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Abstract: We present a unified density-based topology-optimization framework that yields
integrated photonic designs optimized for manufacturing constraints including all those of
commercial semiconductor foundries. We introduce a new method to impose minimum-area and
minimum-enclosed-area constraints, and simultaneously adapt previous techniques for minimum
linewidth, linespacing, and curvature, all of which are implemented without any additional
re-parameterizations. Furthermore, we show how differentiable morphological transforms can be
used to produce devices that are robust to over/under-etching while also satisfying manufacturing
constraints. We demonstrate our methodology by designing three broadband silicon-photonics
devices for nine different foundry-constraint combinations.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photonic topology optimization (TO) or “inverse design” is a powerful device-designmethodology
in which performance (e.g. transmitted power) can be optimized over thousands or millions of
degrees of freedom characterizing every “pixel” of the fabricated device, allowing completely
unexpected designs with unprecedented performance to emerge [1–11]. The vast design freedom
of TO must be constrained, however, by the limitations of practical manufacturing processes, and
in previous TO work this has taken the form of various techniques to constrain the minimum
lengthscales and curvature present in the optimized design [12–15]. In order to be useful within
the commercial semiconductor foundry ecosystem, however, additional design constraints must be
developed [16, 17]: foundry lithography requires a minimum area and a minimum enclosed area,
in addition to minimum curvature and lengthscales (linewidths and linespacings). The theoretical
challenge is to formulate these constraints in a manner that is mathematically compatible with
practical TO algorithms.
In this paper, we present a unified framework for density-based topology optimization which

produces integrated photonic devices that obey complicated commercial foundry design rule
checks (DRC). To begin with, we consolidate previous techniques to impose minimum linewidth,
linespacing, and curvature constraints [13, 18, 19] (Sec. 3). In addition, we present a new
TO-compatible formulation of minimum-area and minimum enclosed-area constraints (Sec. 4).
Our methodology relies only on classical density-based projection methods [20] and does not
require any additional reparameterization [12,21–24] (e.g. level sets or splines). Furthermore,
we combine our manufacturing constraints with robust optimization [14,25, 26], incorporating
under/over-etch uncertainty into the TO design process (Sec. 5), whereas previous work typically
implemented robustness without manufacturing constraints [25] or vice-versa. We demonstrate
our approach on three broadband silicon-photonic test problems (Sec. 6)—dielectric waveguide
bends, T-splitters, and reflectors—all optimized for broadband operation using time-domain
topology optimization [27,28] developed using the free/open-source software package Meep [29].
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Density-based TO methods, so named because the design parameters directly correspond to the
local material properties, typically require a sequence of standard image-processing steps, such
as filtering and thresholding, to map the design parameters to the physical structure, allowing
the optimization algorithm to act on a differentiable function (Sec. 2) [30]. The sensitivity
of this resulting structure is efficiently calculated using an adjoint-variable method requiring
just two electromagnetic simulations, regardless of the number of design variables [31]. In the
time domain, a short pulse can excite a broadband response that is then used to calculate the
respective sensitivities at multiple frequency points simultaneously [27, 28]. Since the optimizer
is gradient-based, manufacturing constraints need to be formulated in the form 6(design) ≤ 0
where 6 is some function that is (mostly) differentiable. Our approach follows this general
framework exactly, allowing it to be directly incorporated into pre-existing TO schemes without
any need to reparameterize [32] during optimization, effectively automating the design process
for fabrication.
Ensuring that a final design is “DRC clean” is standard practice in the foundry ecosystem,

where thousands of checks are performed to verify that the geometries can be reliably fabricated
and pose no risk to surrounding designs or the manufacturing tooling [16]. While circuit-level
DRC violations can be algorithmically fixed using design post-processing [33], devices designed
with TO must integrate these design rules into the optimization process itself. Important “1D”
constraints such as the minimum linewidth, linespacing, and curvature are well understood
within the context of TO [12, 13]. More complicated “2D” constraints, like minimum areas
and enclosed areas, require new developments, especially since these constraints are often
more restrictive than their 1D counterparts and currently are only enforceable through static
B-spline parameterizations [23], limiting the problem to shape-optimization methods that require
a pre-determined material topology (connectivity, number of holes, etcetera). Fig. 1 illustrates
each of these fundamental design rules on three example problems produced using TO. Indeed
many other rules, including the maximum area, run length, and prescribed density [16] have also
been overlooked in TO. Our experiments demonstrate that satisfying the five aforementioned
fundamental constraints, however, often translates implicitly to satisfying these “higher order”
constraints as well.

Even after DRC violations are cleared, integrated photonic devices may exhibit sensitivity to
even minor process variations. Robust optimization generally means optimizing the worst case of
an objective over some set of uncertainties [34]. Correspondingly, in Sec. 5 we optimize the worst
of the design, an under-etched design, and an over-etched design [34]. In contrast to previous
robust TO [14, 25, 26, 34], our approach decouples the DRC constraints from over/under-etch
uncertainties, meaning that the topologies between the eroded, dilated, and blueprint design
fields need no longer remain consistent. Similarly, the erosions and dilations can now be applied
by a simple formula, independent of the dynamic range of the underlying design field. Our
methodology, validated by dozens of numerical experiments on nine unique foundry rulebooks,
provides a simple and cohesive framework for practical photonic TO targeting high-yield foundry
applications.

