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ABSTRACT

General equations for the isothermal infiltration of deformable
porous media by a liquid flowing in slug-flow under a constant pressure
differential are solved using the Boltzmann transformation, to derive the
progression of infiltration and local porous medium deformation at all
times. This analysis is extended to include the effects of solidification of
the infiltrating liquid caused by a low initial porous medium
temperature, under the assumption that the liquid has a single melting
point. For this case, upper and lower bounds on the infiltration kinetics
and extent of medium relaxation in the presence of solidified infiltrant
are given. Finally, the effects of friction between the porous medium and
its container are analyzed.

In order to verify the isothermal model, a high-density
polyurethane sponge is infiltrated hydrostatically with ethylene glycol.
Liquid infiltration velocity and strain distribution within the sponge are
recorded with time using a video camera. The infiltration kinetics and
volume fraction distributions during infiltration agree with theory
within experimental error.

Non-isothermal infiltration of compressible Saffil™ preforms by
pure aluminum is also compared to the theoretical analysis. Friction at
preform boundaries is found to control the onset of preform compression
and can account for lack of relaxation of the preform when compression
occurs. It is also found that this effect is strongly dependent on
mechanical and thermal boundary conditions along the preform sides.

Thesis Supervisor: Professor Andreas Mortensen
Title: Associate Professor of Metallurgy
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INFILTRATION OF DEFORMABLE PORGUS MEDIA

I1- INTRODUCTION

Fluid flow through deformable porous media is an important topic
in various engineering fields, ranging from soil mechanics to
biomechanics. As fluid flows through a non-rigid porous medium or
matrix, viscous drag exerted by the liquid on the solid transfers stress to
the porous medium, causing deformation of the latter. This deformation
of the solid, in turn, affects the rate of fluid flow through the porous
medium.

Although extensive research and modeling have been done on the
flow of a liquid through a non-rigid matrix, most analyses to date have
focused on steady-state flow conditions in porous media that initially
contain fluid within the pores. In this present work, we relax these
assumptions and solve the time-dependent problem of the infiltration of
an initially dry deformable porous medium by a pure liquid at a constant
applied pressure. The effect of phase changes within the liquid upon the
infiltration kinetics and deformation behavior of the porous medium are
subsequently included in the analysis, a topic which to the best of our
knowledge has not been addressed before in the literature. Finally,
theoretical predictions are confirmed by experiments on two systems:

hydrostatic infiltration of a polyurethane foam with ethylene glycol and
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unidirectional infiltration of alumina fiber preforms with pure
aluminum.

The motivation for this work is the practical importance of
preform deformation during infiltration processing of metal-matrix
composites. Previous studies have shown that deformation of the porous
reinforcement preform influences infiliration kinetics, as well as the final
microstructure and mechanical properties of the material produced. To
date, virtualiy no research has been done in analyzing this problem in the
processing of metal-matrix composites, and several erroneous qualitative
concepts regarding the deformation of porous media during processing
have been put forth in the literature.

The thesis is divided into three principal sections, covering in turn
theory, experimental work on foams, and experimental work on metal-
matrix composites. In the first of these sections, we state our
assumptions, present the basic equations for the infiltration of a liquid
into a deformable porous medium, and solve these for unidirectional and
for hydrostatic infiltration, in both cases with a constant pressure drop
driving the liquid. We also discuss effects of metal solidification and wall
friction at the end of this section. In the second of these sections, the
mechanical behavior and infiltration rate of polyurethane foams are
measured and compared with theory. In the third main section,
experiments on infiltration of alumina fiber preforms by aluminum are
described and discussed in light of the theoretical analysis. Before these, a

brief survey of relevant background is presented.
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I1 - LITERATURE SURVEY

A - FLUID FLOW THROUGH DEFORMABLE POROUS MEDIA

Some of the earliest studies of fluid flow through deformable
porous media were concerned with the consolidation of soils containing
water or other liquids. When such a porous medium is subjected to
external stress, its deformation is controlled by the properties of the
individual phases present in the soil, and by the motion of liquid within
the porous medium. One central concern of research in this field is the
influence exerted by liquid, with its hydrostatic “pore” pressure and its
limited flow rate, on the rheology of the porous medium as a whole (Biot
1955; Biot 1957; Hubbert and Rubey 1959; Nur and Byerlee 1971; Garg and
Nur 1973; Kenyon 1976; Kenyon 1976; Rice and Cleary 1976; Beavers, Hajii
et al. 1981; Greenkorn 1983; Zienkiewicz and Shiomi 1984; Li, Zienkiewicz
et al. 1990, pp. 30 - 33) (Bear and Bachmat 1990, pp. 298 - 312). This work
has resulted in the definition of an “effective stress”, which yields the
same strain in a small volume element AV of the wet porous medium as
an equal stress would on the dry porous medium. Properties entering the
prediction of the effective stress include mechanical properties of the dry
medium, those of the individual liquid and solid phases, as well as the
saturation with liquid (fraction void filled by liquid). Often, linear
relationships are assumed between stress and strain for both the solid
material comprising the porous solid medium, and the porous medium
itsalf.

This deformation of the porous medium in turn influences the

rate of fluid flow within its pores. Work up to 1974 on this topic was
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summarized by Scheidegger (Scheidegger 1974), pages 24-31 and 83-91,
whose coverage of the topic is more specifically concerned with
consolidation and prediction of flow rate through deformable porous
media. Lewis and Schrefler (Lewis and Schrefler 1987) have also
considered the topic of consolidation of deformable porous media and
give an comprehensive review up until 1987.

Recently, the need to describe several important processes in areas
as diverse as biomechanics and chemical engineering has brought about
several analytical models of the mechanics of porous media containing a
liquid. In the field of biomechanics, Kwan (Kwan, Lai et al. 1290) gives an
extensive review of various models describing the compression behavior
of articular cartilage, a fibrous elastic material composed of approximately
80% water, in which the primary compression tehavior of the tissue is
controlled by the viscous drag of the liquid. As in consolidation theory,
many of the models have utilized the two-phase theory of mixtures to
model the fluid flow.

Fisher (Fisher 1982; Fisher 1988) investigated the deformation of
eye lens tissue as a function of pressure and the resulting tissue
permeability under steady fluid-flow conditions. It was noted in his
studies that the permeability of the membranes declined at higher
pressures, in spite of the concomitant thinning of the tissues. This type of
phenomenon has been noticed in soft gels and other tissue membranes
used as ultrafilters, and has been modeled for steady-state flow conditions
by several investigators (Scherer 1989; Holmes and Mow 1990). All of
these models deal with fluid flow or the compression behavior of

deformable porous media that start and remain saturated with liquid.
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Beavers (Beavers and Wilson 1975) analyzed steady-state flow of
liquid through polyurethane foams and obtained an analytical expression
to describe the deformation behavior of a porous medium as a function of
pressure drop. He included ir the analysis a threshold pressure gradient
necessary to initiate infiltration into the sponge, and transformed the
deformation equations from a fixed reference frame to that of the
displaced sponge. The solution predicted the final sponge length and
liquid mass flow rate as a function of a constant pressure drop across the
porous medium. These predictions were experimentally verified with
one-dimensional liquid flow, at steady state, through a polyurethane
foam block. The experimental results matched predictions quite well at
lower sponge deformation regimes. However, at high pressure drops the
predicted mass flow rate was too high compared to experiment,
presumably because of the friction against the wall of the chamber
hindering compression. Other problems may be due to the numerical
fitting of the sponge parameters in the higher stress regions, or to
deviations from the Forchheimer equation, a relationship used in the
analysis to describe the fluid flow characteristics in porous media at
higher liquid velocities. In later papers (Beavers, Hajii et al. 1981;
Beavers, Wittenberg et al. 1981}, Beavers widened the scope of the
experimental analysis to include various types of sponges, gas, and liquid
in order to validate a similar analytical solution used in the earlier study.
Again, the results agreed well at lower pressure drops but deviated at
higher compression ratios. Although friction was not considered a factor,
the cross-sectional area of the sponge decreased at higher compression,

causing air or fluid leakage.
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Parker (Parker, Mehta et al. 1987), using Biot's theory of consolidation,
performed a similar steady-state flow experiment using a glycerine-water
mixture through polyurethane sponge in the Darcian flow regime.
Analytical solutions were found, using simple functions for the mechanical
properties and permeabilities of the porous medium. His experimental
results agreed only qualitatively with theory. The discrepancy was attributed
to the modeling and analysis, since no reduction of cross-sectional area of the
sponge appeared to occur. Barry (Barry and Aldis 1990) used Parker's
experimental sponge data to verify a numerical model predicting the flow of
liquid through biological tissues at steady state. The model agreed quite well
with the data.

Similar foam experiments were carried out and analyzed by Lanir
et al. (Lanir, Sauob et al. 1990). Rather than measuring the liquid flow
rate and final length of the sponge, which tend to be sensitive to localized
strains in the sponge, the strain distributions along the length of the
sponge were measured and compared to the theoretical predictions.
Experimental results tended to agree well with theory as long as the fluid
flow was within the Darcy's Law regime. Pressure distribution along the
length of the sponge was also predicted.

Numerical procedures were recently used by Xikui Li et al. (Li,
Zienkiewicz et al. 1990) to model the flow and interaction of two
immiscible fluids through a deformable material, taking into account the
saturation level of the wetting fluid. The strains of the solid matrix,
pressure distribution, and saturation levels relative to a fixed reference
were predicted for a given constant applied pressure on the liquid. This is
the only reference found in the literature that treats infiltration of a liquid

into a deformable porous medium. Compared to this work, the geometry
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assumed is more complex, and gradual imbibation of the displacing liquid
is taken into account; however because numerical procedures were used,
the results are specific to the case studied, and are less generally applicable
than the analysis presented here.

Resin flow in the manufacturing of epoxy resin composites has
been modeled recently by various investigators. Dave (Dave, Kardos et al.
1987) and Gutowski (Gutowski, Morigaki et al. 1987) have proposed
mathematical models describing the unidirectional consolidation of
laminate composites in autoclave processing. Elastic deformation of the
fully saturated fiber structure is considered, as well as three-dimensional
fluid flow. Dave (Dave 1990), in a later paper, presented general equations
describing fluid flow for the cases of consolidation, pultrusion, and
infiltration. Although the effect of fluid saturation was included in the
overall analysis, deformation of the fiber bed was only considered for the
case of consolidation of the fibers. Trevino et al. (Trevino, Rupel et al.
1991) experimentally characterized the permeability, porosity, and
compressibility of various types of stacked fiber mats used in resin
injection molding of epoxy resin composites. In a subsequent paper
(Young, Rupel et al. 1991), the results were used to model numerically the
process of resin injection molding into various fiber mats of differing
permeabilities and fiber volume fractions. However, deformation of the

fiber bed during infiltration was ignored in the analysis.
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B - PREFORM DEFORMATION IN INFILTRATION PROCESSING OF
METAL-MATRIX COMPOSITES

Other needs to model fluid flow in compressible porous media
have arisen in the field of metal-matrix composite processing, where
molten metal is frequently injected under high pressures (typically near
10 to 100 MPa) into a preform of the reinforcing material. The preform is
typically composed of packed fibers, whiskers, particles, or mixtures
thereof. By applying high pressures on the liquid, the effects of poor
wettability between the metal and reinforcement can be overcome to
produce near net-shape composites with no shrinkage porosity and few
reaction products.

It has been noted by many researchers that high pressures during
infiltration, as in squeeze casting, can induce large volume fraction
gradients throughout the infiltrated length of the firal composite. Imai
(Imai, Nishida et al. 1987) found that the volume fraction of KoO-6TiO3
whisker preforms, originally at 0.27, had increased to 0.56 after squeeze
casting with molten aluminum at an applied pressure of 100 MPa: the
resulting preform height was one-half of its original height. No reason
for the increase of volume fraction was given. An increase in volume
fraction was also noted by Nishida (Nishida, Matsubara et al. 1988) in
producing silicon nitride whisker reinforced aluminum matrix
composites via squeeze casting. The applied pressure was 100 MPa, and
the variation of whisker volume fraction was attributed to nonuniform
stresses during the forming operations. Rasmussen et al. (Rasmussen,
Hansen et al. 1991; Rasmussen, Hansen et al. 1991) also noted that

preforms of Saffil™ alumina fibers were compressed to strains between
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25% and 30% after infiltration by aluminum alloys in a die-casting
apparatus.

Fukunaga (Fukunaga 1988), in a review of squeeze casting of SiC
fibers by molten aluminum, stated that significant preform deformation
would occur during infiltration in preforms below a critical volume
fraction of fiber. It was proposed that this critical volume fraction tended
to be more a function of infiltration velocity of the liquid than of the
pressure at which the metal was held during solidification. Although the
compression behavior was dictated by the compressive strength of the
preform, it was believed that the “hydraulic interaction” between the fiber
and metal would play only a small role in the compression mechanism.

Kioucek and Singer (Kloucek and Singer 1986) found that
infiltrated SiC whisker composites exhibited an inhomogeneous
distribution of reinforcement in the aluminum matrix. It was suggested
that the poor distribution of the fibers contributed to the high scatter in
the tensile strength data. It was also believed that the variations in
whisker volume fraction and the cracks present in the whisker preform
were caused by high pressure during the infiltration process.

Patent literature has also mentioned compression of fibers during
infiltration. In one patent on squeeze casting (Ban, Arai et al. 1985),
although the description is somewhat obscure, it is apparent that fibers of
low initial bulk density tended to compress to a higher strain during
squeeze casting than fibers with higher bulk density, although the
resulting volume fraction within the final composites was not noticeably
different. No deformation of the fibers was observed during solidification

under high pressure.
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Andrews (Andrews and Mortensen 1991), utilizing Lorentz forces,
infiltrated alumina fiber preforms by subjecting molten metal to a
transient magnetic field, whereby a sufficiently large body force was
produced to infiltrate the liquid metal into the matrix of the submerged
fibers. In the study, numerical procedures were used to predict the
infiltration velocity and depth. It was found that the electromagnetic
body forces were high enough to cause preform compression, which had
to be taken into account to predict infiltration depths in agreement with
experiment. A simplified approach was adopted to take preform
compression into account in the model: the fibers were assumed to
compress to the maximum volume fraction fiber dictated by inertial and
body forces when these were at the infiltration front, and retain that
volume fraction thereafter for each electromagnetic pulse. Global
compression of the preforms was also neglected, and the preforms were
assumed to relax completely between electromagnetic pulses. The effect
of relaxation of the fibers behind the infiltration front was thus neglected,
and relaxation between pulses was most likely incomplete; however,
there was good overall agreement between the experimentally measured
infiltration depth and that which was predicted by theory.

Clyne (Clyne and Mason 1987) analyzed theoretically the
compressive elastic and fracture behavior of fiber preforms by classifying
the fiber structure into two categories: “cross-linked” and in-plane fibers.
Cross-linked fibers were described as fibers that lie at an angle between the
interconnected arrays of successive in-plane fiber layers. Fiber bending
moments and fracture stresses in these two structural situations were
used to predict the general elastic and fracture behavior of fibrous

preforms. The theoretical predictions matched fairly well with theory in

22



both the initial elastic and fracture regimes. Clyne proceeded then to
predict analytically the necessary applied pressure to initiate infiltration of
the liquid metal into the preform. He concluded that this pressure
should be low enough to prevent substantial damage of Saffil™ alumina
fiber preforms. A characteristic relaxation time, describing the elastic
recovery of the compressed preform after infiltration, was used in
numerical modeling of the time-dependent temperature profiles in
squeeze casting processes. Although it was recognized that once
infiltration had taken place, the preforms would relax, and that matrix
solidification would interfere with this relaxation, no guantitative
treatment was given. Clyne also found that preform delamination, i.e.,
tears in the preform after infiltration, results from high initial fiber
temperatures.

Upon investigating the role of matrix solidification and
segregation of an alloy during squeeze casting of an aluminum alloy into
Saffil™ fiber preforms, Jarry et al. (Jarry, Dubus et al. 1990) observed
volume fraction increases of the reinforcement by as much as 100 %
within the infiltrated portion of the matrix. The fiber preforms were only
compressed in regions downstream of the infiltration path. These
regions were shown to be areas where solid metal-matrix, which had
formed upon contact of the melt with initially cold fibers, had not been
remelted by superheated metal. This work shows that the compressed
fiber reinforcement can be held in place by solid metal which has formed
as a result of cooling by the fibers.

In summary, although many qualitative observations and
explanations have been made regarding the deformation behavior of

reinforcement during composite processing, no formal analytical
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treatment, and no experimental investigation of the problem have been

found in the literature.
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III - THEORY

A - ISOTHERMAL INFILTRATION

1 - General problem statement

Consider the infiltration of a porous medium by a liquid injected
into the medium under applied pressure. We assume that the liquid and
the solid porous medium are at the same constant temperature
everywhere and that a negligible amount of heat is generated during the
viscous flow of the liquid.

We simplify capillary phenomena at the liquid/air interface by
assuming that a sharp front separates a fully infiltrated region, where the
porous material is saturated with liquid, from the remaining
uninfiltrated portion of the porous medium. Where the liquid is present,
we assume that the liquid fills all pores in the solid porous material, with
the exception of isolated pores which we assimilate to the solid phase.
The liquid saturation is thus everywhere constant and independent of
pressure in the liquid. This assumption, called the “slug-flow”
assumption by several authors (Mortensen, Masur et al. 1989), ignores the
gradual nature of wetting in infiltration (Mortensen and Wong 1990;
Mortensen 1991). This is a simplification of the infiltration process which
has been found to model overall infiltration kinetics appropriately in
several previous studies (Bear 1972; Yang, Zografi et al. 1988; Masur,
Mortensen et al. 1989; Mortensen, Masur et al. 1989; Dave 1990;
Mortensen and Wong 1990, pp. 303 and 519). We assume that the gas
ahead of the front is easily expelled through the porous regions of the
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uninfiltrated fibrous preform, offering negligible resistance to flow
because of the comparatively low viscosity of the gas. The pressure
within the gas that occupies the uninfiltrated portion of the preform is
then essentially constant.

Because the solid/air and liquid/solid interfacial energies generally
differ, a jump in pressure exists across the infiltration front. This
pressure jump, due to capillary forces, is assumed to be constant, and is
defined as APy. If APy < 0, the liquid "wets" the fibers, and will be drawn
into the fiber matrix in order to minimize the surface free energy of the
system. On the other hand, if APy > 0, flow of the liquid is hampered by
capillary forces, and pressure must be applied to drive the liquid.

We assume that the liquid and solid materials themselves are
incompressible. The saturated porous material, therefore, does not
respond to hydrostatic stress, since we have assumed that its saturation is
constant. The porous material will, on the other hand, respond to
applied hydrostatic pressure if the volume of its pores can change, which
can be effected by flow of liquid when it is saturated or by compression or
flow of the gas when it is uninfiltrated.

We make no particular assumptions concerning the response of
the porous solid material. In particular, it will often be irreversible, as
deformation may break or deform individual elements, such as fibers,

that constitute the porous material.
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2 - General equations

a. Fluid flow

We assume that the pores are very small in comparison to the scale
of infiltration, so we can assimilate the porous medium to a continuum.
We can then take a small volume element AV containing several pores
within an infiltrated portion of the composite. The volume fraction of
the solid phase, including isolated pores which do not get filled by liquid,
is Vg¢.

We assume that fluid flow within the volume element follows

Darcy's Law, taking into account the average movement of the solid

phase:
K
Vi~ V= - (VP-pig) (3.1)
(1-V) u
where: vy = average local velocity of the liquid within the
pores of AV
vs = average local velocity of the solid within AV,

measured in the same reference frame as vj

K = permeability tensor of the porous medium in AV
1 = liquid viscosity

P =  pressure in the liquid

p1 = density of the liquid

g = acceleration due to body forces including gravity
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We assume that p is constant, whereas K is dependent upon Vg,
and, in some instances, on the previous strain history of the porous

material.

b. Conservation of mass

We assume that the fluid and the material making the porous
medium are incompressible. A balance of the masses of solid and liquid

entering, exiting and accumulating within AV then dictates the mass

conservation equations:

dV¢

solid ﬁ- + V(Vf Vs) =0 (32)
liquid - aa% +V-((1-Vpvp =0 (3.3)

c. Conservation of force

We neglect inertial effects in both solid and liquid. Stress

equilibrium of AV then dictates:

3
oP d0;;
— ¥ l.'_ .__.0 .4
ox; g ai P1gi (3.4)
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where P is the pressure in the liquid, g; is the average body force in AV
and ojj are components of the (symmetric) etfective stress tensor acting in
the solid, counted as positive in compression and averaged over a surface
area comprising both solid and liquid, and pj is the density of the liquid.
The effective stress, which equals the actual average stress in all material
within AV minus the fluid pressure P, determines the macroscopic
deformation of the porous material in AV, provided that the volume
fraction of the liquid phase is not vanishingly small (Hubbert and Rubey
1959; Nur and Byerlee 1971; Garg and Nur 1973; Beavers, Hajii et al. 1981;
Li, Zienkiewicz et al. 1990).

3 - Unidirectional infiltration under constant applied pressure

a. Unidirectional infiltration

We now consider the case where infiltration takes place along one
direction only, defined as the x axis, and where strain in the porous
material is only along that direction. We assume that the porous
medium is homogeneous, and isotropic in a plane perpendicular to the
infiltration direction. The liquid penetrates the porous material at one of
its ends, infiltrating it toward the other end under a constant pressure P,
applied on the liquid at the entrance of the porous medium. We assume
that the porous medium is fixed at the other end. The gas pressure in the
uninfiltrated porous material is assumed to be constant and is defined as
Pg, and the pressure difference driving the flow is APt = P, - Pg.

The basic physics of the situation can be understood by simple

examination of the problem. Assume that the stress-strain curve
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measured on the porous medium by unidirectional compression takes
the form depicted at the top of Figure 3.1a, for loading to APt and
unloading to zero stress. Assume also that there are no strains in the y or
z directions. This curve could be measured on a dry sample of the porous
material if its behavior is unaffected by chemical interaction in contact
with the liquid phase.

It is clear that if inertial effects can be ignored, the porous solid
material ahead of the infiltration front must be stressed under the full
effective compressive stress oxx = APT, correspondingly straining the
porous preform as indicated in the figure. As the infiltration front passes,
it engulfs a slice dx of the porous material, which sees its effective stress
altered by the capillary pressure APy. The porous material immediately
behind the front will therefore relax somewhat (following the unloading
stress-strain curve) if APy> 0, i.e., if the liquid does not wet the porous
material. Its strain will therefore decrease, to a value given by the
unloading portion of the stress-strain curve at oxx = APT - APy.
Conversely, if APy< 0, corresponding to wetting by the liquid, the porous
medium will contract somewhat, climbing further up the loading stress-
strain curve to oxx = APT - APy, as depicted in Figure 3.2a.

