
MIT Open Access Articles

Simple High-Level Code For Cryptographic 
Arithmetic With Proofs, Without Compromises

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Erbsen, Andres et al. "Simple High-Level Code For Cryptographic Arithmetic With 
Proofs, Without Compromises." ACM SIGOPS Operating Systems Review 54, 1 (July 2020): 23-30. 
© 2020 Author(s).

As Published: http://dx.doi.org/10.1145/3421473.3421477

Publisher: Association for Computing Machinery (ACM)

Persistent URL: https://hdl.handle.net/1721.1/131080

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/131080
http://creativecommons.org/licenses/by-nc-sa/4.0/


Simple High-Level Code For Cryptographic Arithmetic:
With Proofs, Without Compromises

Andres Erbsen
MIT CSAIL

andreser@mit.edu

Jade Philipoom
MIT CSAIL

jadep@mit.edu

Jason Gross
MIT CSAIL

jgross@mit.edu

Robert Sloan
MIT CSAIL

rob.sloan@alum.mit.edu

Adam Chlipala
MIT CSAIL

adamc@csail.mit.edu

Abstract
We introduce an unusual approach for implementing cryp-
tographic arithmetic in short high-level code with machine-
checked proofs of functional correctness. We further demon-
strate that simple partial evaluation is sufficient to transform
such initial code into highly competitive C code, breaking
the decades-old pattern that the only fast implementations are
those whose instruction-level steps were written out by hand.

These techniques were used to build an elliptic-curve li-
brary that achieves competitive performance for a wide range
of prime fields and multiple CPU architectures, showing that
implementation and proof effort scales with the number and
complexity of conceptually different algorithms, not their use
cases. As one outcome, we present the first verified high-
performance implementation of P-256, the most widely used
elliptic curve. Implementations from our library were in-
cluded in BoringSSL to replace existing specialized code,
for inclusion in several large deployments for Chrome, An-
droid, and CloudFlare.

This is an abridged version of the full paper originally
presented in IEEE S&P 2019 [10]. We have omitted most
proof-engineering details in favor of a focus on the system’s
functional capabilities.

1 Introduction

As verification makes the transition from research topic to
component of real-world software ecosystems, the field must
face challenges of scale, in terms of both amount of code and
conceptual complexity. Each system, of course, has its own
constraints and objectives, and these needs will best be met
with a broad toolbox of approaches. In this paper, we sketch
a case study following a relatively unusual approach, in the
hope that it will help illuminate the broad array of possibil-
ities for verification projects. The full paper was originally
presented in IEEE S&P 2019 [10]; what follows is a ver-
sion abridged, selectively updated, and adapted for a more
systems-oriented audience.

That audience is probably most familiar with projects fitting
the classic mold of proving theorems about programs writ-
ten by hand, as exemplified by sEL4 [16], IronClad [13, 14],
FSCQ [5, 6, 15], CertiKOS [11], and various case studies
in push-button verification [17, 18, 20, 21]. Often the imple-
menters of these projects do rewrite systems from scratch in
tandem with proofs, but the final code artifacts implement
very similar pseudocode to off-the-shelf systems. A moder-
ately widely known alternative is program synthesis, which
writes a program automatically from its logical specification.
Most colloquially, this idea is associated with relatively in-
tensive combinatorial search through spaces of possibilities,
often taking advantage of SMT solvers like Z3 [8]. How-
ever, some systems-code domains are focused enough that we
can write very predictable and verified generic implementa-
tions. With the help of a verified domain-specific compiler,
we can translate these general problem descriptions into prac-
tical, performance-competitive code. This paper considers a
successful example of the template-based code-generation
strategy.

Our project verifies efficient modular-arithmetic routines
for elliptic-curve cryptography, a domain to which much op-
timization effort has been applied. This means that competi-
tive implementations use highly specialized techniques, pre-
viously accessible only to a small number of experts. We
aimed to create a system that generalized these approaches
and proved, with minimal trusted code, that the detailed low-
level routines implemented their high-level arithmetic specifi-
cations. To that end, we first studied handwritten implementa-
tions and extracted fully general descriptions of the complex
design choices they required. Then, we encoded these algo-
rithms in the Coq proof assistant [22] as templates, generic
over compile-time parameters like the modulus and integer
width of the underlying architecture. Once these parameters
are plugged in, a domain-specific compiler transforms the
templates into efficient low-level code.

