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Abstract

The Viterbi search is an important, but computationally expensive, algorithm for
speech recognition. Even with the substantial advances expected in processor tech-
nology, the massive computational resources required will remain prohibitive for
operation of a speech recognition system in real time. This problem motivates the
development of a parallel Viterbi search algorithm.

A software implementation of a Viterbi search algorithm was written for NuMesh,
a network of programmable communications routers supporting a set of digital signal
processors with local memory. Communication between the processors occurs in
the logical pattern of a binary tree, embedded in the physical topology of a two-
dimensional Cartesian mesh.

Despite the limited architecture of the routers, efficient merging and broadcasting
of data were achieved by simple protocols for pipelined communication. Experimental
results were collected in evaluation of an analytical model, which projects excellent
scaling of performance with the number of processors.
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Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Background

1.1 Introduction

The Viterbi search is an important, but computationally expensive, algorithm for
speech recognition. The goal of this thesis is the application of parallel processing to
support scalable performance of the algorithm in a speech recognition system. This
chapter presents background on relevant concepts in parallel processing and speech

recognition which frame the problem, followed by an overview of the thesis.

1.2 Parallel Processing

A wuseful tool for visualizing the structure of a computation is the dataflow graph.
A dataflow graph is shown in Figure 1.1 for the computation f = ab+ cd. The
arithmetic operations correspond to its nodes, and data values may be visualized as
tokens flowing along its arcs. The dataflow graph makes explicit the dependency of
the final addition on the results of the two multiplications.

In this example, each operation has two inputs and a single output. When both
input values are available to a processor, it can perform the operation to produce
the output value. A single processor can perform the operations, cne at a time,
concluding with the addition. Assuming that each operation requires one unit of

execution time, a processor could perform the computation of in three units of time,
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x (Proc. 1) X (Proc. 2)
Stage 1
Stage 2
+ (Proc. 3)
f

Figure 1.1: Dataflow Graph for f = ab+ cd

or n such computations in 3n units of time.

While simple, this example indicates the potential to exploit parallelism, the con-
current execution of operations. As labeled in Figure 1.1, each multiplication oper-
ation could be performed simultaneously by a distinct processor. The final addition
can be performed by a third processor, which must wait for the completion of the
multiplications (a time dependency) and receive their results (a data dependency).
At best, n such computations can be performed in only 2n units of time.

Additional overhead, however, is incurred in satisfying the data and time depen-
dencies, respectively, by the mechanisms of communication and synchronization. The
cost of this overhead depends greatly on the architecture of the parallel processing
system, the structure of the parallel algorithm, and how well they are suited to each
other. This overhead ultimately limits how finely the computation can be divided
and can degrade how well performance scales with the number of processors.

If a computation is to t ¢ performed repeatedly, further parallelism can be ex-
ploited by pipelining, the concurrent execution of different stages of the computation.
Suppose that f is to be computed several times by a parallel system of three proces-

sors. The computation could be divided into two stages, as indicated by the dashed
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line in Figure 1.1.

The two multiplications of the first stage for the next computation of f can be
overlapped with the addition of the second stage for the current computation. Ne-
glecting the cost of communication and synchronization, n such computations can
be performed in n 4+ 1 units of time. Note that while the latency, the time for each
computation, remains two units, the average time approaches one as n grows large.

A system is said to operate in real time if it can process input data at the maximum
rate which it arrives. In a pipelined system, each stage must satisfy this criterion,
and communication bandwidth between the stages must be sufficiently high. The
placement of data buffers between the stages relaxes this criterion, allowing each

stage to operate at the average, rather than the maximum, rate of data arrival.

1.3 Speech Recognition

A typical speech recognition system is organized as a series of successive stages. This
organization allows each stage to be designed and developed with some degree of
isolation. If each stage can process incomplete input from the previous stage to
provide incomplete output to the following stage, the system can be pipelined for
operation in real time.

A speech recognition system might be just one component of a larger system
which interacts with its users through the medium of speech. The goal of speech
recognition is to transcribe a spoken utterance to a textual word string. A natural
language system, in turn, could attempt to understand the meaning of the utterance.
An application, such as an expert system, could act upon commands generated by
the natural language system. Finally, the response could be communicated to the
user through a speech synthesis system.

To fulfill its purpose, speech recognition must be performed with both speed
and accuracy, which depend greatly on the types of algorithms employed. Speech
recognition systems can vary widely along several parameters. This research is con-
cerned mainly with speaker-independent, continuous speech recognition. In a speaker-

12
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independent system, no attempt is made to adapt to a particular speaker or set of
speakers. In continuous speech, words need not be isolated by intervals of silence.
In lerical access, the final stage of speech recognition, a dynamic time alignment
is performed, giving rise to to a search problem. Many algorithms can be employed
for the search, including the Viterbi algorithm. While efficient, the search can require
minutes to ¢ omplete with current desktop computing technology (Sun II), and requires
several megabytes of memory, even for a small vocabulary of just a few hundred words.
In contrast, the front-end stages of the speech recognition system can usually be
performed in real time by digital signal processors with a modest amount of memory.
The lexical access bottleneck prevents the operation of a speech recognition system
in real time. Even with technological advances expected in mass-produced proces-
sors, the computational expense will remain prohibitive for larger vocabularies. This
limitation motivates the development of a parallel Viterbi search algorithm for lexical

access search which can operate within a pipelined speech recognition system.

1.4 Overview

This research is the focus of a collaborative effort between two groups at the MIT
Laboratory for Computer Science. A parallel Viterbi search algorithm was designed
to work with the models used in Summit, a speech recognition system developed by
the Spoken Language Systems Group. A software implementation of the algorithm
was written for NuMesh, a parallel processing system developed by the Computer
Architecture Group.

Chapter 2 describes the Summit speech recognition system with emphasis on the
lexical access stage. Chapter 3 discusses search algorithms for lexical access and
explains the important role of the Viterbi search. Chapter 4 describes the NuMesh
parallel processing system. Chapter 5 presents a parallel Viterbi search algorithm
designed for Summit and implemented on NuMesh. Chapter 6 presents an analytical
performance model of the implementation. Chapter 7 concludes with projected results

and possible extensions of the parallel Viterbi search algorithm.

13



Chapter 2

Summit:

Speech Recognition System

2.1 Introduction

To provide concreteness to the discussion, lexical access will be presented in the
context of a particular speech recognition system, Summit. The search problem in
the lexical access stage of Summit, however, is similar to that which arises with the
hidden Markov model approach [Rabiner ’86] predominant in other contemporary
speech recognition systems.

Summit has been developed by the Spoken Language Systems Group at the MIT
Laboratory for Computer Science. The system can be viewed as a series of succes-
sive computational stages [Zue "89] [Zue '90]. Specifically, these stages are spectral
analysis, acoustic segmentation, phonetic classification, and the focus of this research,
lexical access.

The input to the system is obtained by transducing, filtering, and digitizing the
acoustic signal generated by the spoken utterance. Each stage serves to refine this sig-
nal representation. This chapter traces this evolution through the stages of Summit,

as depicted in Figure 2.1, taken from [Zue ’90].
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Figure 2.1: Signal Representations in Summit
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2.2 Spectral Analysis

The spectral content of the speech signal is relatively stationary over short intervals
of time. The spectral analysis stage makes measurements of the signal, repeatedly, in
uniform intervals of time called frames. The duration cf each frame, which is subject
to the classic tradeoff between time and frequency resolution, is five milliseconds.
These measurements serve to characterize the signal in each frame.

The mainstay of this stage is a nonlinear model of the human auditory system
[Seneff]. Motivated by physiological experiments, the model calculates two sets of
energy measurements, mean rate and synchrony response, each over 40 frequency
channels. Each set can be displayed as a spectrogram, a density plot like the one in
Figure 2.1a, displaying spectral energy versus time.

In addition, signal energy is measured in five broad spectral bands by a win-
dowed fast Fourier transform. Finally, the frequency of the speaker’s voicing, if any,
is estimated by a pitch period algorithm [Rabiner '75]. Taken together, these mea-
surements form a vector of data which may be compressed by methods such as vector

quantization or principal components analysis.

2.3 Acoustic Segmentation

While the speech signal remains stationary during a short frame, it varies over longer
intervals of time in order to convey information. The acoustic segmentation stage
locates boundaries in the signal, which define regions of homogeneity. The time basis
of the signal is changed from uniform-length frames to variable-length regions.

Many alternative segmentations are suggested to capture both subtle and dra-
matic changes in the speech signal. These alternatives can be represented in a multi-
level data structure of overlapping regions, called the dendrogram. A dendrogram is
graphically portrayed in Figure 2.1b.

The segmentation algorithm [Glass] identifies acoustic boundaries in the signal

by calculating the dissimilarity between the measurement vectors in adjacent frames.
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These boundaries define seed regions for the dendrogram. Higher-level regions, which

span multiple boundaries, are formed by merging two similar lower-level regions.

2.4 Phonetic Classification

The phonetic classification stage performs pattern matching on each region of the
dendrogram to acoustic models of speech called phones.! Each phone consists of
measurement statistics obtained from training data for that phone. These statistics
are parametrically modeled as mixtures of Gaussian distributions.

Each region of the dendrogram is scored against all possible phones to produce
an acoustic-phonetic network, or AP network for short. A simplified AP network,
showing only high-scoring phones, is shown in Figure 2.1c. If a region scores poorly
against all phones, it may be discarded. If a region scores well against one phone, ii

may score well against similar phones.

2.5 Lexical Access

The lexical access stage ultimately determines which regions of the AP network to
keep by mapping them onto the phones of a lezical network. A dynamic time align-
ment is performed by constructing a trellis. A transcription, like the one shown in
Figure 2.1e, is produced by finding the path through the trellis with the best score.
This section describes the structure of the lexical network, construction of the trellis,

and scoring of the paths through the trellis.

2.5.1 Lexical Network

The lexical network contains a pronunciation model for each word in the vocabulary
of the system. A model consists of discrete states connected by directed arcs, each

labeled with a particular phone. A simplified model for the word “restaurant” is

Inot to be confused with phonemes, which are perceptual models. Speakers of English normally
perceive many distinct phones as the same phoneme.
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shown in Figure 2.1d. A complete model offers several alternative pronunciations for
a word.

A model may have multiple start and end states. The end states of a model are
connected to endsets, which in turn are connected to start states of other models. In
the least restrictive model, a single endset could connect all end states to all start
states. Continuous speech, however, imposes some constraints.

For example, the final phone of the word “six” and the initial phone of the word
“seven” are both /s/. When pronouncing the two words in rapid succession, the two
phones are often merged to form a slightly longer /s/. This phenomenon, termed a

gemination, is expressed by an endset between all such pairs of words.

2.5.2 Alignment Trellis

The lexical access stage performs a dynamic time alignment by constructing a trellis,
a two-dimensional matrix network. The connectivity of the trellis is determined
Jointly by the structure of the AP network (run-time data) and the lexical network
(compile-time data). In the following hypothetical example, the trellis in F igure 2.4
was constructed from the simple AP network in Figure 2.2 and the simple lexical
network in Figure 2.3.

The AP network in Figure 2.2 consists of three regions. (Assume higher-level
regions were discarded by the phonetic classification stage, as their presence would
greatly complicate the illustrations.) Within each region is listed the score against
/X/ and /Y/, the only phones in our hypothetical language. Also listed is the penalty
for inserting the region into the transcription without mapping it onto a phone.

The lexical network in Figure 2.3 consists of a single pronunciation model with
only three states. The start state is So and the end state is S,. A phone, /X/ or
/Y/ is indicated above each arc. Below the arc is listed the penalty for deletion of
the phone without the mapping of a corresponding region. Because there is only one
word, no endsets are shown for this lexical network.

A node in the trellis is specified by two coordinates. The horizontal index cor-

responds to an acoustic boundary; the vertical index, lexical state. A path through

18



Lexical State

S2

S1

SO

X: 16 X: 12 X. 6

Y: 3 Y: 7 Y: 14

Ins: -7 Ins: =10 Ins: -8
BO B1 B2

Acoustic Boundary

B3

Figure 2.2: Acoustic-Phonetic Network

X
Del: -3

Y
Del: -5

Figure 2.3: Word Pronunciation Model

-7 -10 -8
End
-5 3 _5 7 _5 14 -5
-7 -10 -8
3 16 -3 12 _3 6 -3
-7 -10 -8
Beg.
BO B1 B2 B3

Accustic Boundary

Figure 2.4: Dynamic Alignment Trellis
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this trellis must begin at the lower left corner, (B, Sp), and end at the upper right

corner, (Bs, S2).

