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Extended Data 1. Genes associated 
with tumour cell responses to NK 
cells in PRISM studies 
a, Scatter plots for AUC derived from 
PRISM study per time point (x-axis) and 
from cytotoxic assays of individual cell 
lines (y-axis). The Spearman correlation 
coefficients are specified for each time 
point. 
b, Volcano plot for the -log10(p-value) of 
the Spearman correlation between AUC 
and gene expression (y-axis) vs log2 fold 
changes of expression for the respective 
genes between NK cell-resistant (upper 
third of AUC distribution) and NK cell-
sensitive (lower third of AUC distribution) 
cell lines (see Methods). Results are 
shown for 24hr-AUC as representative of 
results for other time points. Genes with 
sgRNA enrichment are labeled red and 
sgRNA depletion are labeled blue. 
Genes in bold were significant based on 
MaGECK and STARS analyses in at 
least one CRISPR screen. 
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Extended Data 2. Key regulators of 
tumour cell responses to NK cells in 
CRISPR studies 
Plots for sgRNA enrichment (upper 
panels) or depletion (lower panels) for 
each one of the genome-scale CRISPR 
gene-editing screens. Highlighted genes 
were identified as significant based on 
MaGECK and STARS in at least one 
screen. 
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Extended Data 3. Stratified PRISM-
based analyses for global (all cell 
lines), epithelial-like or mesenchymal-
like groups of lines. 



lines), 
epithelial-like 
or 
mesenchymal-
like groups of 
lines 

Normalized transcript levels for genes 
which have significant correlation 
(Spearman correlation coefficient, 
adjusted p-values<0.05, see Methods) 
with AUC values in ≥2 time points for the 
entire set of PRISM cell lines. A gene 
was considered to correlate with AUC in 
the epithelial-like or the mesenchymal-
like subset of lines if p-value ≤0.05 in ≥2 
time points in the respective subgroup 
analysis. Horizontal black lines represent 
genes which exhibited significant sgRNA 
enrichment or depletion in at least one of 
the CRISPR studies (based on MAGECK 
and STARS) and in a manner concordant 
with the results of the PRISM analyses. 
Group A was enriched for these genes, 
compared with groups B-D (p=0.022, χ2 
test, df=1). 
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Extended Data 4. Integration of results 
for PRISM and CRISPR-based 
identification of regulators of tumour 
cell response to NK cells 
Functional clusters of genes that were 
associated with tumour cell responses to 
NK cells (based on genes that were 
significant for both MaGECK and STARS 
in at least one screen). Gene highlighted 
in bold were also significant for PRISM. 
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Extended Data 5. B7-H6 and HLA-E as 
key regulators of NK cell responses 
a, In vivo testing of NK cell activity 
against SW620 tumour cells with vs. 
without B7-H6 CRISPR knockout: 
Bioluminescence intensity 
(photons/sec/cm2) measured at week 2. 
P-values are calculated using two- sided 
Mann-Whitney tests between B7-H6– vs. 
B7-H6+ tumours in each group. Data are 
represented as mean ± SD, n=10 per 
group.  
b, B7-H6 log2-fold changes of tumour vs. 
normal samples in RNA-seq data of the 
TCGA dataset. Data are represented as 
box/dot plots, demarcating the first and 
third quartiles of the distribution, with the 
median shown in the center and whiskers 
covering data within 1.5x the interquartile 
range of the box (significant FDR-
adjusted p-values for upregulation are 



shown in red; two-sided Mann-Whitney 
tests).  
c, Heatmap for z-scores of transcript 
levels for antigen presentation genes, 
showing co-expression in the different 
cancer types of the TCGA. The gene 
expression levels were normalized 
across the samples of each cancer type.  
d, Western blot analyses for STAT1 
protein levels in STAT1 knockouts vs. 
OR10A2 as control knockouts in HT29 
and SW620 cell lines. Staining for 
GAPDH on the same uncropped 
membrane serves as loading control. 
n=2 distinct experiments.  
e, Flow cytometry analysis for surface 
HLA-E levels in HT29 cells with sgRNA 
for HLA-E vs. control sgRNA with vs. 
without IFNγ (5ng/ml) over-night 
incubation, n=2 experiments. 
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Extended Data 6. Functional 
relationship of B7-H6 and MHC class I 
molecules. 
a, Comparison of transcript levels 
between Wild-Type (WT) and B2M-
mutated cell lines of the PRISM 
collection (coding mutations), Mann-
Whitney two-sided test. 
b, Spearman correlation coefficients 
between B7-H6 and B2M (upper panel) 
or HLA-E (lower panel) in TCGA and 
CCLE datasets. 
c, Heatmap of the expression levels of 
B7-H6 and HLA-E in PRISM cell lines 
sorted based on difference (log2 fold) of 
B7-H6 compared with HLA-E.  
d, Percentages of MSI cell lines (brown) 
vs. MSS cell lines (orange) in the group 
of HLA-low (n=35) cell lines compared 
with all other lines (n=348) of the PRISM-
based surface proteomic analysis.  
e, HLA-A/B/C surface protein scores or 
B2M transcript levels between the groups 
of MSS vs. MSI cell lines; two-sided 
Mann-Whitney test.  
f, Left: AUC for MSI lines with low-HLA-
A/B/C (n=13) vs. all other lines (n=370) 
of the PRISM-based surface proteomic 
analysis. Right: AUC for MSI lines with 
low B2M expression (n=37) vs. all other 