The output code is encoded in a specialized low-level ab-
stract syntax tree (AST) that includes only very basic fixed-
width integer operations, at the approximate abstraction level



of assembly instructions, and is easily translatable to a num-
ber of output languages. At current count we can produce
C, Go, and Rust, along with two other unusual specialized
languages for specific applications. The C code, our primary
target, is competitive with existing handwritten C, although
it still falls short of the performance of handwritten assem-
bly. However, our toolchain, with no input other than the
compile-time parameters, produces efficient and completely
verified code, and we believe it presents a very interesting
case study in a verification approach that is unusual in gen-
erating code, rather than working backwards from existing
code. (It is worthwhile to note here that one can still verify
specific existing code by proving it equivalent to the gener-
ated code, and the equivalence is much more straightforward
than equivalence with a high-level specification, and we have
used this technique to verify existing production code.) Our
verification stretches all the way from very low-level C to
the natural high-level specifications of modular arithmetic
(e.g. ∀x,y. add(x,y) = (x+ y) mod p). The output code uses
a restricted set of instructions by construction, preventing
timing side channels. The overall trusted computing base in-
cludes the Coq proof checker, a simple pretty-printer, and the
C language toolchain.

In addition to being interesting research, our approach has
proven to be practically applicable, as it is already used in
widely deployed code. Most applications relying on the im-
plementations described in this paper are using them through
BoringSSL, Google’s OpenSSL-derived crypto library that
includes our implementations of Curve25519 and P-256, the
two most widely used elliptic curves via Internet standards.
A high-profile user is the Chrome Web browser, so today
about half of HTTPS connections opened by Web browsers
worldwide use our fast verified code (Chrome has about 60%
market share [1], and 90% of connections use X25519 or P-
256 [2]). BoringSSL is also used in Android and on a majority
of Google’s servers, so a Google search from Chrome would
likely be relying on our code on both sides of the connection.
Maintainers appreciate the reduced need to worry about bugs.

We believe our approach is particularly suited to design
domains that a) involve methodical low-level transformations
that are nonetheless finicky and easy for humans to get wrong,
and b) apply these transformations to a wide range of se-
tups with different parameters. Elliptic-curve field arithmetic
fits this description, because most efficient implementations
use the same family of optimization techniques, while there
are hundreds of combinations of moduli and native-integer
sizes. A change to either one usually dramatically changes
the resulting code, even though the underlying techniques are
similar. Other opportunities to apply these ideas may include
families of very closely related data structures being used in
OS kernels and other systems software.

This abridged paper will be a whirlwind tour through the
most interesting and informative aspects of our approach.
First, Section 2 will go over a common optimization tech-

nique for modular reduction and integer representation, as
an example of the kinds of algorithms our templates encode.
Then, in Section 3, we will explain the stages of our domain-
specific compiler and its capabilities. Finally, Section 4 will
show a sample of our benchmarks. For more details, particu-
larly for proof-engineering techniques, explorations of related
work, and full benchmarks, please look to the full-length pa-
per [10]. For even more details, the entire development is
called Fiat Cryptography, and is available under the MIT
license at:

https://github.com/mit-plv/fiat-crypto

2 Arithmetic Template Library

In this section, we will describe the arithmetic optimization
strategies we encoded in our template library. For those who
prefer to read code, we suggest src/Demo.v in the frame-
work’s source code, which contains a succinct standalone
development of the unsaturated-arithmetic library up to and
including an implementation of modular reduction specialized
to take advantage of the specific shape of its fixed modulus.
The concrete examples derived in this section are within es-
tablished implementation practice, and an expert would be
able to reproduce them given an informal description of the
strategy. Our contribution is to encode this general wisdom in
concrete algorithms and provide correctness certificates.

