
The Essence of Bluespec
A Core Language for Rule-Based Hardware Design

Thomas Bourgeat

MIT CSAIL

Cambridge, Massachusetts, USA

bthom@csail.mit.edu

Clément Pit-Claudel

MIT CSAIL

Cambridge, Massachusetts, USA

cpitcla@csail.mit.edu

Adam Chlipala

MIT CSAIL

Cambridge, Massachusetts, USA

adamc@csail.mit.edu

Arvind

MIT CSAIL

Cambridge, Massachusetts, USA

arvind@csail.mit.edu

Abstract
The Bluespec hardware-description language presents a sig-

nificantly higher-level view than hardware engineers are

used to, exposing a simpler concurrency model that pro-

motes formal proof, without compromising on performance

of compiled circuits. Unfortunately, the cost model of Blue-

spec has been unclear, with performance details depending

on a mix of user hints and opaque static analysis of poten-

tial concurrency conflicts within a design. In this paper we

present Kôika, a derivative of Bluespec that preserves its

desirable properties and yet gives direct control over the

scheduling decisions that determine performance. Kôika has

a novel and deterministic operational semantics that uses

dynamic analysis to avoid concurrency anomalies. Our im-

plementation includes Coq definitions of syntax, semantics,

key metatheorems, and a verified compiler to circuits. We

argue that most of the extra circuitry required for dynamic

analysis can be eliminated by compile-time BSV-style static

analysis.

CCSConcepts: • Software and its engineering→ Seman-
tics; Compilers; • Hardware→ Theorem proving and
SAT solving.

Keywords: HDL, Semantics, Compiler Correctness

ACM Reference Format:
Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind.

2020. The Essence of Bluespec: A Core Language for Rule-Based

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PLDI ’20, June 15–20, 2020, London, UK
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7613-6/20/06.

https://doi.org/10.1145/3385412.3385965

Hardware Design. In Proceedings of the 41st ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implemen-
tation (PLDI ’20), June 15–20, 2020, London, UK. ACM, New York,

NY, USA, 15 pages. https://doi.org/10.1145/3385412.3385965

1 Introduction
A synchronous digital circuit is a state-transition system

that specifies how the present state, held in registers, is

transformed into the next state at every clock cycle. Popu-

lar hardware-description languages like Verilog expose this

view fairly directly. However, for design purposes, it is not

easy to think of the functionality of a complex digital circuit

in terms of a global state-transition system.

Verilog does allow division of a design into separate con-

current blocks, each of which computes a subset of register

updates every cycle. The natural concurrency of computing

many state updates at once provides significant optimiza-

tion opportunities, but, as in concurrent software, it intro-

duces opportunities for bugs because of shared state. One

well-developed alternative is guarded atomic actions, as im-

plemented in the hardware-description language Bluespec

SystemVerilog (BSV) [30]. In BSV, the design specifies all the

state elements, i.e., registers, and describes the behavior us-

ing a set of atomic rules. Each rule specifies a deterministic

state transformation. It is guaranteed that rules appear to
execute atomically, one-at-a-time, much like the established

software concept of transactions. However, literal one-rule-

at-a-time (ORAAT) execution in a hardware circuit would

bring unacceptably poor performance. We still do need rules

to execute concurrently, though in a controlled way that

preserves the illusion of atomic execution. The BSV compiler

does static analysis to construct a per-design scheduler cir-
cuit automatically, which chooses among the set of (enabled)

rules in each clock cycle.

To appreciate the considerations that go into choosing

a schedule, it is important to start from the quantitative

metrics that matter for circuits. The most commonly cited

are power, performance, and area. We think of circuits as

directed graphs whose nodes are registers and gates, where

https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1145/3385412.3385965

PLDI ’20, June 15–20, 2020, London, UK Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind

no cycles are permitted on paths that only traverse gates. To

a first approximation, area and power follow from register

and gate counts, which we want to keep down. A major

determinant of performance is the clock-cycle time, which

is proportional to the critical-path length, i.e., the length of

the longest path between any registers, even from the same

register to itself. Path length here refers to the propagation

delay of all the gates on a path between two registers.

We might be tempted to aim for a free lunch by removing

gates to shorten the cycle time, but then we have postponed

work to happen on later cycles, not necessarily shortening

the total compute time. For example, consider a decomposi-

tion of function f into f2 ◦ f1 (section 5) to allow pipelining.

Let us assume that a circuit implementing f in one go re-

quires a single cycle of length 10 seconds to execute, while

circuits for f1 and f2 require 4 and 6 seconds, respectively.

The unpipelined system processes one token per 10 seconds

(the time to run f), while a system that repeatedly runs one

of f1 or f2 has cycle time equal to themaximum of those cycle

times, 6. Thus, in the two cycles it takes to run through the

full pipeline, we take up 2 ·6 = 12 seconds, and our “optimiza-

tion” actually made things worse. However, if both stages

f1 and f2 execute concurrently each cycle, i.e. in a pipelined

manner, we can process one token every 6 seconds.

The challenge in describing designs of this kind is that

we often want rules to execute concurrently even when they
access some of the same state elements. In the previous exam-

ple, pipeline stages f1 and f2 would need to share some kind

of queue, which f1 enqueues into and f2 dequeues out of
simultaneously each cycle, f1 enqueuing in cycle n the data

consumed by f2 in cycle n + 1.
The commercial BSV compiler relies on a static analysis

to do ORAAT-preserving concurrent scheduling of rules. Its

static analysis, combined with user-provided annotations

(e.g. descending urgency and execution order), generally

creates excellent circuits. This approach, however, is not sat-

isfactory for two reasons. (1) The static analysis should be

an abstraction of the dynamic semantics of a program. BSV’s

dynamic semantics applies only to one-rule-at-a-time execu-

tions, and the cycle-level semantics necessarily depends on

the static analysis of rules. (2) BSV programmers often think

deliberately about static-analysis details and even change

their code to nudge the compiler in the right direction to

achieve the desired degree of concurrency. We take a differ-

ent approach in this paper, providing a new core calculus

Kôika maintaining the essence of BSV, preserving all its de-

sirable properties and yet allowing direct control over the

atomic actions executed each clock cycle, without relying

on static analysis. Kôika programmers still need to think

about the real rule conflicts but not about the compiler’s

abstraction thereof. Our calculus includes a deterministic,
cycle-accurate operational semantics, enabling formal rea-

soning about performance, without removing the ability to

prove invariants by induction on sequential executions: the

effect of the set of rules completed each cycle is proven to

be always explainable in terms of ORAAT semantics.

Often the rules we want to run concurrently require con-

trolled communication amongst themselves. BSV’s ephemeral

history registers (EHRs) provide a mechanism to enhance

concurrency in rule scheduling. EHRs essentially enrich rule-

based designs with what are known as bypasses in hardware

design. EHR semantics guarantees that the observed behav-

iors can be reproduced with serial execution of rules. How-

ever, pure ORAAT semantics are unable to capture the perfor-

mance implications of EHRs because in ORAAT semantics,

EHRs are indistinguishable from ordinary registers. Kôika’s

semantics, on the other hand, capture both the functional

and performance aspects of EHRs.

The commercial BSV compiler can be viewed as producing

one schedule (concurrency strategy) automatically, and our

calculus supports most of these schedules and others that

allow more concurrency for performance
1
. Though space

limitations prevent us from delving into the concurrency

payoffs from Kôika’s more flexible scheduling, we present

the semantics of Koika, its ORAAT property, its compilation

into circuits, and the proof of the compiler’s correctness.

This paper makes the following contributions:

1. Kôika, the first core calculus for a BSV-like rule-based

language to support formal reasoning about both func-

tional and performance properties;

2. A cycle-accurate operational semantics that does not

depend upon any static analysis;

3. A keymetatheorem that Kôika’s operational semantics

only produces executions that can be mimicked with

one-rule-at-a-time execution;

4. A simple algorithm to compile Kôika programs into

RTL circuits, preserving the concurrency of the opera-

tional semantics;

5. A mechanization of Kôika and its metatheory in the

Coq proof assistant;

6. A formally verified compiler from Kôika to primitive

circuits;

7. A case study of an embedded-class pipelined processor

written in Kôika.

Paper organization: We start with an introduction to

Kôika (section 2), next defining its formal semantics (sec-

tion 3), which allows the execution of multiple rules in one

cycle. We prove that the ORAAT property emerges from

this semantics (section 4). Then we use Kôika’s semantics to

characterize the behavior of a pipeline (section 5). After that

we present a compilation of Kôika to circuits (section 6) and

discuss some efficiency concerns (subsection 6.4), followed

by related work (section 7) and a brief conclusion.

The Kôika release accompanying this paper is available at

https://github.com/mit-plv/koika/tree/pldi2020.
1
BSV and Kôika schedules can be difficult to compare because BSV allows

multiple rules to write into the same register but picks which write prevails.

https://github.com/mit-plv/koika/tree/pldi2020

The Essence of Bluespec PLDI ’20, June 15–20, 2020, London, UK

2 Introduction to Kôika
We start with a gentle introduction to Kôika, our calculus of

atomic actions, by presenting its features incrementally and

explaining their meanings informally (formal semantics are

presented in section 3). For readers familiar with BSV, this

section will serve mostly as a refresher.

2.1 Rules or Atomic Actions
Programs are composed of rules (roughly: atomic units of

execution) that manipulate values stored in registers. Taken
together, these rules define what happens in each clock cycle.

The following rule increments the value in register r:

rule increment =
let v = r.rd in r.wr(inc(v))

This rule first reads the value stored in register r into a

variable v, then applies the combinational (i.e., pure) function

inc to v, and finally writes the result in register r. All of these
actions are performed as one atomic unit.

Reads and writes: Our next example showcases one way

in which hardware languages differ from traditional software

languages. Rule swap swaps the values of two registers r and
s without using a temporary variable:

rule swap = s.wr(r.rd); r.wr(s.rd)

All read operations of registers, i.e., rds, refer to the values
found in the registers at the beginning of the cycle (equiva-

lently, these are the values committed to the registers at the

end of the preceding cycle). Correspondingly, the effect of a

write operation, i.e., wr, is not observable until the beginning
of the next cycle; all register updates happen simultaneously

at the end of each cycle.

