGbNHt)} =
M oo R Glo‘l th
o 2 X Y Y MERu(GuH.CY nglreS)), fort="T,.,1
0T | rgi=0 Tai=0 Scid S0 f 7.1
where,
Hy = Min{ryg,, NH,t} +SHt, fort=1,.,T 7.2
Gy =Minlrg,, Ng g + Sg¢, fort=1,..T 7.3
MERy(G1,H1,C) =
Max Max ( Hi l
NyosC {ERI—‘GI,HLC,NHO) = NyosC Z RH(G].’SHO:CaNHOV Ho(I_IO)’
Nuos<H; NiuosHi \Sio=0 74
where:
RH(G1,SH0,C,NH0) = tHNHA - pHNHW + MERwW(G1,C-NHA) 7.5a
s.t.. Npga = Min(NHo, SHo) 7.5b
NHA + NHw = SHo 7.5¢
MERWG:,Cwal= 2% (ERwW(G1,CweNw))
= ax { % Rw(Girw,Cwo Nwh rirw) |
wsbwe | 0 76

where:
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Rw(G1,rw,Cwa,Ny) = twW + ERg(G1,Cwg-W) 7.7a
s.t.:. W = Min(Nyw, rw) 7.7

G
ERG(GLCG)'-:! Y RalSa,Calf sefSco)
|

7.8
where:
Ra(Sgo, Cg) = Max: ngNga - pgNew 7.9a
s.t.:. Nga<Cg 7.9b
Nga + Naw = Sco 7.9¢
Nga, Ngw =20 7.9d

As shown in Figure 7.1, this model has the following interpretation: At the
beginning of each of the t= 1,...,T periods preceding the target date, the
manager has inventories of G¢+1 and H¢41 guaranteed and 6 p.m. hold
reservations respectively. He determines a policy which places limits NGt
and Nyt on the numbers of reservations that he will accept prior to the next
decision point. Sgt-1 and Sy ¢-1 represent the "surviving reservations”, i.e.
the number that were held at the beginning of period t and did not cancel
by the end. Note that the probability distribution of Sgt (SHt), the number of
guaranteed (6 p.m. hold) reservations which survive until t, depends on
Gi+1 (His+1), the number that were held at the the end of t+1 (or, equivalently,
beginning of t ). The actual size of the reservation inventories at the end of t
(beginning of t-1) are functions of the management imposed limits (NGt and
NH¢), the number of surviving reservations (Sgt and SHt), and the number of
requests for new reservations (rg; and ryt). For example, suppose that t
periods before a target date there are G4 outstanding guaranteed
reservations, and that management decides that it will accept a maximum

of NGt guaranteed reservations during period t. The total inventory of



Time

t=T

Reservation Position:

Decisions:
Ngr: Maximum # of Guarantees

G4 Guaranteed Reservations . .
} to accept in period T.
Hr,1 6 pm Hold Reservations Nyt Maximum # of 6 pm Holds

to accept in period T.

rgr and ryr Requests for Reservations
Sgr and Syt Reservations Survive

t=T-1

t=0
Morning

t=0
6 p.m.

t=0
Mid-night

Reservation Position: Decisions:
Gt =Sgr +Min(Ngr, rar)
i Ngr, Nur
Ht =Syr + Min{Nyr, ryr)
Reservation Position: Decisions:
G1=S5g1 +Min(Ng1rcy) Nyo: Maximum # of Rooms to
Hy =S il N Assign to Customers Amving
1=SH1 + Min(NH1,tH)) with 6 p.m. Hold Reservations

( Suoe(0,H;) Customers with 6 pm Holds Show—up)

Reservation Position: Decisions:
G1=Sc1 +MinNgyrc) Nyw: Maximum # of Walk-ins
to Accept

Remaining Rooms:
Cwg = C - Min{Nyo, Sno)

rw Requests for Walk-ins
_ Scoe(0,Gy) Customers with Guarantees Show-up.

Empty Rooms:
Max0, Cwg - MinNw, ry) - Sco)

Customers Who Have Guarantees but do not Get Rooms:
Max 0, Sco-Cwc + Min(Nw, rw))

Figure 7.1: Reservations Process




reservations at the beginning of period t-1 is at least as large as Sgt , the
number of reservations surviving from period t. In addition, the number of
newly accepted reservations is either the limit Ngt, or the number of
requests made in period t, rgt.

Note that, this model assumes that the limit on the number of
reservations to accept cannot be adjusted between decision points. For
example, suppose that during period t, the number of requests for
guaranteed reservations quickly exceeds the limit Ng;. Then regardless of
how many cancellations occur during, f)eriod t, no more new bookings
would be accepted. Our model approximates what occurs in practice where
limits are imposed upon net inventories of reservations instead of upon new
bookings. However, it should be noted that by using decision periods that
are sufficiently short, this approximation can be made arbitrarily good.

At the beginning of the target day itself (t=0), the hotel manager faces
a problem that is slightly different from the ones in earlier decision periods.
Here, he is dealing with the arrival of customers with and without
reservations, i.e. walk-ins. Problem MER((G1,H,C) represents the
maximum expected profit given that the hotel has a capacity of C rooms,
and that G; and H; reservations are held in the morning of the target date.
The actual profits are determined by the show rates of these reservations,
the number of walk-in customers, and the hotel manager's decisions about
room assignments.

We have assumed that the three different types of guests arrive at
non-overlapping times of the day. In practice, the latest arriving customers
tend to have guaranteed reservations. It is also generally the case that, on
days when the hotel is likely to be filled, management accepts walk-ins only

after the expiration of the 6 p.m. holds. In other cases, when the hotel is

84



not likely to be filied, the solution to the problem is trivial: all arriving
customers are assigned rooms. Thus, for the difficult cases, when capacity
of the hotel is constrained there is little overlap between the arrival of the 6
p.m. hold customers and wzlk-ins. When some of the customers with
guaranteed reservations arrive prior to the end of the arrivals of the other
two groups, we need only modify the way in which we use the function:
ERw(G1,Cwa,Nw). The parameter G; should reflect the number of
outstanding guaranteed reservations, i.e. net of early arrivals, at the time
the walk-in problem is solved. The parameter Cwg should reflect the
number of rooms that are still available after the arrival of 6 p.m. holds and
early arrivals of customers with guaranteed reservations.

The first decision to be made on the target date is Nyg, the limit on
the number of rooms to assign to customers with 6 p.m. holds. The actual
number that are assigned depends on this limit as well as on the number
(SHo) of customers who arrive with valid 6 p.m. hold reservations. In many
cases it is less expensive, to "walk" a customer at 6 p.m. than to do so later
in the evening. Not only is it easier to find an alternative hotel at 6 p.m., the
customer's perception of the inconvenience of being walked is likely to
increase with the time of evening. Because customers with guaranteed
reservations often arrive very late in the evening, it may be prudent to
"walk" some customers who have 6 p.m. hold reservations in order to serve
these late arrivals.

The next decision nccurs after the 6 p.m. hold customers have either
arrived or their reservations have expired. During the period between 6
p.m. and the end of the evening, the hotel manager may receive requests for
rooms from walk-in customers. Because these customers do not have

reservations, there is no penalty, other than foregone profit margin for
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turning them away. MERw(G1, Cwg) represents the decision regarding
Nw, the limit on the number of rooms to give to walk-in customers. The
function Rw(G1,rw,Cwg,Nw) represents the expected profits from the
arrivals of walk-ins and customers with guaranteed reservations, given

that:

1) Cwg rooms remain available after the arrival of the 6 p.rma. hold
guests.

2) rw walk-in customers request rooms.

3) The limit on the number of walk-ins to be given rooms is Nw.
Notice that Nw is constrained to be no larger than the number of available
rooms.

Finally, the function ERG(G1,Cg) represents the expected revenue

from the arrival of guaranteed reservations given that:

1) Cg rooms remain available after the arrival of 6 p.m. hold guests
and walk-ins.

2) Gi guaranteed reservations are booked.

The expectation is taken with respect to Sgo, the actual number of guests
with guaranteed reservations to arrive expecting rooms.

Note that the model allows for different prices for 6 p.m. holds,
guaranteed reservations, and walk-ins, but does not allow for these prices
to vary over time. In practice, hotels often offer discounts in order to
encourage customers to book reservations in advance. If demand for
reservations is sufficiently high, as the target date approaches, these
discounts may be reduced or eliminated. Thus the last customers to book

reservations may pay the same high price as walk-ins. Although our




model assumes that the prices are time invariant, we discuss an extension

to time varing prices in section 12.

In general, the probability distributions for reservation requests and

walk-ins can best be modeled by Poisson distributions. Those for the

numbers of reservations to "survive" from one period to the next are best

modeled as Binomials. However, these discrete distributions a e difficult to

work with. Because most hotels have several hundred rooms, little

accuracy is lost by using continuous distributions as approximations.