2.1 Multi-Limbed Arithmetic
Cryptographic modular arithmetic implementations distribute
very large numbers across smaller limbs of 32- or 64-bit in-
tegers. Fig. 1 shows a small sample of fast representations
for different primes. Notice that many of these implemen-
tations use bases other than 232 or 264, leaving bits unused
in each limb: these are called unsaturated representations.
Conversely, the ones using all available bits are called satu-
rated. This abridged paper will only describe the unsaturated
arithmetic in our development; for saturated arithmetic, please
refer to the full paper.

Another interesting feature shown in the examples is that
the exponents of some bases, such as the original 32-bit
Curve25519 representation [3], are not whole numbers. In
the actual representation, this choice corresponds to an alter-
nating pattern, so “base 225.5” uses 26 bits in the first limb,
25 in the second, 26 in the third, and so on. Because of the
alternation, these are called mixed-radix bases, as opposed to
uniform-radix ones.

Why accept all of this added complication, and waste avail-
able bits, instead of just using saturated representations for
everything? These unorthodox big integers are fast primarily
because of a specific modular-reduction algorithm, pseudo-
Mersenne reduction, which becomes extremely fast when the
number of bits in the prime corresponds to a limb boundary.

https://github.com/mit-plv/fiat-crypto


prime architecture # limbs base representation (distributing large x into x0...xn)
2256 − 2224 + 2192 + 296 − 1
(P-256)

64-bit 4 264 x = x0 +264x1 +2128x2 +2192x3

2255−19 (Curve25519) 64-bit 5 251 x = x0 +251x1 +2102x2 +2153x3 +2204x4

2255−19 (Curve25519) 32-bit 10 225.5 x = x0 +226x1 +251x2 +277x3 + ...+2204x8 +2230x9

2448−2224−1 (p448) 64-bit 8 256 x = x0 +256x1 +2112x2 + ...+2392x7

2127−1 64-bit 3 242.5 x = x0 +243x1 +285x2

Figure 1: Examples of big-integer representations for different primes and integer widths

s× t = 1× s0t0 +243× s0t1 +285× s0t2

+243× s1t0 +286× s1t1 +2128× s1t2

+285× s2t0 +2128× s2t1 +2170× s2t2

= s0t0 +243(s0t1 + s1t0)+285(s0t2 +2s1t1 + s2t0)+2127(2s1t2 +2s2t1)+2170× s2t2

Figure 2: Distributing terms for multiplication mod 2127−1

For instance, reduction modulo 2255−19 is fastest when the
255th bit of a bignum is the first bit of a limb. In a saturated
implementation, limb boundaries would fall on multiples of
the integer size (for instance, a 64-bit saturated representation
would have limb boundaries at bits 0, 64, 128, etc.). But in an
unsaturated implementation, with a funky base like 225.5, we
get limb boundaries at bits 0, 26, 51, 77, ... and 255. The vast
speed improvement in modular reduction is worth keeping a
few extra registers around to represent each large number.

2.2 A Note on Carrying

In unsaturated representations, it is not necessary to carry
immediately after every addition. For example, with 51-bit
limbs on a 64-bit architecture, it would take 13 additions to
risk overflow. Choosing which limbs to carry and when is
part of the design and is critical for keeping the limb val-
ues bounded. Generic operations are easily parameterized on
carry strategies, for example “after each multiplication carry
from limb 4 to limb 5, then from limb 0 to limb 1, then from
limb 5 to limb 6,” etc. The library includes a conservative
default.

2.3 Example: Multiplication Modulo 2127−1

To give a more concrete sense of how the representation de-
scribed above works in practice, we will walk through a mod-
ular multiplication procedure specialized to the (relatively)
small modulus 2127 − 1 and a 64-bit architecture. Say we
want to multiply two numbers s and t in its field, with those
inputs broken up into limbs as s = s0 + 243s1 + 285s2 and
t = t0 +243t1 +285t2. Distributing multiplication repeatedly
over addition gives us the answer form shown in Fig. 2.

