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ABSTRACT 

 

The transportation sector is the third largest contributor to greenhouse gas (GHG) 

emissions, accounting for over 28% of total U.S. emissions and over 14% of global emissions in 

2018. As climate change and its negative effects have grown significantly, efforts to reduce GHG 

emissions have become an important objective on a global, national, and corporate scale. One 

approach is to design a distribution network that minimizes transportation carbon emissions while 

meeting its primary Key Performance Indicators (KPI). It is important for companies to understand 

the trade-offs between those KPIs, which may include minimizing the carbon footprint, 

minimizing transportation costs, and meeting the network's delivery time requirements. This 

research introduces a multi-echelon Green facility location problem (FLP) that focuses on the 

middle-mile. It incorporates intermodal and alternative-fuel transportation modes and optimizes 

for the tri-objective of variable transportation cost, delivery time and carbon emissions. By using 

the ɛ-constraint method, Pareto frontiers for carbon emissions vs. cost and carbon emissions vs. 

delivery time were plotted, providing the trade-offs between objectives. Optimal scenarios on the 

Pareto frontiers were identified to align with 1.5oC and well-below 2oC global climate scenarios 

according to the Science-Based Targets initiatives. The research team found that the trade-offs 

between carbon emissions vs. delivery time are non-linear and much more significant than carbon 

emissions vs. transportation variable cost. In order for firms to reach Science-Based Targets, it is 

necessary for companies that have transportation heavy operations with short delivery timelines to 

shift all transportation to vehicles powered by lower carbon fuels. This research informs the 

approach to start incorporating environmental considerations in the strategic decision-making 

process for supply chain network design. 
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1. Introduction 
 

1.1 Motivation for the Study 

 

Traditionally, supply chain network design has focused on economic objectives. However, as 

climate change is occurring and concerns over its effects have grown significantly over the 

past few decades, environmental objectives have become an important consideration in supply 

chain decisions.  

 

The transportation sector is not only vital for supply chains and the global economy but also 

the third largest contributor of greenhouse gas (GHG) emissions (International Energy 

Agency, 2019).  At the current pace of economic growth, emissions from the transportation 

sector are set to double by 2050 (ITF, 2019). In 2018, the Intergovernmental Panel on Climate 

Change (IPCC) warned that it is not possible to avoid catastrophic impacts of climate change 

if global warming exceeds 1.5oC above pre-industrial1 temperatures. Since carbon emissions, 

a shorthand for GHG emissions, is the leading cause of global warming, efforts to estimate, 

track and reduce its release in the atmosphere have become integral for global-, government- 

and corporate-level sustainability goals.  

 

Figure 1  

 

Historical Transportation Sector GHG Emissions in the United States.  

Source: Climate Watch, 2019. 

 

 

                                                 
1
 The multi-century period prior to the onset of large-scale industrial activity around 1750. The reference period 

1850–1900 is used to approximate pre-industrial (IPCC, 2020) 
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On a global scale, in 2015, 196 countries adopted the Paris Agreement, a legally binding 

international treaty that’s part of the United Nations (UN) Framework to fight climate change. 

Over the long term, the universal agreement aims to limit the increase in global temperatures 

to well below 2oC, and preferably to 1.5oC compared to pre-industrial levels (United Nations, 

2015). In addition, methodologies and standards to measure and report carbon emissions have 

been established through joint initiatives between international organizations, governments 

and corporations. The Greenhouse Gas Protocol (GHGP) Corporate Standard as well as the 

Global Logistics and Emissions Council (GLEC) Framework are the main carbon accounting 

methodologies utilized by businesses to quantify their carbon emissions. The Carbon 

Disclosure Project (CDP), however, serves as the leading reporting platform for enterprise 

emissions, providing and acknowledging the increasing transparency of participating 

organizations’ carbon emissions accounting and reduction. The CDP along with the UN 

Global Compact, World Resources Institute (WRI), and the World-Wide Fund for Nature 

(WWF) partnered to create the Science-Based Targets initiative (SBTi). The initiative 

provides tools that help businesses world-wide set carbon emissions reduction targets that are 

in line with the climate goals of limiting global warming to 1.5oC.  

 

In the United States, the transportation sector is the largest contributor to GHG emissions, 

which accounted for 28.2% in 2018 (Office of Transportation and Air Quality, 2020). Light-

duty vehicles, medium- and heavy-duty trucks, and airplanes are among the top three modes 

of transportation that contribute to GHG emissions - 59%, 23%, and 9%, respectively (Office 

of Transportation and Air Quality, 2020). Given this fact, stakeholders in logistics and 

transportations have started to locally strategize and implement policies to achieve these global 

goals. The United States has set goals of progressively reducing carbon emissions by 50 to 

52% by the end of 2030, and reaching net zero carbon emissions by no later than 2050, 

compared to the emissions level in 2005 (The United States Government, 2021). Past efforts 

at the national level include President Obama’s Climate Action Plan, bills on renewable energy 

utilization, and GHGs inventory regulation by states. Policies at different levels help all 

stakeholders to participate and navigate actions to take. 

 

On a corporate level, companies such as Middle-Mile Transportation Network (MMTN), have 

joined initiatives such as The Climate Pledge that call organizations globally to implement 

measures that combat climate change. MMTN has pledged to reduce 50% of its total 

shipments’ carbon emissions by 2030 and become net zero carbon by 2040 across their 

businesses (The Climate Pledge, 2019). Since transportation plays a huge role in MMTN’s 

operations, the company has been investigating ways to design a more carbon-efficient 

transportation network that further supports its zero-carbon goals. 

 

This research will inform the carbon-efficient network design scenarios in the middle-mile 

scope for MMTN and other organizations. Global transportation networks are typically 
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divided by three stages: first-mile, middle-mile, and last-mile. The first-mile refers to the 

outbound delivery from the suppliers and the last-mile refers to the inbound delivery to the 

customers. The middle-mile is the entire domestic transportation network between the first 

and last-mile and typically has more stable and predictable flows, providing opportunities for 

optimization.  

 

1.2 Research Questions 

 

The capstone seeks to solve for the optimal transportation network that will minimize 

MMTN’s transportation carbon emissions while meeting its customer demand. More 

specifically, the below questions need to be explored to build the optimal network solution: 

 

1. What are the best locations for the various nodes that will provide the customer coverage 

and maximize carbon efficiency opportunities? 

2. What are the routes that will best connect the nodes to meet customer demands? What 

are the best routes given the transportation mode limitations and/or opportunities? 

3. What are the modes of transportation for each of the routes that will minimize 

emissions? How can efficient use of transportation (increased fill rate, or load factor) 

and alternative carbon-efficient transportation (electrification of the fleet, multi-modal 

network design) influence absolute emissions? 

4. How do we best estimate the GHG emissions of the transportation network? What are 

the estimated target emissions for the firm? 

5. What are the tradeoffs between carbon emissions vs. delivery time and variable 

transportation cost? 

 

The scope of the capstone only includes the middle-mile of MMTN’s supply chain network. 

A typical middle-mile network consists of three types of nodes: Inbound Cross-Docks (IXD), 

Fulfillment Centers (FC), and downstream Sorting Centers (SC) (Figure 2). They are 

connected in a three-echelon model with a forward flow from IXD to FC, and from FC to SC. 

The IXDs receive inventory from domestic and international vendors. The IXDs then become 

the point of origin for the fulfillment process. After receiving the shipments, the FCs store the 

inventory until there is demand. It is a range of warehouse facilities where each specializes in 

a different size, weight, and product type. Lastly, the SCs consolidate the inventory received 

from different FC locations before the last mile distribution phase (Rodrigue, 2020). 

 

For the purposes of this research, the scope of the research will include only the transportation 

flows and vehicles used between these three nodes as seen in Figure 2. The total emissions for 

this research will only include emissions from vehicles and will exclude emissions from the 

facilities. The total costs for this research only include variable transportation costs of 

operating vehicles and excludes all other costs such as capital expense.   
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Figure 2  

 

Middle-Mile Distribution for the Transportation Network 

 
 

1.3 Approach 

 

This capstone aims to design transportation distribution network scenarios that reduce the 

carbon emissions of MMTN’s activities that meet both global carbon emissions reduction 

targets as well as customer demand. In addition, the research hopes to assess the trade-offs of 

reducing carbon emissions to transportation cost and on-the-road delivery time. 

 

To optimize a carbon-efficient network design, three key objectives were included in the 

model: carbon emissions, delivery time, and variable transportation cost. There are several key 

trade-offs when one variable is maximized over the others. For instance, less carbon intensive 

long-range vehicles, such as trains, are much slower than carbon intensive airplanes. How does 

the carbon intensity of a shipment differ for each scenario? How should the company choose 

one mode of transportation over the other for certain lanes? What is the extent to which 

transportation by rail, water or air make economic sense? Additionally, how does the 

utilization of alternative-fuel vehicles such as electric trucks and biofuel planes impact the 

total carbon emissions of the transportation network?  

 

This project developed a model using Green Facility Location Problem (FLP) to minimize 

these objectives, and used the ɛ-constraint method to generate Pareto frontiers that quantified 

the trade-offs. Additionally, to account for, analyze and determine the reduction targets of 

MMTN’s transportation carbon footprint, the Global Logistics Emissions Council (GLEC) 

Framework and Science-Based Target Initiative (SBTi) tools have been utilized.  
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The remainder of the capstone is organized as follows: In Section 2, a thorough literature 

review is conducted to assess and understand the existing scholarship around network design, 

the middle-mile, emerging scenarios of carbon-efficient transportation and network design, 

emerging options for transportation with low carbon intensity in the United States, and the 

methods of measuring carbon intensity. Following the literature review, the Section 3 and 4 

cover the data and methodology of the research as well as the results derived. Finally, Section 

5 will delve into the insights, recommendations and limitations of the research.  
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2. Literature Review 

 
The scope of this research is to solve for the optimal supply chain network within the middle-

mile transportation network of MMTN that meets carbon emissions reduction targets as well 

as customer demand. 

 

There is a significant amount of literature relevant to the scope of this research such as network 

design, transportation, carbon emissions accounting and Pareto optimality. In this literature 

review, we explored different network design approaches. Previous studies have utilized 

existing and emerging real-world scenarios to better understand and optimize for traditional 

objectives such as minimizing cost. While, the emerging green network design studies have 

included impacts on the environment such as minimizing carbon emissions as an additional 

objective.  

 

2.1 Network Design 

2.1.1 Traditional Network Design Models and Solutions 

 

Supply Chain Network Design (SCND) is the configuration of the supply chain network by 

determining the optimal location and size of the facilities (also known as nodes) as well as the 

flow (also known as arcs) through these facilities to best distribute materials and products 

(Rezaee et al., 2017; Watson et al., 2012). The SCND, thus, has an influence on supply chain 

planning decisions at three different levels of an organization: strategic, tactical, and 

operational. From a strategic perspective, SCND deals with decisions such as the location of 

facilities and the allocation of customers. The tactical decisions will include the transportation 

modes among the facilities as well as inventory volume and type in facilities. Lastly, 

operational-level decisions include the fulfillment of customer demands such as the routing 

problem (Farahani et al., 2014; Rezaee et al., 2017; Zheng et al., 2019).  

 

To solve for the optimal solutions in decision making, there has been extensive operational 

and supply chain research conducted on SCND problems (Peng et al., 2016). Since locating 

the facilities is one of the key strategic decisions made in the SCND problem, Facility Location 

Problems (FLP) are one of the main researches utilized (Farahani et al., 2014). 

 

The FLP’s key goals are to determine the facilities to open and the allocation of the demand 

(or customers) to these facilities (Melo et al., 2009). The distance-based approach solves for 

the optimal location of multiple nodes by minimizing the average weighted distance from 

demand locations (Watson et al., 2012). Traditional SCND and FLP models can be classified 

based on a variety of considerations, including the uncertainty of demand and cost parameters 

(i.e., stochastic vs. deterministic models), supply chain scale or echelons (i.e., number of 

layers), the multiplicity of planning period (i.e., single or multiple periods), forward and/or 

https://www.zotero.org/google-docs/?fruKkg
https://www.zotero.org/google-docs/?g0x0Jm
https://www.zotero.org/google-docs/?Rzc3vP
https://www.zotero.org/google-docs/?pgNhX6
https://www.zotero.org/google-docs/?rDh8ug
https://www.zotero.org/google-docs/?LsB0oe
https://www.zotero.org/google-docs/?hyOvUB
https://www.zotero.org/google-docs/?LupMG3
https://www.zotero.org/google-docs/?YYVeWG
https://www.zotero.org/google-docs/?YYVeWG
https://www.zotero.org/google-docs/?FSey2X
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backward product flows, the number of products (i.e., single or multiple products), the type 

and number of objective functions (cost minimization, profit or service level maximization, 

etc.) (Rezaee et al., 2017). FLPs can also be differentiated by their solution space Continuous 

and Discrete Models (Daskin, 2008). 

 

The multi-echelon (or multi-layer) FLP research is scarce, as much of the research focuses on 

a specific layer of the supply chain, typically the distribution center or warehouse (Melo et al., 

2007). For example, Watson et al. (2012), presented a three-echelon supply chain model that 

determined warehouse locations with fixed plants and customers, optimizing for the 

minimization of total transportation and warehouse cost. Moreover, many FLP models have 

incorporated other supply chain decisions in addition to the described location-allocation 

decisions, such as capacity, inventory, procurement, production, routing, and transportation 

modes (Melo et al., 2007). Cordeau et al. (2006) integrated the decisions of inventory, 

production, and transportation mode in their network design. Carlsson and Ronnqvist (2005) 

only considered the location and transportation mode decisions in their model, allowing only 

one transportation mode for each arc. Appendix F outlines additional traditional network 

design literature. 

 

2.1.2 Carbon Emission in Network Design Models 

 

SCND models traditionally focus on minimizing fixed and operating costs, but because of 

SCND’s role in the economic and environmental performance of a firm as well as the growing 

need to reduce the emissions within the supply chain, research that integrates carbon emissions 

decisions into the SCND problem has been increasing in recent years (Peng et al., 2016). 

 

As the transportation sector becomes the largest contributor to carbon emission, SCND plays 

a role on the strategic level to limit and reduce the impact to the ecosystem. This is because 

the design of the network strongly influences the transportation performance in terms of cost 

and emissions (Martínez & Fransoo, 2017). There are three main approaches to how 

researchers have incorporated carbon emissions as an extension of the traditional SCND 

problem (Wang et al., 2020). The first method is to reduce emissions in the supply chain when 

designing the supply chain network by accounting for the emissions by converting it to a cost 

as a carbon price variable in the economic (total cost) objective(s). Some recent research 

examples that incorporate carbon price as part of the total cost objective function are from 

Rezaee et al (2017) and Jiang et al (2019), who solved for optimal discrete, multi-echelon 

SCND scenarios. The second approach is to treat carbon emissions as a constraint by way of 

strict emissions caps, emissions taxes, or emissions permission trade. Zhou and Wen (2020) 

provide a comprehensive review of the most recent studies in this area. The third method treats 

total emissions as a separate objective function to be minimized in the SCND model. 

https://www.zotero.org/google-docs/?rbtRmS
https://www.zotero.org/google-docs/?O67pQ8
https://www.zotero.org/google-docs/?IDccgr
https://www.zotero.org/google-docs/?KxMLDO
https://www.zotero.org/google-docs/?KxMLDO
https://www.zotero.org/google-docs/?vW8Mzt
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Bouzembrak et al. (2011) and Wang et al. (2011) adopted multi-objective SCND models to 

minimize both the total cost and total carbon emission in the supply chain. 

