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ABSTRACT 

Improving efficiency and sustainability in logistics and transportation has been a strategic priority 

for companies and countries as they compete in the era of globalization. However, how to optimize the 

container transportation and improve container turnaround has become an increasing challenge for the 

industry, especially in the growing trade imbalances and more frequent disruptions. To overcome this 

challenge, container triangulation offers remarkable opportunities to the carriers to reduce the 

transportation of the empty containers, and therefore, improve the turnaround. Container triangulation 

can be identified as the reuse of the import containers for export. Despite a number of potential benefits 

of container triangulation may offer, it is challenging to scale-up in China due to the fragmented market 

and the lack of accurate location data. To focus on this challenge, this research investigates the 

digitalization of container triangulation as an alternative solution, where matching decisions are 

automated in a digital platform. This research examines the current process and challenges of automating 

container triangulation in China for Maersk and explores how to optimize and accelerate this solution. 

With this motivation, we conducted expert meetings, analyzed data, and applied machine learning 

algorithms and mixed-integer linear programming to enable container triangulation routing optimization 

on the company's digital platform. The result showed a trucking cost savings from 11% - 14%, a 

transportation lead time reduction from 8% - 10%, and a reduction in CO₂ emissions from 8% - 10%. 

However, the savings would be further reduced with more restrictive conditions for execution. To scale 

up the solution, we recommend the cooperation of different parties of the container transport industry 

to share the incentives and adopt the digital solution. 
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1 INTRODUCTION 

1.1 Introduction and Motivation 

Along with China’s strong economic growth in the past four decades, the inefficiency in its 

logistics industry has become a severe problem. China's Gross Domestic Product (GDP) growth is 

one of the most studied economic cases given its constant and rapid growth since the late 1970s, 

and it is becoming the world’s second largest economy. Its rapid economic growth, called the 

"China Miracle," is the consequence of several factors, such as globalization, urbanization, and 

international trade, with logistics playing a fundamental role in all of them (Zhang and Cheng, 

2009). However, China’s logistics expenses to GDP represented 14.6% in 2017 (Statista, 2020). 

Although China has cut logistics spending by 18%, it remains below developed countries. 

 Remarkable promotion of logistics efficiency improvement and cost reduction has become 

an ongoing effort for the Chinese government (PR Newswire, 2019). Duzbaievna Sharapiyeva et 

al. (2019) stated that creating port infrastructure and logistics efficiency could lead to a positive 

impact on China’s GDP. China and its neighboring regions could increase their per capita GDP 

growth by 7-8% by increasing port's performance by 1% (Duzbaievna Sharapiyeva et al., 2019). 

Based on Seabury’s customs database in 2019, total import into China was 14.8 million TEUs and 

export from China was 47.5 million TEUs. Additionally, Seabury Consulting forecasts that total 

import and export will grow to 16.8 million TEUs and 54.0 million TEUs up to 2023, respectively 

(Seabury Consulting, 2020).  

Another critical issue for China is that the economic growth has been accomplished at the 

expense of sustainability and energy consumption. China is the country that emits the most CO₂ 
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in the world with 10.06 metric gigatons, representing 28% of global greenhouse gas emissions. 

This is 185% and 380% of the emissions from the United States and India, which are in the second 

and third positions, respectively (Union of Concerned Scientists, 2008). In its ‘Made in China 2025 

blueprint’, China has set an ambitious target to decrease CO₂ emission intensity by 22% in 2020 

and by 40% in 2025 compared to 2015 (MADE IN CHINA 2025, 2016., p. 19). On September 22, 

2020, in the UN virtual General Assembly, China committed to limit greenhouse gas emission by 

2030 and become carbon neutral by 2060 (China Pledges to Be Carbon Neutral by 2060, n.d.).  

Along the same line, energy consumption in the China’s logistics industry has been 

exponentially increasing in the last decade, having an annual rate of increase of 5.2%, as depicted 

in Figure 1 (Liu et al., 2020). Recently, the transportation sector stands out in terms of CO₂ 

emissions, representing 20-25% of the global emissions, with road transport accounting for 74% 

of transport total emission (Berg & Langen, 2017).  
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A new challenge is the unexpected disruptions such as the outbreak of the COVID-19 

pandemic. The global shipping industry has been experiencing unexpected crisis of container 

shortage.  It started in the first quarter of 2020 and is still expected to last until the end of 2021. 

One of the reasons of the container shortage is that containers are being shipped from Asia to 

USA or European countries, but they are not returning to Asia due to the COVID-19 restrictions 

and port congestion in those countries. Another reason is that the severe gap in the container 

supply still exists during COVID-19, even with the container manufacturers in China increasing 

the production capacity. Hence, how to shorten the turnaround time for containers and alleviate 

the shortage has become a burning question for the shipping industry.  

Figure 1 

The logistics-related energy consumption of China’s three regions during 2007-2016 

Adapted from:  The logistics-related energy consumption of China’s three regions during 2007-2016. (Liu et al., 2020) 
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In recent years, companies in almost all industries, including transportation, have conducted 

several initiatives to explore new digital technologies and data-driven solutions to diminish 

inefficiencies. Potential benefits are manifold and include increases in sales and productivity, 

with the usage of data mining, automatization of processes, prescriptive algorithms, and many 

others with the purpose of acceleration decision-making (Matt et al., 2015). For inland container 

routes, digital solutions can help accelerate the allocation of import and export demand, 

potentially increase utilization by reducing container downtime and distance traveled compared 

to current processes, explained in Section 1.2. 

Maersk is an integrated container logistics company, a member of the A.P. Moller Group with 

the headquarter based in Copenhagen. The company has three strong businesses – Ocean, 

Logistics & Services, and Terminals. With presence in 130 countries over 80,000 employees, 

Maersk is representing 20% of the global container shipping market share. The company has 

started the digital transformation journey since 2016 to become the global integrator of 

container logistics. With its digitalization strategy to drive competitive advantage, the company 

already launched several digital products in the market. As one of these digital products, the 

company is now developing a digital platform to improve service and communication between 

all parties. This platform allows the company to collect relevant information within the container 

transfer process such as the customer bookings through the platform and the detection of 

damage through photographs to determine if a container needs repair or not. Maersk is also 

committed to environmental sustainability and aims to generate net zero CO₂ emissions from its 

operations by 2050 (Maersk Annual Report 2019, 2019). 
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Digital solutions can be developed to reach a totally new level of creating systems with high 

reliability and efficient operations without any physical effort such as the actual process for the 

allocation of containers for importers’ and exporters’ orders (Efimova et al., 2020).  How can a 

digital platform solution match millions of import containers and reuse them for export in China? 

This research project investigated the current process and challenges of automating container 

triangulation in a digital platform for Maersk in China.  The transportation cost, lead time and 

CO₂ emissions of executing container triangulation were evaluated, using technological 

capabilities, such as Machine Learning (ML) or Mixed Integer Linear Programming (MILP).   

1.2 Problem Statement and Objectives 

Maersk’s process of handling import and export containers consists of six steps as illustrated 

in Figure 2: 1) a trucking supplier collects import laden container from the port and delivers it to 

the importer’s facilities; 2) the trucking supplier returns the empty container to the port or depot 

after cargo unloading at importer’s premise; 3) the container is inspected and cleaned or repaired 

if it is dirty or damaged; 4) more empty containers are positioned by shipping company to the 

port or depot due to the imbalance of imports and exports in China; 5) a trucking supplier picks 

up an empty container from the port or depot and delivers to the exporter’s facilities; and 6) the 

trucking supplier returns the laden container to the port after cargo loading at exporter’s premise. 

In above steps 2 to 5, a depot for empty containers can be located outside the port area, ideally 



   
 

 13 

in locations minimizing the cost of storage, handling, and transportation from importers to 

exporters.  

 

In order to improve the container turnaround and optimize the container transportation 

routing, a solution can be designed to reuse the import containers for export, matching the needs 

for importers and exporters. This process is called “container triangulation” as illustrated in 

Figure 3, the process includes: 1) a trucking supplier picks up import laden container from the 

port to the importer’s premise for cargo unloading; 2) the trucking supplier sends the empty 

container to the exporter’s premise after following a digital process for container inspection and 

3) the exporter loads the cargo, the laden container is returned to the terminal for export. This 

solution would reduce total truck trips and distance as well as lead times. As a result, different 

parties in the supply chain get benefit from this solution. For the importer and exporter, the total 

trucking cost is reduced, the container turnaround time is shortened. For Maersk, the asset 

Figure 2 

Current process of import & export  

 

Pick up import laden container

Importer

Exporter

Port
or

Depot

Return import empty container

Pick up export empty container

Return export laden container
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utilization is improved. For all parties involved, the greenhouse gas emissions decrease as the 

trucking distance is reduced. 

 

 

Maersk tested the container triangulation with a pilot project for 50 containers in China. 