Double writes: Delaying writes to the end of each cycle

requires us to clarify the semantics of double writes, i.e., the

case where write is called twice on the same register. We

could have decided to let the later write overshadow the

earlier one, but use of shadowing is typically considered

an antipattern; so instead we abort the execution of the

rule, meaning that the system behaves as if the rule did not

execute.

rule aborts = r.wr(0b11); s.wr(0b00); s.wr(0b01)

These aborts are detected dynamically, during execution,

and the whole rule is canceled atomically (in the example

above, this implies that the write to r will not be performed

either). In the following example, a double write happens

conditionally when r and s both hold the value 0, in which

case the rule aborts, though otherwise it succeeds.

rule conditional_abort =
if r.rd == 0 then t.wr(0b1);
if s.rd == 0 then t.wr(0b1)

Collatz function: We now know enough to look at a

small realistic example, which we will reuse for illustra-

tive purposes throughout the paper. The example below

computes terms of the Collatz sequence, defined by the

two equations un+1 = un/2 if un is a multiple of two, and

un+1 = 3 · un + 1 otherwise.

rule divide =
let v = r.rd in
if iseven(v) then
r.wr(v >> 1)

rule multiply =
let v = r.rd in
if isodd(v) then

r.wr(3 * v + 1)

Up to now we have focused on the semantics of rules in

isolation, but this example has two rules. The so-called one-

rule-at-a-time (ORAAT) semantics of a collection of rules is

to pick a rule nondeterministically, execute it, and commit its

results. (In case of an abort, the state does not change.) The

process is repeated endlessly, as if exactly one rule executed

in each clock cycle: if one rule writes to a register, the next

rule observes the newlywritten value. TheORAAT semantics

need not produce a deterministic answer because the rules

are not required to be confluent.

2.2 Scheduling
ORAAT is a conceptual model. In designing efficient hard-

ware, however, we strive to execute as many compatible rules

as possible in parallel in each clock cycle, without violating

the illusion of running rules one-at-a-time. In order to intro-

duce concurrency, we define a schedule, which specifies the

order in which we expect rule effects to become observable.

It is straightforward to see that rules operating on disjoint

register sets can be run in parallel without affecting the

final outcome. Regardless of scheduling order, their effects

commute. In the following example, however, opportunities

for parallel execution depend on scheduling choices:

rule write_r = r.wr(0b10)
rule read_r = s.wr(inc(r.rd))

Both of these rules access register r, and they may be

sequenced in twoways: attempt to run write_r then read_r,
or attempt to run read_r then write_r.

If we start with write_r then, according toORAAT, read_r
must observe the new value of r; hence, read_r cannot hap-
pen within the same cycle. If we start with read_r, on the

other hand, it is safe to run both rules in the same cycle: the

effect will be just the same as if we had executed read_r,
waited until the next cycle, and executed write_r. In that

case, we say that the two rules “fired” (ran) concurrently, or
simultaneously.
For this program, a scheduler that runs read_r before

write_r allows parallelism. A semantic characterization of

the system restricted to ORAATwould not specify how these

two rules should be sequenced, and it would therefore be

insufficient because such distinctions are crucial in hardware

PLDI ’20, June 15–20, 2020, London, UK Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind

design. Accordingly, unlike plain ORAAT semantics, our

definition of a program includes a scheduler specification,
which describes unambiguously the order in which rules

will appear to have run in each cycle. With this specification,

each program describes a unique sequential machine up to

Boolean equivalence, and it becomes possible to reason cycle-

accurately about performance.

Here is how we write the two schedules above:

schedule blocked = [write_r; read_r]
schedule parallel = [read_r; write_r]

The key point of making schedules explicit is to allow fine-

grained control over concurrency, by enabling several rules

to execute in one clock cycle as long as their effects are com-

patible with the linear order specified by the scheduler. Our

semantics ensure that concurrently executed rules produce

results compatible with ORAAT semantics. A rule whose

execution would cause a violation is aborted dynamically.

It is important to realize that a schedule specifies which

rules execute within one cycle. It says nothing about inter-

cycle scheduling; the same schedule is used every cycle. For

example in the blocked schedule, read_r will never actually

be performed because it will be preempted by write_r each

cycle.

2.3 Ephemeral History Registers (EHRs)
The language that we have outlined up to this point respects

ORAAT but is overly restrictive. Indeed, without adding

extra constructs in the language, there is no way to have

data flowing between rules within a single cycle: rules are

fully isolated from each other.

To relax this restriction while preserving ORAAT, we in-

troduce two new operations on registers, rd1 and wr1. (From
now on we treat rd and wr as synonyms for rd0 and wr0,
respectively.) These new primitives allow programmers to

control data forwarding between rules: data written by wr0
in a register is readable by rd1 on the same register, and data

written by wr1 becomes readable by rd0 in the next cycle
2
.

This mechanism coming from BSV is associated with the

unwieldy name ephemeral history register (EHR) [32, 33].

rule inc_r =
let v = r.rd0 in
if v < 0b101 then
r.wr0(inc(v))

rule check_r =
let v = r.rd1 in
if even(v) then
s.wr0(v)

schedule fwd = [inc_r; check_r]

The scheduler in this program specifies that inc_r should
execute first. Thus, if check_r attempted to read register r
by rd0, it would abort; but it may read r using rd1. Doing

2
It is natural to consider generalizing this mechanism to a register with

arbitrarily many “ports” (0, 1, 2, . . .), but it turns out that the two-port

version is expressive enough to encode any number of ports, so we restrict

our attention to this simpler case.

so, it observes the value written by inc_r, if any, or the
initial value of r otherwise. We say that the write to r was
forwarded to check_r. Similarly, check_r would abort if it

attempted a wr0 into r, but a wr1 would succeed and take

precedence over any value previously written by wr0.
rd0 and wr0 can be performed in any order within a rule.

However, if a wr0 is performed by a rule then, to preserve

ORAAT semantics, no later rule can perform a rd0 to the

same register in the same cycle. More generally, Kôika places

dynamic restrictions on these new operations. No reads or

writes can follow a wr1 in a subsequent rule (as an example,

a rd0 following a wr1would observe a stale value if it ran the
same cycle as a preceding wr1), and a wr0 cannot follow a rd1
in the same rule or across rules. We also add the restriction

that wr0 cannot follow wr1 in the same rule. This restriction

is not directly required but simplifies the semantics, and we

cannot think of an interesting program that would benefit

from relaxing the restriction. Roughly, we have the following

restrictions across rules: rd0 < wr0, wr1; rd1 < wr1; wr0 <
rd1— but note that, in the absence of a wr0, rd0 and rd1may

be interleaved freely. We will formalize these restrictions

in section 3. Finally, notice that the rds are per-register: it
is completely valid, and in fact often useful (particularly in

building pipelines), to use wr0 to store in a given register the

result of a computation involving a rd1 of another register. In
other words, the numbers should not be read as timestamps

describing a global order within the clock cycle.

Allowing for data forwarding between rules increases flex-

ibility and enables additional concurrency, but it potentially

lengthens the critical path of the generated circuit. Careful

designers typically use forwarding sparingly, when it un-

locks additional parallelism without increasing the critical

path in a destructive way.

The Collatz example revisited: After revealing addi-

tional primitives beyond just rd and wr, we can revisit our

Collatz example. It can be written as follows, using EHRs:

rule divide =
let v = r.rd0 in
if iseven(v) then
r.wr0(v >> 1)

rule multiply =
let v = r.rd1 in
if isodd(v) then

r.wr1(3 * v + 1)

schedule collatz = [divide; multiply]

Note that multiply performs a rd1, allowing both rules

to run in the same cycle in certain cases. More precisely, the

circuit behaves in the following way:

• If the value in r is even but not a multiple of 4, both

rules fire: the circuit writes 3 · (r/2) + 1 in r.
• If the value in r is a multiple of 4, only the first rule

fires: the circuit writes r/2 in r.
• If the value in r is odd, only the second rule fires: the

circuit writes 3 · r + 1 in r.

The Essence of Bluespec PLDI ’20, June 15–20, 2020, London, UK

This example shows that the concurrent execution of rules

can be enhanced substantially by using EHRs.

3 Formal Description of Kôika
Combinational functions (pure mathematical functions that

do not read or write registers) play no role in our semantics.

Therefore, we avoid describing them by assuming a set of

named combinational functions.

3.1 Syntax
A program is described by a set of rules and a scheduler:

Program P F [rule rule_name = a]∗

schedule schedule_name = s

Schedule s F done | cons rule_name s

As an abbreviation for cons r1 (cons r2 ...) we write

[r1, r2, ...], which represents the sequencing of rules.

Each rule_name in a schedule refers to a rule, which is an

action that returns tt (the unit value).

Actions a F b | x | skip | r .rdp | r .wrp(a)
| let x = a in a | f (a, . . . ,a)
| if a then a else a | abort

Ports p F 0 | 1

Bitstrings b F tt | 0b(0|1)+
Registers r Variables x Externals f

skip is the unit value for actions, standing for no action,

which returns tt when executed. As a shorthand, we write

a1; a2 for let x = a1 in a2 with unused x . Similarly, we

write if b then a for if b then a else skip, as we have al-
ready used in the introduction to the language. We will con-

sider only well-formed programs in this paper. For example,

a rule that attempts to write a 12-bit value into a one-bit reg-

ister, or calls an external combinational function with argu-

ments of inappropriate bit-widths or inappropriate number

of arguments, or refers to a nonexistent register, etc., will not

be considered. (Our implementation applies a very standard

type system to rule out these failures.)