 

The scope of the operational decisions that are included in the total emissions and total cost 

objectives vary widely in the current literature. For instance, in their single-objective SCND 

model, Jiang et al. (2019) considered the total cost and the emissions from the operational 

activities, such as procurement, manufacturing, distribution, and recycling decisions. Peng et 

al. (2016) introduced a bi-objective optimization model that considered emissions and costs 

generated exclusively from the product transport and product storage at both factories and 

sales points. However, in their bi-objective SCND models, Wang et al. (2011) considered the 

transportation cost, handling cost, fixed facility setup cost, and environmental protection 

investment costs in their cost objective. For their total emissions objective, they considered 

emissions generated from the facilities as well as from the flow (or distance) in the network. 

 

Another relevant line of research that also considers minimizing emissions as an objective 

function is an extension of the FLP. This model is commonly known as the Green FLP (GFLP). 

The GFLP objective aims to determine the ideal number and location of facilities to reduce 

the carbon emissions while meeting the demand coverage (Martínez & Fransoo, 2017). 

Velázquez-Martínez et al (2014) developed a multi-objective FLP model that found the trade-

offs between carbon emissions and the cost of transportation while solving for the optimal 

facility locations of a single-layer (or echelon) of a multi-echelon supply chain network. Their 

research illustrates that a company can invest more in adjusting the distance and replacing its 

facilities while reducing the carbon significantly (Velázquez-Martínez et al., 2014).  They 

adapted the p-median problem (discrete FLP model), as the assumptions included 

deterministic demand and a finite set of candidate locations. For the cost objective, they 

included the labor cost, transport-related costs such as the use of the truck (i.e., depreciation), 

and the number of trips between nodes (by taking into account distance and truck capacity 

between nodes). They also utilized the Network for Transport and Environment (NTM) 

methodology in formulating the carbon emissions objective function. The NTM methodology 

estimates carbon emissions through the following parameters: fuel consumption, distance 

traveled, and weight per shipment (Network for Transportation and Environment, 2008). In 

addition, the research allowed for multiple truck types with different capacities to be assigned 

based on the demand node constraints, enabling a better understanding of the different location 

solutions dependent on transport infrastructure or other constraints apparent at the demand 

node (Velázquez-Martínez et al., 2014). 

 

Since many of the studies in the past have concluded that an increase in the number of open 

facilities will reduce emissions, Martínez & Fransoo (2017) presented a bi-objective GFLP 

that only considered the emissions and cost from mobile sources (i.e., transportation) and 

excluded the fixed emission and cost from stationary sources such as the facilities. By 

https://www.zotero.org/google-docs/?1L8o1h
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excluding costs and emissions of stationary sources their formulation enabled a better 

understanding of the trade-off between the distance and utilization when making location-

allocation decisions (Martínez & Fransoo., 2017). Thus, only the cost and emissions from 

mobile sources, such as transportation mode, capacity, speed, and load factor will be included 

in the scope of this study’s SCND problem. 

 

Although the literature in network design is rich and broad, there currently is not a model with 

all the parameters and considerations configuration that will directly apply to our research. 

This research solves for a multi-layer and middle-mile specific SCND problem with a tri-

objective to minimize the total transportation costs, carbon emissions, and On-The-Road 

(OTR) delivery time. Section 2.5 summarizes the key differences of this research compared to 

previous relevant studies.   

 

2.2 Measuring Carbon Emissions in Supply Chains 

 

“Carbon” is commonly used as a shorthand for GHGs because carbon dioxide (CO2) is the 

largest GHG emitted as well as the most important anthropogenic GHG in total impact. 

However, the GHGs produced by transportation activity also include the following gases: 

methane (CH4), nitrous oxide (N2O), hydrofluorocarbon (HFC), perfluorocarbons (PFC), 

nitrogen trifluoride (NF3), and sulphur hexafluoride. To easily measure the different GHGs in 

an aggregated manner, a single standard metric expressed as carbon dioxide equivalent (CO2e) 

has been established globally (Boukherroub, Tesseda et al., 2017). This standard metric uses 

the relative impact of a GHG on global warming using the equivalent concentration of CO2.  

 

There are several methodologies to account for carbon emissions. Most relevant for this study 

is the GHG Protocol, which established widely-adopted principles for carbon accounting 

across all sectors, and the Global Logistics Emissions Council Framework, which offers 

freight transport specific guidance aligned with the GHG Protocol. The GHG Protocol’s 

standardized framework divides the emissions into three scopes (see Figure 3). Scope 1 

includes direct emissions, defined as emissions from assets owned or controlled by the 

reporting company. Scope 2 includes the indirect electricity emissions, defined as the 

emissions from the production and distribution of electricity. Finally, Scope 3 includes all 

other indirect emissions, known as the indirect emissions from the reporting company’s supply 

chain. It is estimated that 80% of a business’ emissions occur in Scope 3 (WBCSD and WRI, 

2011), largely from the transportation and distribution emissions required to move goods from 

and to the reporting company.  
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Figure 3  

 

GLEC Framework’s Carbon Emissions Calculation Scopes 

 

Source: Global Logistics Emissions Council Framework for Logistics Emissions Accounting 

and Reporting Version 2.0 (p. 16) by S. Greene & A. Lewis, 2019, Smart Freight Centre. 

 

Furthermore, the GHG Protocol and GLEC Framework require the inclusion of emissions 

from the entire fuel life cycle, known as well-to-wheel (WTW) emissions, in order to capture 

the full impact of GHG emissions on the environment. As illustrated in Figure 4 below, the 

full fuel life cycle, or WTW cycle, consists of two processes: well-to-tank (WTT) and tank-

to-wheel (TTW). The WTT process includes all the activities, such as extraction, processing, 

storage and delivery, between the source of the energy (the well) up to the point of use (the 

tank). However, the TTW emissions are from fuels combusted to power Scope 1 activities (the 

wheel) (Greene & Lewis, 2019). Hence, the WTW is the sum of WTT and TTW emissions.  

 

Figure 4  

 

The Fuel Life Cycle for Carbon Accounting 

 

  

Source: Global Logistics Emissions Council Framework for Logistics Emissions Accounting 

and Reporting Version 2.0 (p. 16) by S. Greene & A. Lewis, 2019, Smart Freight Centre. 
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For Scope 3 emissions, the GLEC Framework provides an activity-based calculation method 

to derive total carbon emissions (in kg CO2 emissions) where primary data are unavailable 

(see Appendix A for more details): 

1. Calculate total tonne-kilometers (tkm): Find and capture the shipment weight and distance 

traveled of all freight transport activities (see Appendix A, Equation 2).  

2. Find the fuel efficiency or CO2e (carbon equivalent) intensity factors that best represents 

the transport conditions 

3. Convert total activity data (tkms) to GHG emissions by multiplying the activity data with 

fuel efficiency or CO2e intensity factors. (See Appendix A, Equation 3 and 4). If using the 

CO2e intensity factors, the underlying activity data must account for full WTW and all 

GHGs.  

In addition to the total carbon emissions calculation, carbon emissions intensity (carbon 

intensity) is another metric that companies use to track, analyze and strategize emissions 

reduction efforts (Greene and Lewis, 2019). The carbon intensity is derived by the emissions 

divided by the logistics activity, typically per tonne-kilometer. While we are using industry 

average carbon intensity factors for our calculations, companies can create their own custom 

intensity factors to further quantify and evaluate carbon emissions. This metric can be used as 

a key performance indicator (KPI) of its business’ transportation sustainability efforts.  

 

Over 1,000 companies worldwide are working with organizations such as Science-Based 

Targets (SBT) to establish carbon emissions and carbon intensity targets in line with the Paris 

Agreement targets of staying within the 1.5-2oC global warming (Science-Based Targets, 

2020). The Science-Based Target initiative (SBTi) has established scientifically-informed 

target-setting tools, two of which will directly apply to the scope of this research. The first 

tool, the Science-Based Target Setting Tool, provides a generic Scope 3 tool that uses the 

Absolute Contraction Approach to set total carbon emissions reduction targets that are in line 

with global, annual emissions reduction rates that is required to meet the 1.5oC, well-below 

2oC (WB2oC) and 2oC goals by 2050. The second tool, Target Setting Tool for Transport 

Sector, uses the Sectoral Decarbonization Approach (SDA) that takes International Energy 

Agency (IEA) Energy Technology Perspectives global sectoral scenarios, comprising 

emissions and activity projections, to compute sectoral intensity pathways. The Transport 

Sector tool budgets future carbon emissions and carbon intensity targets for an organization 

using its current activity and carbon emissions data. These SBT tools and the targets they 

derive are globally recognized to set short-term (minimum of 5 years) and long-term 

(maximum till year 2050) targets. SBT requires organizations to use the GLEC framework or 

equivalent carbon accounting method to derive the initial emissions prior to target-setting.  
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2.3 Emerging and Existing Carbon Efficient Transportation Modes 

 

To achieve higher carbon efficiency in the SCND problem, different emerging and existing 

transportation modes need to be explored and incorporated into the optimization model. Hence 

this section will explore the literature on carbon management and carbon-efficient options in 

the traditional freight transportation space – train, aircraft, barge, and truck – as well as any 

emerging, innovative alternatives. 

 

Since the transportation sector is a major contributor to world emissions and, according to the 

Carbon Trust, emissions from mobile sources are much higher than stationary sources 

(Martínez & Fransoo, 2017), there has been growing research on carbon management in the 

transportation sector to help mitigate the environmental impact. Herold and Lee (2017) 

provided a thorough review of the existing literature in this space. Since vehicle types vary in 

capacity, carbon intensity, fuel compatibility, and utilization as well as speed, the resulting 

emissions generated can differ greatly from one to the other. Freight aircraft have the highest 

average carbon intensity, followed by medium-duty truck, heavy-duty truck, rail, and 

container ship, respectively (Sims et al., 2014). One leading research area in carbon 

management and reduction in freight transportation is to determine the most carbon-efficient 

modal choice. Hoen et al. (2014) studied the reduction of emissions by switching transport 

modes within an existing network, determining that a 10% reduction in emissions could be 

achieved with a marginal increase in logistics costs of just 0.7%. 

 

Another research area is the efficiencies gained from the mix of these transportation modes, 

also known as intermodal transportation. For instance, Bouzembrak et al. (2011) formulated 

integer linear program solutions to include m-number of transportation modes. By taking the 

case of railway and waterway as an alternative to land vehicles, they found the Pareto solutions 

for business optimality. In a similar vein, Tsao and Linh (2018) reduced the carbon cost by 

delivering containers through a multi-modal scenario from seaport to dry port using rail and 

road transportation. On the other hand, Craig et al. calculated the total carbon efficiency of 

switching truck transportation to intermodal (Craig et al., 2013). Moreover, Liljestrand et al. 

(2015) determined that intermodal transportation had the largest potential compared to other 

variables in transportation to reduce total carbon emissions. 

 

In addition to the carbon management of current modal types, several emerging technologies 

and innovations are seeking to reduce emissions from freight transportation. The following 

subsections summarize the brief background as well as corresponding new or upcoming 

innovations for each transportation mode. 

 

 

 

https://www.zotero.org/google-docs/?FTaA91
https://www.zotero.org/google-docs/?FTaA91
https://www.zotero.org/google-docs/?FTaA91
https://www.zotero.org/google-docs/?oh3EQh
https://www.zotero.org/google-docs/?oh3EQh
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2.3.1 Rail 

The U.S. rail cargo network covers up to 140,000 miles and transports around 57 tons of goods 

per American per year (Association of American Railroads, 2020).  While American freight 

railways are diesel-powered, they are a more efficient and lower carbon option compared to 

road transport. In the US, advanced developments such as fully electric locomotives and high-

speed rail systems are limited to a small subset of passenger rail lines. This is due to the fact 

that railroads are privately owned and partially funded by the U.S. government (Nunno, 2018). 

Therefore, there is little incentive to invest in transforming to electric rail lines.  The train line-

haul option is limited to railway lanes and terminals available in the region and therefore do 

not have the flexibility that other modes such as trucking does. Further, rail shipments will 

always require a transfer process from the terminal to the receiver’s facility. Typically, this 

transfer process, also known as drayage, utilizes truck trailers and adds extra lead time as well 

as transportation cost. If the facility is too far from the station, both the total cost and emissions 

may not have significant cutbacks compared to exclusively shipping with trucks.  

 

2.3.2 Air 

Air cargo is a great option for long hauls across the country, especially to serve fulfilment 

network where a limited time window is expected to fulfill customer demand. The 

International Air Transportation Association (IATA) reports an increasing demand for air 

freight with 9.7% growth in 2017 (IATA, 2019). Although aircraft have competitive 

advantages, they also have a major drawback: they are among the top three contributors to 

transportation carbon emissions in the U.S. (OTAQ, 2020). The extent of the carbon emissions 

is influenced by the size of the aircraft, fuel efficiency, and the load factor (Miyoshi & Mason, 

2009). A study of the evolution of U.S. air cargo productivity between 1990 and 2010 showed 

that the air cargo industry has only made minor fuel improvement, and that the fuel efficiency 

is not only determined by the type of fuel, but also the structure of the aircraft and the engine 

technology, the payload it carries, and the traffic of the route (Donatelli, 2012). As substitutes 

for fossil jet fuels, innovative fuels have emerged within the industry, such as sustainable 

aviation fuels (SAF) which is produced from waste oils from a biological origin, or agricultural 

residues; Lower Carbon Aviation Fuels (LCAF); and hydrogen (ICAO, 2017). 

 

Khoo   and   Teoh  (2014)   proposed   a   Green   Fleet   Index   to   indicate   the  environmental 

impact of an aircraft. They concluded that increasing the load factor and reducing the flight 

frequency will reduce carbon emissions (Khoo & Teoh, 2014). To relate their research to the 

FLP in network design, Parsa et al. (2019) solved the hub-and-spoke location problem by 

optimizing cost, air pollution, fuel consumption, and sound pollution which results in cutting 

the carbon emission by almost 10%. This research examines a medium Boeing 737 aircraft 

and a large Boeing 767 aircraft traveling between the existing airports available in the U.S., 

which requires intermodal connectivity between the airport and the facility location. 
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2.3.3 Ocean and River 

Ocean shipping accounts for over 80% of world trade and 27% of global logistics carbon 

emissions (ITF, 2019). Although vessels are the most carbon-efficient mode out of the four 

traditional modes of transportation (Sims et al., 2014), the sheer volume of goods shipped 

provides the industry with the critical potential to support the reduction of carbon emissions 

in the transportation industry. Designing carbon-neutral or carbon-efficient, vessels has been 

a major field of research as firms and scientists are investing in developing innovative fuel and 

vessel technologies that are also viable for utilization on ocean and waterways. For instance, 

one study illustrates wind propulsion systems that provide more lift and propulsion, effectively 

reducing fuel consumption by up to 30% (Kleiner, 2007). Container logistics firms like Maersk 

have also developed lower fuel consumption vessels such as the Maersk Triple E class, a ship 

that incorporates the “slow steaming” strategy (McKinnon, 2016). This strategy is the practice 

of operating vessels at lower speeds to reduce cost and carbon emissions (Kloch, 2013). 

Moreover, Maersk recently piloted a new biofuel in its operations that is set to reduce total 

transportation carbon emissions for its customers (Johnson, 2019). 

 

In the US, river barge transportation carries over 53% of U.S. imports and 38% of U.S. exports 

by dollar value (Bureau of Transportation Statistics, 2012). In addition, the inland waterways 

carry approximately 14% of all intercity freight in the U.S. (Waterways Council, 2006), over 

12,000 miles across 38 different states. Figure 6 in Appendix D illustrates the major ports and 

inland waterways in the US. This research will incorporate barge shipment along the ports and 

inland waterways as an option in our SCND model. 