From behind the infiltration front to the preform entrance, the
liquid pressure P increases from APy + Pg to Po, and the effective stress Oxx
acting on the porous medium correspondingly decreases to zero. The
compressive strain on the porous medium therefore decreases toward the
entrance, following the stress strain curve for unloading from APy - APy.
To see this in a more physical way, picture the porous medium as a series
of small solid objects connected by infinitely thin springs, as in Figure 3.3.

As the liquid flows past these, it exerts a viscous drag force on the objects,
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which pushes these toward the infiltration front. For this reason, the
stress on the springs (the effective stress 6xx on the porous solid medium
for this example) increases as one moves from the entrance to the
infiltration front, from a value near zero at the entrance to APt - APy
right before the infiltration front. At the infiltration front, capillary forces
additionally act on the last row of objects being engulfed, further
compressing the springs upstream if wetting is poor.

The pressure gradient withir the infiltrated portion of the porous
material depends on the local volume fraction of the solid phase, Vg,
because the permeability K depends on V¢. Therefore, the infiltration
kinetics and the shape of the porous material during infiltration are

linked, and must be solved together.
b. The similarity solution and boundary conditions

When a constant pressure P, is applied on the liquid, it will travel
toward the porous medium, contact, and compress the latter to a volume
fraction V¢= V?, corresponding to Oxx = APT on the stress-volume fraction
curve (Figures 3.1 and 3.2). The position to which the preform entrance is
initially compressed is defined as x = 0, and the time of initial contact as t
= 0. The x-axis is fixed in relation to the uninfiltrated end of the preform.
In what follows, we drop the suffix x from vectorial or tensorial
components.

Governing Equations (3.1) to (3.4) can be simplified considerably in
the case of present interest if we neglect body forces g. Equations (3.1) to

(3.4) become:
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-K -313'

Darcy’s Law VI-Vs = m o (3.5
Solid aa\i £y a(\;;VS) =0 (3.6)
Liquid - a;: £y a((l_ai‘) LA 37)
Stress equilibrium gx—P= -%xg (3.8)

We use the Boltzmann transformation to transform these partial
differential equations into ordinary differential equations by combining x
and t into a single variable, which describes the present problem in its
entirety.

We define Y as:

x_(x-Xe)
Wt

(3.9)

where x. is the position of the fiber preform entrance at time t. Because
the preform relaxes, xe < 0. The scalar y is chosen such that the position

of the infiltration front corresponds to % = 1. Therefore,
L=yt (3.10)

where L is the total length of the infiltrated portion of the preform, as

shown in Figure 3.4.

Taking the partial derivatives of % with respect to x and t:
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¥ 1R

(3.11)

1
R

% (X'Xe) Vs(x=0) _x_ Vs(x=0)

ot - 2yer T oyt 2t oyt

(3.12)

Expansion of Darcy’s law and insertion of the stress equilibrium Equation

(3.8) yields:

V]-Vg = ﬁ Vi (0 \v_ij—t_ o' (Vy) (3.13)

where
' aV¢ . dc
Ve () = " and o (Vp = W
We define 1 and s as given by:

_Ylw 3.14

Vi '\ji'.- ( . )
S

Vs J% , (3.15)

where 1 and s are functions of x only. Equation (3.13) now becomes:

' (1-8) (1-Vg) p g2
Ve o= K ¢'(Vy) '

(3.16)

Mass conservation Equations (3.6) and (3.7) become:
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and

-V
I'= s (% +s(0)-l)

’ (3.17)

(3.18)

As discussed earlier, each end of the infiltrated portion of the

composite has its volume fraction of fibers fixed by the unloading stress-

strain curve for initial compression to AP1. Two boundary conditions

follow:

f
Vi= Veaty=1-

Vi=Viatyx=0

(3.19)

(3.20)

f
where V¢ corresponds to APt - APy on the unloading curve after loading

to APt for a non-wetting liquid, and on the stress-strain curve for further

loading from APt - APy for a wetting liquid. V; corresponds to the fully

relaxed state of the fibers after compression to APt for a non-wetting

liquid, and APt - APy for a wetting liquid.

Consider a slice of thickness dx in the dry porous material

immediately ahead of the infiltration front. In both the wetting and non-

wetting cases, dx¢ ahead of the infiltration front (i.e., corresponding to x 2

1%) is compressed to V¢ = Vf: , the volume fraction solid that corresponds
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to compression of the porous material under ¢ = APt (Figures 3.1 and 3.2).
As the infiltration front engulfs dx¢ and V¢ changes to V; , the width of
porous material changes from dx¢ to dxf + dxyx, as shown in Figure 3.5. As
the porous medium expands or shrinks, its solid phase acquires a finite
velocity vg (x = 1) in the reference frame we use here. If APy> 0, dxx >0

and vg (x =1-) < 0. A mass balance on the solid dictates:

f
dxg- Vg = (dxg + dxx) - Vg - (3.21)

Differentiating with respect to time and rearranging yields:

c f
4 . Vg - Vg
X Xf
Vs(x=1-) = - dtx = - dt * Vf . (3.22)
f

The velocity of the liquid, v) (x=1-), within the porous structure
immediately behind the infiliration front is similarly obtained from a

simple mass balance:

C
dx¢ (1-Vg)

Vli(x=1-) = dt

- (3.23)
(1-Vg)

Knowing that x¢ = L + xe, inserting Equations (3.14) and (3.15) into
Equations (3.22) and (3.23) yields:
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f
Vi - Vg

1
(x=1") =[5 +s(0) }-- (3.24)
st (3 +50) —

and

1-vp)
1
I(x=1-) = (5 +5(0))-

- (3.25)
(1-Vg)

Equations (3.24) and (3.25), in addition to (3.19) and (3.20), are boundary
conditions that must be met in solving Equations (3.16) to (3.18), the
solutions of which will be the parameter  and the functions V¢(x), 1(x),
and s(y).

A simpler limiting case is obtained if there is no capillary pressure
drop across the infiltration front, i.e., if APy = 0. Then, Vf (y=1+) = V¢ (x=1)
and Equation (3.25) simplifies to:

1) - s = % , (3.26)

while Equation (3.24) becomes:

s1)=0, (3.27)

stating that, at the infiltration front, no movement of the solid initially

takes place. When APy = 0, Equation (3.26) can also be obtained by taking
the time-derivative of Equation (3.10), knowing that vi(y = 1-) is the

velocity of the infiltration front.
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c. Special case: unidirectional infiltration in hydrostatic pressure

conditions

We assume in this case that the liquid essentially infiltrates the
porous medium along one direction but replace the assumption that
there is no lateral strain of the porous medium by the assumption that
the side-walls of the medium are subjected to a constant hydrostatic
pressure equal to P,. This hydrostatic pressure can be exerted by the liquid
infiltrant via an impermeable membrane covering the sides of the porous
medium (Figure 3.6). In this configuration, the porous medium will
experience some lateral strain, resulting in finite solid velocities in the y
and z directions.

To treat this case, we make the simplifying assumption that the
porous material is isotropic, and that it is slender enough for flow to
remain predominantly in the x direction and for planes initially
perpendicular to that direction not to bend appreciably. With these

assumptions,

—=—"=0 (3.28)

The velocity gradient terms of solid phase can be written as strain-

rate terms in the following manner:

dvsi d2ug;
—1 =g 3.29
dj ojot (3.29)

where ug;j is the average displacement of the solid in the j direction and ¢;

is the average strain rate of the solid in the j direction.
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In the present configuration, effective stress components oxx, Oyy,
and o2, are equal. Since the porous medium is isotropic, we therefore

have exx = eyy = €zz. Equation (3.2) then becomes:
aVi¢ OVsx V¢

——a—t—--*-SVf ax +va ax =0 (3-30)

Insertion of Equation (3.28) intc Equation (3.3) yields:

oV¢ f dVix OVly dV]z
- - - =0. 3.31
e o T V‘)( ax +8y+az) 33D
: ovly
Because of the geometry and assumptions of the problem, 3y
aVlz .
and — are equal (due to symmetry), and zero both along the central axis

0z
of the porous medium and at the wall of the impermeable membrane. If

we assume that vix is not a function of either y nor z for the slender

d ad
“ly and Yz
ay oz

porous medium, then according to Equation (3.31), are

also constant, and hence zero, at fixed x and t. Then, Equation (3.31)
becomes identical to Equation (3.7).
Equation (3.30) replaces Equation (3.6). Therefore, Equation (3.17)

becomes:

. Vi
s =3—Vf(-12‘~-s(o)+s) . (3.32)

The solution of this case is otherwise similar to that of unidirectional

infiltration.
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d. Numerical solution of equations

Equations (3.16), (3.17), and (3.18) are nonlinear first-order
equations, which were solved using numerical methods. The functions
V¢, 1, and s were all simultaneously integrated across y by assuming initial
values for y2, 1(x=0), and s(x=0). V¢(x=0) is the volume fraction of the
sponge in its totally relaxed state, obtained from unidirectional or
hydrostatic pressure experiments on the porous medium.

The mid-point Runge-Kuita scheme was used for integration
(Press, Flannery et al. 1989, pp. 271, 551, 583). The method consisted of
taking the values and initial derivatives at the beginning of an interval to
find the values and derivatives at a point halfway across the next
interval, N, from which the values and derivatives at the beginning of
the next interval, 2N, were found. After integrating from x=0 to =1, the
final values and functions involving Vg, 1, and s were compared with the
boundary conditions (3.19), (3.24), and (3.25), for the unidirectional
infiltration case, and with (3.19), (3.24), and (3.31) for infiltration under
hydrostatic conditions (described in the preceding subsection).

A multi-dimensional Newton-Raphson method was used for
adjusting the initial guesses of y2, 1(x=0), and s(x=0) for convergence.

This consisted of transforming the end boundary conditions into

functions, fj, that were to be zeroed, or:

fi(y2, 1(x=0), s(x=0)) = 0. (3.33)

By using the Taylor series expansion for each function in the

neighborhood of the vector of variables, X, yields:
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3

f.
fi(X +8X) = fi(X) + E g;'jaxj + higher order terms (3.34)
)
=1

A set of linear equations is obtained by neglecting the higher order terms

of Equation (3.34), or:

of

The matrix in Equation (3.35) was solved by using Lower-Upper
Decomposition (Press, Flannery et al. 1989, p.31), the solution of which
gives the adjustments for x1, x2, and x3 to bring each function fj closer to
zero. The old variable values were adjusted by adding to them the errors

obtained from the solution of Equation (3.35) to find the new values, i.e:

new

old
X =x + ij (3.36)

Iteration was continued until §xj was less than a specified limit for all j.
In order to insure that the error values were not so large as to cause
instability while integrating, the errors were multiplied by a constant less
than one before addition to the old value of x;.

The flow chart for the program is shown in Figure 3.7 and the
program is presented in detail in Appendix (3.1) for sponge infiltration.
To check for internal consistency within the program, the actual viscous

pressure drop was compared with the summation of the drops in
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pressure over various increments of Ay, as shown in the following

equation:

- 2
APy = Z 1l s)u\ll (1-Vy) Ay (337)

The values all were taken at the mid-point of the increment Ay
(calculated during the Runge-Kutta integration) to obtain the average for

that interval.

B-IN NCE OF SOLIDIFICATION AND WALL FRICTION
1 - Eff fm lidification in adi ic infiltration

We now relax the assumption made in Part A that no exchange of
heat takes place between the porous medium and the liquid. We assume
that the liquid and the reinforcement are initially at constant but different
temperatures, T, and Ty, respectively. We also assume that the liquid
solidifies with no solute segregation and at a single temperature, Tp.

If T¢ is lower than Tp, solidification of the infiltrating liquid will
occur during infiltration (Fukunaga and Goda 1984; Fukunaga and Goda
1985; Fukunaga 1988; Mortensen, Masur et al. 1989). As shown in
Reference (Mortensen, Masur et al. 1989), assuming liquid/solid
interfacial equilibrium for the liquid, a fraction of the infiltrant at the
infiltration front tip will solidify on the porous solid, such that the latent

heat released by solidification warms the solid phase to Tm. In this
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subsection, we modify the theory presented in Section III-A-3 to take into
account the effect of such solidification of the liquid during infiltration of
a deformable porous medium. We retain for now the assumption made
in Part III-A that there is no friction or other effects at the wall restricting
deformation of the porous medium. For consistency with previous work
on infiltration for the production of metal-matrix composites, we assume
henceforward that the liquid is a metal, and that the solid phase is a fiber
preform. Results are generally applicable, however, to any porous
medium and infiltrant so long as appropriate relations are used to
calculate the permeability of the porous medium.

We assume in this subsection that the unidirectional infiltration
process is adiabatic, meaning that no heat is exchanged between the fiber
preform or the composite and their surroundings. As before, the preform
ahead of the infiltration front is compressed under a pressure of APf.
Right behind the infiltration front, where the metal first contacts the
fibers, capillary forces will cause an abrupt change in the effective stress,
in turn causing expansion or contraction of the preform, as in isothermal
infiltration.

Immediately behind the infiltration front, heat is exchanged
between fibers and metal, resulting in the solidification of a volume Vj of
solid metal per unit composite volume. This results in the formation of
a region within the infiltrated composite, called region 1 in Reference
(Mortensen, Masur et al. 1989), where liquid and solid metal coexist. This
region extends from the infiltration front upstream of the flowing metal
to a remelting front, where superheated metal flowing in at the gate
remelts the solid metal (see Figure 5 of Reference (Mortensen, Masur et

al. 1989)).
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Assuming for simplicity that no heat is conducted ahead of the
infiltration front into the preform, Vg is calculated from Equation (58) of

Reference (Mortensen, Masur et al. 1989):
Pt Cf (Tm - Tg) - V¢

Ve= 3.38
s om AH; (3.38)

where AH¢is the latent heat of fusion, c¢is the intrinsic heat capacity of
the solid phase, and pf and py, are the densities of the solid and metal,
respectively. Because there is no migration of the solidified metal with
respect to the fibers, this relation between Vg and V¢ remains valid
everywhere within region 1 (even though V¢ varies with position).

In the case of infiltration of fiber preforms by a pure netal, it was
shown that the solidification configuration is approximately that of a
sheath of solid metal covering the fibters. The coated fibers thus have an

apparent radius, rgf, given by:
Vv Tm-T
rsf=rf\/\,—5ff = r¢ *\/n pf:(;{f 2 (339)
m

where Vgt = V¢ + Vj is the total volume fraction of solid phase present.

The new rs- and V¢ replace the previous rg and Vgin calculations of the
permeabil.y K, right behind the infiltration front and for all > xs, where
incoming metal at the gate remelts solidified metal formed at the
infiltration front. For 0 < ) < Xs, the permeability is calculated using the
nomina!l fiber radius r¢ and fiber volume fraction Vy.

Matrix solidification cannot prevent the applied pressure from
compressing the preform ahead of the infiltration front. If we assume

that capillary forces modify the effective stress of the preform before
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matrix solidification occurs at the infiltration front, Equation (3.19)
remains valid at the infiltration front. The apparent stress-strain curve of
the preform containing solid metal must be known for solution of the
problem to be possible. If the mechanical response of the preform is time-
dependent in the presence of the solid metal, the Boltzmann
transformation cannot be used to model infiltration.

There are, therefore, two extremes of behavior which provide
bounds for the kinetics of infiltration because further behind the
infiltration front, solid metal will stiffen the compressed preform,
resulting in a lower degree of preform relaxation than for isothermal
infiltration. These two bounds describe the greatest and the least possible
extents of preform relaxation and correspond to the two following cases:
case (i), where the solid metal does not influence the mechanical response
of the preform, and case (ii) where the solid metal confers enough rigidity
to the preform to completely prevent its relaxation. In both of these cases,
the similarity solution holds. We consider these in turn, making for
additional simplicity the assumption that there is no metal superheat, i.e.,
that To = Tm. With no superheat, %5 = 0 and the temperature is uniform
within the composite, equal to Tp.

In case (i), governing equations for preform deformation and fluid
flow within the composite are essentially identical to those of isothermal
infiltration, save for changes in a few of the equations due to the
increased apparent fiber radius behind the infiltration front. Darcy’s law,

Equation (3.5), is changed to become:

-K oP
(1-Vg-Vg) p ox

V]-Vg = (3.40)
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Egs. (3.6) and (3.8) are unchanged, while Eq. (3.7) becomes:

9(1-V¢-Vg)  9((1-V¢-Vs) vi)

3t + o (3.41)
These equations become, after transformation of x and t to x:
' (1-5) (1-V¢-Vo py?2
\' = : , 3.42
¢ 0 K o(Vo (3.42)
and
“Ve- Vs
v Xz i
I'= avivD ( L 4 s0-1 ) : (3.43)

Equation (3.17) and boundary condition Equations (3.19), (3.20) and

(3.24) remain unchanged, while Equation (3.25) becomes:

1 (1-V§)
lg=1) = (3 +5(0))- ~———— (3.44)
(1 - Vf - VS)

In case (ii), the fiber volume fraction is uniform, equal to fo,
throughout the composite. s and | are then constant and given by Egs.
(3.24) and (3.44).

When the preforms are incompressible, 6'(Vy) is infinite and V¢ is

(o]
(1-V¢)
everywhere constant (Eq. (3.16)), so that s()) =0 and 1(y) = % f———
(1- Vf - Vs)
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for all  (Egs. (3.17), (3.43), (3.24), and (3.44)). Governing and boundary
equations for case (ii) then reduce to equations of Reference (Mortensen,
Masur et al. 1989) for adiabatic infiltration of incompressible preforms

with no superheat.

2 - Effect of external surfaces, case of non-adiabatic infiltration.

We now relax the assumption that the preforms can move freely
within their mold during infiltration. This is because, in actual
infiltration experiments, there is very often a mold wall along the
preforms. A necessary condition for preform compression to occur then
appears, namely, that frictional forces between the fibers and contacting
surfaces such as die walls be overcome.

When the mold initial temperature is lower than the metal
melting point, solidification of the metal takes place during iafiltration
along the mold wall (Masur, Mortensen et al. 1989; Mortensen, Masur et
al. 1989). This, too, may influence preform compression. When initial
stages of infiltration take place under low applied pressure, solidified
metal may "anchor" the preform to the die wall by increasing the
apparent die wall friction and conferring strength to the infiltrated
portions of the composite. Once preform compression has taken place,
solidification at the mold wall may also prevent relaxation of the
preform.

We consider a simplified geometry in which the metal infiltrates a
fibrous preform contained within a mold of cylindrical geometry with an
inner radius R; and initial temperature T¢. We assume for now that the

combined effects of friction and matrix solidification along the mold wall
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result in a critical shear stress, 15, that must be overcome for the preform
to slide along the mold wall. g is clearly very system-dependent, and may
vary with time and position as solidification, or chemical reactions
between composite and mold wall, take place.

If we assume that the driving pressure, APT, increases with time
from APt = 0, preform compression will initially not occur because the
applied pressure is low. If we consider a cross-sectional slice dx in the
infiltrated portion of the preform before preform compression has taken
place, we can predict in simple terms the moment at which preform
compression takes place.

The liquid pressure drop during infiltration across dx is given by
Darcy's law, Equation (3.1). If at time t > 0 preform deformation has not
yet occurred, the mold wall frictional stresses are opposing the
compressive stresses induced on the preforms by viscous friction of the
liquid, as shown in Figure 3.8. A simple force balance between the
interfacial shear force and pressure drop across dx then yields the

following equation:
-nR;2dP = 142nR; dx (3.45)

where 1¢ is the effective frictional shear stress between the composite and
the die wall resisting preform compression. This yields, after
rearrangement:

(3.46)

R.
tm

&5
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In summary, if ¢ equals or exceeds the shear strength of the
interface between the composite and the mold wall, 1, then the preform
will compress. Before compression occurs, the analysis of Reference
(Mortensen, Masur et al. 1989) is valid with V¢ = V?. When there is
superheat in the metal, the pressure gradient is constant within regions 1
and 3 of the infiltrated composite, being much greater in the former than
in the latter. It is within region 1, therefore, that preform compression
will initiate, possibly leading to tearing at the interface between regions 1
and 3 when the critical pressure gradient is attained in region 1. Because
most of the pressure drop across the infiltrated composite, APy, takes place
within region 1, we can estimate the liquid pressure gradient within that

region as being equal to

_ -AP“
T (1) L 347)

&5

If we assume that 15 is constant along the infiltrated composite, for
compression of the preform to occur, at one time during infiltration the
APt must be high enough to deform the dry preform and the pressure
gradient within the infiltrated portion must be great enough to overcome

the frictional stress, according to:

- R; AP
. ell S 3.48
2 (l-xs) L > Ts. ( )

The effective mold/preform interfacial shear stress s which must
be overcome to cause deformation of the preform will depend on the

materials and the boundary conditions at the mold/composite interface.
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In particular, when substantial solidification or chemical interaction with

the mold take place along the mold wall, 15 will increase.
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Figure (3.1) -
(@) Schematic illustration showing the uniaxial compression
behavior of a dry porous solid.

(b) The same solid at various times during infiltration by a non-
wetting liquid under a constant pressure drop APT,
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Figure (3.2) -

(@) Schematic illustration showing the uniaxial compression
behavior of a dry porous solid.

(b) The same solid at various times during infiltration by a wetting

liquid under a constant pressure drop APT.
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Figure (3.3) - Schematic description of an elastic deforming porous
medium during infiltration: viscous drag pushes the solid
elements toward one another until the force is balanced by the
spring repulsion.
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Relaxing Compressed
porous solid porous solid

Figure (3.4) - Coordinate system used in the analysis of the
infiltration of a deformable porous medium.
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Figure (3.5) - Schematic showing the enFulfed region dxfat the
infiltration front changing from V(; to V¢ with a finite solid and
liquid velocity.
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IV - EXPERIMENTAL PROCEDURE

A - INFILTRATION OF COMPRESSIBLE POLYURETHANE SPONGE

1 - Material systems

Type TF-5070-10 polyurethane sponge with a nominal density of
0.159 g/cm3 or 13.36 volume percent polyurethane was obtained from
General Plastics Manufacturing Company, Tacoma, WA. This open-
celled polyurethane foam is anisotropic, in that the cells are slightly
elongated along one direction, termed the "rise" direction. Figure 4.1a
and 4.1b are electron micrographs of the sponge used in the experiment,
respectively taken parallel and perpendicular to the rise direction. The
interconnecting holes between the pores are approximately 70 um in
diameter. The sponge was found to have an average pore diameter of 450
pm cross-sectionally and 560 pm in the rise direction using the pore-
intercept method on SEM micrographs. A few larger blow holes, that
seem to be randomly dispersed within the matrix and are as large as 3
mm wide and 6 mm long, were also found (these were ignored in the
averaging).