2. Photonic topology optimization overview

In this section, we review photonics TO, following Ref. 20, in the context of semiconductor
foundry design and discuss various projection methods. We first formulate broadband design
as a minimax optimization problem over # distinct objective functions subject to Maxwell’s



Fig. 1. Five fundamental design rule constraints for semiconductor foundries. 1D
constraints consist ofminimum linewidth, minimum linespacing andminimumcurvature
(a). 2D constraints include minimum area and minimum enclosed area (b). Example
DRC violations in a broadband mirror, broadband bend, and broadband T-splitter are
highlighted in respective colors (c).

equations spanning " frequency points:

min1 [max= { 5= (K)}] = ∈ {1, 2, ..., #}

s.t. ∇ × 1
`0`A
∇ × K − l2

<n0&A (1)K = −8l<P < ∈ {1, 2, ..., "}

0 ≤ 1 ≤ 1

6: (1) ≤ 0 : ∈ {1, 2, ...,  }

(1)

where 5= is each objective function dependent on the field pattern K, & is the relative permittivity
as a function of the density design variables 1 at each point in space, P is the current density, and
6: is the : th constraint function. We note that for the majority of this work, # = ", implying
that each objective function corresponds to a unique frequency point, and each frequency
point uses the same objective function, although the method is generalizable to multiple (same
or different) objective functions per frequency point (e.g. for robust optimization when each
frequency point has multiple design fields). By using an epigraph formulation [35], we can recast
the non-differentiable minimax problem above into a differentiable minimization problem with
additional nonlinear constraints:

min1,C C

B.C. ∇ × 1
`0`A
∇ × K − l2

<n0&A (1)K = −8l<P < ∈ {1, 2, ..., "}

0 ≤ 1 ≤ 1

5= (x) − C ≤ 0 = ∈ {1, 2, . . . , #}

6: ≤ 0 : ∈ {1, 2, ...,  }

(2)



where C ∈ R is a dummy parameter.
In order to parameterize the permittivity &A (1), we use a simple density-based interpolation

scheme where the original (latent) design parameters 1, are first filtered using a linear density
filter,

1̃ = F(x) ∗ 1, (3)

1̃ is the filtered design field, F is the filter kernel, and ∗ is 2D convolution [20]. Our methodology’s
design rule constraints only require two different filter kernels. The first is commonly referred to
as the “uniform” or “top-hat” kernel and is defined by

F(x) =
{

1
|N | x ∈ N

0 x ∉ N
, (4)

where the filter support itself is described by the domain, N , and used to smooth the design
variables uniformly. In the case of foundry-based optimization, which requires all designs to be
3D extrusions of 2D shapes, common choices for N include a circle, square, or ellipse.

The second filter kernel is a conic filter, as the strength of the filter linearly decays toward the
edge of the filter support and is defined by

F(x) =
{

1
0

(
1 − |x−x0 |

'

)
x ∈ N

0 x ∉ N
(5)

where N is a circle of radius ', x0 is the center of N , and 0 is a normalization factor such that∫
F(x) = 1.
Once the design variables are filtered using the appropriate kernel, either Eq. (4) or Eq. (5),

the resultant field is projected onto a binary value using a differentiable and nonlinear function.
In this work, we use

1̄ =
tanh (V[) + tanh (V ( 1̃ − [))
tanh (V[) + tanh (V (1 − [)) (6)

where 1̄ is the projected design field, and V and [ are the threshold parameters [36]. Fig. 2
illustrates the effect of different filter kernels on the same set of design parameters, along with
the resulting projection.
The final permittivity is then interpolated from the design parameters using

9A ( 1̄) = Ymin + 1̄(Y<0G − Ymin) (7)

where Ymin is the permittivity of the "void" region (cladding) and Y<0G is the permittivity of the
"solid" region (core).
Using this methodology, we can systematically erode and dilate the design field using two

different approaches, as illustrated in Fig. 3. The first approach adjusts the value of [ used in the
projection step. Dilation is produced by [ < 0.5 and erosion is produced by [ > 0.5. While often
used in practice [14], the resulting erosions and dilations are directly dependent on the rate of
change of the filtered design field d̃. In other words, using the same value for [ on two different
filtered profiles does not guarantee the same amount of erosion/dilation. This is inconvenient
when trying to robustly design for a specific amount of over- and under-etching, as is further
discussed in Sec. 5.

To overcome this issue, we propose a new approach which assumes [ = 0.5 for all elements of
1, but involves a nonlinear filter step after the projection. The harmonic erosion filter [37] is
defined by

EN (1) =
(

1
1 + U ∗ F

)−1
− U (8)



Conic filters
(geometric constraints)

Uniform filters
(morphological transforms)

Fig. 2. Design variables, 1, evolution as they are convolved with various filter kernels,
F, forming a filtered field, 1̃, and subsequently a projected field, 1̄. The filter kernels
from left to right are a uniform cylinder, a uniform ellipse rotated by 45◦, a uniform
square rotated by 45◦, a conic filter, and a conic filter with twice the radius. The uniform
filter kernels (marked in pink) are used for morphological transforms (Sec. 3.2) that
enable systematic robust optimization (Sec. 5). The conic filters (marked in yellow)
are used for the geometric constraints (Sec. 3.1) that enforce minimum linewidth and
linespacing constraints.
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η=0.7
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Standard projection methods

Morphological transforms

Fig. 3. Comparison of dilated (left) and eroded (right) design fields using the standard
projection method (a) and harmonic filters (b). The harmonic filters can explicitly
perform uniform erosions and dilations on the original design field, but are limited
by the design field resolution and require an extra nonlinear filter step. In contrast,
the standard projection method has more flexibility at the expense of predictability.
The erosions and dilations are uniform for each contour and depend on the underlying
design variable distribution.

where U is a nonlinear threshold parameter. The harmonic dilation is defined by

DN (1) = 1 −
(

1
1 − 1 + U ∗ F

)−1
− U (9)

The filter F is typically a uniform kernel and its support determines the amount of erosion/dilation
that occurs in a particular direction. U is a regularization parameter to ensure differentiability;
the exact dilation/erosion operation is obtained in the U→ 0 limit, and we find that U = 10−3 is
sufficient for usage in TO. For example, a filter support defined by a circle with a radius of 20 nm
will systematically erode/dilate the design by 20 nm uniformly in all directions. The advantage
of this approach is that it performs the same morphological transformation regardless of the rate
of change of the underlying filtered field, as the nonlinear filters are applied after the projection
step (and the resulting structures are already quasi-binary).