However, it is hard to scale up the volume for container triangulation. These are the typical 

challenges: 1) the importer and exporter normally contract their own trucking suppliers, while 

Maersk’s own trucking suppliers should be used in container triangulation to ensure the safety 

of the container asset; 2) it is difficult to reach customers (importers and exporters) as there are 

several intermediaries between the ocean carrier and the customer; 3) reusing the import 

container for the export depends on the inspection result, and (4) matching of time and location 

for both parties. To resolve the inspection issue, Maersk has developed a digital platform applying 

artificial intelligence (AI) and machine learning (ML) to provide feedback to the trucking suppliers. 

Figure 3 

Future process with container triangulation 
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Based on nine pictures of the container taken by the trucking suppliers, the digital platform tells 

whether the container is sound and seaworthy for export with accuracy level at 94%. 

As for the location and time matching, it is not practical to just have location data at city levels. 

Accurate location data down to the street or county level is needed. Currently, this level of 

location data is input into the digital platform by customers case by case; hence, Maersk is not 

able to scale up with more customers to use this digital platform for container triangulation, and 

predictive analysis cannot be performed to plan the match in advance due to lack of accurate 

location data.  

With this motivation, the objective of this research project is to investigate this real-life problem 

for Maersk and develop a proposal for investigating the scale-up of a container triangulation 

digital platform in China and evaluation of the tangible value of saving in cost, time, and CO₂ for 

Maersk and its customers and suppliers. The geographical scope is based on China with a 

container flow outlined in Figure 3 with two years of data. The main deliverables of this project 

cover an exploration of the current global state in relation to the use of container triangulation. 

We studied how an algorithm can be modeled to suit the current situation in China. The approach 

for automating the container triangulation digital platform was examined as: 1) matching the 

demand between importers and exporters; 2) clustering customers’ locations through machine 

learning algorithm and; 3) a route optimization model to obtain and quantify the savings of 

container triangulation. Finally, the study includes an in-depth discussion on the challenges to 

strengthen the model and the next steps required to improve the results, and our 

recommendations and insights for the implementation of the container triangulation on the 

digital platform. 
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2 LITERATURE REVIEW 

This chapter explores the challenges and solutions for container triangulation in the logistics 

and transportation industry outside of China, as a digital solution that can be rapidly scalable in 

China has yet to be found. It also explores previously published work in the literature on topics 

relevant to developing a container triangulation solution and digital transformation in the 

transportation industry. It outlines the types of digital platforms developed to solve this problem 

and methodologies and algorithms applied to improve the matching rate of container 

triangulation. It describes the scope of similar problems, how they are solved, and their results 

and impacts. Finally, it also discusses the gaps in previous research and current solutions available 

in the market and what this research project contributes to the container triangulation solution 

proposed. 

2.1 Digital transformation in the logistics industry 

The digital age has fundamentally changed the competitive dynamics of industries. With the 

emergence of innovative newcomers such as Amazon and Alibaba (e-tailers), more technology-

supported warehouses and transport have been invested (Cichosz et al., 2018). Crowd logistics 

platforms have also become very popular in the logistics market and had challenged current 

business practices and caught the attention of incumbent logistics service providers (LSPs) 

(Castillo et al., 2018).  

Digital technologies have changed the competitive dynamics of the logistics service industry. 

Companies like Maersk have started upgrading their traditional services towards technology-

supported transportation solutions. To offer a better customer experience with smarter, faster, 

and more sustainable logistics, companies must increase operational efficiency by addressing 
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industry problems such as highly fragmented market, low transparency, underutilized assets, 

costly manual processes, and, in many instances, outdated customer interfaces (Cichosz et al., 

2018).  This new market environment requires the logistics companies to set strategic priority on 

investing in technologies for efficient performance, communication, and data visibility. As 

companies adopt technologies for their internal and external processes, digital transformation 

today becomes a must for better control and management of their new capabilities and 

resources. 

Digital transformation is defined as the adoption of digital technologies towards major 

business improvements, increase productivity and value creation (Fitzgerald et al., 2014). A 

digital transformation strategy facilitates the collaboration of cross functional areas and 

accelerates the pace of business with the connection of systems to get valuable data. It is 

estimated that by 2025 digital transformation of logistics services could grow to $1.5 trillion of 

value at stake for logistics players and have a social benefit equivalent to $2.4 trillion (World 

Economic Forum White Paper Digital Transformation of Industries, 2016). Digitalization strategy, 

as part of a digital transformation, is a vision that the leading companies in the logistics industry 

have adopted and, in the same way, small businesses have found an opportunity by capitalizing 

on the advantages of information technologies (IT). Cichosz et al. (2020) modeled the barriers 

and success factors that logistics service providers (LSPs) have during a digital transformation 

(Figure 4).  
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2.2 Methodology review in developing a digital platform 

Digital platforms can be understood as a digital interface or ecosystem for the exchange of 

information, products or services to occur between suppliers and consumers (Hein et al., 2020). 

Digital platforms combine and deploy new ways to integrate and coordinate an ecosystem of 

supply and demand for a given type of product or service. Another advantage of a digital platform 

is that several stakeholders can interact and share information without the need for a direct 

relationship within the business. For example, Maersk, as the container provider, can be the link 

Figure 4 

Barriers and success factors to digital transformation for LSPs 

LSP's Business Digital Transformation

LSP's Digital Business Value Proposition

- New products / services

- Improved operational processes

- Increased customer experience

- Digital Business models

Success Factors 

• Leadership 

• Supportive organizational culture 

• Aligning business and IT strategies 

• Process standardization and data integration 

• Employee training and skills development 

• Agile transformation management 

• Leveraging internal and external (Technological) knowledge 

Barriers / Challenges 

• Complexity of logistics network and underlying 

processes 

• Lack of resources including skilled resources 

• Technology adoption 

• Resistance to change 

• Data protection and security breach 

Digital maturity 

Digital maturity 

Adopted from Cichosz et al., 2020 
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for coordination between the shipping company, the importer and the exporter. The model 

developed through this project can be integrated into the digital platform created by Maersk. By 

doing so, Maersk can include container triangulation as a new feature inside the platform for a 

better and faster execution of import and export container matching. Additionally, the digital 

platform can facilitate relevant data to company, such as the exact loading and unloading 

location of importers and exporters, respectively. 

For this project, the integration, alignment, and visibility of the main stakeholders is critical. 

Suppliers (trucking companies), products (containers), and customers’ (importers and exporters) 

demand and their characteristics is essential for the efficient execution of containers 

triangulation. In this section, the algorithms necessary to create the matching of all the 

participants through the use of Maersk’s digital platform and its expected result are analyzed. 

With the use of large data and technology, the process of allocation for container demand is 

accelerated and scaled up. 

Technological advances have made it possible to incorporate tools in businesses that were 

previously impossible to manage digitally. Specifically, for the logistics industry, artificial 

intelligence (AI) has become a value-added to solve different business problems. AI is typically 

defined as the ability of a machine to perform cognitive functions that are associated with the 

human mind. Machine learning is one example of technologies that enable AI to solve business 

problems (Artificial Intelligence, 2020). The most recent advances in AI have been achieved by 

applying machine learning algorithms to very large data sets. These algorithms can detect 

patterns and predict or recommend a possible outcome, processing data and improving 
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efficiency results over time and becoming a very powerful tool (An Executive’s Guide to AI | 

McKinsey, 2020).  

For the transportation sector, machine learning as one of AI techniques has been an ally to 

improve efficiency. ML can be used to improve performance over 89% beyond that provided by 

other analytic techniques for Transportation and Logistics (Chui, 2018). As another instance, 

transportation management systems (TMS) can provide predictive analytics for various business 

problems. These systems work with algorithms to identify patterns and guide business 

operations to improve performance and service and predict future trends (Bhavsar et al., 2017). 

An example of the use of predictive analytics techniques is the prediction of On-Time Delivery for 

Coyote Logistics by using logistics regression and resulting in cost reduction (Alcoba, 2017).  

Several studies have investigated the best solution to manage inland loaded and empty 

container movements. One attractive solution for most of the participants in this process is the 

container triangulation, moving containers from importers directly to exporters. As Kuzmicz and 

Pesch (2019) stated, there have been different approaches to find optimization of empty 

container movements using container triangulations (or street-turns), mainly deploying MILP and 

continuous programming (Figure 5).  
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Zhang et al. (2010) proposed a mathematical model using an extension of the Multiple 

Traveling Salesman Problem (MTSP) with time window for expected delivery date. Zhang’s 

approach demonstrates high-quality results for the equivalent truck scheduling and inland 

container movement problem in container drayage operations. Deidda et al. (2008) studied both 

the truck routing problem and the optimization model determining the allocation of empty 

containers between importer and exporter. They compared their results with a real shipping 

company’s practice and showed that their optimization model could produce a significantly 

better solution for the truck routings.  Sáinz Bernat et al. (2016) used new stochastic review 

policies incorporating a realistic allocation scheme for empty container emissions, realistic 

maintenance, and repair options as well as street-turns. Evaluating with a simulation model, the 

results of their analysis shows a reduction of transportation costs in the repositioning of empty 

*Note: Connectainer is a new 20-foot container that can be joined to another connectainer to form a 40-foot container. 