Prior to testing, the sponges were milled down to 7.1"x 1.88" x 1.88"
(17.8 cm x 4.8 cm x 4.8 cm) rectangular parallelepipeds. This was done by
lining a vise on the milling machine with wide double-sided tape,
inserting a sponge, and then gently closing the vise until the sponge was
immobile. Using a 1" (2.54 cm) wide six-flue milling end at high speed,
the sponge was gradually milled down to the proper dimensions. After

machining, the sponges were weighed and their densities calculated from
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their volume and the known density of polyurethane (1.19 g/cm3). The
density of the infiltrated sponges used in this work was ps=0.159 g/cm3.

Preliminary experimentation on new sponges indicated that the
poroelastic behavior of new sponges varied with the number of times the
sponges were compressed. Similar results were found by Parker (Parker,
Mehta et al. 1987), Lanir (Lanir, Sauob et al. 1990), and Beavers (Beavers,
Wittenberg et al. 1981). In order to eliminate this effect, the sponge was
hydrostatically compressed at least 700 times before any characterization
was done on the sponge, to allow the mechanical properties to reach a
virtually unchanging state. This was done by enclosing the milled sponge
inside a long, hermetically sealed plastic bag, evacuating the air out
completely, and then releasing the vacuum. A thin buffer sponge was
placed between the bottom of the experimental sponge and the vacuum
port to ensure that the sponge was pressed uniformly along its length and
to ensure uniformity of air flow throughout the sponge during cycling.

In order to measure volume fractions of the sponge and liquid
velocity during infiltration, lines 0.25" (6.35 mm) apart were drawn across

the width of the sponge, perpendicular to the infiltration direction.

2 - Sponge infiltration apparatus

The infiltration chamber is shown in Figure 4.2. The chamber was
made of plexiglass and had inside dimensions of 2.00" by 2.00" (50.8 x 50.8
mm). The plexiglass backing consisted of a hollow aluminum base, two
outlets for the vacuum reservoir, a manual vent, and an inlet for the
pressure transducer. The hollow aluminum base was machined to fit

loosely inside the infiltration chamber and then sealed to the plexiglass
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backing with silicone rubber and epoxy to produce a vacuum seal. A 1.00"
(2.54 cm) thick aluminum honeycomb along with a stainless steel screen
(24 Tyler mesh) were epoxied within the aluminum base to act as
supports for the sponge. The screen, which was flush with the outside
edge of the aluminum base, was chosen to have very high permeability as
compared with the sponge and yet have holes small enough to support
the sponge effectively during infiltration. The O-ring between the
plexiglass backing and the infiltration chamber prevented air leakage into
the apparatus during infiltration.

The sides of the sponge were surrounded by a plastic dry-cleaning
bag (0.00075" (1.9-10-2 mm) thick) that was hermetically sealed so as to
allow the sponge to be somewhat loose inside the bag. The outer edges on
one end of the sponge were sealed to the ends of the open bag by a thin |
mm wide layer of 5-minute epoxy to prevent the bag from moving
during infiltration. The other end of the sponge was supported on the
aluminum base. The surrounding bag continued halfway over the
outside surface of the aluminum base and was sealed vacuum-tight with
electrical tape to the sides of the baze. This configuration allowed liquid
infiltration to occur only through the front face of the sponge, opposite
the aluminum base.

Constant vacuum at the sponge end near the aluminum base was
achieved by connecting the back of the aluminum base to a large 160 liter
vacuum reservoir via two 0.5" (1.27 cm) internal-diameter hoses. A
vacuum could be rapidly applied to the bottom of the sponge by opening
two solenoid valves connected to the vacuum hoses. The open end of
the infiltration chamber was submerged in a large vat of ethylene glycol

containing colored dye. The entrance of the infiltration chamber was
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suspended away from the bottom of the vat by a porous metal brace, built
in such a way as to support the chamber during infiltration while
allowing unimpeded liquid flow into the chamber mouth. A mercury
thermometer was used to monitor the temperature of the fluid. A 15 psi
differential pressure transducer (Omega Engineering Inc., Stamford, CT)
was used between the top of the sponge and the inside of the hollow
aluminum base to allow continuous measurement of the pressure drop
across the sponge during infiltration.

A Panasonic AG-1830 digital video cassette recorder (VCR) was
used to record the infiltration event. This VCR has the feature of being
able to monitor the infiltration of the sponge and then replay the event
one still field (1/60 sec) at a time. The ability to monitor progression of
the infiltration front was improved significantly by using digital
enhancement of the image contrast. This produced a clearer visual
distinction between the infiltrated and uninfiltrated portions of the

sponge.

3 - Hydrostatic compression tests

Two experiments were done to characterize the foam before actual
infiltration by the liquid. These were: (1) measurements of the foam
volume fraction solid, Vy, at different hydrostatic pressures, P, and (2)

tests of the viscoelastic behavior of the sponge.

a. Vs vs hydrostatic pressure
The foam was placed inside a sealed plastic bag from which the air

was evacuated into a vacuum reservoir. A thin "buffer" sponge was used
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at the entrance of the vacuum reservoir port to shield the sponge used for
infiltration from distortion caused by the vacuum port. Measurements
were done using a caliper for the widths of the sponge and a ruler for the
length of the sponge. Initial measurements were taken approximately 3
minutes after the sponge was totally evacuated. After the sponge
dimensions were taken, a small amount of air was allovs;ed into the
vacuum reservoir and the sponge equilibrated at a lower constant
hydrostatic pressure for approximately 40 seconds before distance
measurements were taken again. This procedure was done from full
vacuum to atmospheric pressure, taking approximately 50 minutes.

From the measured dimensions of the sponge, the volume fraction of the
sponge for a given hydrostatic pressure could be calculated, given the

sponge weight. These tests were performed twice on the same sponge

within a two-hour interval to verify reproducibility of the measurement.

b. Viscoelastic behavior tests

The strain changes of the sponge held under a constant hydrostatic
pressure for both short and long time periods were iﬁeasured by
evacuating the sponge enclosed in a plastic bag and by measuring the
width of the sponge over a duration of 40 minutes, starting from the

moment when the vacuum was first applied.

4 - Foam permeability measurements

Although we neglect the progressive nature of infiltration by
making the slug-flow approximation, it is important to duplicate the local

liquid pressure (and hence local saturation, or volume fraction liquid)
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and foam volume fraction simultaneously present in the sponge during
infiltration when measuring permeability. The sponge infiltration
experiment corresponds to the case described in section III-A-3-c, in which
the sponge is subjected to an effective hydrostatic stress ce = Py - P, where
P,, the applied pressure, equals one atmosphere, and P is the local
pressure in the liquid. Therefore, permeability was measured for variable
foam volume fractions with average liquid pressures corresponding to
one atmosphere minus the mechanica: ..ycrostatic stress required to
compress the preform to that volume fraction.

In the hydrostatic pressure experiment, the volume fractions of the
polyurethane foam were found by measuring the dimensions of the
sponge for pressures ranging from zero to atmospheric. Four aluminum
boxes, corresponding to 3.65 psi (0.0252 MPa), 4.31 psi (0.0297 MPa), 5.37 psi
(0.037 MPa), and 7.58 psi (0.0522 MPa), were made to the appropriate
widths and lengths derived from the hydrostatic pressure experiments on
the dry sponge before infiltration. The boxes were fabricated by milling
the ends of 2.00” x 2.00” (5.08 cm x 5.08 cm) aluminum square tubing
(0.25"wall (6.35 mm)) to the required leagth needed and then cutting
along the length of the square tube diagonally from opposite corners. The
edges of one of the L-shaped pieces were then milled to the proper
dimensions and epoxied to the inside of the other L-shaped mate, thus
creating a box with the appropriate dimensions. The ends of the
aluminum boxes were then sanded with a 600 grit sandpaper and
smeared with a very thin layer of silicone rubber sealant to ensure a good
vacuum seal.

The permeability apparatus consisted of a 100 ml graduated
cylinder that had a half-inch hole drilled in the bottom. This was used to

63



determine permeability by recording the fluid level drop as a function of
time. The base of the graduated cylinder was cemented onto a plexiglass
plate that had a hole drilled through its middle to allow unimpeded fluid
flow from the graduated cylinder to the sponge. On the opposite side of
the plexiglass plate, a thin rubber sheet was glued to provide a vacuum
seal o the aluminum box. A similar matching plate was made for the
bottom of the apparatus. The aluminum box was placed between these
two plates, as shown in Figure 4.3.

It was necessary for the sponge to be inserted in the box without
causing damage to the sponge or allowing variational changes of localized
strain within the sponge to occur from the effect of wall friction. Two
sponges, with the same side dimensions as the one infiltrated, were
hydrostatically compressed 700 times to full atmospheric pressure and cut
into 3.00" (7.62 cm) lengths for a total of four samples, each being used for
permeability measurements. Each of these cut sponges were placed in a
separate sealed bag and evacuated. A thin coat of silicone vacuum grease
was spread on the bag around the midsection of the evacuated sponge te
prevent any side-channeling of the ethylene glycol down the folds of the
plastic bag during the permeability test and to provide lubrication during
packing of the sponge. Each evacuated sponge was then carefully inserted
inside the aluminum box, centered between two scribed lines within the
box, and allowed to expand slowly to the walls of the box. As mentioned
previously, the sponge was somewhat anisotropic; the two widths of the
sponge were different when evacuated, even though both sides were cut
perpendicular to the rise direction; therefore, the sponge had to be

inserted into the box with a proper orientation to insure duplication of
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the infiltration experiment. The excess bag was then cut with a razor
blade around the perimeter of the exposed face of the sponge.

Aluminum honeycomb supports and stainless steel screens cut to
the inside cross-sections of the boxes were placed on both exposed faces of
the sponge, with the screens lying between the sponge and honeycombs.
Two 0.130" (3.3 mm) rolled aluminum foam plates (ERG Corporation,
San Francisco, CA) with large pores were placed on each end of the box to
allow fluid flow into the aluminum honeycomb. The aluminum box was
then pressed in the permeability apparatus to create a vacuum-tight fit
and bring the sponge to its proper strain using four threaded rods. The
setup allowed fluid to flow directly from the graduated cylinder, through
the sponge, and out through the bottom plexiglass plate. A clear Tygon
tube connected to the bottom of the plexiglass plate was curved around to
the level corresponding to the base of the sponge, thus ensuring that the
liquid pressure head remained constant at the base of the sponge. The
liquid level was maintained at this level until it ran off into the large
liquid reservoir, also connected to the pressure system. An illustration of
the setup is given in Figure 4.4.

To determine perineability, the system was first evacuated using a
mechanical pump. The valve at the bottom of the sponge was then
closed, and liquid was slowly sucked from an outside container until it
rested on top of the evacuated sponge. A pressure equal to the
atmospheric pressure minus the stress corresponding to the dimensions
of the sponge in the box (measured in section IV-A-3-a) was slowly
applied on top of the liquid until no observable drop in the liquid level
was observed. An average liquid head was also included in the

calculation of pressure P. This procedure caused the liquid to infiltrate
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the sponge pores to the same saturation corresponding to the applied
liquid pressure and sponge volume fraction that existed during the actual
infiltration run. The bottom valve at the base of the sponge was then
opened and the liquid was allowed to run freely through th.e sponge by
gravitation.

Permeability was calculated from the liquid drop as a function of

time using the following equation (Lambe and Whitman 1979, p. 281-292):

Kt = i: %‘i In (%) @.1)
where: K = permeability of the sponge
L = length of the sponge
A, = cross-sectional area of graduated cylinder
As = cross-sectional area of the sponge
H = distance from the liquid head to
the base of the sponge

Ho = height of the head at t=0

By plotting t versus In (H/Hj), the permeability K of the sponge could be
calculated from the slope.

Saturation was determined by closing the valve on the base of the
sponge and then measuring the liquid drop after atmospheric pressure
had been applied on top of the liquid, assuming that the sponge is
completely saturated at atmospheric pressure. Knowing the liquid drop

volume and the volume of the enclosed sponge, the liquid saturation
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could be calculated. The temperature of the liquid was measured
immediately after the permeability experiment.

The pressure applied on the liquid was 14.44 psi (99500 Pa) minus
the stress that the sponge held for its volume during the hydrostatic
pressure test. The average height of the liquid to the center of the sponge
was approximately 26 cm. This amounts to approximately 0.41 psi (2830
Pa), which was included in computing P. This pressure head, which
drives flow of the liquid, produces negligible compression of the
prestrained sponge during the experiment. This low pressure gradient
driving the flow also had the advantage that pressure variations in the
sponge were low during the experiment, allowing the sponge saturation

to be kept constant with time and distance.

5 - Infiltration experiment data collection

The video image was used to determine the results of the
hydrostatic infiltration, after image treatment to enhance the contrast and
improve discernment of the infiltration front. Known distances from the
screen were calibrated and converted to actual distances.

The moment when the infiltration front first contacted the sponge
was defined as t=0. The infiltration front position was then recorded with
time. By knowing the position of the infiltration front and the sponge
entrance, X, as defined in Eq. (3.9), could be calculated for each line drawn
on the face of the infiltrated portion of the sponge. The width of the
sponge at that point was used to determine the local V¢ of the sponge,

knowing the experimental curve of V¢vs. hydrostatic pressure.
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B - INFILTRATION OF ALUMINA FIBER PREFORMS BY ALUMINUM

1 - Infiltration experiments

Preform blanks of Saffil™ (trademark of I.C.I., Runcorn, U.K.)
alumina fibers 3 pm in nominal diameter were purchased from Thermal
Ceramics (Augusta, GA). In the preforms, the fibers are randomly aligned
within a plane, and are held together by a silica binder (5% percent). The
volume fraction of fiber in the preforms varied between 17.8% and 20.1%.
The preform blanks were 6" x 6" (15.24 x 15.24 cm) square, with the
thickness varying between 0.434" (11 mm) and 0.55" (14 mm). Cylindrical
plugs were cut from the blanks using a knife edge cutter and weighed to
determine the fiber velume fraction Vg of each cored piece. Plugs that
varied by no more than 0.2 fiber volume percent from each other were
used in each experiment. Error in determining volume fraction of the
cylindrical plugs is estimated to be 0.04 (Appendix 5.3-A).

These cylindrical fiber preforms were then cored to insert a sheath
of Grafoil™ carbon paper (trademark of Union Carbide, Cleveland, OH)
as in (Michaud 1991; Michaud and Mortensen 1991). The Grafoil™ insert
served two functions: (i) it minimized heat losses through the fused
quartz tube during infiltration, and (ii) it reduced friction at the periphery
of the central core, facilitating compression of the core during infiltration.
To this end, a fiber coring apparatus was constructed to allow insertion of
single Grafoil™ sheath through three or four preforms. In this
apparatus, the preforms were placed on top of each other in a 17 mm IL.D.
fused quartz tube, and were then simultaneously cored together using a

long 0.453" (11.5 mm) inside diameter knife-edge cutter with a 0.008" (0.2
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mm) wall thickness. Once the inner cores were extracted, a sheath of
Grafoil™, 1.5" (3.81 cm) to 3" (7.62 cm) wide, was placed within the inner
diameter of the hole. The extracted cores were then inserted back to their
original positions within the coiled Grafoil sheath. As in references
(Masur, Mortensen et al. 1989; Michaud and Mortensen 1991), the
preform preparation and the cutting process resulted in infiltration
perpendicular to the plane within which the fibers are oriented. A
detailed description of the coring apparatus and of the coring procedure is
given in Appendix (4.1).

The infiltration apparatus and procedure were essentially identical
to those described in (Masur 1988; Masur, Mortensen et al. 1989), with a
few modifications for the present experiments. As in (Masur 1988; Masur,
Mortensen et al. 1989), the position of the liquid infiltration front
advancing through the preform was monitored using a SiC
monofilament as a variable resistor. Because the inner core of the Saffil
fiber preform was quite narrow, and because any misalignment of the SiC
monofilament may interfere with preform compression, a procedure was
devised to insert the monofilament straight through the middle of the
preform core. This was achieved by drilling the monofilament using a
pin vise together with a collapsing guide made of a 5 u€ glass pipette and a
100 uf glass pipette to prevent the monofilament from buckling or
breaking. An aluminum cylinder with a hole drilled in its center was
also used to stabilize and center the glass pipettes during drilling. Prior to
inserting the SiC filament into the preform, the upper portion of the SiC
fiber was electroplated with a nickel coating. The bare portion of the

filament was drilled and then pulled through the preform until the
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nickel coating interface was exactly on top of the preform. The
monofilament insertion procedure is given in detail in Appendix (4.2).

Essentially, the infiltration apparatus consists of twe parts: a lower
chamber, where an electrical resistance heater in the bottom is used to
melt the aluminum in a high-density graphite crucible, and a cap,
holding the sample, heater, thermocouples, pressure transducer, and
other electrical devices.

In a typical experiment, the SiC monofilament was threaded
through the center hole of a copper disk used to provide stable backing
for the Saffil™ fibers during infiltration and as a chill to prevent
overinfiltration by the molten aluminum. The copper was insulated
from the fiber by a ceramic tube that fit snugly inside the center hole of
the copper. On top of the disk, ceramic spacing tubes that extended to the
back of the O-ring fitting were placed to brace the preforms during
infiltration.

The fibers were heated separately from the metal using the same
helically-wound resistance heater as in (Masur 1988; Masur, Mortensen et
al. 1989). This heater tended first to heat the fibers well above 373 K
regardless of the set temperature, which was only reached subsequently.
The temperature range within a length of 45 mm inside the heater is less
than 5 K (Masur 1988; Masur, Mortensen et al. 1989). Most experiments
that were run in this study comprised three preform elements, with the
total length of the preform being less than 45 mm. There were a few
experiments, however, that required four preforms with the total length
extending to 46 mm, for which experimental error was closer to 10 K.

The aluminum matrix, initially 99.999% pure, was donated by
ALCOA, Pittsburgh, PA. Crucibles used to melt the metal were made of
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graphite by Union Carbide, Cleveland, OH. To infiltrate the preforms, the
cap of the apparatus was lowered over the main vessel, immersing the
end of the fused quartz tube sample and melt thermocouple into the bath
of molten metal. The molten metal was then pushed into the tube and
the preforms by pressurizing the entire vessel with nitrogen gas via two
apertures in the cap. Full pressurization was achieved in less than one
second and was held until the infiltration front in the preform stopped,
typically after about 8 seconds. During infiltration, the metal position and
the pressure were continuously recorded on a chart recorder using the SiC

monofilament and a pressure gauge, respectively.

2 - Fiber compyression tests

Compression tests of fiber preforms were performed so as to
replicate conditions inside the fused quartz tube during infiltration.
Basically, one preform of a certain V¢ was cored and sheathed in a fused
quartz tube in the same manner as described above, except that the carbon
sheath was allowed to extend above the preform approximately 1-2 cm.
Within this sheath, a stainless steel plunger was placed, machined to the
same diameter as the preform inner core diameter. A ceramic support
centered on top of the plunger was used to push the plunger during the
compression test. The preform rested on the surface of a stainless steel
base, which was slightly smaller in diameter than the fused quartz tube.
The specimen and its base were heated using a helically wound electric
resistance furnace or heating tape that was wrapped uniformly on the
outside of the fused quartz tube. In order to monitor the temperature of

the fibers, a thermocouple was placed on the outside of the sheath to rest
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on the surface of the outer preform core. All compression tests were done
at 423 K to remove adsorbed moisture from the prefoims. After holding
the fibers at 423 K for 20 minutes, they were compressed unidirectionally
by pushing down the upper ceramic support with an Instron™ (Canton,
MA) testing machine at cross-head speeds of 0.02" or 0.05'min-1 ( 0.51
mm-min-! or 1.3 mm- min-1, respectively). Curves of preform volume
fraction versus pressure were then derived from the cross-head

displacement and the stress given by the load cell.

3 - Fiber permeability

The permeability of the fiber preforms was measured by mounting
a fiber preform in an epoxy resin and measuring water flow rates through
the preform. To prevent flow of the epoxy into the preform while
mounting the preforms, a thin coating of rubber-to-metal cement was
applied to the outside surface of the preform and allowed to dry. Prior
experimentation showed that the cement penetrated the preforms by less
than 0.003" (0.08 mm), which assured that the final dimensions of the
porous preform were virtually unchanged. After allowing the rubber
cement to dry, one end of the preform was placed in the middle of two
strips of elactrical tape, lying adjacent to one another with the sticky side
up. The sides of the tape overlapped very slightly to prevented leaking of
the epoxy. A pregreased phenolic ring form, used for an outer barrier for
the epoxy liquid, was placed over the preform, centered, and pressed onto
the sticky electrical tape to create a seal. Five-minute epoxy was then
mixed and poured in the gap between the preform and ring form until

the level of the epoxy reached the top surface of the preform. After
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curing, the rubber cement on the faces of the preform was carefully peeled
away, exposing the preform fibers. The specimen was then removed
from the ring form.

The apparatus for measuring permeability is shown in Figure (4.5).
O-rings that were wide enough to fit onto the epoxy mount away from
the exposed face of the preform were placed on both sides of the specimen
and then pressed between two plexiglass plates over 0.25” pipe-threaded
holes drilled through the thickness of each plate. On the opposite side of
one plate, a graduated cylinder, used as the standpipe in the permeability
experiments, was sealed using silicone adhesive. The bottom of the
cylinder had been cored out prior to being glued using a diamond coring
drill. The other plate had a 0.25” brass hose fitting.

In order to measure the permeability, the whole apparatus was
initially turned over and the brass hose fitting was filled with water. The
end was then plugged, quickly inverted, immersed in a constant-level
water reservoir, and then unsealed. This procedure prevented bubble
entrapment from occurring on the underside of the preform. Water was
then poured into the end of the graduated cylinder and the height of the
falling head from the water reservoir was recorded as a function of time
to deduce the preform permeability (Lambe and Whitman 1979).
Recorded permeability values were found to increase with time from the
beginning of water flow, stabilizing after about 30 min. The values of
permeability used in this work were steady-state values.

A second, somewhat less rigorous, procedure for measuring

permeability was also devised, and is described in Appendix (4.3).