We have formatted the calculation suggestively: down each
column, the powers of two are very close together, differing
by at most one. Therefore, it is easy to add down the columns
to form our final answer, split conveniently into digits with
integral bit widths.

At this point the multiplication step is complete, but we still
need to do modular reduction; we don’t want our answer to
have five limbs when it should need only three. Here we use
the pseudo-Mersenne reduction trick: 2k mod (2k− c) = c,
so a+2kb≡ a+ cb (mod 2k− c). We “divide” the last two
limbs of the product, the terms with weights 2127 and 2170, by
2127. Because we chose our base system wisely, this division
is actually a no-op; we just now consider these limbs to have
different weights. This is the big trick that makes pseudo-
Mersenne reduction fast: eliminating division by clever choice
of base system. Then we can multiply the high limbs by c,
which in this case is 1, and add them to the first three digits,
providing the following final formula:

(s0t0 +2s1t2 +2s2t1)+243(s0t1 + s1t0 + s2t2)

+285(s0t2 +2s1t1 + s2t0)

Note that this is a partial modular-reduction algorithm; it
is not guaranteed that the result is less than 2127−1, just that
the result fits in three limbs.

In the code, src/Demo.v includes another example that
walks through modular multiplication with pseudo-Mersenne
reduction, using the modulus from Curve25519 [3]. The full
generic template library is found under src/Arithmetic.



3 Domain-Specific Compiler

3.1 Partial Evaluation For Specific Parame-
ters

It is impossible to achieve competitive performance with
arithmetic code that manipulates dynamically allocated lists
at runtime. The fastest code will implement, for example, a
single numeric addition with straightline code that keeps as
much state as possible in registers. Expert implementers today
write that straightline code manually, applying various rules
of thumb. Our alternative is to use partial evaluation in Coq
to generate all such specialized routines, beginning with our
library of high-level functional implementations that general-
ize the patterns lurking behind hand-written implementations
today.

Consider the case where we know statically that each num-
ber we add will have 3 digits. A particular addition in our top-
level algorithm may have the form add [a1,a2,a3] [b1,b2,b3],
where the ais and bis are unknown program inputs. While we
cannot make compile-time simplifications based on the values
of the digits, we can reduce away all the overhead of dynamic
allocation of lists. We could use Coq’s term-reduction ma-
chinery, which allows us to choose λ-calculus-style reduction
rules to apply until reaching a normal form. Here is what
happens with our example, when we ask Coq to leave let and
+ unreduced but apply other rules. (Note that :: is a notation
for appending to the front of a list.)

add [a1,a2,a3] [b1,b2,b3] ⇓ let n1 = a1 +b1 in n1 ::

let n2 = a2 +b2 in n2 ::

let n3 = a3 +b3 in n3 :: []

We have made progress: no run-time case analysis on lists
remains. Unfortunately, let expressions are intermixed with
list constructions, leading to code that looks rather different
than assembly. To work around this issue, we chose to imple-
ment this phase of our pipeline as a certified compiler1. That
is, we define a type of abstract syntax trees (ASTs) for the
sorts of programs that earlier phases produce, we reify those
programs into our AST type, and we run compiler passes
written in Coq’s Gallina functional programming language.
Each pass is proved correct once and for all.

Our certified compiler handles partial evaluation and let-
lifting, turning this function into the straightline code

let n1 = a1 +b1 in

let n2 = a2 +b2 in

let n3 = a3 +b3 in

[n1,n2,n3]

1The compiler was ongoing work at the time of our original publication
and was only briefly discussed as a future improvement; in the original
paper, we described using Coq’s built-in term-reduction machinery. However,
although the proof-engineering techniques have changed dramatically, the
function is the same.

Chaining together sequences of function calls leads to id-
iomatic and efficient straightline code, preserving sharing of
let-bound variables. This level of inlining is common for the
inner loops of crypto primitives, and it will also simplify the
static analysis described in the next subsection.