 

2.3.4 Truck 
Globally, on-the-road transportation makes up over 62% of total logistics carbon emissions 

(ITF, 2019). The two main truck types utilized for on-the-road freight transportation are 

medium-duty and heavy-duty trucks. Medium-duty trucks are trucks between the Class 4 and 

Class 6 weight categories, equivalent to 14,000 to 26,000 pounds. Heavy-duty trucks are any 

vehicle exceeding 26,000 pounds, including all Class 7 to Class 9 trucks (Soard, 2017). Over 

70% of all freight tonnage in the U.S. is hauled by heavy-duty trucks and they contribute about 

5% of all carbon emissions in the U.S. (Deng et al., 2018). 

 

As emissions from transport continue to rise, on average an increase of 1.9% annually from 

all transportation and an increase of 2.6% annually from trucks and buses since 2000 

(International Energy Agency, 2020), efforts such as the Modern Truck Scenario have 

developed to reduce emissions (International Energy Agency, 2017). The Modern Truck 

Scenario sets out targeted efforts to reduce emissions by three key approaches: systematic 

improvements in operations and logistics in road freight, vehicle efficiency improvements, 

and the use of alternative fuels (International Energy Agency, 2017). Increased vehicle 

efficiency improvements can be achieved by designing more fuel-efficient trucks, with such 

https://www.zotero.org/google-docs/?fAqjD8
https://www.zotero.org/google-docs/?fAqjD8
https://www.zotero.org/google-docs/?fAqjD8
https://www.zotero.org/google-docs/?uBJzwY
https://www.zotero.org/google-docs/?uBJzwY
https://www.zotero.org/google-docs/?KOS6IB
https://www.zotero.org/google-docs/?KOS6IB
https://www.zotero.org/google-docs/?cwcMxQ
https://www.zotero.org/google-docs/?25AbwK
https://www.zotero.org/google-docs/?25AbwK
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improvements as better engine designs, drivetrains, aerodynamics, and tires (Harrington & 

Krupnick, 2012; Mohamed-Kassim & Filippone, 2010). There have also been recent 

developments of low-carbon alternative fuels as energy sources for trucks. For instance, Plug 

Power and Lighting Systems in the U.S. have developed fuel-cell powered Class 6 electric 

trucks, while Plug Power has also launched its 125kW heavy-duty ProGen fuel cell engines 

that will expand their technology to Class 7 and Class 8 trucks (Global News Wire, 2020). 

These alternative fuel trucks will allow for travel ranges from 200 miles in the standard version 

to up to 400 miles in the extended-range version, enabling capabilities to support middle-mile 

delivery and logistics (Fuel Cells Bulletin, 2020). Since the scope of our research includes 

Class 6 and Class 8 trucks, these new technologies will be comparable alternatives to evaluate 

in optimizing the SCND model. 

 

2.4 Business Impact of Carbon Efficient Network Design 

 

Optimizing the facility location that minimizes total carbon emission by reconfiguring the 

vehicle mix and distance between the facility nodes will impact the network’s transportation 

costs, affecting business decisions and strategy. Thus, the resulting scenarios from the SCND 

problem require a trade-off analysis to provide managerial insights. Since optimizing total cost 

and carbon emissions are common objectives among carbon-efficient SCND studies, the trade-

off between both objectives as an effect of multiple variables have been considered and 

illustrated by several researchers (Huang et al., 2020; Palacio et al., 2018). 

 

The trade-offs for all the optimal solutions can be illustrated using a Pareto frontier graph. 

This is also known as Pareto-optimal when no one variable or factor (such as cost or total 

emissions) could be made better off without making other variables worse off (Vélazquez-

Martínez et al., 2014). For instance, Wang et al. (2011) proposed a network design model to 

see the trade-off between the total cost and the optimum quantity of CO2 transported by using 

a two-dimension Pareto frontier. The result from their study illustrated that the organization’s 

cost increased if it wanted to emit less carbon (Wang et al., 2011). With the Pareto frontier 

graph, they were able to present the minimum and maximum threshold for cost and carbon 

emission that the model could carry. Pareto solutions provide predictable configurations that 

help decision-makers design the optimal supply chain network (Bouzembrak et al., 2011). For 

this research study, not only are total cost and carbon emissions being assessed, but also the 

third objective of delivery speed. This will result in a three-dimensional Pareto graph. The 

Pareto frontier resulting from this study will help support the effort to better understand the 

trade-offs between reducing carbon emissions, speed (or distance), and transportation cost 

when navigating a more carbon-efficient SCND. 

  

https://www.zotero.org/google-docs/?PnocQB
https://www.zotero.org/google-docs/?aJ6Z2c
https://www.zotero.org/google-docs/?wvVGYT
https://www.zotero.org/google-docs/?wvVGYT
https://www.zotero.org/google-docs/?BB2ZIl
https://www.zotero.org/google-docs/?BB2ZIl
https://www.zotero.org/google-docs/?BB2ZIl
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2.5 Summary 

 

The literature on SCND has been widely studied over the past several decades. These studies 

have solved a variety of challenges. This research contributes primarily to the stream of 

carbon-efficient network design research but differs from previous relevant studies in the 

following aspects: 

1. Our scope of the supply chain is limited to the middle-mile distribution, which is a 

three-echelon network that includes Inbound Cross-Docks (IXD), Fulfillment Centers 

(FC), and Sorting Center (SC) nodes. 

2. The research will be a multi-objective GFLP that sequentially minimizes three 

objective functions: emission, cost, and delivery time. Typically, GFLP considers a bi-

objective approach with carbon emission and cost reduction only. 

3. Although the demand at the SC nodes is deterministic, a finite set of candidate 

locations for all three node types (IXD, FC, and SC) will need to be estimated first, 

requiring a 2-step modeling process. The model will first need to determine the optimal 

candidate locations before determining optimal locations that minimize the objective 

functions of total emissions, cost, and speed (or distance). 

4. Considering the scope of our research and limited data access, the model will only 

include costs and emissions from mobile (or transportation) sources. All other supply 

chain decisions such as the cost of opening and operating a facility (i.e., processing of 

packages, inventory management) and the energy usage of facilities (emissions from 

activities at the nodes) will be excluded. Thus, only cost and emissions derived from 

the distance traveled between nodes as well as the transportation modal type, capacity 

and load size will be relevant for our calculations. 

5. There are sixteen choices of transportation to consider for multi-modal linehaul (see 

Appendix B). 

6. The research will use the GLEC Framework as the carbon emission accounting method 

as it offers the most comprehensive carbon accounting method and is the primary 

carbon accounting method used by MMTN.
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3. Data and Methodology 
 

This section provides background on the research methods and data used to solve for the 

optimal middle-mile transportation network scenarios that minimize total carbon emissions 

while fulfilling customer demand. To accomplish this, the research consisted of the 

following steps: 

1. Build Network Design models: 

a. Determine candidate locations for all three echelons of IXD, FC and SC. 

b. Formulate the three objectives of minimizing carbon emissions, transportation 

cost and on-the-road delivery time. 

c. Incorporate other business constraints for middle-mile network 

d. Determine Baseline vs. alternative network design scenarios 

2. Plot Pareto frontiers: 

a. Identify the extreme boundaries of each Pareto frontier from objective output 

b. Generate and plot observations between boundaries using ɛ-constraint method 

3. Identify optimal target scenarios: 

a. Calculate the target total carbon emissions that meet Science-Based Targets of 

1.5oC, WB2oC and 2oC. 

b. Identify and analyze the optimal targets scenarios from the Pareto frontiers that 

meet the calculated Science-Based Target carbon emissions, 

 

Due to the scope and limited data access of this research, the model includes costs and 

emissions from mobile sources. All other supply chain decisions such as the cost of opening 

and operating a facility and the energy usage of facilities (emissions from activities at the 

nodes) have been excluded. 

 

The data that informs the research is limited to the following in Table 1: 
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Table 1 

 

Data Provided from MMTN 

 

Type Data 

 

Transportation Modes 

Current modes utilized and corresponding load size per trip 

Average speed of vehicles 

 

 

Facilities and Network 

Design 

 

Maximum processing capacities of all facility types in the middle mile 

Minimum processing requirements of all facility types 

Maximum number of within-layer FC and SC facilities 

Demand Monthly customer demand aggregated by U.S. 3-digit ZIP code level 

 

3.1 Assumptions 

 

Our proposed methodology has made the following assumptions to clearly demonstrate the 

problem and the mathematical solution. 

 

3.1.1 Facilities and Network Design Assumptions 

 

The following assumptions describe the facilities and the flow between these facilities: 

● All nodes (facilities) are located on a Euclidean plane with x and y coordinates. 

● The middle-mile network design is formed of three layers: Inbound Cross-Docks 

(IXD), Fulfilment Center (FC), and Sorting Center (SC). 

● All flows in the scope of the model are forward flows (IXD to FC to SC). Backward 

flows or reverse logistics are not considered. 

● Each node type (IXD, FC or SC) has a fixed minimum and maximum processing 

capacity. 

● The network excluded the inter-layer flows such as FC-FC and SC-SC.  

 

3.1.2 Transportation Modes Assumptions 

 

The following assumptions relate to the transportation modes in the network design: 

● There are sixteen types of transportation choice considered in the model. A detailed 

breakdown can be found in Appendix B. 
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● The Baseline Model only includes the current transportation modes utilized in the 

middle-mile. This includes the Class 6 and Class 8 Trucks, as well as Boeing 737 and 

Boeing 767 freighter airplanes. 

● The model assumes that there will be no fixed schedules for all transportation 

(including barge and train) and assumes all transportation is available on demand. 

● All transportation types are assumed to have a uniform and constant speed per 

transportation mode. For example, all trucks are assumed to have the same speed of 

40 MPH. Speed breakdown of each vehicle type can be found in Appendix B Table 

13. 

● All transportation types are assumed to have the average fill rate as specified for each 

type Appendix B Table 13. The fill rate of a vehicle can be defined as the ratio of the 

actual capacity used in a vehicle to the total capacity available in terms of weight and 

volume. 

● Average weight or average capacity per trip for all vehicle types are pre-determined 

with the following additional assumptions for vehicles modes that are not currently 

utilized: 

○ Short-haul and medium-haul air have the same capacity and weight per trip. 

○ Each rail car’s capacity is equivalent to a 53-foot trailer. 

○ Each barge’s capacity is equivalent to eight 53-foot trailers. 

 

3.1.3 Other General Assumptions 

 

The following assumptions relate to other assumptions for the network optimization: 

 

● In order to determine the distance of travel between nodes (facilities), a circuity factor 

has been applied to the Euclidean distance (straight-line distance). The circuity factor 

will differ depending on transportation mode and region. 

● Demand is deterministic and aggregated in a single period of time for a single 

commodity in a specific 3-digit ZIP code region. 

● All shipments (packages) are uniform in weight and size. For example, each package 

has the same X weight and Y dimensions so no packages have distinctive features that 

will affect the cost and loading capacity of the different transportation types. 

● The fuel price uses the U.S. average pricing, as described in Appendix C Table 15. 

● Fixed transportation costs are excluded from this model, as investments for alternative 

fuels and transportation mode types are out of scope for this research. 

● SC to customer node lanes have to be incorporated into the model in order to determine 

the open or close decisions for SC candidate locations. Therefore, the model is 

optimized based on the whole network (IXD-Customer nodes) and not just middle-mile 

(IXD-SC). 
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3.2 Candidate Locations  
 

In order to solve for the GFLP that minimizes the three objectives of carbon emissions, 

transportation cost and delivery time, the model first needs to determine a finite set of 

candidate locations for all node types (IXD, FC and SC). This section illustrates the approach 

taken to determine these candidate locations for each node type. 

 

For each of these facilities, the estimated number of nodes needed is a division of total daily 

demand per the minimum capacity of node type. Total daily demand for each node is 

estimated as follows: 

 

Total Daily Demand = Monthly Total Units (provided by MMTN) * 1.4 (conversion to 

packages) * 30 (average days per month).  

 

Number of Nodes = Total Daily Demand / Minimum Capacity 

 

Using Coupa’s Supply Chain Guru X (SCGX) software, the greenfield analysis tool 

generated the best placement of candidate locations coordinates that are aligned with the 

distance-based approach (Coupa, 2021). To optimize for the best facility locations, the model 

requires enough candidate locations to draw from. Therefore, the number of candidate 

locations need to double the estimated number of nodes required for each type of location. 

Fortunately, the program’s map visualization tools help ensure the facilities generated are 

located close to main roads and not at unreachable locations. The following sections on 

candidate locations gather the input details on each type of the facilities and the distance-

based approach formulation. 

 

3.2.1 Inbound Cross-Dock (IXD) Candidate Locations 

 

The IXD candidate locations can be solved by using the basic FLP distance-based approach. 

This approach locates the optimal location of multiple nodes by minimizing the average 

weighted distance from the demand. The demand locations in this case are the current major 

ports in the U.S. as well as the top locations of domestic sellers that currently sell to the 

sponsoring company. The number of demand for these locations is the aggregated volume 

processed at these ports and the percent of total domestic sellers’ volumes per location.  

 

The mathematical formulation to solve for the IXD candidate locations is closely follow 

Watson et al.,’s (2012) formulation as follows: 

𝑀𝑖𝑛. ∑ ∑ 𝑑𝑥𝑎𝐷𝑎𝑌𝑥𝑎

𝑎𝑥

  (1) 
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This formula is subject to a number of constraints such as constraint (2) which make sure 

that every customer is fulfilled. 

∑ 𝑌𝑥𝑎 =  1 

𝑥

                           ∀𝑎 (2) 

Constraint (3) is used to generate the number of candidate locations L in the network using 

the values that have been calculated before. 

∑ 𝑋𝑥

𝑥

=  𝐿 (3) 

Constraint (4) ensures that a facility must process between its minimum and maximum 

capacities.  

𝑈𝑥 𝑚𝑖𝑛 𝑋𝑥 ≤ ∑ 𝐷𝑥𝑎𝑌𝑥𝑎 ≤ 𝑈𝑥 𝑚𝑎𝑥 𝑋𝑥

𝑎

              ∀𝑥 (4) 

The shipment between the two nodes cannot be made unless the facility is opened as reflected 

in constraint (5) 

𝑌𝑥𝑎 ≤  𝑋𝑥                             ∀𝑥  ∀𝑎 (5) 

Constraint (6) is a binary linking whether a lane is created between the candidate locations 

and its input. 
𝑌𝑥𝑎 ∈ {0,1} (6) 

Constraint (7) is a binary linking whether to open the facility or not. 
𝑋𝑥 ∈ {0,1} (7) 

 

3.2.2 Fulfillment Center (FC) Candidate Locations 

 

The FC candidate locations can be solved by also utilizing the distance-based approach. The 

demand locations in this case, however, will be based on 830 cities across the U.S. with 

populations above 50,000 residents. This method is used in order to avoid the tendencies of 

having FC closer towards the IXD candidate locations due to the distance-based approach.  

 

Similarly, the mathematical formulation to solve for the FC candidate locations is closely 

follow Watson et al.’s (2012) formulation as follows: 

𝑀𝑖𝑛. ∑ ∑ 𝑑𝑓𝑏𝐷𝑏𝑌𝑓𝑏

𝑏𝑓

  (8) 
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This formula is subject to a number of constraints such as constraint (9) which make sure 

that every customer is fulfilled. 

∑ 𝑌𝑓𝑏 =  1

𝑓

                            ∀𝑏 (9) 

Constraint (10) is used to generate the number of candidate locations L in the network using 

the values that have been calculated before. 