4 - V¢ determination in infiltrated specimens

On three samples, the volume fraction fiber V¢ along the length of
the infiltrated sample was measured by a weighing method. The
infiltrated sample was cut lengthwise with a low speed diamond saw.
One half was used as a metallographic sample. The other half was cut
into slices 2 to 2.5 mm thick using a diamond saw. Each individual slice
was weighed and dissolved in a dilute solution of HCI, with the residual
fiber mass being used to determine the V¢of the slice.

The Grafoil™ sheath allowed easy separation of the inner core of
the cut composite slices. The volume of each slice was then calculated
after measuring the thickness and widths of the specimen using a

micrometer, using the formula:

Volume = C x {r2sin! 1-[o/(r2 - 02 +r2sin (%))} 42)
where:
r=AZ, B
8B 2
a=r-B

and other terms are defined in Figure (4.6). The tip of the infiltration
front had a somewhat irregular shape and the preform entrance was
usually too thin to get an accurate measurement, so these parts were not
used.

After measurement of their dimensions, the slices were immersed

in a 20% HCI solution to dissolve the matrix. The residual fibers were
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then filtered using 0.45 pm Duropore™ Neoprene filter membranes from
Millipore Corporation, Bedford MA. The fibers were dried at 383 K and
weighed to determine volume fractions of the individual slices. The
volume fraction of each slice was assigned to its longitudinal midpoint.
Experimental error in the resulting measurement of V¢ was estimated as

AV¢/V¢=7% in Appendix (5.3-C).

5 - Metallography

Longitudinally cut samples were mounted in epoxy resin and
ground on SiC papers from 240 grit to 600 grit, using distilled water as a
lubricant. 6 um diamond paste with water was used on perforated
Texmet™ (trademark of Buehler, Lake Bluff, IL) cloth for 20 min,
followed by final polishing with a colloidal silica suspension on
Chemomet™ (trademark of Buehler, Lake Bluff, IL) cloth. The samples
were agitated by ultrasound in ethanol after each step, rinsed afterwards
with ethanol, and then blown dry.

To distinguish the position of the remelting front in samples
infiltrated with superheated metal (Mortensen, Masur et al. 1989), these
were etched in a mixture of 50 ml HCl (37%), 47 ml HNOj3 (70.3%), and 3
ml HF (51%) for about 5-10 s and then immediately washed in water.
This etchant produces small etch pits in pure aluminum, facets of which

are parallel to the [100] planes of the metal crystals (Brandes 1983).
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Figure (4.1) -

(a) Micrographs of the polyurethane foam viewed along the rise
direction.

(b) Micrographs perpendicular to the rise direction.
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Figure (4.2) - Schematic of the chamber used to infiltrate the sponge
with ethylene glycol.
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Figure (4.3) - Setup to test permeability of sponge in same
conditiors as the actual hydrostatic infiltration
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Figure (4.4) - Overview of the apparatus used to test sponge
permeability under various strain and saturation conditions.
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Figure (4.5) - Illustration of method used to determine the
permeability of Saffil™ fibers with water using the falling head
method.
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Figure (4.6) - Dimensions used in calculating volume of composite
slices for volume fraction measurements.
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V - RESULTS

A - INFILTRATION OF POLYURETHANE FOAM

1 - Hydrostatic pressure vs V¢

The results of the hydrostatic pressure test are shown in Figure 5.1.
The curves resemble qualitatively those of Beavers (Beavers and Wilson
1975; Beavers, Wittenberg et al. 1981), Parker (Parker, Mehta et al. 1987),
and Lanir (Lanir, Sauob et al. 1990), although direct comparison is difficult
because the sponges in this study were hydrostatically compressed,
whereas previous studies compression was performed uniaxially. Also,
the densities of the sponges used in this study were on the order of six
times higher.

There was no noticeable difference between data from the two tests
done two hours apart from each other. For modeling purposes, the

average of both curves was fit with a seventh-order polynomial:

2 7
6 = A + B*Vg + C*Vj + ... H*Vg (5.1)

where:

A =-2329164 x 107 Pa
B =7.1349318 x 108 Pa
C =-9.255285 x 10 9 Pa
D = 6.597487 x 10 10 Pa
E =-2.791823 x 10 11 Pa
F =7.0165383 x 10 11 Pa
G =-9.702267 x 10 11 Pa
H=5.698018 x 10 11 Pa
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The high order of the polynomial was necessary to preserve the shape of
the curve at the sharp transitional points, as Equation (3.16) dictates that
V¢ (x) will approach infinity as ¢ approaches zero. The error in
measuring the V¢ with the calipers and ruler is calculated in Appendix

(5.2-A) to be 0.03.

2 - Viscoelastic behavior of the sponge

Curves of sponge volume fraction V¢ vs. time are shown in
Figures (5.2a) and (5.2b). As seen from Figure (5.2a), V¢ changes relatively
little after the vacuum has been applied for more than 20 seconds. The
change of V¢ between 20 seconds and 60 seconds is approximately 0.012.
Vs for longer relaxation times is shown in fig (5.2b). The average Vf of
the sponge between 20 s and 60 s is only lower than the V¢ of the sponge
at 40 minutes by about 0.021. This suggests that the sponge reaches a
pseudo-steady state condition in 20 s, and continues to relax slowly

afterwards.

3 - Sponge permeability

Table (5.1) and Figure (5.3) summarize sponge permeability

measurcments. The data points are fitted well by an exporential curve:

K=Kg*10 MV (5.2)
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K, and the exponential term, M, were determined to be 1.4729-10-10

m2 and -6.9654, respectively. The viscosity of ethylene glycol as a

function of temperature is given in Appendix (5.1). The error calculated

AK
for the permeability is approximately = = 0.10, as shown in Appendix

(5.2-B).

In Table (5.1), 8y represents the fraction of unfilled void space at a

total pressure of one atmosphere and liquid pressure P, assuming there is

complete saturation at P = 1 atmosphere. It was also observed that the

ethylene glycol did not spontaneously wet the sponge, i.e., 8y equals 1.0

for a liquid pressure P = 0.

Table 5.1 - Polyurethane foam permeability

Effective | Liquid | Occupied | A ml V¢ K Oy
stress | pressure | chamber | liquid (m?2) unsaturated
(MPa) (MPa) | volume | change void fraction

(cm3)
0.025 0.075 143 0 0.163 | 1.0-10-11 0
0.03 0.07 119 0.5 0.195 | 7.1-1012 0.005
0.037 0.063 99.3 1.0 0.234 {3.5-10-12 0.013
0.052 0.048 82.3 1.5 0.283 | 1.5-10°12 0.025
4 -E . tal Its £ infiltrati

The temperature of the ethylene gljcol immediately before

infiltration was 25.8° C. The pressure drop registered between the

infiltration front and the back of the sponge during the actual event was

14.44 psi (99500 Pa). Various times during the infiltration are reproduced
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from the video images in Figures 5.4a through 5.4d. In these figures, the
infiltration front is highlighted using the digital video recorder, as
described above. This enhancing mode tended to add visually 1.0 mnm to
the widths of the sponge while the vertical distances were unaffected.
The conversion factors used to change screen distances to actual distances
in the horizontal and vertical directions also varied slightly.

A plot of L2 vs time is shown in Figure 5.5. As can be seen in the
figure, the curve becomes a straight line after approximately 17 seconds.
The value of y2 obtained from the slope of the line was 1.2 - 104 m2s-1
with an experimental error of 10% (Appendix (5.2-Dj).

Measured volume fraction Vg of the sponge vs. x during
infiltration is shown is Figure 5.6. As the infiltration front moves
through the sponge, the volume fraction profile within the infiltrated
portion of the sponge should remain constant in this transformed axis.
At earlier times, the curves tend to be shifted more to the left, i.e., to
greater values of V¢. At longer times, greater than 17 seconds, the sponge
profile tends to stabilize, although there still is a small shift to the right as

the sponge continues to relax.

B - INFILTRATION OF ALUMINA FIBER PREFORMS BY ALUMINUM

1 - Infiltration experiments

Table (5.2) lists all infiltration experiments along with their
processing parameters. Virtually all samples were well infiltrated, except
for the small porous region that existed in the tip region. At high applied

pressures, the porous regions were only a few percent of the total length
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of the sample. The matrix microstructure is similar to that found in
previous experiments (Masur, Mortensen et al. 1987; Masur 1988;
Mortensen, Masur et al. 1989): the matrix is fine-grained, except in the
remelted zone, as shown in Figure (5.7). Within this zone, long
columnar grains extended parallel to the infiltration direction. In most
samples, the remelting front separating the fine-grained from the large-
grained -.zion: ¢ <hibited some curvature, with the concave side toward
the preform euniravics

It was observed that none of the outer preform rings had
undergone compression after infiltration, since the base of the preforms
in the solidified samples was still located flush against the indentation or
alumina cement in the fused quartz tubes. On the other hand, it was
observed that in several samples (marked as such in Table 5.2), the central
core of the preform had moved relative to the outer ring, with the
implication that this portion of the preform had undergone visible
compression during infiltration, Figure 5.8. In some instances, only a
portion of the central preform core had compressed, after tearing away
from the remainder of the preform, which remained at its original
position near the entrance, Figure 5.9.

It was found by measuring the length of infiltrated outer preform
rings, or central cores of samples that did not compress, that these were
somewhat smaller than preform lengths measured before packing and
coring the preforms. Since these preforms had not moved during
infiltration, this slight increase in their volume fraction resulted from
packing and coring operations. The nominal volume fraction of fiber for
these samples was therefore corrected when possible by computing V¢

from the lengths of the outer infilirated rings instead of the preform
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heights measured before preform packing and coring. The corrected
volume fractions are listed in Table 5.2 as "V?

Distributions of Vs in three composite cores, samples I, ], and K,
were measured and are plotted in Figures 5.10, 5.11, and 5.12. Horizontal
and vertical error bars for these experimental data points were calculated
as described in Appendix (5.3-C) and Appendix (5.3-D) for the
measurement of V. The V¢ distribution of two other samples were also
measured but not recorded because no reliable y2 value was obtained
during infiltration and excessive damage or compression may have
occurred to the preforms during the packing procedure.

In samples that apparently underwent no compressior, curves of
L2 versus time, t, were similar to those found in preceding investigations
(Masur, Mortensen et al. 1989; Mortensen and Wong 1990). For these
samples, y was determined, as in previous investigations, using the
linear portions of these curves.

By comparison of infiltration iengths measured with the SiC
monofilament with the position of the infiltration front in samples, it
was determined that in some instances, the SiC monofilament had
moved, whereas in other samples, it had remained stationary. Therefore,
in samples that underwent preform compression, some uncertainty exists
in measured values of L, because it is uncertain whether the SiC
monofilament remained stationary, or moved with the preforms as they
compressed during infiltration. It must therefore be kept in mind that
infiltration distances, L, measured with the SiC monofilament are records
of the position of the infiltration front relative to the SiC monofilament,
rather than the infiltration front position measured in a fixed reference

frame or relative to fibers contained in the final infiltrated composites.
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Records of L2 versus t display three regions, similar to those
described by Masur (Masur 1988), with the central portion of the curves
linear, as for samples exhibiting no compression. The difference between
these curves and those for samples in which the preform did not
compress is in a pronounced decrease of the slope of L2 versus t before, or
at the onset of, the linear poriion of the curve. We take this abrupt
change in slope of L2 versus t as an indication of sudden preform
compression, during which most motion of the SiC monofilament and
preform entrance takes place (this is substantiated in the discussion
below). The length of infiltrated composite at time t, L¢(t) was then
computed as the final length of the infiltrated composite, £ . minus (L¢ -
L)) where Lg is the final value of L recorded by the SiC monofilament,
and Ly is the infiltration front position recorded by the SiC
monofilament at time t (Figure 5.13). For samples where delamination
occurred, the fiber-free gap was not included in £. ¥ was then computed
from the slope of the linear portion of plots of Lc2 versus t. The relative
experimental error in L. thus computed arises mostly from uncertainty in
the position of the preform entrance at time t. AL:/L. was therefore
estimated as equal to the distance separating the initial from the final
preform entrance positions in the composite, AL, divided by &£. The

. . L ALe . .
relative experimental error in v is then roughly equal to E—C , since time

is measured with much greater precision. When no compression

occurred, AL, is estimated to be about 1.5 mm. AL, &£, and experimental

error in y? are tabulated in Table 5.3.
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Table 5.2 - Experimental conditions for the aluminum/alumina fiber

composite samples.

Bp | Bp | Vi | Vi | T | T | P | Purity |Graronm | Q%L,‘“ﬁ Com-
# # €O | €O | MPa) | & en Weap || s pressed
(lab measured) () — mh
book)
A ]14.58 |.184 |.190 | 98 | 660 | 2.05 76 21.9 116 N
B 14.60 | .178 1.185 | 75 | 660 | 2.14 76 24.7 97 N
C | 14.66 |.191 |.191 | 74 | 660 | 2.07 | .9999 38 3.7 150 Y
D |14.67 |.191 |.194 |100 | 660 | 2.10 | .9997 38 7.1 119 Y
E |14.69 |.190 |.200 | 60 | 660 | 2.66 | .9999 38 3.9 116 Y
F 14.72 |.194 |.198 1100 { 660 | 1.34 | .9999 38 12.6 88 N
G |15.13 }.185 |.196 | 300 | 660 | 2.07 38 98.0 58 N
H |15.02 }.1951.205 | 100 | 714 | 2.14 | .9996 76 9.7 227 Y
1 15.20 |.190 {.190 100 | 714 | 2.12 | .9994 70 3.2 366 Y
] 15.22 |.188 |1.193 | 100 | 704 | 3.69 70 - 842 Y
K 1523 |.185 }.188 | 150 | 709 | 2.11 70 13.2 176 Y
L 15.27 1.192 [.193 | 100 | 714 | 1.45 70 53 114 N
M |15.64 |.192 {.192 | 167 | 771 | 2.15 70 40.3 116 Y
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Table 5.3 - Compressicn distances, final infiltration distances, and

experimental errors in L.

EXP ALc £ _A_L_C Compressed
# experimental | experimental £
(mm) (mm)
A - 28.7 0.05 N
B - 29.4 0.05 N
C 3.8 6.3 0.60 Y
D 2.9 12.5 0.23 Y
E 5.2 10.9 0.48 Y
F - 11.6 0.13 N
G - 34 0.04 N
H 0.3 13.8 0.11 Y
I 3.3 6.4 0.57 Y
J 8.3 7.5 1.11 Y
K 2.3 27.1 0.08 Y
L - 10.7 0.14 N
M 0.5 37.2 0.04 Y
2- ressibili ffil™ alumina fi form

Figure 5.14 shows the unidirectional compression curve of fiber
preforms for various values of initial fiber volume fraction V?. Virtually
all tests were done in a cyclic manner (Figure 5.15), successively increasing
the load from 200 psi (1.38 MPa) to 500 psi (3.45 MPa), the highest pressure

that was used for infiltration experiments.

Curves of uniaxial stress, o, versus Vg first exhibit a region of

elastic deformation in which the apparent modulus is high and where
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unloading curves superimpose on loading curves. This is followed by a
plastic region of lower apparent modulus, in which unloading shows
significant permanent deformation of the preform.

Overall, there is a trend for preforms to compress to higher V¢ for
a given stress as ch’ decreases. At higher strains, data were only found
almost to crnverge if V? was greater than about 0.19.

The thickness of the Grafoil™ sheath surrounding the inner core
of the preforms (which varied with the initial length of foil used) had no
apparent effect on the compression behavior of the samples. No effect of
compression strain rate on preform compressibility was found. No effect
of temperature was found provided the temperature exceeded 100°C.
Therefore, temperature variations over the length of the samples,
estimated to be below 50°C, had no influence on the data. Below 100°C, a
sharp reduction in apparent modulus of the preforms was observed.

A summary of the compression test data is given in Table 5.3.
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Table 5.3 - Summary of alumina fiber compression tests done at T = 150°C

Preform V(f’ Wrap Preform | Crosshead | Heating
# length Length speed
(mm) (mm)
A-8-2-47 0.176 70 13.2 0.02"/min tape
A-8-2-48 0.180 70 13.2 0.05"/min tape
A-8-2-14 0.188 38 11.8 0.02"/min tape
A-8-2-3 0.194 38 11.7 0.02"/min tape
A-7-2-24 0.195 70 11.5 0.05"/min | furnace
-P ility of the fiber pref

The first measurement of preform permeability, K, obtained after
30-40 s flow of water, was defined as the initial permeability. Thereafter,
the measured permeability increased to reach a steady-state value after
about 30 minutes. Plots of initial and steady-state permeability vs. V¢ are
given in Figure 5.16 and summarized in Table 5.4 for preforms used in
this work, as well as for two earlier preforms used in the work of Masur et
al. (Masur, Mortensen et al. 1987; Masur, Mortensen et al. 1989).

From these data, Equation (26) of reference (Mortensen, Masur et al.
1989) was used to compute the apparent fiber radius r¢ in the preforms, as
in preceding investigations (Masur, Mortensen et al. 1989; Mortensen and
Wong 1990). r¢ is plotted as a function of V¢ for the two preform types in

Figure 5.17. It is found that r¢ is relatively constant for each type of
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preform, but differs with the type of preform, being equal to 2.72 um and

2.34 pm for steady-state permeability of preforms used here and in

previous investigations, respectively. Values for initial hydraulic radii

are 2.45 ym and 1.95 pm, respectively, this last value being in agreement

with measurements of Masur (Masur 1988; Masur, Mor{ensen et al. 1989).

In the present work, the steady state value of the apparent fiber

radius r¢ = 2.72 um is used to compute the preform permeability, rather

than the initial value. It is seen from Figure 5.17 that Equation (26) of

reference (Mortensen, Masur et al. 1989) provides a value in reasonable

agreement with measured steady-state K for the preforms.

Table 5.4 - Fiber permeability summary

Source ch) K (initial) | r (initial) | K (steady state) | r (steady state)
(10712 m?) | ¢104m) 10712 m?) 106 m)
A 0.187 1.90 2.46 2.42 2.77
0.196 1.70 2.45 2.45 2.76
0.197 1.68 2.44 2.01 2.67
0.200 1.67 2.49 2.00 2.72
0.208 1.42 240 1.77 2.67
B 0.222 - - 1.11 231
0.223 0.80 1.95 1.17 2.36

Fiber Source:

A- Thermal Ceramics, B- Vernaware
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Figure (5.1) - Plot of the reswts for two separate foam hydrostatic
pressure tests, done approximately two hours apart on the same
sponge used for the actual infiltration. Squares and circles are from
two separate experiments.
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(a) Plot of V¢of sponge under 0.1 MPa hydrostatic pressure for short
times (0 to 60 s).
(b) Plot of same experimental data for longer times (1 s to 40 min).
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Figure (5.3) - Experimental sponge permeability as a function of

volume fraction. Straight line corresponds to: K = 1.4729 - 1010
m2 * 10(-6.9654*Vf)
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Figure (5.4) - Video images of sponge infiltration experiment at: (a)
t<0s, (b)t=1s, (c)t=31s(d)t=067s Distortion of the image
occurred on the top of the screen when the image was in the

digitized mode.
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Figure (5.5) - Total infiltrated length L2 as a function of time.

Figure (5.6) - Experimental V¢ distribution along infiltrated length
of sponge at various times.
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Figure (5.7) - Macrostructure of a longitudinal section of sample M
(etched). The matrix consists of fine grains with long columnar
grains extending within the remelted region. A small delaminated
region in the composite also exists within the remelted regiion.

100



Figure (5.8) - Macrostructure of a longitudinal section of
compressed sample E.
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Figure (5.9) - Macrostructure of a longitudinal section of sample K
(etched). Remelted zone extends into compressed fiber region.
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Figure (5.10) - Measured Vgdistribution along infiltrated length

21
with predicted values of V¢for no relaxation, ¢ = R_is' and full

relaxation (sample I).
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Figure (5.11) - Measured Vgdistribution along infiltrated length
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with predicted values of V¢ for no relaxation, ¢ = K and full
relaxation (sample J).
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Figure (5.12) - Measured Vgdistribution along infiltrated length
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with predicted values of V¢for no relaxation, ¢ = X and full
relaxation (sample K).
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Figure (5.13) - Schematic illustration of method of data collection
from SiC monofilament when preform compression occurs.
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Figure (5.14) - Unidirectional compression curves for fiber
preforms of V(f) = (.180, 0.188, and 0.194 and T¢ = 150°C. The dotted
line indicates extrapolation of the data between unloading -
reloading cycles.
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Figure (5.15) - Stress-strain cyclic compression of a fiber preform of

V(f) = 0.189 and T¢ = 150°C, increasing the maximum load from 1.38
MPa (200 psi) to 3.45 MPa (500 psi).
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Figure (5.16) - Plots of initial and steady-state permeabilities vs.
various V?. Permeability results for two preforms used by Masur
(Masur, Mortensen et al. 1989) are also shown in the diagram.
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Figure (5.17) - Initial and steady-state hydraulic radii vs. V?.
Hydraulic radii for preforms used in Masur (Masur, Mortensen et
al. 1989) are also shown in the diagram.
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VI - DISCUSSION
A - INFILTRATION OF POLYURETHANE FOAM
1 - Assumptions of the model

a. Darcy's Law

For Darcy's Law to be valid, the Reynolds number Re defined by:

_dpw
1]

Re (6.1)

should be lower than a value of order 1 (Mortensen, Masur et al. 1989). In
these present experiments, the liquid velocity varies with time, and is
maximum at the infiltration front. The pore velocity at the infiltration
front in relation to the solid at t = 23 s was measured to be 8.71-10% m-s-1.
This is the highest liquid velocity measured after the sponge reaches
pseudo-steady state, whereby its volume fraction depends only on
fractional distances along its length.

The foam cell diameter, originally 450 pm perpendicular to the rise

direction, shrinks in size at the infiltration front due to the hydrostatic

pressure according to the following equation:

1-Vgn\1/3
d=do[—2 62)
1- Vi

where d, is the original cell diameter of the relaxed sponge, V(f) is the

original sponge volume fraction, and d represents the new cell diameter
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when the volume fraction equals V¢. Therefore, an overestimate of Re
anywhere in the sponge at t = 23 s is obtained by taking d = 450 um.
Krowing that the liquid pore velocity at the infiltration front relative to
the solid phase at 23 seconds was 8.71-104 m - s’1, and the viscosity and
density of ethylene glycol are 15.7-10-3 Pa s and 1.109 g - cm3, respectively,
the resulting Reynolds number equals 2.5-10-2. This is a conservative
estimate, in that (i) under hydrostatic pressure the foam cell size actually
varies between 450 pm perpendicular to the rise direction to 70 pm at the
interconnecting pore between cells, (ii) the cell walls may collapse and
lower the sponge cell diameter, and (iii) at later times, the liquid velocity
drops considerably.