Scoring of Paths

The score of a path is accumulated over the arcs along the path. The four types
of arcs that can be placed between the nodes of the trellis are matches, insertions,
deletions, and endsets. Matches, insertions, and deletions occur within word models,
while endset transitions occur between them:.

In a match, a AP network region is mapped onto a lexical phone, resulting in a
diagonal transition. Two nodes are connected when a region spans their two bound-
aries and a phonetic arc connects their two states in the lexical network. The segment
is labeled with the score of the spanning region against the phone. For example, an
connection is made from (By, So) to (B, S1) with score 16, the score of the region
from By to B; against /X/, the phone of the arc connecting Sp and S;.

In an acoustic insertion, a region is inserted in the transcription without mapping
it onto a lexical phone, resulting in a horizontal transition. T-vo nodes of the same
state are connected when a region spans their boundaries. The arc is labeled with
the insertion penalty for the spanning region. For example, a connection is made
between (B, S1) and (B, S1) with score -10, the insertion penalty for the region
from boundary B; to B,.

In a phonetic deletion, a phone is deleted from the transcription without a region,
resulting in a vertical transition. Two nodes of the same boundary are connected
if their lexical states are connected by a phonetic arc in the lexical network. The
arc is labeled with the insertion penalty for the connecting phone. For example, a
connection is made from (Bz, S}) to (B2, S2) with score -5, the deletion penalty for
/Y/, the phonetic arc connecting state S; to S in the lexical network.

In an endset connection, a transition can be made from an end state to a start
state at the same boundary, if the two nodes are connected by an endset. A fixed
penalty, called a word transition weight, is incurred. Although this type of transition

is not illustrated by this example, the connectivity within word models is usually
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sparse relative to that between word models.

2.5.3 Grammars

The use of grammatical knowledge can aid the search process between word models.
A grammar may be deterministic, probabilistic, or some combination of both. In
a deterministic grammar, the sequence of words in a trellis path is restricted to
reduce the search space. In a probabilistic grammar, the scores of paths are modified

according to their word sequence to warp the search space.

Deterministic

The most general deterministic grammar is the natural language system which may
follow the speech recognition system. Such a system could be taken to define gram-
maticality. A natural language system attempts to identify both the structure (syn-
tax) and meaning (semantics) of the word string in order to understand the utterance.

In practice, a less stringent version of a natural language grammar must be used
for two reasons. First, to be useful in a pipelined lexical access stage, the grammar
must be able to reject incomplete word strings. Second, many word strings must be
tested, so the grammar must not consume substantial computational resources.

A more simplistic deterministic grammar is expressed by word-pair constraints
[Zue *91]. Such a grammar restricts which words may follow any particular word.
The word-pair grammar is popular because it can be implemented directly in the

endset structure of the lexical network and used in conjunction with other grammars.

Probabilistic

The most widespread probabilistic grammars are the unigram, bigram, trigram, or in
general, the N-gram, where the N refers to the number of words in the window of the
grammar. For each subsequence of N words, the score of the path is modified accord-

ing to a table of adjustments, based on the statistical frequency the subsequences in

training data.
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For most entries in a trigram table, training data may be nonexistent or insufficient
for statistical significance. A sparse representation of the lookup table can be used
for the trigram, with the defaults for missing values obtained from bigram statistics.
Similarly, a bigram matrix entry may default to a unigram statistic.

The unigram can be easily incorporated into the lexical access search process by
applying the adjustment upon entering the start state of any word. Like the word-
pair grammar, the bigram can be incorporated intc the endset structure of the lexical
network, although a fully associative bigram would greatly increase the connectivity
of the trellis by requiring a dedicated endset between each pair of words. A trigram

may require additional bookkeeping by the search algorithm.

2.6 Summary

The four stages of the Summit speech recognition system are spectral analysis, acous-
tic segmentation, phonetic classification, and lexical access. The spectral analysis
stage calculates a measurement vector of the signal in each frame, the acoustic segmen-
tation identifies regions of homogeneity, and the phonetic classification stage scores
each region against phonetic models to produce an acoustic-phonetic (AP) network.

The lexical access stage maps the regions of the AP network against the phones in
a lexical network by constructing a trellis. The scores of the paths through the trellis
are determined jointly by the AP network and the lexical network. A transcription is
produced by finding the path through the trellis with the highest score. Grammatical
knowledge can aid the search process between word models. In the next chapter, two

classes of search algorithms for lexical access will be discussed.
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Chapter 3

Lexical Access

Search Algorithms

3.1 Introduction

As explained in the previous chapter, the lexical access stage performs a dynamic
time alignment of the AP network and lexical network, giving rise to the problem of
searching for the best path through a trellis. This chapter discusses two classes of
search algorithms, the Viterbi decoder and stack decoder, which can be employed for

lexical access search.

3.2 Viterbi Decoder

The Viterbi search [Viterbi] was originally introduced as a means of forward error
correction coding in communication systems. The algorithm can be applied to similar
problems which require dynamic time alignment, including lexical access search in
speech recognition. This section discusses the theory, operation, and limitations of

the Viterbi decoder.
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3.2.1 Theory

The Viterbi algorithm is an example of dynamic programming [Bertsekas]. In this
class of algorithms, subproblems that would arise repeatedly from a recursive de-
composition are solved once to construct a global solution. Finding the best path
through the trellis can be exploited by the dynamic programming technique because
the problem of finding the best path can be decomposed into shared subproblems of
finding the best subpaths.

In the trellis, any path from node A to node C must pass through a node B such
that an arc connects B to node C. Furthermore, the best path from node A to node
through node B must contain the best path from node A to node B. Otherwise, a
better path from A to B could be substituted to obtain a better path from A to C,
resulting in a contradiction.

The Viterbi search algorithm systematically iterates over the nodes in the trellis,
maintaining the best path to each node. Each node is Jabeled witk the score d of the

best path and a pointer p to the the previous node in that path. Formally,
dj = max{d; + a;; | (i,5) € A}

p; = arg miax{d.- +ai; | (4,5) € A}

where a;; is the cost of an arc (7, 5) belonging to the set of arcs A in the trellis. At
the conclusion of the utterance, best path can be found by backtracing the pointers
from the final node of the trellis.

Suppose there are R regions and B boundaries in the AP network, and N nodes
in the lexical network. There are NB nodes in the trellis, so the Viterbi algorithm
requires O( N B) computational space for storing scores and pointers. Each node could
have, in the worst case, NV incoming arcs per region. Thus, the Viterbi search requires
O(N?R) computational time.

The Viterbi algorithm is by far more efficient than direct enumeration of all the
paths through the trellis. At each boundary, a path may go through one of N nodes.

(For higher-level regions which span more than one boundary, the path can be taken
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Figure 3.1: Scores from Forward Viterbi Search

to go through an artificial node.) Thus, direction enumeration would require O(NB)

time, which is prohibitively large for realistic values of N and B.

3.2.2 Operation

For the trellis constructed in Figure 2.4, the Viterbi algorithm would produce the
labeling in Figure 3.1. The number in each node is the score of the best path to that
node. The bold arcs indicate the best path through the trellis, while the dashed arcs
indicate paths that were pruned from the search at each node. The operation of the
Viterbi search ensures that all of the previous nodes in the trellis have already been
labeled.

The structure of the Viterbi algorithm contains many nested loops. The outermost
loop iterates over the acoustic boundaries, the columns of the trellis. Each iteration
makes three passes over the nodes in each column. In the first, matches and insertions
are performed; in the second, deletions; and in the third, endset transitions. The
first two passes achieve propagation of scores within word models, while the endset
transitions achieve propagation between them.

Matches and insertions for each node are found by two nested loops. The outer
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loop iterates over the AP network regions ending at the boundary. For each region,
an insertion is considered, and an inner loop iterates over the incoming lexical arcs
to the node, if any. For each arc, a match is considered. The node is labeled with the
score and pointer for the best path found so far.

Deletions must be performed after matches and insertions, but before endset tran-
sitions, because the previous node is in the same column of the trellis. Also, two
consecutive deletions are disallowed. For each node, a loop iterates over its incoming
lexical arcs. If a better path to the node is found, the score and pointer of the node
are updated.

Endset transitions are performed by a loop which iterates over the endsets. For
each endset, a loop iterates over the end nodes to find the best path for the endset.
After the maximum has been found, the word transition penalty is applied. A second
loop iterates over the stari nodes, updating each node if necessary.

The structure of the endset connections may be viewed as a dataflow graph, sub-
ject to many potential compiler optimizations. For example, let a and b be scores
of two end nodes attached to an endset, and k be the word transition penalty. The

application of the penalty after finding the best score is simply the optimization:
max(a — k,b— k) = max(a,b) - k

Note that the two subtractions on the left side have been reduced to a single subtrac-
tion on the right side.

The computation of a best path for each endset can be viewed as an example
of common subexpression elimination. This optimization can be carried further by
creating intermediate endsets to be shared by the original endsets. For example, let

and y be the score of two endsets which share end nodes a and b.
z = max(a,b,c) — k

y = max(a,b,d) — k

Each calculation requires two comparisons for a total of four. By introducing an

intermediate endset w, which captures the best path from a and b, the number of
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comparisons is reduced to three:
w = max(a, b)

z = max(w,c) — k

y = max(w,d) — k

3.2.3 Limitations

The Viterbi search can utilize simple grammars, such as the unigram, bigram, or
word-pair constraints, which can be incorporated directly into the structure of the
endsets. Unfortunately, they tend to fragment the structure of the endsets and reduce
the opportunity for optimization. Extending the bigram to a trigram would require
a partial backtracing of paths at each endset compautation to find the first word in
each triplet.

A natural lauguage grammar cannot be utilized because the Viterbi search cannot
suggest alternatives to paths rejected by this grammar. This difficulty may prove
problematic if the speech recognition system provides input to a natural langauge
system, which may reject the best path. Thus, it may be desirable to suggest other
good paths.

The Viterbi search algorithm can be extended to maintain the scores of the N
best paths to each node of the trellis [Chow]. This extension, however, has a few
serious drawbacks. First, the search is slowed because a partial sorting of scores must
occur at each node. In addition, the already burdensome memory requirements for
storage of scores and labels is scaled by N.

Finally, the value of N must be predetermined. If all N paths are unacceptable,
the search must be repeated to extract additional paths. In the next section, a class

of algorithms will be described which can extract additional paths from the trellis on

demand.
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3.3 Stack Decoder

In contrast to the highly iterative structure of the Viterbi search, a stack decoder
operates in a recursive fashion. These algorithms selectively enumerate the paths
through the trellis, maintaining them in a stack. The stack is usually implemented
as a binary heap or priority queue for efficient insertion and removal of paths. The
stack decoder can utilize a natural language grammar to filter out ungrammatical
paths from the stack. This section describes the basic stack decoder algorithm and

an improved version, the A* search.

3.3.1 Basic Algorithm

The stack is initialized with a path consisting of only the start node of the trellis. The
best path is popped from the stack and expanded along its outgoing paths, producing
several new paths. These paths are inserted back into the stack, ranked according to
their scores. Eventually, the complete path with the best score will surface to the top
of the stack.

For every good path the stack decoder pursues, it also maintains many similar
paths, which includes shorter versions of the path itself. Thus, in practice, stack
decoder algorithms use a combination of best-first search between word models and
depth-first search within them. This depth-first extension of a path by a complete
word can be performed by the Viterbi search. For convenience, a pure best-first
strategy can be illustrated by the alignment trellis.

For the trellis given in Figure 2.4, the stack initially consists of the path {(Bo, So)}.
The path can be extended by a match, insertion, or deletion, as shown by the solid
arcs in Figure 3.2. The previous nodes, the costs of the extensions, and the score of
the resulting paths are displayed in Table 3.1. The next path to be expanded will be
{(Bo, So), (B1,51)}, because it has the highest score in the stack, 16.