Adopted from Kuzmicz & Pesch, 2019 

Figure 5 

Approaches in empty container repositioning* 

Approaches to empty container repositioning

TECHNICAL 
SOLUTIONS

foldable 
containeres

connectainers

OPTIMISATION

mixed integer 
programming

continous 
programming

stochastic and 
deterministic 

models

assignment 
models

flow models location models routing models
inventory 

control models
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containers. Furió et al. (2013) proposed two different integer programming models to make 

inland empty container assignment under the empty container repositioning with and without 

container triangulation.  Furió et al. (2013) showed that by applying the container triangulation 

strategy, savings reached up to 2% of total costs compared to no triangulation. Braekers et al. 

(2011) attributed this low level of improvement to the procedure’s due to the complexity, the 

participants involved, and discrepancies in time, location, container ownership, and container 

type that the environment has. However, in recent years, attention to this problem has grown 

together with advancing technological developments. Some of those solutions complement the 

approach presented in this project, considering the Maersk’s business model. 

In this project, machine learning is applied with the usage of the 𝑘-Means algorithm. The 

algorithm defines a cluster (group) for each importers and exporters taking their location 

(longitude and latitude) as features (Section 3.2.2). In the second stage of our approach, we 

formulated and solved a Mixed-integer linear programming (MILP) to find an optimal vehicle 

routing model for the planning and allocation of containers. A MILP model consists of a 

mathematical formulation, often used for optimizing the integration of complex industrial 

systems (Vielma, 2015).  For this project, we used MILP model, considering the location of each 

cluster and suggest the optimal route for each order/container. This model aims to minimize the 

distance traveled for each container (Section 3.2.3). By using machine learning and MILP 

algorithms, Maersk can increase the matching rate of container triangulation in China. 

2.3 Current solutions to container triangulation outside China market  

Container triangulation has been in operation for more than 30 years, supported with manual 

processes, which are not easily scalable. Literature provides an extensive body of studies on 
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empty container management and repositioning of empty containers between ports; however, 

on many occasions, the environmental impact is not considered in the literature (Sáinz Bernat et 

al., 2016). In the past decade, several tech startups have been developing a digital solution for 

container triangulation for markets outside China. Today, three large digital platforms are being 

used by multiple shipping lines and transporters globally: Avantida, MatchBox, and MatchLog. 

Referring to Table 1 below, the key characteristics (market, service scope, volume, business 

partners, among others) are summarized based on the expert meetings with Avantida, 

MatchBox, and Matchlog (personal communication, October – November 2020). According to 

Table 1, MaerskMatch - a digital platform developed by Maersk, was launched in 2020 as a mobile 

application. In its initial phase, it is being used by some of the company’s business partners for 

container triangulation. 
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Avantida by 
E2Open 

MatchBox 
Exchange 

MatchLog MaerskMatch 

Year started 2012 2016 2019 2020 

Markets 
Europe, USA total 26 
countries 

Australia, South 
East Asian 
countries 

India only China only 

Service scope 
Marketplace for container exchange, container reuse  
and value-added services 

Container reuse 

Volume 
matched 

3,200 containers per 
month 

Thousands of 
containers per 
month (specific 
number is not 
disclosed) 

2,400 TEUs per month 
Below 50 containers per 
month 

Business 
partners 

Multiple shipping lines, NVOCCs, transporters, depots, Imp and Exp 
customers 

Maersk business 
partners only, e.g., 
contracted 
transporters, depots, 
Imp & exp customers 

Methodology 
used 

Transporters upload 
requests on the 
digital platform with 
map display, shipping 
lines approve 
container reuse or 
exchange with 
manual input on the 
platform. No need 
for AI or machine 
learning algorithms, 
online help is 
provided by country. 
Container inspection 
is done by the 
transporters and the 
exporters 

AI and machine 
learning 
algorithms are 
used, depot 
network is 
optimized for 
container repair or 
exchange, cost 
saving calculator is 
available on the 
platform. 
Container 
inspection is done 
by the 
transporters and 
the exporters 

Transporters upload 
booking details on the 
platform, OCR is used to 
capture data required for 
the match engine. 
Transporters take video of 
the container status and 
upload to the platform, AI 
and machine learning 
algorithms are used to 
confirm if the containers 
are seaworthy or not. 
Depot network is optimized 
for container repair or 
exchange. RPA is used to 
automate the process 

Customers place 
booking on the platform 
for the match engine, 
Maersk teams manually 
check commodity and 
container off-hire status 
on systems and approve 
container triangulation, 
transporters take 9 
photos and upload to 
the platform, AI and 
machine learning 
algorithms are used to 
confirm if the 
containers are 
seaworthy 

Charge 
mechanism 

Transporters pay the charge for container reuse and or container 
exchange, or large shipping lines choose to pay for subscription fee 

Maersk contracted 
transporters get 10-20% 
discount of the trucking 
tariff 

Learning 
from the 
rollout 

Shipping lines force 
the transporters to 
use Avantida, phone 
calls or emails are 
not accepted for 
booking 

Replicate the 
success in 
Australia to 
Singapore, then 
other South East 
Asian countries 

Key account team is set up 
to ensure customer 
satisfaction, convince the 
partners that data is 
secure, the process is smart 
and highly automated 

Difficult to get 
customers and 
transporters onboard 
the digital platform 

Avatida, Matchbox and MatchLog (personal comuncation, October - November, 2020) 

 

Table 1 

Comparison of different solutions in the markets outside China based on expert meetings 
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Avantida started in 2012, providing a cloud-based, online platform to enable container 

triangulation with container reuse from import to export and container exchange among shipping 

lines or transporters (Avantida - Home, n.d.). It now expands into 26 countries in Europe and USA 

markets, and 3,200 containers are successfully matched monthly. Noticeably AI and machine 

learning algorithms are not used; instead, Avantida provides online help for each country. The 

container inspection process is not automated yet, and it relies on the transporters and exporters 

to do the container survey to ensure that it is seaworthy. The main users are the transporters; 

hence, the key to a successful rollout is to mandate that the large shipping lines use Avantida. 

MatchBox launched its platform in 2016 in Australia and expanded into Singapore and other 

Southeast Asian countries in 2017. AI and machine learning algorithms are used in the match 

engine, and a cost-saving calculator is provided on the platform. They partner with 14 shipping 

lines and 600 truckers (MatchBox Exchange | Better - Faster - Smarter, n.d.). Maersk has been 

partnering with MatchBox since 2016 in Southeast Asian countries only (MATCHBOX Exchange - 

Instant Container Reuse and Exchange Online Platform, n.d.). Similar to Avantida, the container 

inspection process has not been automated yet. 

MatchLog started its operations in 2019 with a focus on India only (MatchLog Solutions, n.d.). 

The platform is designed on RPA (Robotic Process Automation), and OCR (optical character 

recognition) technology is used to capture the data from the bookings uploaded by transporters 

for the match engine to process the result. The container inspection process is enhanced with 

the transporters taking video of the exterior and interior views of the container and uploading it 

to the platform. AI and machine learning algorithms are used to confirm whether the containers 

are seaworthy or not within 13 minutes. MatchLog also sets up its own depots and partner depots 
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to optimize the network for container exchange and repair in India. They are driving the 

automation in the end-to-end process to ensure contactless process enabled by digitalization and 

reduce handover points, especially during the COVID pandemic. 

However, these companies have no presence in China market yet, as there are some entry 

barriers for foreign tech companies to penetrate the Chinese market. Some international services 

such as APIs (Application Programming Interface), SKDs (Software Development Kit) from 

overseas can be blocked by the Great Firewall of China. Hence a successful digital platform works 

in overseas markets might not work in China unless they find a local partner or switch to a local 

platform. 

2.4 Conclusion 

Maersk needs a digital solution that can scale up the container triangulation offering to its 

customers in China. Compared to Avantida, MatchBox and MatchLog with their digital platforms, 

Maersk just launched its digital platform MaerskMatch in 2020, and manual processes are still 

required to check the commodity and container off-hire status in various systems to approve 

container triangulation. The depot network is not yet used to enable a better match for container 

re-use. Business partners are constrained to Maersk customers and Maersk-contracted 

transporters, limiting the scope for the container match.  

 Using the information learned during the literature review, this research project contributes 

to developing a digital transport flow optimization model of the container triangulation process 

in China. Using ML algorithms and a mathematical optimization program to increase decision-

making speed. Additionally, the model provides insight into critical factors to accelerate the 
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import-to-export container match ratio using machine learning, and finally quantifies the 

solution's cost, time, and CO₂ emission savings. 

 

3 DATA AND METHODOLOGY 

 This chapter outlines the key steps to gather the input and build the model to examine how 

to match import container for export in China. As shown in Figure 6 below, at the input stage, 

multiple rounds of meetings were conducted with the experts from the sponsor company, and 

practitioners in the markets covering North America and Europe, India, and Southeast Asia. With 

a good understanding of the problem and experts’ insights, sample data was framed and 

collected from the sponsor company, followed by data cleaning and analysis and geocoding. 