lines (n=490); two-sided Mann-Whitney 
test. Results are shown for 24hr-AUC 
and are representative of those for other 
time points. 
g, HLA-E and B2M log2-fold changes of 
tumour vs. normal samples in the RNA-
seq data of the TCGA dataset (significant 
FDR-adjusted p-values for 
downregulation are shown in red; two-
sided Mann-Whitney). 
Data in a,e,f,g, are represented as 
box/dot plots, demarcating the first and 
third quartiles of the distribution, with the 
median shown in the center and whiskers 
covering data within 1.5x the interquartile 
range of the box. 
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Extended Data 7. Tumour cell 
transcriptional signatures associated 
with responses to NK cells. 
a, Left: GSEA NES scores for selected 
gene sets that had FDR adjusted p<0.05 
in at least two time points in analyses 
that included all PRISM cell lines: NES 
are also shown for GSEA of only 
epithelial-like and only mesenchymal-like 
lines (see Methods). Right: GSEA NES 
scores for same gene sets as in left 
panel in ICI non-responders vs. 
responders (see Methods). Red and blue 
represent enrichment and suppression, 
respectively, of gene sets in the 
corresponding analyses. Lack of 
significant changes (p>0.05) was colored 
white. 
b-c, Normalized expression levels of 
core genes from pathways correlating 
with AUC (see Methods) in b, epithelial-
like or mesenchymal-like cell lines and c, 
TCGA tumours, sorted by the expression 
of CDH1 and ZEB2 using SPIN40. 
Tumours with low vs. high CDH1 are 
separated with a dotted line. 
d, SW620 cells were pre-treated for 12 
hrs with 50nM of the HDAC inhibitor 
panobinostat, 5 ng/ml IFNγ or DMSO. 
The cells were stained with anti-HLA-E 
(left) and anti-B7-H6 (right) antibodies. 
Unlabeled controls are colored grey. n=1 
experiments. 
e, Flow cytometry assays to quantify NK 



cell cytotoxicity against tumour cells (see 
Methods) pre-treated with HDAC inhibitor 
or DMSO. Cells were treated with 
12.5nM panobinostat and cocultured with 
NK cells in two E:T ratios. n=4 distinct 
experiments. 
f, GSEA enrichment plots for select gene 
sets from a, in all cell lines of PRISM 
(upper) and in ICI non-responders vs. 
responders of the Riaz et al. dataset 
(lower). 
g, Gene scores for NK cell sensitivity in 
ICI non-responders vs. responders of the 
Riaz et al. dataset (see Methods, two-
sided Mann-Whitney test). 
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Abstract 48 
To systematically define molecular features in human tumour cells which determine their degree 49 
of sensitivity to human allogeneic natural killer (NK) cells, we quantified the NK cell 50 
responsiveness of hundreds of molecularly-annotated “DNA-barcoded” solid tumour cell lines in 51 
multiplexed format and applied genome-scale CRISPR-based gene editing screens in several 52 
solid tumour cell lines to functionally interrogate which genes in tumour cells regulate the 53 
response to NK cells. In these orthogonal studies, NK-sensitive tumour cells tend to exhibit 54 
“mesenchymal-like” transcriptional programs; high transcriptional signature for chromatin 55 



remodeling complexes; high levels of B7-H6 (NCR3LG1); low levels of HLA-E/antigen 56 
presentation genes. Importantly, transcriptional signatures of NK cell-sensitive tumour cells 57 
correlate with immune checkpoint inhibitor (ICI) resistance in clinical samples. This study 58 
provides a comprehensive map of mechanisms regulating tumour cell responses to NK cells, 59 
with implications for future biomarker-driven applications of NK cell immunotherapies.  60 