∑ 𝑋𝑓 =  𝐿

𝑓

 (10) 

Constraint (11) ensures that a facility must process between its minimum and maximum 

capacities.  

𝑈𝑓 𝑚𝑖𝑛 𝑋𝑓 ≤ ∑ 𝐷𝑓𝑏𝑌𝑓𝑏 ≤ 𝑈𝑓 𝑚𝑎𝑥 𝑋𝑓              ∀𝑓

𝑏

 (11) 

The shipment between the two nodes cannot be made unless the facility is opened as reflected 

in constraint (12) 

𝑌𝑓𝑏 ≤  𝑋𝑓𝑏                             ∀𝑓  ∀𝑏 (12) 

Constraint (13) is a binary linking whether a lane is created between the candidate locations 

and its input. 
𝑌𝑓𝑏 ∈ {0,1} (13) 

Constraint (14) is a binary linking whether to open the facility or not. 
𝑋𝑓 ∈ {0,1} (14) 

 

3.2.3 Sorting Center (SC) Candidate Locations 

 

The sorting center candidate location can also be solved by using the same approach taken 

to locate IXD and FC candidate locations. The customer demand input in this case is provided 

as a U.S. 3-digit ZIP code format, aggregating demand by sectional divides within each state. 

This method selects candidate locations closer to zip codes with higher demands.  

 

The minimum capacity requirements will limit the number of SC candidate locations, 

aggregating demand in certain ZIP-codes to be served by fewer SC. Maximum capacity 

limitations, however, may increase the number of candidate locations necessary to meet 

certain zip-codes’ demand. 

 

Similarly, the mathematical formulation to solve for the SC candidate locations is closely 

follow Watson et al.’s (2012) formulation as follows: 
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𝑀𝑖𝑛. ∑ ∑ 𝑑𝑠𝑐𝐷𝑐𝑌𝑠𝑐 

𝑐𝑠

 (15) 

 

This formula is subject to a number of constraints such as constraint (16) which make sure 

that every customer is fulfilled. 

∑ 𝑌𝑠𝑐 =  1                            

𝑠

∀𝑐 (16) 

Constraint (17) is used to generate the number of candidate locations L in the network using 

the values that have been calculated before. 

∑ 𝑋𝑠 =  𝐿

𝑠

 (17) 

Constraint (18) ensures that a facility must process between its minimum and maximum 

capacities.  

𝑈𝑠 𝑚𝑖𝑛 𝑋𝑠 ≤ ∑ 𝐷𝑠𝑐𝑌𝑠𝑐 ≤ 𝑈𝑠 𝑚𝑎𝑥 𝑋𝑠              

𝑐

∀𝑠 (18) 

The shipment between the two nodes cannot be made unless the facility is opened as reflected 

in constraint (19) 

𝑌𝑠𝑐 ≤  𝑋𝑠𝑐                             ∀𝑠  ∀𝑐 (19) 

Constraint (20) is a binary linking whether a lane is created between the candidate locations 

and its input. 
𝑌𝑠𝑐 ∈ {0,1} (20) 

Constraint (21) is a binary linking whether to open the facility or not. 
𝑋𝑠 ∈ {0,1} (21) 

 

 

3.2.4 Annotations and Mathematical Formulations 

 

𝑎𝑖 : Public terminals or domestic supplier number i as Greenfield input for 

IXD 

𝑏𝑗 : Cities above 50,000 population number j as Greenfield input for FC 

𝑐𝑘 : Customer demand number k as Greenfield input for SC 

𝑥𝑖 : Inbound Cross-Docks (IXD) number i 

𝑓𝑗 : Fulfillment Center (FC) number j 

𝑠𝑘 : Sorting Center (SC) number k 
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𝐷𝑎, 𝐷𝑏, 𝐷𝑐 : Facility supply capacity, number of populations, or customer demand for 

Greenfield input 

𝐷𝑥𝑎, 𝐷𝑓𝑏, 𝐷𝑠𝑐  : Supply capacity assigned to IXD, number of populations assigned to FC, 

or customer demand assigned to SC 

𝑑𝑥𝑎, 𝑑𝑓𝑏, 𝑑𝑠𝑐    : Distance of travel between candidate locations and its Greenfield input 

(public terminals and domestic suppliers, cities above 50,000 population, or 

customer demand 

𝑈𝑥, 𝑈𝑓, 𝑈𝑠 : Capacity of each facility 

𝑌𝑥𝑎,𝑌𝑓𝑏,𝑌𝑠𝑐   : Binary linking, 1 if candidate locations x/f/s serve the Greenfield input 

a/b/c 

𝑋𝑥, 𝑋𝑓, 𝑋𝑠    : Binary linking, 1 if candidate locations x/f/s are opened 

L : Number of candidate locations for each facility to be generated (IXD = 

30, FC = 206, SC = 154) 

 

Locating facilities using the distance-based approach can be generalized as the following 

objectives and constraints where xa indicates a pairing for IXD and it’s Greenfield input from 

public terminals or domestic suppliers information. Use fb annotation pairing to find 

candidate locations for FC and sc annotation pairing to find candidate locations for SC. 

𝑀𝑖𝑛. ∑ ∑ 𝑑𝑥𝑎𝐷𝑎𝑌𝑥𝑎

𝑎𝑥

  (1) 

s.t.  

∑ 𝑌𝑥𝑎 =  1 

𝑥

                           ∀𝑎 (2) 

∑ 𝑋𝑥

𝑥

=  𝐿 (3) 

𝑈𝑥 𝑚𝑖𝑛 𝑋𝑥 ≤ ∑ 𝐷𝑥𝑎𝑌𝑥𝑎 ≤ 𝑈𝑥 𝑚𝑎𝑥 𝑋𝑥

𝑎

              ∀𝑥 (4) 

𝑌𝑥𝑎 ≤  𝑋𝑥                             ∀𝑥  ∀𝑎 (5) 

𝑌𝑥𝑎 ∈ {0,1} (6) 

𝑋𝑥 ∈ {0,1} (7) 

 

 

3.3 Formulating Objectives 

 

Once candidate locations for IXD, FC, and SC are identified as a fixed set of number of 

facilities, the network optimization model is then categorized as a discrete model. Discrete 
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models mean that the number of nodes is restricted to a finite number of locations (Daskin, 

2008). Additionally, one of the key variables that build-up to each objective is the distance 

between the nodes. Thus, under the umbrella of discrete models, optimizing the distance 

between nodes in this model is categorized as a p-median discrete model (Daskin, 2008). 

This constraint applies to the GFLP optimization to achieve the three objectives in 

minimizing carbon emission, transportation cost, and delivery time.  

 

3.3.1 Carbon Emissions 

 

The first objective function is to minimize total carbon emissions of the network. The model 

utilizes the GLEC Framework to account for carbon emissions. Per the GHG Protocol and 

GLEC Framework, all the emissions in scope for this research, the transportation emissions 

required to move goods, is calculated using the method for Scope 3 emissions. As explained 

in Section 2.2, Scope 3 is used to estimate transportation emissions in the supply chain when 

the actual fuel burn data is unavailable, and when the split between company-owned vs. 

subcontracted transportation is unknown.  

To accurately calculate carbon emissions from transportation, the GLEC Framework 

includes the full fuel life cycle, also known as the well-to-wheel (WTW) carbon intensity 

factors (Greene and Lewis, 2019). The WTW emissions is the sum of both the fuel emissions 

from well-to-tank (fuel production and distribution) and from tank-to-wheel (fuel 

combustion). Carbon intensity factors were selected from the GLEC Framework that most 

closely align with the transportation vehicles and activities used in this study. For electric-

powered vehicles, electricity use is converted to carbon emissions by accounting for the 

sources of energy used to create electricity, expressing its emissions factors in mass carbon 

emissions (CO2e) per kilowatt-hours (kWh) of electricity used. 

 

Scope 3 emissions are calculated based on the following formula: 

𝑘𝑔 𝐶𝑂2𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = ∑ 𝑡𝑜𝑡𝑎𝑙 𝑡 ∗  𝑘𝑚 ∗  𝐶𝑂2𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟   (23) 

Thus, total emissions per trip can be calculated following the below steps: 

1. Calculate total tonne-kilometer(tkm) by estimating total weight (t) per trip per 

transportation type and the total distance (km) traveled by the same transportation type 

between nodes 

2. Determine carbon intensity factor(s) of transportation types (CO2e intensity factor) 

3. Convert tonne-kilometer to CO2e emissions per transportation type  

(total tkm * CO2e intensity factor) 

 

The average weight per shipment is pre-determined for each vehicle type per MMTN’s 

requirements. Distance between nodes will be derived from the optimization of the model 
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itself as certain nodes from the candidate locations open and/or close per each objective 

function. In addition, the total carbon intensity factors can be determined from transportation 

mode-specific reference tables calculated by the GLEC Framework. Table 11 and Table 12 

in the Appendix B illustrate the 16 different transportation types utilized in the model with 

their corresponding categorization and fuel emission intensity factors derived from the 

GLEC Framework. 

Since all vehicles have certain capacity limitations, not all demand per period can be met by 

one trip. Therefore, the objective function to minimize total emissions in the model will 

require an additional variable that accounts for the number of trips or in other words, the 

number of vehicles required to fully serve the customer demand (Ds). This variable is 

annotated as N, which is a function of total demand (Ds) divided by capacity of vehicles 

traveling between two nodes using vehicle T ( UT ). 

 

To fulfill the customer demand, each node in the middle-mile network should be connected 

with one another subject to conditional limitation and the objective function (24). In this 

case, constraint (25) illustrates that demand always exists and through candidate location 

selection, the SC should have covered the aggregated number of demands in the region.  

𝑀𝑖𝑛. ∑ ∑ 𝑤𝑇𝑑𝑥𝑓𝐹𝑇𝑁𝑥𝑓

𝑓

+ 

𝑥

∑ ∑ 𝑤𝑇𝑑𝑓𝑠𝐹𝑇𝑁𝑓𝑠

𝑠

 

𝑓

  (24) 

 

𝐷𝑠 ≥ 0 (25) 

 

Each IXD is randomly connected to one of the 5 FC groups consisting of about 40 FC 

reflected in constraint (26).  

𝐺𝑥𝑖
=  ∑ 𝑓𝑗  /5

𝑗

 (26) 

 

On the other side of the network, constraint (27) ensures the supply product quantity 

transported from IXD has to be equal or greater to the total demand at SC, otherwise, the 

demand is not fulfilled. 

∑ 𝑄𝑥

𝑥

≥ ∑ 𝑄𝑠

𝑠

                                     ∀𝑥 ∀𝑠 (27) 

 

Constraint (28) ensures that the total number of products coming into FC should also be the 

same as the products coming out of it.  

𝑄𝑥𝑓  = 𝑄𝑓𝑠                                         ∀𝑓 (28) 
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Constraints (29-30) ensure that the number of product quantities transported between two 

nodes has to be less than or equal to the number of vehicles in each lane multiplied by the 

capacity of each vehicle.  

𝑄𝑥𝑓 ≤ 𝑁𝑥𝑓𝑈𝑥𝑓
𝑇                                     ∀𝑥 ∀𝑓 (29) 

𝑄𝑓𝑠 ≤ 𝑁𝑓𝑠𝑈𝑓𝑠
𝑇                                     ∀𝑓 ∀𝑠 (30) 

 

Additionally, each type of facility (IXD, FC, and SC) has minimum and maximum capacity 

constraints to open a facility bounded by constraints (31-33).  

𝐵𝑥𝑈𝑥 𝑚𝑖𝑛 ≤ ∑ 𝑄𝑥𝑓

𝑓

≤ 𝐵𝑥𝑈𝑥 𝑚𝑎𝑥           ∀𝑥 (31) 

𝐵𝑓𝑈𝑓 𝑚𝑖𝑛 ≤ ∑ 𝑄𝑓𝑠

𝑠

≤ 𝐵𝑓𝑈𝑓 𝑚𝑎𝑥            ∀𝑓 
(32) 

𝐵𝑠𝑈𝑠 𝑚𝑖𝑛 ≤ ∑ 𝑄𝑓𝑠

𝑓

≤ 𝐵𝑠𝑈𝑠 𝑚𝑎𝑥            ∀𝑠 
(33) 

Later to create Pareto frontier, the total emissions objective is bounded by the total carbon 

emission produced in the observed scenario using constraint (34). 

  

𝑀𝑖𝑛. ∑ ∑ 𝑤𝑇𝑑𝑥𝑓𝐹𝑇𝑁𝑥𝑓

𝑓

+ 

𝑥

∑ ∑ 𝑤𝑇𝑑𝑓𝑠𝐹𝑇𝑁𝑓𝑠

𝑠

 

𝑓

≤  𝑇𝑒 (34) 

A binary linking of 0 and 1 in constraint (35) will be used to indicate if a candidate location 

should be opened or closed. Hence, the total cost will indirectly reflect the number of 

facilities that are open. 

𝐵𝑥 , 𝐵𝑓 , 𝐵𝑠  ∈ {0,1} (35) 

 

Lastly, constraint (36-37) tells that all these flows are non-negative. 

𝑄𝑥𝑓 , 𝑄𝑓𝑠  ≥  0                                      ∀𝑥 ∀𝑓 ∀𝑠 (36) 

𝑈, 𝑄, 𝑁 ≥  0                                     𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (37) 

 

3.3.2 Transportation Cost 

 

The transportation cost -- in addition to the facility cost -- usually becomes a primary 

parameter in designing a distribution network (Daskin, 2008; Palacio et al., 2018). Daskin 

and Palacio chose transportation cost as an input variable which will lead to the objective 

function of minimizing the overall costs. Typically, the total transportation cost covers the 

fixed cost and the variable cost. The fixed cost includes, but is not limited to, the cost of 

vehicles, the labor costs, the operational costs, and the vehicle maintenance costs. 

Considering a more sustainable vehicle and new advanced technology such as electric 
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trucks, electric trains, and others, its transportation fixed cost will be much higher than the 

existing diesel-powered vehicles (García-Olivares et al., 2018) .  

 

The market for alternative transportation is still limited and thus adds another burden for 

companies to make investments to proceed. Since one of the objectives of this research is to 

minimize the cost while considering low carbon transportation, this fixed cost will bias the 

model such that it will always choose the cheaper traditional vehicles. Hence, in this scope 

of research, the objective function (37) on transportation cost will only consider the variable 

costs to generate a fair comparison between all modes of transportation. 

𝑀𝑖𝑛. ∑ ∑ 𝑐𝑥𝑓
𝑇 𝑑𝑥𝑓𝜂𝑇𝑁𝑥𝑓(𝑤𝑇 + 𝑊𝑇)

𝑓𝑥

+  ∑ ∑ 𝑐𝑥𝑓
𝑇 𝑑𝑥𝑓𝜂𝑇𝑁𝑥𝑓(𝑤𝑇 + 𝑊𝑇) 

𝑠𝑓

 (38) 

The variable cost covers the efficiency of each vehicle, the price of fuel or source of power, 

and the distance of travel. For fuel-powered vehicles, the vehicle efficiency is indicated by 

the average miles per gallon and may utilize the average factors from the GLEC Framework. 

As the vehicles travel to many regions, the price of fuel in Appendix C Table 15 uses the 

average fuel price across the United States in July 2020, as published by the U.S. Department 

of Energy and International Air Transport Association. Lastly, the distance of travel for each 

vehicle is determined by several constraints to meet the demand while minimizing the 

transportation cost and carbon emission. 

 

3.3.3 On-The-Road Delivery Time 

 

The last objective that this research oversees is the delivery time of a shipment or the time 

it takes for an item to travel from IXD to SC. The time is measured starting from the 

outbound delivery from the IXD to FC, then FC to SC, and additional processing time in FC 

and SC. Figure 5 visualizes how the total delivery time is calculated and its example. 