3.2 Word-Size Inference
Up to this point, we have derived code that looks almost
exactly like the C code we want to produce. The code is
structured to avoid overflows when run with fixed-precision
integers, but so far it is only proven correct for natural num-
bers. The final major step is to infer a range of possible values
for each variable, allowing us to assign each one a register or
stack-allocated variable of the appropriate bit width.

The bounds-inference pass works by standard abstract in-
terpretation with intervals. As inputs, we require lower and
upper bounds for the integer values of all arguments of a func-
tion. These bounds are then pushed through all operations
to infer bounds for temporary variables. Each temporary is
assigned the smallest bit width that can accommodate its full
interval.

As an artificial example, assume the input bounds
a1,a2,a3,b1 ∈ [0,231]; b2,b3 ∈ [0,230]. The analysis con-
cludes n1 ∈ [0,232]; n2,n3 ∈ [0,230 + 231]. The first tempo-
rary is just barely too big to fit in a 32-bit register, while the
second two will fit just fine. Therefore, assuming the available
temporary sizes are 32-bit and 64-bit, we can transform the
code with precise size annotations.

let n1 : N264 = a1 +b1 in

let n2 : N232 = a2 +b2 in

let n3 : N232 = a3 +b3 in

[n1,n2,n3]

Note how we may infer different temporary widths based on
different bounds for arguments. As a result, the same primitive
inlined within different larger procedures may get different
bounds inferred. World-champion code for real algorithms
takes advantage of this opportunity.

This phase of our pipeline is systematic enough that we
chose to implement it too as another phase in our certified
compiler.

3.3 Compilation To Constant-Time Machine
Code

What results is straightline code very similar to that written
by hand by experts, represented as ASTs in a simple lan-
guage with arithmetic and bitwise operators. Our correctness
proofs connect this AST to specifications in terms of inte-
ger arithmetic, such as the one for add above. All operations
provided in our lowest-level AST are implemented with input-
independent execution time in many commodity compilers



and processors, and if so, our generated code is trivially free
of timing leaks. Each function is pretty-printed as C code
and compiled with a normal C compiler, ready to be bench-
marked or included in a library. We are well aware that top
implementation experts can translate C to assembly better
than the compilers, and we do not try to compete with them:
while better instruction scheduling and register allocation for
arithmetic-heavy code would definitely be valuable, it is out-
side the scope of this project. But this is the entire extent of
the compromise: as described in the next section, we have
been able to match or exceed the performance of all C code
we sought to replicate.

4 Experimental Results

The purpose of this section is to confirm that implementing
optimized algorithms in high-level code and then separately
specializing to concrete parameters actually achieves the ex-
pected performance. Given the previous sections, this conclu-
sion should not be surprising: as code generation is extremely
predictable, it is fair to think of the high-level implementa-
tions as simple templates for low-level code. We will detail
how this works out for the two most prominent applications
of our framework, the TLS ECC fields modulo 2255−19 and
2256− 2224 + 2192 + 296− 1. In our full paper, we addition-
ally demonstrate that the two simple templates generalized
from these case studies are sufficient to achieve good per-
formance across a broad sample of finite fields proposed for
elliptic-curve-cryptography use.

4.1 X25519 Scalar Multiplication
We measured the number of CPU cycles different implementa-
tions take to multiply a secret scalar and a public Curve25519
point (represented by the x coordinate in Montgomery coordi-
nates). Despite the end-to-end task posed for this benchmark,
we believe the differences between implementations we com-
pare against lie in the field-arithmetic implementation.

The benchmarks were run using gcc 7.3 on an Intel Broad-
well i7-5600U processor in a kernel module with interrupts,
power management, Hyper Threading, and Turbo Boost fea-
tures disabled. We are presenting them as a rather arbitrary
illustration of the performance that can be achieved using our
approach; it is expected that the relative speeds could differ
by as much as a couple of times across different microarchi-
tectures, compilers, and compiler flags.