3.2 Semantics
A rule in our language is an action that returns tt. It is char-
acterized by the log ℓ of reads and writes it performs. The se-

mantics of executing a single rule in isolation can be thought

of as defining a function from the register values (notated R)

to generate a log ℓ. This log ℓ is built inductively along with

the local environment of binders Γ. The effect of executing
this rule in isolation would be to use the generated log to

update the registers: Rnext_cycle = update (R, ℓ), with:
update (R, []) = R
update (R, ℓ ++ [(rd∗, r)]) = update (R, ℓ)
update (R, ℓ ++ [(wr∗, r ,v)]) = update (R, ℓ)[r 7→ v]

Indeed there are at most two writes per register in the log,

wr0 and wr1, andwewill come shortly to how it is guaranteed

that wr0 never precedes wr1 for any register.

We want to give the semantics of executing multiple rules,

as specified by the schedule, every clock cycle. Under such cir-

cumstances, a rule can see the side effects of rules scheduled

earlier. Therefore, we accumulate the effects of all preceding

rules in a global log L. Thus the semantics of a rule whose

body is a are as follows:

JaK(R,L) =

{
Log ℓ if a succeeds and produces the log ℓ

Fail if a fails

which we can use to define the effect of executing multiple

rules according to a scheduler.

(L, done) ⇓ L
Done

JaK(R,L) = Log ℓ (L ++ ℓ, snext) ⇓ L
′

(L, cons a snext) ⇓ L
′

SeqLog

JaK(R,L) = Fail (L, snext) ⇓ L
′

(L, cons a snext) ⇓ L
′

SeqFail

Figure 1. Scheduler semantics, with rule rl = a

Note that there is no difference between a rule that fails

and an empty rule.

Semantics of actions. Now we can describe in detail the

way log generation by rules is defined inductively:

• R records the state of all available registers at the be-

ginning of a clock cycle. Hence R remains invariant

throughout the execution of a rule, and in fact through-

out the execution of all the rules in a schedule.

• Γ tracks pairs of names and values created by let
constructs. It starts out empty.

• ℓ accumulates the reads and writes of the rule.

• L accumulates a trace of all the reads and writes per-

formed by rules executed earlier in the same clock

cycle (i.e., as part of the same schedule). L remains

invariant through the execution of the rule but affects

the validity of reads and writes by this rule.

The semantics of actions are defined by structural induc-

tion in Figure 2. We write Γ ⊢ (ℓ,a) ↓(L,R) (ℓ
′,v), to indicate

that in environment Γ, with log L and registers R, executing an
action a transforms ℓ into ℓ′ and returns value v . When there

is no ambiguity, we omit L andR and write Γ ⊢ (ℓ,a) ↓ (ℓ′,v)
instead.

Careful inspection of our semantic judgments reveals that

all premises are deterministic and computable. That means

we can define a computable evaluation function unambigu-

ously, returning either the result of executing the action or

Fail if at any point in the execution the conditions of the

PLDI ’20, June 15–20, 2020, London, UK Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind

Γ[x] = v

Γ ⊢ (ℓ,x) ↓ (ℓ,v)
Var

Γ ⊢ (ℓ, skip) ↓ (ℓ,tt)
Skip

Γ ⊢ (ℓ,b) ↓ (ℓ,b)
Const

∀ 1 ≤ i ≤ n. Γ ⊢ (ℓi−1,ai) ↓ (ℓi ,vi)

Γ ⊢ (ℓ0, f (a1, . . . ,an)) ↓ (ℓn , f v1 . . .vn)
Call

Γ ⊢ (ℓ,ac) ↓ (ℓ
′, 0b1) Γ ⊢ (ℓ′,at) ↓ (ℓ

′′,v)

Γ ⊢ (ℓ, if ac then at else af) ↓ (ℓ
′′,v)

IfT

Γ ⊢ (ℓ,ac) ↓ (ℓ
′, 0b0) Γ ⊢ (ℓ′,af) ↓ (ℓ

′′,v)

Γ ⊢ (ℓ, if ac then at else af) ↓ (ℓ
′′,v)

IfF

Γ ⊢ (ℓ,a1) ↓ (ℓ
′,v) Γ[x 7→ v] ⊢ (ℓ′,a2) ↓ (ℓ

′′,v ′)

Γ ⊢ (ℓ, let x = a1 in a2) ↓ (ℓ
′′,v ′)

Bind

(wr1, r , ∗) < L (wr0, r , ∗) < L

Γ ⊢ (ℓ, r .rd0) ↓ (ℓ ++ [(rd0, r)],R[r])
Read0

(wr1, r , ∗) < L v =

{
R[r] if (wr0, r , ∗) < L ++ ℓ
v0 if (wr0, r ,v0) ∈ L ++ ℓ

Γ ⊢ (ℓ, r .rd1) ↓ (ℓ ++ [(rd1, r)],v)
Read1

Γ ⊢ (ℓ,a) ↓ (ℓ′,v) (wr0, r , ∗) < L ++ ℓ′

(wr1, r , ∗) < L ++ ℓ′ (rd1, r) < L ++ ℓ′

Γ ⊢ (ℓ, r .wr0(a)) ↓ (ℓ′ ++ [(wr0, r ,v)],tt)
Write0

Γ ⊢ (ℓ,a) ↓ (ℓ′,v) (wr1, r , ∗) < L ++ ℓ′

Γ ⊢ (ℓ, r .wr1(a)) ↓ (ℓ′ ++ [(wr1, r ,v)],tt)
Write1

Figure 2. Rule semantics (assuming well-formed programs)

relevant rules are not met and the rule execution cannot pro-

ceed. Thus, where we previously wrote “JaK(R,L) = Log ℓ if
a succeeds and produces the log ℓ,” we can now be precise:

JaK(R,L) =

{
Log ℓ if ∅ ⊢ ([],a) ↓(L,R) (ℓ,tt)
Fail otherwise

Finally, at the end of each cycle, we update the values of all

registers based on the reads and writes accumulated in log L.
The same considerations of determinism and computability

apply to the execution of schedulers, so we can define our

final state-transition function δs , capturing all updates done

to registers in a cycle when following scheduler s:

δs (R) = update (R,L) if ([], s) ⇓ L.

Coq formalization Our mechanization matches this expo-

sition quite closely, with the difference that the logs are

represented in the opposite order. Programs are written

as deeply embedded, dependently typed ASTs (see action

in TypedSyntax.v), though for convenience we also have

an untyped layer (UntypedSyntax.v), a typechecker (Type-
Inference.v), and a grammar that closely match the syntax

used in this paper (Parsing.v). The semantics are formu-

lated in denotational style, as recursive functions returning

either Log(. . .) or Fail (see interp_rule, interp_scheduler,
and commit_update in Semantics.v, which correspond to

what we here call JaK(R,L) and update (R,L)).

4 The One-Rule-at-a-Time Theorem
Our semantics builds a log accumulating the updates per-

formed by all rules that the dynamic scheduler allows to run.

It guarantees that performing a single update of the registers

at the end of the cycle, after running multiple rules, yields

the same state as performing updates after running each rule

(as if a single rule had run in each cycle).

Let us illustrate that statement with the following example:

rule incr = x.wr0(x.rd0 + 1)
rule copy = y.wr0(x.rd1)
rule decr = x.wr1(x.rd1 - 1)
schedule _ = [incr; copy; decr]

The choice of scheduler and the port annotations (using

rd1 in copy and wr1 in decr) ensure that all rules can run

in each cycle. Overall, this program assigns (x + 1) − 1 to

register x and x + 1 to register y. This result (obtained by

running multiple rules in a single cycle) respects one-rule-at-

a-time semantics, because the same result can be obtained

by running one rule per cycle, in the order specified by the

scheduler: x ← x + 1, then y ← x , and finally x ← x − 1.
Most of the checks that appear in the premises of Figure 2

are there to preserve ORAAT semantics. For example, allow-

ing a rd0 to follow a wr0 performed by an earlier rule in

the same cycle would not respect ORAAT: the rd0 would

observe the old value of the register if it ran in the same

cycle, vs. the new value if it ran in the next cycle.

We define the action of a single rule on the registers by

applying the semantics of actions directly:

JaK(R, ∅) = Log ℓ R ′ = update (R, ℓ)

R →a R
′

rule

And we define a relation indicating that a state is reachable

in several rules: R →∗
[]
R and R →∗

h::t
R ′′ when ∃R ′. R →h

R ′ ∧ R ′→∗
t
R ′′.

We can now give the proper statement of a key property:

Theorem 1. If δs (R) = R1 then there exists a sequence of
rules of the program that one-at-a-time reach the same state:
∃ rls ∈ traces(s). R →∗rls R1, where traces(s) refers to all
sequences of rules named in the scheduler s .

This theorem can be found as OneRuleAtATime in the

file OneRuleAtATime.v. In this paper, we detail only the

following key lemma.

The Essence of Bluespec PLDI ’20, June 15–20, 2020, London, UK

Lemma 1. ∀a, Γ, ℓ,Lnew,Lold, ℓ′,v,R.
Γ ⊢ (ℓ,a) ↓Lold++Lnew,R (ℓ

′,v) ⇒
Γ ⊢ (ℓ,a) ↓Lnew,update(R,Lold) (ℓ

′,v)

Proof. This lemma corresponds to interp_rule_commit in
OneRuleAtATime.v. The proof works by induction on a. We

outline the most interesting cases here. One key invariant

is that there is at most one wr0 and wr1 per register, as the
semantics prevent double wr0 or wr1.

r .rd1.. Assume Γ ⊢ (ℓ, r .rd1) ↓L
old
++Lnew,R (ℓ

′,v). There are
two cases depending on where the rd1 read the value from.

Case 1: Read from register. Necessarily we have ℓ′ = ℓ ++

[(rd1, r)] ,R[r] = v , (wr1, r , ∗) < Lold++Lnew and (wr0, r , ∗) <
ℓ ++ Lold ++ Lnew, which implies that (wr1, r , ∗) < Lnew and

(wr0, r , ∗) < Lnew ++ ℓ. We also get (wr0, r , ∗) < Lold and

(wr1, r , ∗) < Lold, so:

update (R,Lold)[r] = R[r]

Hence we can use the Read1 rule reading from the reg-

ister, with L F Lnew and R F update (R,Lold) and so

Γ ⊢ (ℓ, r .rd1) ↓Lnew,update(R,L
old
) (ℓ
′,v).