When it is reasonable to use continuous approximations, the preceding

model can be re-stated as follows:

MERt(Gt+ 1 ’Ht+ 1 »C) =

M
N 2o (ERY(G ts1H a1, CNGe N} =

M ‘ o
Nau,?‘;; j J;-O MERM(G t’Ht’CY l'ust(rt’stﬁrttﬁtf fort="T,...,1
nd

where:
Ht = Min{rH't , NHt} + SHt , fort =1,...,T
Gt = Min(I'G’t , NGt} + SGt , fort = 1,...,T

Max
MER(G 1,H1,C) = Nuo<C {ERK(G 1,S10,C,Nno))
Nuo<H,

Max | ™ \
= NjosC J RH(Gl,SHo,C,NHo)fs.m(SHo)dSHo‘

NuosHi {Jsipo0
where, as in the dicrete version of the model:
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RH(G1,SH0,C.NHg) = nuNHA - puNugw + MERw(G1,C-Nya) 7.5a
8.t.:. Npga = Min(Nyo, SHo) 7.5b
NHA + Ngw = SHo 7.5¢

MERWG:,Cwa) = NM“ (ERWG1,Cwa Nw))
wsCwa

= Max ’f’ Rw(Gl,rw,ch;,Nw)frw(rw)d"}

NwsCua \ w0 7.13
where, as in the discrete version of the model:
Rw(G1,rw,Cwg,Nw) = twW + ERg(G1,Cwg-W) 7.7a
s.t.:. W = Min(Nw, rw) 7.7b
I
ERG(G1,Cc) = j RG(SGo.CG)fsm(SGo)dSco}
‘ 5Go0 714
where, as in the discrete version of the model:
Rg(Sgg, Cg) = Max: ngNga - pgNgw 7.9a
s.t.. Nga<sCqg 7.9b
Nca + Ngw = Sao 7.9c¢
Nga, Ngw 20 7.9d

In Section 8, we analyze the mathematics of the formulation above. In
Chapter 9 we use the the insights from this analysis and our observations of
what is done in practice to develop heuristic methods for solving the
reservations problem. In Chapter 10, we describe an upper bound on the value
of an optimal solution to the dynamic programming formulation of the
problem. Finally, in Chapters 11 and 12, we discuss the performance of our

heuristics and areas for future research.



Chapter 8: Model Analysis

The dynamic programming formulation in MER{(G¢+1, Ht+1) is not
an easy one to solve. In many practical instances, a single hotel may have
several hundred rooms, and the state space becomes quite large. Although
Ladany (1976) discusses the performance of a total enumeration algorithm
for a similar reservation problem, this approach may not be practical for
managers of large hotels to use on a daily basis.

Rather than attempting to enumerate the discrete random variable
formulation of MER{(G¢+1, Hts1), we have focused our attention on the
continuous random variable formulation. Hotel managers are not often
willing to commit themselves to a single set of parameters for the
probability distributions of reservation requests and survival rates, and may
want to explore several different scenarios before making a decision. The
objective of our analysis is to provide insight int~ the underlying trade-offs
that are involved in the acceptance of guaranteed and 6 p.m. hold
reservations and walk-ins.

Before discussing optimality conditions we will investigate the
concavity of the problem. We will first show that, the expected revenue (ER)
associated with the arrival of customers with guaranteed reservations is a
concave function of the remaining capacity, i.e. the number of rooms which
have not yet been allocated.

Lemma 8.1: ERg(G;,Cg) is non-decreasing and concave in Cg.

Proof: The function Rg(Sgo,Cg) is the solution of a maximization linear
program in which Cg is a constant parameter on the right hand side of a
"less than or equal to" constraint. Thus Rg(Sgo,Cg) is concave in Cg, and,

because a convex combination of concave functions is also concave,



ERG(G1,Cg) is concave in Cg. To see that ERg(G1,Cg) is non-decreasing in
Cg, we observe that for a given realization of Sgg, constraint 7.9 of the linear

program Rg(Sgo,Cq) is less restrictive as Cg increases. QED

Lemma 8.2: The gradient of ERg(G1,C¢) with respect to Cg is as follows:

a [
—[ERG(G 1,.Cag) =(NG + DG)F ;O(CG)
3Cq ] S 8.1

where Fgm(CG) is the probability that Sgo 2 Cg.

Proof: By inspection of linear program Rg(Sgo,Cc¢), shown in equations
7.9a-d, it can be seen that Cg appears only in constraint 7.9b, and that
constraint is binding only for realizations of Sgg that are greater than Cg.
It is also obvious from inspection that when constraint 7.9b is binding,
increasing Cg by 8 will cause the optimal solution vector (Nga,Ngw)* to
change by (5,-8), and the value of the optimal solution to change by
o(ng+pg). Thus, the shadow price of constraint 7.9b is ng+pg. It follows
that the gradient of the expected value of Rg(Sgo,Cg,) is equal to this shadow
price multiplied by the probability that constraint 7.9b is binding. QED

The above result is consistent with the intuition that the expected
profit associated with the arrival of customers with guaranteed
reservations increases as a function of Cg, the number of rooms that are
available for them. However, as Cg increases, the marginal value of an
additional room diminishes until it reaches zero when Cg = G1. In other
words, there is nothing to be gained from having more rooms than there

are customers to claim them.



We are now prepared to begin discussing the optimality conditions

for each of the various stages of the dynammic program.

Claim 8.1: An optimal solution to problem ERw(G1,Cwa,Nw) can be found

at the point:
( .1 T
0 if Cwg < F;m w )
. nG + PG
Nw(Cwa)= ¢ 8.2
/
ST 4
Cwe - Fgm ( w ) otherwise
\ nG + PG

where F:c]m-l(a) = G : Prob{Sgo=G) = .

Proof: It can be shown that ERw(G1,Cwa,Nw) is pseudoconcave. The

proof of this is given in appendix 8A. Thus, the following is a sufficient

condition for Nw" to be a global maximum (Mangasarian, p. 145):

(N + A} ~2 {ERWG1,Cwe N <O,
oNw 8.3

for any feasible direction A.
Before attempting to compute the gradient of Rw(G1,rw,Cwa,Nw),

we observe that the function in equations 7.7a-b is equivalent to:

Rw(G1,rw,Cwa,Nw) = nwrw + ERg(G1,Cwg-rw) for rw< Nw 8.4a
= twNw + ERg(G1,Cwqg-Nw) for riy> Nw 8.4b

To show that condition 8.3 is satisfied at our proposed point, we have:
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f RwG1,rw,CwaNwlf {rw)dr

rwe=0

3 9
BTI;V{ER“’(GI’W’CWG’NW)] = BNW[

= ] ‘nw + a—NaTV[ERG(Gl,CWG'NW)]}/x(PW)d"
rweNw 8.5

Substituting for the partial derivative of ERG(G1,Cwg-Nw) with respect to
(Cwg-Nw) and applying the chain rule:

9 IERWGLrw,.CwaNwl] =
oNw

=I“ {RW - (nG+pG‘F§m(C WG'NW)}y {rw)dr
rWeNwW 8.6

- rospolriOne M} )

We can now substitute expressions 8.2 and 8.7 into the optimality condition
for a pseudo-concave function which is given in equation 8.3. There are two

cases:

w

TG+ PG

CASE 1: Cwg < Fgml( ): from 8.2, N;V(CWG) = (0, and we have:

(N;V(CWG) + A)— %V-UM Rw(G 1,rw,CWG,Nw)f‘{rw)dr}

rw=0

=[0+A]|mw - (ra+pa[FE(Cwol||F5,0) <0 forall a>o. 8.8

where, because the complementary cummulative distribution is a

A Tw

TG*+PG

decreasing function:

<F§m(ng) o Fgm >Cwg.

nG+PG



Note that when Nw*(Cwg) = 0, a feasible direction A must be > 0.

1
CASE 2: Cwo 2 F§_ ( W

: From 8.2, N;v(ch}=ng-F§m'l( W )
G + PG

TG+tPG

and we have:

(NW(Cwa) + 4} ﬁ[ f : Rw(Gurw,Cwo, Nw)f '(TW)er

=[N;,(ch)+A][ W -(chm{ch-N;v(ch)»

[FSW(N;V(C w(;))] =0
nGg+pPG

for all A. 89

Let us consider the intuition behind the the optimal solution to MERw:

* Tw
Ny:
nG+pPG

=Fg, (Cwe-Ny)=(1- Fau[Cwa-Ny ).

This bears a striking resemblance to the optimality condition for the classic
newsboy problem. In that problem, it is optimal to order a quantity of
newspapers such that the probability of a stockout equals the ratio of
backorder costs to the sum of backorder and holding costs. Here, rooms
should be allocated to walk-in requests until the probability of failing to
provide a room to a guaranteed reservation exceeds the ratio: ny, A(ng+pg).
Recall that Cg = Cwg-Nw is the number of rooms that are available for
guaranteed reservations if Nw rooms are given to walk-ins.

In Figure 8.1, we can see that, for a given number of guaranteed
reservations, there is an optimal number of rooms which should be saved

for these guests, Walk-ins should be accepted until the number of



remaining rooms equals this critical value. If the number of rooms
remaining after the arrival of the 6 p.m. hold guests is less than this
critical value, then no walk-ins should be accepted.

We can now investigate the optimality conditions for the problem of
deciding the number of rooms to allocate to customers who arrive with 6

p.m. hold reservations, i.e. problem MER(G,H,).