 61 

Introduction 62 
Clinical and preclinical studies have documented that infusions of allogeneic NK cells can be 63 
safely performed across Human Leukocyte Antigen (HLA) barriers and avoid the graft-versus-64 
host reactions that are an inherent challenge for immunotherapies based on administration of 65 
allogeneic T cells1-4. The long-standing interest in potential anti-cancer therapeutic applications 66 
of NK cells has recently increased, reflecting a hope that these cells may successfully target 67 
tumours with primary or secondary resistance to immune checkpoint inhibitors and T-cell-based 68 
immunotherapies5,6.   69 
We thus sought to systematically examine which molecular features in human tumour cells 70 
determine their degree of sensitivity to human allogeneic NK cells and confirm whether these 71 
mechanisms are broadly generalizable to genotypically-diverse types of tumours. Towards this 72 
goal, we leveraged the high-throughput capabilities of two distinct platforms, namely the PRISM 73 
(Profiling Relative Inhibition Simultaneously in Mixtures) approach7 to simultaneously examine 74 
the NK cell responsiveness of several hundreds of molecularly-annotated “DNA-barcoded” solid 75 
tumour cell lines in a multiplexed format; and clustered regularly interspaced short palindromic 76 
repeats (CRISPR)-based gene editing approaches8-10, to examine at genome-scale which 77 
genes regulate the response vs. resistance of several solid tumour cell lines to NK cells.  78 
 79 

Results 80 
 81 

PRISM and CRISPR screens in NK cell-treated tumor lines   82 
PRISM pools of solid tumour cell lines, each with a distinct “DNA barcode”, were exposed to 83 
freshly-isolated healthy donor-derived NK cells at different time points and effector-to-tumour 84 
(E:T) ratios to quantify their response to the cytotoxic effect of NK cells (Fig. 1a). Area under the 85 
curve (AUC) for relative tumour cell viability across E:T ratios was calculated per cell line and 86 
time point (Fig. 1a,b, Supplementary Table 1). Selected lines with high vs. low AUC (i.e. NK cell-87 
resistant vs. -sensitive, Fig. 1b,c) were examined individually (non-pooled assays), yielding 88 



results concordant with the pooled PRISM studies (Extended Data 1a, Supplementary Table 2). 89 
The ranked list of AUCs was correlated with transcript levels and other profiles generated by the 90 
Cancer Cell Line Encyclopedia (CCLE)11 of each gene in univariate analyses (Extended Data 1b 91 
and Supplementary Table 3). 92 
To complement the PRISM studies, we performed genome-scale CRISPR gene editing screens 93 
on colorectal cell lines with various NK cell sensitivities; HCT15, SW620 and HT29 (Fig. 2a,b) 94 
were cultured alone vs. treated with ex vivo expanded NK cells from different donors. We 95 
identified genes whose sgRNA-mediated knockouts were enriched or depleted in tumour cells 96 
that survived the NK cell treatment, compared with untreated controls (Extended Data 2, 97 
Supplementary Table 4). We placed emphasis on genes associated with NK cell sensitivity that 98 
have negative correlation of their transcript levels (RNA sequencing [RNAseq]) with AUC 99 
(calculated separately for each time-point) and sgRNA enrichment in at least one CRISPR 100 
screen; and genes associated with resistance have positive correlation of their transcript levels 101 
with AUC and sgRNA depletion in at least one CRISPR screen. These genes are highlighted in 102 
Extended Data 1b. 103 

 104 

Responses of mesenchymal- vs. epithelial-like tumour cells 105 
Principal component analyses (PCA; Fig. 3a) of proteomic and transcriptional profiles identified 106 
in an unbiased manner two main clusters of cell lines which exhibited epithelial-like (e.g. CDH1 107 
expression) vs. mesenchymal-like (e.g. VIM, ZEB1, ZEB2 expression) characteristics: these two 108 
clusters also exhibited differential expression for the large majority of genes (Fig. 3b-d) and, 109 
importantly, higher vs. lower average AUCs, respectively (Fig. 3b). The distributions of AUCs 110 
across individual tumour types overlap extensively but sorting according to median AUCs 111 
reveals that tumour types highly enriched for “mesenchymal-like” cell lines tend to be over-112 
represented among those with lower median AUCs (Fig. 3e). Notably, even cell lines derived 113 
from tumours generally considered to be of epithelial origin may exhibit “mesenchymal-like” 114 
transcriptional signature and therefore more likely to respond to NK cells. We tested this 115 
assumption on two different clones from the same patient-derived ovarian tumour that exhibited, 116 
respectively, epithelial-like (low VIM [vimentin], high CDH1 [E-cadherin]) vs. mesenchymal-like 117 
(high VIM, low CDH1) transcriptional features and found that the latter was indeed more 118 
sensitive to NK cells cytotoxicity (Fig. 3f).  119 
To control for the strong influence of the epithelial-like vs. mesenchymal-like state on both the 120 
molecular features of PRISM cell lines and their responses to NK cells, we complemented our 121 
PRISM analysis correlating gene expression data with AUCs across all PRISM cell lines (global 122 