Case 2: Read from log. Necessarilywe have ℓ′ = ℓ++[(rd1, r)],
(wr0, r ,v) ∈ Lold ++ Lnew ++ ℓ, and (wr1, r , ∗) < Lold ++ Lnew.
There are three subcases depending on the source of the

unique wr0 we read from. The write is in ℓ, in Lnew, or
in Lold. The only interesting case is when the write is in

Lold. We have (wr0, r ,v) ∈ Lold and (wr1, r , ∗) < Lold, so
update (R,Lold)[r] = v . Moreover, (wr0, r , ∗) < Lnew++ℓ and
(wr1, r , ∗) < Lnew.
So we have all the premises to apply Read1, reading di-

rectly from the register. This case is the most interesting be-

cause, in serializing a trace, we converted a log read into a reg-

ister read. We get Γ ⊢ (ℓ, r .rd1) ↓Lnew,update(R,L
old
) (ℓ
′,v). □

Formalization. The complete proof is carried out in full

detail in OneRuleAtATime.v. A high degree of automation

ensures that the proof of the key invariants is short (about 40

lines) and robust, which enabled us to iterate quickly when

designing Kôika’s semantics (in all cases, we were able to

make changes to the semantics and confirm with few to no

proof edits that the new semantics still respected ORAAT).

5 Case Study: A Cycle-Accurate
Characterization of a Pipelined System

We now have all the pieces in place to demonstrate how one

might use our semantics to prove interesting characteristics

of a circuit beyond functional correctness. As a concrete

example, we study the pipeline of two combinational func-

tions f1 and f2 that our introduction alluded to. Recall that,

if f1 and f2 both have critical-path length l , then a naïve

implementation of their composition f2 ◦ f1 in a single rule

do_f12 would have length 2 · l . On the other hand, if we

decompose the system into two independent rules do_f1

and do_f2 connected through a one-element queue, we can

reduce the critical-path length to just l .
But this path-length reduction only matters if we can guar-

antee that f1 and f2 run concurrently in each cycle, that is, the
system actually runs in a pipelined manner. A traditional

ORAAT semantics is enough to prove that the “pipelined”

system is a correct refinement of the monolithic one (in the

sense that it computes the same values) but is not sufficient

to prove the two-rules-per-cycle property. In fact, it would

be hard even to state such a property because “cycle” is not

a meaningful concept in a typical ORAAT formalization.

In the followingwe present the implementation of a simple

pipelined system and sketch its proof. We start with the

implementation, in which two rules do_f1 and do_f2 are

connected through a one-element queue composed of a data-

holding register r and a flag empty indicating whether the
queue is empty. Initially, empty is set to true.

rule feed_pipeline =
clock.wr0(clock.rd0 + 1)
input.wr0(input_stream(clock.rd0))

rule do_f2 =
if empty.rd0 then
abort

else
// dequeue
out.wr0(f2(r.rd0));
empty.wr0(true)

rule do_f1 =
if empty.rd1 then
// enqueue
empty.wr1(false);
r.wr0(f1(input.rd1))
else
abort

schedule pipeline =
[feed_pipeline; do_f2; do_f1]

One-rule-at-a-time reasoning is sufficient to prove that our

pipeline is functionally correct (it computes the composition

of f1 and f2). The methodology in [9] applies directly.

More interestingly, we can also prove that the system pro-

cesses one value per cycle and hence deserves to be called a

pipeline. From the second cycle on, the circuit simultaneously

performs do_f1 and do_f2 on each cycle (on the first cycle,

only do_f1 can fire, since there is no value in the pipeline

for do_f2 to dequeue and process).

The proof is in two steps. First, by applying our semantics

to the program, we derive a sufficient (and, in fact, necessary)

criterion for both do_f1 and do_f2 to fire simultaneously:

both rules will fire in a cycle if empty contains false at the

beginning of that cycle (i.e. the pipeline is not empty).

This property is not an invariant in the one-rule-at-a-time

sense, since do_f2 breaks the invariant by emptying the

pipeline, and do_f1 reestablishes it, but it is a cycle invariant:
from our semantics, it is straightforward to show that (1)

if the pipeline is empty, do_f1 will fill it, (2) if the pipeline
is nonempty, do_f1 and do_f2 will both fire in the same

cycle, and (3) running do_f2 and then do_f2 in a nonempty

pipelinemaintains a nonempty pipeline (a one-rule-at-a-time

argument is enough for this last part).

PLDI ’20, June 15–20, 2020, London, UK Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind

Hence the pipeline fills and, once full, stays full: from the

second cycle on, the pipeline runs both rules on every cycle

and processes one element per cycle.

6 Compilation
In this section, we explain the algorithm for generating cir-

cuits from Kôika programs. We first describe the target lan-

guage and the compilation strategy, next explaining in detail

how rules and schedulers are translated into circuits and

how everything is wired together. In the end, we obtain one

combinational state-update function per register, taking as

inputs the initial (beginning-of-cycle) values of all registers,

outputting the end-of-cycle value of each register.

6.1 Overview
Our compiler targets a minimal RTL language in which each

circuit takes the beginning-of-cycle values of all registers as

inputs and produces a single output. On the Coq side, we

use a dependently typed representation in which the type of

each circuit indicates how many bits it computes. Sharing is

implicit in the Coq representation.

Register r
Constant b F 0b(0|1)+
Circuit c F b | ¬c | c ∧ c | c ∨ c

Mux (c, c, c) (multiplexing)

R[r] (read old value)

The denotational semanticsδR(c) of these circuits (giving the
value computed by a circuit c as a function of the beginning-

of-cycle register values R) are straightforward, and we omit

them for space (Mux evaluates to a ternary if). At a high

level, our compiler is a compositional denotational semantics

into circuits, i.e., a syntax-driven recursive function specify-

ing how to transform programs into collections of circuits,

one per register. To minimize the critical path, our compi-

lation strategy does not follow the sequential style used in

the semantics; instead, we create circuits that run all rules

in parallel, with minimal data forwarding, and only after

completing the execution of a rule do we check whether its

read/write set conflicts with those of earlier rules. While

the circuit that runs rules in parallel could conceivably be

obtained through a global Boolean transformation of a cir-

cuit running rules sequentially, it is more straightforward to

generate the optimized circuit directly. We proceed in three

phases.

First, we compile each rule in isolation (that is, as if no

other rule had executed in the same cycle), generating a

collection of signals from the body of each rule:

• An ok circuit indicating whether the rule could fire if

it were alone

• A circuit computing a representation of the rule’s

read/write set (i.e. which registers it needs to read

from and write to)

• A circuit indicating which new data, if any, the rule

would write in each register

These circuits correspond to a hardware log: a finite, compact

representation of the log ℓ of all actions performed by the

rule, as if log L were empty.
Second, we build circuitry to determine whether each rule

can in fact be committed. (We say that a rule is “commit-

ted” once the scheduler has determined that it is compatible

with the ones that preceded it at that point, in which case

its writes will be reflected into registers at the end of the

cycle. This terminology is justified by the one-rule-at-a-time

theorem.) This is done by combining the ok signal of each
rule with a check ensuring that the read/write set of that rule

is compatible with the read/write sets of rules previously

committed in the same cycle (this compatibility testing corre-

sponds to a delayed version of the checks performed against

L in the semantics: our compilation strategy delays these

checks, because the circuits that we generate execute all

rules in parallel). This step also requires appropriate wiring

to forward values between rules.

Finally, we compute the end-of-cycle value of each register,

based on the accumulated hardware log.

6.2 Compiling Rules
Recall that, according to the semantics in subsection 3.2, an

action may either succeed (return Log(. . .)) or abort (return
Fail) depending on whether the premises of the correspond-

ing deduction rule hold. In addition, each action returns a

value (possibly tt), appends to a per-action log ℓ capturing
the read and write operations that the action performs, and

updates an environment Γ of bound variables.

Accordingly, our compiler takes a partial hardware log

ℓ and a piece of Kôika syntax a, producing a collection of

combinational circuits that we write as ((ℓ,a)):

• A circuit carrying the return value of a; we notate it
((ℓ,a)).ret, read as “the ret wire of ℓ extended with a.”
• An updated hardware log keeping track, for each reg-

ister, of whether it was read or written at port 0 and

1 by the current rule (four 1-bit signals: ((ℓ,a)).r .rd0,
((ℓ,a)).r .rd1, ((ℓ,a)).r .wr0, and ((ℓ,a)).r .wr1), and, if writ-
ten, of which value was written at each port (two n-bit
signals: ((ℓ,a)).r .data0 and ((ℓ,a)).r .data1)3. Addition-
ally, the hardware log tracks whether the rule can

safely proceed (((ℓ,a)).ok).

To construct these circuits, our compiler recursively de-

scends through the syntax tree of a, combining intermediate

results into larger circuits. As part of this process, it builds a

compilation context, a map Γ keeping track of the ((ℓ,a)).ret
circuits that were generated for the right-hand sides of the

let-bindings of the original program.

3
The invariant for ((ℓ, a)).r .data0 is a bit more subtle; this wire starts out

holding the value of register r and thereafter carries the latest wr0 performed

by the current rule or any previous one, if any.