Implementation CPU cycles
OLHFR, asm 121444
amd64-64, asm 151586
this work, 64-bit 152195
sandy2x, asm 154313
hacl-star, 64-bit 154982
donna64, 64-bit C 168502

We report on our code generated using the standard rep-
resentations for both 32-bit and 64-bit, though we are pri-
marily interested in the latter, since we benchmark on a 64-
bit processor. In order, we compare against OLHFR, the non-
precomputation-based implementation from [19]; amd64-64
and sandy2x, the fastest assembly implementations from SU-
PERCOP [4] that use scalar and vector instructions respec-
tively; the verified X25519 implementation from the HACL∗

project [24]; and the best-known high-performance C imple-
mentation curve25519-donna, in both 64-bit and 32-bit vari-
ants. The field arithmetic in both amd64-64 and hacl-star
has been verified using SMT solvers [7,23]. Our code is gener-
ated from a general template for unsaturated pseudo-mersenne
arithmetic which is proven correct for all parameters. We pre-
viously applied a few optimizations to 2255−19 specifically,
but have since integrated the generalized forms of these into
our template.

The results of a similar benchmark on an early prototype
of our methodology were good enough to convince the main-
tainers of the BoringSSL library to adopt it, resulting in this
Curve25519 code being shipped since Chrome 64 and used
by default for TLS connection establishment in other Google
products and services. Previously, BoringSSL included the
amd64-64 assembly code and a 32-bit C implementation as a
fallback, which was the first to be replaced with our generated
code. Then, the idea was raised of taking advantage of lookup
tables to optimize certain point ECC multiplications. While
the BoringSSL developers had not previously found it worth-
while to modify 64-bit assembly code and review the changes,
they made use of our code-generation pipeline (without even
consulting us, the tool authors) and installed a new 64-bit C
version. The new code (our generated code linked with manu-
ally written code using lookup tables) was more than twice
as fast as the old version and was easily chosen for adoption,
enabling the retirement of amd64-64 from BoringSSL.

4.2 P-256 Mixed Addition

Next, we benchmarked our Montgomery modular arithmetic
as used for in-place point addition on the P-256 elliptic curve
with one precomputed input (Jacobian += affine). A scalar-
multiplication algorithm using precomputed tables would
use some number of these additions depending on the table
size. The assembly-language implementation nistz256 was
reported on by Gueron and Krasnov [12] and included in
OpenSSL; we also measured its newer counterpart that makes
use of the ADX instruction-set extension. The 64-bit C code
we benchmark is also from OpenSSL and uses unsaturated-
style modular reduction, carefully adding a couple of multi-
ples of the prime each time before performing a reduction
step with a negative coefficient to avoid underflow. These
P-256 implementations here are unverified. The measurement
methodology is the same as for our X25519 benchmarks, ex-
cept that we did not manage to get nistz256 running in a



kernel module and report userspace measurements instead.

Implementation fastest clang gcc icc
nistz256 +ADX ~550
nistz256 AMD64 ~650
this work A 1143 1811 1828 1143
OpenSSL, 64-bit C 1151 1151 2079 1404
this work B 1343 1343 2784 1521

Saturated arithmetic is a known weak point of current com-
pilers, resulting in implementors either opting for alternative
arithmetic strategies or switching to assembly language. Our
programs are not immune to these issues: when we first ran
our P-256 code, it produced incorrect output because gcc
7.1.1 had generated incorrect code2; clang 4.0 exited with
a mere segmentation fault.3 Even in later compiler versions
where these issues have stopped appearing, the code gener-
ated for saturated arithmetic varies a lot between compilers
and is obviously suboptimal: for example, there are ample
redundant moves of carry flags, perhaps because the compil-
ers do not consider flag registers during register allocation.
The same pattern is also present for X25519, although less
pronounced: the two fastest assembly implementations listed
earlier use a 4-limb saturated representation, but the speedup
over 5-limb unsaturated assembly is smaller than the slow-
down incurred in C code due to heavy use of carry flags. Fur-
thermore, expressing the same computation using intrinsics
such as _mulx_u64 (variant A in the table) or using uint128
and a bit shift (variant B) can produce a large performance
difference, in different directions on different compilers.