The influence of gravity is negligible during the infiltration
experiment: the maximum infiltration distance measured vertically was
9.8 cm, which corresponds to a pressure drop of 1,066 Pa (0.155 psi), i.e., a
1.1% error, considering that the pressure drop across the sponge during

infiltration was 99500 Pa (14.44 psi).

b. Wetting and permeability

The first drainage curve of the dry uncompressed sponge was
measured to determine the degree of saturation with applied pressure. It
was found there was no spontaneous infiltration, and that when the
applied pressure is 14,200 Pa (0.14 atm), the liquid fills approximately 89%
of the pore space. Therefore, only a small, positive pressure is required to
saturate the sponge with the liquid, reflecting a APy at the infiltration
front significantly lower than the applied pressure of one atmosphere.
According to Mortensen (Mortensen and Wong 1990), APy is roughly

proportional to Sy, the surface area of solid per unit volume of liquid.
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Assuming that surface area of the sponge in the relaxed state is the same
as in the compressed state, APyshould increase by a factor of (1 - V?)/ (1-
V¢) = 1.3, when total atmospheric pressure is applied on the sponge. We
have assumed, therefore, in our calculations that the capillary pressure
for full infiltration of the sponge under slug flow, APy, is negligibly small.

As the applied pressure varies, the saturation changes little.
Knowing that small deviations from full saturation exert only a small
influence on relative permeability of a porous medium with a non-
wetting fluid (Dullien 1979; Anderson 1987) pp. 257-283 (Morel-Seytoux
1969), variations in the permeability K of the sponge with applied
pressure are mostly due to variations in Vy.

The equat: »n found by Barry (Barry and Aldis 1990) for
permeability of a polyurethane sponge from data of Parker (Parker, Mehta
et al. 1987) for unidirectional steady-state flow of liquid did not fit the

permeability data as well as Equation (5.2), and so was not used.

c. Experimental error in Vg and %

V¢ was measured using the width of the sponge rather than the
separation of lines drawn on the sponge because of the lower error in
measuring larger distances on a screen with finite pixel width. The

largest error in V¢ was at the infiltration front, and is estimated in

AV
Appendix (5.2-E) to be—v-f—f ~ 0.04.

The error in measuring ¥, the fractional length along the infiltrated
sponge, results mostly from the curvature of the lines drawn on the
sponge in highly distorted regions, located between x= 0.65 and = 0.85.

The largest error occurs when L, %, and infiltration times are relatively
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A
small. At t = 23 seconds and x= 0.68, a maximum error of 2X, 0.04 is

calculated, Appendix (5.2-F).

d. Effects of air evacuation and viscoelasticity

In the hydrostatic pressure experiment, Figure (5.1), the sponge
was fully evacuated and allowed to expand slowly under decreasing
hydrostatic pressures in an experiment that lasted over 50 minutes. The
results from this test were used to determine the V¢ measured on the
video recording and the required sponge dimensions for permeability
measurements. As infiltration of the sponge only lasted approximately
one minute, some error is introduced due to incomplete relaxation of the
sponge during infiltration compared to data in the curve of Figure 5.1.

Curves of V¢ vs. P and Vg vs. t for fixed P (Figures 5.1 and 5.2a,b)
were recorded with the same sponge used in infiltration attached to an
additional buffer sponge. Therefore, viscoelasticity effects are the same as
in infiltraticn, but air evacuation is somewhat slower. It is seen in Figure
5.2b that, after 20 seconds, further relaxation of the sponge to t = 40

minutes only induces an additional change in V¢ on the order of AV¢ =

AV
0.027. After 60 seconds, the change is even less with AV¢= 0.015, or —v—ff

= 0.045. The total error in volume fraction then becomes about 0.09.

e. Effect of evaporation at the infiltration front

Boiling of the ethylene glycol infiltrant may have occurred at the
infiltration front due to the vacuum, though it was not discernable at the
liquid-vacuum interface during the actual infiltration. As the liquid

evaporates at the infiltration front, heat absorbed and the temperature of
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the infiltrated composite will drop. This, in turn, raises the viscosity of
the liquid and lowers the infiltration rate.

Assume for simplicity that the polyurethane sponge is adiabatically
infiltrated, without expanding laterally, and that no temperature gradient
exists within the infiltrated portion of length L. The final average
temperature, Taye, within the composite can be estimated by balancing
the heat exchanged by the composite during infiltration, and the heat

absorbed by evaporation by the following equation:

L (Tave - To) (C:,Pl(l - V) + C;ps (Vf)) =JovAHy (1-Vpt (6.4)

where C:, and C; are the heat capacities of the liquid and the solid, Ty is
the initial temperature, and AHy is the heat of vaporization of the liquid.
Jev is the molar evaporation flux from the infiltration front.
Experimentally, the ethylene glycol infiltrates the sponge to a
distance of 9.8 cm in 67 seconds. At 26°C, the vapor pressure of ethylene
glycol is approximately 15 Pa (0.002 psi) (Weast, p. D-487). The maximum
flux of molecules, Jey, evaporating from the ethylene glycol liquid surface
can be estimated by using kinetic gas theory (Satterfield 1970). Assuming
the average radius of the pore diameter in the sponge to be 130 pm and
the tortuosity of the sponge matrix to be about 4, the Knudsen diffusion
coefficient, Dk is estimated to be 45.8 cm2-s-1. The binary gas diffusion
coefficient, Dp, of ethylene glycol diffusing in air is estimated to be
approximately 8.3 cm2- s-1, assuming the pressure of the air in the sponge

and vacuum reservoir to be at most 200 Pa.
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Using the infiltration front as the reference frame, the distance that
the vapor travels ahead of the liquid can be approximated by the quantity
\Dt. Experimentally, the average distance from the infiltration front to
the end of the sponge during t = 23 - 67 s was approximately 8.2 cm. By
using either diffusion coefficient, the calculated time for the ethylene
glycol vapor to reach the end of the sponge is calculated to be less than 9 s.
It is, therefore, safe to conclude that the concentration gradient of the
ethylene glycol in the uninfiltrated region of the sponge is approximately
constant.

Since neither type of diffusion coefficient strongly predominates,
the evaporation kinetics are within the transitional region. As an upper
bound estimation, if it is assumed that Knudsen diffusion is rate
controlling, that the exiting air moves at the same velocity as the
infiltration front, and that the concentration of the ethylene glycol vapor
at the end of the sponge zero, the molecular flux from the ethylene glycol

infiltration front can be estimated by the following equation:

-D
Jev="g7 8, (6.5)

With the average sponge distance ahead of the infiltration, x,
approximately equal to 8 cm, Jey is estimated to be 4 - 108 mol- cm-2 - s°1.
This molecular evaporation flux causes a temperature drop at the
infiltration front approximately -0.01 K, which does not influence the
infiltration kinetics noticeably. Experimentally, the value of y2 was

actually higher than the theoretical value.
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f. Influence of the fluid on mechanical properties of the sponge

Beavers (Beavers, Wittenberg et al. 1981) noticed that water-
submerged sponges would strain to a further degree under a given
applied stress than when in the dry state. This was attributed to liquid
lubrication effects that may have occurred within the internal structure of
the wet sponge during compression. Since all mechanical testing on the
sponge was done in the dry state (to prevent complications in the results
induced by flow of the liquid), some added experimental error in the
mechanical relaxation properties of the sponge may result from this

effect.

2 - Comparison of theory with experiment

Experimental data indicate that after about 17 s, plots of L2, x¢, and
xe2 versus t, Figures 5.5, 6.1a, and 6.1b become linear, in agreement with
theory and data which show that time dependence in the mechanical
behavior of the sponge, induced by viscoelasticity and air evacuation,
becomes negligible after at most 20 s.

The resulting y2 was measured to be 1.2 - 104 m?2- sec’! while theory
predicts 9.1-10-5 m2-sec’l. At the infiltration front, | was measured to be
0.481 while the theoretical value obtained was 0.401. Experimental error
in the measured value of y2 is 10% (Appendix (5.2-D)). The uncertainty
in the predicted value of y2 is roughly proportional to the uncertainty in
the permeability, K. The uncertainty in K that arises from experimental
error in the correlation between K and Vg is on the order of AK/K = 12%
(Appendix (5.2-B)). The experimental error in the measurement of Vg,

AV¢/V§ = 4% induces additional uncertainty in the predicted permeability
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on the order of 60%. The predicted rate of infiltration, measured by 2, is
therefore well within experimental error of the measured value.

By extrapolation of the curve of L2 versus t to L = 0, we can define t
= tgg = —13.7 s, the time at which at which infiltration should have begun
were all assumptions of the theory obeyed from the beginning of
infiltration (similar extrapolations of x|, and xg yield somewhat different
values of tgg, in part because of greater experimental error compared to L,
induced by uncertainty in the location of x = 0). Knowing tss,
experimental values of 1 and s, defined in Equations (3.14) and (3.15), can

then be calculated using the following equations:

x1 (%)

1) =—2 X 6.6)
2\] W2(t-tsg)
s g = —= ©6.7)

) 2 w2 t-tsg)

A plot of 1 (x=1) - s (x=0) is given in Figure (6.2). It is seen that after
about 20 s, 1 (x=1) - s (x=0) equals 0.5, in agreement with theory, Equation
(3.26). The computed values of 1 (x=1) and s (x=0) are 0.401 and -0.099,
respectively, while the experimental values are 0.480 and -0.020,
respectively.

Figure 6.3 shows the volume fraction along the infiltrated sample
at different times, as compared with theory. For t > 20 s, the curve is
invariant in time, in agreement with theory. For t < 20 s, the curve is
shifted somewhat to the left of the pseudo steady-state value, as expected
for incomplete relaxation of the sponge due to its visco-elastic behavior.

Comparison between predicted and measured pseudo steady-state curves
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of Vg versus y is very satisfactory. In particular, agreement of Vg at the
infiltration front with theory legitimizes the assumption made earlier
that APy = 0.

The predicted curve of local permeability, K, as a function of
during infiltration is shown in Figure 6.4a. K tends to drop off
precipitously at higher Vg, near the infiltration front. This region
therefore constitutes a “bottleneck” to infiltration, and dominates the
kinetics of the process.

Predicted curves of 1 and s as a function of ) are shown in Figures
6.4b and 6.4c. 1increases with increasing V¢. At the infiltration front, the
velocity of the sponge is zero because we have assumed APy = 0. Behind
the infiltration front, s increases to -0.099 at the mouth of the sponge.
Between % = 0 and 0.6, s remains roughly constant because V¢is roughly

constant, near the V¢ corresponding to the fully relaxed state (Figure 6.3).

B - INFILTRATION OF ALUMINA FIBER PREFORMS BY ALUMINUM

1 - Validation of Darcy's Law

The velocities of the infiltrating liquid aluminum in the preform
in regions where y2 were calculated were on the order of 1 cm's-1. For T¢
= 100°C and V¢ = 0.19, the corresponding rs¢ = 5um. The calculated
Reynolds number is then Re = 0.185, which is below the critical value of 1
for validity of Darcy's law. When compression occurs, the liquid velocity
drops considerably lower, due to the lower K in the compressed fiber
region. The Reynolds number in this case is significantly lower. In all

cases, therefore, Darcy's law is valid.
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2 - Incidence of preform compression

Stress-strain curves of the fiber preforms show that significant
permanent deformation of the preforms takes place for compressive
stresses exceeding about 2 MPa (Figure 5.14), this value being strongly
dependent upon the initial volume fraction V(f). Irreversible
deformation of the preforms is most likely caused by fiber and binder
breakage, a process that has been modeled by Clyne and Mason (Clyne and
Mason 1987). Since none of these likely preform deformation
mechanisms (elastic deformation, fiber breakage, and fiber
rearrangement) are time-dependent, data from mechanical tests should
remain applicable to preform deformation during infiltration, despite the
much higher strain rates experienced by the preforms during infiltration.
Because of this irreversible deformation, Saffil™ preforms infiltrated
along one direction with no wall friction or external cooling should be
shortened in the solidified composite if the applied pressure exceeds
about 2 MPa.

It is seen in Table 5.2 that for several samples, the applied pressure
APT exceeded 2 MPa significantly, yet no significant deformation of the
central portion of the preforms was found in the final infiltrated
composites. This may therefore be a consequence of friction along their
boundary with the Grafoil™ insert.

If we assume that the shear stress along the Grafoil™/composite
interface must exceed a critical shear stress 1, for the infiltrated preform
to slide along the Grafoil™ insert, Equation (3.48) must be satisfied for

preform compression to occur. This is tested in Figure 6.5, where the
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maximum value of dP/dx in region 1 of composites is plotted on the
vertical axis. These values were computed using the left-hand side of
Equation (3.48), using measured values of ¥s for infiltrated samples with a
superheated matrix. The samples are sorted into two columns, according
to whether preform compression occurred or not. It is seen that preform
compression consistently occurred when dP/dx exceeded 116 MPa-m-1,
showing that Eq. (3.48) provides a valid criterion for preform deformation
with 15 = 0.33 MPa.

Closer examination of plots of dP/dx, L2 and AP versus time
provide further confirmation of the validity of this criterion for preform
compression. Such plots are given in Figure 6.6 for a typical sample
(Sample K). It is seen that when dP/dx reaches the critical value of 116
MPa - m-1, the slope of L2 versus time decreases suddenly, suggesting that
preform compression has just taken place. The requirement for a critical
value of dP/dx to be exceeded for preform deformation to occur also

explains why preform delamination was observed in Samples H, K, and

M. Within region 1, the permeability is much lower than in the remelted
zone, region 3. Therefore, according to Darcy’s law, dP/dx was far greater
in region 1 than in region 3. When dP/dx exceeded the critical value in
region 1, therefore, that portion of the preform underwent compression
while region 3 was still held in place by the wall friction, since dP/dx was
locally lower than the critical value. If the preform tensile strength was
insufficient to pull the preform in region 3 when region 1 moved
forward, preform delamination could occur, as shown in Figures 5.7 and
5.9. This explanation was confirmed by comparing the location of the tear
with the predicted location of the remelting front, X, at the time when

dP/dx reached the critical value in region 1 of the composite (2.0 mm
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measured versus 2.5 mm calculated for Sample K, 4.5 mm measured
versus 5.1 mm calculated for Sample M).

The value 15 = 0.33 MPa is specific to the Grafoil™/composite
interface in these composite samples, and has no general applicability. It
is interesting to note that this value is far higher than the friction shear
stress between Grafoil™ inserts and uninfiltrated preforms in
compression experiments, which implies that metal solidification along
the Grafoil™ must have played a role in the observed value of s,

In all samples, the outer ring remained at its original position,

indicating that it underwent no defermation during infiltration.

Previous experiments with Saffil™ preforms having V(f) as low as 10%

and no Grafoil™ inserts have shown that no preform deformation is
observed (Mortensen and Wong 1990), even if APt far exceeds the
threshold pressure for preform plastic deformation. These data imply
that along the fused quartz tube, ts is much higher than along the
Grafoil™ insert. This may be due to the greater thermal mass of the
fused quartz tube, which induces matrix solidification in its vicinity, and
to preform “sticking” to the tube wall by chemical reaction of the
composite with the fused quartz tube.

When necessary conditions for preform deformation are fulfilled,
the fiber volume fraction at any location x along the composite is at most
equal to V?, corresponding to the applied pressure APT at the moment
when the infiltration front reached x. Plots of experimentally measured
values of Vg versus distance from the final infiltration front position
along the S5iC monofilament are compared with V‘; (full line) for Samples

I, ] and K in Figures 5.10, 5.11, and 5.12. It is seen that within
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experimerntal error, measured values of Vg fall close to V?. On this figure,
V; (dash-dot line) corresponding to full relaxation of the preforms is
plotted (neglecting preform motion due to relaxation). It is seen that
experimental values of V¢ far exceed V:. Two factors may be invoked to
explain the absence of full preform relaxation: (i) wall friction, and (ii)
preform stiffening due to solid metal formed at the infiltration front in
contact with the cold fibers.

After infiltration, friction at the die wall will leave a residual

compressive stress in the preform equal to:

2T
Ox) = T{? - X (6.8)

where x is distance from the preform entrance. Plots of V¢ versus
distance from the final infiltration front, corresponding to compression of
the preforms to APt followed by relaxation to 6(x), are also included as
dashed lines in Figs. 5.10 to 5.12. It is seen that friction along the
preform/Grafoil™ interface can account for the lack of preform
relaxation. This does not imply, however, that the solid metal within
region 1 of the composite does not also prevent preform relaxation:
observations of fiber volume fraction distributions in composites of
Saffil™ fiber preforms infiltrated with Al-4.5 wt pct Cu have shown that
solid metal in region 1 prevents relaxation of the preforms in that system
(Jarry, Dubus et al. 1990).

In conclusion, wall friction effects are very significant. They

influence significantly the occurrence of deformation, introducing a

secord necessary condition in addition to the need for pressure to be high,
and they also influence preform relaxation when compression occurs.

They provide one mechanism for the creation of preform tears, observed
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by several researchers in infiltrated metal-matrix composites (e.g., (Clyne
and Mason 1987; Masur, Mortensen et al. 1989)). From a practical
standpoint, this conclusion also implies that friction and matrix
solidification along the mold/preform interface can be used to prevent
preform compression in infiltration processing of metal-matrix

composites.

3 - Kinetics of infiltration

Two bounds were given for the kinetics of non-isothermal
adiabatic infiltration with no wall friction: cases (i) and (ii) of Section III -
B -1. Theoretical values of y2 are plotted in Figs. 6.7, 6.8, and 6.9 for
Saffil™ preforms infiltrated by aluminum with plausible values of
infiltration parameters for these two bounds. The program for
aluminum infiltration into Saffil™ preforms is listed in Appendix (3.2).
APy for a given V¢was estimated by Equation (3) in Reference (Mortensen
and Wong 1990) for the program. It is seen that these two bounds are
close, especially if it is kept in mind that permeabilities and infiltration
rates are seldom predicted with a precision better than within a factor of
about 2. The closeness of these bounds implies that the much simpler
lower bound (case (ii)) can be used to predict with adequate precision the
kinetics of infiltration of these composites when preform compression
occurs.

The lower limits of the bell shape of curves in Figures 6.7 and 6.8
are due to the fact that no infiltration occurs when APt is lower than the
capillary pressure APy. The upper limits are reached when AP produces

sufficient deformation of the preforms for V: + Vs (Vs is given in Eq.
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(3.38)) to completely block the liquid flow at the infiltration front
(corresponding to K = 0). This is qualitatively shown with the added
effect of wall friction in the sequence of Samples L, I, and J, which were
infiltrated at increasing APt with all other parameters constant (Figure
6.10). Sample L was infiltrated to a longer distance, even though the APt
values of the other two specimens were much higher. No y value was
obtained in sample J due to complete flow blockage after compression
occurred.

Experimental values of y are compared with theory in Table 6.1.

Two calculated values are given for y. The first is calculated assuming no

preform compression for V¢ = V‘f’ according to theory of reference

(Mortensen, Masur et al. 1989). The second value of v is calculated
assuming preform compression according to case (ii) of section III-B-1,
neglecting for simplicity the influence of superheat (i.e., assuming T, =
Tm)-

Experimental data are compared with theory assuming no preform
compression in Figure 6.11. It is seen that, for samples where no preform
compression occurred, experimental values of y equal or exceed the
theoretical values of y by twice that value. This result is analogous to
that found in previous studies of infiltration of non-deforming Saffil™
preforms by pure aluminum (Masur, Mortensen et al. 1989; Mortensen
and Wong 1990). In a review of permeability by Jackson (Jackson and
James 1986), it was noted that permeability is a strong function of fiber
orientation and structure. For a given fiber orientation, the scatter in
permeability can very easily reach a factor of two for a given fiber volume

fraction. When preform compression occurs, measured values of y
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equal, or are inferior to, predicted values assuming no preform
compression. Comparison of experimental values of y witn theory
taking preform compression into account, Figure 6.12, shows that
experimental values of y equal or exceed the theoretical values by a factor
of about 2. This trend is also seen in the experimental data and theory
when no preform compression occurs.

In conclusion, the two theoretical bounds derived above for the
rate of unidirectional adiabatic non-isothermal infiltration in Section IlI-
B-1 are close in the case of Saffil™ preforms infiltration by aluminum.
The lower bound, case (ii), therefore provides a reasonably simple
theoretical prediction of the rate of infiltration when preform
compression occurs. This lower bound agrees with experimental
infiltration rates within the same margin of error as does theory with

experiment for infiltration with no preform compression.
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Table 6.1 - Comparison of experimental

and theoretical infiltration rates.

Exp xs Xs v v v Com-
# measured | theory experiment theory, no full pressed
(m-s1/% compression | compression,
(102
(m- sV no relaxation,
{102 no remelting
(m- 512
(-10?)

A - - 1.5 0.94 - N
B - - 1.6 0.96 - N
C - - 0.61 0.74 0.30 Y
D - - 0.84 0.84 0.41 Y
E - - 0.62 .51 0 Y
F - - 1.1 0.44 - N
G - - 3.1 2.3 - N
H 0.40 0.54 0.98 0.79 0.79 Y
I 0.59 0.39 0.57 1.2 0.53 Y

J 0.54 0.27 0 1.8 0 Y
K 0.27 0.31 1.1 1.8 0.70 Y
L 0.22 0.52 0.73 0.87 - N
M 0.32 0.46 2.0 1.9 0.82 Y
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Figure (6.2) - Plot of 1(x=1) - s(x=0) vs. time. Steady state is reached
at approximately 20 s.
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Figure (6.3) - Experimental V¢distribution along infiltrated length

of sponge at various times as compared with theoretical
predictions.
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exceeds 116 MPa-m-1.
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Figure (6.6) - Pressure, dP/dx, and L2 as a function of time for
sample K. At dP/dx = 116 MPa- m-1, the slope of L2 vs t suddenly
decreases, indicating preform compression.

133



60 ‘0.5 1 L L I} 1
T - lOD’C ew,
' '. \ osaasse
P B AU VR Y B Y Case (1)
50 10" 7 s Y w—Case (ii)
3
3 4010° 4 -
-~
&
o 30105 -
=
20105 1 -
1.0 10°% A -
0.0 10° T
5010° 1010° 1510° 2010° 2510° 3010° 3510°

AP_ (Pa)

Figure (6.7) - Theoretical values of \|12 vs. AP1 at Tf = 100°C and V? =
0.188, assumning non-isothermal adiabatic infiltration and no wall
friction.