The Essence of Bluespec PLDI ’20, June 15–20, 2020, London, UK

Figure 3 details the transformations performed when en-

countering each syntactic construct, but it helps to start with

a detailed example. Key to understanding the compilation

pipeline is realizing that the shapes of the generated circuits

closely mirror the semantic rules of subsection 3.2. Con-

sider the Write0 rule, repeated below (with slight premise

rearrangement to logically equivalent form):

Γ ⊢ (ℓ,a) ↓ (ℓ′,v)
(rd1, r) < ℓ′ (wr∗, r , ∗) < ℓ′

(rd1, r) < L (wr∗, r , ∗) < L

Γ ⊢ (ℓ, r .wr0(a)) ↓ (ℓ′ ++ [(wr0, r ,v)],tt)
Write0

To generate a circuit corresponding to r .wr0(a), given a

partial log ℓ, we first compile a to obtain an updated log

((ℓ,a)), reflecting ℓ′. We then synthesize the circuitry corre-

sponding to the ok flag as a conjunction of clauses closely

matching each premise of the rule above (the first equiva-

lence below means that if evaluating a returns Fail, then so

should evaluating r .wr0(a); the next two translate predicates
characterizing the log ℓ′ into circuits):

Γ ⊢ (ℓ,a) ↓ (ℓ′,v) is mapped to ((ℓ,a)).ok

(rd1, r) < ℓ′ is mapped to ¬ ((ℓ,a)).r .rd1

(wr∗, r , ∗) < ℓ′ is mapped to ¬ ((ℓ,a)).r .wr0 ∧ ¬ ((ℓ,a)).r .wr1

Putting it all together, we obtain the following circuit for

ok (note that we do not explicitly mention ℓ.ok — this is

because its value is already embedded in ((ℓ,a)).ok):

((ℓ, r .wr0(a))).ok = ((ℓ,a)).ok ∧ ¬ ((ℓ,a)).r .rd1 ∧

¬ ((ℓ,a)).r .wr0 ∧ ¬ ((ℓ,a)).r .wr1

The other circuits are more straightforward to construct

(we use the shorthand syntax A.∗ = B.∗ to mean that A’s
remaining wires are all the same as B’s):

((ℓ, r .wr0(a))).ret = ε (empty value, i.e. no wires)

((ℓ, r .wr0(a))).r .wr0 = 0b1

((ℓ, r .wr0(a))).r .data0 = ((ℓ,a)).ret

((ℓ, r .wr0(a))).∗.∗ = ((ℓ,a)).∗.∗

The last line means that all wires pertaining to r besides wr0
and data0 are unchanged from ℓ, and in addition that all

wires pertaining to other registers are unchanged as well.

Note that, as alluded to earlier, we did not translate the two

premises pertaining to the log L. This is because our compila-

tion strategy defers these checks to the scheduling circuitry.

This approach minimizes the number of wires threaded be-

tween individual actions, and it is safe because L, unlike ℓ,
is unchanged throughout the evaluation of a rule.

6.3 Compiling the Hardware Scheduler
The scheduling circuitry combines compiled rules together in

scheduling order, determining which rules can be committed

and computing the set of register updates to apply at the

end of the cycle. The compilation process is quite similar to

((ℓ,x)).ret = Γ[x]

((ℓ,x)).∗ = ℓ.∗

((ℓ, skip)).ret = ε

((ℓ, skip)).∗ = ℓ.∗

((ℓ, const b)).ret = b

((ℓ, const b)).∗ = ℓ.∗

((ℓ, if a1 then a2 else a3)).∗

= Mux (c1.ret, ((c1,a2)).∗, ((c1,a3)).∗)
(where c1 = ((ℓ,a1)))

((ℓ, let x = a1 in a2)).∗ = ((c1,a2)).∗
(with Γ[x 7→ c1.ret] where c1 = ((ℓ,a1)))

((ℓ, abort)).ok = 0b0

((ℓ, abort)).∗ = ℓ.∗

((ℓ, r .rd0)).ok = ℓ.ok

((ℓ, r .rd0)).ret = R[r]
((ℓ, r .rd0)).r .rd0 = 0b1

((ℓ, r .rd0)).∗.∗ = ℓ.∗.∗

((ℓ, r .rd1)).ok = ℓ.ok

((ℓ, r .rd1)).ret = ℓ.r .data0

((ℓ, r .rd1)).r .rd1 = 0b1

((ℓ, r .rd1)).∗.∗ = ℓ.∗.∗

((ℓ, r .wr1(a))).ok = ((ℓ,a)).ok ∧ ¬((ℓ,a)).r .wr1

((ℓ, r .wr1(a))).ret = ε

((ℓ, r .wr1(a))).r .wr1 = 0b1

((ℓ, r .wr1(a))).r .data1 = ((ℓ,a)).ret

((ℓ, r .wr1(a))).∗.∗ = ((ℓ,a)).∗.∗

((ℓ, f a1 . . . an)).ret = f c1.ret . . . cn.ret
((ℓ, f a1 . . . an)).∗ = cn.∗
(with f the external circuit, c1 = ((ℓ,a1)), c2 = ((c1,a2)), . . .)

Figure 3. Translations making up the rule compiler. The

r .wr0(a) case was discussed in the main text and is not re-

peated here. Note that unlike in the semantics, the circuit

generated for rd1 has no case split, because the r .data0 wire
always carries the latest wr0 data if any, or R[r] otherwise.

PLDI ’20, June 15–20, 2020, London, UK Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind

that of rules, but this time we are building the hardware log

corresponding to L, not ℓ, and there are no return values.

Concretely, we need to tackle the following issues:

Forwarding data. The rule compiler that we described

previously takes two inputs: the syntax of the rule and a par-

tial hardware log. This log is needed because later rules in

scheduling order may observe (through calls to rd1) writes
performed by previous rules in the same cycle. In a purely

sequential compilation scheme, similar to the way our se-

mantics of Kôika are phrased, we would use the log circuit

L produced by accumulating the logs of all preceding rules.

But, for performance reasons, we want to compile the control

circuits (rd0, wr0, etc.) of all rules in parallel, so we assemble

each initial log ℓ0(L) by keeping only the data0 and data1
signals instead, as shown in Figure 4.

ℓ0(L) .ok = 0b1

ℓ0(L) .r .data0 = L.r .data0
ℓ0(L) .r .data1 = L.r .data0
ℓ0(L) .r .∗ = 0b0

Figure 4. Fresh log ℓ used when starting rule compilation

Deciding which rules to commit and updating L. The
circuits generated by compiling each rule include a flag ok,
whose run-time value will indicate whether the rule could

fire on its own, or whether it would instead reach an abort
or perform two writes to the same location. That signal,

however, does not take into account whether the reads and

writes performed by the rule are compatible with those of

other already-committed rules. This means that our schedul-

ing circuitry must compute whether a rule a is safe to run,

by checking its ok flag and performing all deferred checks

pertaining to the log L. The equations are shown in Figure 5.

wf (L, ℓ) =
ℓ.ok

∧
∧
r

ℓ.r .rd0 =⇒ ¬
(
L.r .wr0 ∨ L.r .wr1

)
∧
∧
r

ℓ.r .wr0 =⇒ ¬
(
L.r .wr0 ∨ L.r .wr1 ∨ L.r .rd1

)
∧
∧
r

(ℓ.r .rd1 ∨ ℓ.r .wr1) =⇒ ¬L.r .wr1

Figure 5. Deciding whether two logs are compatible. x =⇒
y is used as a shorthand for ¬x ∨ y, and wf for “will fire.”

Putting it all together. We define the final circuit by the

recursion below. In words, these compilation rules indicate

that a scheduler feeds each control-flow path a representa-

tion of the cumulative hardware log updated to take into

account the new rule (either an updated L’ if the rule can

execute and commit or the original L otherwise) and returns

the same results as whichever path was selected based on

the computation of wf (L, ℓ):

((L, cons a s)).∗ = Mux (wf (L, ((ℓ0(L) ,a))) , ((L′, s)).∗, ((L, s)).∗)
L′.r .data0 = ((ℓ0(L) ,a)).r .data0
L′.r .data1 = ((ℓ0(L) ,a)).r .data1
L′.r .∗ = ((ℓ0(L) ,a)).r .∗ ∨ L.r .∗

With that, only the very beginning and the very end of

the compilation process are left:

• Feeding the circuit with the initial data for the data0
wire at the root, as well as the initial read-write set

(data1 does not need to be initialized to any specific

value as its value is never used before having been set).

For data0, the value is simply the actual register (i.e.

L0.r .data0 = R[r]), and the read-write sets are blank

(i.e. L0.r .rd0 = .rd1 = .wr0 = .wr1 = 0b0).
• Performing the actual update of the registers: given

a scheduler s , the state-update circuit computing the

end-of-cycle value of the register r , ⟨s⟩r , is

⟨s⟩r = Mux(((L0, s)).r .wr1,
((L0, s)).r .data1, ((L0, s)).r .data0)

6.4 Performance Concerns
Performance-minded readers might be worrying at this point

that the circuitry that we introduce to track read sets and

write sets and to compute conflicts with previously sched-

uled rules would prove prohibitively expensive. In fact, this

cost should be minimal for the following reasons. First, no

registers are needed to maintain the hardware logs associ-

ated with each rule; these are computed dynamically during

the cycle and consumed by the end of the cycle. Second, the

write sets and associated data values are needed in any com-

pilation scheme to compute the next state function. Thus,

only the read-set part of the hardware log represents the

overhead of our compilation scheme. Third, the number of

gates needed to compute the intersection of these sets with

the read-write log is at most proportional to the number of

rules and the sizes of the read and write sets of the rules. Fur-

thermore, for many rules, simple static analysis will tell us

the exact read/write sets, and standard Boolean optimization

will get rid of most circuitry. In those cases, the Boolean logic

associated with intersections will be eliminated by constant

propagation. Our compiler includes an optimization pass

that performs such constant propagation as well as standard

Boolean simplifications and partial evaluation:

¬1→ 0

¬0→ 1

c ∧ 0→ 0

0 ∧ c → 0

c ∨ 1→ 1

1 ∨ c → 1

c ∧ 1→ c

1 ∧ c → c

c ∨ 0→ c

0 ∨ c → c

The Essence of Bluespec PLDI ’20, June 15–20, 2020, London, UK

Mux (0,x ,y) → x

Mux (1,x ,y) → y

Mux (c, 1,x) → c ∨ x

Mux (c,x , 0) → c ∧ x

Mux (c,x ,x) → x

Mux (c,Mux (c ′,y,x) ,y) → Mux (c ∧ ¬c ′,x ,y)

Mux (c,Mux (c ′,x ,y) ,y) → Mux (c ∧ c ′,x ,y)

Mux (c,x ,Mux (c ′,x ,y)) → Mux (c ∨ c ′,x ,y)

Mux (c,x ,Mux (c ′,y,x)) → Mux (c ∨ ¬c ′,x ,y)
Mux (c,Mux (c,x1,x2) ,y) → Mux (c,x1,y)
Mux (c,x ,Mux (c,y1,y2)) → Mux (c,x ,y2)

These optimizations are enough to produce optimal cir-

cuits for simple examples like Collatz and to eliminate most

overheads due to read-write-set tracking in our processor

case study (subsection 6.6), shrinking the generated circuit

graph from 80k nodes down to 3k nodes.