Optimal number of walk-ins as a function of the number of rcoms
remaining after the 6 p.m. hold customers arrive.

A
Nw(Cwd

TG+PG

Cwa=Fj, a{1 w ) Cwa

Figure 8.1

Claim 8.2: If nw < ng+pH, then the function ERH(G1,SHo,C,NHo) is

maximized with respect to Ny at the point:



(0 if tg + PH - (nG+pG)F§m(C)<O

Npo= ] 8.10

C- chm-l(n H+pH) otherwise
nG+PG

\

Proof: It can be shown that ERH(G1,SH0,C,NHo) is a pseudo-concave
functionof NHo. The details of this proof are provided in appendix 8B.
Thus, the following is a sufficient condition for ERH(G1,SH0,C,NHo) to
attain a global maximum at NHg = NH*:

(N;{ + A) L[ER]{GLSHO,C,N;{)] <0, for any feasible direction A.
dNHo 8.11

As shown in appendix 8B, the gradient of ERH(G1,SH0,C,NH0) with respect

to NHo can be expressed as the following:

¢ Y Tw |
Sco :
TG+PG

—l—q_—-[ ERI“GLSHOvC NHO)]
Ho

CASE 1: Nygo <C-F

(nH +PH- 1th°m{C-NHo-F§Go'l(ngI’)G )))Fé.,o(NHo)

GMM%B
"G’PG
(nc+pc)f F%(C-NHo-rw)f,(rw)dr 27TY +PH - TW
8B.8a
CASE 2: Npo2 C-F§ '[—Y
nG+PG
) c c
m{ ERH(G 1.5H0,C,No)) = {Tt g+pH - 1 G+PG)Fsm(C‘NHO))FsHO(NHO) B b



Suppose that: C < chm-l(nw/(nc+pc)), hence F;m(C) > nw/(nc;+pc). This

condition implies that, regardless of how many rooms are assigned to 6
p.m. hold customers, the optimal walk-in policy (claim 8.1) is to accept no
walk-ins. It also implies that for all Ny = 0, 8B.8b is the relevent gradient
of ERH(G1,SH0,C,NH0). Thus, because F cSo,,(C-NHo) is increasing in Nyo, it
follows that, if ©y + pH - (nc+pG)F§m(C) <0, then expression 8B.9 is less

than or equal to zero for all Ny 2 0, and the optimal solution is NHO* = 0.

Now suppose that: C > chm‘l(nw/(n’(;+pc,)), hence Fgco(C) < rcw/(n(;+p(;).

This condition implies that the number of rooms that will be allocated to
walk-ins depends upon the number that are allocated to 6 p.m. holds. As

noted in appendix 8B, the gradient of ERH(G1,SH0,C,NHo) with respect to
1
NHo is positive for Nygg < C - Fgm (7t w/(n c;+pc)), and is non-increasing for
c 1 . . cie .
NHo2C-Fg, (nw/(nc+pc.)). It follows that the optimality condition in

equation 8.11 is satisfied at the point:

* ¢ JyTH+PH
nGg+pPaG

QED

The intuition of this gradient is the following: Suppose that the capacity of
the hotel is large enough to accomodate all of the customers with
guaranteed reservations. As we begin to allocate rooms to 6 pm hold
customers, we trade off the increased revenue and savings in overbooking
penalties associated with them against the potential lost revenue from
turning away walk-ins. Note that the final term in 8B.8a represents the
expected benefit associated with rooms which we would like to sell to walk-

ins but are unable to because of limited demand. However, as we continue



to increase Ny, we decrease the amount of capacity that is available to
walk-ins and guarantees to the point at which no walk-ins will be accepted.
When this occurs the increased revenue and savings in "overbooking”
penalties from aliocating an additional room to a 6 pm hold is balanced
against the potential lost revenue and overbooking penalty of turning away
a guarantee.

As shown in the preceding discussion, the room allocation problem
on the target day lends itself to mathematical analysis. Under only minor
restrictions, it is possible to derive closed form, optimal solutions to both the
6 p.m. hold and the walk-in allocation problems. Unfortunately, the
reservations acceptance problems that must be solved prior to the target
date are much more difficult to analyze. The inherent difficulty in these
problems arises from the fact that the functional forms of the probability
distributions for state variables G and H; depend upon decisions made in
periods T, T-1, ..., t. In particular, the functional form of the probability
distribution of cancellations (or no-shows) during period t depends upon the
limits that were placed upon accepting reservations in periods prior to t.

Rather than attempting to solve the reservations acceptance problem
analytically or via enumeration, we have focused upon developing
heuristics which can be shown to provide solutions that are near optimal.
In the next section, we describe three heuristics which were developed on
the basis of discussions we held with hotel managers as well as the insight
that we have gained from analyzing the optimal solutions to the room

allocation problems.



Appendix 8A

Claim: ERw(G;, rw, Cwg, Nw) is a pseudoconcave function of Ny.

Proof: In order to prove the claim, it suffices to show that:

For any N, Ny e (O,r"?,ax), where r&ax = sup{rw: flrw)> 0) :
VNERWG1,rw,Cwa N1} (N2-Nj) < 0 implies that:
ERwWG1,rw,CwaN1) 2 ERWG1,rw,Cw,No) 8A.1
A more general definition of pseudo concavity can be found in Mangasarian
(1969). We will show this by demonstrating that the following set:
= (N: N20 and VNERwWG1,rw,Cwa NJ > 0)
is convex. Consider the partial derivative of ERw(G1,rw,Cwg,Nw) with

respect to Nw. Recall from 8.7:

VN ERwW(G 1,rw,Cwa,Nw)| = ﬁ[ERw(G 1w, Cwa,Nw)| =

=[1tw - (RG+PG)FCSGO(CWG‘NW)]'F xc‘w(NW) 8.7

This gradient is positive if and only if:

Tw

> Fgm(ch,-Nw), and F;{Nw) > 0.
TG+PG 8A.2

Suppose that the gradient is positive and this condition is satisfied at two

points: Nw! 2 0 and Nw2 > 0, where Nyl # Nw2. Then for any Ae(0,1):

Tw

> Fg_(Cwe-ANw H{1-ANw?), and Fi [(ANw '+{1-\Nw ¥ > 0.
TG+PG 8A.3

Thus, the gradient is also positive at Nw = ANw! + (1-A)Nw2. It follows
that the set ' =(N: N0 and VNERwWG1,rw,Cwc N)>0) is convex.
QED



Appendix 8B

Claim: If nw < ny+py, then ERH(G1,SHo,C,NHo)) is a pseudo-concave
function of Nyjg.

Proof: To show that ERy(G1,SH0,C,NHo) is pseudo-concave, we must
ectablish that:

For any N1, Ng € (0, Min (C, NH1),
VNERHG1,SH0,C,N1)] [No-Ny] € 0 implies that:
ERH(G1,SH0,C,N1) 2 ERH(G1,SH,C,N2).

We will show this by demonstrating that the following set:
I'=(N: N 2 0 and VWERKG1,S10,C,N)] > 0)
is convex. Consider the partial derivative of ERH(G1,SH0,C,NHo) with

respect to NHo :

B—NE[ ERKG1,S10,C,Nuo)l = Nero { j Ry(G1,SH0,C,Nuolf Sm(SHO)dSHO}

Ho 0

aNHo [ f (TE 1HSHo + MERw(G,,C- SHo))fs,,o(SHO)dSHO]

aNaHO{IH ((“H"'pH)NH puSHo + MERw(G 1, -NH)lf Sm(SHo)dSHo:|

8B.1

] Hl ( 9(C-Nyo) AMERw(G,C-Nio)
TH+PH+

- N HCNr] )fs,.,(SHo)dS HO
8B.2




o 8B.3

Further analysis of expression 8B.3 necessitates that we evaluate the

partial derivative of MERw(G1,C) with respect to C:

Nyy(©)
a% MERw(G 1 ) aaC {f (Ttwrw + ER¢(G 1,C-rw)lf,-{rwﬂrj|

+586 I " [rwNW(© + ERG1O-NR O drwhdr
WaNy (O 8B4

Ny(©
=[ %(nwrw + ERG(G1,C-rw)fi{rw)dr

rw=0

[ e, mdsericlionsel),
ey de-Nwic)
8B.5
=(rc+pa) f - FeofC-rw)fidrw)dr
[ aN(C) ACNWO)| e (2
+l7tw oC +(1tc+pG)FSm(C wl )}——_ 'W(NW(C)) 8B.6

Expression 8B.6 is obtained from 8B.5 by substituting expression 8.1 for the
partial derivative of ERG and integrating with respect to rw. From the
definition of Nw*(C) in Claim 8.1 it is easy to see that :
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e ww | . aNy,(C) fc-Ny(C)
IfC<F  NL(C)=0 =0, and WU
&n w 1 7
(KGWG) aC aC

W aN;,(C)_1 da{c-N;(C))_
» "¢ T T

Otherwise: N;V(C) =C- Fgml(
TG + PG

Thus the gradient of MERw(G1,C) can be expressed in one of two ways:

CASE1: C < Fgm"(—”ﬁ“’—) = & MERw(G1,C)=[ra+pc} F & (C)

nG+PG oC 8B.7a

CASE2: C> Fgm‘l( W ) = 2 MERw(G1,C)=

na+pg) 9F

Nw(C) 1 1tw
s{C-rwlf{rw)dr + nw -F N{(C-Fgo0 ( ))
nG+PG 8B.7b

Using the definition of Nw*(C) in Claim 8.1, it is easy to show that the value

(nc+pc)j

of expression 8B.7b is less than or equal to nyy. We can now substitute
expression 8B.7 and the definition of NW*(C) (equation 8.2) into 8B.3 to
obtain two alternative expressions for the gradient of ERH(G1,SH0,C,NHo):

CASE 1: NHO<C-F°SG°'1( il ):
tGtPG

—{ ERHG1,SH0,C,Nuo)] =
dNHo

(Nti0)

(RH + PH - RWFcnv(C'NHO‘Fém-l(nét_:;G

omchl
-(re+pa) f {"" = Fg{C-Nu,rw)d{rw)dr 2 ny +pu - tw )
8B.8a
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CASE 2: NHozC-Fgm'l( W ):
TG+DG

d c ¢ v
ERu(G1,SHo,C,N = - Fs (C-N N
é_ﬁ;i){ H( 1°H0 Ho)]_ (KH"‘pH (TIG+PG) sco( HO))Fsm( HO) 8B.8b

where the notation: F§x) = 1-Fx(x) is used to represent the complementary
cummulative distribution of random variable X at the point x.

In order to prove the claim, it remains to be shown that the set :
= (NHo: Nho 2 0 and VN, JERHG1,SH0,C,Nuo)] > 0) is convex. Since the
complementary cummulative distribution functions of SHo, Sgo, and rw

L]
are non-decreasing, expressions 8.B.8a and 8B.8b are non-increasing in

1
Nyo. If C< Fgm (nwl(nc+pc)) , then expression 8B.8a is irrelevant for NHo

20. If C2 Fgm.l(nw/(ncﬁ-pc)}, then since nw < tg+ny:

VNud ERHG1,SH0,C,Nno)] > 0, for Ny € {0, C-Fgm'l(ﬂ_»
nG+pPG

At the point :

1 T
Nyo = C-F;m ( w )
nGg+pCc

these expression 8B8.z is exactly equal to 8B8.b. It follows that the gradient
of ER(G1,SH0,C,NHg) is non-increasing in NHg , and the set
F=(N: N 2 0 and VNERHG1,SH0,C,N)] > 0)= (O, Nﬁo) is convex.
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6 Chapter 9: Heuristics

As shown in the previous section, we have very good understanding
of how to manage the reservations process on the target date. Once this
date arrives, the number of outstanding guaranteed and 6 p.m. hold
reservations has already been determined by the number and mix of
requests that have been received and by management's willingness to
accept them. Given these outstanding reservations, management must
allocate rooms to 6 p.m. hold, walk-in, and guaranteed reservation
customers as they arrive.

The first decision that must be made is the maximum number of
rooms to allocate to 6 p.m. held customers. Often it is much less expensive,
both financially and in terms of good will, to walk a customer in the late
afternoon than it would be later in the evening. Not only is it easier to locate
an alternative hotel with availability, the customer is likely to experience
much less discomfort. Thus, in certain situations when hotels are severely
over-booked, they may elect to walk an early arrival in order to reduce the
probability of having to walk some one else later on.

At 6 p.ra., when the unclaimed hold reservations expire, the problem
changes dramatically. Given that there are G; guaranteed reservations
outstanding and that Cyg rooms have yet to be allocated, it is necessary to
decide upon the number of of rooms to make available to walk-in customers.
Note that by limiting the number of rcoms that can be allocated to walk-ins,
this decision implicitly protects rooms for the arrival of the outstanding
guaranteed reservations.

Recall that we can solve this "walk-in" problem optimally. That is,

given that after the arrival of the 6 p.m. holds there are G; guaranteed
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reservations outstanding and there are Cgw rooms available, the optimal

number of walk-ins to accept is as follows:

( 1
0 if Cwg < Fgco W
. TG + PG
NW(C WG) = ﬁ 82
Cwac - Fgool(___@___) otherwise
g nG +DPa

where Fgm'l(a) = G : Prob{Sgo=G) = a.

The intuition behind this result is simple. The marginal benefit from
giving an additional room to walk-ins is the revenue nwy. The expected
marginal cost of not having that room available for later arriving
guaranteed reservations is equal to the probability = Prob(Sgo > Cwg - Nw)
that we will be unable to honor at least one reservation multiplied by the
cost (ng + pg) of doing so. Thus, it is in our interest to accept walk-ins as
long as the probability of failing to honor a guaranteed reservation is less
than nw/(7g + pg).

Under the mild restriction that the revenue from a walk-in be no
greater than the lost reveniue and penalty associated with failing to honor a
6 p.m. hold reservation, we can also solve the 6 p.m. room allocation
problem to optimality. That is, given that the hotel has C rooms and there
are Gj outstanding guaranteed reservations, it is optimal to allocate rooms

to the first NHo* customers to arrive with 6 p.m. hold reservations, where:
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(0 ifty + py - (nc,+pc)F§m(C)<O

Nio= < 8.10

¢ UYTH+PH
L<:.qu,(
no+pa

otherwise

The intuition here is similar to that of the solution to the walk-in problem.
In this case, we are trading off the certain increase in revenue and penalty
savings of allocating a room to an arriving 6 pm hold customer against the
expected cost of not having that room available later to allocate to a
customer with a guarantee. This expected cost is equal to the revenue that
is lost plus the penalty that is incurred by the failure to honor a guaranteed
reservation weighted by the probability that at least one such failure will
occur. With each additional room that is allocated to 6 p.m. holds, we
increase the probability that the number of rooms remaining will not be
sufficient to satisfy all of the guests who arrive with guarantees.

Unfortunately, it is not nearly so easy to obtain optimal solutions to
the problem of placing limits on the numbers of guaranteed and 6 p.m. hold
reservations to accept prior to the target date. The limits on the two types of
reservations must be jointly determined. Since the two types may cancel
and fail to show up at different rates, it is necessary to consider both the
quantity and mix of reservations when deciding upon limits. Since the
probability distributions for the number of customers who show up on the
target date depends upon the number of reservations that have been taken,
it is difficult to determine a closed form optimal solution to the reservations
acceptance problem.

Because of the inherent difficulty of the reservation acceptance

problem, managers rely on "rules of thumb" and "gut feel" to determine
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when to begin refusing reservations requests. The heuristics which we
describe were motivated by the insight which we obtained from analyzing
the room allocation problem as well as from discussions that we held with
managers from two large hotels near downtown Boston, The OMNI Parker
House and The Marriott. During these discusions, it was our objective to
understand the general approach and the "rules of thumbk" that are used te
solve the reservations acceptance problem in practice.

In each of the three heuristics, a target number of walk-ins is
selected. This number represents the number of rocms that are targeted
for walk-ins. It is based upon the size of the premium that a walk-in pays

as well as the distribution function for walk-in requests. The target is as

nR)
Tw 9.1

The intuition of this target is the marginal benefit associated with having

follows:

¢ -1
TargW =F

an additional room for walk-ins is equal to the walk-in rate multiplied by
the probability that demand for walk-ins would be sufficient te fill all of the
rooms made available to them. As we make more rooms available to walk-
ins (increasing TargW), the probability of filling them all (F§,(TargW))
decreases. Since making an additional room available to walk-ins means
forgoing the opportunity to fill it with a reservation customer, the
opportunity cost of doing so is equal to the revenue associated with
reservation customers. The marginal cost and benefit are balanced when
the probability of having to turning at least one walk-in away is equal to the
ratio of the two fares.

The first heuristic for setting limits on the numbers of guaranteed

and 6 p.m. hold reservations to accept in period t is simple. Let us define
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ETrG¢ to be the expected total number of requests for guaranteed

reservations in periods t,...,1. Recall from the model of the problem that is
described in chapter 6 that there are Gy, and H;, 1 reservations booked at

the beginning of period t. The decisions NGt and Ny are the maximum

numbers of guaranteed and hold reservations to accept during period t:

H1(Gt+1, Hr41):

1. Calculate TargW using expression 9.1.
2. Set TargR = C - TargW.

3. Calculate ETrG; = E[rgt + ... + rg1l.
4a. If Gui1- Haeco] + Hea- Hapo] 2 TargR,

Then NGt = NHt =0.