Moving to the model stage, match and clustering algorithms were applied, then a MILP model 

was developed to run the transport flow optimization. Finally, at the output stage, financial 

Figure 6  

Methodology Overview 
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savings and environmental benefits were quantified based on the container distance traveled. 

Recommendations are concluded by combining quantitative analysis and expert advice.  

3.1 Input Stage 

This stage covers expert meetings, data collection and data types, data cleaning, and 

geocoding. 

3.1.1 Expert Meetings 

Experts in trucking, equipment management, and intermodal transports from the sponsor 

company were invited and actively engaged in this research project. The main drivers during the 

meetings were to explain their process and their relationship with the key participants in the 

process (container companies, trucking companies, exporters, importers). The key findings are: 

1) with the digitalization in ports such as the Shanghai port, the paperless process supported by 

e-EIR (electronic Equipment Interchange Receipt) creates a rising opportunity for trucking 

companies to exchange orders; 2) new entrants and incumbents are using a digital platform to 

match the importer and exporter container demand. A marketplace function is added in the 

platform, which enables different trucking companies to swap orders in a faster way and scale 

up the matching. For example, one trucking company can swap with others to handle both the 

import delivery and the export of the container. This increases the base of matching import 

containers for export and helps avoid additional moves of lifting off a container from one trucking 

company to the other in a depot with the required top-loader. As illustrated in Figure 7 below, 

without a marketplace function trucking companies A and B need to go to a depot with the top 

loader to lift off the container from trucking company A and lift on to trucking company B.  With 
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a marketplace function, trucking companies A and B can swap orders without going to a depot to 

complete one triangulation trip. 

 

3.1.2 Data Collection 

Two years of transactional data for import and export orders at the container level were 

collected from the sponsor company. A sample data spanning three months from July 2020 to 

September 2020, containing 1.13 million records and 33 features was used for the preliminary 

analysis and methodology testing. Knowing that the location data for importers and exporters is 

only at the city or county level in the shipment data, the street-level address data was collected 

from a separate Customer Master database, which contains 2 million records globally including 

300,000 records for China.  

Figure 7  

Comparison of scenarios with and without marketplace 
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As for the China market, Seabury data for China import and export was collected (Seabury 

Consulting, 2020), which covers the import and export volume in containers based on customs 

data. The data period covers over 10 years. 

3.1.3 Data Types 

The shipment data variables and the structure of import and export containers are outlined 

in Table 2 below. Each record represents a unique shipment at the container level. Key data 

elements constitute the name and location of importer and exporter, container type, cargo 

description and weight, date of import and export, port name, and place of receipt (POR) for 

export shipment and place of delivery (POD) for import shipment, which are used in data analysis. 

Table 2 

Import and export shipment data 

Shipment Data variables Type Remarks 

Shipment Number Text Shipment unique ID e.g., ‘1KT000019’ 

Consignee City Name Text Importer city or county e.g., ‘Dongguan’ 

Consignee Cust Code Text e.g., ‘40922179DPC’ 

Consignee Cust Name Text e.g., ABC China 

Container Number Text Container unique ID e.g., ‘MRKU6315056’ 

Container Size Categorical e.g., 20’, 40’, 45’ 

Container Height Categorical 2 types: standard 8’6”, high cube 9’6” 

Container Type Categorical Mainly dry, reefer, flat, open etc. 

Shipper Owned Container Binary Whether the container is owned by the customer or by shipping line, e.g., Y, N 

Cargo Type Categorical e.g., ‘Dry’ or ‘Reefer’ 

BTN Name Text Brussels Tariff Nomenclature (BTN) cargo description 1st level e.g., ‘Metal’ 

Item Name Text Cargo description 2nd level e.g., ‘Aluminum, aluminum articles, metal’ 

IMCO Detail Text IMCO dangerous goods class info e.g.  ‘2.1’ 

Port Arrival Last Date Date Date of last arrival in port for import 

DIPLA City Name Text Discharge Port Last (DIPLA)- for import shipment e.g., ‘Shanghai’ 

Port Departure First Date Date Date of first departure from port for export 

LOPFI City Name Text Load Port First (LOPFI) for export shipment e.g., ‘Shanghai’ 

POD City Name Text Place of delivery (POD) for import shipment, city or county level 

POD Country Name Text Place of delivery (POD) for import shipment, country level 

POR City Name Text Place of receipt  (POR) for export shipment, city or county level 

POR Country Name Text Place of delivery (POR) for export shipment, country level 

Receipt Service Mode Text Service starting from origin for exporters mainly CY, Store Door, CFS etc.  

Delivery Service Mode Text Service to destination for importers mainly CY, Store Door, CFS etc. 

Shipper City Name Text Exporter city or county e.g., ‘Suzhou’ 

Shipper Cust Code Text e.g., ‘40600829054’ 

Shipper Cust Name Text e.g., Suzhou XYZ co. 
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FFE Numeric Converted into Forty-Foot-Equivalent (FFE), e.g., 20’ = 0.5 FFE, 40’ and 45’ = 1 
FFE 

TON Numeric Cargo weight in tons 

 

The Customer Master database contains customer code and location data down to street 

level as per Table 3, which is matching the Consignee and Shipper Customer Code in Shipment 

Data in Table 2. 

Table 3  

Customer Master Database 

Customer Master Data Type Remarks 

Customer Code – SCV Text Customer Code e.g., ‘40600829054’ = Consignee and Shipper Cust Code 

Street Name Text e.g., ‘NAN JING RD (W)’ 

City Text e.g., ‘SHANGHAI’ 

Province/State Text e.g., ‘SHANGHAI’ 

Country Text e.g., ‘CHINA’ 

Postal/Zip code Text e.g., ‘200000’ 

 

The external data from Seabury China Shipper Database is outlined in Table 4 

Table 4 

Seabury – China Shipper Database 

Seabury China Shipper Data Type Remarks 

Dates Date Aggregated into Year - Month, no breakdown into date 

Clearance Points Text Country, province, county level 

Direction Categorical e.g., ‘Import’, ‘Export’ 

Shipper Name Text Importers and Exporters in China e.g., ‘Midea’ 

Shipper Location Text Country, province, county level 

Partner Countries Text Country and city of overseas partners of China importer and 
exporter 

Commodity Text Cargo description of the import and export shipments 

Volume in TEU Numeric Aggregated in Twenty-Foot-Equivalent e.g., 40’ = 2 TEUs 

 

3.1.4 Data cleaning and assumptions 

Based on the preliminary study of data presented above, the import and export shipment 

data according to Table 2 has a better data quality to conduct the next level of data analysis. 
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There are two main reasons: 1) the locations of importers and exporters, the import and export 

dates, container types, POR and POD locations already exist in this dataset, and 2) more detailed 

location data down to street level can be obtained from the Customer Master database as per 

Table 2. However, these locations are often the office addresses of the importers and exporters, 

and they are not necessarily the real cargo delivery addresses and cargo receipt addresses. At 

this stage, it is agreed that a practical way to continue the study is to use POR and POD locations 

at the city- and county-level to test the match algorithm. With more accurate locations in the 

future, the algorithm can be enhanced to generate more realistic results. The challenge of 

capturing the accurate location data will be further discussed in Sections 5.1 and 5.2. 

The Seabury China Shipper Database cannot be used as a reference to compare the output 

from the analysis mentioned above since the China Shipper is aggregated on a monthly basis, 

missing container type details and the breakdown of import and export dates. 

3.1.5 Geocoding 

To display the locations of importers and exporters on the map more accurately and calculate 

the distance between locations through network flow optimization, geocoding is needed to 

obtain the location latitude and longitude. Three geocode methods were tested and compared: 

Amap API, Geopy Nominatim, and Google API. 

Amap was acquired by Alibaba in 2014, and it is the largest location-based data intelligence 

platform in China (Zhenfei, n.d.). It provides web service API for location geocoding, reverse 

geocoding, and route planning. The geocoding generates the latitude and longitude data at the 

city-level and customer-level of 130 and 21,000 different locations, respectively.   Testing with a 
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file of 130 locations, the geocoding process takes around 9 minutes. We validated the geocoding 

results by displaying the location on the map. The geocoding of the Chinese addresses in 

mainland China is highly accurate; however, it failed to parse English addresses in China.  

Nominatim can also perform the geocoding based on name and address using 

OpenStreetMap data (Welcome to GeoPy’s Documentation! — GeoPy 2.0.0 Documentation, n.d.). 

Testing with a file of 130 locations, it takes around 10 minutes to complete the geocoding and 

write to a CSV file as depicted in the Appendix. Overall, Nominatim is slower and less accurate 

than Google web service. 

Google API works fastest in providing the most accurate results among the three methods. It 

takes around 30 minutes to geocode 10,000 locations and write to a CSV file. With a 

complimentary Google API key, it is workable to run multiple times to geocode a large data file 

with each time capped at 10,000 locations. For this project, this method is recommended as a 

geocoder as 30,000 locations cover more than 95% of the import and export container volume 

in China. Even with the geocoding from Google API, it is important to verify of the locations 

displayed on the map and manually overwrite the incorrectly mapped locations.  