3. Minimum linewidth, spacing, and curvature constraints

Here, we consolidate existing methodologies for lengthscale constraints from several papers [13,
18, 26, 36] to ensure that our designs obey minimum-linewidth, minimum-linespacing, and
minimum-curvature requirements.

3.1. Geometric constraints

Ref. 13 introduced two geometric constraints that enforce a minimum lengthscale on both the
solid and void regions of a topology. These particular constraints correspond exactly to the



minimum-linewidth and minimum-linespacing constraints of a foundry’s design rulebook.
The constraints work by identifying inflection regions that dictate whether or not the design

topology remains unchanged after a strategically chosen set of erosions and dilations. If the
topology is consistent (i.e. no additional “holes” or “islands”), then the lengthscale is satisfied.
Enforcing an optimization constraint that implements this process requires an indicator function
capable of identifying the inflection regions and a known relationship between the filter kernel
and the necessary erosions/dilations.
The minimum-linewidth constraint, 6!, ≤ 0, is described by the function

6!, =
1
=

∑
8∈N

�!,8 (d8) ·
[
min

{
( d̃ 8 − [4), 0

}]2 (10)

where �!,
8
(d) is an indicator function that identifies the inflection region of the solid phase:

�!,8 (1) = 1̄ · exp
(
−2 |∇1̃ |2

)
. (11)

where 2 is a dampening term that dictates the “strength” of the indicator function. The
minimum-linespacing constraint, 6!( ≤ 0, is described by a similar function

6!( =
1
=

∑
8∈N

�!(8 (d8) ·
[
min

{
([3 − d̃ 8), 0

}]2 (12)

where �!(
8
(d) is an indicator function that identifies the inflection region of the void phase:

�!(8 (1) = (1 − 1̄) · exp
(
−2 |∇1̃ |2

)
. (13)

To determine [4 and [3 from the foundry minimum linewidth (;F ) and minimum spacing (;B),
the following relations hold [26]:

[4 =


1
4

(
;F
'

)2
+ 1

2 ,
;F
'
∈ [0, 1]

− 1
4

(
;F
'

)2
+ ;F
'
,

;F
'
∈ [1, 2]

1, ;F
'
∈ [2,∞)

(14)

[3 =


1
2 −

1
4

(
;B
'

)2
,

;B
'
∈ [0, 1]

1 + 1
4

(
;B
'

)2
− ;B
'
,

;B
'
∈ [1, 2]

0, ;B
'
∈ [2,∞)

, (15)

where ' is the user-specified radius of a conic filter. This allows one to arbitrarily choose the
filter radius and derive the subsequent threshold parameters ([4 and [3) from the above relations.
Choosing smaller radii allows for smaller features at the expense of potentially “stiffening” the
corresponding optimization problem (i.e., the constraint Hessian may have a larger condition
number). Typical values for [4 and [3 are 0.75 and 0.25, respectively [11,13], which corresponds
to ' = 2;F = 2;B . In the case where ;F > ;B , one possible solution is to use [4 = 0.75, ' = 2;F ,
while [3 is calculated from the relations above. If ;F < ;B, then one could use [3 = 0.25,
' = 2;B , while [4 is similarly calculated from (14). We use this approach for all of our numerical
examples in Sec. 6.
For the damping coefficient 2, we use 2 = A4 where A is the design grid resolution (i.e. 1

ΔG
).

As we discuss in Sec. 6, we impose the constraint gradually during optimization by employing a
constraint 6: ≤ �: , where�: is reduced in a systematic way as the optimization progresses. The



choice of tolerances �: allows some flexibility in the tradeoff between the geometric constraints
and the area constraints.
Finally, we note that both the linewidth and linespacing constraints also place implicit

constraints on the corresponding minimum curvature for both solid and void regions. Assuming
a circular filter is used and that the constraint is satisfied, the resulting topology cannot contain
circular elements whose diameters are smaller than the corresponding lengthscale (e.g. linewidth
for solid regions and linespacing for void regions). Consequently, the corresponding minimum
radius of curvature ^F,B is defined by

^F,B =
;F,B

2
. (16)

In some cases it may be desirable to place a smaller radius of curvature constraint than is dictated
by the minimum linewidth or spacing (e.g. for platforms that are able to resolve sharper angles).
In such cases, a morphological transform may be a better approach.

3.2. Morphological-transform constraints

As an alternative to the geometric constraints described above, it has been proposed that one
can enforce minimum linewidth, linespacing, and curvature constraints using differentiable
morphological transforms [18]. In practice, we found these morphological constraints to be
inconvenient for generating binary designs as described below. However, we review them here
because we found them to be useful, instead, in implementing robust optimization as described
in Sec. 5.