4b. Else:
Ng; = TargR - Gs1- Haco] - Hevr- Hano]
Hqeo] ’
Npt = Max{(), TargR - (Gt + ETrGy) Haeo] - Hu- Flaso]|
E qHo)

Steps 1 and 2 must be calculated only once. Steps 3 and 4 must be calculated
in every period. The condition in step 4a is that, if there are no
cancellations prior to the target date, the expected number of rooms that
will be filled with reservation guests is at least as high as the target. Thus
no reservations will be accepted in the next period. If the condition in 4a is
not met, then guaranteed reservations are accepted until the point where
the expected number of rooms that will be filled with reservation guests is
equal to the target. 6 p.m. hold reservations are accepted only to the extent

that the expected future demand (ETrG¢) for guaranteed reservations is
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insufficient to meet the target. Notice that, with the exception of the
targeted number of rooms for walk-ins, all calculations are made using
expected values of the random variables. Also note that although heuristic
H1 considers "no show" rates, it assumes that no one will cancel a
reservation prior to the target date. Although this is consistent with the
"rules of thumb" that we observed in practice, we propose a modified
heuristic, H2, which explicitly considers the effects of attrition, i.e. early
cancellations, upon reservation limits. Let us define EYrGy to be the
expected total "yield" from requests for guaranteed reservations in periods
t,...,1, where yield refers to the number of requests net of cancellations and
no-shows. Also, let qgt (qut) be the probability that a customer with a
guaranteed (6 p.m. hold) reservation does not cancel during period t. The

rule is as follows:

H2¢(Gt+1, Hev1):
1. Calculate TargW using expression 9.1.
2. Set TargR = C - TargW.

t 1-1
3. Calculate EYrG; = E[z (rGtH qci)]
t=1 i=0

t t
4a. IfGrar- [ qoe + Hesrw [] aie > TargR,
10 =0

Then NGt = Nyt = 0.

4b. Else:
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t t
TargR - Gt.1- H qcr - Hear H Qe
NGt = 1=0 =0 ,

t1
I ac
1=0

t

t
TargR - Gie1- H acr - EYrGy - Hyar- H q}ft\
Nyt = Max { 0, =0 = .
t1
IT f

1=0

H2 is identical to H1 except for the fact that it explicitly inflates the
reservations limits to allow for cancellations prior to the target date. The
third heuristic which we consider differs from H2 only in the way in which
TargR , the number of rooms that are targeted to be filled with reservation
customers, is calculated.

H3y(Gt+1, Hev1):

1. Calculate TargW using expression 9.1.

2. Set € such that: Pro C - TargW qoo < C-TargW +¢|= _PG

Hqco) TG+ PG
Set TargR = C - TargW - €.
Steps 3 and 4 as in heuristic H2.

The intuition behind step 2 of heuristic H3 is similar to that of the
standard newsboy problem. The number of rooms targeted for reservations
is deflated until the probability of being unable to honor a reservation is
equal to the ratio of the cost of overbooking versus the sum of the costs of

overbooking plus the lost revenue from an empty room. In step 2 of
heuristic H3, € represents the number of additional rooms that would be

required on the target date in order to provide a service level of pg / (ng +
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pg) if exactly (C - TargW) / E[qgo] guaranteed reservations and TargW
walk-ins were accepted . Thus, after reducing by € the number of rooms
targeted for reservations, the probability of being unable to honor a
reservation reflects the trade-off between the cost of doing so and that of an
empty room.

In order to evaluate the three heuristics that we have described, we
have used Monte Carlo simulation to estimate the expected cost of using
each one. For each reservation acceptance heuristic, we assume that, on
the target date, the optimal room allocation policies (expressions 8.2 and
8.10) are followed. In the following section, we describe a lower bound on
the expected cost of the original dynamic program which models the hotel
reservations problem. This bound serves as a basis for comparison with the
simulation of the heuristics. In section 11, we describe the parameters of

the simulation and discuss the results.
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Chapter 10: An Upper Bound for the Dynamic Program

In order to evaluate the performance of the heuristics, it is necessary
to have an upper bound on the value of an optimal solution to the dynamic
program MER{(Gt+1,Ht+1,C). We present such a bound and show how it can
be obtained by successively beunding the functions: ERg(G1,Cg),
MERw(G1,Cwg), MERy(G1,H,,0),.... MERT(GT4+1,HT41,0).

Before, introducing the upper bound, we will show that the function
RG(Sco,Cq) can be expressed as the optimal value of a linear program. This
result will be used in the subsequent proof.

Claim 10.1: The value of the function Rw(G1,rw,Cwa,Nw) =

twW + ERg(G1,Cwg-W) 7.7a
st: W = Min(Nw, rw) 7.7
is less than or equal to the optimal value of the following mathematical

program:

URw(G1,rw,Cwa,Nw) =

Max twW + ERG(G1,Cwg-W) 10.1a
s.t. W <rw 10.1b
W < Nw 10.1c
W20 10.1d

where the decision variable W represents the actual number of walk-ins to
arrive and receive rooms given that the limit is Nw and there are rw
requests.

Proof: Let W = Min(rw, Nw). Then W is a feasible solution to the
maximization problem in URw(Gi,rw,Cwg,Ny). Suppose that W* is an

optimal solution to this problem. Then:
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URw(G1,rw,Cwa,Nw) = twW* + ERG(G,,Cwg-W*) 2
twW + ERg(G1,Cwe-W) = Rw(G1,rw,Cwa,Nw) QED

Using this preliminary result, we can derive an upper bound on the value

of an optimal solution to MER{(Gt,1,Ht+1,C) by succesively developing upper
bounds for the later stages of this dynamic program.

Claim 10.2: The solution to the following linear program is an upper bound
on the function MERw(G(,Cwg). That is:

MERw(G1,Cwg) £ UMERw(G1,Cwg) =

Erw,SGO[ZW(I‘W,SGO’CWG) =

Max nwNw + ngNcga - pcNgw 10.2a

s.t.. Nw <rw 10.2b

Nw £ Cwg 10.2¢

Nw + Nga - Cwg £0 10.2d

Nga + Ngw -Sgo =0 10.2e
Nw,Nga,Ngw20 ]

10.2f

Proof: Using claim 10.1, we have,
MERWG:1,Cwe)= M8X (ERw(G1,Cwe Nw))
Nw<Cwa

< Max

< Nogouo | EURW(G 1,7w, Cwa, Nw]]

103

We make the following observation:

Max
NugOwg | EM URW(G 11w, Cwe, Nw ]|
Max

<
sE Nw<Cwe

{URw(G1,rw,Cwe,Nw)) 104
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The intuition behind the inequality above is that, in the expression on the
left hand side, the expectation is taken with respect to a single marimizing
value of Nw. In the expression on the right hand side, the maximization
with respect to Ny is performed for each possible realization of the random

variable ry. Similarly, we observe that:

URw(G1,rw,Cwa,Nw)= Max {nwW + ES@[RG(SGO,CWG-W)]}

€3y

sEsm[ Max [rwW + Ro(Sco,Cwa-W)) J

We Qy 10.5

where Qw represents the intersection of constraints 10.1b-d. Substituting

this result into expression 10.4, we have:

MERwG1,Cwa) = Nﬁil (ERwG1,Cwe Nw))

Max
Nw<Cwg

SE'{N&‘Z’L\ s’[vﬁd; " W*'RG(S%CWG’W))]H

Once again, we can interchange the maximization and expectation

<E (URw(G 1LTW, CWG,NW)}J

10.6

functions without changing the direction of the inequality. In particular:

Max JES Max

MERw(G 1,CWG) s EN[ Nw<Cwg \ WeQQ
L S w

[rwW + Rc(sco,cwg-W)}m
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Max
<Eq, {nwW + RG(SGo,CWG-W)}

Nw<Cwa

We Qu 10.7

The maximization that is inside of the expectation in expression 10.7

is equivalent to the following linear program:

ZW(erSG0>CWG) =

Max: nwW +ngNga - pcNaw 10.8a
s.t.: Nw <€ Cwa 10.8b
W<rw 10.8¢c
W < Nw 10.8d
W+ Nga-Cwg <0 10.8¢
Nga + Nogw- Sgo = 0 10.8f
Nw, W, Nga , Negw 20 10.8g

Finally, we observe that for any optimal solution to 10.8a-g, we can set Nw =
W without affecting either its optimality or feasibility. Thus, after
eliminating the unnecessary constraint 10.8d, and substituting Nw for W

everywhere, it can be seen that the above linear program is equivalent to the

one in the claim. QED

Before proposing an upper bound for the function MERy(G1,H;,C), we
prove the following claim:
Claim 10.3: For Ny < C, the function:
RH(G1,5H0,C,NH0) = tHNHA - pHNHW + MERW(G1,C-NHA) 7.5a
s.t.. NHa = Min(NHg, SHo) 7.5b

NHa + NHW = SHo 7.5¢

is less than or equal to the optimal value of the following mathematical

program:
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URH(G1,Suo(H1),C,NHo) =

Max: THNHA - puNgw + MERw(G{,C-Nya) 10.9a
s.t.: Nya £ Npyo (£ C) 10.9b
Nua + Nygw = Spo 10.9¢
NHA , Nuw 20 10.9d

where Ny4 is a random variable representing the number of customers
with 6 pm hold reservations who are assigned rooms. It is dependent upon
SHo , the number of 6 pm hold customers to arrive, and upon Ny, the limit
on the number that will be allocated rooms. Ngw represents the number
whose reservations are not honored. Note that, in the definition of
URH(G1,SH0(H1),C,NHo), we have shown H; as a parameter of the random
variable Sgg to emphasize the dependency between the riumber of
customers to arrive with 6 p.m. hold reservations and the number of
outstanding reservations. To simplify the notation, we will omit this
parameter in future references to the random variable Sgp.