Case i): The solid metal surrounding the fibers leaves the
mechanical properties of the preform unaffected.

Case ii): The solid metal retains the fibers at V¢ corresponding to P
= APT- APy.
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Figure (6.8) - Theoretical values of y2 vs. APt at T¢ = 200°C and V‘f) =
0.188, assuming non-isothermal adiabatic infiltration and no wall
friction.

Case i): The solid metal surrounding the fibers leaves the
mechanical properties of the preform unaffected.

Case ii): The solid metal retains the fibers at V¢ corresponding to P
= APT- APy.
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Figure (6.9) - Theoretical values of y2 vs. T¢ for APt = 2.07 MPa and
V? =0.188, assuming non-isothermal adiabatic infiltration and no
wall friction.

Case i): The solid metal surrounding the fibers leaves the
mechanical properties of the preform unaffected.

Case ii): The solid metal retains the fibers in the compressed V¢
corresponding to P = APT- APy.
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Figure (6.11) - Comparison of experimental data with theory,
assuming no preform compression.
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Figure (6.12) - Comparison of experimental values of y with theory,
assuming compression with no relaxation, according to case (ii) of
Section III-B-1.
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VI -CON ION

e A theoretical model is developed to predict the infiltration
kinetics and volume fraction distributions during isothermal infiltration
of a deformable porous medium, which can be solved using the
Boltzmann transformation when a constant pressure differential drives
the liquid flow. It is found that the coupling of fluid flow with porous
medium deformation can cause nonuniform strain distributions in the
infiltrated matrix and can substantially influence the rate of liquid
infiltration.

e The model is verified by analyzing the hydrostatic infiltration of
a polyurethane sponge with ethylene glycol.

¢ The infiltration theory is modified to take into account the effect
of solidification for adiabatic infiltration by a pure metal. Two bounds
describing the infiltration rate are presented:

Case (i) - the solidified metal contributes no mechanical strength to
the fibers (upper bound).

Case (ii) - the preform is held in its compressed state by the
solidified metal (lower bound).

» Wall friction and matrix solidification along the composite/mold
wall in  Tace can exert a significant influence on preform compression
and relaxation and can be utilized to prevent preform compression
during infiltration.

¢ Experimental results on pure aluminum infiltration of Saffil™

preforms agree with theory and suggest that the infiltration kinetics are

reasonably well predicted by assuming that no fiber relaxation takes place,

i.e., case (ii) above.
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Suggestions for future work

¢ Additional verification of the adiabatic infiltration theory could be done
by infiltrating hydrostatically an open-celled polyurethane foam which is
held initially at a temperature below the melting point of the infiltrating
liquid. This would allow us to study the compression response of the
porous medium with simultaneous solidification. Liquids that freeze at
room temperature would be preferable, i.e. tertiary butyl alcohol (m.p.=
25°C) or succinonitrile (m.p. = 58°C).

* Modeling of the relaxation of fibers and the kinetics of infiltration with
superheated metal is an important topic that needs to be addressed, both
for cases (i) and (ii). In the remelted zone region, no solid metal is present
and the pressure gradient should be much lower as compared to region 1,
thus, the fibers in that remelted region should completely relax if
frictional effects are negligible.

e Modeling for variable pressure processes, such as squeeze casting,

should be addressed.
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Appendix (3.1) - Program for sponge infiltration

REM*** Compression of Sponge USING pure Ethylene Glycol*******
' Using the Runge-Kutta scheme for integration
' and converging with Newton-Raphson method for
' non-linear systems, utilizing
' the LU decomposition method to solve
‘the ERROR vector of the initial parameters.

DEFDBL A-x

DEFSTR Y

PRINT "This program is to calculate Psisq for a COMPRESSIBLE Sponge"
PRINT

PRINT I
Sample$="Sponge" ‘Saving in file called 'sponge'
Y$=CHRS$(9)

DIM V£(1000)

DIM VfP(1000)

DIM P(3)

DIM L(1000)

DIM LP(1000)

DIM 5(1000)

DIM SP(1000)

DIM K(1000)

DIM SigmaP(1000)

DIM Chi(1000)

DIM F(5)

DIM G(5)

DIM H(5)

DIM Root(3)

DIM A(3,3),Indx(3),VV(3), B(3)

DIM Mat(3,3),0rig(3)

OPEN Sample$ FOR OUTPUT AS #1

REM Setting initial constants:

38 % 3 % 3 o 3 o 3 0 3 3 3 2 3 o 0 3 3 o 0 3 O 3 3% b 3 o 3 6 3 3 3 3 % % o 3 % 3 3 o 3 3 3 3 3 3 3 O 2 o O 3 3 X ok b 2 6

'‘Experimental values:

Pressure=99532# ' This is the pressure of the infiltration of the
sponge

P=Pressure
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Psisq=.0001 'This is the experimental Psisq value

perm=.00000000014729# 'These two equations represent the
permeability of the sponge

top=-6.9654# 'from the equation:
K(@m”2)=perm*10”(top*Vf)

mu=.01563# 'Liquid Ethylene Glycol viscosity
13k 3 3 % 3 % % % 3 3 3 3 36 3 3 3 3 3 o 3 3 3 36 3 3 3 3 0 3 3 3 3 0 3 3 o 3 3 3 38 3 o o 3 3 3 O 3 36 6 O b 3 0 06 0 6
' These are the constants from graphing Pa vs Vf and curve-fitting with
polynomial
' where : sigma =
A+B*V{(n)+C*V{(n)*2+D*V{(n)*3+E*V{(n) *4+F*V{A5..

A=-23291640.367#
B=713493184.47#
C=-9255284913.299999#
D=65974869633#
E=-279182342130#
F=701653833430#
G=-970226735080+#

=569801837660#
I=0
¥ ok % 0 3% 3 6 3 3 3k % A 3 3% o 3 3 % 3 3 % M 3 % 3 o 3 3 3 % 3 3 % % 0 3 3 3k 0 3 3 3 ok 26 O 3 3 3 3 36 3 % % 0k o % % %
x=200 'X = number of iterations

1% 3 3 % % % o 3 3 3 % % 0 o 3 6 % 3 3 3 % 3 3 3 3 3 3 3 3 % o 0 3 2 3 3 3 3 b 6 3 3 3 OF 3 6 3 o 36 o 06 o k%

'Using Newton-Raphson to find Vf roots at Chi=0,1 and of uninfiltrated
preform

Vfcomp=.33 ' These are internal guesses

V£(0)=.14

Root(2)=Vfcomp

Root(1)=Vfcomp

Root(0)=V£(0)
Xacc=.00000001# ' Describes accuracy of root ......+-Xacc
Jmax=400 'Number of iterations

FOR R=2 TO 0 STEP -1

1% 3 3% o % 3 3 3 3 3 X % Ok o 36 38 o 2 3 2 2 3 O b 36 3 6 3 3 38 3k b 3 3 o 3 3 O 3 o 0 b 3 o b 2 0 3 6 0 3 0 O b 3 b O %k

IF R=2 THEN

P(R)=P 'This is the total pressure drop= Pcap+Pvisc
END IF

13k 3 3 % 3 3 o W % 3 2 % o 3 3 3 3 2 3 3 3 3 3k 3 3 3 b 0 0 3 o Sk O 3 O o 6 3 O 3 3 3 3 3 b 3 3 O b 3 3 o Ok o ok o %

IF R=1 THEN
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Pcap=0
Pvisc=(P-Pcap)
P(R)=Pvisc
END IF
¥ 3k 3 3 o 3 06 3 o 2 26 36 3 3 3 3% 3 3 36 36 3 3 3 o 3 3 b 3 36 b 3 3 ok 3 6 3 0 3% 3 3 3 3 36 3 26 2 3 3 3 b 0 3 3 ok b 3 o 0k b b o b
IF R=0 THEN ' changing Pressure to find root at chi=0
P(R)=0
END IF
¥ ok 3 3 36 3 3 3 30 0 3 o % 3 3 o o 3 3 3 2 36 6 3 3 % b b o 3 36 3 2 o b 3 3 3 06 3 o 3 3 3F 3 2 3 3 3 0 0 b 3 3 o o 06 3 o 0k b
FOR J=1 TO Jmax

stress =
A+B*Root(R)+C*Root(R)*2+D*Root(R)*3+E*Root(R) *4+F*Root(R)*5+G*
Root(R)*6+H*Root(R)*7+I*Root(R)*8-P(R)

SigmaP=
B+2*C*Root(R)+3*D*Root(R)*2+4*E*Root(R) *3+5*F*Root(R)*4+6*G*Ro
ot(R)*5+7*H*Root(R)*6+8*I*Root(R)"7

dx=stress/SigmaP
Root(R)=Root(R)-dx
IF ABS(dx)<Xacc THEN ‘testing whether accuracy is within limits

GOTO Place
END IF
NEXT]
Place:
Vfcomp=Root(2) ' Vfcomp=Vf the fibers are compressed to initially
Vffront= Roct(1) 'Vffront =Vf right behind infiltration front
V£(0)=Root(0) 'V{(0)=Vf at beginning of preform entrance
NEXT R
V3% b 3k 2 % 36 30 3 36 3 36 3 26 36 % 3% 0 % 3 36 2 2 36 2 5% 3 3 % b 3 2% 336 36 3 3 36 3 26 % 2 3 6 o 2 06 3 3 06 6 % ok %
L(x)=.4043101 'guesses only
L(0)=.393
S(0)=-.0988#
del=.000001# ' multiplier used to find new value of increment

PRINT "P=";Pressure
PRINT "Pcap="; Pcap
PRINT "Pvisc=";Pvisc
PRINT "Ptotal=";P

PRINT

PRINT "Vfcomp=";Vfcomp
PRINT "Vf (chi=0)="; V£(0)
PRINT "Vf (chi=1) ="; Vffront
PRINT "psisq=";Psisq
PRINT "L(x)="; L(x)

PRINT "del=";del

PRINT "x=";x
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196 % 3 % % 3 3 3 3 3 3 3 3 36 3 3 b 3 0 3 o 3 36 36 3 2 3 36 3 3 3 3 3 0 3 3 3 3 0 3 0 3 o Ok O NN

Integration:

DelL=L(0)*del 'These are the increments used to minimize
Delpsisq=Psisq*del ' the errors of the boundary conditions
dels=5(0)*del
Psum=0 ' summation used to integrate pressure drop
FOR counter%= 1 TO 4 'counter% used for converging method

constant=mu*Psisq

¥ o o 36 30 3 0 3 b 3 o 36 20 3 36 o 36 3 3 3 3 3 3 3 3 3 3 0 3 3 o b 3 0 0 3 36 3 3 3 o 35 6 0 3 0 0 36 O b o 3 o o 3 ok

'Setting new initial values

SigmaP(0)=
B+2*C*V{(0)+3*D*V£(0)"2+4*E*V(0) *3+5*F*V(0)*4+6*G*V{(0)"5+7*H*
V£(0)*6+8*1*V(0)"7

K(0)=perm*10”(top*V£(0))
VEP(0)= (L(0)-S(0))*(1-V£(0))*constant/K(0) /SigmaP(0)
LP(0)= -VfP(0)*(0/2+5S(0)-L(0)) /(1-V£(0))
SP(0)= VfP(0)/V£(0)*(0/2+5(0)-S5(0))/3
' These are taken w.r.t. chi

V3% 3 % 3 3 % % % 2 % 3 3 % 3 3 3 3 3% b o % 3 3 3 3 3 3 % 3 6 3 % 3 % 0 o 0 3 b 3 o 3 0 3 2 3 N 0 O 3 36

FOR n=0 TO x-2 STEP 2 'Integration begins at chi=0 and
'goes forward toward 1. Midpoints
are

'positions where n= odd number

36 % 3 % 3 % 3 0 2% W 3 % 3 0 % 3 % 3 o 3 3 % 0 O 3 3 3 3 % 2 3 % 2 % 3 3 3 o b 3 3% 3 3 2 k2 o 3 o O 36 0 % o

' We will find the midpoint values of Vf, L, S, etc.

Vi(n+1)=Vf(n)+VfP(n)/x

L(n+1)=L(n)+LP(n)/x

S(n+1)=S(n)+SP(n)/x

SigmaP(n+1)=
B+2*C*Vf(n+1)+3*D*Vf(n+1)*2+4*E*Vf(n+1)*3+5*F*Vf(n+1)*4+6*G*V{(
n+1)A5+7*H*V{(n+1)26+8**Vf(n+1)"7

K(n+1)=perm*10”(top*Vf(n+1))

Chi(n+1)=(n+1)/x

U ok 0 o o 0 2 3 o 2 O o % 3 36 Ok 2 o O % o 0 o 3 3 O 3 3 3 % b 3 3 0 3 3 3 3 3 3 o b 3 3 3 0 o b 6 6 3 o o o 2 b

' Now find the derivatives at the midpoint
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VIP(n+1)= (L(n+1)-S(n+1))*(1-
Vf(n+1))*constant/K(n+1) /SigmaP(n+1)

LP(n+1)= -VfP(n+1)*(Chi(n+1)/2+S(0)-L(n+1))/(1-Vf(n+1))

SP(n+1)= V{P(n+1)/Vf(n+1)*(Chi(n+1)/2+5(0)-S(n+1))/3

¥ 30 56 3 3 3% 3 36 3 b 3 3 3 36 3 3k 3 3 36 36 3 o8 3% 6 36 3 3 3 36 3 36 3 2 36 3 3 3 3 0 O O o 3 3 3 3 3 O 3k 06 0 o 2 3k R R

'Now find the new values of Vf, L, S, etc. at the new chi value using the
' midpoint derivatives

Vi(n+2)=Vf(n)+VIP(n+1)*2/x

L(n+2)=L(n)+LP(n+1)*2/x

S(n+2)=S(n)+SP(n+1)*2/x

SigmaP(n+2)=
B+2*C*V{(n+2)+3*D*Vf(n+2)*2+4*E*Vf(n+2)*3+5*F*V{(n+2) "4 +6*G*V{(
n+2)A5+7*H*Vf(n+2) 26 +8*I*V{(n+2)"7

K(n+2)=perm*10*(top*Vf(n+2))

Chi(n+2)=(n+2)/x

136 % 2% % % % % 3 3 3 3 3 3 3 36 36 3 % 3 3 3 3 3 3 3 3 3 3 o 3 3 3 3 3 3 o X o 3 3 o 3 3 3 % % 3 % X o b o

'New value of the derivative at the new value of chi
VIP(n+2)= (L(n+2)-S(n+2))*(1-

Vf(n+2))*constant/K(n+2) /SigmaP(n+2)
LP(n+2)= -VfP(n+2)*(Chi(n+2)/2+5(0)-L(n+2))/(1-V{(n+2))
SP(n+2)= VfP(n+2)/ Vf(r+2)*(Chi(n+2)/2+5(0)-S(n+2))/3

9% 2% 2 o 3 o % 3 % o % 3 0 o o o 3 3 3 2 3 O o 3 36 o 3 o 3 36 b 36 2 3 3 X 36 0 3 o 3 36 3 3 W 06 36 6 3 ok 3 O o o 3 % %

' Integrating the pressure drop over the length of infiltrated sponge

IF counter%=1 THEN
Psum=Psum+(L(n+1)-S(n+1))*constant*(1-Vf(n+1))/-K(n+1)*2/x
END IF

136 3% 3 3 % 3% 3 3k b 3 % 3 % 3 o % 26 2 3 % 3 % 3 3 % % % 3 o 3 3% 3 3 % ok % 2 % 3 3 % 3 % 2 b 2 b ok b 3 % 3 o 6 %

NEXT n

198 3% % 3 % 3 % 2% % 3 % 35 3 % % % 3 o 0 3 % 3 3 0 0 3 3 % 3 % 6 2 % o % o % 0 o 0 o b 2 3 O 3

'Taking new values for Newton-Raphson method

IF counter%=1 THEN
OrigL=L(0) 'These are the variables to be adjusted
OrigPsisq=Psisq
OrigS=5(0)

F(counter%)=Vf(x)-Vffront 'These equations want to be zeroed
G(counter%)=L(x)-5(0)-.5
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H(counter%)=5(x)

IF ABS(F(counter%))<.00001 THEN ‘Testing final conditions to end
IF ABS(G(counter%))<.00001 THEN
IF ABS(H(counter%))<.00001 THEN
GOTO finish
END IF
END IF
END IF

Orig(1)=-F(1)
Orig(2)=-G(1)
Orig(3)=-H(1)

L(0)=OrigL+DelL 'changing to (u+du) and keeping v,w
END IF
IF counter%=2 THEN
F(counter%)=V{(x)-Vffront 'F(u+du,v,w)
G(counter%)=L(x)-S(0)-.5 'G(u+du,v,w)
H(counter%)=5(x) 'H(u+ou,v,w)

Psisq=OrigPsisq+ Delpsisq ‘original u,w and changing to (v+dv)
L(0)=OrigL

S(0)=OrigS

END IF

IF counter%=3 THEN
F(counter%)=Vf(x)-Vffront 'F(u,v+dv,w)
G(counter%)=L(x)-S(0)-.5 'G(u,v+ov,w)
H(counter%)=5(x) 'H(u,v+ov,w)
Psisq=OrigPsisq ‘original u,v and changing (w+dw)
L(0)=OrigL
S(0)=OrigS+dels

END IF

IF counter%=4 THEN
F(counter%)=Vf(x)-Vffront 'F(u,v,w+aw)
G(counter%)=L(x)-S(0)-.5 '‘G(u,v,w+ow)
H(counter%)=S(x) 'H(u,v,w+ow)

3 3 3 3 % 3 6 0 0 % % 9 6 36 3k 3 % 3 3B 36 3 3 o 3 6 2 6 b 36 36 3 o 3 36 3 3 3 3 2 0 3 3 6 ok 3 3 o 3 3 3 3 3 % b %k
Mat(1,1)=(F(2)-F(1)) /DelL "(F(u+9du,v,w)-F(u,v,w))/du
Mat(1,2)=(F(3)-F(1)) /Delpsisq "(F(u,v+9v,w)-F(u,v,w))/ov
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Mat(1,3)=(F(4)-F(1))/dels "(F(u,v,w+ow)-F(u,v,w))/ow

Mat(2,1)=(G(2)-G(1))/DelL '(G(u+0u,v,w)-G(u,v,w))/du
Mat(2,2)=(G(3)-G(1))/ Delpsisq "(G{u,v+ov,w)-G(u,v,w))/adv
Mat(2,3)=(G(4)-G(1))/dels (C(u,v,w+ow)-G(u,v,w))/ow
Mat(3,1)=(H(2)-H(1)) /DelL '(H(u+0u,v,w)-H(u,v,w))/ou
Mat(3,2)=(H(3)-H(1)) /Delpsisq (H(u,v+dv,w)-H(u,v,w))/dv
Mat(3,3)=(H(4)-H(1))/dels '(H(u,v,w+ow)-H(u,v,w))/ow

136 3% 3 3 % % 3 3 3 3 3 3 3 3 3 26 3 36 3 3 3 28 3 3 36 36 3 3 3 36 3 0 3 T 3 o o o 3 36 3 b b 3 30 3 2 3 3 o 0 b O

' Determining new values of L(chi=0), psisq, S(chi=0)

Errmatdim=3 'This is tne dimension of the error matrix
Errmatdimmax=3 'Max dimension
Exchange=1 'Don't worry about- part of subprcgram

CALL Decomp (Mat(),Errmatdim,Errmatdimmax,Indx(},Exctange)
CALL Backsub (Mat(),Errmatdim,Errmatdimmax,Indx(),Orig())
PRINT

V3 3 3% A 3 % % 3 3% 3 3 3 3 % 3 3 o o 3 o 0 o 3 o 3 % 3 4 o o 36 o b 3 6 3 % 3 3 3 W 0 O 3 3 3 6 o kN

L(0)= OrigL+Orig(1)

Psisq=OrigPsisq + Orig(2) 'Adding errors on to original values
S(0)=OrigS+Orig(3)
END IF
¥ ok 3 3 o 3 % % b 3 3 % % 3 % 3 % 3 o % % 3 3 3 0 3 3 3 o 3 3 % 36 3 3 3 % 0 3 o % % 3 3 2 b 3 3 26 O % 06 o 3 3 6 % %
] NEXT counter% '‘Changing delta u,v,or w
136 % 3 % % % % % 3 % o 3 3 % 3 36 0 3 3 3 3 36 0 % 3 6 % 0 % 3 3 3 o 0 3 3 3 % o 3 3 3 3 36 3 3 b 3 3 o 26 3 3 o X o 0 b b % %%
PRINT Vf(x)

PRINT "Vdiff=";Vf(x)-Vffront

PRINT "L-s-.5=";L(x)-5(0)-.5

PRINT "S(x)=";5(x)

PRINT "Psisq=";Psisq

PRINT ‘Integrated Pressure="; Psum
PRINT "Original Pressure drop="; -Pvisc
PRINT "Pressure difference=";-Pvisc-Psum

PRINT
BEEP

GOTO Integration

finish:

PRINT " Final Vdiff=";Vf(x)-Vffront
PRINT " Final L-s-.5=";L(x)-5(0)-.5

PRINT "Final s(x)=";S(x)

PRINT "Final L(x)=";L(x)

PRINT "Final Psisq=";Psisq

PRINT ‘"Final Integrated Pressure="; Psum
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PRINT "Final Original Pressure drop="; -Pvisc
PRINT "Final Pressure difference=";-Pvisc-Psum
PRINT

PRINT "Saved in file called"; Sample$

FOR n=0 TO x STEP 2
PRINT #1, CSNG(n/x);Y$; CSNG(V{(n));Y$; CSNG(L(n));Y$;
CSNG(S(n));Y$; CSNG(K(n));Y$;CSNG(Psisq)
NEXT n
CLOSE #1
BEEP
END

¥ 3k 3% % 3 % % 3 % 3 M o 3 2 0 36 % 3 o 3 3 0 o 36 3 % 3 3 % 36 3 3 % 3 % 3 3 3 3 % 3 o 3 3% 3 3% 3 3 O 3 2 3 b 36 36 3 o 3 % o 2 O bk %
* %

SUB Decomp (A(3),n,NP,Indx(3),D) STATIC

Nmax=3
tiny=1E-20

FORI=1TOn
AAMax=0
FORJ=1TOn
IF ABS(A(L)))>AAMax THEN AAMax=ABS(A(])))
NEXT J
IF AAMax=0 THEN
PRINT "Singular matrix"
END IF
VV(D)=1#/AAMax
NEXT 1

FOR J=1TOn 'This is the loop over columns of Crout's method
FORI=1TO J-1
Sum=A(LJ)
FORK=1TOI-1
Sum=Sum-A(L,K)*A(K,])
NEXT K
A(L]J)=Sum
NEXT I
AAMax=0 'initialize for search for largest pivotal element
FORI=J TOn
Sum=A(L}))
FOR K=1TO J-1
Sum=Sum-A(I, K)*A(K,))
NEXT K
A(L))=Sum
dum=VV(I)*ABS(Sum)
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IF dum>=AAMax THEN
IMax=I
AAMax=dum
END IF
NEXT I

IF J<>IMax THEN
FOR K=1 TO n
dum=A(IMax,K)
A(IMax,K)=A(J,K)
A(J,K)=dum
NEXT K
D=-D
VV(IMax)=VV(])
END IF
Indx(J)=IMax
IF A(J,J)=0 THEN A(],])=tiny
IF J<> n THEN
dum=1#/A(],))
FORI=J+1TOn
A(LD=A())*dum
NEXT I
END IF
NEXT J

END SUB
END

'is it better than the best so far?

