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ANALYTICAL AND NUMERICAL STUDY OF THE UNSTABLE LIMIT CYCLES OF
WALKING DROPLETS

BENJAMIN KURZBAN

Abstract. Recent studies have shown that a vibrating fluid bath can support a bouncing droplet, generating a
pilot wave which propels the droplet into horizontal motion. Walking droplets have been demonstrated not only
to follow linear trajectories, but to exhibit a range of rich dynamical behavior, including tunneling, diffraction,
and orbital quantization. Current theoretical models for the walking droplet system can be difficult to analyze.
Here, by reducing the dimension of the bath, a simpler model has been derived and analyzed. We summarize this
derivation, explore the stability of the system’s dynamical states, and provide evidence of a previously unreported
homoclinic bifurcation.

1. Introduction

The dynamics of droplets bouncing and self-propelling on the surface of a vertically vibrating fluid bath have
been studied throughout the past decade. In such a system, as the droplet bounces on the bath it generates
standing Faraday waves which affect its motion at future impacts. The longevity of these waves is determined
by the vigor of the subcritical vibrational forcing, endowing the droplet with a memory of its prior trajectory.
For “resonant walkers” (i.e. droplets whose vertical motion is in synchrony with the oscillation of the waves),
Oza et al. [4] demonstrated that the resonant system may be time-averaged over one bouncing period, from
which the droplet may be regarded as a continuous wave source, guided by its accompanying pilot wave. Using
this assumption, they derived an integro-differential equation as a model for the trajectory of a walking droplet.

The dynamics of a free walker depends on its path memory: At short path memory (corresponding to weak
vibrational forcing), the self-propulsion is steady, whereas chaotic random-walk-like motion arises when the in-
fluence of the walker’s past trajectory is sufficiently pronounced for more vigorous forcing [3]. Couder et al. [2]
have explored experimentally not only simple walkers, but also collisions and orbits of multiple such walkers. By
subjecting the droplet to applied forces or boundaries, a range of more complex behavior may emerge, including
diffraction, tunneling, orbital quantization, and the emergence of wave-like statistics [1]. These rich and complex
phenomena are far from being fully explored, warranting further study.

For a two-dimensional, monochromatic Faraday wave field, the mathematical model for the droplet’s trajec-
tory requires an integro-differential equation, rather than a temporally local differential equation, due to the
hereditary nature of the pilot-wave system. This equation involves using a Bessel function as a wave kernel,
which can make analysis unwieldy. By developing and exploring a one-dimensional model for the walking droplet
dynamics, it is possible to more easily discover and rationalize new phenomena which also occur in the more
complex model. To this end, the two-dimensional bath can be reduced to a single dimension, yielding a sinusoidal
wave kernel, allowing significant reduction of complexity to a three-dimensional system for the particle’s velocity
and the wave evolution, parameterized by the strength of the vibrational forcing.

In this thesis, we briefly summarize the derivation of the one-dimensional pilot-wave model. We then ana-
lyze the linear stability of the walker’s self-propulsion and show that chaos occurs beyond a subcritical Hopf
bifurcation, whose form we compute. Finally, we provide computational evidence of a homoclinic bifurcation by
studying the relationship between the vibrational acceleration and the period of the limit cycles arising from a
subcritical Hopf bifurcation. The dynamics corresponding to this homoclinic bifurcations appear to provide a
signature of the chaotic dynamics that arise at longer path memory.

2. Model Derivation

First, consider droplet-bath system in the case of the two-dimensional, monochromatic Faraday wave field.
As described in Oza et al. [4], the position xp(t) = (xp(t), ,yp(t)) of a resonant walker in the period-doubled
regime can be described by the following equation of motion:

(1) mẍp +Dẋp = −F (t)∇h(xp, t),

where m is the droplet’s mass, D is the drag coefficient, F (t) is the applied forcing, h is the perturbation height
of the fluid, and bar corresponds to the time average over one pouncing period TF .