Proof: Let Nga = Min(Nyo, SHo), and let Ngw = Max (0, Sijo - Nua) for
some realization of the random variable Sgg. This is equivalent to the

conditions 7.5b and 7.5¢. This solution is feasible in 10.9b-d, and the value of
the objective function (10.9a) at this point is equal to RH(G1,SH0,C,NHo).

Thus, the the value of an optimal solution to 10.9a-d is at least this large.
QED

We are now ready to propose an upper bound on MERy(G;,H;,C):

Claim 10.4: The solution to the following linear program is an upper bound

on the function MERy(G,H;,C):

UMERy(G1,H,;,C) =
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ESHO.TW.SGO[ Max nyNHa - puNuw + twNw 9 1gNga - peNaw

10.10a

8.t.: Nw < rw 10.10b

Nya +Nw<C 10.10c

Nya +Nw + Nga<C 10.10d

Nga + Now = Sgo 10.10e

Npa £ Npp (£C) 10.10f

NHA + Nuw = Spo 10.10g

Npo<C 10.10h
Nya,Nyw,Nw,Nga,Negw =0 ]

10.10i

Proof: Recall that MERy(G1,H;,C) represents the maximization of the
function ERu(G1,SH0,C,Nuo) with respect to Nyo, where ERu(G1,Sh0,C,NHo)
is the expectation of the function Ry(G1,Sno,C,Nyo) with respect to Syp.
Using claim 10.3:

Max

MER{G1H1,C)= _ _ {ERu(G1,SH0,C.Nno))

NHozo

M
ax{Esm [Ru(G1,SH0,C.Nno)))

NHoZO

M
< M{EsHO URH(G 1,SH0,C,NHo))}

N"02° 10.11

Interchanging the maximization and expectation functions does not

change the direction of the inequality:

M
MER(G 1,H1,C) < Esy| , —x (URH(G 1,.5H0,C.Nro))

Nl 1020 10.12
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After replacing URy(G1,510,C,Nyo) with its mathematical programming

formulation (equations 10.9a-d), we have:
MERy(G1,H;,C) <

Max|{ M
ESHO[ ax

NHANHwe Qry

(ruNga-puN gw+MERwW(G1,C-Nya))

NHosC
NHo20

Max
<Es, i {nHNHA - puNuw + UMERw(G 1,C-NHA)}
NH
NHo20
NHA.NHWe QprH

Max

y {EHNHA - puNHwW + Erw,Sco[ZW(I'W,SGO»C'NHA)]}
0sC
Nifo=0
NHA.Nuwe Qpy 10.13
where Qry represents the intersection of constraints 10.9b-d, and
Zw(rw,Sco,C-Nna) represents the optimal solution to the linear program
given in equations 10.2 a-f. Once again, we can take the expectation with
respect to rw and Sgo outside of the maximization without altering the
direction of the inequalities: After expanding Zw(rw,Sco,C-Nya) to its

linear programming formulation, we have the result we have sought:

MERy(G1,H1,C) < UMER((G1,H;,C) =

ESHo,rw,Sco[ Max tHNya - puNuwW + TwNw + ngNga - paNew
10.10a

constraints 10.10 b - i. ]
s.t.:

QED.
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With the preceding results, we now propose an upper bound on the
value of an optimal solution to the dynamic program MERT(Gt4+1,HT4+1,0).
Recall that vectors are indicated by bold face notation, e.g.: r; = (rg.,ryy) for
1=1,..,T, and S; = (Sg,,Sy,) for 1 =0,...,T.

Claim 10.5: Let Hy =rp; + Sp(Hui1) and Gy =ra + SalG o) for t = 1,..,T. An

optimal solution to MERT(GT,1,HT+1,C) is less than or equal to
UMERT(GT+1,H74+1,C) , the solution to the following problem:

El'l‘,....rl.!'w.sT.....So[ Max nyNya - puNaw + nwNw + ngNga - pcNgw

10.14a
s.t.:

Npa + Nyy < SHO(HI) 10.14b
Nw < rw 10.14c¢
Nca + Now < SalG 1) 10.14d
Nga + Nga + Ny <C 10.14e
Nya, Nuw, Nga, Negw, Nw 20 ]

10.14f

Note that the expectation is taken with respect to rw and the vectors r; for t =
T,.,1and Sifort=T,...,0.

Proof: Recall the definition of problem MERNGr.1,Hr1,C). If we perform
the maximization with respect to Ngt and Nyt inside of the expectation,

the result is at least as large as MERT(GT+1,HT41,C):

MERMGT+1,HT141,0) =
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Max

Nar N“T{ERT (G T+1,HT+1,C,NGT,NHT)} =

Gt Hra

i z z I\IIERT.l(GT,HT,CYms,r(rT,ST)\
tur=0 Ser=0 Sr=0 !

o e Gra Hra Max
2 o sy endi

{MERT.l(GT, Hr, C)f 1St (I‘T,ST)})
10.15

The intuition of the inequality in 10.15 is that, if we knew in advance the
number of requests and cancellations that would be received during the
forthcoming period, we could make at least as good a decision about the
number of requests to accept as we could in the absence of this knowledge.
By recursively applying this result to MER1 1(G1,HT,C) ,...,
MER;1(G2,H2,C), we have:

MERTNGT+1,HT41,0) <

Max
Z 2 (NGT.NG,I(MER({G I)H].’C)f!‘,s (rT’---ar I:ST’")S l)}
rr,..r1 St,..,S1 \ Nirn N

M
=E-r,..r{m'iz{MERdG LHLO)

8r..8
NHT...NHJ1

10.16
where the bold face indicates vectors: r¢ = (rgt, rat) and S ¢ = (Sgt, SHt), and
the reservation inventories follow the recursive relationship:

Gt = Min{rgt, Ngt) + Sgi(Gts1), fort =1,...,T

Hi = Min(rygt, Ngt) + SHt(Htq1), fort=1,...,T
Note that we have written Gi,1 (Ht+1) as a parameter of Sgt (SHt) to
emphasize the dependency between the number of reservations to survive

until point t and the number in inventory at t+1. After substituting the

upper bound on the value of MERy(G3,H;,C):
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MERT(G 1L HTi ,C) < Eg"l{‘:ﬂ

Nar...Na (UMER{G 1,H1,C))

NHT,...NI,1

S8

{Max

10.17

Recall the definition of UMERy(G1,H;,C) in equations 10.10a-i. It is the

expected value of a linear program that is parameterized by the random

variables Syg, Sgo, and rw. As we have done throughout, we can take the

expectation with respect to these variables outside of the maximization over

Ngrt, Nyr,..., Ne1, N1 without affecting the direction of the inequality in

equation 10.17. Thus, after substituting for UMER(G1,H;,C) we have:

MERNGr+1,HT+1,C) <

Foern Max

91,80 | NGT....NG,1
NHT, - NH32

Max ngNya - puNuw + twNw + ngNga - paNgw
s.t. constraints 10.11b-h

= E';—r-—'gy[Max nHNHA - pHNHW + TwNw + 16Nea - paNew

s.t.:

Gt =Min{rg:, Ng ¢ +Sgy, fort=1,...,T
Hi =Min{rg;, Ny ¢ + Sut, fort=1,...,T

Ngm,....Ngi1,NgT,...,Ng1 2 0
Nw <rw

Nyga + Ny <C

Npga + Nw+ Nga<C

Nga + New = Sco

Nya £ Nyo (£C)

Nua + Ngw = SHo

Nyo<sC

Nua,Naw,Nw,Nga,Nagw 20 ]

}J

10.18a
10.18b

10.18¢

10.18d
10.10b
10.10c
10.10d
10.10e
10.10f
10.10g
10.10h

10.10i



This is the expected value of the optimal solution to a linear program that is

parameterized by the random variables rg¢ and rg¢ (for t = T,...,1), Sgt, SHt
(for t =T,...,0) and rw. It remains to be shown that this value is less than
or equal to the upper bound that was proposed in equations 10.14a-f. We
propose to do so by showing that the expression in the claim represents the
expected value of a less tightly constrained linear program than the one
above.

It is easy to show that, regardless of the values of decision variables
Nht and Ng¢ (t = 1,...,T), the inventories of 6 p.m. holds and guaranteed

reservations will satisfy the following conditions in period 1:

H; = Min{ry, , Ng¢} + Sut <rge+SHt, fort=1,.,T 10.19a
G¢ = Minfrg,, Ngt) + Sgt <rgt+Sgt, fort=1,..,T 10.19b

Thus, regardless of the values of the decision variables (Nyr, ...,NH1 and
NaT, ....NG1), for any given realization of the random variables
representing random requests for walk-ins and reservations, cancellations,
and no-shows, we have that: Sc,o(@ 1) > Sqo(G1) and Sco(ﬁ 1) 2Sgo(Hi) It
follows that expression 10.14b is less restrictive than the combination of
10.18c and 10.1C¢h. Similarly, 10.14c is less restrictive than the combination
of 10.18b and 10.10e.