3.2 Model Stage 

This stage encapsulates the match algorithm, clustering algorithm, and MILP. The purpose of this 

model is to automate the process of matching the demand of importers and exporters. This 

accelerates the allocation of a container for an exporter once the importer release (unloads) a 

container and find his next service. The design of the approach will be described in the following 

sections. 
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3.2.1 Match algorithm 

Once we have the data ready to work, we can seek potential efficient reuse of a container 

that has been emptied. This linkage between the import container release and the export 

appointment must be quick to determine the next stop/route of the container. There are two 

groups of linkage methods: deterministic and probabilistic (Zhu et al., 2015). The first kind is used 

for data-rich projects with high-quality identifiers such as address or container ID. The second 

one reflects the probability that data records fall under the same category. In this project, we 

investigated both types for the container matching by defining the dependent and independent 

variables and identifying possible container triangulations. 

 The deterministic approach takes the identifiers necessary to compare records at once and 

obtain a binary result (true or false). If the pair of records agree on all identifiers, it is considered 

as a match, otherwise a non-match. The decision of a match can be implemented step-by-step, 

prioritizing some identifiers, or match them all at once. The probabilistic algorithm uses u-

probabilities and m-probabilities to determine if a record has a ‘possible match’ or not.  

The variables or identifiers that help us determine the match and reuse of import and export 

containers are mainly the attributes related to each customer’s needs. We can define them as 

follows: 

• Cargo type: container characteristic (dry, open, flat). 

• Cargo height: container characteristic (2 types: standard 8’6”, high cube 9’6 ”). 

• Cargo size: container characteristic (20’, 40’, 45’).  

• Volume: Balance between imports and exports in the region for a higher reutilization. 
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• Industry/commodity: Type of materials transported to determine the next possible use 

of the container. Some of them are more harmful to the container than others (e.g., 

transit chemical products have a high risks) 

• Container status: Use of AI photo inspection to determine whether repairs are needed. 

• Appointment date: The scheduled date to arrive to the importer and the exporter 

location. A 24-hour period is the expected time to arrive to the importer, unload, and 

transit to the exporter. 

With the proper data cleaning and understanding of these critical variables, a matching 

algorithm can decide if the container is in correct conditions to be reused and apply clustering 

method. The algorithm runs based in the deterministic linkage methodology, matching first the 

‘appointment date’ of importer and exporter. The following step is to match the specification of 

each order, such as ‘Cargo type’, ‘Cargo size’ and ‘Cargo height’. ‘Industry/commodity’ and 

‘Container status’ are not included for this project because of the data accessibility, but they 

could be included as relevant matching features in future researches. Once the matching is 

achieved, the remaining feasible data is considered the input for the clustering algorithm. 

3.2.2 Clustering 

Clustering is one of the most common approaches in data analysis. Unlike classification 

methods, in clustering, there are no known labels to train a model (Bhavsar et al., 2017). It is an 

unsupervised method to classify elements into discrete groups based on their similarities or 

discovered patterns (Jain et al., 1999). The clustering algorithms can be categorized into four 

main groups: partitioning algorithm, hierarchical algorithm, density-based algorithm, and grid-
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based algorithm (Patel & Thakral, 2016). 𝑘 -means algorithm represents a partitioning algorithm 

with useful clustering techniques by competitive learning. Clusters start with an initial partition 

and then use an iterative control strategy to optimize an objective function (Jianliang et al., 2009).  

The algorithm steps are provided as follows (Jianliang et al., 2009): 

1. Given a data set, define 𝑘  centroids: 𝐶 = 𝑐1, 𝑐2 … … . . 𝑐𝑘  one for each cluster, 𝑐𝑖 =

 
1

𝑛𝑖
∑ 𝑥𝑥∈𝑤𝑖

, where 𝑛𝑖  is the number of the dataset in the cluster. 

2. Each data item is allocated to one cluster that has the closest centroid.  

The algorithm minimizes objective function, being the square error function: 

𝐽𝐾𝑀 =  ∑ ∑ 𝑑𝑖𝑗(‖𝑥𝑖 − 𝑐𝑗‖)
2

𝑛

𝑖=1

𝑘

𝑗=1

  

where,  

 𝑘 represents the number of clusters. 

 𝑛 represents the amount of data items in the data set.  

 𝑑𝑖𝑗 =  {  
1 𝑖𝑓 𝑐𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑡𝑜 𝑥𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            
 

‖𝑥𝑖 − 𝑐𝑗‖  represents the Euclidean distance between each data item 𝑥𝑖  and the 

centroid 𝑐𝑗 

3. Assign each instance to its closest center: if 𝑑𝑖𝑗(𝑥𝑖 , 𝑐𝑗) < 𝑑𝑖𝑚(𝑥𝑖, 𝑐𝑚), where, 

𝑚 = 1 … … . . 𝑘, 𝑗 = 1 … … . . 𝑘, 𝑗 ≠ 𝑚, 𝑖 = 1 … … . . 𝑛 and then assign 𝑥𝑖 to cluster 𝐶𝑗;   

4. Recalculate the new centroids of the clusters.  

𝑐∗
1, 𝑐∗

2 … … . . 𝑐∗
𝑘 
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5. Repeat steps 2 and 3 until: a) the centroids do not change with the successive iterations, 

b) all points remain in the same clusters with the successive iterations or c) the maximum 

number of iterations is reached. 

By completing this algorithm, it is possible to get the grouping objects into meaningful 𝑘 

subclasses so that the members from the same cluster are quite similar, and the members from 

different clusters are quite different from each other.  

The 𝑘-means algorithm is used to define the different geographical zones in China and cluster 

the customers that are near each other based on distance.  Like the matching algorithm, 𝑘-means 

clustering reduces the complexity of the problem that will be taken to run the MILP. 

3.2.3 Transport flow optimization – Mixed-integer Linear Programming (MILP) 

After the matching and clustering, a subset of the matched data is used as input for transport 

flow optimization conducted by applying MILP. This subset of data should include the import and 

export container volume for the same container type and trucking delivery or pick-up window, 

the geocode data of importer and exporter locations, and port location so that the distance 

matrix and time matrix among locations are calculated.  
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As shown in the illustration of the transport flow in Figure 8, we are given a set of importers, 

𝐼, and a set of exporters, 𝐸. Each exporter 𝑗 requests to load a number of containers, 𝑛𝑗 , and 

each importer 𝑖 has a number of containers for unloading, 𝑛𝑖 . These containers are of the same 

equipment type, and only one container is loaded on a truck. In the current scenario without 

triangulation, the exporters and importers need to arrange trucking transportation from port to 

their premises with round trips. When the transport flow is optimized with triangulation, the 

objective function aims to minimize the total container-distance (the number of containers x km) 

traveled of triangulation - trucking containers from the port to importers, from importers to 

exporters, and from exporters returning the containers to the port. When the total number of 

import containers is not equal to the number of export containers, the remaining containers are 

then transported with round trips between the port and importers, or between the port and 

exporters. Normally, the container triangulation should be executed within the same day to avoid 

Figure 8 

Transport flow without triangulation vs. with triangulation 



   
 

 39 

truck overnight charges. Hence, we added the constraints for the maximum distance travelled 

per route, 𝐿, and maximum service time per route, T, in the optimization model as outlined in 

Table 5. 

Table 5  

Nomenclature of formulation 

Type 
Nomenclature Description 

Index and sets 
𝑖 Individual importer, 𝑖 ∈ 𝐼  

𝑗 Individual exporter, 𝑗 ∈ 𝐽 

𝑝 Individual port 𝑝 used by importer 𝑖 or exporter 𝑗, 𝑝 ∈ 𝑃 

Parameters 
𝑑𝑖𝑗  

Distance of importer 𝑖 to exporter 𝑗 

𝑑𝑖 Distance of importer 𝑖 to port 

𝑑𝑗𝑝  Distance of exporter 𝑗 to port 

𝑛𝑖     Number of import containers per importer 𝑖 

𝑛𝑗    Number of export containers per exporter 𝑗 

𝑀 A large number such as the total number of import and export containers 

𝐿 Maximum distance traveled allowed per route 

𝑡𝑖 Service time for importer 𝑖 including the time for waiting and unloading 

𝑡𝑗 Service time for exporter 𝑗 including the time for waiting and loading 

𝑣 Average truck speed for all routes 

𝑇 
Maximum service time allowed per route 

Decision variables 
𝑥𝑖𝑗  Total number of containers from importer 𝑖 to exporter 𝑗 

𝑥𝑖𝑝 Total number of containers from importer 𝑖 to port 𝑝 

𝑥𝑗𝑝  Total number of containers from exporter 𝑗 to port 𝑝 

𝑦𝑖𝑗 1 if  𝑥𝑖𝑗 > 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0  

𝑦𝑖𝑝 1 if  𝑥𝑖𝑝 > 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 

𝑦𝑗𝑝  1 if  𝑥𝑗𝑝 > 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 
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The mathematical model of MILP is formulated as below:  