Assuming that Faraday waves dominate, the asymptotic form of the waves produced by the bouncing droplet
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2 BENJAMIN KURZBAN

can be approximated by a Bessel function of the first kind. Additionally, assuming that the time scale of the
droplet’s horizontal motion is long compared to the bouncing period, we can average over the entire period,
ignoring the drop’s vertical motion. (This approximation is known as the stroboscopic approximation.) Using
these assumptions, it can be shown that

(2) mẍ +Dẋ =
F

TF

∫ t

−∞

J1(kF |x(t)− x(s)|)
|x(t)− x(s)|

(x(t)− x(s))e−(t−s)/(TFMe)ds

Here, TF = 4π/ω is the period of the droplet’s vertical motion; F = mgAkF is a constant; and Me is the
dimensionless memory parameter. The term on the right indicates dependence on the droplet’s entire path
memory; all of the previous bounces affect the wave field which guides the droplet.

Equation 2 can be difficult to deal with, both analytically and numerically. We can simplify our model by
assuming the fluid surface to be one-dimensional. Working in a parallel manner to Durey et al., Equation 2
reduces to

(3)
mẍp +Dẋ = −F0

∂h(x, t)

∂x
,

h(x, t) =
A

T

∫ t

−∞
cos(kF xp(t)− xp(s))e−(t−s)/τds,

where A is the stroboscopic amplitude of the wave generated by the droplet, kF is the Faraday wavenumber and
τ is the time scale over which waves decay. We non-dimensionalize by scaling lengths with k−1F and scaling time
with the typical decay time τ0 =

√
DTF /F0kF , which we find to be the time at which sustained walking arises.

We define the dimensionless mass as κ0 and the dimensionless decay rate of waves as ε = τ0/τ . Later, we will
often choose to refer to Γ = 1− ε, the path memory parameter, rather than ε itself. Using these, we obtain

(4)
κ0ẍp + ẋp = −h(x, t),

h(x, t) =

∫ t

−∞
cos(xp(t)− xp(s))e−ε(t−s)ds,

where h(x, t) is the dimensionless height of the perturbation of the wave field. Now, let H(x, t) be the height
of the wave field in the particle’s frame of reference. Therefore, H(x, t) = h(x + xp(t), t). Defining H(x, t) ≡
a(t) cos(x)+b(t) sin(x) and vp(t) ≡ ẋ, we obtain the following three-dimensional system of differential equations:

κ0v̇p + vp + b = 0

ȧ− vpb+ εa = 1

ḃ+ vpa+ εb = 0

(5)

In these differential equations, we see that each variable experiences damping forces. The velocity of the droplet
is driven by b — the wave force increases with the wave’s slope. The nonlinear terms are indicative of the frame
of reference. Lastly, the 1 in the right-hand-side of the second equation drives a to increase — this represents
how the droplet’s impact on the fluid generates more waves.

3. Analysis at κ0 = 0

We will now apply our model to the special case where κ0 = 0. Since κ0 is the dimensionless mass, this
corresponds to the limit when inertial forces have only transient effects, with damping forces dominating the
system in the long term. In this boundary case, the differential equations (5) simplify as follows:

vp + b = 0,
ȧ− vpb+ εa = 1,

ḃ+ vpa+ εb = 0.
(6)

We can reduce to two dimensions by substituting for vp. Rearranging for ȧ and ḃ gives

ȧ = 1− b2 − εa,

ḃ = ab− εb.
(7)

Using the above, we can solve for the fixed points, which are
a = 1/ε and b = 0,

or, a = ε and b = ±
√

1− ε2.
(8)
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Figure 1. Characteristic trajectories of the κ0 = 0 system. From left to right, the values of ε
are 0.5, 0.95, and 2.0.

The first line corresponds to the bouncing state, while the second line corresponds to the two walking states,
one for each direction. To determine the asymptotic linear stability of these states, we compute the Jacobian
matrix

(9) J =

(
−ε −2b
b a− ε

)
.

For the fixed points, we have

Jbouncing =

(
−ε 0
0 1

ε − ε

)
,

Jwalking =

(
−ε ∓2

√
1− ε2

±
√

1− ε2 0

)
.