The scores of the arcs in the trellis may be all nonpositive if they are derived from
probabilities which range from 0 to 1. To compensate for the length of longer paths,

however, both positive and negative scores are used. Unfortunately, this means the
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Figure 3.2: Path Expansion in Stack Decoder

Extension Node Cost I Score

Match (Bl, S]) 16 16
Deletion  {Bo,S;) -3 -3
Insertion  (By,S,) -7 -7

Table 3.1: Path Expansion in Stack Decoder
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Figure 3.3: Estimates from Backward Viterbi Search

first compléte path that surfaces to the top of the stack may be suboptimal.
Because of the enormous number of possible paths, the algorithm must prune

paths which appear undesirable. This may result in the correct answer, but is not

guaranteed to do so. An improvement to overcome this difficulty and increase effi-

ciency yields the A* algorithm, described next.

3.3.2 A¥* Search Algorithm

The A* search makes use of estimates of the remaining score for the paths in a stack
decoder algorithm. These estimates encourage good paths despite local segments
with low scores and discourage bad paths despite local segments with good scores.
The paths are ranked in the stack according to the sum of the score and the estimate.
The closer the estimate is to the true value, the more efficient is the search.

If the estimate is never less than the actual remaining score, the algorithm can
safely prune all paths that have a lower ranking than the first complete path to
surface to the top of the stack. In fact, the best possible estimates can be found by

performing a Viterbi search backwards from the end of the utterance. For the trellis
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Figure 3.4: Path Expansion in A* Search

Extension Cost | Score || Node Estim. | Total
Match 14 23 (B2, S2) -8 15
Deletion -5 11 (Bl, Sg) -18 -7
Insertion  -10 6 (Ba, S1) 14 20

Table 3.2: Path Expansion in A* Search

of Figure 2.4, these estimates are shown in Figure 3.3.

Consider the expansion of the path {(Bo, So),(B1,51)} in Figure 3.4. The esti-
mates generated from the Viterbi search are given in parentheses at the destination
nodes. In Table 3.2, the left side shows the basic stack decoder expansion, and the
right side shows the inclusion of the estimate.

Note that the insertion to (B;,S1), which is along the best path, is ranked last
without the estimate but first with the estimate. The estimate helps the algorithm
overlook the match with cost 14 in favor of the insertion with cost —10. With Viterbi
estimates, the A* search algerithm will rapidly reconstruct the best path.

Unfortunately, the backwards Viterbi search cannot be initiated until the comple-

tion of the utterance. A forward Viterbi search followed by a backward A* search
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could be used, but natural language grammars used to filter paths from the stack are
typically designed to anticipate forwards rather than backwards. In either case, the

A* search can not be incorporated into a pipelined lexical access stage.

3.4 Summary

Two major classes of search algorithms can be employed to find the best path through
the dynamic alignment trellis. The Viterbi search is an admissible, efficient algorithm
which can be incorporated into a pipelined lexical access stage. Furthermore, the
algorithm is also valuable for depth-first probing in a stack decoder search and the
generation of estimates for an A* search. These features make the Viterbi search the

natural choice for a parallel lexical access algorithm.
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Chapter 4

NuMesh:

Parallel Processing System

4.1 Introduction

NuMesh is a parallel processing system developed by the Computer Architecture
Group at the MIT Laboratory for Computer Science. Because it is still in the proto-
type stage, the system is described primarily by a series of internal memorandums.

This chapter explains the motivation behind NuMesh and its architecture.

4.2 Motivation

The traditional substrate for supporting communication and synchronization in par-
allel processing systems is the backplane bus. The bus derives its popularity from
simplicity and modularity. The simplicity of the logical interface allows devices of
different types to share the bus. The modularity of the physical interface allows the
devices to be flexibly arranged.

The bus, however, does not allow unlimited extensibility. As more device con-
nections are added, the physical length of the bus must be increased, and a long bus

must be treated as an analog transmission line. To maintain the physical abstraction,

performance is sacrificed.
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The time required for each transaction increases for two reasons. First, the time
for signal propagation increases as the bus is lengthened. Second, the time for spurious
reflections to subside increases because the transmission characteristics are degraded
as more device connections are added.

Furthermore, demand for communication bandwidth is likely te increase as the
number of devices grows. Contention between processors for the shared bus resource
may cause a bottleneck, as communications must be serialized. This limitation ren-
ders the bus inadequate for supporting massively parallel processing, motivating the

development of a more sophisticated communications substrate.

4.3 Architecture

NuMesh is a communications network designed to support scalable parallel processing
while retaining the simplicity and modularity of the bus. Each node of the network
has high-bandwidth ports, simple logical interfaces, to physically adjacent nodes and
a local device. The mechanical packaging of the nodes is modular so the network can
be flexibly configured.

Many physical topologies are under consideration for NuMesh. In the current
prototype, the nodes can be assembled in a two-dimensional Cartesian mesh. Each
node can have up to four immediate neighbors, referred to by th~ map directions
north, east, south, and west. In the planned three-dimensional topology, the number

of nodes will grow as O(n3), where n is the diameter of the network.

4.3.1 Routing

The routing of data through the network is handled by a programmable communica-
tions finite state machine (CFSM) at each node. In the current prototype, the CFSM
routers are clocked synchronously at 28.5 MHz. A novel global clock synchronization
scheme [Pratt] will be incorporated into future prototypes. As with the bus, different
types of devices, which may operate asynchronously with respect to each other and

the network, can be attached at each node.
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Figure 4.1: CFSM Datapaths

The architecture of the CFSM is minimalistic to allow a fast clock speed. The
interface to the local device consists of a pair of first-in, first-out (FIFO) memory
buffers, one for each direction of data flow. The FIFO interface serves as a synchro-
nization barrier between the CFSM and the local device, although the device may
be clocked synchronously with the CFSM. The ports to neighboring NuMesh nodes
consist of a pair of registered transceivers.

The internal datapaths of the CFSM, shown in Figure 4.1 represent a compromise
between bandwidth and simplicty. One bus connects the north port, south port,
and outgoing FIFO; the other, the east port, west port, and incoming FIFO. The
two busses are connected by a pair of registered transceivers to allow data transfers
between them. These registers can also serve as temporary storage.

In the current prototype, the CFSM instruction set is very limited. The CFSM
does not have the ability to generate a constant onto the datapaths, nor can it examine
the value of the data to determine how it should be routed. This architecture is
intended to support static routing of data in pre-compiled systolic patterns.

To provide some simple synchronization, status bits are provided for each port.
For the transceivers, these signals indicate whether each register has been written but

not subsequently read. For the FIFO interface, these signals indicate if the incoming
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buffer is empty or outgoing buffer is full. The CFSM can utilize these signals to avoid
reading invalid or stale input data and over-writing valid output data.

A data transfer may be made safely between two ports, possibly through the
cross-bus transceiver, if the data in the source port is available (not empty) and the
destination is not blocked (not full). The CFSM may make the transfer without
checking these conditions. If it does check them, and finds that either condition is

violated, it can either abort the copy or wait until the condition becomes true.

4.3.2 Software

The current processor boards are based on a Texas Instruments digital signal processor
[TMS320]. The original DSP board [Abdalla] has only 8K words of memory and runs
at 27 MHz. A revised version of this board! can address up to one megaword of
memory and can support clock speeds of up to 40 MHz. A board board using SPARC
processor technology [Tessier] is also planned.

Because the DSP boards lack the file system and console of a desktop computer,
a Macintosh IIfx attached to a single node serves as a host. The host computer can
determine the configuration of the network by programming NuMesh nodes to explore
neighboring nodes, constructing a spanning tree in the process. The host can then
use this information to download bootstrap code for each CFSM and DSP without
painting itself into a corner.

A CFSM assembler [Nguyen] allows low-level instruction coding. A CFSM com-
piler? provides a higher level of abstraction, concealing some of the peculiarities of
the instruction set. It allows the user to write templates for CFSM programs and
compile them with parameters.

Creating a software application for NuMesh requires writing a collection of pro-
grams which must work in concert. Code must be generated for the host computer,
each DSP board, and each CFSM router. The use of automatic build rules (makefiles)

eases the development process.

ldeveloped by Gill Pratt, of the Computer Architecture Group.
2deveioped by Mat Hofstetter, of the Computer Architecture Group.
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While Think C provides a passable debugger for the host computer, debugging
tools for NuMesh are spartan. Programs cannot be traced without resorting to an
oscilloscope, legic analyzer, or DSP emulator, tools which are usually reserved for
debugging hardware.

The DSP boards have a small alphanumeric display and LED indicators for the
FIFO interface for feedback to the user, but the interaction between nodes is diffi-
cult to observe. A NuMesh simulator [Metcalf] can be used to test programs in a

multiprocessing environment.

4.4 Summary

The NuMesh is an alternative communications substrate to the backplane bus. The
communication and processing are decoupled in NuMesh. Each node in the NuMesh
network contains a CFSM router. The CFSM has minimalistic datapaths and a

limited instruction set, allowing efficient communication between processors.
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Chapter 5

Parallel Viterbi
Search Algorithm

5.1 Introduction

As stated in the previous chapter, a software application for NuMesh requires the
creation of a collection of programs to work in concert. A software implementation
of a parallel algorithm for the Viterbi search was written for NuMesh. This chapter
describes the operation of the DSP programs, host computer program, and CFSM

routing, and the communications protocols which govern their interactions.

5.2 Parallel Decomposition

To reduce the complexity of the system, the same program was compiled for each
DSP, in a single-program multiple-data (SPMD) approach. The program is divided
into two functional modules to facilitate testing. One module is devoted to pure
computation, and the other mainly to handling communications with the CFSM.
The software can be developed under the MPW environment on the Macintosh or
under MS-DOS on a PC. Both modules are listed in Appendix D.

The lexical access trellis can be distributed among the processors by splitting the

lexical network among the processors while providing the complete AP network to
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each processor. A single processor can easily perform the Viterbi computation in real
time for a few words. Therefore, there is no need to split word models among different
processors, incurring expensive communication and synchronization overhead.

The endset structure, the glue between the word models, can also be distributed
among the processors. Each endset is split into local endsets, one for each processor.
These local endsets have connections only to the words resident on that processor.
For each processor, the score of the best path and a label are found. Encoded in fields
of the label are a unique identification number for that processor and a pointer to the
trellis node, which consists of the acoustic boundary and lexical state coordinates.

The scores and labels of the local endsets compactly encapsulate all the informa-
tion that needs to be communicated to other processors. Each processor performs
the Viterbi search as if were in isolation, with one minor change. For each column
of the trellis, the best path to each endset is stamped with a unique identification
number for that processor. These vaiues are then reconciled with those in the other
processors. The values are merged in a maximization of the scores to form global
endset values. The global values are then broadcast to each node, replacing the local

values.

5.3 Static Load Balancing

In addition to bootstrapping the NuMesh network, the host computer serves two
important functions in the parallel Viterbi algorithm. First, it splits the lexical net-
work, statically allocating the computational load among the processors. Second, it
provides file service to the Numesh by downloading data. The program for the host
computer was developed under the Think C environment on the Macintosh and is
listed in Appendix C.

Because each processor must share its endset data before computation for the
next column begins, the processor with the highest computational load will limit
execution speed. To avoid bottlenecks, the lexical network should be distributed as

smoothly as possible. One approach is to simply allocate the number of word models
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as evenly as possible. If the load associated with the models can be described by
identical, independent distributions, then the weak law of large numbers predicts
that the relative variance of their sum tends to be small.

If controlled fine tuning is needed, this approach can be generalized to developing
a cost function, which depends linearly on parameters of the lexical network that can
be distributed. For example, the function could depend on the number of nodes, arcs,
and local endset connections, but not the number of endsets, which is the same for
each processor. If the processors are clocked at different speeds, the lexical network
can be split so that the cost function is allocated proportionately.

The data structures for the parallel Viterbi search are given by the type definitions
listed in Appendix B. The DSP and Macintosh have different floating-point number
representations, but fortunately the lexical network and AP network contain cnly
integers, which have the same byte ordering on the DSP and Macintosh. The DSP
does not support byte addressing, so character strings must be unpacked.