To summarize, the extra logic for tracking falls into two

categories: (1) Programswhere dynamic data-dependency de-

tection reveals no more opportunities to avoid rule conflicts

than the BSV compiler’s static analyses of rules. We assert

in such cases that the same Boolean reasoning should carry

over to simplify our scheduling circuitry, eliminating the

overhead introduced by our compiler. This assertion holds in

the examples explored so far. (2) Programs where dynamic

detection of concurrency matters. In this case, programmers

control the trade-off through scheduling: a potentially longer

critical path with more concurrency, or a regular critical path

with Bluespec-style concurrency. This trade-off is similar to

the one that BSV users face while using EHRs.

To offer complete quantitative evidence of our claims us-

ing large programs will require more work and optimizations

in the compiler. Currently, Kôika does not have a module sys-

tem, without which it may be difficult to capture the sharing

of circuitry that comes from the use of port modules, as in a

register file or memory system. Finally, the rearrangement

of gates to reduce critical-path lengths in RTL remains a

mystery in the best of times, and it will require more exper-

imentation to discover whether the patterns generated by

the Kôika compiler are able to make adequate use of these

optimizations; initial evidence (subsection 6.6) is promising.

6.5 Implementation and Verification
We have implemented the compilation strategy outlined

above within Coq, verifying its correctness by connecting

Kôika’s semantics to those of the minimal RTL that we target.

To convert from mini-RTL into Verilog, we use a thin un-

verified pretty-printing layer that targets a correspondingly

small subset of Verilog, and from there we can use standard

synthesis tools like Yosys to obtain FPGA bitstreams or ASIC

designs.

Proving compiler correctness. Our top-level theorem guar-

antees that computing register updates by interpreting a

scheduler according to our original high-level semantics pro-

duces the same results as evaluating the resulting, compiled

circuits according to our RTL semantics. Succinctly, recalling

that δs (R) is the state-update function mapping old register

values to new register values according to a schedule s , that
δc is the denotation of circuit c, and that ⟨s⟩r is the com-

piled circuit that computes the new value of register r, the
theorem is

∀R, s, r . δs (R)[r] = δ ⟨s ⟩r (R) .

The main difficulty of the proofs stems from the gaps be-

tween the original denotational semantics and the generated

circuits. First, in the semantics, rules have access to the accu-

mulated log Lwhen deciding whether to allow or reject reads

or writes; in the circuits, on the other hand, all rules run con-

currently, each executing independently as if it were started

with an empty L, and all cross-rule consistency checks are

delayed until the computation of thewf signal. Second, while
the semantics use sequential logs to keep track of the reads

and writes, the circuits that we generate build minimal hard-
ware logs, with single bits indicating whether each register

has been read from orwritten to at each port. Third, while the

interpreter can fail immediately upon encountering a forbid-

den action (such as a double write), the ok circuits are built

once and must ensure that failures are propagated correctly

throughout. Details on the corresponding proofs are given

in Appendix A, with full proofs in CircuitProperties.v
and CircuitCorrectness.v.

6.6 A Simple RISC-V Processor in Kôika
To evaluate the cost of dynamic tracking, we wrote a simple

4-stage RISC-V processor (RV32I without interrupts; see Ap-

pendix B for architectural description and synthesis method-

ology) both in BSV and in Kôika, andwe compared the results.

These results are presented in Figure 6.

Program mandelbrot median tm qsort

Inst. count 41168976 25981 21867 35405

Cycles (Kôika) 70508760 60692 47550 82837

Cycles (BSV) 70508760 60692 47550 82837

Performance Critical Path (ps) Logic Area (µm2
)

Kôika (Retiming) 296.87 5504

BSC (Retiming) 258.45 5437

Kôika 686.29 14115

BSC 651.60 11981

Figure 6. Synthesis and architectural results

Each processor implementation takes roughly 1000 lines

of code in its respective language. Both processors took ex-

actly the same number of cycles to compute, which shows

that the scheduling in both designs is identical. Our design

achieves a respectable critical path (on par with the BSV

design). Our design achieves a respectable critical path and

PLDI ’20, June 15–20, 2020, London, UK Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind

area, with a 15% slowdown and minimal area overhead with

register retiming, and an 18% area overhead and negligible

slowdown without register retiming. Our example shows

that it is possible to implement a design of this complex-

ity, control its concurrency, and generate working hardware

through a proven compiler.

7 Related Work
We begin with other prior work on hardware design based

on atomic actions, followed by contrasting BSV/Kôika-style

atomic actions with software and hardware transactions.

We will also discuss briefly other competing approaches to

hardware design, namely hardware description languages

(HDLs) like Verilog and Chisel, high-level synthesis from

sequential languages, and synchronous languages.

Priorwork on guarded atomic actions: The idea of One-
Rule-At-A-Time semantics forms the foundation for all the

work on rule-based systems starting with Hoe and Arvind

[25] and Hoe [24]. Hoe gave an algorithm for scheduling

the maximal number of rules in each cycle, based on static

analysis of the read and write sets of each rule. Esposito

et al. [14] gave another algorithm that does not necessarily

schedule the maximal number of rules but is simpler to im-

plement in hardware, and this algorithm is used by the BSV

compiler. The first formal operational semantics of guarded

atomic actions were given by Dave et al. [11, 12]. They de-

scribed the state-transformation function for each rule and

posed the rule-scheduling problem as one of rule compo-

sition, for which they provided a rich set of combinators.

Sequential composition of rules in some sense is more ex-

pressive than EHRs, but Dave’s scheduling primitives proved

difficult to use in practice and were not implemented in the

BSV compiler. Also, Kôika’s semantics and implementation

rely on dynamically computed read and write sets, making

it possible to exploit more concurrency than the traditional

compilations relying on static analysis.

ORAAT semantics does not dictate that rules be executed

in one clock cycle; this is an implementation choice of both

the BSV and Kôika compilers. A one-cycle-execution restric-

tion on rules benefits from a very clear cost model, leaving

the user responsible for decomposing a rule with a long crit-

ical path into multiple rules. Spreading an infrequently exe-

cuted complex rule across multiple cycles, however, can be

quite convenient and can dramatically improve the clock pe-

riod, hence performance [26, 27]. A recently published open-

source compiler for BSV by Greaves [17] includes multicycle

rules and a fair intercycle scheduler.

Choi et al. [9] have developed Kami, a system for mechani-

cal verification of proofs for designs expressed in a language

with guarded atomic actions. The proofs rely on the ORAAT

property and consider only the behaviors arising by execut-

ing one rule in one cycle. Thanks to our ORAAT theorem (1),

proofs in the Kami style will still be valid in our framework.

Transactional viewpoint: Atomic transactions (or sim-

ply transactions) are a common abstraction in distributed

software [21–23] and database systems. Considerable effort

has also gone into providing hardware support for transac-

tional memory [19, 20]. The ORAAT semantics of our atomic

rules is the same as the serializability property of atomic

transactions. However, software transactions are written

in a sequential imperative language and invariably require

shadow state to handle aborted transactions (hardware trans-

actional memory uses L1 caches to reduce the cost of the

shadow state). Kôika completely avoids the shadow state by

exploiting the basic properties of hardware registers, which

can be read at the beginning of a clock cycle and updated at

the end of the clock cycle. As we said earlier, Kôika’s atomic

rules hold all the temporary values “in wires” during the

clock cycle. For performance, both software transactions and

atomic rules rely on interleaved execution of atomic entities,

but the cost models and, consequently, the implementation

techniques are completely different. In our hardware synthe-

sis, there is no cost associated with an aborted transaction,

i.e., a rule that does not commit. For software transactions,

one only computes approximations of the read/write sets,

because the universe of objects is too big. Unlike for software

transactions, it is inexpensive to keep the read sets and write

sets associated with an atomic rule, because the number of

registers is known statically, and the write sets have to be

maintained anyway to update registers at the end of the

clock cycle.

Structural hardware-description languages: Tradi-
tional HDLs like Verilog and VHDL are structural in the sense

that they describe interconnections of boxes, i.e., Boolean

gates and registers. The main problemwith such languages is

that they provide inadequate type checking and lack precise

semantics, which makes verification and design refinement

a Herculean task. Attempts to clean up the semantics of Ver-

ilog have had little success; see for example [29]. A popular

way to make Verilog more convenient for programming is

by embedding it in a language with a good macro facility,

which can provide type safety and good combinators for com-

position [2, 13]. Another example of a structural language

is Chisel [3], which is an embedded DSL in Scala and has

a powerful metalanguage for generating complex patterns.

(BSV also has a powerful static-elaboration facility based

on functional languages.) This line of work does not tackle

the difficulty of describing complex interactions between

sequential machines, which we believe is the true difficulty

of hardware design.

High-level synthesis: Another approach to hardware

synthesis is to transform programs written in software lan-

guages like C, Python, MATLAB, etc. into hardware [8, 10, 16,

18]. HLS compilers rely on compiler techniques developed

for parallel and vector architectures starting in the 1980s.

In spite of fundamental limitations of this approach (see for

The Essence of Bluespec PLDI ’20, June 15–20, 2020, London, UK

example [1]), the commercial appeal is strong enough that

many companies have invested significant resources into

building better HLS tools [28, 37]. This approach has shown

promise for signal-processing applications but has not been

shown to be useful to describe processors and other complex

designs.