 

Figure 5  

 

On-The-Road Delivery Time Calculation Example 
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How fast an item is being transported is critical to a transportation network company. These 

companies offer a guaranteed shipment for their customers to receive packages within a 

certain number of days. As a result of choosing a combination of transportation modes, the 

time they take to ship packages may vary. Similarly, if the fastest mode of vehicles is chosen 

in order to meet the customer requirement, then the carbon emission and the cost may be 

impacted. Hence, the delivery time is observed along with the previous two objectives as 

objective function (38). 

𝑀𝑖𝑛. ∑ ∑
𝑑𝑥𝑓

𝑣𝑇
𝑁𝑥𝑓

𝑓

+ 

𝑥

∑ ∑
𝑑𝑓𝑠

𝑣𝑇
𝑁𝑓𝑠

𝑠

 

𝑓

+  ∑ 𝑃𝑓

𝑓

 + ∑ 𝑃𝑠

𝑠

 (39) 

 

The variables that construct the delivery time are the average vehicle velocity, the distance 

of travel, and the average under the roof processing time. Another variable to consider is 

how fast the overall demand in a region can be fulfilled with the limited capacity of each 

vehicle type. The number of demands over the vehicle capacity generates the number of 

vehicles needed or it can also be interpreted as the number of trips that a single vehicle 

should make. The larger the capacity, the fewer vehicles needed, and thus the faster it takes 

for the package to arrive. To minimize the delivery time, the same constraints for 

transportation costs will be used. 

 

3.3.4 Summary of Annotations and Mathematical Formulations 

 

The following are annotations used for Multi-objective network design formulations: 

𝑥𝑖  : Inbound Cross-Docks (IXD) number i 

𝑓𝑗  : Fulfillment Center (FC) number j 

𝑠𝑘  : Sorting Center (SC) number k 

𝐷𝑠  : Customer demand aggregated in Sorting Center 

𝑈𝑥, 𝑈𝑓, 𝑈𝑠 : Capacity of each facility 

𝑈𝑥𝑓
𝑇  , 𝑈𝑓𝑠

𝑇  : Capacity of vehicle traveling between two nodes using vehicle T 

𝑄𝑥𝑓 , 𝑄𝑓𝑠 : Quantity of items required to be transported between two nodes 

𝑐𝑥𝑓
𝑇  , 𝑐𝑓𝑠

𝑇  : Fuel cost for vehicle T traveling between two nodes 

𝐸𝑥𝑓
𝑇  , 𝐸𝑓𝑠

𝑇  : Carbon Emission of vehicle T traveling between two nodes 

𝐵𝑥 , 𝐵𝑓 , 𝐵𝑠  : Binary linking for facilities to open 

𝑁𝑥𝑓, 𝑁𝑓𝑠 : Number of vehicle needed between two nodes (e.g., 𝑁𝑥𝑓= 𝐷𝑓/ 𝑈𝑥𝑓
𝑇 ) 
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𝐺𝑥𝑖
  : Number of FC being served by IXD number i 

𝑑𝑥𝑓, 𝑑𝑓𝑠 : Distance of travel between two nodes 

𝑃𝑓 , 𝑃𝑠 : Average additional processing time in facility 

𝜂𝑇  : Consumption factor of vehicle T 

𝐹𝑇  : Fuel emission intensity factor of vehicle T 

𝑇𝑒  : Targeted total carbon emission 

𝑣𝑇  : Average velocity of vehicle T 

𝑤𝑇  : Average weight per shipment of vehicle T 

WT  : Average weight per vehicle T 

 

The following are formulas to minimize carbon emission, transportation cost, and delivery time 

subject to several constraints used to build the network design: 

 

𝑀𝑖𝑛. ∑ ∑ 𝑤𝑇𝑑𝑥𝑓𝐹𝑇𝑁𝑥𝑓

𝑓

+ 

𝑥

∑ ∑ 𝑤𝑇𝑑𝑓𝑠𝐹𝑇𝑁𝑓𝑠

𝑠

 

𝑓

  (24) 

  

𝑀𝑖𝑛. ∑ ∑ 𝑐𝑥𝑓
𝑇 𝑑𝑥𝑓𝜂𝑇𝑁𝑥𝑓(𝑤𝑇 + 𝑊𝑇)

𝑓𝑥

+  ∑ ∑ 𝑐𝑥𝑓
𝑇 𝑑𝑥𝑓𝜂𝑇𝑁𝑥𝑓(𝑤𝑇 + 𝑊𝑇) 

𝑠𝑓

 (38) 

  

𝑀𝑖𝑛. ∑ ∑
𝑑𝑥𝑓

𝑣𝑇
𝑁𝑥𝑓

𝑓

+ 

𝑥

∑ ∑
𝑑𝑓𝑠

𝑣𝑇
𝑁𝑓𝑠

𝑠

 

𝑓

+  ∑ 𝑃𝑓

𝑓

 + ∑ 𝑃𝑠

𝑠

 (39) 

s.t. 
 

 

𝐷𝑠 ≥ 0 (25) 

𝐺𝑥𝑖
=  ∑ 𝑓𝑗  /5

𝑗

 (26) 

∑ 𝑄𝑥

𝑥

≥ ∑ 𝑄𝑠

𝑠

                                     ∀𝑥 ∀𝑠 (27) 

𝑄𝑥𝑓  = 𝑄𝑓𝑠                                         ∀𝑓 (28) 

𝑄𝑥𝑓 ≤ 𝑁𝑥𝑓𝑈𝑥𝑓
𝑇                                     ∀𝑥 ∀𝑓 (29) 

𝑄𝑓𝑠 ≤ 𝑁𝑓𝑠𝑈𝑓𝑠
𝑇                                     ∀𝑓 ∀𝑠 (30) 

𝐵𝑥𝑈𝑥 𝑚𝑖𝑛 ≤ ∑ 𝑄𝑥𝑓

𝑓

≤ 𝐵𝑥𝑈𝑥 𝑚𝑎𝑥           ∀𝑥 (31) 
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𝐵𝑓𝑈𝑓 𝑚𝑖𝑛 ≤ ∑ 𝑄𝑓𝑠

𝑠

≤ 𝐵𝑓𝑈𝑓 𝑚𝑎𝑥            ∀𝑓 (32) 

𝐵𝑠𝑈𝑠 𝑚𝑖𝑛 ≤ ∑ 𝑄𝑓𝑠

𝑓

≤ 𝐵𝑠𝑈𝑠 𝑚𝑎𝑥            ∀𝑠 (33) 

𝑀𝑖𝑛. ∑ ∑ 𝑤𝑇𝑑𝑥𝑓𝐹𝑇𝑁𝑥𝑓

𝑓

+ 

𝑥

∑ ∑ 𝑤𝑇𝑑𝑓𝑠𝐹𝑇𝑁𝑓𝑠

𝑠

 

𝑓

≤  𝑇𝑒 (34) 

𝐵𝑥 , 𝐵𝑓 , 𝐵𝑠  ∈ {0,1} (35) 

𝑄𝑥𝑓 , 𝑄𝑓𝑠  ≥  0                                      ∀𝑥 ∀𝑓 ∀𝑠 (36) 

𝑈, 𝑄, 𝑁 ≥  0                                     𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (37) 

  

  

3.4 Other Service Constraints 

 

To make the models behave more realistically following the existing fulfillment practice, 

additional constraints can be applied. Based on the business requirement, the distribution 

from IXD has to be spread to roughly 40 FC with an average distance of 1,200 miles from 

IXD. There are 206 FC candidate locations that are randomly assigned to 5 groups. Each 

IXD is then randomly connected to one of these 5 groups. The Figure 7 below visualizes 

how this constraint takes place in the model using Coupa SCGX. Hence, the optimization 

between IXD and FC is no longer based on the closest locations anymore like in an ideal 

optimization but rather depends on this connection assignment constraint. 

 

Figure 7  

 

Connection Constraint on One IXD to a group of FC Constraint  

 

 



 

 
39 

 

 

Additionally, each of these facilities has its own minimum and maximum capacity requirement 

to be filled for open and close decisions. At least 50% of the total capacity has to be fulfilled in 

order to open a facility and the maximum is 80%. The remaining 20% of capacity is left as 

inventory storage which will not be considered further for this optimization process. To 

summarize, Table 2 below shows the number of packages per day as capacity constraint of each 

facility to be used in this model. 

 

Table 2 

 

Capacity Constraint as Number of Packages Per Day 

 

Node Type 
Total Capacity 

 at 100% 

Min Capacity  

at 50% 

Max Capacity 

at 80% 

SC 230,000 115,000 184,000 

FC 172,000 86,000 137,600 

IXD 910,000 455,000 728,000 

 
 
3.5 Network Design Scenarios 
 

Once candidate locations, objective functions and additional constraints were defined, the 

key network design scenarios were determined.  

 

First, a Baseline Model optimizing the current network using current available transportation 

modes was necessary to compare and contrast with an optimal solution. Next, the research 

defined a Future State Model optimized by additional alternative transportation modes. 

Finally, since MMTN had plans to procure additional renewable energy for its electrical fleet, 

a Future State Model that incorporated lower cost and carbon intensity for electrical modes 

was added.  

 

Therefore, the research has three key network design scenarios: Baseline Model (Baseline), 

Future State Model - Market rate (FM-M) and, Future State Model - MMTN rate (FM-C). 

Table 3 below provides the main difference between the models in detail.   
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Table 3  

 

Summary of Network Design Models 

 

Node Type Baseline Model 
Future State Model - 

Market Rate 

Future State Model - 

MMTN Rate 

Transport Modes 

● Class 6 and Class 

8 trucks (diesel), 

● Boeing 737 and 

767 planes (AvF) 

● Class 6 and Class 8 trucks (diesel and 

electric) 

● Boeing 737 and 767 planes (AvF) 

● Rail (diesel and electric) 

● Vessels (diesel and biofuel) 

● Small and Large Air Cargo (biofuel) 

Electricity Variable Cost 

($/kWh) 
Not Applicable $0.13 $0.10 

Electricity Emissions 

Intensity Factor 

 (g CO2e/tkm) 

Not Applicable 

Varies by mode; See 

Appendix B for more 

details 

0 

Intermodal Drayage 
Utilize Class 8 Truck  

(diesel) 

Utilize Class 8 Truck  

(diesel) 

Utilize Class 8 Truck 

(electric) 

 

Each of these key network design models was optimized three times to generate the 

objectives of minimum carbon emissions (min carbon), minimum transportation cost (min 

cost), and minimum On-The-Road (OTR) transportation time (min time). Coupa’s Supply 

Chain Guru X (SCGX) was utilized for the network optimization, incorporating the 

described objective formulations in Section 3.3, the constraints in Section 3.4, and the 

intermodal transport options in Section 3.5. 

 

3.5.1 Intermodal Transportation Options 

 

The Future State Models incorporate both fossil fuel and alternative fuel-powered rails, 

vessels, and airplanes. These modes have designated terminals or ports throughout the United 

States, thus limiting their capabilities to travel directly from and to the node locations in the 

network. Class 8 Trucks are used for drayage shipment between the terminals and facilities. 

This movement of goods using two or more modes of transportation is called intermodal 

transportation. The complexity of including intermodal options in the model is simplified by 

pre-calculating all the metrics separately in Python and inserting them into the model as a 
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single-packaged forward lane from IXD to FC or FC to SC. Figure 8 illustrates this 

simplification process.  

 

Figure 8  

 

Intermodal Calculation Simplification 

 

 
 

The following steps describe how intermodal connections and the corresponding time, cost 

and carbon emissions required are accurately captured in the models: 

1. Find the terminals and ports coordinates 

a. Vessel: Top 30 seaports by export volume in the U.S. (also used for IXD 

candidate locations) and ports in 10 relevant river systems in the U.S. 

(Appendix D Figure 6). 

b. Rail: Top 6 cargo rail terminals across mainland U.S. owned by BNSF, CSX, 

UP, CN, NS and KCS, encompassing 167 rail terminals. 

c. Air: 49 international and 25 domestic airports for cargo 

2. Find the distance between terminal-to-terminal and terminal-to-facility. The vessel 

ports have to be within the same river system or connected through the ocean. 

3. Down select all connections by adding the following distance constraints: 

a. Distance between terminals and facilities cannot exceed 50 miles for rail and 

vessel terminals, and not more than 100 miles for airports. 

b. Distance between terminals must be more than 50 miles for rail and vessel 

terminals, and more than 100 miles for air.  

4. Pair all possible end-to-end connections (from the origin to the first terminal to the 

second terminal and finally to the destination). 

5. Calculate the transportation cost, carbon emissions, and OTR delivery time for both 

drayage and terminal to terminal connections. 

6. Insert these metrics values to the model as end-to-end, origin to destination 

connections. As the above calculation is done in Python, the model itself does not 

recognize each terminal or port, but rather recognizes a set of lane options. 
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Appendix B Table 14 summarizes the assumptions and details of inputs considered for 

incorporating intermodal transportation into the models. 

 

3.6 Pareto Frontiers 

 

The methodology used to represent the trade-offs between carbon emission, transportation 

costs, and delivery time is the ɛ-constraint method for the Pareto frontier (Palacio et al., 

2018). To visualize the trade-offs more clearly, two two-dimensional Cartesian coordinate 

systems showing the Pareto frontier are created instead of a single three-dimensional 

graphic. These plots illustrate carbon emissions vs. transportation cost, and carbon emissions 

vs. average on-the-road delivery time. Optimizing each of the three objectives independently 

will result in finding the coordinate for the Pareto extreme boundary. For instance, when the 

total transportation cost is fully minimized, its corresponding carbon emissions value is not 

necessarily the lowest possible emissions value, but the transportation cost is at the lowest 

possible value and the model will not derive a lower cost value. 

 

As the observation is done in a two-dimensional Cartesian coordinate system, the 

minimization process is carried out sequentially using Coupa SCGX between the two 

objectives being observed. Initially, two coordinates of boundary points corresponding to 

the two objectives examined for the Pareto frontiers need to be determined. The boundary 

points are the carbon emissions values derived from the optimized network design scenarios 

from each objective. The next step is to constrain the primary objective of carbon emissions 

in one axis to be divided by ɛ numbers where ɛ is the number of observations and ɛi is a fixed 

value of carbon emissions at the ith observation.  

 

In this case, to produce ɛi carbon emissions value, the model is run again by this ɛi constraint 

to minimize the other outcome values (transportation cost or average on-the-road delivery 

time, respectively). Hence, both x-y coordinate values in the Cartesian coordinate system 

are found which then can be plotted as carbon emissions vs. transportation cost, and carbon 

emissions vs. average on-the-road delivery time. Each of these observation points 

(scenarios) will be connected to create the Pareto frontier line (Palacio et al., 2018). The 

smaller ɛ number or the larger the number of observations being calculated, the smoother 

the Pareto frontier line is. 

 

3.7 Science-Based Targets Calculation 

 

The SBTi provides the guidelines and decarbonization pathway models to be populated with 

relevant information for both of its tools: Science-Based Target Setting Tool, and the Target 

Setting tool for Transport Sector. Using the Excel models provided, the outputs from the 

optimized Baseline minimum carbon emissions (min emissions) objective model are 
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inputted to evaluate which scenarios in the Pareto frontier will help meet the Science-Based 

Targets that align with 2oC, WB2oC and 1.5oC climate goals in 2030. The Baseline min 

emissions objective model is the scenario we will use for benchmarking because it represents 

the current best-case scenario from a total carbon footprint perspective.  