The use of absolute addresses in the data structures is also avoided because they
lose meaning when stored in a file or transmitted to another processor through the
network. For example, the arcs of the lexical network are stored in an ordered list.
For each node, a table lists the number of incoming arcs. Pointers are not needed
because the arcs are always processed in the same order. If this were not the case,

the DSP could always construct pointers from the information in the table.

5.4 Tree Configuration

The communication required by the parallel Viterbi search algorithm could be sup-
ported by a bus, but at the expense of limited scalability. Unlike the bus, the Numesh
parallel processing system makes the physical location of each node an explicit feature
of the programming model. For the parallel Viterbi search, a logical configuration
was embedded in the physical topology of NuMesh. This abstraction allows each

processor to operate without awareness of the physical configuration.
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Figure 5.1: Sample Logical Configuration

5.4.1 Logical Configuration

In the logical configuration, the Viterbi search are constrained to communicate in a
pattern of a binary tree. A tree need not be balanced and includes the extreme case
of a linear chain, where each node (except the one farthest from the root) has a single
child. An example of a tree is shown in Figure 5.1. The Viterbi search computation
is distributed among the numbered nodes in the tree.

The node labeled G in Figure 5.1, called the gateway node, serves two functions.
First, it acts as a parent to the root of the tree, allowing that node to draw from the
same CFSM templates as the other nodes. Second, it isolates the tree from the host
computer or other stages of the system. The gateway serves as a buffer, injecting

data for the regions of the AP network as needed.

5.4.2 Physical Configuration

The logical configuration of the Viterbi search must be mapped onto the physical
topology of the NuMesh. For the logical configuration shown in Figure 5.1, many

physical configurations are possible. One is shown in Figure 5.2, along with a host

computer interface.
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Table 5.1: Sample CFSM Template Compilation

Note that not all légical configurations can be embedded in the physical topology
conveniently. The number of nodes in a balanced binary tree grows as O(2"), where
n is the depth, while the number of nodes in a.two-dimensional mesh grows only as
O(n?), where n is the diameter.

To simplify the compilation of CFSM routing code, each node in the Viterbi search
belongs to one of three categories, depending on how many child nodes it has. A node
with two children is a fork node; one, a link node; and none, a leaf node. The CFSM
code for a node can be compiled by specifying the directions of the parent and child
nodes, if any, in the compiler templates given Appendix A. For the configuration

shown in Figure 5.2, the CFSM routing code is compiled according to Table 5.1.
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5.5 Communication Protocois

To orchestrate the various programs in the parallel Viterbi search, a simpl: set of
communication protocols was developed. These protocols are instrumentel for in
counting the nodes in the tree configuration, downloading the lexical networks to
each node, broadcasting regions of the AP network to all of the nodes, reconciling the
endsets, and backtracing the best path. This section details the mechanisms used to

support these protocols.

5.5.1 Counting Nodes

The host computer must know the number of nodes in the tree in order to split the
lexical network accordingly. Asking the user to provide this information would be
inconvenient at compile time and error-prone at run time. Instead, this information
can be determined automatically, just after bootstrap, from the configuration of the
network.

The computation of the number of nodes in a tree can be expressed recursively.
The number of nodes in a tree is equal to the number of nodes in the left subtree,
plus the number of nodes in the right subtree, plus one. If a subtree does not exist,
the number of nodes is taken to be zero, providing a base case for the recursion.

At bootstrap, a DSP program does not know the number of children the node
has. It simply waits for the CFSM to report the number of nodes in the left and right
subtrees. After these two values are received, the DSP adds one to their sum. This
subtotal is reported to the CFSM for forwarding to the parent node. The root of the
tree reports the grand total, through the gateway node, to the host computer.

Because the CFSM cannot generate constants, the host computer must supply
two seed zero words. A fork CFSM duplicates both seed words for its children and
reports their forwarded subtotals to the DSP. A link CFSM copies both zeros to its
child, and reports one zero and the subtotal forwarded from the child to the DSP. A
leaf node immediately supplies both zeros to the DSP.
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5.5.2 Downloading Lexical Networks

The host computer must download a partial lexical network to each node in the
tree. The tree is traversed in post-order, so that a node is visited only after all of
its descendant nodes have been visited. The numbering of nodes in Figure 5.1 and
Figure 5.2 shows this order for that example. After the DSP has received the lexical
network, it sends an acknowledgement word to the CFSM for forwarding to its parent
node.

The CFSM cannot examine the data it handles, so it cannot detect the conclusion
of a download. Instead, it relies on the acknowledgement word from its child node
or its DSP as a cue to change state. The host computer must allow adequate time
between downloads for the DSP to acknowledge. Otherwise, a node will receive data
that was meant for its parent node.

The lexical networks are preceded by a header word to allow a DSP to distinguish
it from an acknowledgement from one of its children. The DSP program can count
the number of acknowledgements it receives to determine the number of children it
has. This information is useful for satisfying later protocols. Each node is also given

a unique identification number at this time for use in creating endset labels.

5.5.3 Broadcasting Regions

The regions of the AP network must be broadcast to each node in the tree. The
gateway node stores the regions received from the host computer or previous stages
of the speech recognition system. At each boundary, it broadcasts the number of
regions and the scores for those regions. The end of the utterance is signalled by
sending a zero.

At first glance, it might appear that NuMesh is less efficient at broadcasting data
than a bus, where all destination processors might be able to read each data value
simultaneously. But while the data takes longer to travel to distant nodes in the
NuMesh (latency), the propagation of the data is fully pipelined.

There are typically on the order of 100 phonetic model scores for each region of the
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AP network, and at least a few regions ending at each acoustic boundary. Thus, the
latency is negligible, and the average time to broadcast a data value approaches the
time required to simply send the value to child nodes. This path is effectively a very

short bus, which is substantially faster than a bus with many processors attached.

5.5.4 Reconciling Endsets

At each boundary, the endsets with the best scores over all the nodes are merged and
broadcast. This mechanism effects transitions between words residing on different
nodes. The endset reconciliation process is performed only after all of the scores and
labels are computed. The variability in endset computation time tends to even out,
as the weak law of large numbers applies here.

Like summation, the maximization can be expressed recursively. The maximum
value in a tree is equal to the maximum value over the left subtree, right subtree, and
the root of the tree. If no subtree exists, the value is taken to be the most negative
integer, providing a base case for the recursion.

Each endset consists of two values, a score and a label. Each node collects the
score and label from its children, if any. The endset with the best score is forwarded
to the parent node. Note that the fork node must properly sequence these pairs of
values from its two children. The global endset values are reported to the gateway
node by the root of the tree.

The gateway node stores all of the endset values until the last pair is received, then
broadcasts them to the tree. Both the collection and broadcast of data is pipelined,
but the two cannot proceed at the same time. The DSP of each node would have
difficulty interpreting the data it receives, which appears as a single stream.

This deficiency can be overcome by adding more CFSM hardware. One solution is
for the CFSM to tag the data according to its source and the DSP to interpret these
tags. Another solution is to support multiple virtual FIFO buffers in a shared memory

interface. The location of the data could indicate how it should be interpreted.
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5.5.5 Backtraéing Path

The best path found by the Viterbi search must be constructed by backtracing the
labels distributed among the nodes. When the end of the utterance is reached, a
special endset with connection to all of the legitimate end nodes is computed. This
endset is recenciled over all of the nodes in the tree to find the best score.

The label is broadcast to all of the nodes. Each DSP extracts the node field of
the label to determine whether it was the creator of the label. If the label was not
created by the node, the DSP reports a null word index and null label to be reported
to the parent node. The root of the tree reports the backtraced label to the gateway
node, which broadcasts a new label to be backtraced to the tree.

The gateway node terminates this process when an initial token word, which must
begin the utterance, is received. The text for each word is found in a lookup table.
The gateway concludes the execution by scrolling the elapsed time, score of the best

path, and the textual word string through an 8-character alphanumeric display.

5.6 Summary

In the parallel decomposition of the Viterbi algorithm, the lexical network can be
statically distributed among the processors by the host computer program. Each DSP
can operate almost as if it were in isolation. Communica,tion between the processors
occurs in the logical pattern of a binary tree embedded in the physical topology of the
NuMesh. Despite the limitations of the CFSM, a simple set of pretocols can support

efficient communication.
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Chapter 6

Testing, Analysis,

and Evaluation

6.1 Introduction

The previous chapter described a parallel Viterbi algorithm designed for Summit and
implemented on NuMesh. This chapter describes testing of the implementation. An

analytical model is developed, and performance data collected in evaluation of the

model is explained.

6.2 Testing

The software implementation of the parallel Viterbi search algorithm was thoroughly
tested during the development and debugging process. The software was developed
an evolutionary fashion from a sequential to a parallel environment. The validity of
the results was verified by direct comparison with results obtained from the Viterbi

search module of the Summit system.
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6.2.1 Development

The software for the parallel Viterbi search algorithm is divided into modules that can
be tested in different combinations. A sequential Viterbi search program was devel-
oped under the UNIX environment. The module for the Viterbi search (viterbi.c)
was linked with modules for handling the data structures of the lexical network
(lexicon.c) and the AP network (regions.c). The correctness of these programs
was verified by comparing the results to those produced by Summit for several AP
networks on two different lexical networks.

The communications protocols were tested separately by diagnostic procedures in
the Viterbi search tree interface module (tree.c). The alphanumeric displays of the
DSP boards were used to trace the flow of data through NuMesh. A simple NuMesh
utility program on the Macintosh host computer was used to read and write data
from the NuMesh.

To form the final version, the Viterbi computation module was linked with the tree
interface to form the DSP program. A load balancing program was linked with the
data structure modules to form the host computer program. Additional procedures
were written to transfer the data from the host computer to the NuMesh. A config-

uration of a single node was tested, then expanded to more complx configurations.

6.2.2 Debugging

Despite the careful development of the software, numerous bugs were encou atered.
Many of the bugs were difficult to isolate and correct because either they occurred
in the development tools themselves or were obscured by the lack of debugging tools.
This section describes some of the more notable bugs.

Not surprisingly, some bugs were found in the recently developed and untested
CFSM compiler. Two consecutive cycles of access were not provided for the slower
FIFO parts found in some of the hardware. Also, status bits were checked while being
invalid for two cycles after a copy transaction. These bugs caused invalid data to be

processed, and were discovered by writing test code.

48



A more pernicious bug was found in the interface software of the host computer.
The procedure to write data to the network hangs until the transfer register is read.
To avoid rebooting the host computer in case the value is never, a timeout is provided.
Upon expiration of the timeout, rather than exit with an error, the procedure blithely
over-wrote the old value. This bug appeared unpredictably because the data transfer
rate depends on the highly variable speed of disk access. Of course, the bug did not
appear while single-stepping with the debugger.

On the DSP, a FIFO access is treated as a memory-mapped I/0O location. If a
value read from the FIFO is never used, the compiler eliminated the reference even
with the optimization flag off. If the display was used to verify the correct value was
read, the bug disappeared because the value was used. This problem is akin to an
analog circuit which works only while observed by an oscilloscope because the probe
provides a ground. Declaring the destination location of the FIFO read as volatile
in C did not completely solve the problem. One command was intended to multiply
a value from the FIFO by two. Instead, the compiler added the value to itself to
optimize the code, generating two separate references to the FIFO.

The final bug encountered was due to a very simple programming error. While
the correct best path was always found, sometimes a random best score was reported
because the value was read before it was written. On subsequent test runs, the stale
value in memory from the previous run was read, making it appear that the program
executed correctly. This error escaped detection for the longest because power cycles

were rarely performed.

6.3 Analysis

The execution of the parallel Viterbi search algorithm alternates between two distinct
phases. For each column, an array of local endset values is computed by each processor
in one phase. In the other phase, the endsets are merged and broadcast in a burst of

communication. An analytical model can be developed to predict the execution time

for each phase.
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6.3.1 Processing

No redundant computation results by allocating the word models of the lexical net-
work among different processors. Assuming that each DSP has at least a few different
word models, a static load balancing strategy can distribute the load of computing
matches, insertions, and deletions evenly among the processors.