First, from the erosion and dilation operators of eqs. (8–9), one defines an open operator (ON)

ON (1) = DN (EN (1)) , (17)

which is simply an erosion followed by a dilation (performed using the same filter neighborhood,
N ). Similarly, one defines the close operator (CN)

CN′ (1) = EN′ (DN′ (1)) (18)

which is simply a dilation followed by an erosion (using the filter neighborhood N ′). (Note
that the open and close operators may have distinct filter neighborhoods N ≠ N ′.) If an open
operator produces the same design field as a closed operator such that

ON (1) = CN′ (1) (19)

then the resulting design field must satisfy the minimum linespacing, linewidth, and curvature
constraints as dictated by the filter kernels themselves. Specifically, the shape N of the open
operator’s kernel determines the constraints on the void regions, and the shape N ′ of the close
operator determines the constraints on the solid regions. For example, a close operator with a
rectangular kernel with side length of 90 nm and rounded corners with a radius of 10 nm would
enforce a linewidth constraint of 90 nm and a radius of curvature of 10 nm. Thus, N and N ′
parameterize four distinct design rules.
While elegant, this approach still requires a suitable constraint function that is differentiable.

One obvious implementation might be an !2 norm

6!, ,!(,^ = ‖ON (1) − CN′ (1) ‖2 ≤ �!, ,!(,^ , (20)

for a threshold �!, ,!(,^ . We find that a practical challenge with this approach in practice is that
the constraint does not encourage a truly binary design once enforced. Often, we observe that the
optimizer will stall trying to satisfy the constraint if the design itself is not already sufficiently
binarized. For this reason, we typically use the geometric constraints of Sec. 3.1, but we use the
open/close operators for robust optimization in Sec. 5.



Fig. 4. Minimum area andminimum enclosed area constraint functions. (a) The nominal
design under consideration is first parsed using an image segmentation algorithm to
identify both the (b) islands and (e) holes that correspond to regions violating either
constraint (highlighted in red). These contour masks serve as indicator functions for
the optimization constraint. Gradients for the (c) minimum area constraint and the (f)
minimum enclosed area constraints are computed by backpropagating through the rest
of the mapping functions using the chain rule. The minimum area constraint seeks
to eliminate violating regions, which corresponds to a negative gradient (red). The
minimum hole constraint seeks to fill holes that are too small, which corresponds to a
positive gradient (blue). All images were generated using resolutions that match the
corresponding simulation resolution, which corresponds to small, pixelated artifacts in
the design geometry, field patterns, and constraint gradients.

4. Minimum area and enclosed area constraints

We now define new minimum-area and minimum-enclosed-area constraints along with their
respective gradients. The basic procedure for enforcing each design rule follows the methodology
of the geometric constraints rather closely. First, indicator functions identify regions that violate
the minimum-area constraint (“islands”) and regions that violate the minimum-enclosed-area
constraint (“holes”). Next, each constraint will encourage the optimizer to either eliminate the
violating regions via a localized erosion (for islands) or a localized dilation (for holes). Fig. 4
illustrates the two constraint functions on a sample design with their corresponding gradients.
We define the new minimum-area constraint function, 6�, as

6� =

∫
d̄��( d̄)3d̄ , (21)

where d̄ are the projected design parameters and �� ( d̄) is an indicator function that is nonzero
(its ”support”) in regions enclosing all the islands that are too small to be reliably fabricated.
The process for determining these regions is described later. Similarly, we define the new
minimum-enclosed-area constraint function, 6��, as

6�� =

∫
(1 − d̄) ��� (1 − d̄) 3d̄ (22)



where ��� is an indicator function that marks all the regions of the topology containing holes
that are too small to be reliably fabricated.
To determine which regions (if any) violate the area and enclosed area rules, we use the

marching-squares algorithm [38], a versatile image-segmentation technique often used to extract
contours from images. The algorithm relies on a user-defined threshold point (between 0 and 1)
such that “clusters” of pixels above the threshold point form part of the contour. In many ways,
the procedure follows the same logic as the filter-threshold mapping used to evolve the design’s
parameter field during optimization. For simplicity, we used an out-of-the-box implementation
in Python [39] and a threshold parameter of 0.6.
Once the contours are identified, we calculate the area of each contour using a discrete

summation of all the density values inside the contour, identified using morphological dilations.
We used another out-of-the-box implementation in Python [40] to quickly and accurately compute
each region’s area. If a particular contour has an area smaller than the prescribed design rule,
the filled contour region is dilated by 1 pixel (e.g. using Eq. (9)) and subsequently added to the
indicator function. As explained later, the minimal dilation conditions the gradient computation.
The constraints are then defined by

6� ≤ 0 (23)

6�� ≤ 0 (24)

such that the optimizer seeks to drive the constraint to zero. By doing so, the constraint
eliminates regions that violate the area design rules, which means that violating islands must
disappear (erode completely) and violating holes must be filled (dilate completely). Although
one could alternatively imagine a more flexible approach that could either expand or contract the
holes/islands, our purely elimination-based constraint greatly simplifies the resulting algorithm
and its corresponding gradients. We note that the indicator functions and constraint functions
will continuously decay to zero as the optimizer removes violating regions, a requirement
for most gradient-based optimization algorithms. Since the indicator functions will reliably
evaluate to zero if no violations are found, the above constraints can also be optimized to
zero, a notable difference from the previously-defined geometric constraints that require a
heuristically-determined convergence tolerance due to discretization error in the spatial gradient
step [13].
The constraint gradients w.r.t. the filtered design parameters are calculated as

36�

3 1̄
= �� + 1̄ ·

3��

3 1̄
, (25)

36��

3 1̄
= −��� − (1 − d̄) ·

3���

3 1̄
. (26)