analysis), with similar stratified analyses focused on only epithelial-like or only mesenchymal-123 
like cell lines (Extended Data 3 and Supplementary Table 5). Genes correlating with AUCs in all 124 
stratifications (Group A) were more enriched for genes also identified in a functionally 125 
concordant manner in at least one CRISPR screen, suggesting a lineage-agnostic role of these 126 
genes in regulating tumour cell responses to NK cells (p=0.022, χ2 test, df=1). 127 
 128 

Integration of PRISM, CRISPR and molecular profiling data 129 
The integration of PRISM and CRISPR studies identified genes whose transcript levels correlate 130 
with AUCs across all PRISM cell lines (and, for most of these genes, also in either or both 131 
stratified analyses within epithelial-like or mesenchymal-like cell lines; Extended Data 3 and 132 
Supplementary Table 5) and which are also concordantly identified as regulators of NK cell 133 
response in at least two (Fig. 4a,b) or one of our CRISPR screens. Additional genes were 134 
identified by CRISPR to be functionally linked to regulation of tumour cell responses to NK cells, 135 
without correlation of their transcript levels with AUC (Extended Data 4). We did not identify any 136 
individual genes whose mutation status associated with AUCs after adjusting for multiplicity of 137 
testing, though mutations in a few genes had significant nominal p-values for association with 138 
lower (e.g., PTPN13, B2M and MET) or higher (e.g. CDKN2A and KRAS) AUCs. 139 
The genes identified through integration of PRISM and CRISPR results define a comprehensive 140 
landscape of regulators, including known and previously understudied genes. The most 141 
consistent positive regulator of response to NK cells was B7-H6 (an activating ligand for the NK 142 
receptor NCR3 [NKp30]12,13), the only gene with significant sgRNA enrichment in all CRISPR 143 
screens and negative correlation of transcript levels with AUCs across PRISM cell lines (Fig. 144 
4a,b, Extended Data 2, Supplementary Table 4,5). Other known activating ligands for NK cells 145 
did not exhibit consistent sgRNA enrichment across CRISPR screens. Additional positive 146 
regulators of response to NK cells included chromatin remodeling regulators (e.g. RBBP4, 147 
ARID1A); BAG2 (member of the same family as the NCR3 ligand BAG6); and regulators of 148 
apoptosis (e.g. CASP7, BAX and DFFA). 149 
Prominent negative regulators of response to NK cells include the NK-inhibitory ligand HLA-E, a 150 
non-classical major histocompatibility complex (MHC) class I molecule that binds the NK 151 
inhibitory receptor KLRC1 (NKG2A) 14-16; classical MHC class I genes (e.g., HLA-C, with less 152 
pronounced quantitative metrics in CRISPR studies than HLA-E); and genes involved in MHC 153 
class I molecules' surface expression (e.g. antigen presentation machinery genes, e.g. B2M, 154 
TAP1, TAP2, and TAPBP) or transcriptional regulation, including receptors (e.g. IFNGR1, 155 
IFNGR2), effectors (e.g. STAT1) and regulators of Interferon-gamma (IFNγ) signaling. Other 156 



notable genes associated with NK cell resistance in PRISM and/or CRISPR data included the 157 
epithelial markers E-Cadherin (CDH1) and CLDN7; the Polycomb-related gene MBTD1; diverse 158 
genes involved in amino-sugar metabolism and regulation of protein glycosylation (e.g. GALE, 159 
which regulates the expression of immunoregulatory Siglec ligands); and the Ras-related genes 160 
SSFA2 (a KRAS-induced actin-interacting protein) and RHOV (an atypical Rho GTPase 161 
member of the RAS homolog family).  162 
 163 