The distribution of the endset structure also does not require more computation.
The maximization is simply distributed over the nodes in the tree. As the number of
processors employed increases, however, fragmentation of the endset structure tends
to reduce the potential impact of some optimizations.

Neglecting this lost opportunity, if one process can perform a Viterbi search for an
unoptimized lexical network in P units of time, then n processors should require only
P/n units of time. This type of decomposition would allow performance in direct
proportion to the number of processors but for the overhead of communication which

will be modeled next.

6.3.2 Communication

In the communication phase, the local endset values from the processors must be
merged and broadcast to each node. Also, the scores for AP regions ending at the
next boundary are broadcast to all of the processors. The links of NuMesh form a
pipeline, allowing efficient communication.

Let E be the number of local endsets and C be the time required to merge and
broadcast a single endset. If a backplane bus were used to support the parallel
Viterbi search, the merging of endsets must be serialized. The time required for
communication at each acoustic boundary would be nCE, where n is the number of
processors.

Communication in NuMesh, on the other hand, is fully pipelined. The time to
processor the endsets is C E, plus a latency, which grows with the number of proces-
sors. The depth of a tree grows as O(log n) at best, for a balanced tree, and O{n) at

worst, for a linear chain.
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Figure 6.1: Linear Chain of Five Nodes

This range, however, is limited by the physical topology of the network. The
latency of a two-dimensional mesh grows as O(,/n) at best, for a completely populated
mesh, and O(n) at worst, for a linear chain. Thus we can model the latency as Ln?,
where 0.5 < a < 1. Summing the times for communication and processing, we find

the total execution time to be:

T = Ln® + CE + P/n

6.4 Evaluation

A diagnostic procedure was included in the software for the host computer, gateway
node, and tree nodes to measure the time required for communication in the absence

of processing. The data collected bears out the key features of the model.

6.4.1 Chain Configurations

A special case of a tree is a linear chain. An example is shown in Figure 6.1.
Here, a« = 1, so T, = CE + nL. Using the diagnostic routines, performance data was
collected for chains of various lengths in a wide range over the number of endsets.

Note the dramatic increase in communication time from chain L1 to chain L2.
This phenomenon occurs because L1 contains only a leaf node, while longer chains
must contain a link node. A link node must merge the data from its child node and
thus is slower than a leaf node. This bottleneck limits the speed of the pipeline.
Otherwise, adding a node to the chain increases the latency by about 4 us, regardless

of the number of endsets. Therefore, we have L = 4us.
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Communication Time (us)

Number of Endsets
Chain | 25 50 100 200 400
L1 108 169 307 561 1069
L2 171 294 557 1060 2065
L3 175 299 561 1064 2069
L4 179 302 565 1068 2072
L5 183 306 569 1072 2076
L6 187 310 573 1076 2080
L7 190 314 577 1079 2084
L8 194 318 580 1083 2088

Table 6.1: Communication Time for Linear Chains

Communication Time (us)

Number of Endsets
Tree | 25 50 100 200 400
T1 (233 419 806 1557 3059
T2 | 237 423 810 1561 3063
T3 | 237 423 810 1561 3063
T4 (238 423 810 1561 3063
T5 [238 423 810 1561 3063
T6 | 241 426 814 1561 3063

Table 6.2: Communication Time for Various Trees

6.4.2 Tree Configurations

Performance data was also collected for the various trees shown in Figure 6.2. Note
that all of the communication time for these configurations are greater than the
longest chain, of length 8, listed above in Figure 6.1. The fork node is now the
bottleneck which limits the speed of the pipeline. The use of a fork node must
be justified by the reduced depth of the tree due to increased parallelization of the
structure.

The configurations T2, T3, T4, and T5 have the same performance because they
have the same depth. Like having multiple links in a chain, the additional fork of T5
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T1 T2 T3

T4 T5 T6

Figure 6.2: Various Tree Configurations

does not degrade performance. Configuration T6 is slightly deeper, resulting in the

usual 4 us increase.

6.5 Summary

The software implementation of the parallel Viterbi search algorithm was thoroughly
tested and debugged. The execution alternates between a computation phase and
communication phase. An analytical performance model suggests that computation
can be divided equally among the processors, while communication costs increase
slowly with the number of processors. Key features of the model were borne out by

experimental data.
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Chapter 7

Results

7.1 Introduction

Based upon the analytical model developed in the previous chapter, this chapter
projects the relative performance of the parallel Viterbi search algorithm for a partic-
ular speech recognition task. Extensions of the algorithm which could be implemented

on NuMesh are also described.

7.2 Projected Performance

Without the substantial memory required, it was not possible to determine the ab-
solute performance of the algorithm on an actual lexical network and AP network.
Relative performance, however, can be projected by the analytical model.

If we assume a linear chain configuration is used, then a = 1. No forks nodes
are needed in a chain, so the parameter C remains constant, with the exception of a
single leaf node. If this anomaly is ignored, the relative performance is given by:

T(1) (C+L+P)n
T(n)  Cn%24+Ln+P

For the Airline Travel Information Service (ATIS) speech recognition task, there
are 34 endsets. Extrapolating from Table 6.1, we can estimate C = 215us. As before,

we can set L = 4us, which does not depend on the number of endsets.
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Projection with L = 4, C = 215, P = 170250
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Figure 7.1: Projected Relative Performance

The software could recognize an utterance of 40 boundaries for the Citron lexical
network in 227 milliseconds. The lexical network for ATIS is about 30 times as large,
sc we can estimate P = 170250 per boundary. This estimate will be smaller than the
actual value because Citron does not require substantial endset computation.

Using these values for the parameters C, L, P, and «, the relative performance can
be projected as shown in Figure 7.1. The performance scales well with the number
of processors because little communication is performed relative to computation, and
the communication overhead grows slowly with the number of processors.

The absolute performance of the algorithm can benefit from the same advances in
technology as a uniprocessor program. For example, a custom processor with special
hardware to perform the maximizations, similar to the multiply-and-accumulate fea-

tures in the DSP, could be used to achieve immediate performance gains across the
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board.

7.3 NuMesh Extensions

Several extensions could be based upon the NuMesh implementation- of the parallel
Viterbi search algorithm. These include the word spotting recognizer, which performs

multiple Viterbi searches, and an A* search which uses the estimates generated from

the Viterbi search.

7.3.1 Word Spotting Recognizer

An application of speech recognition in the near future could be to help automate
a telephone directory assistance line (411). A caller is first asked to state the city
where the desired party is located. A speech recognition system could gather this
information before transferring the caller to the operator. The system could have a
limited vocabulary of isolated words, requiring little memory or time for processing.

Unfortunately, a substantial fraction of users give this information in the middle
of their enquiry. A continuous speech recognition system, however, would require
a complete vocabulary. A compromise between continuous word recognition and
isolated word recognition is word spotting, recognizing a fragment of speech in the
middle of an utterance.

A word-spotting recognizer simply initiates a small Viterbi search at each acoustic
boundary in the utterance. If a good match to any word is found, the algorithm termi-
nates. Otherwise, the Viterbi searches expire after a sufficient number of boundaries
have passed.

NuMesh can trivially support such a speech recognition system. The nodes could
initiate and terminate Viterbi search in a regular cycle. Regions of the AP network

could be temporarily stored in a gateway buffer node and automatically routed to

each processor.
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7.3.2 Parallel A*¥ Search

As described in Chapter 3, the Viterbi search can generate estimates for a stack de-
coder algorithm in an A* search. For NuMesh, such an A* search could be performed
in the same tree configuration as the Viterbi search. Only the scores of the Viterbi
search need to be maintained because the pointers are not used by the A* search.
The stack of the A* search could be distributed among the nodes of the tree. The
gateway node can poll the processors to find the best path over all of the stacks. The
score and best coordinates of this path could be broadcast to each node in the tree,
which could extend the path by the the words it contains and insert the results into

the local stack.

A complex grammar could filter paths that are reported at the gateway node. A
more sophisticated approach is to distribute the grammar over the nodes of the tree
to eliminate path extensions or adjust the score. The tree configuration can support

many of the communication needs of the A* search with the same protocols described

in Chapter 5.

7.4 Conclusion

The parallel Viterbi search algorithm requires little communication between proces-
sors relative to the amount of computing performed. Efficient, pipelined communica-
tion in NuMesh allows excellent scaling of performance with the number of processors.
In addition, the flexibility of Numesh makes it an excellent platform for many exten-

sions of the algorithm.
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Appendix A
CFSM Compiler Source

A.1 Gateway Node (gate.nfsm)

;;; Gateway node sits between Mac host and root of tree.

(define (gate mac root)

(repeat 2 (copyww mac root)) ; send seed zero words

(copyww root mac) ; report total to Mac

(while (not (ifull root)) ; root lex ack?
(copycc mac root)) ; download lex

(copyii root) ; discard ack

(while (not (ifull proc)) ; gateway data ack?
(copycc mac proc)) ; download to gate

(copyii proc) ; discard gate ack

(while true
(sequence
(copycc root proc)
(copycc proc root))) )

A.2 Leaf Nodes (leaf.nfsm)

;;: A leaf node has no children; it’s just a bidirectional pipe!

(define (leaf parent)
(while true
(sequence
(copycc parent proc)
(copycc proc parent))))
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A.3 Link Nodes (link.nfsm)

.o
22

(define (link parent child)

Count number of nodes in tree.

(copyww parent child proc)
(copyww parent child)
(copyww child proc)
(copyww proc parent)

Download lexicon to child node.
(while (not (ifull child))

(copycc parent child))
(copyww child proc)

Download lexicon to host proc.

(vhile (not (ifull proc))
(copycc parent proc))
(copyww proc parent)

A link node has a single child.

; propagate seed zero

; propagate seed zero

; count children nodes

; report count+l to parent

; child lexicon ack?
; download to child
; send ack to proc

; proc lexicon ack?
; download to proc
; send ack to parent

Merge endsets from self and children.
Broadcast new regions and best endsets.

(while true
(if (ifull child)
(szquence

(repeat 2 (copyww child proc))
(repeat 2 (copyww proc parent)))
(copycw parent proc child))) )

; merge endsets

; get child endsets

; report best endsets
; else broadcast data
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A.4 Fork Nodes (fork.nfsm)

s;; A fork node has two children.

(define (fork parent left right)
; Count number of ncdes in tree.

(copyww parent left right)
{copyww parent left right)
(copyww left proc)

(copyww right proc)
(copyww proc parent)

; Download iexicon to left node.
(wvhile (not (ifull left))

(copycc parent left))
(copyiw left proc)

H Download lexicon to right node.

(while (not (ifull right))
(copycc parent right))
(copyiw right proc)

; Download lexicon to own proc.
(while (not (ifull proc))

(copycc parent proc))
(copyiw proc parent)

; propagate seed zero
; propagate seed zero
; count nodes of left
; count nodes of right
; report left+right+1

; left lexicon ack?
; download to left
; send ack to proc

; right lexicon ack?
; download to right
; send ack to proc

; proc lexicon ack?
; download to proc
; send ack to parent

; Merge endsets from self and children.
; Broadcast new regions and best endsets.