Synchronous languages: Synchronous languages de-

scribe reactive systems with equations between streams of

inputs and outputs. Such languages use an abstract notion of

synchronicity and clocks and usually have clean mathemati-

cal semantics [6]. Recently, a compiler to translate a synchro-

nous language into a minimal subset of C was developed

and proven correct [7]. It has also been shown that one can

compile synchronous languages to hardware [5, 31], though

the challenges there are fairly disjoint from our own prob-

lems. The reactive viewpoint has worked well for describing

control-theory problems [4], but there is little evidence of

its suitability to describe complex hardware.

8 Conclusion
A cycle-accurate description is essential to understand the

performance of a hardware circuit. Such descriptions, how-

ever, often complicate reasoning about functional proper-

ties of the hardware. It has been shown that rule-based de-

scriptions, for example as in BSV [30], and the associated

ORAAT semantics allow us to build proof systems, for ex-

ample Kami [9], that are extremely useful for proving func-

tional properties. In this paper we have presented Kôika, a

hardware-description language that allows cycle-accurate

specifications in a rule-based system with a user-specified

intracycle scheduler. Using the Coq proof system, we have

shown that Kôika preserves the ORAAT semantics. We have

shown that the Kôika semantics can be used to prove per-

formance properties, for example, that a pipelined system

indeed behaves like a pipelined system.

We have also presented an algorithm to compile Kôika

into circuits, implemented it, and formally verified that our

compiler correctly implements Kôika’s semantics. We have

used this implementation to compile several examples, in-

cluding a simple pipelined processor. Kôika’s semantics and

the compiler use dynamic dataflow analysis, which elimi-

nates concurrency anomalies and entails reasonable hard-

ware overhead.

In the near future, we expect to incorporate a module

system in Kôika and experiment with the flexibility provided

by user-specified scheduling.

A Verification Details
This section gives more details on the invariants and ideas

underpinning our compiler-correctness proof.

Verifying circuit transformations. Large parts of the
circuitry that our compilation scheme introduces for faith-

ful implementation of Kôika’s semantics can be statically

eliminated using Boolean optimizations. Accordingly, our

compiler implementation is parametric on a verified circuit-

optimization functionη (whose correctness criterion is stated
as ∀c,R . δη(c)(R) = δc (R)), which it applies to newly cre-

ated circuits on-the-fly, as it compiles each source action.

Aligning logs and hardware logs. We need to make

sure that the values produced by the semantics and by the

circuits match up. Since these values are computed from

the logs in the semantics, and from the hardware logs (read-

write sets and data∗ wires) in the circuits, we need to estab-

lish an invariant connecting both. We write L ∼rw L when

∀r . δL.r .∗(R) = 1 ⇔ (∗, r) ∈ L, where ∗ stands for one of
rd0, rd1, wr0, or wr1; i.e. when each circuit tracking reads

and writes in L agrees with L. Separately, we write L ∼data L
when (1) ∀r . δL.r .data0(R) = v ⇔ last_wr0 (L) = v and (2)

∀r . (wr1, r) ∈ L ⇒ (δL.r .data1(R) = v ⇔ last_wr1 (L) = v),
where last_wrn is the latest wrn in L if any, or R[r] oth-
erwise; i.e. when both circuits tracking write values for

each register agree with L. Finally, we write Γ ∼γ Γ when

∀x . δΓ[x](R) = Γ[x], i.e. when the context of compiled bind-

ings kept by the compiler agrees with the binding values in

the semantics. We prove lemmas characterizing how these

relations interact with muxing of circuits, and we show that

under these equivalences the hardware implementation of

dynamic checks is faithful to the checks performed against

ℓ in the rule semantics.

Tracking dynamic failures. The key lemma is to prove

that δ ((ℓ0(L),a)).ok(R) is 0 if JaK(R,L) = Fail. We proceed by

induction; the main difficulty is to prove that if we reach

a failure state at any point within a rule, then the wf com-

putation properly returns zero when the results of the rule

are eventually combined with those of previous rules. For

this, we start by defining a partial order on single-bit cir-

cuits (circuit_le in CircuitProperties.v): we say that

c1 ≤R c2 if δc2 (R) = 0 ⇒ δc1 (R) = 0. It is easy to show

that ∧, ∨, andMux are increasing, and ¬ decreasing, in ≤R .

This relation extends to read-write sets by comparing them

elementwise. We prove two lemmas using this relation: first

(rwset_circuit_le_compile_action_correct), that ok is
decreasing, and that read-write sets are increasing (i.e. for

all a and ℓ, the read-write set of ((ℓ,a)) is greater than the

read-write set of ℓ). Second, that wf itself is decreasing as

well, i.e. that wf (L, ((ℓ,a))) ≤R wf (L, ℓ).

Final invariant. With these pieces in place, we can now

state our main lemma — its proof follows by induction from

the lemmas above (this invariant establishes the correctness

of the part of the compiler that handles individual rules;

there is a corresponding but simpler one for schedules):

PLDI ’20, June 15–20, 2020, London, UK Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind

∀a,L, ℓ, Γ,L, ℓ, Γ.

Γ ∼γ Γ
L ∼rw L

L ++ ℓ ∼data ℓ
δwf(L, ℓ)(R) = 1

 ⇒



δ ((ℓ,a))(R) = v

L ++ ℓ′ ∼data ((ℓ,a))

δwf(L,((ℓ,a)))(R) = 1

if Γ ⊢ (ℓ,a) ↓(L,R) (ℓ
′,v)

δwf(L,((ℓ,a)))(R) = 0

otherwise

These lemmas, and the final theorem, are proven in the

file CircuitCorrectness.v.

B Architectural Description of the
Processor

The core is a simple 4-stage pipelined processor (Fetch, De-

code, Execute, Writeback) with a bypassing path fromWrite-

back to Decode and a bypassing redirection from Execute to

Fetch.

The decoding and execution logic have been written side-

by-side in Kôika and BSV to make them match as closely as

possible. The branch predictor is the simplest predictor:pc+4
(i.e., assuming we never jump). The scheduling order picked

is Writeback, Execute, Decode, Fetch (chosen explicitly in

Kôika and inferred by bsc). We wrote pipeline and bypass

FIFOs to connect all the stages and test different orderings.

The reported results use pipeline FIFOs to connect all the

stages.

To obtain area and critical-path numbers, we compiled

both designs (BSV and Kôika) to Verilog and fed the resulting

code through an open-source synthesis toolchain composed

of Yosys [36] and ABC [15], configured to use a 45nm PDK

[34] with and without register retiming.

To collect architectural performance numbers, we con-

nected the cores to 32KB of BRAM preloaded with a binary

image of the RISC-V program we were running.

The design were simulated using Verilator [35] but also

successfully synthesized for an FPGA using Vivado 2017.4

for AC701. The designs both have a maximal clock frequency

between 100MHz and 110MHz.

Acknowledgments
This material is based upon work supported by the Defense

Advanced Research Projects Agency (DARPA) under Grant

No. CCF-1521584 and by the National Science Foundation

under Grant No. HR001118C0018 . Any opinions, findings,

and conclusions or recommendations expressed in this ma-

terial are those of the authors and do not necessarily reflect

the views of the National Science Foundation or DARPA.

References
[1] Abhinav Agarwal, Man Cheuk Ng, and Arvind. 2010. A Comparative

Evaluation of High-Level Hardware Synthesis Using Reed-Solomon

Decoder. Embedded Systems Letters 2, 3 (2010), 72–76. https://doi.org/
10.1109/LES.2010.2055231

[2] Markus Aronsson and Mary Sheeran. 2017. Hardware software co-

design in Haskell. In Proceedings of the 10th ACM SIGPLAN Interna-
tional Symposium on Haskell, Oxford, United Kingdom, September 7-8,
2017. 162–173. https://doi.org/10.1145/3122955.3122970

[3] Jonathan Bachrach, Huy Vo, Brian C. Richards, Yunsup Lee, Andrew

Waterman, Rimas Avizienis, John Wawrzynek, and Krste Asanovic.

2012. Chisel: constructing hardware in a Scala embedded language.

In The 49th Annual Design Automation Conference 2012, DAC ’12, San
Francisco, CA, USA, June 3-7, 2012. 1216–1225. https://doi.org/10.1145/
2228360.2228584

[4] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halb-

wachs, Paul Le Guernic, and Robert de Simone. 2003. The synchronous

languages 12 years later. Proc. IEEE 91, 1 (2003), 64–83.

[5] Gérard Berry. 1992. Mechanized Reasoning and Hardware Design.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, Chapter Esterel on

Hardware, 87–104. http://dl.acm.org/citation.cfm?id=149943.149953
[6] Gérard Berry and Georges Gonthier. 1992. The Esterel Synchronous

Programming Language: Design, Semantics, Implementation. Sci.
Comput. Program. 19, 2 (1992), 87–152. https://doi.org/10.1016/0167-
6423(92)90005-V

[7] Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy,

Marc Pouzet, and Lionel Rieg. 2017. A formally verified compiler for

Lustre. In Proceedings of the 38th ACM SIGPLANConference on Program-
ming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
June 18-23, 2017. 586–601. https://doi.org/10.1145/3062341.3062358

[8] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed

Kammoona, Jason Helge Anderson, Stephen Dean Brown, and

Tomasz S. Czajkowski. 2011. LegUp: high-level synthesis for FPGA-

based processor/accelerator systems. In Proceedings of the ACM/SIGDA
19th International Symposium on Field Programmable Gate Arrays,
FPGA 2011, Monterey, California, USA, February 27, March 1, 2011.
33–36. https://doi.org/10.1145/1950413.1950423

[9] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman,

Adam Chlipala, and Arvind. 2017. Kami: a platform for high-level para-

metric hardware specification and its modular verification. PACMPL
1, ICFP (2017), 24:1–24:30. https://doi.org/10.1145/3110268

[10] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees A.