 

The Target Setting Tool - Scope 3, using the absolute contraction approach, provides a non-

sector specific decarbonization pathway in line with 1.5oC, WB2oC and 2oC goals for 2030, 

assuming no change in activity level (tkm). These target numbers help identify the scenarios 

on the Future State Model’s Pareto Frontiers that meet these goals. 

 

The Transport Sector tool provides sector-specific carbon emissions and carbon intensity 

decarbonization pathways for 2030 considering an activity level increase subscribed by the 

user of the tool - in this case, a 10% increase in tkms year over year (YoY). Similar to the 

more generic tool, activity and carbon emissions data from the Baseline Model can be 

inputted into the Transport Sector tool to find the 2030 carbon emissions and intensity targets 

for each l mode of transport. The input data required for both SBTi tools are described in 

Appendix E, Table 16.  
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4. Results and Key Findings 
 

The objective of this research is to find the optimal middle-mile distribution network 

scenarios that optimize for the objectives of minimum carbon emission (min carbon), 

transportation cost (min cost) and on-the-road delivery time (min time) while meeting 

MMTN’s customer demand. A total of 400 candidate locations were successfully identified 

using the Greenfield analysis. The network optimization based on these candidate locations 

generated the optimal, or in other words, extreme boundary values for each of the three 

objectives for each model. Using these boundaries, two 2-D Pareto frontiers for the Baseline 

and Future Models were created to plot the Pareto frontiers and observe the trade-offs 

between carbon emissions vs. transportation cost, and carbon emissions vs. OTR delivery 

time. Finally, the observations on the Pareto frontiers that meet the future carbon emissions 

targets, calculated through the Science-Based Target Setting tool, were identified. The 

model outputs also provided the corresponding network design configuration of vehicle mix 

and facility types for these optimal observations (scenarios) along the Pareto frontiers.   

 

4.1 Greenfield Facility Locations Output 
 

Table 4 shows the summary of candidate locations and its inputs. First, from the 895 

customer demand locations based on the 3-digit ZIP codes provided by MMTN, the model 

generated 154 candidate locations for Sorting Centers (SC). Second, bounded by the 

population of 830 cities (with populations over 50,000) across the US, 206 candidate 

locations for Fulfillment Centers (FC) were generated. Lastly, based on the 30 largest ports 

in the US, and the volume of domestic sellers in 51 states, 40 candidate locations for Inbound 

Cross-Docks (IXD) were identified. Each of these facilities has minimum and maximum 

capacity requirements that determine open or close decisions, which were used for the next 

steps in the network optimization. 

 

Table 4 

 

Summary of Candidate Locations 

 

Node Type 

Minimum 

Capacity 

(# of 

packages/day) 

Maximum 

Capacity 

(# of 

packages/day) 

Number of 

Demand Nodes 

Estimated # of  

Nodes 

# of Candidate 

Locations 

SC 115,000 184,000 895 77 154 

FC 86,000 137,600 830 103 206 

IXD 455,000 728,000 81 19 40 
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4.2 Optimized Network Outputs 

 

After generating the candidate locations, the model is then optimized three times to reach 

the three objectives of minimum transportation cost (min cost), carbon emissions (min 

carbon) and on-the-road delivery time (min time) as outlined in Section 3.3. As discussed in 

Section 3.5, the research has three key network design models: Baseline Model (Baseline), 

Future State Model using market electricity rate (FM-M), and Future State Model using 

MMTN electricity rate (FM-C).  

 

As described in Table 3, the Baseline Model and Future State Models differ in vehicle 

models utilized. The Baseline Model only consists of diesel trucks and diesel-fuel planes, 

and is generally not as optimal as the Future State models which include all vehicle options. 

The difference in electricity costs and carbon intensity, as well as the utilization of Class 8 

electric trucks for FM-C’s intermodal drayage lanes resulted in FM-C being slightly more 

optimal than FM-M in costs, carbon emissions and OTR time. This section outlines the key 

results of the optimized networks. 

 

In terms of transportation costs, the minimum cost objective (min cost) did not always 

provide the lowest cost compared to the results of the other objectives. As illustrated in 

Figure 9, the Baseline Model’s min carbon scenario’s total transportation costs ($4.6M) were 

less than the min cost scenario’s transportation costs ($4.65M). The primary reason is that 

the model included the customer demand nodes which helped determine the open and close 

decisions for the SC candidate locations. The lanes from SC to customer nodes were 

therefore considered part of the network optimization. Although the Baseline Model’s min 

cost scenario for the entire network (IXD-customer) is the lowest cost (see Appendix G, 

Figure 19), the same scenario’s transportation cost for the middle-mile specific network is 

not. This illustrates that the optimization results of the middle-mile specific network do not 

always align with the entire network’s optimization results. 
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Figure 9 

 

Total Transportation Cost at the Extreme Boundaries  

 

 
The trade-off in total transportation cost and carbon emissions are minimal for the Baseline 

Model compared to the Future State Models. As illustrated in Figure 9, the Baseline Model’s 

transportation cost for the min carbon and min cost scenarios are only $53K apart. The 

difference in carbon emissions between the min cost and min carbon scenarios for the 

Baseline Model is only 30 tCO2e, as shown in Figure 10. For both objectives of min carbon 

and min cost, Class 8 diesel trucks were selected for the entire Baseline Model network 

scenarios, as they are less costly and carbon-intensive compared to airplanes. The only reason 

the model produces slightly different values is that it utilizes different routes to achieve lower 

carbon emissions.  

 

Figure 10  

 

Total Carbon Emissions at the Extreme Boundaries 
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Overall, the two Future State Models present similar results for transportation cost, carbon 

emissions and delivery time. However, due to the slight input differences between FM-M 

and FM-C, the FM-C saves up to $126K in transportation cost and up to 89 tCO2e compared 

to the FM-M. In contrast to the Baseline Model, both Future Models show a more observable 

gap between the two objectives. For example, Figure 10 illustrates that the FM-M’s min cost 

(1,907 tCO2e) and min carbon (1,301 tCO2e) differ by 606 tCO2e. The variety of 

transportation choices in the Future Models influences the model to select extreme values 

because certain modes such as Class 8 electric trucks are less carbon efficient than others 

(i.e., Class 8 diesel trucks) but more costly.  

 

In terms of delivery time, all three models illustrated significant trade-offs when minimizing 

transportation cost and carbon emissions (Figure 9 through 11). This demonstrates that faster 

transportation modes such as airplanes are not the most cost- or carbon-efficient options.  

 

Figure 11 

 

Total On-the-Road (OTR) Delivery Time at the Extreme Boundaries 

 

 
 

The Baseline Model’s average On-The-Road (OTR) delivery time outperforms both Future 

Models’ OTR times for all three objective scenarios, as shown in Figure 11. Although at the 

min time objective scenario, all three models resulted in relatively identical OTR time, the 

shortest OTR time was the Baseline Model’s at 27 hours. However, Figure 10 illustrates that 

the Baseline Model’s carbon emissions for the min time objective scenario is significantly 

higher than the two Future State Models’ carbon emissions even though the min time 

scenario illustrated in Figure 11 shows identical OTR time. This is because only traditional 

aviation fuel-powered (AvF) airplanes are available for faster transit. By contrast, the Future 
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Models have alternative-fuel vehicles that can achieve the same speed as AvF airplanes such 

as biofuel-powered planes. 

 

Overall, for Future Models, OTR time is longer than the Baseline Model. This can be 

explained by the different vehicles incorporated that a) are less costly but are not the fastest 

such as intermodal transportation or b) are the fastest on the market but much more 

expensive than other alternatives. For example, the fuel costs for biofuel-powered airplanes 

are three times more expensive than AvF airplanes but are identical in speed. Comparing the 

Future Models, Figure 11 illustrates that FM-M’s OTR time decreased by 13 hours between 

the min cost and min carbon objectives, while FM-C’s OTR time stayed constant at 86 hours 

for both objective scenarios. This result further demonstrates the significance of how 

electricity cost and its carbon intensity can influence network design and its configuration 

of vehicle mix. FM-M had to adjust for less carbon-intensive vehicles when optimizing for 

the min carbon objective scenario compared to the min cost objective scenario. However, 

FM-C was able to select the same vehicle mix, as the vehicles that were the least costly were 

also more carbon-efficient. For example, the Class 8 Electric Truck in the FM-C is 0 g 

CO2e/tkm and less costly than slower or faster alternatives such as vessels and airplanes. 

 

4.3 Pareto Frontiers 

 

Using the ɛ-constraint method to build Pareto frontiers for each model, the results show 

obvious observations about how carbon emissions reduction influences transportation cost 

and OTR time. The Pareto frontiers were plotted by finding the optimal scenarios between 

the carbon emissions extreme boundaries generated by the min cost, min carbon and min 

time scenario models. In this section, there are two graphs representing Baseline Model and 

Future Models for each of the trade-offs being observed: carbon emissions vs. transportation 

cost, and carbon emissions vs. On-The-Road (OTR) delivery time. The Baseline Model’s 

trend and value of carbon emissions is much higher than the Future Models’ carbon 

emissions as its extreme bounds per Figure 10 are much larger. At a glance, this significant 

difference is caused primarily by its limitation on transportation options.  

 

4.3.1 Carbon Emissions vs. Transportation Cost 

 

For the Baseline Model, the Pareto frontier (Figure 12) shows an upward trend. This is 

because airplanes and Class 8 trucks are the only transport mode options in the Baseline 

Model. To minimize both objectives, Class 8 trucks are chosen automatically as the only 

transportation mode. Figure 12 shows the linear positive trend of carbon emissions to 

transport cost: as emissions increase, longer routes are taken using the Class 8 truck, 

increasing cost. The two carbon emissions extreme boundaries are 2,629 tCO2e and 2,659 
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tCO2e corresponding to the min carbon and min cost scenarios on Figure 10. In between 

these two extreme bounds, 6 observations were plotted to create the Pareto frontier. 

 

Figure 12 

 

Pareto Frontier for Baseline Model on Carbon Emissions vs. Transport Cost 

 

 
 

The Future State Model Pareto frontiers in Figure 13 illustrate negative slopes where the 

cost of transportation increases as the scenarios have less carbon emissions. Due to the 

decrease in costs for electricity powered vehicles, the FM-C’s overall costs per carbon 

emissions scenario is lower compared to the FM-M. The two carbon emissions extreme 

boundaries were 1,301 tCO2e and 1,907 tCO2e for the FM-M and 1,262 tCO2e and 1,818 

tCO2e for the FM-C. In between these two extreme bounds, 14 observations for FM-M and 

13 observations for FM-C were plotted to create the Pareto frontier. 

 

Figure 13  

 

Pareto Frontier for Future Models on Carbon Emissions vs. Transport Cost 
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4.3.2 Carbon Emissions vs. On-The-Road Delivery Time 

 

The Pareto frontiers for carbon emissions vs. OTR delivery time have negative slopes. The 

Baseline Model’s carbon emissions extreme boundaries are 2,659 tCO2e and 8,911 tCO2e 

corresponding to the min carbon and min cost scenarios in Figure 14. In between these two 

extreme bounds, 63 observations were plotted to create the Pareto frontier. 

 

Figure 14  

 

Pareto Frontier for Baseline Model on Carbon Emissions vs. OTR Delivery Time  

 

 
 

Unlike the Pareto frontiers for carbon emissions vs. transportation cost, both Future models’ 

Pareto frontiers for carbon emissions vs. OTR have nearly identical observations (see Figure 

15). This similarity occurred because the only difference between the models is the carbon 

intensity of the electric vehicles as transportation selections in both models have the same 

average speed. The two carbon emissions extreme boundaries for these Pareto frontiers were 

1,301 tCO2e and 6,583 tCO2e for the FM-M and 1,262 tCO2e and 6,497 tCO2e for the FM-

C. In between these two extreme bounds, 53 observations for FM-M and 56 observations for 

FM-C were plotted to create the Pareto frontiers. 
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Figure 15  

 

Pareto Frontier for Future Model on Carbon Emissions vs. OTR Delivery Time 

 

  
 
 
 

4.4 MMTN’s Science-Based Emissions Targets 

 

The total emissions and carbon intensity targets set by SBTi’s target setting tools, as described 

in Section 3.7, were derived using the Baseline minimum carbon emissions (min carbon) 

objective scenario’s activity and total emissions output. The Baseline min carbon objective 

scenario is a proxy for MMTN’s current middle-mile Baseline as it provides the current optimal 

network design scenario. This Baseline min carbon objective scenario is referred to as the 

Baseline scenario for the remainder of this report.  

 

The scenarios (observation points) that fulfill the Science-Based Targets of 1.5oC, 2oC and 

WB2oC were identified from the Future State models’ Paretos. However, since the Baseline 

Model’s carbon emissions were much higher than the upper bound of Science-Based Targets 

(2oC), the Baseline Model’s Pareto frontiers do not have any observation points that meet the 

Science-Based Targets.  

 

4.4.1 Targets Generated  

 

Inputting the Baseline scenario’s total emissions of 2,629 tonnes as the base year (2020) 

emissions, the SBTi’s Target Setting’s Scope 3 tool generated the target year (2030) total 
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emissions targets for the 2oC, WB2oC and 1.5oC scenarios (Table 5). These targets were not 

based on any future activity increases and thus, the target numbers are based on the assumption 

that activity levels (tkm) do not increase from 2020 levels. Appendix E, Table 18 provides an 

approximation of the future carbon emissions and intensity targets generated by the increase in 

activity levels using the Science-Based Transport Specific Tool. Due to the transportation mode 

limitations of the Transport Specific tool, these approximations will not be used to inform this 

research.  

 

Table 5 

 

Science-Based Target Setting Tool - Scope 3 Targets Generated 

 

 
 

Once the target total emissions were derived, the scenarios that match these target numbers 

were identified on the Pareto frontiers for the Future State Models (see Figure 16). Since the 

optimal scenarios plotted on the Pareto frontiers for carbon emissions vs. transportation cost do 

not exceed 1,980 tonnes of CO2e for the Future State Model’s Market rate model (FM-M), only 

the WB2oC and 1.5oC target scenarios were identified. Thus, a 2oC scenario is not considered 

optimal and not on the Pareto frontier. Moreover, only the 1.5oC target scenario was identified 

to be optimal in the Future State’s Company model (FM-C).  

 

Figure 16  

 

Science Based Target Scenarios Identified on Carbon Emissions vs. Transport Cost Pareto 

Frontier 

 

 

 

The Future models prove that the Science-Based Targets can be achieved with additional 

transport choices, such as electric-powered vehicles, that are more carbon efficient. Figure 16 
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above illustrates the FM-C compared side by side with the FM-M. Both models have utilized 

the same vehicle modes for most of their lanes, but the FM-C’s overall costs in each scenario 

is lower compared to the FM-M due to the decrease in variable cost for electric vehicles. For 

instance, at the 1.5oC target scenario (or 1,524 tCO2e), FM-C’s costs are $105,608 less than 

FM-M’s values. 

 

On the other hand, optimal scenarios considering both the objectives of minimizing carbon 

emissions and OTR delivery time can satisfy the Science-Based Targets generated by the Target 

Setting Tool - Scope 3. Figure 17 illustrates the observation points that match these Science-

Based Targets. 

 

Figure 17  

 

Science-Based Target Scenarios Identified on Carbon Emissions vs. Delivery Time Pareto 

Frontier 

 

 
 

4.4.2 Science-Based Target Scenarios 

 

The optimal scenarios on the Pareto frontiers for the Future State Models only matched the 

Science-Based Targets of 1.5oC and WB2oC. Taking a deeper dive into these target 

scenarios, the following nodes were opened for both scenarios: 16 IXD, 78 FC, and 82 SC 

facilities. This configuration presents almost no material change compared to the Baseline 

Model’s facilities configuration of the network. Table 6 below lists the vehicle mix selected 

for these scenarios, illustrating that only alternative fuel transport modes were selected. In 
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addition, Class 8 tractor trailers are still the dominant mode of transportation due to its 

relative speed and variable cost compared to other vehicle types. Appendix D Figure 18 

provides a detailed map of the network design including the modes of transportation used.  