(whilé true
(if (ifull left)

(sequence ; merge endsets
(repeat 2 (copyww left proc)) ; got left endsets
(repeat 2 (copyww right proc)) ; get right endsets
(repeat 2 (copyww proc parent))) ; report best endsets

(copycw parent proc left right)))) ; else broadcast
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Appendix B

Header Files for C Source

B.1 Viterbi Search (viterbi.h)

/% Viterbi Search Parameters */

#define DIAG O
#define FLOCR -32768 /* minimum score value */
#define WTW 350 /* word transition weight */

/* Error Handling */

#if C30
#define errcr(mesg) Scroll(mesg)

#olse
#define errcr(mesg) {fprintf(stderr,"ERROR! %s\n",mesg); exit(1);}

#endif

/* Endset Label Fields */
#define BOUND_MASK Oxf££00000
#define PNODE_MASK O0x000££000
#define INDEX_MASK 0x00000fff
#define BOUND_SHIFT 20
#define PNODE_SHIFT 12
#define INDEX_SHIFT O
#define BOUND_MAX 1000

#define PNODE_MAX (1 << (BOUND_SHIFT - PNODE_SHIFT))
#define INDEX_MAX (1 << (PNODE_SHIFT - INDEX_SHIFT))

/* Message Headers */

#define NEWLEX 256
#define ACKLEX 257
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B.2 Lexical Network (lexicon.h)

/* Lexical Data Structures */

typedef struct

{ long num_nodes;
long num_arcs;
long text_index;

} WORD;

typedef struct
{ long node_id;
long num_arcs;
long word_id;
} NODE;

typedef struct

{ long phoneme;
long lex_score;
long prev._node;
long del_score;

} INARC;

typedef struct

{ long num_in;
long *nodes_in;
long num_out;
long *nodes_out;

/* long penalty */

} ENDSET;

typedef struct

{ long num_words;
WORD *words;
long num_nodes;
NODE *nodes;
long num_arcs;
INARC *arcs;
long num_endsets;
ENDSET *endsets;
long text_size;
char *word_text;

} WORDLEX;

/*
/*
/*

/*
/*
/*

/*
/%
/*
/%

/*
/*
/*
[*

/*
/*
/*
/*
/*
/%
/%
/*
/*
/*

number of nodes */
number of arcs */
index into text */

node index */
number of arcs */
word index */

phonetic model */
lexical score */
previous node */
deletion score */

nunber of in arcs */
list of nodes in */

number of out arcs */
list of nodes out */

number of words %/
list of words */
number of nodes */
list of nodes */
number of arcs */
list of arcs */
number of endsets */
1list of endsets */
size of text¥/

text for words */
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typedef struct

{ long num_nodes; /* number of local nodes */
long *arcs_per_node; /* number arcs per node */
long *word_for_node; /* word index for node */
long num_arcs; /* number of arcs */
INARC xarcs; - /* list of arcs */
long num_endsets; /% number of endsets */
ENDSET *endsets; /* list of endsets */

} NODELEX;

/* Procedure Declarations */

WORDLEX *load_lex();
B.3 AP Network (regions.h)

/* AP Network Parameters #*/

#define MODELS 106 /* number of phonetic models */
#define REGSIZE (MODELS+2) /* number of words in packet */
#define REG_MAX 15 /* maximum number of regions */

/* Data Structures */

typedef struct
{ long del_score;
long left_bound;
long scores[MODELS];
} REGION;

typedef struct

{
long num_bounds;
long *num_regions;
REGION **regions;

} APNET;

/* Procedure Declarations */

APNET *load_apnet();
APNET *read_apnet();
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Appendix C

Host Program Source

C.1 Load Balancing (splitlex.c)

/* Think C Source for Macintosh Host */

#include <stdio.h>

#include <stdlib.h>
#include "meshio.h”
#include "viterbi.h"
#include "lexicon.h"
#include "regions.h"

main()
{
WORDLEX *rootlex;
NODELEX *lex;
APNET =*apnet;
NODE *nodes;
INARC =*arcs;
WORD =*words;
long *id_table;
int num_lex;
long index;
int i,j,k;
#if !'DIAG
/* Read lexical network and AP network from files. %/
/% Stupid Mac doesn’t have command line or symlinks, */

/* so duplicate files and rename them appropriately. */

rootlex = load_lex("citron.lex");
apnet = load_apnet("citron.net");

#endif
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/* Must run this NuMesh I/0 initialization procedure!!! */

CheckForNumesh() ;

/* Send two seed zeros to count number of NuMesh nodes. */

write_numesh(0);
write_numesh(0);
num_lex = read_numeshk();

#if DIAG
host_diagnostic(num_lex);
#else

/* Create translation table for splitting lexical network. */

id_table = (long *) calloc(rootlex->num_nodes, sizeof (long));
if ('id_table) error(“split_lex: calloc failed");

/* Initialize some pointers into the lexical network. */

index = O;
nodes = rootlex->nodes;
arcs = rootlex->arcs;

/* Download a lexicon to each Viterbi node. */

for (i=0; i<num_lex; i++)

{

/* Create a lexicon and initialize. */

lex = (NODELEX *) malloc(sizeof (NODELEX));
if ('lex) error('"main: malloc NODELEX failed");

lex->num_nodes = 0O;
lex->num_arcs = 0;
lex->num_endsets = rootlex->num_endsets;

/* Decide how many words to put in each lexicon. */

while (index < (rootlex->num_words * (i+1)) / num_lex)

{

lex->num_nodes += rootlex->words[index].num_nodes;
lex->num_arcs += rootlex->words[index].num_arcs;
index++;

}
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/* Clear translation table for global to local index. */

for (j=0; j<rootlex->num_nodes; j++)
id_table[j] = -1;

/* Flesh out the nodes, arcs, and endsets. */
add_nodes (lex, nodes, id_table);
add_arcs (lex, arcs, id_table);

add_endsets (lex, rootlex->endsets, id_table);

/* Download the lexicon to current node. */

write_numesh(NEWLEX); /* lexicon header */
write_numesh(i); /* unique node_id */
write_lex(lex); /* lexicon itself %/

/* Update the pointers into the lexical network. */
nodes += lex->num_nodes;
arcs += lex->num_arcs;

free(lex);

/* Pause a bit to allow node plenty of time to acknowledge. */
/* Unlike C30, Think C is too stupid to optimize dead loops. */

for (j=0; j<1000; j++);
}

/* Download Parameters to Gateway Node */
/* (1) Number of endsets, sams 2 for init. hack. */
write_numesh(2 * (rootlex->num_endsets-2));
/# (2) Translation table for global to local index. */
write_numesh(rootlex->num_words);
for (i=0; i<rootlex->num_words; i++)

write_numesh(rootlex~>words[i].text_index);

/* (3) Chunk of text for words in lexical network */
write_numesh(rootlex->text_size);

for (i=0; i<rootlex->text_size; i++)
write_numesh(rootlex->word_text[i]);
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/* (4) Complete AP network tc the Gateway Node */

write_apnet(apnet);
#endif

}

host_diagnostic(num_lex)
int num_lex;

{

int i;

for (i=0; i<num_lex; i++)
write_numesh(NEWLEX);
write_numesh(num_lex);

}

C.2 Lexical Network (lexicon.c)

/* Utility Procedures for Lexical Networks */

#include <stdio.h>
#include <stdlib.h>
#include "meshio.h"
#include "viterbi.h"
#include "lexicon.h"

#define MAGIC_NUM 5150

/* file header */

#define load_long(x) fread(&x,1,sizeof(long),fp)

/* Load WORDLEX from file */

WORDLEX *load_lex (filename)
char *filename;
{
FILE *£fp;
WORDLEX *lex;
iong header;
long i;

70



/* Open file, check header */

fp = fopen(filename, "rb");

if ('fp) error(“"load_lex: file not opened");
load_long(header);

if (header !'= MAGIC_NUM) error("Bad magic number in file");

/* Allocate WORDLEX storage */

lex = (WORDLEX *) malloc(sizeof (WORDLEX));
if (!'lex) error("load_lex: malloc WORDLEX failed");

/* Load words */

load_long(lex->num_words) ;

lex->words = (WORD *) calloc(lex->num_words, sizeof(WORD));
if ('lex->words) error("load_lex: calloc WORDs failed");
fread(lex->words, lex->num_words, sizeof (WORD), fp);

/* Load nodes */
load_long(lex->num_nodes);
lex->nodes = (NODE *) calloc(lex->num_nodes, sizeof (NODE));
if ('lex->nodes) error("load_lex: malloc NODEs failed");
fread(lex->nodes, lex->num_nodes, sizeof(NODE), fp);

/* Load arcs */
load_long(lex->num_arcs);
lex->arcs = (INARC *) calloc(lex->num_arcs, sizeof (INARC));
if (llex->arcs) ervor("load_lex: calloc INARCs failed");
fread(lex->arcs, lex->num_arcs, sizeof (INARC), fp);

/* Load endsets */
load_endsets(lex, fp);

/* Load text */
load_long(lex->text_size);
lex->word_text = (char *) malloc(lex->text_size);
if (1lex->word_text) error("load_lex: malloc text failed");

fread(lex->word_text, lex->num_arcs, sizeof(char), fp);

fclose(fp);
return(lex);
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load_endsets (lex, fp)
WORDLEX *lex;
FILE *fp;

{ long i;

load_long(lex->num_endsets);
lex->endsets = (ENDSET *) calloc(lex->num_endsets, sizeof (ENDSET));

if ('lex->endsets) error("Could not calloc ENDSETs");

for (i=0; i<lex->num_endsets; i++)
{ ENDSET *set = &lex->endsets[i];

load_long(set->num_in);
if (set->num_in)

{

set->nodes_in = (long *) calloc(set->num_in, sizeof(long));
if (!set->nodes_in) error("load_endsets: calloc in failed");
fread(set->nodes_in, set->num_in, sizeof (long),fp);

}

load_long(set~>num_out);
if (set->num_out)
{ A
set->nodes_out = (long *) calloc(set->num_out, sizeof(long));
if (!set->nodes_out) error("load_endsets: calloc out failed");
fread(set->nodes_out, set->num_out, sizeof(long), fp);

}

/* Produce text dump of WORDLEX */

dump_lex (lex)
WORDLEX *lex;

{
NODE #*node = lex->nodes;
INARC *arc = lex->arcs;
long i,j.k;
#if MAC
FILE *out = fopen("citron.dump","w");
#else
FILE *out = stdout;
#endif
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fprintf(out,"Lexicon has %1d words",lex->num_words);
fprintf(out," with %1d arcs",lex->num_arcs);
fprintf(out," and %1d nodes",lex->num_nodes);
fprintf(out,”:\n\n");

for (i=0; i<lex->num_words; i++)

{ }
WORD *word = &lex->words[i];

fprintf (out," Word ’%s’",&lex->word_text[word->text_indexl);
fprintf(out,"” has %1d nodes",word->num_nodes);
fprintf(out," and %1d arcs",word->num_arcs);
fprintf(out,":\n");

for (j=0; j<word->num_nodes; j++)

{
for (k=0; k<node->num_arcs; k++)
{
fprintf(out," Arc to %41d" ,node->node_id);
fprintf (out," from %41d",arc->prev_node);
fprintf(out,” has label %31d",arc->phoneme) ;
fprintf(out,” with lex score %41d",arc->lex._score);
fprintf(out," and del score %41d",arc->del_score);
fprintf(out,".\n"); arc++;
}
node++;
}
fprintf(out,"\n");

}

fprintf (out,"Lexicon has %1d endsets\n",lex->num_endsets);
for (i=0; i<lex->num_endsets; i++)
{
ENDSET *set = &lex->endsets[i];
fprintf(out," Endset %1d",i);
fprintf(out," has %1d in",set->num_in);
fprintf(out,” and %1d out",set->num_out);
fprintf(out,"\n IN: ");
for (j=0; j<set->num_in; j++)
fprintf (out,"%51d4",set->nodes_in[jl);
fprintf(out,"\n OUT:");
for (j=0; j<set->num_out; j++)
fprintf(out,"%51d",set->nodes_out[j1);
fprintf(out,"\n\n");
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/* Add nodes to NODELEX */

add_nodes (lex, nodes, table)
NODELEX *lex;
NODE *nodes;
long *table;

long 1,j;
long num_nodes = lex->num_nodes;

lex->arcs_per_node = (long *) calloc(rum_nodes, sizeof(long));

lex->word_for_node = (long *) calloc(num_nodes, sizeof(long));

if ('lex->arcs_per_node || t1ex->word_for.node)
error("add_nodes: calloc NODEs failed");

for (i=0; i<num_nodes; i++)
{
lex->arcs_per_node[i] = nodes{i].num_arcs;
lex->word_for_node[i] = nodes[i].word_id;
table[nodes[i] .node_id] = i;

}

/* Add arcs to NODELEX */

add_arcs (lex, arcs, table)
NODELEX *lex;
INARC *arcs;
long *table;

int num_arcs = lex->num_arcs;
int i;
lex->arcs = (INARC *) calloc(num_arcs, sizeof (INARC));

if (1lex->arcs) error(“"add_arcs: calloc failed");

for (i=0; i<num_arcs; i++)
{ INARC *arc = &lex->arcs[i];
arc->phoneme = arcs[i].phoneme;

arc->lex_score = arcs[i].lex_score;
arc->prev_node = table[arcs[i].prev_node];
arc->del_score = arcs[i].del_score;