¥ ok 3 3 3 3 0 36 3 o 3 3 % 3 3 3 3 3 o O 3 36 3 3 3 3 3 3 3 3 0 3 8 3 3 3 3 o O 3% o 3 3 3 b 3 3 3% % 3 0 % o6 3 36 % kb %

SUB Backsub (A(3), n, NF, Indx(3), B(3)) STATIC

=0
FORI=1TOn
LL=Indx(I)
Sum=B(LL)
B(LL)=B()
IF II<>0 THEN
FOR J=II TO I-1
Sum=Sum-A(L,J)*B(])
NEXT ]
ELSEIF Sum<>0 THEN
II=I
END IF
B(I)=Sum
NEXT 1
FOR I=n TO 1 STEP -1
Sum=B(])
IF I< n THEN
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FOR J=I+1 TOn
Sum=Sum-A(l,])*B(]))
NEXT]
END IF
B(I)=Sum/A(,I)
NEXT I
END SUB
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Appendix (3.2) - Program for alumina fiber infiltration

REM*** Compression of Saffil preforms using pure Aluminum®***+***
' Using the Runge-Kutta scheme for integration
" and converging with Newton-Raphson method for
' non-linear systems, utilizing
' the LU decomposition method to solve
‘the error vector of the initial pararneters.
‘WE ARE FITTING THIS PROGRAM TO THE .1883 COMPRESSION
CURVE

V3 3% 3% 3% % o % 3 3 % 3 3 % 3 % 3 % 2 3 3 % % o % 5 % 3 % 3 2 3 O % 3 3 % O % 3 3 3 3 o 3 o 2 6 2 o8 0 Ak RN N

DEFDBL A-x,z
DEFSTR Y

Y$=CHR$(9)

DIM V£#(1000)

DIM Vs#(1000)

DIM Vsfi#(1000)

DIM VsfP#(1000)

DIM P(3)

DIM L#(1000)

DIM LP#(1000)

DIM S#(1000)

DIM SP#(1000)

DIM K#(1000)

DIM SigmaP#(1000)
DIM Chi(1000)

DIM F#(50)

DIM G#(50)

DIM Root#(3)

DIM A(3,3),Indx(3),VV(3), B(3)
DIM Mat#(3,3),Orig#(3)

1% % o o % 3 % 3 3 % 3 % % o % 3 % 3 % 3 % 3 % 3 0 o 0 o % o M o % X O % O O % o % 3 o 3 b 3 % 3 b o % ok o 3 2 b X o 36 % 3 %k

INPUT "Name of file=" ;n$
OPEN "clip:" FOR INPUT AS #2
OPEN n$ FOR OUTPUT AS #3
WHILE NOT EOF(2)

INPUT #2, InitVf#, Tf#, Pressure#

PRINT "This program is to calculate Psisq for a compressible preform"
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PRINT
PRINT

¥k ok o 3 3 33 3% 3 % 3 % 3 o o o % 3 36 3 3 % 3 o 3 3 3 3 % 3 % 3 % % 3 3 3 3 3 % % o o 3 o 3 o b % 3 % 3 % 3 % 2 o 3 %k %%

REM Finding the initial Vf that the fibers are compressed to:

P#=Pressure#*6893# 'converts Psi into pascals
Pcomp#=P#
PRINT Pcomp#

IF Pcomp#< 300*6893# THEN
PRINT Pcomp#
BEEP

Vfcompfit#=.18838+5.3766E-09*P#-3.966583D-15*P#/2+5.5275E-21*"P#"3-
5.1431848D-27*P#"4+1.865145D-33*P#"5
PRINT Vfcompfit#

ELSE
Vicompfit#=.136477+3.47692E-08*P#
PRINT Vfcompfit#

END IF

V3 36 ok 30 % 3 3 % 56 3% 3 3 o 3 % 3 3 3 3 % o 30 06 3 3 3 o o 3 b 3 3 % 3 3 3 % 3 3 3 3 o o 5 o o o O % o 5 o 3 3 3 % 3 3 %k

REM Setting initial constants:

1 3% 3 ok 3% % % 30 30 36 % 3 3 % 3 % % 3 % o 3 % 3 3 % % % 3k 3 3 % o b % 3 % b 3 3 b 3 3 3 3 3 3 0 X b o 3 0k b o 3 o 3 Ok %36k

' These are the physical values of the metal and preform
Psisq#=.0000001

T=.027219

U=55.4816

V=-1169.453

W=8646.153

alpha=.333
Tm#=660 'Initial metal temperature
mu=.0013 'Liquid aluminum viscosity
hydrorad=.00000272# 'hydraulic radius of Saffil
Fiberheat=4000000# ‘equals fiber density*fiber heat capacity
Alfusion=950000000# ' = Aluminum density * Heat fusion

LAsurftense=.914  'This is the liquid-atniosphere surface tension of
Al (J/m”2)
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® 6 3 26 26 2 3 o 6 3 3 %6 3 3 56 2 3 0 o 0 3 3 3 3 3 b 3 3 3k 26 36 2 3 0 6 3 36 3 36 3 3 o6 3 3k 3 % 3k 3 3 3% b 3 3 o 3 o o o % N %

' These are the constants from graphing Pa vs Vf and curvefitting
' where : sigma =Pcomp#*(1-(T+U(Vfcomp-Vf)/(Vfcomp-
Vf)Aalpha..)

¥ % 20 20 3 50 o0 2 3 6 36 36 3 6 3 0 36 0 30 0 3 2 0 38 3 6 3 3 0 33 0 3 3 3 3 3 3 3 3 3 3 3 36 3 3 b 3 6 3 3 b o o 3 3 o 3 o 3 3% o

] . -
=300 X = number of iterations
136 3 % 3 2 36 % 3 % 3 % 2 3 2 % 3k 0 0k 3 % 3k 0k 3 3 3 3 3 % 36 3 3 3 3 o W 3 % o 3 0 3 % o % 2 3 26 3 3 X 3 N 0 % o % o %% %

'Using Newton-Raphson to find Vf roots at Chi=0,1 and of uninfiltrated
preform

V{#(0)=V{icompfit#-.000001 ' These are internal guesses
Root#(2)=Vfcompfit#

Root#(1)=Vfcompfit#-.000001

Root#(0)=Vf{#(0)

Xacc=.00000001# ' Describes accuracy of root ......+-
Xace
Jmax=400 'Number of iterations

derv=-(Vfcompfit#-.1833)"-(alpha)

FORr=1TO 0 STEP -1

13 3 3 3 2 26 3 3 2 6 b 3 36 5 % 2 2 00 o 3 3 3 3 ok 3 0 3 3 % o % % 56 0 O 36 3 0 N o 3 3 0 3 o 3% b 3 0 3 Ok o o % 3 3 o o o % o 3 % 6 o ok
%% % % %%

IF r=1 THEN
' This calculates the capillary pressure# drop that the
' liquid experiences at the infiltration front
' This is taken from labbook 16, p.6 (Terry Wong's paper)
Sf=-977800! + 2.2217E+07*Vicompfit#
Pcap#=-Sf*LAsurftense*COS(106/180*3.141592)

IF Pcap#>Pcomp# THEN
Psisq#=0
Larry=0
PRINT "Under the capillary pressure-- no infiltration"
BEEP
BEEP

GOTO Frozen
END IF

Pvisc#=(P#-Pcap#)
P(r)=Pvisc#
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END IF
13 3% % % 3 % 3 o 3 3 o ok 2 3% 3 o 3 3 0 3 % 3 % 3 2 3 3 0 % 3 3 % 3 3 3 3 O o 3 o 3 3 3 3 3 3 3 3% b o 0k 3 % 3 o M o o 3 3 36 % o 3%
IF r=0 THEN ' changing pressure# to find root at chi=0
P(r)=0
END IF
03 3 3 2 2 3 2 b b 3 3 06 3 3k 3 3 36 3 3 3 3 3 2 3 % 3 3 3 o 3 3 3 3 3 3 0 3 3 b o 3 3 3 3 3 o o 3 3 3 36 3 3 % 2 0 o 06 o ok 3 3 3 % % %
FOR J=1 TO Jmax
stress = Pcomp#*(1-(T+U*((Vfcompfit#-Root#(r)) / (Vfcompfit#-
.1883)”.333)+ V*((Vfcompfit#-Root#(r)) / (Vfcompfit#-
.1883)".333)*2+W*((Vfcompfit#-Root#(r)) / (Vfcompfit#-.1883)".333)"3))-
P(r)
SigmaP#= -Pcomp#*(U*derv+2*V*((Vfcompfit#-
Root#(r)) /(Vfcompfit#-.1883)".333)*derv+3*W*((Vfcompfit#-
Root#(r)) / (Vicompfit#-.1883)*.333)*2*derv)
dx=stress/SigmaP#
Root#(r)=Root#(r)-dx
IF ABS(dx)<Xacc THEN ‘testing whether accuracy is within limits
GOTO Place
END IF
NEXT ]

Place:
Vfcomp#=Root#(2)  'Vfcomp#=Vf the fibers are compressed to
initially
Vffront#= Root#(1)  'Vffront# =Vf right behind infiltration front
Vf#(0)=Root#(0) 'VE#(0)=Vf at beginning of preform entrance
NEXT r

¥ 36 % 3 2 3 3 36 3 36 3 3 36 36 2 38 36 3 56 3 0 3 36 36 3 3 3 3 36 3 5 3 3 3 6 36 36 0 3% 36 3 36 3 38 36 3 % 3 3 36 36 3 36 3 b o

L#(x)=10 'guesses only
L#(0)=5
S#(0)=-1
del#=.001# 'muitiplier used to find new value of increment

Vsfront#= Fiberheat*Vffront#*(Tm#-Tf#)/Alfusion
Gsfront=Fiberheat*Vffront#*(Tm#-Tf#)/ Alfusion/(1-Vffront#)
Vsffront#=Vsfront#+Vffront#
IF Vsffront#>=3.141592/4 THEN
PRINT "Matrix completely frozen first"
Psisqi#=0
GOTO Frozen
END IF
solidfibrad#=hydrorad*SQR(Vsffront#/ Vffront#)
adj#=(hydrorad/solidfibrad#)/"2 '
d(stress)/dVf*adj=d(stress)/dVsf
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Vsf#(0)=Vf#(0)/adj#
Vsf#(x)=Vffront#/adj#

V3 o 3 36 3 36 58 0 36 3 o 3 OF o 3 3 % 3 36 36 3 3 3 3 3 3 3 % b 3 3 3 3 3 3 3 3 3 o 3 b 3 3 o % 2 3 36 3 2 3 o 2 3 0 3 06 2 O

'Calculating Larry's stuff at the infiltration front:

Kfront#=2*SQR(2) /9*solidfibrad#"2/ Vsffront#*(1-
SQR(4*Vsffront#/3.141592))"2.5
Larry=2*Pvisc#*Kfront#/mu/(1-V{front#)

136 36 % 3 % 3 3 T % o 3 36 % 3 36 3 % 3 % 2 0 3 % S 3 3 2 3 3 3 3 3 36 % 3 3 3 b 3 3 0 W b o b % 3 3 0 36 3 2 b o 3 26

LVsfratio#=(1-Vfcomp#) / (1-Vsffront#)

'This LVsfratio#= ratio needed to describe the boundary condition
‘L @ chi=1 right behind the infiltration front.

SVsfratio#=(Vfcomp#-Vffront#)/ Vffront#

'This ratio is needed to describe the S after the infiltration front passes
the fibers.
138 2 3 56 X 3 % % 2 3 3 % o % 3 o 3 3 6 36 % 0 6 2 0 3 3 o % 0 2 3 06 % 3 o 2 % 0 3 0 o % 3 % N OF 3 b 3 Ok 3 6 3 2 0 6 6 % bk
PRINT "Tf#="; Tf#
PRINT "Tmi#="; Tm#
PRINT "P=";Pressure#
PRINT "Pcap="; Pcap#
PRINT "Pvisc=";Pvisc#
PRINT "Ptotal=";P
PRINT
PRINT "Vfcomp#=";Vfcomp#
PRINT "Vf (chi=0)="; V{#(0)
PRINT "Vf (chi=1) ="; Vifront#
PRINT
PRINT "Vsf (chi=0) =";Vsf#(0)
PRINT "Vsf (chi=1) =";Vsf#(x)
PRINT
PRINT "r=";hydrorad
PRINT "Psisq#=";Psisq#
PRINT "L#(x)="; L#(x)
PRINT "del=";del#
PRINT "x=";x
PRINT "Gs @ front="; Gscomp
PRINT "Fiber radius="; solidfibrad#

126 36 3 % % % % o % o % o % o % o 3 3 % 3 o 3 2 % 2 % 3 O 3 3 0 3 o 0 3% 3 3 O 0 3 3 O 3 o ar % 2 o 0 0 %

Integration:

delL#=L#(0)*del#
delPsisq#=Psisq#*del#
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delS#=S#(0)*del#
Psum#=0

FOR counter%=1TO 4 'counter% used for converging method

constant#=mu*Psisq#

13 % 3 36 3 3% 3 3k 3 36 3 36 3 3 % o b 2 0 3 % 3 o 0 3 % 3 3 3 % 3 3 %k o b 3 3 3 3 3 3% 6 o o 3 Ok 3 ok 3 o 3 b ok %

'Setting new initial values

SigmaP#(0)= -Pcomp#*(U*derv+2*V*((Vfcomp#-V£(0)) / (Vfcomp#-
.1883)".333)*derv+3*W*((Vfcomp#-V£(0)) / (Vfcomp#-.1883)*.333)*2*derv)
' THE DERIVATIVE OF THE STRESS IS
' TAKEN WITH RESPECT TO Vf
IF Vsf#(0) >= 3.14159/4 THEN
PRINT "Matrix completely frozen initial"
Psisq#=0
GOTO Frozen
END IF

K#(0)=2*SQR(2) /9*solidfibrad#"2/ Vsf#(0)*(1-
SQR(4*Vsf#(0)/3.141592))"2.5
VsfP#(0)= (L#(0)-S#(0))*(1-
Vsfi#(0))*constant#/K#(0) /SigmaP#(0) / adj#
LP#(0)= -VsfP#(0)*(0/2+S#(0)-L#(0)) / (1-Vsf#(0))
SP#(0)= VsfP#(0)/ Vsf#(0)*(0/2+S#(0)-S#(0))
' These are taken w.r.t. chi

3% 3 % % % % 2 o o 2 % 0 0 3 3 0 3 3 3 3 3% 3 % 3 3 3 3 3 3 % o 3 ok 3 o 3 ok 3 Ok o 3 % 3 3 2 o % % 3 2 b o 36 o % 6

FOR n=0 TO x-2 STEP 2 ' Integration begins at chi=0 and
‘goes forward toward 1. Midpoints are
‘positions where n= odd number

136 5 3 % 2 % % 3 2 3 ok ok 5 5 o 3 3 % 3 % % 3 3 % 3 3 % 3 o % 3% 3 % 3% 3 3 3 3 3 3 3 O 3 % 3 o b o o b 6 b

' We will find the midpoint values of Vf, L, S, etc.

Vsf#(n+1)=Vsf#(n)+VsfP#(n) / x
IF Vsf#(n+1)>=3.141592/4 THEN
PRINT "Matrix completely frozen 1"
Psisq#=0
GOTO Frozen
END IF

Vi#(n+1)=Vsf#(n+1)*adj#
L#(n+1)=L#(n)+LP#(n)/x
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S#(n+1)=5#(n)+SP#(n) /x

SigmaP#(n+1) =-Pcomp#*(U*derv+2*V*((Vfcomp#-Vf(n+1))/(Vfcomp#-
.1883)7.333)*derv+3*W*((Vfcomp#-Vf(n+1)) /(Vfcomp#-
.1883)~.333)2*derv)

K#(n+1)=2*SQR(2)/9*solidfibrad#"2/Vsf#(n+1)*(1-
SQR(4*Vsf#(n+1)/3.141592))"2.5

Chi(n+1)=(n+1)/x

¥ ok 3 % 3 % 3 % % % 3 3 3 % 3 3 % 3 3 3 % 3 o 36 0 % o 6 3 3 % 3 % b 3 3 ok 5 o b 3 3 2 2 0 o 2 o 6 2 0 3 O 26 % o 6 bk

' Now find the derivatives at the midpoint

VsfP#(n+1)= (L#(n+1)-S#(n+1))*(1-
Vsf#(n+1))*constant#/K#(n+1)/SigmaP#(n+1) /adj#

LP#(n+1)= -VsfP#(n+1)*(Chi(n+1)/2+S#(0)-L#(n+1)) /(1-Vsf#(n+1))

SP#(n+1)= VsfP#(n+1)/Vsf#(n+1)*(Chi(n+1) /2+S#(0)-S#(n+1))

' These are taken w.r.t. chi

2 E 2 2R R R LR RS R 2R R R R R R R R R R R R R E R R EE R EEESEREEESE S S
'Now find the new values of Vf, L, S, etc. at the new chi value using the
' midpoint derivatives

Vsf#(n+2)=Vsf#(n)+VsfP#(n+1)*2/x
IF Vsf#(n+2)>=3.14159/4 THEN
PRINT "Matrix completely frozen 2"
Psisq#=0
GOTO Frozen
END IF

Vi#(n+2)=Vsf#(n+2)*adj#

L#(n+2)=L#(n)+LP#(n+1)*2/x

S#(n+2)=S#(n)+SP#(n+1)*2/x
SigmaP#(n+2)=-Pcomp#*(U*derv+2*V*((Vfcomp#-Vf(n+2))/(Vfcomp#-
.1883)".333)*derv+3*W*((Vfcomp#-V{(n+2)) / (Vicomp#-
.1883)".333)*2*derv)

K#(n+2)=2*SQR(2) /9*solidfibrad#/2 / Vsf#(n+2)*(1-
SQR(4*Vsf#(n+2)/3.141592))"2.5

Chi(n+2)=(n+2)/x

¥ 3k 3 b o O 3 3 2 o o 3 3 % 3 o % o X 3 % 3 % o % 3 2 0k 0 3 % 3k o 2 o O 3 b o % b R 3t o o 0 O N

'‘New value of the derivative at the new value of chi
VsfP#(n+2)= (L#(n+2)-S#(n+2))*(1-
Vsf#(n+2))*constant#/K#(n+2)/SigmaP#(n+2)/adj#
LP#(n+2)= -VsfP#(n+2)*(Chi(n+2) /2+S#(0)-L#(n+2)) /(1-Vsf#(n+2))
SP#(n+2)= VsfP#(n+2)/ Vsf#(n+2)*(Chi(n+2)/2+S#(0)-S#(n+2))

Vo 2 o 3 3 ok o 3 % b 3 % ok 3 3 % 3 % ok 3 Ok 3 0 b % 3 % o 3 % 3 3 3 o 3 % 3% 3 % 3 3 o ok o 3 ok 3 3k ok o 2 3 o %

IF counter%=1 THEN
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Psum#=Psum#+(L#(n+1)-S#(n+1))*constant#*(1-Vsf#(n+1))/-
K#(n+1)*2/x
END IF

V3 3 % 3 % % o % o % 3 o % 3 3 % 3 o 2 b 30 2 3k 3 b 36 38 2 % 3 3 % 3 3 3 3 o b Ok 3 b 3% 3 3 36 3 3 b o 6 o 3 o W %

NEXT n

ok 2% o o 2 3 ok 2 2 2 0 X 6 O 26 26 2 6 26 2 o 36 2 3 A 3 2 3 36 3 26 6 3 2 36 2 3 3 2 3 % X b o 3 2 6 2 kb NN

'Taking new values for Newton-Raphson method

IF counter%=1 THEN
OrigL#=L#(0) 'These are the variables to be adjusted
OrigPsisq#=Psisq#
OrigS#=S#(0)
‘These equations want to be zeroed

F#(counter %)=V f#(x)-Vf{front#
G#(counter%)=L#(x)-(.5+S#(0))*LVsfratio#
H#(counter%)=S#(x)+(.5+S#(0))*SVsfratio#

IF ABS(F#(counter%))<.0001 THEN  'Testing final conditions to
end
IF ABS(G#(counter%))<.0001 THEN
IF ABS(H#(counter%))<.0001 THEN
GOTO finish
END IF
END IF
END IF

Orig#(1)=-F#(1)
Orig#(2)=-G#(1)
Orig#(3)=-H#(1)

L#(0)=OrigL#+delL# 'changing to (u+du) and keeping v,w
END IF
IF counter%=2 THEN
F#(counter%)=Vf#(x)-Vifront# 'F#(u+0u,v,w)
Gi#(counter%)=L#(x)-(.5+S#(0))*LVsfratio# 'G#(u+du,v,w)
H#(counter%)=5#(x)+(.5+S#(0))*SVsfratio# 'H#(u+du,v,w)

Psisq#=OrigPsisq#+ delPsisq# ‘original u,w and changing to (v+dv)
L#(0)=OrigL#
S#(0)=OrigS#

END IF
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IF counter%=3 THEN

F#(counter%)=Vf#(x)-Vffront# 'F#(u,v+dv,w)
Git(counter%)=L#(x)-(.5+S#(0))*LVsfratio# 'G#(u,v+ov,w)
H#(counter%)=S#(x)+(.5+S#(0))*SVsfratio# 'H#(u,v+ov,w)
Psisq#=OrigPsisq# ‘original u,v and changing (w+dw)
L#(0)=OrigL#
S#(0)=OrigS#+delS#