To calculate the gradients w.r.t. the actual design parameters, we use the chain rule and
backpropagate [30] through the thresholding and filtering steps

36�

31
=
36�

3 1̄

3 1̄

3 1̃

3 1̃

31
, (27)

36��

31
=
36��

3 1̄

3 1̄

3 1̃

3 1̃

31
. (28)

At first glance, it may seem that the indicator functions �� and ��� pose a severe challenge,
because they are complicated to compute and are not always differentiable. However, it turns
out that this difficulty is solved by the geometric constraints from Sec. 3, which ensure that the
“islands” are well separated. In consequence, we can choose the boundaries of the indicator
function’s support so that its boundaries occur only where d̄ (for ��) or 1 − d̄ (for ���) is



exponentially small, and hence changes in the indicator function make a negligible contribution to
the constraint gradients. By slightly dilating each violating contour within the indicator function,
we avoid any singularities associated with the edges of each contour. We can therefore safely
omit this term from our analysis and still produce sufficiently accurate gradients. The gradients
used for all numerical experiments in Sec. 6 are calculated using

36�

31
= �� ( 1̄)

3 1̄

3 1̃

3 1̃

31
(29)

36��

31
= −��� (1 − 1̄) 3 1̄

3 1̃

3 1̃

31
(30)

Occasionally, the minimum-lengthscale constraints and the minimum-area constraints compete,
effectively stalling the optimization. We overcome this process by weighting the two sets of
constraints within the minimax optimization problem, as further explained in Sec. 6. This new
formulation allows the optimizer to move freely between feasible regions without the usual issues
that accompany stiff optimization (where the corresponding Hessian is ill-conditioned).

5. Robust optimization

In this section, we present a comprehensive approach to robust optimization that includes
geometric constraints, area constraints, and an explicit under/over-etch tolerance. Commercial
foundry lithography introduces yield variability, both random and systematic, throughout each
step of the fabrication process. Current density-based robust optimization methodologies account
for over/under-etch variability by running a worst-case optimization across three separate design
fields [14, 25, 34]. The eroded and dilated design fields (which are geometric representations of
over and under etching, respectively) are typically determined by choosing threshold parameters ([)
that implicitly enforce quasi-lengthscales [14]. This approach can be problematic because all three
design fields (eroded, dilated, and the nominal “blueprint”) must have the same topology [34], a
strong requirement that may not hold in TO with small features. While some double-filtering
techniques have shown potential for alleviating this restriction [15], predicting the actual amount
of over- and under-etching relative to the desired lengthscale constraints is also difficult as it
strongly depends on the dynamic range of the latent design parameters (d). In short, a reliable
and deterministic method that decouples the lengthscale constraints from the prescribed etch
tolerance has not yet been demonstrated.
We propose a straightforward approach that obeys arbitrary lengthscale and area design

constraints, without any restrictions on the amount of over/under etching or on the topology itself.
First, we place geometric constraints and minimum-area constraints on just the blueprint design.
To ensure a predictable over/under-etch perturbation, we use the morphological transforms
described in Sec. 2, such that the final erosions and dilations do not require any hyperparameter
tuning (e.g. [) as they no longer depend on the dynamic range of the latent design field (illustrated
in Fig. 3). Furthermore, this technique allows the topology to change between design fields without
compromising the minimum length scales or requiring intermediary filter steps. The design rule
constraints and robustness to manufacturing uncertainty are now completely decoupled, allowing
the user to freely activate one or the other (although typically both will be applied).
Figure 5 compares a non-robust splitter to a robust splitter designed to be tolerant to roughly
±20 nm of etch variation. Both splitters were optimized with the geometric constraints and
area constraints described above. The robust variant requires two extra parallel Maxwell solves
per device. As expected, the nominal design between the robust and non-robust variant show
topological differences. The broadband performance (indicated in errorbars) for the robust splitter
demonstrates greater tolerance than the non-robust variant even beyond the expected ±20 nm
variations.



(a)

(c) (d) (e)

(b) Design range

Fig. 5. Comparison of a robust T-splitter to a nominal T-splitter. (a) The nominal,
non-robust design. (b) The broadband performance as a function of etching variation for
both the robust and nominal design. The (c) eroded, (d) blueprint, (e) and dilated designs
for the robust optimization. The final pixelated device geometries were smoothed (but
not otherwise altered) to better illustrate the erosions and dilations

The devices were designed on a grid with 17 nm resolution. The resulting ±20 nm target
variation, along with the additional ±30 nm and ±40 nm perturbations, were approximated using
the nonlinear harmonic filters described in Sec. 3.2. Like any spatial parameter, these values are
only approximate once the grid discretization is included, but our 17 nm resolution is sufficient
to clearly resolve distinct ±20 nm, ±30 nm, and ±40 nm perturbations (filter radii of 1.2, 1.8, and
2.4 pixels), as shown in Fig. 5. Moreover, the point of performing robust optimization is that the
results become less sensitive to small details such as the discretization resolution or the exact
perturbation amount.

Note that the nominal design here actually has a certain degree of robustness simply by virtue
of being broadband, which eliminates the extreme sensitivities that can arise in single-frequency
optimization due to resonant and interference effects [41]. Therefore, it is not surprising that
in Fig. 5 the nominal design still performs some splitting even for over/under-etching, and is
qualitatively not too unlike the robust design. However, because the robust design is designed
specifically to tolerate over/under-etching, its performance is quantitatively much better (its error
bars are up to 24× smaller for variations ≤ 20 nm) for that specific imperfection.
While this approach produces robust devices that simultaneously obey length scales, further

work is needed to extend this methodology to random perturbations on the design field. Indeed
existing methods that randomly vary the thresholding parameter [ could be used, but they suffer
from the same challenges discussed earlier.