Minimize 𝑧 = 𝛴𝑖𝛴𝑗((𝑑𝑖𝐽̇ + 𝑑𝑖𝑝 + 𝑑𝑗𝑝)𝑥𝑖𝑗 + 2𝑑𝑖𝑝𝑥𝑖𝑝 + 2𝑑𝑗𝑝𝑥𝑗𝑝)    (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝛴𝑗𝑥𝑖𝑗  +  𝑥𝑖𝑝 = 𝑛𝑖         ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃        (2) 

𝛴𝑖𝑥𝑖𝑗  +  𝑥𝑗𝑝 = 𝑛𝑗         ∀𝑗  ∈ 𝐸, ∀𝑝 ∈ 𝑃        (3) 

𝑥𝑖𝑗 −  𝑦𝑖𝑗𝑀 ≤ 0 ∀𝑖 ∈ 𝐼, ∀𝑗  ∈ 𝐸        (4) 

𝑥𝑖𝑝 −  𝑦𝑖𝑝𝑀 ≤ 0 ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃        (5) 

𝑥𝑗𝑝 − 𝑦𝑗𝑝𝑀 ≤ 0 ∀𝑗  ∈ 𝐸, ∀𝑝 ∈ 𝑃        (6) 

(𝑑𝑖𝐽̇ + 𝑑𝑖𝑝 +  𝑑𝑗𝑝)𝑦𝑖𝑗 ≤ 𝐿 ∀𝑖 ∈ 𝐼, ∀𝑗  ∈ 𝐸, ∀𝑝 ∈ 𝑃     (7) 

2𝑑𝑖𝑝𝑦𝑖𝑝 ≤ 𝐿 ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃         (8) 

2𝑑𝑗𝑝𝑦𝑗𝑝 ≤ 𝐿 ∀𝑗  ∈ 𝐸, ∀𝑝 ∈ 𝑃         (9) 

(
𝑑𝑖𝑗+𝑑𝑖𝑝+ 𝑑𝑗𝑝

𝑣
+ 𝑡𝑖 + 𝑡𝑗)𝑦𝑖𝑗 ≤ 𝑇 ∀𝑖 ∈ 𝐼, ∀𝑗  ∈ 𝐸, ∀𝑝 ∈ 𝑃    (10) 

(
2𝑑𝑖𝑝

𝑣
+ 𝑡𝑖)𝑦𝑖𝑝 ≤ 𝑇 ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃        (11) 

(
2𝑑𝑗𝑝

𝑣
+ 𝑡𝑗)𝑦𝑗𝑝 ≤ 𝑇 ∀𝑗  ∈ 𝐸, ∀𝑝 ∈ 𝑃        (12) 

𝑥𝑖𝑗 ,  𝑥𝑖𝑝,  𝑥𝑗𝑝 ≥ 0    ∀𝑖  ∈ 𝐼, ∀𝑗  ∈ 𝐸        (13) 

𝑦𝑖𝑗 = {0,1},     ∀𝑖 ∈ 𝐼, ∀𝑗  ∈ 𝐸        (14) 

𝑦𝑖𝑝 = {0,1},    ∀𝑖 ∈ 𝐼, ∀𝑝 ∈ 𝑃        (15) 

𝑦𝑗𝑝 = {0,1}, ∀𝑗  ∈ 𝐸, ∀𝑝 ∈ 𝑃        (16) 

 

The objective function (1) represents the total container-distance traveled. When the point-

to-point cost matrix is available, the distance 𝑑𝑖𝐽̇ can be replaced with cost 𝑐𝑖𝐽̇ to minimize total 

cost. Constraint (2) requires that total number of containers allocated in different routes for a 

specific importer should be equal to the total amount of containers for that importer, Constraint 



   
 

 41 

(3) ensures that total number of containers allocated in different routes for a specific exporter 

should be equal to the total amount of containers for that exporter. Constraints (4) to (6) are the 

linking constraints to ensure that when the flow is allocated to a certain route, the binary variable 

𝑦𝑖𝑗 is 1, which means the route is selected, otherwise it is 0. Constraints (7) to (9) ensure that 

each selected route is below the maximum distance. Constraints (10) to (12) require that total 

service time from each selected route is below the maximum service time. Constraint (13) 

ensures that the flow decision variables among importers, exporters, and port are positive values. 

Constraints (14) to (16) define the auxiliary decision variables for routes among importers, 

exporters, and port with binary values.  

 

4 RESULTS AND NUMERICAL ANALYSIS 

This chapter presents the results and analysis of the modeling approach for the proposed 

container triangulation. After designing and developing the algorithm described in Section 3, we 

analyzed the outputs of our model compared to the actual process of handling import and export 

containers. We focused our analysis on the outputs of two principal methods: 𝑘-means and MILP 

algorithms. The results were obtained from the historical data spanning two years of import and 

export shipment data at the container level. In order to perform a better analysis, we took 

different samples from the dataset to run the model and evaluate the outcomes. This samples 

were selected on specific weeks of year 2019 considered with stable and representative demand. 

We compared the results and determined the final findings. 
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4.1 Matching Analysis 

The first step was to create a reliable dataset that had all the relevant variables to determine 

the best container route (with or without triangulation). That consists of the connection between 

Customer Master database and the geocode of each customer’s location.  Once we merged the 

information needed, we matched samples that meet the requirements between exporter and 

importer. Matching was made to identify feasible opportunities with exporters and importers 

based on ranked orders, with the purpose to reduce complexity for the MILP algorithm.  

The matching algorithm finds all the possible orders with the same Container Type, Container 

Height, Container Size, and Appointment Date (Figure 9). The results presented in this section 

are taken from a sample with the following conditions: 1) Year-Week Appointment: 2019-40; 2) 

Container Size: 40’; 3) Container Type: DRY; 4) Container Height: 9’6”; and 6) Appointment 

Weekday: Monday. We considered the week 2019-40 as it was a week with a representative 

volume of demand to measure the business performance, using without disruptions or unusual 

behavior that might bias the results. We also picked those parameters with the same objective, 

as they are the most common and relevant for the business. From a dataset of 79,320 records, 

by applying the matching algorithm, we ended with 652 records matched with the same 

conditions. This helped us determine our model boundaries, feasibility and reduce complexity to 

the next stages of the model (k-Means and MILP). This dataset will be called Test Data. 
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4.2  𝒌-Means Clustering 

The clustering analysis is used to discover similarities between data items and group them 

into different categories, known as clusters (Jain et al., 1999). In this research, we applied one of 

the pattern-recognition techniques called 𝑘-means clustering. The following section will illustrate 

the results obtained by applying the 𝑘-Means algorithm in our Test Data. 

4.2.1 Mapping 

The clustering was implemented to identify the group of customers based on their locations. 

This aggregation was done by taking the latitude and longitude of each customer of our sample 

data. The first step was to map the city-level location of each of the customers, either exporter 

or importer. This step is illustrated in Figure 10 in a cartesian plane and in Figure 11 on a map 

representation. By plotting the locations, it was possible to get a perspective on their distribution. 

Figure 9 

Representation of the Matching Algorithm by parameters 



   
 

 44 

It helped identify outliers, clean up missing data, and get an idea of possible outcomes. Once we 

determined the location of each customer’s order, we calculated the number of clusters needed. 

 

 

Figure 10 

Representation of customers’ latitude and longitude within a cartesian 

Figure 11 

Representation of customers’ latitude and longitude on a map 
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4.2.2 Number of clusters 

There are several approaches to specify the number of clusters required for unsupervised 

records. We used the elbow method, which minimizes the sum of square error (SSE) within 

clusters and looks for the bend in the curve (Syakur et al., 2018). The best cluster 𝑘 result will 

be the basis for clustering. The lower the SSE value and the elbow graph, the better the cluster 

results. For our Test Data, we analyzed the value of the cluster from 𝑘 = 2 to 𝑘 = 3, then from 

𝑘 = 3 to 𝑘= 4. It shows a drastic decrease to form the elbow at point 𝑘 = 3 then the ideal 

cluster 𝑘 is 𝑘 = 3 (Figure 12). 

4.2.3 𝒌-Means Result 

Once we determined the number of clusters (𝑘 ), 𝑘 -Means algorithm starts iterating 

starting with 𝑘 cluster-centers placed randomly in the data space, and then the following 

stages are performed repeatedly until convergence:  

1) Data points are classified by the center to which they are nearest. 

2) The centroid of each cluster is calculated. 

Figure 12 

Representation of the Elbow Method 
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3) Centers are updated to the centroid location. 

To evaluate if the final clusters present high heterogeneity between the different clusters 

and high homogeneity within the cluster, graphical representations of the clusters were 

analyzed. Figures 13 and Figure 14 show the output of the 𝑘-means. Figure 13 illustrates the 

centroids with a bigger red dot and each cluster represented with a shape. Figure 14 

represents of the clusters on a map. We found the three clusters of cities (customers) that 

will be considered for each routing model.  