(10)

To understand the asymptotic linear stability of these fixed points, we find the eigenvalues of the Jacobian
matrices. In the bouncing case, we can simply read the eigenvalues from the diagonalized matrix. In the walking
case, the quadratic formula yields:

(11) λ± =
−ε±

√
9ε2 − 8

2
.

For the bouncing state, one eigenvalue is always negative, and the other is negative only for ε > 1. Thus, this
fixed point is a saddle node for 0 < ε < 1 and is an attracting node for ε > 1. For the walking state, the fixed
point only exists for 0 < ε < 1. For 0 < ε <

√
8
9 , the eigenvalue is complex with negative real part, yielding

attracting spirals. For
√

8
9 < ε < 1, both eigenvalues are real and negative, so the walking states are attracting

nodes.
Does this overdamped system exhibit any closed orbits, in addition to these fixed points? We show this is

not the case using Dulac’s Criterion [5].

Theorem 3.1. Dulac’s Criterion. Let ẋ = f(x) be a continuously differentiable vector field on a simply-
connected subset R of the plane. If there exists a continuously differentiable, real-valued function g(x) such that
∇ · (g(x)ẋ) has one sign throughout R, then there are no closed orbits lying entirely in R.

We apply this criterion to Equation7, using g(x) = b−1. Since ∇· (g(x)ẋ) = −ε/b, the conditions are satisfied
if we define R as {x ∈ R1 | b > 0} or as {x ∈ R2 | b < 0}. Furthermore, there are no trajectories that exist in
both regions because no trajectory can cross the nullcline b = 0. Therefore, there exist no closed orbits.

How do we interpret these findings? When the dimensionless decay rate ε is large, waves decay too rapidly
for wave memory to have a strong effect, so the droplet’s stable equilibrium is at the peak of a wave. However,
once ε < 1, the dimensionless decay rate is low enough for the pilot-wave memory to break the symmetry of the
system, resulting in stable motion to either the left or right.
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4. Regime Diagram

Having discussed the stability of the system when κ0 = 0, let us now generalize the analysis to the case
κ0 > 0. To calculate the fixed points, we use Equation 5 and set the derivatives equal to zero:

vp + b = 0,
−vpb+ εa = 1,
vpa+ εb = 0.

(12)

Again making use of substitution for vp, we find three fixed points:

vp = 0, a = 1/ε and b = 0,

or, vp = ±
√

1− ε2, a = ε and b = ∓
√

1− ε2.
(13)

As with the case κ0 = 0, these fixed points correspond to the bouncing and walking states, respectively. The
Jacobian can be calculated directly from Equation 5:

(14) J =

−1/κ0 0 −1/κ0
b −ε v
−a −v −ε

 ,

from which we may infer the asymptotic linear stability of these two dynamical states. The eigenvalues of the
walking state, which is the main focus of this study, are thus roots of the characteristic polynomial:

(15) κ0λ
3 + λ2(1 + 2κ0ε) + λ(κ0 + ε) + 2(1− ε2) = 0.

4.1. Boundary of Instability. The boundary at which the steady walking state becomes unstable can be
calculated analytically. Unstable oscillations occur when a complex eigenvalue begins to have positive real
part. Therefore, at the boundary of instability, there are a pair of conjugate imaginary eigenvalues ±iωc. After
substituting λ = iωc into Equation 15, we can separate the real and imaginary parts to get two equations:

(16)
ω2
c = 1 +

εc
κ0

,

ω2
c (1 + 2κ0εc) + 2(1− ε2c) = 0.

By eliminating ωc and solving for εc in terms of κ0, we obtain a quadratic polynomial for εc. We find that
one root of this polynomial is positive for all κ0 > 0, and the other is negative. As the physical problem requires
εc > 0 we deduce that

(17) εc =
−1− 2κ20 +

√
(2κ20 + 1)2 + 16κ20
8κ0

.

4.2. Boundaries of Critical Damping and Subdominant Oscillations. The boundaries marking the onset
of critical damping and subdominant oscillations are less easy to study analytically for this system. Instead,
we calculate them numerically from the cubic polynomial 15. Critical damping occurs when a complex pair of
eigenvalues collide, and subdominant oscillations occur when the real part of the complex pair of eigenvalues
exceeds that of the third eigenvalue. We iterated over values of κ0 and ε0 computationally to plot these two
curves (Figure 2). The results are strikingly similar to those of Durey et al., indicating that changing the form
of the wave kernel does not modeify the qualitative features of the system.