6. Numerical examples

In this section, we present numerical results for three broadband silicon photonic examples to
demonstrate the effectiveness and flexibility of our proposed methodology. Among the many
photonic TO examples already discussed in the literature (1D grating couplers, demultiplexers,
directional couplers, etc.) we chose (2D) devices that typically produce small islands and holes.
Specifically, we demonstrate the design of several different waveguide reflectors, bends, and
T-splitters because they each route light within a highly confined space (3 `m × 3 `m). Each
example uses the geometric and area constraints described earlier for nine different foundry
specifications (for twenty-seven unique examples in total). While these specific design rules are
synthetic, they are comparable to existing commercial-foundry DRC constraints.
Each example problem has an objective function depending on a waveguide modal overlap,

which is proportional to an entry of the scattering matrix (( matrix):

U±< = 2

∫
�

[
K∗ (A) × N±< (A) + K±< (A) × N∗ (A)

]
· n̂3� (31)

where U±< is the overlap coefficient (amplitude) of the <th mode for the forward (+) and backward
(−) directions, K (A) and N(A) are the Fourier-transformed total (simulated) fields at a particular
frequency, K±< (A) and N±< (A) are the mode profiles at the same frequency for the forward- (+)
and backward- (−) propagating modes, and 2 is a normalization constant chosen such that

|U±< |2 = % (32)

where % is the total power propagating in that particular mode. Given these mode amplitudes
U±< (l) at a frequency l, each problem defines some objective function 5 (l) to minimize,
e.g. 5 (l) = −|U+1 |

2 to maximize the outgoing power in mode 1. For multiple frequencies l=, we
will then minimize the maximum (worst-case) 5 (l=) using an epigraph formulation as explained
in Sec. 2.

The fabrication constraints must be enforced “gradually” in the optimization problem, so that
at early stages of the optimization the geometry can change freely (since changes in topology,
such as the appearance of a new hole, temporarily violate the constraints [13]. For a fabrication
constraint 6: ≤ 0, this is accomplished by changing the constraint to 6: ≤ �: for some constants
�: ≥ 0 that are decreased as optimization proceeds:

min1 C

s.t. ∇ × 1
`0`A
∇ × K − l2

<n0&A (1)K = −8l<P = ∈ {1, 2, ..., 10}

0 ≤ 1 ≤ 1

5 (l=) − C ≤ 0 = ∈ {1, 2, . . . , 10}

6: ≤ �: : ∈ {!(, !,, �, ��}

(33)

In many photonics-optimization problems, such as the examples here, the objective can be
formulated so that C → max= 5 (l=) → 0 as the optimization proceeds, and this can be used
to simplify the choice of constraint bounds �: . For example, if we are minimizing reflection
or 1 − transmission, then a high-performance structure will an achieve near-zero optimum. In
such cases, we can simply set �: = 0: C for a suitable constant 0: , so that �: → 0 as the
optimization proceeds. Here, 0: = 10−5 for : ∈ {!(, !,, �, ��} worked for all the examples
presented below. In the future, we are hopeful that such hyperparameters as�: and the projection
scale factor V can be automatically inferred from the convergence rate of the optimization
algorithm. For now, however, they offer a strategic “knob” to turn when the optimization stalls or
underperforms (further discussed in Sec. 6.3).



For the forward and adjoint solves, we used Meep, a free/open-source FDTD software
package [29]. Each simulation ran with a resolution of 30 pixels/`m (ΔG = 33 nm) and a
design-region (d) resolution of 60 pixels/`m (ΔG = 17 nm). Solid regions represent silicon with
a dispersionless refractive index of = = 3.4. Void regions represent SiO2 with a dispersionless
refractive index of = = 1.44. We note that our method generalizes to materials with dispersion, and
that dispersionless approximations were used here for simplicity. All examples were optimized
using 70 iterations at V = 8, 16, and 32 for a total of 210 iterations. The foundry constraints
6: ≤ �: were not included until V = 32. We used a free/open-source implementation [42] of
the globally convergent method of moving asymptotes (MMA) [35] optimization algorithm,
restarting the algorithm each time V changed values. We ran each simulation on four cores of an
Intel Xeon Gold 6226 2.7 GHz CPU using resources provided by the Partnership for an Advanced
Computing Environment (PACE) at the Georgia Institute of Technology. Each example finished
after about 6–8 hours of runtime.

6.1. Mirror

In this example, we designed a silicon photonic broadband mirror such that the forward-
propagating mode is reflected, transferring energy to the backward-propagating mode of the
same waveguide. Fig. 6 illustrates the design evolution of the broadband mirror, along with
the steady state field pattern of the final device at the center of the band and the broadband
reflection response. It is clear that a topology with several small holes and islands is favored by
the optimization algorithm until the area and geometric constraints are activated during the last
thresholding epoch (iteration 140, V = 32). At this point, the performance drops significantly
and is gradually recovered while the foundry constraints are simultaneously satisfied. The final
device exhibits no small holes or islands and obeys the prescribed linewidth, linespacing, and
curvature rules, while still performing well across the band with < 1% variation in reflectivity.
The objective function used to design the mirror is