}
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/* Add endsets to NODELEX */

add_endsets(lex, sets, table)
NODELEX *lex;
ENDSET *sets;
long *table;

int i,j;

lex->endsets = (ENDSET *) calloc(lex->num_endsets, sizeof (ENDSET));
if (1lex->endsets) error("add_endsets: calloc ENDSETs failed");

for (i=0; i<lex->num_endsets; i++)
{ ENDSET #*set = &lex->endsets[i];
long *nodes;

set->num_in = 0;
for (j=0; j<sets[i].num_in; j++)
if (table[sets[i].nodes_in[j]] != -1)
set->num_in++;

set->nodes_in = (long *) calloc(set->num_in, sizeof(long));
if ('set->nodes_in)
error("add_endsets: calloc nodes in failed");

nodes = set->nodes_in;
for (j=0; j<sets[i].num_in; j++)
if (table[sets[i].nodes_in[j]] != -1)
*nodes++ = table[sets[i].nodes_in[jl];

set->num_out = 0;
for (j=0; j<sets[i].num_out; j++)
if (table[sets[i].nodes_out[j]] != -1)
set->num_out++;

set->nodes_out = (long *) calloc(set->num_out, sizeof(long));
if (!set->nodes_out)
error("add_endsets: calloc nodes out failed");

nodes = set->nodes_out;
for (j=0; j<sets[i].num_out; j++)
if(table[sets[i] .nodes_out[j]] f= -1)
¥*nodes++ = table[sets[i].nodes_out[jl];
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write_lex (lex)
NODELEX *lex;
{

int i;

write_block(lex->arcs_per_node, lex->num_nodes);
write_block(lex->word_for_node, lex->num_nodes);
write_block(lex->arcs, 4 * lex->num_arcs);
write_numesh(lex->num_endsets);
for (i=0; i<lex->num_endsets; i++)
{ ENDSET *set = &lex->endsets[i];
write_block(set->nodes_in, set->num_in);
write_block(set->nodes_out, set->num_out);

¥

write_block (buf, num)
long *buf;
long num;

{

int i;
vwrite_numesh(num);

for (i=0; i<num; i++)
write_numesh(sbuf++);

C.3 AP Network (regions.c)

#include <stdio.h>

#include <stdlib.h>
#include "viterbi.h"
#include "meshioc.h"
#include "regions.h"

#define load_long(x) fread(&x,1,sizeof(long),fp)
#define MAGIC_NUM 1984 /* magic number for file */

APNET *load_apnet(filename)
char *filename;
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FILE *£fp;
APNET *apnet;
long header;
int i, j;

/* Open file, check headers */

fp = fopen(filename,"rb");

if (1fp) error (“load_apnet: File not opened");

load_long(header);

if (header '= MAGIC_NUM) error("load_apnet: Bad magic number in file");
load_long(header);

:f (header != MODELS) error("load_apnet: Wrong number of MODELS") ;

/* Allocate APNET storage */

apanet = (APNET #) malloc(sizeof (APNET));
if (lapnet) error("load_apnet: malloc APNET failed");

/* Allocate boundary storage */

load_long(apnet->num_bounds);
apnet->num_regions = (long *) calloc(apnet->num_bounds, sizeof (long));
apnet->regions = (REGION *x*) calloc(apnet->num_bounds, sizeof (REGION *));

if (lapnet->num_regions || !apnet->regions)
error(”load_apnet: malloc boundaries failed");

/* Fill boundary storage */

}

fread(apnet->num_regions, apnet->num_bounds, sizeof(long), fp);

for (i=0; i<apnet->num_bounds; i++)
{
int num = apnet->num_regions[i];
apnet->regions[i] = (REGION *) calloc(num, sizeof (REGION));
if (tapnet->regions[il)
error("load.apnec: calloc REGIONs failed");
fread(apnet->regions[i], num, sizeof(REGION), fp);
}
fclose(fp);
return(apnet) ;
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dump_apnet (apnet)
APNET *apnet;
{

int i,j.k;
printf ("APNET has /d bounds ", apnet->num_bounds) ;

for (i=0; i<apnet->num_bounds; i++)

{
for (j=0; j<apnet->num_regions[i]; j++)
{
REGION *reg = &apnet->regions[i][j];
printf(" Region %d",j);
printf(" has left bound %2d",reg->left_bound);
printf(" and del penalty %d\n",reg->del_score);
}
}
}
write_apnet(apnet)
APNET *apnet;
{
int i,j, k;
long wait;

write_numesh(apnet->num_bounds);

for (i=0; i<apnet->num_bounds; i++)
{ long *longptr = (long *) apnet->regions[i];

‘write_numesh(apnet->num_regions[i]);
for (j=0; j<apnet->num_regions[i]; j++)
write_region(&apnet->regions[i] [j1);

write_region (region)
REGION *region;
{
int i,j,k;
long *longptr = (long *) region;

for (k=0; k<REGSIZE; k++)
write_numesh(*longptr++);
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Appendix D

DSP Program Source

D.1 Gateway Node (gateway.c)

/% C30 Source for Gateway Node */

#include
#include
#include
#include

<stdlib.h>
“numesh.h"
"yiterbi.h"
“"regions.h"

/* Parameters */

#define WORD_MAX 20 /* maximum words in string */
#define CLOCK_FREQ (27 * 1000000) /% DSP has 27.000 MHz clock, */
#define MILLISEC (CLOCK_FREQ/4000) /* divided by 4 for counter. */

/* Peripheral Time Registers */

/* Refer

volatile long *Control

volatile
volatile

main()

{

to C30 User’s Guide */

(long *) 0x808020;
(long *) 0x808024;
(long *) 0x808028;

long *Counter
long *Period

APNET #*apnet;

volatile long num_sets;

volatile long *sets;

volatile long num_words;

volatile long *words;

volatile long size_text;

volatile char *text;

volatile long score, index, label;
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long sentence[WORD_MAX];
char banner[150] = " ",
int i, j, count;

char mesg[10];

int time;

WriteFifo(0); /* boot word */
display ("WAITING");

#if DIAG
gate_diagnostic();
#else

/* Allocate storage for endsets, in fast RAMO bank if possible. */

num_sets = ReadFifo();

if (sets < 512) sets = (long *) 0x809800;

else sets = (long *) malloc (num_sets * sizeof(int));
if ('sets) error ("main: malloc set_info failed!");

/* Receive table and text for words. */

display ("LEXICON");

num_words = ReadFifo();

words = (long *) malloc (num_words * sizeof(int));

if (iwords) error("main: malloc word_table failed!");
for (i=0; i<num_words; i++) words[i] = ReadFifo();

size_text = ReadFifo();

text = (char *) malloc (size_text * sizeof(char));
if (itext) error("main: malloc word_text failed");
for (i=0; i<size_text; i++) text[i] = ReadFifo();

/* Receive acoustic-phonetic network. */

display ("A-P NET");
apnet = read_apnet();

/* Acknowledge data from Mac */

WriteFifo(0);
display ("GATEWAY");

/* Reset peripheral timer */
*Counter = 0;

*Period = Ox7fffffff;
*Control = Ox2cl;
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/* Act as parent node of root, inject data as needed. x/

for (i=1; i<apnet->num_bounds; i++)

{

volatile long *outptr = (long *) apnet->regions[i];
/* Broadcast new regions to the tree. */

WriteFifo (apnet->num_regions[i]);
tfor (j=0; j<apnet->num_regions[i] * REGSIZE; j+)
WriteFifo (*outptr++);

/* Echo the values for the endsets. */

for (j=0; j<num_sets; j++) sets[j] = ReadFifo();
for (j=0; j<num_sets; j++) WriteFifo(sets[j]);

}

/* Help reconcile final score and endset. */

WriteFifo(0);

score = ReadFifo();
label = ReadFifc();
writefifo (score);
WriteFifo (label);

/* Backtrace pointers for reverse path. */

index = 0;
count = 0;

while (index != 1 && count < 20)
{

index = ReadFifo();

if (index < 0 || index > num_words)
error("main: word out of range");

sentence[count++] = words([index];

WriteFifo (index);

iabel = ReadFifo();

WriteFifo (label);

/* Display the results */

time = *Counter/MILLISEC;
strcat (banner," Time: ");
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1toa (time,mesg);
strcat (banner,mesg);

strcat (banner," Score: ");
1ltoa (score,mesg);
strcat (banner,mesg);

strcat (banner," Path: ");
while (--count >= 0)

{

strcat (banner, &(text[sentence[count]]));
strcat (banner," ");

}

while(1) Scroll (banner);

#ondif

}

#if DIAG

gate_diagnostic()

{

int i, j;

int num_sets;

int time;

char banner[100], mesg[20];
int *sets = (int *) 0x809800;
volatile int val;

display("GATE");

val = ReadFifo();
display(val,2000000) ;
WriteFifo(0);

num_sets = 5;

WriteFifo(num_sets);

for (j=0; j<2*num_sets; j++)
sets[j] = ReadFifo();

for (j=0; j<2*num_sets; j++)
WriteFifo (sets[jl);

for (num_sets=25; num_sets<501; num_sets*= 2)

{

WriteFifo(num_sets);
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sCounter = 0;
*Period = Ox7Tfffffff;
*Control = 0x2cl;

for (j=0; j<2*num_sets; j++)
sets[j] = ReadFifo();

for (j=0; j<2+num_sets; j++)
WriteFifo (sets[jl);

time = *Counter;

strcpy(banner," ");
strcat(banner," SETS ");
ltoa(num_sets,mesg);
strcat(banner,mesg) ;
strcat(banner,”" TIME ");
ltoa(time,mesg);

strcat (banner,mesg) ;

Scroll(banner);

#else

APNET *read_apnet()
{
APNET *apnet;
volatile long num_bounds;
int i, j, k;
apnet = (APNET *) malloc (sizeof (APNET));

if (lapnet) error ("read_apnet: malloc APNET failed");

num_bounds = ReadFifo();
apnet->num_bounds = num_bounds;

apnet->num_regions = (long *) calloc (num_bounds, sizeof(long));
if (lapnet->num_regions) error ("read_apnet: malloc APNET failed");

for (i=0; i<apnet->num_bounds; i++)
{
volatile long *inptr;
volatile long num_regions;
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num_regions= ReadFifo();
apnet->num_regions[i] = num_regions;

apnet->regions{i] = (REGION *) calloc (num_regionms, sizeof (REGION)) ;
if (lapnet->regions[i]) error("read_apnet: calloc REGIONs failed");

inptr = (long *) apnet->regions[i];
for (j=0; j < (MODELS+2) * num_regions; j++)
*inptr++ = ReadFifo();
}
return (apnet);

}

#endif

D.2 Tree Interface (tree.c)

#include <stdlib.h>
#include <string.h>
#include "numesh.h"
#include "viterbi.h"
#include "lexicon.h"
#include "regions.h"

NODELEX *read_lex();
volatile int node_id, num_child;

main()

{
int count;
volatile int header;
volatile int dummy;
NODELEX =*lex;

WriteFifo(0); /* boot word */
display ("WAITING");

/* Help count number of nodes in tree. */

count = 1;

dummy = ReadFifo();
count += dummy;

dummy = ReadFifo();
count += dummy;
WriteFifo(count);
display_num(count, 0);
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/* Count number of children for node. */

pum_child = O;
header = ReadFifo();
while (header == ACKLEX)
{ num_child++;
header = ReadFifo();
}
display_num(num_child, 0);

#if DIAG
tree_diagnostic();
#else

if (header !'= NEWLEX)
error("main: bad NEWLEX header");
display("LEXICON");

node_id = ReadFifo();
if (!(ncde_id < PNCDE_MAX))
error("main: node_id exceeded pnode_max");

lex = read_lex();
WriteFifo(ACKLEX);
if (¥(lex->num_nodes < INDEX_MAX))
error("main: lex->num_nodes exceeded index_max");

display("VITERBI");
compute_matrix(lex);