After substituting these looser constraints, we have the following

relaxation of the above linear program:

Max ngNHa - puNuw + twNw + ngNga - pcNew 10.18a
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s.t.: Nua + Nuw < SulH)) 10.14b

Nea + New < ScdG ) 10.14d
Nw <rw 10.11b
Nya + Ny <C 10.11c
Nya + Nw + Nga <C 10.11d
Nia < Ngo (£C) 10.11f
Npo<C 10.11h
Nua,Nuw,Nw,Nga,Ngw 20 10.11i
NG,T-I:---:NGI»NH,T~1’---aNH1 20 10.20

Note that the decision variables Ngr,...,Ng1,NHT,...,Nu1, and Nyo are now
irrelevant, and constraint 10.20 can be ignored. After eliminating the
redundant constraints (10.10c, 10.10f, and 10.10h), it is easy to see that the

above linear program is equivalent to the one in equations 10.14a-f.

QED

Each of the upper bounds on the various stages of the dynamic
program are based upon inicerchanging maximization with expectation.
When the maximization is performed inside of the expectation function, it
is possible to maximize with respect to each different realization of the
random variables. In other words, if a hotel manager had the benefit of
hindsight and could make all of his reservation acceptance and room
allocation decisions after observing all of the requests, cancellations, and
no-shows, he could make better decisions than he can in real life. The
bound which is described in this section represents the expected value of an

optimal solution to the problem if it were solved with the aid of hindsight.



This bound provides a benchmark against which we can evaluate the
performance of heuristic methods of solving the real problem where
decisions must be made before the random events (reservations requests,
cancellations, and no-shows) have been observed. In the following section
we describe the parameters of a Monte Carlo Simulation of the heuristics,

and discuss their performance.



Chapter 11: Computational Results

In order to evaluate the performance of the reservation acceptance
heuristics that are described in Chapter 8, we used Monte Carlo
simulation. We simulated the performance of each heuristic in an
environment in which reservations demand, cancelations, and no-shows
and the number of walkins were random. It was assumed that, on the
target date, the optimal room allocation policies were followed. By
measuring the hotel profits over a series of repeated simulations of this
environment, we were able to obtain statistical estimates of the expected
costs of using each heuristic.

We also used Monte Carlo simulatien to determine a statistical
estimate of the upper bound. Recall that the upper bound is the expected
optimal value of a linear program in which the coefficients in the right
hand side of the constraint matrix are random. We "estimated” this
expected optimal value by repeatedly generating realizations of the random
coefficients and solving the resulting linear programs. This "estimate” of
the upper bound on the expected revenue of an optimal solution to the
original dynamic program provides a benchmark against which we can
evaluate the performance of the heuristics.

In the Monte Carlo simulations, we assumed that in each decision
period prior to the target date, the numbers of requests for 6 p.m. holds and
guaranteed reservations are drawn from Poisson distributions. On the
target date, the number of requests for walk-ins was also assumed to be a
Poisson distributed random variable. We assumed that both no-shows and
cancellations of reservations are drawn from Binomial distributions.

Given the assumption that each customer acts independently, these
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distributions are intuitively appealing. Their use is alsc common in the
literature. For example, Alstrup et. al. claim that the sales of airline
tickets follow Poisson distributions while cancellations and no-shows follow
Binomials. Rothstein (1974) defends the validity of these distributions for
modeling hotel reservations processes, and uses them to test his results.

We developed our tests on the basis of discussions with the
management of a Marriott Hotel near downtown Boston. The parameters
that we used approximate those at this hotel. The target dates which
present the management of this hotel with the most difficulty are the ones
for which there is considerable uncertainty regarding demand, i.e. Friday,
Saturday, and Sunday. Because of the uncertainty, a large number of
discounts are made available, and the average price paid by a customer
with either a 6 p.m. hold or a guaranteed reservation is about $100 versus
$150 for a walk-in. The cost of failing to honor a reservation before 6 p.m. is
$100 versus $250 later in the evening. Although a large component of these
costs represents intangibles, the sustantial difference between them can be
explained by the fact that prior to 6.pm., it is often possible to re-locate a
customer to another downtown Marriott. By attempting to re-locate
customers prior to the point when there are no more rooms available, the
hotel affords itself the luxury of offering several cuastomers the option of re-
locating. It is not uncommon to be able find someo::ic who is quite receptive
to spending a free night at an alternative hotel. Alternatively, when the re-
location occurs later in the evening, and customers are given no option, it is
usually perceived as a far greater inconvenience.

For the purposes of the simulations, we assumed that there are four
decsion points prior to the target date, and that the length of the intervals

between decisions is chosen such that that the expected number of
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reservation requests is the same in each of the four periods. For our base
case scenario, we assumed that the probability distributions have the

parameters given in Table 11.1:

4 70 40 - 9 9

3 70 40 - 9 9

2 70 40 - 9 9

1 70 40 - 9 9

L 30 9 5
Table 11.1: Scenario A

The first column in Table 11.1 is the number of periods that remain before
the target date. The second, third, and fourth columns contain the expected
number of requests for guaranteed reservations, 6 p.m. holds, and walk-ins
in each period. Note that no requests for reservations are made on the
target date, and that requests for walk-ins occur only then. Columns five
and six contain the probability, qgt (qut) that a given guaranteed (6 p.m.
hold) reservation that is held at the beginning of period t will not cancel
before the end of period t. Recall that on the target date, period 0, a
cancellation is equivalent to a no-show.

The cother scenarios that we tested were variations on this base case.
The parameters of these scenarios are given in Appendix 11A. In scenario
B, the expected number of requests for guaranteed reservations in each
period leading up to the target date was 100 instead of 70. In scenario C,

this parameter was 40. In scenario D we returned the expected demand for
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guaranteed reservations to the base case level, but increased the expected
number of requests for walk-ins to 60.

For each of these scenarios, we ran 500 iterations of the heuristics.
By taking sample averages over the 500 iterations, we obtained statistical
estimates of the expected costs of using the heuristics in each of the four
different conditions. These estimates are presented in Table 11.2 as
percentages of the upper bound. The standard deviations associated with
these estimates is roughly .1%.

Recall that the calculation of the upper bound is itself a statistical
estimate of the expected value of a linear nrogra:a in which the right hand
side coefficients are random variables. This estimate is also based upon 500
generations of the random variables, and has a standard deviation of

roughly .1%.

Scenario H1 H2 H3 Upper Bound
A 94.5% 97.3% 97.3% $31,262
B 93.3% 97.1% 97.3% $31,496
C 99.9% 99.9% 99.9% $23,646
D 94.7% 96.8% 96.8% $32,978

Table 11.2: Revenue of Heuristics as a % of the Upper Bound

It can be seen in Table 11.2 that H2 and H3 perform much better than H1 for
scenarios A, B, and D. Since H1 does not consider the effects of reservation
attrition, i.e. cancellations prior to the target date, it tends to accept fewer
reservations in the planning periods furthest from the target date than do
the other heuristics. As should be expected, all three heuristics perform

very well for scenario C. In this scenario the expected demand for rooms,
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net of cancellations and no-shows, is very low, and nearly everyone who
wants a room receives one. Thus, hindsight is of little benefit, and the
performance of the heuristics is very close to that of the upper bound.
Using expected revenue as a measure of performance, heuristic H3
ofiers only marginally better performance than H2. In an attempt to
further differentiate these heursics, we considered another measure of
performance: the frequency with which at least five reservations cannot be
honored. Although the hotel managers with whom we spoke indicated that
their primary concern is maximizing revenue, they are also concerned
about being unable to honor large numbers of reservations because of
overbooking. If we consider the likelihood that a large number of
reservations cannot be honored, then H3 looks more attractive. Table 11.3
contains the number of target dates out of 500 in which at least five
customer reservations could not be honored. Although by this measure, H1
dominates the other heuristics, the expected revenue from using it
indicates that it might be too conservative. However, H3 has expected
profits that are comparable to those of H2, and simultaneously results in

fewer occasions in which large number of reservations cannot be honored.