5 (l=) = 1 − |U−1 (l=) |
2 (34)

where U−1 is the fundamental mode coefficient for the =Cℎ frequency point (l=) propagating
backwards. We perform a minimax optimization over the ten objective functions and the four
foundry fabrication constraints. The fabrication constraint bounds �: = 0: C are weighted such
that 0: = 10−5.
Figure 7 illustrates the final designs: nine different broadband mirrors, each of which obey a

different combination of fabrication constraints. The devices are presented such that those with
the least-restrictive constraints are on the upper-left side of the figure and the constraints become
more restrictive toward the bottom-right. The least-restrictive rulebook, for example, imposes a
minimum linewidth/linespacing of 60 nm and a minimum area/enclosed area of 0.005 `m2, and
produced a device shown in the upper-left corner. In contrast, the design shown in the lower-right
corner obeys a minimum linewidth/linespacing of 120 nm and a minimum area/enclosed area of
0.2 `m2. The devices located between these two boundary cases are intermediate versions of
these design rules, including cases where linewidth ≠ linespacing and/or area ≠ enclosed area.

All but two of the resulting devices reflect > 90% of the light with very little variation across
the band (the most restrictive rulebook produced a device with just ±0.3% of variation across the
band). Because these algorithms produce only a local optimum, not a global optimum, the devices
that have less restrictive constraints (upper-left) do not always outperform the devices designed
with tighter restrictions (lower-right). For example, the device with a linewidth/linespacing
constraint of 90 nm and a minimum area/enclosed area constraint of 0.005`m2 only achieve an
average of 68.8% transmission with a rather high variability of 18.7% across the band. A global
optimizer subject to this particular rulebook could have also produced the same design as the
device on its right, as it shares the same linewidth/linespacing constraint (and thus the same filter
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Fig. 6. Evolution and performance of the broadband mirror designed to obey a minimum
linewidth of 90 nm, a minimum spacing of 90 nm, a minimum area of 0.08 `m2, and
a minimum enclosed area of 0.2 `m2. (a) Projected design field (d̄) evolution for
iterations 1, 31, 81, 146, and 210. The final iteration (210) also displays the steady-state
field pattern of the device at _=1.55 `m. The two iterations enclosed in red indicate
when the constraint was active at V = 32. (b) The evolution of the device broadband
reflection as a function of iteration. The mean performance across the band is depicted
by a solid line, while the bounds are illustrated by a blue shaded region. All constraints
were enforced starting with iteration 141. (c) The broadband performance of the device
from 1.50 `m to 1.60 `m.

radius) but with slightly stricter area constraints (which still satisfy a less-strict constraint by
definition). However, as seen here, a local optimizer may happen to find a poorer local optimum
in a case with looser constraints, and it is well known that some experimentation (e.g. different
starting points or different constraint weights) is often needed to find a satisfactory local optimum
in high-dimensional nonconvex optimization (see Sec. 6.3). Nevertheless, as is often observed in
topology optimization [20], in all cases the algorithm converged to a local optimum with good
performance.

6.2. Bend

In the next example, we design a silicon photonic broadband 90◦bend in a single-mode waveguide.
Fig. 8 illustrates the design evolution of the broadband bend, along with the steady-state field
pattern of the final device at the center of the band and the broadband transmission response.
As expected, the design converges to a binary layout that satisfies the prescribed DRC rules.
Unlike the mirror examples earlier, the optimization favored larger, elongated structures/gaps that
satisfied the area rules even before the constraints were applied. As such, the drop in performance
at the start of the final epoch is only about 10%.
The objective function used to design the bend is

5 (l=) = 1 − |U+1 |
2 (35)

where U+1 is the fundamental mode coefficient for the =Cℎ frequency point propagating forward
(North of the bend).



Fig. 7. Comparison of various broadband mirror designs optimized to perform under
different combinations of fabrication constraints. (top) Each of the minimum linewidth,
minimum spacing, minimum area, and minimum enclosed area constraints drawn to
scale. The minimum area constraints, for example, are demonstrated by a circle that
shares the same area as the constraint. The minimum linewidth and spacing constraints
are demonstrated by circles whose diameters align with the corresponding constraint.
By extension, the minimum radius of curvature also aligns with this depiction. (bottom)
Each broadband mirror design is drawn alongside the constraints used to produce it.
The average reflection of each device from _ =1.5 `m to _ =1.6 `m, along with the
corresponding minimum and maximum is depicted above each design.
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Fig. 8. Evolution and performance of the broadband bend designed to obey a minimum
linewidth of 90 nm, a minimum spacing of 90 nm, a minimum area of 0.08 `m2, and
a minimum enclosed area of 0.2 `m2. (a) Projected design field (d̄) evolution for
iterations 1, 31, 81, 146, and 210. The final iteration (210) also displays the steady-state
field pattern of the device at _ =1.55 `m. The two iterations enclosed in red indicate
when the constraint was active at V = 32. (b) The evolution of the device broadband
reflection as a function of iteration. The mean performance across the band is depicted
by a solid line, while the bounds are illustrated by a blue shaded region. All constraints
were enforced starting with iteration 141. (c) The broadband performance of the device
is from _ =1.50 `m to _ =1.60 `m.

Figure 9 shows the final designs for nine different broadband bends, each of which obeys a
different combination of fabrication constraints (just as for the mirror designs above). Again, the
devices perform well across the various rulebooks, with the average transmission always > 89%.
We note that the most constrained device (lower-right corner) exhibits a transmission of 98.2%
with practically no variation across the band. Interestingly, the area constraints removed the
small Bragg mirror-like features on the boundaries as soon as the constraints were activated. The
resulting device naturally took a rather different optimization evolution than the other devices
constrained by different rulebooks.