 

Table 6  

 

Vehicle Utilization for Carbon Emissions Level at 1.5oC and Well Below 2oC 

 

Modes 
Future State - Market Rate Future State - MMTN Rate 

at 1.5oC at WB2oC at 1.5oC at WB2oC 

Class 8 Tractor (Electric) 83.61% 63.71% 83.11% 77.77% 

Rail (Electric) 16.04% 7.92% 16.54% 8.64% 

Vessel (Biofuel) 0.20% 0.20% 0.20% 0.20% 

Small Air Cargo, Medium Haul (Biofuel) 0.11% 15.19% 0.11% 6.75% 

Large Air Cargo, Short Haul (Biofuel) 0.04% 0.04% 0.04% 0.04% 

Large Air Cargo, Medium Haul (Biofuel) 0% 12.94% 0% 6.60% 

 

Moreover, the carbon intensity can be calculated for each of the scenarios by finding the ratio 

of total activity (tkm) to total carbon emissions. Table 7 shows calculated carbon intensity by 

scenario. The WB2oC and 1.5oC scenarios provide a lower carbon intensity than the Baseline 

value. The 2oC scenario that is not optimal and not found on the Pareto frontier graph illustrates 

a higher carbon intensity compared to the Baseline. More striking is the difference between the 

carbon intensities generated from target scenarios and the default carbon intensity values used 

to estimate total carbon emissions for different vehicle types (see Appendix B, Table 11 and 

12) as explained in Section 3.3.1. For example, the diesel-powered Class 8 tractor trailer’s 

carbon intensity value used, per the GLEC framework, is 150 gCO2/tkm. This value is over 789 

times more than the 2oC scenario’s carbon intensity and over 1,667 times more than that of the 

1.5oC scenario. 

 

Table 7 

 

Carbon Intensity for Science-Based Target Scenarios 

 

Scenarios 
Total 2020 Activity 

(tkm) 
CO2 Emissions (t) 

Carbon Intensity 

(gCO2/tkm) 

Baseline – Min Carbon 20,549,174,855 2,629 0.13 

2oC 12,380,800,978 2,305 0.19 

WB2oC 20,274,027,049 1,971 0.10 

1.5oC 16,171,222,283 1524 0.09 
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5. Discussions & Recommendations 
 

The results derived from this research provided some key learnings that inform the 

considerations for redesigning a middle-mile distribution network that optimizes for the 

objectives of minimum carbon emission, transportation cost and on-the-road time. The key 

model results, when optimizing for these objectives, illustrated that the trade-offs between 

on-the-road time and carbon emissions or transportation cost was significant compared to 

the trade-off between carbon emissions and transportation cost. This was primarily because 

faster transportation vehicles were far less carbon-efficient (i.e., airplanes). However, the 

Future State Models proved that alternative transportation, including intermodal 

transportation and alternative-fuel vehicles, provide opportunities to minimize the trade-offs 

between transport cost as well as delivery time and total carbon emissions in the network. In 

addition, the two Future State Models revealed that MMTN’s transportation variable costs 

and carbon emissions can decrease if it were to generate its own electricity from renewable 

energy sources. 

 

Finally, the Science-Based Targets provided insights into the optimal scenarios on the Pareto 

frontiers that will meet the global carbon emissions reduction targets. First, it was 

determined that if business continues as usual (per the Baseline Model’s Pareto frontier), 

MMTN will not be able to comply with any of the targets recommended by climate science 

research and global regulatory bodies and adopted by a growing number of corporate climate 

leaders. Second, only the WB2oC and 1.5oC Science-Based Targets were considered optimal 

for all Pareto frontiers, narrowing the key scenarios that will meet both the business 

objectives as well as global carbon emissions reduction objectives.  

 

5.1 SBTi 1.5oC Carbon Emissions Target 

 

Following the Paris Agreement to the agreed upon limit of global warming by 1.5oC above 

pre-industrial levels, in 2019, the Intergovernmental Panel on Climate Change (IPCC) 

reported the necessity to maintain the global temperature increase below 1.5oC to avoid 

irreversible damage to our world (IPCC, 2020). In response, a global coalition of UN 

agencies, business and industry have created the Business Ambition for 1.5oC call to action, 

urging organizations to commit to setting ambitious Science-Based Targets. The SBT 

Setting Tool utilized in this research provided the 1.5oC target carbon emissions for our 

models, helping identify the specific observation (scenario) on the Pareto graphs that 

matched this target. This target scenario therefore, lays out the guidelines for the optimal 

carbon-efficient network design scenario for middle-mile distribution.  
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5.2 Key Trade-offs at 1.5oC Target 

 

The 1.5oC target scenario’s vehicle mix, node locations and decisions as well as carbon 

intensity results were captured in detail in Section 4.4.2. By comparing the target scenario 

with the Baseline min emissions objective scenario (Baseline scenario), key trade-offs were 

realized. The following sections will discuss these trade-offs in detail.  

 

5.2.1 Cost Trade-off Calculation 

 

Per the results in Section 4.4.2, since there is almost no difference in the physical network 

configuration (i.e., facilities) between the Baseline Model and the 1.5oC target scenario, the 

cost trade-off between the Baseline scenario versus the 1.5oC scenario can be represented by 

the increase in variable transportation cost per ton carbon emission reduced. The Baseline 

scenario’s variable cost per ton carbon emissions (CO2e) produced is $1,750 t/CO2e 

produced. Table 8 below provides the variables used to calculate this cost: ratio of total 

transportation variable cost to total carbon emissions (CO2e) emitted.  

 

Table 8 

 

Variable Cost Per Ton Carbon Emissions Produced on Baseline Scenario model 

 

Transport Variable Cost  CO2e Emissions (tonnes) 
Variable Cost/  

tCO2e Produced 

 $4,600,341 2,629 $1,750 

 

Since there were two Future State models and corresponding Pareto Frontiers (Figure 16 and 

17), two separate scenarios that meet the target carbon emissions at the 1.5oC were identified: 

Future State model - Company Rate (FM-C), and Future State model - Market Rate (FM-

M). Table 9 below provides the corresponding ratios of total transportation variable cost to 

total carbon emissions (CO2e) emitted for each 1.5oC scenario.   

 

The variable cost per ton carbon emissions (CO2e) produced at the 1.5oC scenario is $69 

(11%) less for the FM-C model compared to the FM-M model. This difference indicates that 

variable costs per carbon emissions produced decrease when the company can procure its 

electricity from its own renewable energy sources.  

 

The increase in variable cost per ton decrease in CO2e is computed by taking the difference 

of the variable cost per ton CO2e produced between the Baseline scenario and the 1.5oC 

scenarios. This difference captures the variable cost trade-off of adopting a network design 

scenario that complies with the 1.5oC global warming target. The variable cost for each 
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additional ton of carbon emissions reduced is estimated to be either $520 or $589. In other 

words, if MMTN produces its own electricity, its variable transportation cost will increase 

by $520 per CO2e reduced. If MMTN procures market rate electricity, the transportation 

variable cost will be $589 per ton CO2e decrease.  

 

Table 9 

 

Increase in Variable Cost Per Ton Carbon Emissions Decrease at 1.5oC Scenario 

 

1.5oC Scenarios 
Transport 

Variable Cost 
CO2e Emissions 

(tonnes) 
Variable Cost/  

tCO2e Produced 
Increase in Variable 

Cost/ tCO2e decrease 

Future State Model - 

MMTN Rate 
 $3,461,000 1,524.6 $2,270 2,270-1,750= $520 

Future State Model - 

Market Rate 
 $3,566,000 1,524.6 $2,339 2,339-1,750=$589 

 

 

5.2.2 On-The-Road Time Trade-off Calculation 

 

The On-The-Road (OTR) time trade-off between the Baseline scenario and 1.5oC scenario can 

be represented by the increase in OTR time. Table 10 below provides a summary of the average 

OTR time (in hours) for the Baseline, 2oC, WB2oC and 1.5oC scenarios as well as the 

corresponding total carbon emissions reduced compared to Baseline emissions. 

The results indicate that in order for MMTN to adopt a 1.5oC emissions target scenario (a 42% 

decrease in emissions), its current Baseline average OTR time will have to increase by an 

average of 4 hours (9%). In addition, the 2oC and WB2oC target scenarios prove that there 

would not be a trade-off in average OTR time, rather, it would be the opposite. The carbon-

efficient vehicle types such as biofuel airplanes could improve Baseline average OTR time by 

4-10 hours (9%-22%), while still decreasing total carbon emissions in the network.  
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Table 10 

 

Average On-The-Road Delivery Time and CO2e Difference by Target Scenarios 

 

Scenario 
Average OTR time 

(hours) 
Difference from 

Baseline (hours) 
CO2e Decrease from 

Baseline Scenario (ton) 

Baseline  46 hours Not Applicable 

2
o
C 36 hours -10 hours 324 tonnes 

WB2
o
C 42 hours -4 hours 657 tonnes 

1.5
o
C 50 hours +4 hours 1,105 tonnes 

 

 

5.3 Limitations and Future Research 

 

Although the methodology developed in this research attempts to solve for the optimal 

scenarios that minimize carbon emissions while quantifying cost and time trade-offs for the 

middle-mile distribution network, there are some limitations to the approach used in this 

research. The key limitations are as follows: 

• Data availability: 

o Vehicle Data: Did not use actual carbon emissions intensity factors, fuel burn, 

load factor and speed per transportation types 

o Cost Data: Did not use actual fuel and electricity costs 

• Assumptions around: 

o Availability and scalability of alternative fuel technologies 

o Carbon emissions scope within the forward-flow transportation 

o Static demand volume and locations 

• Exclusion of other transportation costs such as capital expenditure and labor 

• Inclusion of a proxy last mile in network optimization 

 

First, due to the unavailability of primary data, when accounting for carbon emissions the 

research used Scope 3 (subcontracted) methodology and relied on publicly available 

generalized data for carbon emissions intensity factors. Specifically, the general averages for 

carbon emissions intensity factors potentially underestimated total carbon emissions of the 

network. This is because GLEC intensity factors assume an average fill rate of vehicles but 

MMTN’s vehicles typically have lower fill rates than industry averages. As this is a modeling 

exercise, the values presented here are merely suggestions of potential future emissions. In 
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practice, emissions will vary depending on the exact types of vehicles used, the load factor, as 

well as on-the-ground conditions like traffic, topography, or weather and road conditions. By 

capturing these key data points, carbon emissions estimates can be better refined in future 

research, providing a more realistic result, especially for low fill rate vehicles or lanes in the 

middle-mile.  

 

On the other hand, the current methodology only accounts for carbon emissions from forward-

flow transportation of the middle-mile distribution network. Carbon emissions from other 

sources, including but not limited to transshipment facilities, reverse logistics or the 

manufacture of the vehicle components such as lithium batteries are not considered. Moreover, 

since one of MMTN’s value propositions is focused on the speed of delivery, increased delivery 

time may decrease customer volume. This volume can transfer to more customers making 

physical trips to the store instead of online delivery, increasing overall carbon emissions. 

Although these sources of carbon emissions were out of scope for this research project, the 

current approach helped determine a high-level picture of the strategies and nuances in 

optimizing the middle-mile network operations for carbon efficiency. Future research 

incorporating all the relevant sources in the middle-mile network could provide a more detailed 

view of carbon emissions reduction opportunities from non-mobile sources.  

 

Second, the Future State Models assumed the availability and scalability of alternative fuel 

technologies and vehicles such as electric-powered rail, biofuel-run airplanes and electric 

heavy-duty trucks. In reality, such transportation technologies are not readily available to scale 

in the U.S. In the U.S. currently, there aren’t any electric railroads for freight, so the future 

models are not replicable in the immediate future. In addition, although electric-powered heavy-

duty trucks are becoming more prevalent in the market, the battery range (ability to hold a 

charge) is a challenge for long haul delivery as this relies heavily on increased road 

infrastructure that supports battery charging. For airplanes, the uptake of Sustainable Aviation 

Fuels (SAF) is highly dependent on the availability and cost of such fuels. Currently, SAF 

production is only 1% of total jet fuel needs (IATA, 2020). There is also a high-cost differential 

between SAF and conventional jet fuel, which is estimated to be about a 100% to 200% higher 

price premium for SAF compared to the average pre-covid oil prices (World Economic Forum 

and Energy Transition Commission, 2020). Further research only incorporating diesel-powered 

vehicles is worth analyzing as the addition of intermodal transportation such as rail and vessels 

can provide a more realistic picture of short-term carbon emissions reduction opportunities.  

 

In addition, the significant upfront investment and ongoing maintenance costs of alternative 

transportation are not part of the model’s cost objective. Besides the capital costs for obtaining 

alternative fuel technology, the ongoing costs such as sourcing batteries and implementing 

renewable-powered charging stations can be significant. However, a more advanced analysis 

considering the potential total costs for adopting alternative fuels and vehicles in the 
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transportation network could provide the net trade-off between total costs and minimizing 

emissions. 

 

Another limitation is that the methodology assumed static demand volume and location as well 

as one product type for a single time period. Service constraints for each of the demand nodes 

were also not considered. The approach may be improved with more detailed information on 

the variability of demand of different products across multiple time periods with customer-

specific service constraints.  

 

Finally, the model optimization is based on a network that includes the middle-mile plus a proxy 

last mile (SC-Customer). This was because the model needed to make the open/close decisions 

required for SC candidate locations. This approach falls short of fully optimizing for just the 

middle-mile as the model minimizes the key objectives of cost, time and carbon emissions based 

on the entire network of four nodes (IXD, FC, SC and Customers). To optimize for just the 

middle-mile, the SC locations will have to be predetermined.  

 

5.4 Recommendations Summary 

 

The research has provided some clear insights into the path for achieving the optimal middle-

mile network design scenarios that meet MMTN’s carbon reduction goals.  

 

A key learning was that MMTN will not reach any of the Science-Based Targets, per the Paris 

Agreement goal of keeping global temperature rise below to well below 2oC or preferably to 

1.5oC, if business were to continue as usual. The Baseline Model’s Pareto frontiers (Figure 12 

and Figure 13) illustrated that the optimal scenarios for the Baseline did not meet these Science-

Based Targets. In other words, all the Baseline optimal solutions, when accounting for the 

objectives of cost, carbon emissions and time, fell short of meeting even the upper bound of the 

Science-Based Targets (2oC).  

 

Moreover, the results illustrated that per Liljestrand et al.’s (2015) hypothesis that intermodal 

transportation has a large potential to reduce carbon emissions, the addition of intermodal 

transportation in our Future State Models did in fact, help reduce carbon emissions in the 

middle-mile distribution network. The research also proved that procuring electricity generated 

by company-owned renewable energy does decrease variable costs and carbon emissions 

slightly as well as decrease costs to reduce emissions. 

 

However, rail and vessels were not the most utilized for any of the optimal scenarios because 

of the intermodal transportations’ limitations in speed and need for drayage between nodes.  In 

addition, comparing the future models in our research, such electricity procurement practices 

reduce carbon emissions by a mere 1-4%. Thus, even though developing renewable energy 
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sources for electricity, and adding intermodal transportation to the current network helps reduce 

carbon emissions, these measures do not provide the most opportunity for carbon emissions 

reduction in MMTN’s middle mile distribution network.  