Vissers, and Zhiru Zhang. 2011. High-Level Synthesis for FPGAs: From

Prototyping to Deployment. IEEE Trans. on CAD of Integrated Circuits
and Systems 30, 4 (2011), 473–491. https://doi.org/10.1109/TCAD.2011.
2110592

[11] Nirav Dave, Arvind, and Michael Pellauer. 2007. Scheduling as Rule

Composition. In 5th ACM & IEEE International Conference on For-
mal Methods and Models for Co-Design (MEMOCODE 2007), May 30 -
June 1st, Nice, France. 51–60. https://doi.org/10.1109/MEMCOD.2007.
371249

[12] Nirav H. Dave. 2011. A unified model for hardware/software codesign.
Ph.D. Dissertation. Massachusetts Institute of Technology, Cambridge,

MA, USA. http://hdl.handle.net/1721.1/68171
[13] Conal Elliott. 2017. Compiling to categories. PACMPL 1, ICFP (2017),

27:1–27:27. https://doi.org/10.1145/3110271
[14] T. Esposito, M. Lis, R. Nanavati, J. Stoy, and J. Schwartz. 2005. System

and method for scheduling TRS rules. United States Patent US 133051-

0001.

[15] Alan Mishchenko et al. [n.d.]. ABC: System for Sequential Logic

Synthesis and Formal Verification. https://github.com/berkeley-abc/
abc.

[16] Daniel D. Gajski. 2001. SpecC Design Environment. System Design
(2001), 217–235. https://doi.org/10.1007/978-1-4615-1481-7_5

[17] David J. Greaves. 2019. Further sub-cycle and multi-cycle schedulling

support for Bluespec Verilog. In Proceedings of the 17th ACM-IEEE In-
ternational Conference on Formal Methods and Models for System Design,
MEMOCODE 2019, La Jolla, CA, USA, October 9-11, 2019, Partha S. Roop,

https://doi.org/10.1109/LES.2010.2055231
https://doi.org/10.1109/LES.2010.2055231
https://doi.org/10.1145/3122955.3122970
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
http://dl.acm.org/citation.cfm?id=149943.149953
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1145/3062341.3062358
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/3110268
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1109/MEMCOD.2007.371249
https://doi.org/10.1109/MEMCOD.2007.371249
http://hdl.handle.net/1721.1/68171
https://doi.org/10.1145/3110271
https://github.com/berkeley-abc/abc
https://github.com/berkeley-abc/abc
https://doi.org/10.1007/978-1-4615-1481-7_5

The Essence of Bluespec PLDI ’20, June 15–20, 2020, London, UK

Naijun Zhan, Sicun Gao, and Pierluigi Nuzzo (Eds.). ACM, 2:1–2:11.

https://doi.org/10.1145/3359986.3361199
[18] Sumit Gupta, Nikil D. Dutt, Rajesh Gupta, and Alexandru Nicolau. 2004.

Loop Shifting and Compaction for the High-Level Synthesis of Designs

with Complex Control Flow. In 2004 Design, Automation and Test in
Europe Conference and Exposition (DATE 2004), 16-20 February 2004,
Paris, France. 114–121. https://doi.org/10.1109/DATE.2004.1268836

[19] Lance Hammond, Brian D. Carlstrom, Vicky Wong, Michael K. Chen,

Christos Kozyrakis, and Kunle Olukotun. 2004. Transactional Coher-

ence and Consistency: Simplifying Parallel Hardware and Software.

IEEE Micro 24, 6 (2004), 92–103. https://doi.org/10.1109/MM.2004.91
[20] Lance Hammond, Vicky Wong, Michael K. Chen, Brian D. Carlstrom,

John D. Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya,

Christos Kozyrakis, and Kunle Olukotun. 2004. Transactional Mem-

ory Coherence and Consistency. In 31st International Symposium on
Computer Architecture (ISCA 2004), 19-23 June 2004, Munich, Germany.
IEEE Computer Society, 102–113. https://doi.org/10.1109/ISCA.2004.
1310767

[21] Tim Harris, Simon Marlow, Simon L. Peyton Jones, and Maurice Her-

lihy. 2008. Composable memory transactions. Commun. ACM 51, 8

(2008), 91–100. https://doi.org/10.1145/1378704.1378725
[22] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory:

Architectural Support for Lock-Free Data Structures. In Proceedings
of the 20th Annual International Symposium on Computer Architecture,
San Diego, CA, USA, May 1993, Alan Jay Smith (Ed.). ACM, 289–300.

https://doi.org/10.1145/165123.165164
[23] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A

Correctness Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst. 12, 3 (1990), 463–492. https://doi.org/10.1145/78969.78972

[24] James C. Hoe. 2000. Operation-centric hardware description and syn-
thesis. Ph.D. Dissertation. Massachusetts Institute of Technology,

Cambridge, MA, USA. http://hdl.handle.net/1721.1/86439
[25] James C. Hoe and Arvind. 2000. Synthesis of Operation-Centric Hard-

ware Descriptions. In Proceedings of the 2000 IEEE/ACM International
Conference on Computer-Aided Design, 2000, San Jose, California, USA,
November 5-9, 2000. 511–518. https://doi.org/10.1109/ICCAD.2000.
896524

[26] Michal Karczmarek and Arvind. 2008. Synthesis from multi-cycle

atomic actions as a solution to the timing closure problem. In 2008
International Conference on Computer-Aided Design, ICCAD 2008, San

Jose, CA, USA, November 10-13, 2008. 24–31. https://doi.org/10.1109/
ICCAD.2008.4681547

[27] Michal Karczmarek, Arvind, and Muralidaran Vijayaraghavan. 2014. A

new synthesis procedure for atomic rules containing multi-cycle func-

tion blocks. In Twelfth ACM/IEEE International Conference on Formal
Methods and Models for Codesign, MEMOCODE 2014, Lausanne, Switzer-
land, October 19-21, 2014. 22–31. https://doi.org/10.1109/MEMCOD.
2014.6961840

[28] Mentor. [n.d.]. ModelSim. https://www.mentor.com/products/fpga/
verification-simulation/modelsim/.

[29] Patrick O’Neil Meredith, Michael Katelman, José Meseguer, and Grig-

ore Rosu. 2010. A formal executable semantics of Verilog. In 8th
ACM/IEEE International Conference on Formal Methods and Models for
Codesign (MEMOCODE 2010), Grenoble, France, 26-28 July 2010. IEEE
Computer Society, 179–188. https://doi.org/10.1109/MEMCOD.2010.
5558634

[30] Rishiyur S. Nikhil. 2004. Bluespec System Verilog: Efficient, Cor-

rect RTL from High Level Specifications. In Proceedings of the Second
ACM/IEEE International Conference on Formal Methods and Models for
Co-Design (MEMOCODE ’04). IEEE Computer Society, Washington,

DC, USA, 69–70. https://doi.org/10.1109/MEMCOD.2004.1459818
[31] Frédéric Rocheteau and Nicolas Halbwachs. 1991. Implementing Reac-

tive Programs on Circuits: A Hardware Implementation of LUSTRE.

In Real-Time: Theory in Practice, REX Workshop, Mook, The Nether-
lands, June 3-7, 1991, Proceedings. 195–208. https://doi.org/10.1007/
BFb0031993

[32] Daniel L. Rosenband. 2005. Hardware synthesis from guarded atomic

actions with performance specifications. In 2005 International Confer-
ence on Computer-Aided Design, ICCAD 2005, San Jose, CA, USA, Novem-
ber 6-10, 2005. 784–791. https://doi.org/10.1109/ICCAD.2005.1560170

[33] Daniel L. Rosenband and Arvind. 2004. Modular scheduling of guarded

atomic actions. In Proceedings of the 41th Design Automation Conference,
DAC 2004, San Diego, CA, USA, June 7-11, 2004. 55–60. https://doi.org/
10.1145/996566.996583

[34] North Carolina State University. [n.d.]. FreePDK45. https://www.eda.
ncsu.edu/wiki/FreePDK45:Contents.

[35] Veripool. [n.d.]. Verilator. https://www.veripool.org/wiki/verilator.
[36] Clifford Wolf. [n.d.]. Yosys Open SYnthesis Suite. http://www.clifford.

at/yosys/.
[37] Xilinx. [n.d.]. Vivado HLS. https://www.xilinx.com/products/design-

tools/vivado/integration/esl-design.html.

https://doi.org/10.1145/3359986.3361199
https://doi.org/10.1109/DATE.2004.1268836
https://doi.org/10.1109/MM.2004.91
https://doi.org/10.1109/ISCA.2004.1310767
https://doi.org/10.1109/ISCA.2004.1310767
https://doi.org/10.1145/1378704.1378725
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/78969.78972
http://hdl.handle.net/1721.1/86439
https://doi.org/10.1109/ICCAD.2000.896524
https://doi.org/10.1109/ICCAD.2000.896524
https://doi.org/10.1109/ICCAD.2008.4681547
https://doi.org/10.1109/ICCAD.2008.4681547
https://doi.org/10.1109/MEMCOD.2014.6961840
https://doi.org/10.1109/MEMCOD.2014.6961840
https://www.mentor.com/products/fpga/verification-simulation/modelsim/
https://www.mentor.com/products/fpga/verification-simulation/modelsim/
https://doi.org/10.1109/MEMCOD.2010.5558634
https://doi.org/10.1109/MEMCOD.2010.5558634
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1007/BFb0031993
https://doi.org/10.1007/BFb0031993
https://doi.org/10.1109/ICCAD.2005.1560170
https://doi.org/10.1145/996566.996583
https://doi.org/10.1145/996566.996583
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://www.veripool.org/wiki/verilator
http://www.clifford.at/yosys/
http://www.clifford.at/yosys/
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

	Abstract
	1 Introduction
	2 Introduction to Kôika
	2.1 Rules or Atomic Actions
	2.2 Scheduling
	2.3 Ephemeral History Registers (EHRs)

	3 Formal Description of Kôika
	3.1 Syntax
	3.2 Semantics

	4 The One-Rule-at-a-Time Theorem
	5 Case Study: A Cycle-Accurate Characterization of a Pipelined System
	6 Compilation
	6.1 Overview
	6.2 Compiling Rules
	6.3 Compiling the Hardware Scheduler
	6.4 Performance Concerns
	6.5 Implementation and Verification
	6.6 A Simple RISC-V Processor in Kôika

	7 Related Work
	8 Conclusion
	A Verification Details
	B Architectural Description of the Processor
	Acknowledgments
	References