6.3. T-splitter

In the final example, we design a symmetric, silicon-photonic broadband T-splitter. Unlike
conventional splitters that route the outputs along the same direction as they entered the splitting
structure, the outputs of this design are each routed at a 90◦ angle (forming a "T"). Consequently,
we intuitively expect structures containing small islands and holes in order to reflect the light
within the device and route it as intended. Fig. 10 illustrates the design evolution of the broadband
splitter, along with the steady-state field pattern of the final device at the center of the band and
the broadband transmission response. Similar to the mirror example above, we first see several
small islands forming in the initial two epochs (V = 8, 16). Once the constraints are applied,
however, these violating regions are modified such that they no longer pose any DRC issues.
Specifically, the geometric constraints “bridged” the regions that were within the rulebook’s
defined linespacing, while the area constraints eliminated the remaining well-separated islands.



Fig. 9. Comparison of various broadband bend designs optimized to perform under
different combinations of fabrication constraints. (top) Each of the minimum linewidth,
minimum spacing, minimum area, and minimum enclosed area constraints drawn to
scale. The minimum area constraints, for example, are demonstrated by a circle that
shares the same area as the constraint. The minimum linewidth and spacing constraints
are demonstrated by circles whose diameters align with the corresponding constraint.
By extension, the minimum radius of curvature also aligns with this depiction. (bottom)
Each broadband mirror design is drawn alongside the constraints used to produce it.
The average transmission of each device from _ =1.5 `m to _ =1.6 `m, along with the
corresponding minimum and maximum is depicted above each design.
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Fig. 10. Evolution and performance of the T-splitter designed to obey a minimum
linewidth of 90 nm, minimum spacing of 90 nm, a minimum area of 0.08 `m2, and
minimum enclosed area of 0.08 `m2. (a) Projected design field (d̄) evolution for
iterations 1, 30, 80, 145, and 210. The two iterations enclosed in red indicate when
the constraint was active at V = 32. (b) The evolution of the device splitting ratio as
a function of iteration. All constraints were enforced starting with iteration 140. (c)
The steady state field pattern of the final device at _=1.55 `m. (d) The broadband
performance of the device from _=1.50 `m to _=1.60 `m.

The enclosed-area constraints ensured that no new small holes would form as a result of this
bridging process. The resulting device exhibits 0.2% of variation across the band with a mean
transmission of 49%.
The objective function used to design the T-splitter is

5 (l=) = 1 − |U+(1,1) |
2 − |U+(1,2) |

2. (36)

We imposed a geometric symmetry constraint, forcing the final splitting ratio to also be symmetric.
Figure 11 illustrates the final designs for nine different broadband splitters, each of which obeys

a different combination of fabrication constraints (just as for the mirror and bend designs above).
In this case, we see that the least-restricted device (upper-left corner) happens to exhibit rather
poor performance across the band (27.2% ± 5.7%), which turns out to simply be an unlucky
local optimum. We reran the exact same optimization problem for this rulebook, but modified
the constraint weight factors to 0: = 10−3, effectively relaxing the strength of each constraint
(without modifying the constraint function itself). The resulting device still obeyed the prescribed
design rule constraints, but exhibited far superior performance across the band (49.5% ± 0.05%).
In general, we found that if the constraint weights were too strict, the optimizer could become
stuck in a local minimum. The constraint weights (0: ) offer additional tunability to combat slow
convergence.

7. Conclusion

We presented a comprehensive photonic TO design methodology that includes minimum
linewidth, linespacing, curvature, area, and enclosed-area “DRC” constraints. The linewidth,



Fig. 11. Comparison of various broadband T-splitter designs optimized to perform under
different combinations of fabrication constraints. (top) Each of the minimum linewidth,
minimum spacing, minimum area, and minimum enclosed area constraints drawn to
scale. The minimum area constraints, for example, are demonstrated by a circle that
shares the same area as the constraint. The minimum linewidth and spacing constraints
are demonstrated by circles whose diameters align with the corresponding constraint.
By extension, the minimum radius of curvature also aligns with this depiction. (bottom)
Each broadband mirror design is drawn alongside the constraints used to produce it.
The average transmission of each device from _ =1.5 `m to _ =1.6 `m, along with the
corresponding minimum and maximum is depicted above each design.



linespacing, and curvature constraints are adapted from previous work and combined with novel
area constraints. All the constraints rely on density-based projection steps without any additional
re-parameterizations. By additionally incorporating differentiable morphological transforms,
we provide a method to perform systematic robust optimization while simultaneously imposing
the fabrication constraints. We illustrated these techniques using three distinct test devices
constrained by nine different design rulebooks.

There remain many opportunities for future work on these topics. As we noted in Sec. 4, it is
desirable to have a more flexible area constraint that allows the topology-violating region to either
expand or contract, instead of only contracting as in this work. Similarly, a more rigorous analysis
that relates the hyperparameters of the geometric constraints (�: ) is needed, such that the need
to tune each optimization run could be reduced. One possible path forward involves deriving
an improved constraint function based on the morphological transforms described in Sec. 3.2.
While our new robust-optimization paradigm decouples systematic under/over-etch variations
from DRC constraints, future efforts should seek to handle a larger class of manufacturing
uncertainties, such as over-etch in some regions and under-etch in others, and surface roughness,
within a similar morphological-transform framework. Similarly, our methodology does not
explicitly incorporate calibration steps that are typically performed by the foundry, such as optical
proximity correction (OPC). While recent work has demonstrated a variant of TO that uses filters
to mitigate the need for OPC [43,44], most semiconductor foundry pipelines (and their respective
DRC rulebooks) are not set up for this workflow.
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