4.3. Limit for Small κ0. As we derived previously, instability occurs when ε = 0. Critical damping occurs at
ε =

√
8
9 . Both of these findings agree graphically with Figure 2.

4.4. Limit for Large κ0. To calculate the behavior of the boundary of instability at large κ0, we can start by
factoring out κ20 from Equation 17, yielding

(18) εc =

−( 1

κ20
+ 2

)
+

√(
1

κ20
+ 2

)2

+
16

κ20

(κ0
8

)
.

Using a Maclaurin series and neglecting higher order terms, we have that

(19) εc ≈
1

2κ0
.

We thus conclude that the walking state destabilizes for all κ0 > 0 for sufficiently large vibrational forcing.
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Figure 2. Left: Regime diagram showing the linear stability of the walking state fixed points.
From bottom to top, the colored regions represent overdamped, underdamped, and unstable
oscillations in phase space. The dashed line indicates the onset of subdominant oscillations.
Right: The analogous figure made by Durey et al. for the two-dimensional, monochromatic
Faraday wave field, shown here for comparison. The qualitative features are identical, lending
credence to the predictions of our reduced one-dimensional model.

5. Homoclinic Bifurcation

The instability threshold appears to correspond to a subcritical Hopf bifurcation because small limit cycles
do not appear for Γ > Γc. Instead, the dynamics head to a distant, chaotic attractor. Knowing this, we choose
instead to investigate the homoclinic bifurcation at Γh < Γc. A homoclinic bifurcation is an infinite-period
bifurcation that occurs when a limit cycle collides with a saddle [5]. If we let µ be a dimensionless measure of
the distance between the limit cycle and the bifurcation, the orbital period T will exhibit a logarithmic scaling
with respect to µ.

(20) T ∼ O(| logµ|)

5.1. Justification of Logarithmic Scaling Law. To demonstrate the intuition behind this scaling law, con-
sider a limit cycle that passes near a saddle node. The trajectory moves slowly near the saddle node, so the
dominant contribution to T occurs in this neighborhood. Near the saddle, we can make a linear approximation of
the trajectory. For the purposes of demonstrate, we take the following as an example of such an approximation:

(21)
ẋ = y

ẏ = −x

Suppose the limit cycle approaches the saddle from the right. To estimate the orbital period, we can estimate
the amount of time it takes for the trajectory to pass between two arbitrary boundaries sufficiently near the
saddle — for instance, between y = −Y and y = Y . The solution for y(t) from Equation 21 is

(22) y(t) = C1e
t + C2e

−t.

At t = 0, consider x = µ and y = 0. This implies that

(23) y(t) =
µ

2
(et + e−t).

For µ� Y , the travel time between −Y and Y is

(24) T ≈ 2 log(2Y )− 2 logµ.

Since Y is O(1), we have our scaling law (Equation 20).

5.2. Fourier Series Approximation of Limit Cycles Using Newton’s Method. In order to find periodic
solutions for Γ < Γc, we define the Fourier transform of a periodic function f(t) with period T as

(25) f̂n = F[f(t)] ≡ 1

T

∫ T

0

f(t)e−inωtdt
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and its inverse as

(26) f = F−1[f̂n](t) ≡
∞∑

n=−∞
f̂ne

inωt,

where ω = 2π/T is the angular frequency. If we apply the forward transform to Equation 5 and use the
convolution theorem when F is applied to products, we obtain the following system of equations for all integers
n:

(1 + inωκ0)v̂n + b̂n = 0,

(ε+ inω)ân −
∞∑

m=−∞
v̂mb̂n−m = δn0,

(ε+ inω)b̂n −
∞∑

m=−∞
v̂mân−m = 0,

(27)

with v̂n, ân, and b̂n, being the Fourier coefficients of the corresponding variables, and δnm being the Kronecker
Delta. Eliminating b̂n and performing an index shift, we get

(ε+ inω)ân +

∞∑
m=−∞

(1 + imωκ0)v̂mv̂n−m = δn0,

(ε+ inω)(1 + inωκ0)v̂n −
∞∑

m=−∞
v̂mân−m = 0.