#endif

}

find_best_score (word_id, set, scores, labels, bound)
long *word_id;
ENDSET *set;
int bound;
long **scores, **]abels;

char banner[100];

char mesg[10];

volatile long score, label;
long pnode, index;
volatile long word;

int 1, j, k;



score = FLOOR;
for (i=0; i<set->num_in; i++)
if (score < scores[bound] [set->nodes_in[il])

{

index = set->nodes_in[i];
score = scores[bound] [index];

}

if (scocre == FLOOR) label = -1;
else label = index + (bound << BOUND_SHIFT) + (node_id << PNODE_SHIFT);

reconcile(&score, &label, 1);

while (label '= -1)
{

volatile long val;

word = -1;
pnode = (label & PNODE_MASK) >> PNODE_SHIFT;

if (node_id == pnode)
{

bound

(label & BOUND_MASK) >> BOUND_SHIFT;
index (label & INDEX_MASK) >> INDEX_SHIFT;
label = labels[bound] [index];

word = word_id[index];

for (j=0; j<num_child; j++)

val = ReadFifo();
if (val !'= -1)
{
word = val;
label = ReadFifo();
}
else DiscardFifo();

}

WriteFifo(word);
WriteFifo(label);

word = ReadFifo();
label = ReadFifo();
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reconcile (score, label, num_sets)
long *score, *label;
int num_sets;
{
int i,j;
volatile long val;

for (i=0; i<num_sets; i++)

{

for(j=0; j<num_child; j++)
{
val = ReadFifo();
if (scorel[i] < val)
{
score[i]
labell[i]
}
else val = ReadFifo();
}

val;
ReadFifo();

WriteFifo(scorel[il);
WriteFifo(label[i]);

}

for (i=0; i<num_sets; i++)
{
score[i] = ReadFifo();
label[i] = ReadFifo();
}

#if DIAG

tree_diagnostic()

{
int *score = (int *) 0x809800;
int *label (int *) 0x809A00;
int i,j,k;
volatile int val;

WriteFifo (ACKLEX);
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for (i=0; i<512; i++)
{
scoreli] = i;
label[il ix*x i;
}

display("DIAG");

while(1)
{
val = ReadFifo();
/* display_num (val,0); =/
reconcile (score, label, val);

¥

#else

NODELEX *read_lex()
{
NODELEX *lex;
long *longptr;
int i, j, k;

lex = (NODELEX *) malloc(sizeof (NODELEX));
if ('1ax) error("read_lex: malloc NODELEX failed");

lex->num_nodes = ReadFife();
lex->arcs_per_node = (long *) calloc(lex->num_nodes, sizeof(long));
if (!lex->arcs_per_node) error("read_lex: calloc NODEs failed");
for (i=0; i<lex->num_nodes; i++)

lex->arcs_per_node[i] = ReadFifo();

lex->num_nodes = ReadFifo();
lex->word_for_node = (long *) calloc(lex->num_nodes, sizeof(long));
if (Vlex->word_for_node) error('"read_lex: calloc NODEs failed");
for (i=0; i<lex->num_nodes; i++)

lex->word_for_node[i] = ReadFifo();

lex->num_arcs = ReadFifo();
lex->arcs = (INARC #) calloc(lex->num_arcs, sizeof(long));
if (!lex->arcs) error("read_lex: calloc ARCs failed");
longptr = (long *) lex->arcs;
for (i=0; i<lex->num_arcs; i++)

*longptr++ = ReadFifo();
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}

lex->num_arcs /= 4;

lex->num_endsets = ReadFifo();
lex->endsets = (ENDSET *) calloc(lex->num_endsets, sizeof (ENDSET));
if ('lex->endsets) error(“'read_lex: calloc ENDSETs failed");

for

{

¥

(i=0; i<lex->num_endsets; i++)

ENDSET *set = &lex->endsets[i];

set->num_in = ReadFifo();
if (set->num_in)
{
set->nodes_in = (long *) calloc(set->num_in, sizeof(long));
if (!set->nodes_in) error(“"read lex: calloc nodes_in failed");
for (j=0; j<set->num_in; j++)
set->nodes_in[j] = ReadFifo();

¥

set->num_out = ReadFifo();
if (set->num_out)
{
set->nodes_out = ‘long *) calloc(set->num_out, sizeof(long));
jf ('set->nodes_out) error(“"read lex: calloc nodes_out failed");
for (j=N; j<set->num_out; j++)
set->nodes_out[j] = ReadFifo();

return(lex);

read_regions (regions)
REGION *regions;

{

volatile long *inptr;
volatile int num_regions;
int i;

num_regions = ReadFifo();
if (num.regions > REG_MAX)

error("read_regions: too many regions");

inptr = (long *) regions;
for (i=0; i<num_regions*REGSIZE; i++)

*inptr++ = ReadFifo();
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return(num_regions);

}

#endif

D.3 Viterbi Search (viterbi.c)

/* Viterbi Computation Module */

#include <stdlib.h>
#include "numesh.h"
#include "viterbi.h"
#include “lexicon.h"
#include "regions.h"

REGION regbuf [REG_MAX];

iong *scores[BNUND_MAX], *labels[BOUND_MAX];
extern int node_id;

compute_matrix (lex)
NCDELEX *lex;

{

int num_regions;

REGION *regions

int bound;
int i, j;

#if C30

= regbuf;
long *setscore, *setlabel;

/* Allocate endsets in

if (lex->num_endsets

{ setscore
setlabel
}
else
{ setscore
setlabel
}

#else

(long
(long

(long
(long

fast RAMO bank of C30 if possible */

< 512)
*) 0x809800;
#) 0x809A00;

%) calloc(lex->num_endsets, sizeof(long));
*) calloc(lex->num_endsets, sizeof(long));

setscore = (long *) calloc(lex->num_endsets, sizeof(long));
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setlabel = (long *) calloc(lex->num_endsets, sizeof(long));

#endif
if ('setscore || !'setlabel) error(“calloc escores/elabels failed");
jnit_column (&lex->endsets[0], scores, labels, lex->num_nodes);

bound = 1;
num_regions = read_regicns(regions);

while (num_regions)
{
display_num(bound,0);
/* Allocate storage for column. */
scores[bound] = (long *) calloc(lex->num_nodes, sizeof(long));
labels[bound] = (long *) calloc(lex->num_nodes, sizeof(long));
if (!scores[bound] || !'labels[bound])

error("Could not calloc new column');

/* Matches */
update_matches (lex, regions, num_regions, bound, scores, labels);

/* Insertions */

update_insertions (lex, regions, num_regions, bound, scores, labels);
/* Deletions */

update_deletions (lex, scores[bound], labels[bound]);
/* Endsets */

update_endsets (lex, bound, scores, labels, setscore, setlabel);

if (++bound == BOUND_MAX)
error("compute_m2trix: max bound exceeded");

/* Get More Regions */

num_regions = read_regions(regions);

}
/* Backtrace Path */

find_best_score (lex->word_for_node, &lex->endsets[1],
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scores, labels, bound-1);

init_column (set, scores, labels, num)
ENDSET *set;
int **gcores, **labels;
int num;

int i;

scores[0] = (int *) calloc(num, sizeof(int));
labels[0] = (int *) calloc(num, sizeof(int));
if ('scores[0] || !labels[0]) error("init_column: calloc failed");

for (i=0; i<num; i++) labels[0][i] = -1;
for {(i=0; i<num; i++) scores[0][i] = FLOOR;
for (i=0; i<set->num_out; i++)

scores[0] [set->nodes_out[i]] = 0;

update_matches (lex, regions, num_regions, bound, scores, labels)
NODELEX *lex;
REGION *regions;
int num_regions;
int bound;
int **scores, **labels;

{

INARC *arc = lex->arcs;
int i, j, k;
/* Iterate over lexical nodes */
for (i=0; i<lex->num_nodes; i++)
{

int best_bound;
int best_index;
int best_score = FLOOR;
int from_bound, from_index, from_score;

/* Iterate over arriving arcs */

for (j=0; j<lex->arcs_p. '_node[il; j++)

{
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/* Iterate over incoming regions */
for (k=0; k<num_regions; k++)

{
REGION *reg = &regions([k];

/* Get score of previous node */

from_bound
from_index
from_score

reg->left_bound;
arc->prev_noda;
scores [from_bound] [from_index] ;

/* Add score of arc extension */

if (from_score == FLOOR) continue;
from_score += reg->scores[arc->phoneme] + arc->lex_score;

/* Keep the best score so far */

if (best_score < from_sccre)

{
best_bound = from_bound;
best_index = from_index;
best_score = from_score;
}
}
arc++;

}

/* Update node with best score and back pointer */

scores[bound] [i] = best_score;
if (best_score == FLOOR) labels[bound][i] = -1;
else labels[bound][i] = labels[best_bound] [best_index];

update_deletions (lex, score, label)
NODELEX #*lex;
int *score, *label;
{
int i, j;
INARC *arc = lex->arcs;
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for (i=0; i<lex->num_nodes; i++)
for (j=0; j<lex->arcs_per_node[i]; j++)

{

int from_score = scorelarc->prev_node];

if (from_score > FLOOR)
{

from_score += arc->del_score;

if (score[i] < from_score)
{
scorel[i] = from_score;
label[i] = label[arc->prev_node];

}

arc++;

update_insertions (lex, regions, num_regions, bound, scores, labels)
NODELEX *lex;
REGION *regions;
int num_regions;
int bound;
int *%gcores, **labels;
{

int i, j;

for (i=0; i<num_regions; i++)
{
REGION *reg = &regions[i];
int from_bound = reg->left_bound;

for (j=0; j<lex->num_nodes; j++)

{

int from_score = scores[from_bound] [j];

if (from_score == FLOOR) continue;
from_score += reg->del_score;

if (scores[bound][j] < from_score)
{
scores[bound] [j]
labels[bound] [j]
}

from_score;
labels[from_bound] [j];
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update_endsets (lex, bound, scores, labels, setscore, setlabel)
NODELEX *lex;
int bound;
long **scores, **labels;
long *setscore, *setlabel;

int i,j,k;
long *score = scores[bound];
long *label = labels[bound];
int packed = (bound<<BOUND_SHIFT) + (node_id<<PNODE_SHIFT);

/* Collect best scores */

for (i=2; i<lex->num_endsets; i++)
{
ENDSET *set = &lex->endsets[i];
int best._score = FLOOR;
int best_index = 0;

for (j=0; j<set->num_in; j++)
if (best_score < score[set->nodes_in[jl])
{
best_score = scorelset->nodes_in[jl];
best_index = set->nodes_in[j];
}
setscore[i] = best_score - WTW;
setlabel[i] = best_index + packed;

}

reconcile(&setscore[2], &setlabel[2], lex->num_endsets - 2);
/* Propagate best scores */

for (i=2; i<lex->ﬁum-endsets; i++)
{
ENDSET *set = &lex->endsets[i];
if (setscore[i] < FLOOR) continue;

for (j=0; j<set->num_out; j++)

if (setscore[i] > score[set->nodes_out[jl])

{
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D.4 Utilities (utils.c)

score[set->nodes_out[j]l]
label[set->nodes_out[j]]

}

#include "numesh.h"

#if REV==0

void display(mesg)

{

}

char *mesg;

int i = 0;
int j;

setscore[i];
setlabel[i];

volatile char *Display0 = (char *) 0x8050C3;

while (*mesg && i++<4)
*DisplayO-- = *mesg++;

for (j=i; j<4; j++)
*DisplayO-- = ’ ?;

#endif

#if REV==

void display(mesg)

}

char *mesg;

{

int i = 0;
int j;

volatile char *Displayl = (char *) 0x804038;

while (*mesg && i++<8)

*Digplayi++ = *mesg++;

for (j=i; j<8; j++)
*Displayi++ = * ?;

#endif
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display_num(val, time)
int val, time;

{
char mesg[20];

ltoa(val,mesg);
display(mesg);
Wait(time);

}

Wait(time)
long time;
{
volatile int dummy;
volatile int i;

for (i=0; i<time; i++)

dummy = i;
}
Scroll(mesg)
char *mesg;
{

char *window;
int i, len;

len = strlen(mesg);

for (i=0; i<len; i++)
{
window = &mesgl[i];
display(window);
Wait(500000);
}
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