 

The research found that to achieve significant reduction in carbon emissions that meet the 1.5oC 

and the well below 2oC targets, the middle-mile distribution network needs to transition 100% 

of its transportation activity to alternative fuel transportation modes. All the vehicle mode types 

that were selected for the optimal scenarios that meet the Science-Based Targets were 

alternative-fuel transportation (Table 6, Section 4.4.2). Therefore, significant innovation and 

investment in alternative fuel transportation modes is required from MMTN for this transition.  

 

The investment in infrastructure to support long distance electric trucks as well as electric rail 

is imperative for the actual adoption of these modes on the scale that is required for the middle-

mile distribution network. From the two modes, electric-powered Class 8 trucks were the most 

utilized transportation mode in the optimal network scenarios at 60-80%, while electric rails 

were at 8-16% of total vehicle mix. Infrastructure that supports the battery charging of long-

haul trucks and the construction of electric railroads is necessary for its utilization in MMTN’s 

middle-mile network.  

 

In addition, collaborative partnerships with potential suppliers of alternative fuel vehicles are 

necessary for this transition. MMTN can support the innovation at companies that have already 

started heavily investing in creating technologies that run on alternative fuel. For example, 

Boeing announced that its entire airplane fleet will have the capabilities to fly on biofuel by 

2030 (Johnson, 2021). MMTN is in a unique position to join forces with such firms to not only 

influence the design of the vehicle modes that cater to MMTN’s business needs but also ensure 

sufficient supply for its network. In the same way, MMTN can support the development of low-

carbon fuels by supporting initiatives to expand sustainable production and distribution of these 

fuels, as well as initiatives such as carbon insets (Smart Freight Centre and Deutsche Post DHL 

Group, 2020) to advance their uptake. 

 

Since MMTN utilizes a mix of both owned and subcontracted fleet, a barrier to a full transition 

of all heavy-duty truck transportation to alternative fuel trucks is the capabilities of its 

subcontractors. MMTN can combat this barrier by providing incentives such as training and 

material support to transition all its heavy-duty truck subcontractors.  
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6. Conclusion 
 

Increasing repercussions of climate change fueled by rising transportation carbon emissions, 

coupled with the global call to decarbonize by intergovernmental and corporate bodies, provides 

an opportunity to develop and implement carbon-efficient distribution networks that also meet 

business needs. By optimizing for the key business objectives of minimizing transportation cost 

and delivery time as well as the environmental objective of minimizing carbon emissions, this 

research found that optimal middle-mile network design scenarios on the Pareto frontier that 

meet global Science-Based Targets to keep emissions well below 2oC and 1.5oC exist. In 

addition, the trade-offs to meeting these carbon emissions reduction targets were derived. The 

research found that the trade-offs for implementing the 1.5oC target scenario are an increase in 

variable cost by $589 (33%) for each additional ton of carbon emissions reduced as well as an 

increase of 4 hours (9%) to average on-the-road delivery time.  

 

Although the research focus is directly contributing to the middle-mile distribution network, the 

findings from the research are applicable to re-imagining the carbon-efficient network design 

along the entire supply chain. The results suggest that there is no evidence that optimizing the 

existing baseline vehicles will eventually reduce the carbon emissions level. Instead, to realize 

these optimal network design scenarios that meet global carbon reduction targets, it is necessary 

to replace all fossil fuel -powered vehicles with alternative fuel-powered transportation and 

technology. This transition will require significant investment and innovation in infrastructure 

and technology for electric, biofuel and other alternative energy-powered transportation. Future 

studies can further explore the implications of the upfront capital costs and the limitations of 

transitioning subcontracted and owned fleets to alternative fuel powered vehicles.   
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7. Appendix 
 

Appendix A: GLEC Framework Formulas 
 

Equation 1: Scope 2 Conversion of Electricity to GHGs  

 

 

Equation 2: Scope 3 Freight Transport Total Activity Calculation (in tkm) 

 

Equation 3: Scope 3 Emissions calculation using fuel efficiency 

 

Equation 4: Scope 3 Emissions Calculation using CO2e intensity factors 

 

 

 

Source:  Global Logistics Emissions Council Framework for Logistics Emissions Accounting 

and Reporting Version 2.0 (p. 16) by S. Greene & A. Lewis, 2019, Smart Freight Centre. 
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Appendix B: Transportation Modes 
 
 

Table 11  

 

Average fill rates and carbon intensity factors for current transportation types 

 

Current Transportation 

Type 

Vehicle 

Characteristics 

Corresponding Vehicle 

Categorization in GLEC 

Carbon Intensity 

Factors  

(g CO2e/tkm) 

Class 8 Tractor- Trailer 

(diesel) 
>13 t Rigid Truck (12-20 t GVW) 150 

Class 6 Truck 

(diesel) 
8.5t - 12t Rigid Truck (7.5-12 t GVW) 240 

Boeing 737 Cargo Aircraft 

(aviation fuel) 
Air, freighter 

Air, Medium Haul, 

freighter (1000-3700 

km) 

710 

Boeing 737 Cargo Aircraft 

(aviation fuel) 
Air, freighter 

Air, Short haul, freighter 

(<1000km) 
1390 

Boeing 767 Cargo Aircraft 

(aviation fuel) 
Air, freighter 

Air, Medium Haul, 

freighter (1000-3700 

km) 

710 

Boeing 767 Cargo Aircraft 

(aviation fuel) 
Air, freighter 

Air, Short haul, freighter 

(<1000km) 
1390 

 
Source: Table 35 and Table 42, GLEC Framework (Greene & Lewis, 2019) 
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Table 12  

 

Average fill rates and carbon intensity factors for alternative transportation types 

 

Alternative Transportation 

Types (Energy type) 

Corresponding Vehicle 

Categorization in 

GLEC 

Emission Intensity Factors 

(g CO2e /tkm) 

Vessel (Diesel) 
Motor Vessels <80 m (<1000 

t) 
30 

Rail (Diesel) 
Average/mixed load diesel 

traction 
28 

Rail (Electric) 
Average/mixed load electric 

traction 
10 

Class 6 (Electric) Rigid Truck (7.5-12 t GVW) 168.51 

Class 8 (Electric) Rigid Truck (12-20 t 

GVW) 
105.3 

Large Air Cargo Short-haul 

(Biofuel) 

Air, Short Haul, freighter  

(1000-3700 km) 463.32 

Large Air Cargo Medium-

haul (Biofuel) 

Air, Medium Haul, 

freighter 

(1000-3700 

km) 

236.63 

Small Air Cargo Short-haul 

(Biofuel) 

Air, Short Haul, freighter  

(1000-3700 km) 463.32 

Large Air Cargo Medium-

haul (Biofuel) 

Air, Medium Haul, 

freighter 

(1000-3700 km) 
236.63 

Vessel (Biofuel) 
Motor Vessels <80 m (<1000 

t) 
19.74 

Source: Table 35, 36, 38, 42, 44, 45, 46 GLEC Framework (Greene & Lewis, 2019) 

1 Converted total kWh/t-km of 0.39 to g CO2e/t-km using the 2018 U.S. electricity emissions factor of 
0.9529lbs (or 432g) CO2e/kWh from the U.S. Energy Information Administration (EIA) 
2,3 Assumed to be one-third of the emissions intensity factors from aviation fuel powered air freighters 
4 Calculated by multiplying its fuel consumption factor (0.0091 liters/t-km) by total kg carbon emissions/liter 

(2.6) 
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Table 13 

 

Transportation Modes Summary 

 

 



 

 
67 

 

Table 14 

 

Intermodal Transportation Considerations 

 

Vehicle Type Rail Barge Air Vessel 

# Terminals 167 142 74 171 

# Combination 19334 1684 134561 5101 

#Lines/Systems 7 10 - - 

Minimum 

Distance to Other 

Terminals 

50 50 100 50 

Maximum 

Distance to Nodes 

(facilities) 

50 50 100 50 

Source BNSF, CSX, UP, 

etc 

worldportsource.co

m, Top 10 River 

Systems 

FAA List of Largest 

Cargo Airport, 

Google Maps 

Top 30 Ports used 

for IXD Candidate 

Locations 

Assumptions and 

Considerations 

- Includes Class I 

Rail = ~70% of 

total track miles 

- All rail lines are 

connected 

- Electric Rail to 

utilize current rail 

tracks in US 

-Includes 10 water 

systems in the US 

- Vessels can only 

travel within the 

same water systems 

- Only long and 

medium haul 

- 8 modes of 

airplanes 

- Use top cargo 

airports and 

international 

airports 

- Only long haul 

- Shipment can be 

from Ports in the 

West coast to East 

coast 

- Current West 

ports to East ports 

distance uses 

straight line 

approach 

 

 

http://www.worldportsource.com/
http://www.worldportsource.com/
https://www.faa.gov/airports/planning_capacity/passenger_allcargo_stats/passenger/media/cy17-cargo-airports.pdf
https://www.faa.gov/airports/planning_capacity/passenger_allcargo_stats/passenger/media/cy17-cargo-airports.pdf
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Appendix C: Fuel Price 
 

 

Table 15  

 

US National Average Fuel Price2 

 

Fuel Type 
Fuel Price  

(Per 08 / 2020) 
Units of Measurement 

Diesel 2.48 $/gal 

Biodiesel (B20) 2.35 $/gal 

Biodiesel (B99/B100) 3.15 $/gal 

Jet Fuel3 51.35 $/bbl 

Electricity 

(Market Rate) 

0.13 $/kWh 

Electricity 

(Company Rate) 

0.10 $/kWh 

 

 

                                                 
2
 U.S. Department of Energy. (2020). Clean Cities Alternative Fuel Price Report, July 2020. https://afdc.energy.gov/fuels/prices.html 

3
 IATA. (2020). Jet Fuel Price Monitor. https://www.iata.org/en/publications/economics/fuel-monitor/ 

https://afdc.energy.gov/fuels/prices.html
https://www.iata.org/en/publications/economics/fuel-monitor/
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Appendix D: Network Design Maps 
 

Figure 6 

 

Ports and inland waterways in the US. Source: USACE - Institute of Water Resources, 2016 

 

 
 

 

Figure 18  

 

Network Design for the Targeted Carbon Emissions Scenario at 1.5oC 

 

 
Note. Figure 17 visualizes the network between FC to SC to Customers. IXD to FC is 

excluded due to the large amount of cross country connections. 
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Appendix E: Science-Based Targets 
 

Table 16 

 

Data Required for Science-Based Target Setting Tools 

 

 

Input Data Required 

Science-Based Target Setting Tools 

Scope 3 Tool Transport Sector 

Type of Transport Related Emissions Not Available Freight Transport Emissions 

Transport Category Not Available Select from a list of several transportation 

types depending on the modes selected in the 

optimized Baseline Model scenario. 

Base Year 2020 

Target Year 2030 

WTW Emissions for Base Year (tCO2e) Not Required Use the total carbon emissions figure from 

the optimized Baseline Model 

Activity in Base Year (tkm) Not Required Use the total activity (tkm) figure from the 

optimized Baseline Model 

Expected Activity in Target Year Not Required Extrapolate total activity (tkm) in 2020 by 

increasing annual activity by 10% year over 

year (YoY) till 2030. 
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Table 17 

 

Baseline Data Inputs for the Target Setting Tool - Transport Sector 

 

Input Data Required Data Inputted 

Type of Transport Related Emissions Freight Transport Emissions 

Transport Category Heavy Freight Trucks 

Base Year 2020 

Target Year 2030 

WTW Emissions for Base Year (tCO2e) 2,629 

Activity in Base Year (tkm) 20,549,174,855 

Expected Activity in Target Year (tkm) 53,299,267,341 

 

Table 18 

 

Targets Generated for Minimum Emissions Baseline by Science-Based Target Setting Tool - 

Transport Sector  

 

Emissions Measure Base Year (2020) 
2oC 

Target Year (2030) 
WB2oC 

Target Year (2030) 

WTW Carbon Emissions 

(tonnes) 
2,629 767,582.62 416,589.16 

WTW Carbon Intensity 

(gCO2e/tkm) 
0.13 14.55 7.90 

Note. The Transport Specific Tool, in contrast to the Scope 3 tool, provided Science-Based 

Targets carbon emissions and intensity target numbers that are based on an increase of activity 

level (tkm) by 10% YoY from 2020 activity levels. Per the methodology discussed in Section 

3.7, and Table 17 in Appendix E, the Baseline scenario’s outputs for total emissions (CO2e) and 

activity (tkm) as well as the extrapolated activity levels for 2030 were inputted to the Transport 

Specific tool to derive the total emissions and total carbon intensity for 2oC and WB2oC targets 

for 2030.  Since the Baseline scenario had only utilized Class 8 trucks, the Heavy Freight Trucks 

transport category was selected and the corresponding total WTW emissions of 2,629 tonnes of 

CO2e and activity level of ~20.5 billion tkm were inputted into the Excel tool. Table 18 

summarizes the resulting output from the tool.  
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Appendix F: Other Related Network Design Literature 
 

Two of the basic FLPs are the center of gravity (COG) problem and the distance-based 

approach. Melo et al. (2007) provided a comprehensive review of the literature of FLP as it 

relates to the mentioned considerations. From their review, over 80% of the literature dealt 

with single-period and deterministic problems and referenced either one or two layers. Few 

studies consider uncertainty as a parameter due to the complexity of stochastic models (Rezaee 

et al., 2017).  

 

The two most common within this spatial taxonomy are Continuous and Discrete Models 

(Daskin, 2008). Both models generally assume that demands arise only at discrete locations 

(Daskin, 2008). Continuous models assume that facilities (nodes) can be located anywhere in 

the area, vs. discrete models, which assume that the facilities are restricted to a finite set of 

locations. Discrete models are more common as they provide a more realistic and feasible 

optimal location compared to the continuous models (Melo et al., 2007). The most common 

among the variations of discrete models are the median-based models, most notably the p-

median problem, which selects p facilities to minimize demand-weighted total distance 

(Daskin, 2008). 

 

The Vehicle-Routing problem (VRP) is one other research area that is applied to the SCND 

problem. It was first introduced by Dantzig and Ramser (1959) through their research on the 

truck dispatching problem (Dantzig & Ramser, 1959). The VRP is an optimization problem to 

determine the routes that several fleets travel to achieve their goals while being limited by the 

model constraints (Widuch, 2019). The objective of the VRP can vary widely such as, to find 

the shortest route, to find the lowest transportation cost, to minimize the number of fleets, or 

to minimize the travel lead time.  Some variants of VRP are Green VRP, Electric VRP, 

Unmanned VRP, and School Bus Routing Problem (Widuch, 2019). Commonly, VRP is 

constrained by vehicle capacity, number of vehicles, distance to travel, delivery time, and other 

promises to customers for service level (Laporte, 2007). Zhen et al. (2020), for instance, 

focuses on minimizing the total travel time of vehicles.  

 

Moreover, since facility locations are interrelated with routes, Nagy and Salhi (2007) 

introduced the Location-Routing Problem (LRP). Instead of looking at the routes for the fleet, 

the LRP focuses on where the location of each node or facility should be placed. Each facility 

has its function and is subject to the capacity to fulfill the demand in the region. Adding more 

complexity to the location-routing problem, Liu and Lee (2003) extended the problem to 

include inventory and named it the Location-Routing-Inventory problem. 

 

 

 
 

https://www.zotero.org/google-docs/?PGxiez
https://www.zotero.org/google-docs/?PGxiez
https://www.zotero.org/google-docs/?O67pQ8
https://www.zotero.org/google-docs/?boybHH
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Appendix G: Entire Network Optimization Output 

 
Figure 19 

 

Total Transportation Costs at the Extreme Boundaries for IXD-FC-SC-Customer Node Network 
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