(28)

Lastly, to guarantee a unique limit cycle, due to temporal invariance, we choose to seek limit cycles that satisfy
v̇p(0) = 0, giving us our last equation:

(29)
∞∑

n=−∞
nv̂n = 0.

To execute the numerical study, we truncated the system for high frequencies. Specifically, we specified N and
took ân = v̂n = 0 for |n| > N . (In this paper, we used N = 80.) Then, we treated Γ as a known independent
variable and T , ân, and v̂n as the 4N + 3 unknowns. Using Newton’s Method with an error tolerance of 10−10,
we calculated these unknowns for 0.2 < κ0 < 6, iterating until the T exceeded 150. To evaluate the validity
of the truncation of high frequencies, we evaluated the maximum absolute value of v̂±N and â±N . This value
exceeded 0.1 at most once for each given value of κ0 (out of dozens of simulations with different values of Γ );
typically, the value was much smaller, and also tended to grow smaller as κ0 increased.

5.3. Curve Fitting Provides Evidence of a Homoclinic Bifurcation. After generating data regarding
the relationship between T , Γ, and κ0, we fitted the data to the logarithmic curve A log(B − ε) + C in order to
calculate Γh, the critical value at which the homoclinic bifurcation occurs; Γh typically had confidence bounds
within 1% of the estimated value. The results are plotted below for 0.2 < κ0 < 6.0. Further studies could
investigate the behavior for κ0 → 0 and κ0 →∞.

5.4. Subcritical Hopf Bifurcation. Using the same data generation method, we can also provide evidence of
a subcritical Hopf bifurcation at the boundary of instability (see Figure 4).

6. Conclusion

The walking droplet problem brings with it a host of fascinating phenomena to study and model. In order
to facilitate this research, we sought to define analyze the analogous problem with a one-dimensional fluid
surface, reducing the problem to three dimensions. After analyzing the linear stability of this system, we utilized
Fourier transforms, Newton’s Method, and a logarithmic scaling law to provide evidence of a both a homoclinic
bifurcation and a subcritical Hopf bifurcation. The similarities between the results of this one-dimensional system
and the results found by Durey et al. for the two-dimensional system helps support the notion that the one-
dimensional system can be useful as a predictive tool. The existence of the homoclinic bifurcation hints at the
possible chaotic behaviors at Γ > Γc. Indeed, simply plotting the trajectories in v-a-b-space suggests the existence
of a strange attractor. Future studies could investigate the unstable region of the regime diagram, mapping out
the onset of various behaviors — such as strange attractors, limping modes, etc. Perhaps in analyzing this
simpler system, other researchers will discover phenomena not yet discovered in the two-dimensional model.



ANALYTICAL AND NUMERICAL STUDY OF THE UNSTABLE LIMIT CYCLES OF WALKING DROPLETS 7

Figure 3. Left: In red, a plot of Γh, derived by fitting T and Γ to a logarithmic relationship.
In black, the same data as in Figure 2, for reference. Right: An example of the agreement of
the fitted curve and the raw data. For clarity, only one sixth of the data points are shown. The
fit was computed with κ0 = 0.5 and with N = 80 Fourier modes. The resulting model was
T = −48.9 log(0.4978− ε)− 72.8, corresponding to Γh = 0.5022± 0.0001.

Figure 4. Top left: The stable dimensionless walking speed plotted (solid curve) and the
velocity bounds of the unstable limit cycle (dashed) plotted against Γ for κ0 = 1, with Γc = 0.75.
Top middle The relative oscillation length Λ (black) and dimensionless oscillation period T0
(blue). Top Right: Some sample limit cycles for values of Γ between 0.7 (red) and 0.75 (blue).
Bottom: The analogous figure made by Durey et al. for the two-dimensional, monochromatic
Faraday wave field, shown here for comparison. Like in Figure 2, the qualitative features are
identical.
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Strange

Figure 5. A strange attractor. κ0 = 1, Γ = 0.9.
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