The BoringSSL team had a positive enough experience
with adopting our framework for Curve25519 that they de-
cided to use our generated code to replace their P-256 imple-
mentation as well. First, they replaced their handwritten 64-bit
C implementation. Second, while they had never bothered to
write a specialized 32-bit P-256 implementation before, they
also generated one with our framework. nistz256 remains
as an option for use in server contexts where performance
is critical and where patches can be applied quickly when
new bugs are found. The latter is not a purely theoretical con-
cern – the appendices of our full paper contain a sample of
issues discovered in previous nistz256 versions. The two
curves thus generated with our framework for BoringSSL to-
gether account for over 99% of ECDH connections initiated
by Google Chrome.

5 Discussion

We would like to remark on the aspects of elliptic-curve-
cryptography implementation that made this approach work
as well as it did, to aid future application in other contexts.

2https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81300,
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81294

3https://bugs.llvm.org/show_bug.cgi?id=24943

The most general (and perhaps the most important) takeaway
is that effort put into structuring code in the most instructive
manner possible pays off double during verification, enough
to justify the development of new tooling to make that code
run fast. In cases where generalizing an algorithm makes its
operation and invariants more apparent, we think it simply
makes sense to prove correctness for the general version and
use partial evaluation to derive the desired code, even if a
specialized implementation has already been written.

Looking towards the future, we would like to extend our
pipeline to bypass the C compiler and target assembly, shrink-
ing our trusted code base. This would require studying com-
bined register allocation and instruction scheduling; since
our output AST is very low-level, the C compiler is doing
little else for us. Alternatively, hand-optimized assembly code
could be checked to implement the same machine-word-level
computation as our generated code using an equality-checking
engine like those found in modern SMT solvers (e.g., [9]),
allowing verification of optimizations that are out-of-reach
for compilers, for example effective use of vector instructions.

Acknowledgments

This work was supported in part by a Google Research Award
and National Science Foundation grants CCF-1253229, CCF-
1512611, and CCF-1521584. We benefited greatly from a
fruitful collaboration with Google involving David Benjamin,
Thai Duong, Adam Langley, Dominic Rizzo, and Marius
Schilder. Robert Sloan contributed to this project as a student
at MIT, before joining Google. We thank Jason Donenfeld for
teaching us how to benchmark arithmetic code with Linux
kernel modules, as well as for setting up benchmarks for pop-
ular Curve25519 implementations. For comments on drafts
of the paper, we thank Daniel J. Bernstein, Tej Chajed, Ist-
van Chung, Karl Samuel Gruetter, Ivan Kuraj, Adam Langley,
Derek Leung, Devin Neal, Rahul Sridhar, Peng Wang, Ray
Wang, and Daniel Ziegler.

References

[1] Web browsers by version (global marketshare).
https://clicky.com/marketshare/global/
web-browsers/versions.

[2] David Benjamin. in personal communication about TLS
connections initiated by Chrome, 2017.

[3] Daniel J. Bernstein. Curve25519: new Diffie-Hellman
speed records. In Public Key Cryptography - PKC 2006.
Proceedings of the 9th International Conference on The-
ory and Practice in Public-Key Cryptography, New York,
NY, USA, April 24-26. Springer-Verlag, 2006.

[4] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT
benchmarking of cryptographic systems. 2017.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81300
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81294
https://bugs.llvm.org/show_bug.cgi?id=24943
https://clicky.com/marketshare/global/web-browsers/versions
https://clicky.com/marketshare/global/web-browsers/versions


[5] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie
Wang, Atalay Ileri, Adam Chlipala, Frans Kaashoek,
and Nickolai Zeldovich. Verifying a high-performance
crash-safe file system using a tree specification. In Pro-
ceedings of the ACM Symposium on Operating Systems
Principles (SOSP), October 2017.

[6] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, Frans Kaashoek, and Nickolai Zeldovich. Using
Crash Hoare logic for certifying the FSCQ file system.
In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), October 2015.