Scenario H! H2 H3
A 8 44 42
B 1 61 44
C 0 0 0
D 13 49 43

Table 11.3: Occasions (out of 500) in which at least 5
reservations could not be honored.
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To test the robustness of the heuristics with respect to the probability that a
customer with guaranteed reservation will fail to show-up on the target
date (1 - qgo), we performed a series of tests in which this probability varied
between .05 and .3. Because we wanted to focus our attention on the effect of
increased variablity rather than decreased total demand for rooms, we also
adjusted the parameters of the requests for reservations. In particular, we
adjusted the parameters for reservations requests so that the product of the

expected number of requests and probability that in each test.:
T t1
2. (E{ra]' IT ac
t=1 =0

where Kg is a constant (= 216.657). For example, for qgo = .75 instead of .90,

=Kg

the expected number of requests for guaranteed reservations in each period
prior to the target date was 84 instead of 70. The results of these

simulations are presented in Table 11.4 and 11.5:

1-qGo H1 H2 H3 Upper Bound
.05 94.5% 97.8% 97.8% $31,250
.1 (Base Case) 94.5% 97.3% 97.3% $31,262
.15 94.5% 97.0% 97.1% $31,289
2 94.7% 96.8% 96.9% $31,237
25 94.9% 96.5% 96.7% $31,201
3 94.7% 96.5% 96.7% $30,246

Table 11.4: Revenue of Heuristics as a % of the Upper Bound
It is interesting to observe in Table 11.4 that the heuristics performance

relative to the upper bound does not seem to be adversely affected when the

prabability that a guaranteed reservation will show-up decreases.
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However, in table 11.5, it can be seen that, for H2 and H3, the

frequency with which at least 5 customers must be re-located increases

qG0 H1 H2 H3
95 2 26 24
9 (Base Case) 8 44 42
.85 2 60 56
.8 6 67 56
75 5 88 73
7 3 79 63

Table 11.5: Occasions (out of 500) in which at least 5
reservations could not be honored.

with the no-show probability (1 - qgo) for a guaranteed customer. However,
this frequency does not seem to increase as quickly for H3 as for H2. For a
guaranteed reservation no-show probability of 1 - ggo = .05, H3 results in 8%
fewer occasions with at least five customer re-locations than H2. For 1 - qgo
= .3, H3 results in 20% fewer occasions.Note that, regardiess of the no-show
probability for guaranteed reservations, H1 results in very few occasions
where large numbers of customer reservations cannot be honored.
However, it achieves this at the expense of expected revenues by turning
away large numbers of reservations.

Although heuristics H1, H2, and H3 all perform well with respect to
the upper bound under a variety ot of conditions, H2 and H3 perform
consistently better than H1. This advantage results from the fact that H2
and H3 consider the effects of cancellations prior to the tai"get date, while
H1 considers only no-shows in determining the number of reservations to

accept. H3 is slightly more sophisticated than H2 in that it adds a safety
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factor into the number of rooms targeted to be filled with reservations
customers. This safety factor is based on the trade-off between the lost
revenue of an empty room and the penalty for overbooking. Although the
performance of H3 was only slightly better than that of H2 in terms of
expected revenue, it resulted in substantially fewer occasions in which
large numbers of customers had to be re-located because of overbooking. By
this latter measure, its advantage over H2 increased as the show-up

prabability for the guaranteed reservations decreased.

131




Appendix 11A

t Elrgl Elryl Elrwl _qa ___QH
4 100 40 - 9 9
3 100 40 - 9 9
2 100 40 - 9 9
1 100 40 - 9 9
0 e 30 9 5
Table 11.6: Scenario B
t Elrgl Elryl Elrwl qz  qQH
4 40 40 - 9 9
3 40 40 - 9 9
2 40 40 - 9 9
1 40 40 - 9 9
L 30 9 5
Table 11.7: Scenario C
t Elrgl Elryl Elrwl qz  aH
4 70 40 - 9 9
3 70 40 - 9 9
2 70 40 - 9 9
1 70 40 - 9 9
L 60 9 5
Table 11.8: Scenario D
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Chapter 12: Discussion N

The problems that arise in the hotel industry as a resuit of the
uncertainties associated with room reservations are both interesting and
complex. Although there are obvious similarities between these "yield
management” problems and the ones faced by the airline industry, there is
also an interesting parallel with the problems that arise from random
yields in manufacturing.

In manufacturing, there is often uncertainty as to the fraction of a
production batch that will conform to the customer's specifications. Lot
sizes should be determined so as to minimize the expected costs of
backorders (or lost sales) and of holding inventory. In some cases, different
customers require different levels of performance, and the individual units
in a given production batch can be classified and sold as different products
on the basis of performance. In such cases, known as co-production, it may
also be possible to downgrade, i.e. to satisfy a customer with a product that
meets a higher specification than he requires. Thus management must
make two types of decisions: lotsizing and product allocation decisions.

In the hotel industry, management attempts to maximize the
revenues associated with a future target date by accepting and refusing
requests for an assortment of types of reservations. Based on the prices and
probabilities of cancellations or no-shows that are associated with the
various types of reservations, it may be desirable to restrict the sales of
certain types. The problem of determining limits on various types of
reservations is similar to the one of determining lot sizes in
manufacturing. In both environments, a lot size (reservation limit) is

selected in order to balance the expected costs of inventory and backorders
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(empty rooms and overbooking penalties). However, because the number of
reservations depends upon demand, a hotel has much less control over
reservations than a manufacturer has over a lot size.

On the target date of the reservations, rooms must be allocated to
customers as they arrive. Because there are differences in the prices and
overbooking penalties associated with different types of reservations, this
problem is similar to the one faced by managers of co-production processes
when they can down-grade products. The analogy is even closer when
hotels have more than one type of room.

One of the objectives of this thesis is to bring some of the expertise
which has been developed in the manufacturing environment to bear upon
the hotel reservations problem. Based on interaction with the
managements of two hotels near downtown Boston, the OMNI Parker
House and the Marriott, we focused our efforts on one dimension of the
overall problem that has not, to our know'edge, been studied previously.
The particular problem which we have studied arises from the fact that
rooms must be allocated to customers as they arrive throughout the target
date. In other words, management must begin allocating rooms before
observing the number of no-shows. Note that this contrasts sharply to the
situation in the airline industry where all of the no-shows are observed
prior to the boarding of the airplane.

To facilitate our study of this dimension of the prcblem, we have
identified three distinct types of customers, those with 6 p.m. hold
reservations, those with credit card guarantees, and walk-ins. We assume
that there is only one type of room and that reservations are for single night
stays. The model that we propose is a stochastic dynamic program in

which the stages are the time periods prior to a target date, and the states
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are the numbers of booked guaranteed and 6 p.m. hold reservations. The
final two stages of the dynamic program represent the allocation of rooms
to the customers as they arrive.

After providing optimal solutions to the final stages of the dynamic
program, i.e. the room allocation problems, we suggest heuristic methods
of solving the reservations acceptance problems in the earlier stages. The
heuristics are based upon both mathematical analysis and the interaction
we had with the managements of two large urban hotels. In order to obtain
a benchmark against which to evaluate the heuristics, we derive an upper
bound on the value of an optimal solution to the dynamic program. Firally,
we evaluate the performance of the heuristics using Monte Carlo
simulation.

Although all three of the heuristics for reservations acceptances
perform well relative to the upper bound, two of them (H2 and H3) stand
out. All three heuristics set a target number of rooms to be filled with
customers with reservations as opposed to walk-ins. H1 limits the
acceptance of reservations based on this target and the probability that a
reservation will fail to show-up. However, the better heuristics (H2 and H3)
also factor in the probability that reservations will cancel prior to the target
date. As a result, they they tend to accept more reservations than does H1.

The performances of H2 and H3 were comparable in terms of
expected reverue. Even in the worst cases that we tested, both heuristics
resulted in expected revenues that were about 97% of the upper hound.
However, H3 resulted in fewer occasions in which there were at least five
re-locations, i.e. customers who had te be re-located to another hotel
because their reservations could not be honored. For a no-show probability

of .05, H2 resulted in at least five re-locations on 5.12% of the simulated
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target days, compared to 4.8% for H3. This advantage became more
pronounced when the probability of no-shows increased. For a no-show
probability of .3, H2 resulted in at least five re-locations 15.8% the simulated
target days, versus 12.6% for H3. The difference between the performance
of these two rules can be attributed to the fact that H3 reduces its
reservation limits by a "safety margin" that is based on the trade-off
between the lost revenue from an empty room against the penalty for
having to re-locate a customer whose reservation cannot be honored.

These results represent an encouraging first step in the study of an
interesting dimension of the hotel reservations problem which has not, to
our knowledge, been studied previously. The most obvious dircction for
future research would be to extend these results to cases that are not
covered by our two most restrictive assumptions, i.e. one type of room, and
only single mght stays. We conjecture that the room allocation problem
could be solved for multiple room types using a decomposition approach.
For example, we might consider the capacity of each type of room as a
separate "mini-hotel”. When the allocation problem is solved for room type
1, reservations for other room types would be treated similarly to the way
that walk-ins are treated in the single room type model. Clearly, such an
extension would add a great deal of complexity to the model. As such, it
should be incorporated into the model only if doing so facilitates insight into
the underlying real-world problem.

It has been the objective of this thesis to develop practical approaches
to problems that arise as a result of uncertainty in two surprisingly similar
environments: semi-conductor manufacturing, and hotel reservations. In
each case, the problems can be modeled as stochastic dynamic programs.

By analyzing the mathematics of these models and interacting with
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practitioners, we develop heuristic methods of solving the problems. T::en,
using the intuitive concept that an omniscient decision maker can do at
least as well as one who must make decisions prior to observing random
outcomes, we develop bounds on the optimal values of these programs.
Using these bounds as benchmarks, we show via Monte Carlo simulation
that our heuristics perform well.

Although a great deal of quantitative research has been performed
with respect to manufacturing industries, there has been surprisingly little
done in the services. Thus, our original intent was to bring manufacturing
expertise to bear upon a problem in the service industry. We were
surprised to discover that the benefits went in both directions. By
simultaneously studying two related probleins, that arise in very different

environments, we were able to gain a deeper understanding of each one.
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