 

 

Figure 13 

Representation of customers’ clusters within a cartesian plane 
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4.3 Clustering Results 

Once we have assigned each customer’s order into a cluster, we analyzed the match 

created to identify the distribution between exporters and importers. From the 652 records 

(containers) in our Test Data, we obtained three different clusters with a total of 119 importers 

and 504 exporters (Table 6). Due to the trade imbalance of imports and exports in China, a 

perfect container triangulation is infeasible. However, there is still an enormous potential of 

119 containers to find possible container triangulations between exporters and importers. The 

clustering analysis allows Maersk to get insights about the demand’s behavior and take 

actions. Once we determined the matches, we took the distribution of the exporters and 

importers’ demand to run the MILP algorithm.   

 

 

North 
South 
Center 

Figure 14 

Representation of customers’ clusters on a map 
Cluster 
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Cluster Export Import Total 

North 95 51 146 
South 161 23 184 
Center 248 45 293 

Total 504 119 623 
 

 

4.4 MILP Results 

As illustrated in Figure 15 below, the MILP model is tested with a sample dataset from 

obtained from the clustering analysis – the center cluster consists of 248 export containers, 45 

import containers. The total volume distance traveled is 96,580 containers × KMs in the current 

scenario (ASIS). Our model’s optimization results reduce the container-distance traveled by 11–

14%; reduce time by 8 –11%; and reduce CO₂ by 8–11%. With the optimized result based on 

container-distance, the CO2 emission is calculated by weight KM travelled multiplying the CO2 

emission factor, which is published based on gram/ton.km. As the travel distance for empty 

container is reduced, the CO2 emission is decreased. When we add more constraints to the 

optimization model, such as maximum distance per route 460 KMs, or maximum service time 

and travel time per route 12 hours, the savings are reduced. If the constraints added are too 

restrictive, such as setting the maximum service time and travel time per route as 6 hours, it turns 

out with no feasible solution with this dataset sample. 

 

Table 6 

Results obtained from the Clustering Analysis. 
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Figure 15  

MILP solving the transport flow optimization for triangulation with time & distance constraints 

 

 

 

 

96,580
86,270 84,030 82,830

10,310 12,550 13,750

ASIS Triangulation with max 12
hours per route

Triangulation with max
460 KMs per route

Triangulation without
time & distance contraint

co
n

ta
in

er
s 

x 
K

M
s

Volume distance saving with Triangulation

Volume distance (containers x KMs) Saving

2,588 2,381 2,337 2,313

206 251 275

ASIS Triangulation with max 12
hours per route

Triangulation with max
460 KMs per route

Triangulation without
time & distance contraint

Ti
m

e 
(h

o
u

rs
)

Time saving with Triangulation
Total time (hours) Saving

318.64 293.28 287.77 284.81

25.37 30.88 33.83

ASIS Triangulation with max 12
hours per route

Triangulation with max
460 KMs per route

Triangulation without
time & distance contraint

C
O

₂ 
(T

o
n

s)

CO₂ saving with Triangulation

Total CO2 (tons) Saving

11% 13% 14% 

8% 10% 11% 

8% 10% 11% 



   
 

 50 

The performance of the MILP model is tested in Python using Gurobi optimizer with increased 

complexity by adding more variables. We tested four levels of complexity: 1) 12 𝑥𝑖𝑗  variables with 

3 importers and 4 exporters; 2) 1,500 𝑥𝑖𝑗  variables with 30 importers and 50 exporters; 3) 10,000 

𝑥𝑖𝑗  variables with 100 importers and 100 exporters; 4) 120,000 𝑥𝑖𝑗 variables with 300 importers 

and 400 exporters. The performance is measured by run time of the optimization model handling 

different levels of complexity. The result in Figure 16 shows that the model can solve the problem 

within two seconds for variables below 10,000. When the number of variables jumps to 120,000 

the runtime increases to around 13 seconds. Based on the validation of the company’s dataset 

and real-life experience, it is estimated that the complexity level for the company’s triangulation 

problem is in the range of several hundred to several thousand variables. Hence our conclusion 

is that this model can be used in real-time optimization with the current data for the company. 

Figure 16  

MILP solving the transport flow optimization for triangulation with the increased complexity
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5 DISCUSSION 

In this chapter, we first discuss the result based on our research project and outline the 

challenges of container triangulation in China. Secondly, we share the insights developed from 

this project and initiate our recommendations to the company for review. Finally, we discussed 

the management implications for the industry and government. 

5.1 Principal Findings and Challenges 

Our analysis shows that when there is a good match of importers’ containers with those for 

export, container triangulation can provide tangible benefit to the parties involved. The savings 

in the transportation trucking cost can reach up to 11% - 14%, which can be realized by exporters, 

importers, or trucking companies who pay for the cost of transportation. The time saving is 

around 8% - 11%, which comes from the reduced transport distance. The other significant portion 

of the time, which is spent on loading, unloading, and waiting at the importers’ and exporters’ 

premises, remains unchanged. Hence the time saving percentage is lower than the saving 

percentage of transportation cost. For the carriers, as the transportation time of the container is 

reduced, the container turnaround is faster than the current state, and asset utilization is 

improved. Exporters can get the empty containers faster.  

With the container shortage crisis in the shipping industry, container triangulation becomes 

more attractive to those who need the containers urgently. The reduction in CO₂ emissions is 8% 

- 11%, which supports importers, exporters, and trucking companies' sustainable strategy. This 

can also be considered as a good result in light of the Chinese government's strategic plan in the 

logistics sector.  
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However, the more constraints there are in the planning and execution of container 

triangulation, the less saving can be realized. For example, each routing of the container 

triangulation should be completed within the same day to avoid additional truck overnight 

charges. Nevertheless, importers and exporters might have specific requests on time window 

which can complicate coordination.  

Other challenges also impede the development and scale-up of container triangulation in 

China. We outline the practical challenges below: 

1. Accurate location data for the point of delivery for import containers, and the point of 

cargo loading for export containers are not captured in the company’s system. The 

current location data is at a city level; some of these locations are the office addresses of 

the importer, exporter, or middleman. Hence, it is not easy to match and plan the 

container triangulation perfectly on a larger scale. 

2. Delivery date, loading date, and time window information are in different systems of the 

company. This information is not integrated, hence is missing in the data files we used for 

the analysis. We therefore used the actual discharge date and load date to estimate the 

date for the matches on a weekly basis. 

3. The trucking market is highly fragmented in China. The importers and exporters have 

trucking contracts with different trucking companies, for that reason it is difficult to agree 

on which trucking company can be used to transport the container for both importer and 

exporter. 

4. It is hard to predict the container status before un-stuffing the import cargo from the 

containers. Import containers are damaged and need to be repaired or cleaned after the 
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unloading of commodities, such as wood, metal, or waste paper. Based on the operational 

experience, it was estimated that around 50% of import containers loading those 

commodities are damaged. Due to the trade imbalance, a large number of damaged 

import containers reduces the containers available for reuse for export, complicating the 

possible triangulation of containers. 

5. Currently, not many customers are using the company's digital platform, so the volume 

base for matching container triangulation is small at this stage.  

5.2 Insights and Recommendations 

To deal with the challenges mentioned above, we share the insights developed from this 

project and initiate our recommendations to the company for review.  

There are several ways to capture accurate location data to improve the match ratio of the 

triangulation planning. First, current users can provide accurate location data and update it on 

the Maersk’s digital platform. Second, the company can request the transport companies to send 

the container delivery location via mobile phone to the digital platform when they pick up a 

container from Maersk. Third, it is practical for the company to make a catalog with the location 

data of importers and exporters to keep them in the master data. Finally, IoT technology can be 

considered for application in containers in China, however ROI (return on investment) needs to 

be assessed.  

In case of having sufficient and accurate location data, network optimization can be further 

explored to decide if a container depot needs to be added to the network. The container depot 

allows the exchange and triangulation of containers near the facilities of importers and exporters. 



   
 

 54 

The clustering algorithm presented in Section 3.2.2 can be used to explore potential container 

depot locations. 

In addition to the location data, the other three data elements must also be captured: the 

delivery date, the loading date, and the time windows of the containers for import and export 

must be captured in the digital platform. If the data is available in other systems, it must be 

transferred to the digital platform. By having the information integrated, the company can better 

group importers and exporters on a daily basis and pass the data to MILP to optimize routing for 

container triangulation. To increase the success rate of matching import containers for export 

use, the current customer service team can communicate and negotiate more with importers 

and exporters to adjust the date and time window, as a higher matching ratio creates a larger 

economic scale and savings benefit for the parties involved. The MILP module can be further 

enhanced by using a Multiple Traveling Salesman Problem (MTSP) with a time window for the 

expected delivery date (Zhang et al., 2010). 

A market module can be added on the company's digital platform, allowing different trucking 

companies to exchange orders. Therefore, a trucking company can be assigned to run the 

container triangulation route for both the importer and the exporter. Network optimization with 

container depot can be explored as mentioned above so that container swapping can be done in 

the container yard with container handling equipment like top loaders. This approach is adopted 

by companies outside of China, such as MatchLog and Avantida, as presented in Table 1 in Section 

2.3. The company can bundle its current offering of container warehousing and container 

triangulation products to customers. 
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Damaged containers can be predicted by applying machine learning models in the digital 

platform when damaged container data is sufficient to train the model. We explored machine 

learning models to predict whether the import container was damaged based on features such 

as stuffed commodity, cargo weight, location, and service. The initial finding was that there was 

an obvious gap in the information for damaged container reported in the company dataset.   