[7] Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Pe-
ter Schwabe, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-
Yin Yang, and Shang-Yi Yang. Verifying Curve25519
software. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security,
CCS’14, pages 299–309. ACM, 2014. Document ID:
55ab8668ce87d857c02a5b2d56d7da38.

[8] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3:
An efficient smt solver. In TACAS, 2008.

[9] David Detlefs, Greg Nelson, and James B. Saxe. Sim-
plify: a theorem prover for program checking. Journal
of the ACM, 52(3):365–473, 2005.

[10] Andres Erbsen, Jade Philipoom, Jason Gross, Robert
Sloan, and Adam Chlipala. Simple high-level code for
cryptographic arithmetic – with proofs, without compro-
mises. In IEEE Security & Privacy, May 2019.

[11] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu,
Jieung Kim, Vilhelm Sjöberg, and David Costanzo. Cer-
tiKOS: an extensible architecture for building certified
concurrent OS kernels. In USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI).
USENIX - Advanced Computing Systems Association,
October 2016.

[12] Shay Gueron and Vlad Krasnov. Fast prime field elliptic
curve cryptography with 256 bit primes, 2013.

[13] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jay
Lorch, Bryan Parno, Lilith Stephenson, Srinath Setty,
and Brian Zill. IronFleet: Proving practical distributed
systems correct. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP). ACM -
Association for Computing Machinery, October 2015.

[14] Chris Hawblitzel, Jon Howell, Jay Lorch, Arjun
Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill.
Ironclad apps: End-to-end security via automated full-
system verification. In USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI).
USENIX - Advanced Computing Systems Association,
October 2014.

[15] Atalay Ileri, Tej Chajed, Adam Chlipala, Frans
Kaashoek, and Nickolai Zeldovich. Proving confiden-
tiality in a file system using DiskSec. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), October 2018.

[16] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: Formal verification of an OS kernel. In Proceed-
ings of the ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 207–220. ACM, 2009.

[17] Luke Nelson, James Bornholt, Ronghui Gu, Andrew
Baumann, Emina Torlak, and Xi Wang. Scaling sym-
bolic evaluation for automated verification of systems
code with Serval. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP). ACM -
Association for Computing Machinery, October 2019.

[18] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang,
Dylan Johnson, James Bornholt, Emina Torlak, and
Xi Wang. Hyperkernel: Push-button verification of an
OS kernel. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP). ACM - Associa-
tion for Computing Machinery, October 2017.

[19] Thomaz Oliveira, Julio López, Hüseyin Hışıl, Armando
Faz-Hernández, and Francisco Rodríguez-Henríquez.
How to (pre-)compute a ladder. In Carlisle Adams and
Jan Camenisch, editors, Selected Areas in Cryptography
– SAC 2017: 24th International Conference, Ottawa, On-
tario, Canada, August 16 - 18, 2017, Revised Selected
Papers, pages 172–191. Springer International Publish-
ing, 2018.

[20] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-button verification of file systems
via crash refinement. In USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI).
USENIX - Advanced Computing Systems Association,
October 2016.

[21] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-
Karney, James Bornholt, Emina Torlak, and Xi Wang.
Nickel: A framework for design and verification of infor-
mation flow control systems. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI).
USENIX - Advanced Computing Systems Association,
October 2018.

[22] The Coq Development Team. The Coq proof assistant,
version 8.10.0, October 2019.



[23] Jean Karim Zinzindohoue, Evmorfia-Iro Bartzia, and
Karthikeyan Bhargavan. A verified extensible library of
elliptic curves. In IEEE Computer Security Foundations
Symposium (CSF), 2016.

[24] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, and Benjamin Beurdouche.
HACL*: A verified modern cryptographic library. In
Proc. CCS, 2017.


	Introduction
	Arithmetic Template Library
	Multi-Limbed Arithmetic
	A Note on Carrying
	Example: Multiplication Modulo 2127-1

	Domain-Specific Compiler
	Partial Evaluation For Specific Parameters
	Word-Size Inference
	Compilation To Constant-Time Machine Code

	Experimental Results
	X25519 Scalar Multiplication
	P-256 Mixed Addition

	Discussion