END IF

IF counter%=4 THEN
F#(counter%)=Vt#(x)-Vffront# 'F#(u,v,w+ow)
Gi#t(counter%)=L#(x)-(.5+ S#(0))*LVsfratio# '‘G#(u,v,w+ow)
H#(counter%)=S#(x)+(.5+S#(0) )L Vzrati~# 'H#(u,v,w+ow)

¥ 3 % 8 3 3 3 2 o 3 % 2 % 2 3 2 o 2 36 b o % 2 % % 3 3 % % 3 X0 % 0 3 3 3 3 3 % o 0 30 0 3 06 2 b o Xk %

Mat#(1,1)=(F#(2)-F#(1)) /delL# '(F#(u+0u,v,w)-F#(u,v,w))/du
Mat#(1,2)=(F#(3)-F#(1)) / delPsisq# '(F#(u,v+ov,w)-F#(u,v,w))/ov
Mat#(1,3)=(F#(4)-F#(1)) /delS# "(F#(u,v,w+ow)-F#(u,v,w))/ow
Mat#(2,1)=(G#(2)-G#(1)) /delL# (G#(u+0u,v,w)-G#(u,v,w))/du
Mat#(2,2)=(G#(3)-G#(1)) / delPsisq# (G#(u,v+av,w)-G#(u,v,w)) /v
Mat#(2,3)=(G#(4)-G#(1)) / delS# (G#(u,v,w+ow)-G#(u,v,w)) /ow
Mat#(3,1)=(H#(2)-H#(1)) /delL# "(H#(u+ou,v,w)-H#(u,v,w))/ou
Mat#(3,2)=(H#(3)-H#(1)) / delPsisq# '"(H#(u,v+ov,w)-H#(u,v,w))/ov
Mat#(3,3)=(H#(4)-H#(1)) / delS# (H#(u,v,w+ow)-H#(u,v,w))/ow

¥ 36 % 2 o o % 36 2 2 0 3 6 3 Ok 3 3 o 3 3 0 26 3 3 3 3 2 A3 A 3 6 M b 3 % 3 b b 8 % o % 3 % b O b 6 XN

" Determining new values of L#(chi=0), Psisq#, S(chi=0)

Errmatdim=3 'This is the dimension of the error matrix
Errmatdimmax=3 'Max dimension
Exchange=1

CALL Decomp (Mat#(),Errmatdim,Errmatdimmax,Indx(),Exchange)

CALL Backsub (Mat#(),Errmatdim,Errmatdimmax,Indx(),Orig#())
PRINT

¥ 36 3 3 3 3 % 3 3 3 o 3% 3 3 X % % % b % % 3k 2 3 3 3 b 3 2 3 b b o o 3 3 3 3 3 3 ok 3 3 3 3 o 3 3 3 3 3% 3 % % % k% % % %

‘Multiplying by increment so the adjustment

'doesn't cause the program to overshoot

L#(0)= OrigL#+Orig#(1)*.5

Psisq#=0OrigPsisq#+Orig#(2)*.5

S#(0)=OrigS#+Orig#(3)*.5

IF Psisq#<0 THEN
Psisq#=OrigPsisq#
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END IF

2222 R R A RASEEEEEEEESEDEEESS S

END IF
NEXT counter%

PRINT "Vdiff=";Vf#(x)-Vifront#

PRINT "L-s-.5=";L#(x)-(.5+S#(0))*LVsfratio#
PRINT "S#(x)=";S#(x)+(.5+5#(0))*SVsfratio#
PRINT "Psisq#=";Psisq#

PRINT ‘“Integrated pressure#="; Psum#
PRINT "Original pressure# drop="; -Pvisc#
PRINT "pressure# difference=";-Pvisc#-Psum#
PRINT Vsf#(x)

PRINT
BEEP
GOTO Integration

finish:

PRINT " Final Vdiff=";Vf#(x)-Vffront#

PRINT " Final L-s-.5=";L#(x)-(.5+S#(0))*LVsfratio#
PRINT "Final S#(x)=";S#(x)+(.5+5#(0))*SVsfratio#
PRINT "Final Psisq#=";Psisq#

PRINT “"Final Integrated pressure#="; Psum
PRINT "Final Original pressure# drop="; -Pvisc#
PRINT "Final pressure# difference=";-Pvisc#-Psum#
Pdiff=-Pvisc#-Psum#

PRINT L#(x), S#(0), Pcap

V3 o 3 o 0 3 3 3 26 3 o % 2 0k 3 3 3 % O 3 o 3 3k 3 36 o 3 % 3 3 3 b 3 0k 3 3% b 3k 3 3 3k 3 3k 36 o ok 3k 3 3k 3 3 o 3 36 36 3 3 3 o 3% b 3 o 4 %

Frozen:
PRINT
#3,CSNG(InitVf#); Y$;CSNG(T#); Y$;CSNG(Tm#) Y$;CSNG(P); Y$;CSNG(P
sisq#);Y$;CSNG(Larry);Y$;,CSNG(Larryrelax); Y$;CSNG(Vsf#(x))

BEEP

BEEP

BEEP

WEND

CLOSE #2

CLOSE #3

END

3k 2 o 36 2 2 08 Ok o 3 o O % % 08 o 3 3 Ok o O 3 6 % 2 3 36 3 0 36 3 26 3 0 3 3 ko o o 3 b 3 0 3 6 o 3 X 2 ok 0 O 6 4

SUB Decomp (A(3),n,NP,Indx(3),D) STATIC
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Nmax=3
tiny=1E-20

D=1
FORI=1 TOn
AAMax=0
FORJ=1TOn
IF ABS(A(L]))>AAMax THEN AAMax=ABS(A(L)))
NEXT J
IF AAMax=0 THEN
PRINT "Singular matrix"
END IF
Vv(D=1!/AAMax
NEXT I

FORJ=1TOn 'This is the loop over columns of
Crout's method
FOR I=1 TO J-1
Sum=A(L,))
FOR K=1TO I-1
Sum=Sum-A(I,K)*A(K,])
NEXT K
A(L])=Sum
NEXT I
AAMax=0 'initialize for search for largest pivotal
element
FORI=J TOn
Sum=A(l,))
FOR K=1TO J-1
Sum=Sum-A(I,K)*A(K,])
NEXT K
A(L])=Sum
dum=VV(I)*ABS(Sum)
IF dum>=AAMax THEN 'is it better than the best so far?
IMax=I
AAMax=dum
END IF
NEXT 1

IF J<>IMax THEN
FORK=1TOn
dum=A(IMax,K)
A(IMax,K)=A(J,K)
A(J, K)=dum
NEXT K
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D=-D
VV(IMax)=VV(])

END IF

Indx(J)=IMax

IF A(IJ)=0 THEN A(L])=ﬁny

IF J<> n THEN
dum=1!/A(,))
FORI=J+1 TOn

A(LD=A())*dum

NEXT I

END IF

NEXT ]

END SUB

SUB Backsub(A(3), n, NP, Indx(3), B(3)) STATIC
=0
FORI=1TOn
LL=Indx(I)
Sum=B(LL)
B(LL)=B(I)
IF II<>0 THEN
FOR J=II TO I-1
Sum=Sum-A(L]J)*B(])
NEXT]
ELSEIF Sum<>0 THEN
II=I
END IF
B(I)=Sum
NEXT1

FOR I=n TO 1 STEP -1
Sum=B(I)
IF I< n THEN
FOR J=I+1 TOn
Sum=Sum-A(L])*B(J)
NEXT ]
END IF
B(I)=Sum/A(LJ)
NEXT I

END SUB
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Appendix (4.1) - Coring apparatus and coring procedure.

The coring apparatus consisted of a modified hand-cranked (ensile
testing unit with a 12" (30.5 cm) caliper mounted to its side to measure
shaft displacements to 0.001" (2.5 - 102 mm). A 0.625" (15.9 mm) diameter
pivot head with a 0.375" (9.5 mm) hole drilled through its side was on the
end of the shaft. The cutter or pusher could easily be attached to this
pivoting head, either by an O-ring Cajon fitting or by a 0.375" (9.5 mm)
pin.

The preforms and fused quartz tube were centered and braced using
the cap guide, outside bracing tube, the small, inner, and outer plungers,
and the aluminum base. The cap guide was primarily used to center the
cutter on the top of the preform and prevent the preforms and fused
quartz tube from coming out during the extraction of the inner preform
cores. The outside bracing tube and outer plunger were used to brace and
center the fused quartz tube. The small plunger was used to push the cut
inner cores into the cutter further after cutting so they could be extracted
without delamination.

The detailed procedure to cut the preforms was as follows:

1) Each fused quartz tube was premeasured to fit within the coring
apparatus, both inside the outer bracing tube and the outer plunger. The
tubes were cut to 9" (22.9 cm) and each end of the tube was sanded with
180 grit paper on a lathe to make the ends parallel, and afterwards flashed

with an acetylene flame to remove any cracks on the ends.
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2) The tube was placed over the inner and outer plungers, which
were then adjusted so that distance between the plunger tops and the
fused quartz tube top matched the total length of the preforms to be cut.

3) The pusher was attached to the pivot and lowered until it
contacted the inside plunger and could not be lowered any more under
gentle pressure. This distance was recorded and was used to calculate the
cutting distance and pushing distances. The pusher and fused quartz tube
were then removed.

4) After the inside plunger was lowered while keeping the outer
plunger stationary, the small plunger was inserted inside with the narrow
beveled end face up. The inside plunger was then re-adjusted until the
small plunger top was exactly flush with the outer plunger top.

5) The fused quartz tube was again placed over the outer plunger
until it rested on the aluminum base surface. The preforms were then
inserted carefully inside the fused quartz tube. The preform top surface
should be flush with the top of the fused quartz tube edge. The outer
bracing tube, along with the cap guide, were then placed over the fused
quartz tube and carefully screwed onto the outside of the aluminum base,
totally encapsulating and immobilizing the fused quartz tube and fiber
preforms (see Figure A-4.1-a)

6) The cutter was then attached to the pivot. The cutter was slowly
lowered downward through the cap guide hole, cutting through the fiber
preform until the appropriate distance was measured on the calipers,
upon which time the small plunger was pushed slightly upward, forcing
the cut preform cores slightly inside the cutter, as shown in Figure A-4.1-
b. The cutter was then extracted from the cap guide. The small and inner

plungers were then removed from the apparatus through the bottom of
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the outer plunger, after which the cap guide was then unscrewed from
the outside bracing tube.

7) A Grafoil™ insert was prerolled around a small diameter dowel
and stabilized with a small paperclip attached to the edge of the rolled
Grafoil™ from the inside. The paper alsc acted as a guide to insert the
Grafoil roll up the hole of the outer plunger. The inner plunger was then
inserted in the bottom to push the coiled Grafoil the remaining distance.
Upon reaching the top of the outer plunger, the bottom of the Grafoil
expands to fill the cavity left by the cutter. The paperclip is removed at
this point (Figure A-4.1-c).

8) The cutter knife edge was inserted within the Grafoil roll and
supported with an aluminum brace. The pusher was then placed in the
cutter base mouth until the end of the pusher contacted the surface of the
inner preform cores. The pivot was then brought down, causing the
pusher to eject the cut preform cores from the inside of the cutter, as
shown in Figure A-4.1-d. The cutter and brace were then removed and
the pusher was continued downward to the correct distance where the
inside cores match the distances of the outside cores in the fused quartz

tube. The Grafoil™ sheath was then trimmed off, using a new razor

blade.

Appendix (4.2) - Monofilament insertion procedure

The procedure for drilling the SiC fiber into preforms is as follows:
1) The cored preforms are slid into the fused quartz tube far
enough to allow the aluminum cylinder to protrude from the end of the

fused quartz tube slightly.
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2) An elastic band, wrapped loosely around the 100 p€ tube end and
5 u€ mid-section, is used to prevent the tubes from collapsing. The bare
end of the SiC fiber is threaded through the 100 u€ and 5 u€ glass pipettes
in that order and the extended end of the 5 pf tube is inserted in the
centered hole of the aluminum cylinder. A pin vice, mounted in a drill
press chuck, is lowered around the nickel-coated end of the SiC fiber until
the pin vice mouth contacts the upper end of the 100 pl pipette upon
which time it is carefully tightened on the fiber circumference. (See
Figure A-4.2)

3) The drill press is then turned on and the fiber is slowly drilled
through the preforms. The 100 uf pipette collapses as the pin vice mouth
pushes against the top of the tube during the drilling process. Once total
penetration is achieved, the rotation is stopped and the mouth of the
pinvice is opened, releasing the SiC fiber. The bare fiber end is then
pulled from the opposite end until the nickel coating contacts the surface

of the top preform.

Appendix (4.3) - Alternative method for measuring preform permeability

The second method to test permeability involved taking the cut
preform cylinder, greasing its sides with silicone grease, and then placing
the cylinder in a fused quartz tube that was polished on its ends to take off
any sharp edges. The mouth of a typical long circus balloon was then
partially rolled inside out and stretched over the end of the fused quartz
tube. By blowing in the opposite end of the tube and pulling gently on
the balloon end, the preform would slip straight inside the balloon,

leaving a tight rubber seal around its periphery. The sealed end of the
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balloon was then cut off. The preform was then reinserted inside the
fused quartz tube and both ends of the balloon are stretched over the ends
of the fused quartz tube, suspending the preform in the middle of the
tube. This procedure not only effectively sealed the sides of the preform
but also exposed the faces of the preform fully to the flow of liquid.
Electrical tape was wrapped over one end of the balloon to prevent the
balloon from slipping. The other end of the tube was inserted into a
double-ended O-ring fitting and tightened. Another long fused quartz
tube, used for the standpipe, was inserted into the opposite side of the
fitting. This tube was marked out along its length at various intervals in
order to have distance markers during the experiment. The procedure for

measuring permeability was then the same as described previously.
Appendix (5.1) - Viscosity of ethylene glycol

The viscosity of ethylene glycol can be expressed as a function of

temperature using an Arrhenius type equation:

*

AG
TI'=Aexp(RT) (A-5.1)

where n = viscosity (poise), A = constant (poise), T = temperature (K), R =
gas constant (cal/K/mol), and AG*= activation energy of viscosity
(cal/mol). Ethylere glycol was chosen because its viscosity is high enough
to allow the infiltration to be in the Darcy's Law regime and yet low
enough to preform meaningful permeability experiments. Data for the

viscosity of ethylene glycol was found in (Weast, p. F-39). By plotting
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logarithm of viscosity versus 1/T, the activation energy of viscosity can be
calculated from the slope of the line. The activation energy of viscosity
for ethylene glycol was calcuiated to be 6751 cal/mole with a constant of
1.81-104 centipoise. The temperature of the liquid at the time of
infiltration of the sponge was 25.75°C, giving a viscosity of 15.6 cp. During
the permeability experiments, the temperature was approximately 23.5°C
with the viscosity being approximately 17.0 cp.

Although the water content was not measured, the ethylene glycol
used was obtained prepackaged from a source that was designated <6.1%
H>O by the manufacturer and sealed with a tight metal punch and metal
cap. Approximately 2 ml water-based colorant per 2 gallons ethylene
glycol, amounting to <0.03%, was added to add contrast to the infiltration
front. Therefore, the liquid viscosity of the ethylene glycol is assumed not
to have changed significantly from theoretical values of pure liquid and

should be well within experimental error.

A lix (5.2) - Estimati ¢ : tal z ] !

A. Hydrostatic pressure V¢ measurements
As the mass and density of the sponge is fixed, the V¢ will vary

according to the following equation:

& Awq1 Aw)
Lt w1 + w2

AV
V¢

where w1 and wy are both widths of the sponge, measured by a caliper,

and L is the total length of the sponge, measured by an accurate ruler. At
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high volume fractions of solid, the sponge was quite rigid; therefore,
accurate measurements could be obtained. With AL = 0.25 mm, L = 159.5

mm at 14.55 psi (10300 Pa), Awq and Aw» = 0.015" (0.38 mm), wq and wa =

AV¢
1.23" (31.24 mm) and 1.29" (32.77 mm), respechvely, = 0.026 error.

B. Permeability

Permeability K is determined from Equation (4.1) to be:

Kt = %2—‘;1 (%) @.1)

The equation for the logarithmic error is:

AK Ap AL Aln(u) L DA

Vv~ =" +5 +
Ko b e

Factors that vary most in this equation are p, L, Ag, and the
logarithmic portion of the equation. p contributes the greatest error due
to the temperature change. The temperature of the liquid in the
permeability colume was taken within 0.1°C immediately after the
permeability test. The temperature of the sponge and box was unknown,
although the difference between room temperature and the liquid was
never more than 1.2°C. As a conservative estimate, AT will be taken as *
2°C, reflecting a change in ethylene glycol viscosity of * 1.5 cp from the
original average of 17.04 cp at T= 23.5°C.

The largest error will occur in the boxes that have the smallest
sponge dimensions. The widths of the smallest box were 1.373" (34.9

mm) and 1.317" (33.5 mm), with an error of + 0.01" (x 0.254 mm) on each
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AAg
side, corresponding to an error in the cross-sectional area, As, of — =

S

0.015.

The error associated with the liquid heights were AH = + 1 mm, which
makes the term negligible. The height was determined to be AL = = 1 mm
at an original length of 69.9 mm in the smallest permeability box, giving

AL
an error of 7~ = 0.014. Overall error in permeability K, therefore, is

calculated to be:

AK Ay AL AA
?=—E+—L—+ —2 =0.12
H As

C. Infiltration length L

L was determined by measuring the distance of the infiltrating
liquid from the entrance of the sponge to the liquid front as it straddled
the line drawn across the sponge face. The major part of the error,
therefore, will be in measuring the distance between the two points when
the infiltration distance is the smallest, i.e. 23 seconds. Difficulty arises in
measuring distances on the curved video monitor with a finite pixel
width. As a conservative estimate, AL = 0.5 mm from measuring from
the screen, corresponding to 0.47 mm in actual length. At 23 seconds, the

actual infiltration distance in the sponge was approximately 66.8 mm,

. AL
corresponding to an error of 1 =07 %.

D. Value of y?
Although L was between two fixed poiants on the screen, error

occurs in determining the time necessary for the liquid to reach L. The
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infiltration front appeared to be somewhat curved and difficulty arose as
the lighting of the distorted sponge interfered in determining the exact
position of the non-planar front. It is estimated that the error involved

L2
in determining the time is approximately At = 2 seconds. As y? = T

2
Aw) AL At
) L "t

For t = 23 seconds, the error will be approximately 10%.

E. Volume fraction V¢

A conservative error in measuring the distance on the screen is *
0.5 mm. This corresponds to * 0.45 mm (0.018") in actual length when
measuring vertically. The smallest distance measured on the sponge is at
the infiltration front, which in actual distance was measured as 33.18 mm
(1.306"). The conversion of sponge width, w (inches), is made by the

following equation:
V¢ = 2.5589 - 3.194*w + 1.414*w2-0.2134*w3

AV
Inserting the error in the equation, V—ff will be approximately 4%.

F. x

At 23 seconds and g = 0.67,

X = 45.2 mm Ax = 1.5 mm
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where x is the distance along the infiltration portion of the sponge. At
this point the curvature of the lines drawn on the sponge tend to be the

greatest. Therefore:

A. Volume fraction measurements

The volume fractions of the preforms used in experimentation
were calculated from their mass in the as-recieved state. Due to moisture
adsorbed on the surface of the fibers, the error in mass of a given preform
at room temperature varied by approximately £0.005 grams from day to
day, depending upon the humidity. However, if all the moisture was
desorbed, the weight of the preform may vary by as muci: as £0.050 gm.
The actual fiber preform Vs is obtained when all moisture is desorbed.

The V¢ of the Saffil™ fiber preform will vary by the following equation:

where D is the diameter , L is the length of the preform, measured by a

caliper, and m is the mass of the fiber preform.
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L = 0.443" (11.3 mm) AL = 0.005" (0.13 mm)
D = 0.669" (17 mm) AD = 0.008" (0.25 mm)
m=156g Am =0.05g

_é.Yf_ = 0.07
Vf = U.U/ error

The error calculated above assumed that the water adsorbed on the
fiber surface is the major contribution to the change in mass. In
comparing the V¢of preform to preform, as received from the
manufacturer, the error in measuring the preform weight, due to scale
inaccuracy and humidity change, is estimated to be approximately Am =~

AV
0.008g , resulting in an error in V¢ of V—ff =(0.04.

B. Permeability

The equation for the logarithmic error is:

H
AK Ap AL Aln(H_o)+AAs

—_—

= +
K- p'L 1n(ﬁ”:) As

Factors that vary most in this equation are y, L, and As. Asa
conservative estimaie, AT will be taken as + 0.5°C, reflecting a change in
water viscosity of $0.012 cp from the original average of 0.98 cp at T=
21.0°C.

Other errors include:

D =0.65" (16.5 mm) AD = 0.015" (0.4 mm)
L = 0.48" (122 mm) AL = 0.010" (0.25 mm)
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Therefore:

AK Mp AL MAs o

C. V¢ determination from dissolution

The volume of each slice of composite that was dissolved was
determined by Equation (4.2). The distances of the slice were all measured
accurately with a micrometer, therefore, minimal error was accrued due
to the actual measuring device. The largest error occurred in measuring
the width of the slice, because of the unparallel sides caused by the pliant
diamond saw blade, and in measuring the weight of the slice itself. The
smallest distances are used, therefore, in calculating V¢ error by inserting

the values in Equation (4.2).

c= 006" (1.5mm) Ac =0.003" (0.08 mm)
m=001g Am =0.001 g

AV¢

V_f =0.07

D. Vf distance errors

In calculating y values for compressed samples, it was uncertain

whether the SiC moved. What is known for certain is L¢ at the end of the
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infiltration. The positions of the various measured experimental values
of V¢, shown in Figs. 5.9, 5.10, and 5.11, were therefore not necessarily
resting at that point when the infiltration front came, but will be at most
within the distance that the SiC fiber may have shifted during
compression, relative to that point. This-distance is Axs = * (L¢-L(t)) - Ae,

where Ae is the strain measured for the pressure when the infiltration

front is at L(t) on a similar V(f) in the dry compression tests. Other error

that occurred was due to the width of the slice- or Axy, = + (slice width)/2.

The total error in distance for dissolving, therefore, is Axs + Axy.
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Figure (A-4.1) - Procedure for coring Saffil™ fibers (see Appendix
(4.1) for details):

(a) Sample encapsulated in apparatus

(b) Fibers cut and pushed into knife-edge cutter

(c) Carbon sheath inserted

(d) Inner cores of preform replaced inside Grafoil™ sheath
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Figure (A-4.2) - Schematic illustrating the method of drilling the
SiC monofilament into the preform core.
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