As illustrated in Figure 17 below, we analyzed two years of import container data in China for 

the company. The split of the sound containers vs. damaged containers by stuffed commodity is 

visualized in a treemap. For example, the blue box on the top left shows total 469K import 

containers were stuffed with wood, and 33K containers of them were damaged, which tells us 

about 7% of import containers loaded with wood were damaged. Similarly, a dotted line inside 

the dark blue box for metal indicates the split of sound containers vs. damaged containers. When 

we asked the company to validate these findings, we observed that the results do not match the 

observations from practice - around 50% of import containers are damaged when the import 

cargo is wood or metal scrap. With current data, our machine learning model using 

KneighborsClassifier predicts with 70.65% accuracy. Our recommendation is to validate and 

further explore with the company whether damaged container information is fully captured and 

is sufficient for the training of the machine learning model, as this will have a big impact on the 

triangulation solution.  
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Figure 17  

Split of damaged containers by import cargo 

 

Additionally, the company has deployed another machine learning algorithm to inspect 

whether the container is damaged or not after cargo unloading. It is based on image recognition 

technology, and the drivers are required to take photos of the container and upload to the digital 

platform as outlined in Section 2.3. 

 

5.3 Managerial Implications 

The container trucking market is highly fragmented in China, with the trend of digitalization 

in the logistics industry. The industry can be more connected and integrated with the support of 

a digital platform. Real-time optimization models become feasible when aided with the increased 
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computing power and improved algorithms. A digital platform can provide greater business 

visibility and measure the benefits in cost, time and sustainability when using container 

triangulation. However, to increase the benefit to the industry, different actors in the supply 

chain are required to accept the necessary changes and improve the level of collaboration and 

partnership. This is especially important today that the shortage of containers and shipping space 

have become relevant questions in the industry. 

• As the company’s digital platform is available for download as a mobile application, a 

mandatory requirement can be reinforced that the trucking companies need to report 

the container locations through the mobile application to the carrier. 

• Importers and exporters should be open to interchange trucking companies on the digital 

platform to support container triangulation.  

• Carriers can consider a strategic partnership to allow the exchange of containers across 

different carriers to support the scale-up of container triangulation. 

Government and port authorities can develop a policy to promote container triangulation for 

the industry to drive the reduction of carbon emissions. For example, the port authorities can 

remove the restrictions that the containers should be imported and exported from the same 

port, with the increased flexibility the matching of import containers for export can be increased. 

Furthermore, real container delivery location should be reported in the port’s system and the 

carrier’s system. 
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6 CONCLUSION 

This research project investigated the problem of container transportation matching import 

and export containers in the shipping industry with a focus on China. We conducted a rigorous 

review of the literature and concluded that this problem can be solved with mathematical 

models. As leading companies driving the digitalization in the logistics industry, more data is 

available, the fragmented transport industry becomes more connected.  

With the sponsoring company, we built the methodology to conduct expert meetings, collect 

data, and complete the analysis with clustering and MILP algorithms. The results showed a 

promising benefit for the parties involved in transport when container triangulation can be 

planned and executed. Practical solutions were developed, and recommendations were 

proposed to the sponsoring company. Here we summarize our recommendation and future 

research required. 

Container triangulation is a reality on the market today, as many companies, countries or 

research are evaluating this new alternative. Maersk, as a leader in the transportation industry, 

has always been at the forefront of technological solutions to improve its performance and 

service. As reviewed above, container triangulation leads to reductions in transportation costs, 

lead time, and CO₂ emissions. By offering this process within its digital platform, Maersk can 

attract and retain key partners due to the incentives it generates. In addition, this process can be 

automated as we observed it during the project, planning and executing more quickly. 

As we discovered promising benefits, we also detected that there is still much to be done to 

fully exploit the potential of container triangulation. First, there is a significant need for more 
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detailed and structured data regarding the location of container deliveries and loads for a more 

accurate model. Such data can be collected using the digital platform and the use of technologies 

such as GPS. This requirement is vital to measure the impact more precisely. We also recommend 

the implementation of the container triangulation model within the Maersk digital platform to 

integrate it into the services that the company presents today. Later, it would be important to 

publish the benefit of cost savings, time, and CO₂ reduction on the platform to attract more users. 

Maersk should consider establishing a dedicated team to proactively promote and scale up 

container triangulation planning. Finally, collaboration and coordination among stakeholders is 

essential, since their interaction is what makes the solution an attractive alternative. In the 

following section, we elaborate on the recommendations in further detail. 

6.1 Recommendations 

Clustering and MILP algorithms can be integrated into the digital platform to enable real-time 

optimization. As described in Section 3.2.2 and Section 4.1, it is practical to run grouping daily 

with visibility from 7 days onwards and optimize container triangulation routing for each group. 

Since the runtime performance for clustering and MILP is in the range of 1 to 20 seconds, real-

time optimization is practical on the digital platform. 

Here are our suggestions to integrate and scale-up the solution into the digital platform: 

• The codes for geocoding, clustering, and MILP are documented in Python programming 

language and should be handed over to the IT team of the digital platform for integration. 

• When the accurate location data is captured in the digital platform, the location of import 

and export containers can be displayed on the map. The internal users and external users 
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of the digital platform such as exporters, importers, and the trucking companies can see 

the container triangulation routing and savings benefit (Cost, time, and CO₂) on a daily 

basis. The route planning and optimization can be accessible to external users on pay-by-

use basis. 

• When needed, the company can enable the manual adjustment for the clustering, and 

the parameters of maximum distance and time per route to simulate different scenarios. 

Hence the results of saving on cost, time, CO₂ and routings can be easily compared. To 

optimize the triangulation based on the total cost, the distance matrix can be replaced 

with the cost matrix in the model. To calculate the time savings, the time matrix using 

distance divided by trucking speed can be used in the model. As for the savings on CO₂, 

the CO₂ emission factor based on gram/ton.km and a matrix of ton.km among importers, 

ports, and exporters can be used in the model. With the real-time optimization, the 

savings on the above metrics of volume distance, cost, time, and CO₂ can be refreshed in 

the digital platform very quickly.  To use more accurate distance, an API service from 

Amap for advanced route planning can be further considered. 

• With the current product offering of Demurrage and Detention (D&D) management from 

the company, it provides the tracking of free time storage and proactive overtime cost for 

the importers for their containers in the port. The D&D product offering can be integrated 

into the digital platform. Hence the customer service team can get a holistic view of target 

importers and the potential of container triangulation on daily basis. 

• A dedicated team to promote and scale up the container triangulation solution could be 

useful for a successful implementation of the project. This team should use the digital 
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platform to select the right import and export customers based on the daily analysis. The 

cluster algorithm provides a good indication of which clusters to focus on. The time 

window for import container delivery and export container loading can be adjusted with 

potential customers, and profit-sharing incentives can be developed to increase the 

matching ratio. 

Savings in time and CO₂ can be reported in the digital platform to add transparency in the system. 

Customers know the benefits of the container triangulation, attracting new ones to get involved 

in the project. The same can be published on the company website to demonstrate that the 

company is acting with committed customers to improve the supply chain efficiency and 

sustainability in China, which is in line with the strategic plan of Chinese government. The 

reporting of savings in cost and volume distance can be just shared individually with concerned 

parties who keep track of their progress on a monthly or yearly basis. 

6.2 Future research 

Undoubtedly, globalization has brought great challenges in the way and speed of delivering 

products or services. For future studies, we recommend taking the concepts covered in this 

research to a global optimization perspective, considering different transport companies or 

partners. As more participants are involved, more data and more markets are available in the 

platform, becoming more attractive for new users and creating a feedback loop. This may 

generate a growth in savings for the participants within the platform. 

Applying machine learning to predict container damage to improve container triangulation 

planning is also a technology that we consider critical for the project continuity. Machine learning 
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helps reduce inspection decision time, enabling digital capabilities such as advanced analytics to 

develop. This solution is considered very relevant as it could be developed and implemented in a 

short period of time and produce the positive effect on the company’s performance. 

Technology has led companies to think that there is no limit to creating something new or 

solving any problem. Therefore, industries such as transportation must seek to develop and 

adapt new technological solutions to reduce inefficiencies. Many countries or companies are 

incorporating technologies like the ones we mentioned above, where the impact is even more 

positive than what they expected. The larger the scale of container triangulation, the more 

benefit can be generated for industry, stakeholders and the environment. We hope to see further 

improvement in the industry with the contribution of more and more researchers. 
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APPENDIX 

 
Comparison of two geocoding methods: Nominatim vs. Google 
 

 
 
The color code: from green to red show the order of small to large measured by the percentage to 
Google’s geocoding value of latitude 