B7-H6 promotes NK-sensitivity in vitro and in vivo 164 
As B7-H6 was the most prominent gene associated with pronounced NK cell sensitivity, we 165 
further examined its functional role. In vitro cytotoxicity of primary NK cells is decreased against 166 
different cell lines with B7-H6 knockout (sgB7-H6) compared with respective controls (sgCtrl). 167 
(Fig. 4c,d). Surface expression of B7-H6 protein is heterogeneous in HT29 cells and their 168 
exposure to NK cells led to dose-dependent decrease in relative abundance of B7-H6+ cells 169 
(Fig. 4e). We tested the in vivo role of B7-H6 in immunocompromised NSG mice receiving 170 
contralateral subcutaneous flank injections of SW620 cells with vs. without knockout of B7-H6, 171 
respectively. Control mice were injected only with tumour cells, while the treatment group were 172 
injected with a mix of NK cells and tumour cells (Fig. 4f). Tumour growth was observed for NK 173 
cell-exposed sgB7-H6 tumours while their sgCtrl counterparts were undetectable or much 174 
smaller in size (Fig. 4g,h, Extended Data 5a). B7-H6 transcript is highly expressed in kidney 175 
chromophobe, stomach, colorectal and breast cancers compared with their respective normal 176 
tissues (TCGA data, Extended Data 5b) suggesting that NK cell-based therapies targeting B7-177 
H6 may be especially relevant to subsets of patients from these tumour types.  178 
 179 

HLA-E suppresses NK-sensitivity of tumor cells  180 
Antigen presentation pathway genes, including MHC class I molecules, are tightly co-regulated 181 
by IFNγ-induced JAK/STAT signaling17, and are highly correlated across the TCGA dataset 182 
(Extended Data 5c). Among MHC class I genes, HLA-E had the most pronounced sgRNA 183 
depletion (i.e. sensitization to NK cells) in B2M-proficient SW620 and HT29 cells (Fig. 5a). We 184 
hypothesized that HLA-E is a key determinant of NK cell resistance among MHC class I/antigen 185 
presentation machinery genes. Towards this hypothesis, we observed that both HLA-E and 186 
HLA-A/B/C are expressed (although at considerably higher levels for the latter) in the absence 187 
of IFNγ and are further induced by IFNγ; and this induction is abrogated by knockout of STAT1 188 
(Fig. 5b). Tumour cells with knockout of STAT1 or HLA-E have increased NK cell sensitivity 189 



(Fig. 5c, Extended Data 5d,e) despite expression of classical MHC class I molecules, 190 
suggesting that these changes in NK cell responsiveness are primarily due to lack of HLA-E.  191 
 192 

Functional relationship of B7-H6 and MHC class I molecules  193 
To examine relationships between B7-H6 and MHC class I molecules at the transcript and 194 
surface expression levels, the pool of PRISM cell lines was processed for fluorescence-195 
activated cell sorting (FACS) into sub-populations with different surface expression for these 196 
proteins and sequencing read counts for their respective "barcodes" were converted into 197 
surface expression protein scores (Fig. 6a, Methods). Surface protein scores for B7-H6 and 198 
HLA-A/B/C exhibited their highest correlation with transcript levels for B7-H6 and B2M, 199 
respectively (Fig 6b,c). B2M transcript levels may be viewed as a surrogate for surface 200 
expression of MHC class I complex, which is lost in B2M-mutated lines. Indeed, B2M-mutated 201 
lines have lower levels of B2M transcript but not HLA transcripts (Extended Data 6a). High 202 
protein scores for B7-H6, low for HLA-A/B/C are associated with low AUCs. Interestingly, the 203 
overlap between these two groups was significant (Fig 6d). CCLE and TCGA data indicate 204 
negative correlation between transcript levels of B7-H6 and B2M or HLA-E, with association to 205 
NK cells cytotoxicity in PRISM (Extended Data 6b,c). In addition, low surface HLA-A/B/C 206 
expression is enriched for Microsatellite Instability (MSI) lines, which exhibit lower B2M 207 
transcript levels and lower AUCs (Extended Data 6d-f). Collectively, these observations suggest 208 
that MSI tumours with low B2M expression levels may be highly sensitive to NK cells. We 209 
consider that MSI state/high tumour mutational burden does not necessarily predict by itself 210 
whether a given cell line is more likely to be NK cell-sensitive, as the effect of tumour mutational 211 
burden may depend on which specific genes are mutated: if these mutations involve B2M / 212 
antigen presentation machinery genes, MSI status may be associated with NK cell sensitivity. 213 
Downregulation of MHC class I transcripts is common among certain cancer types compared to 214 
their respective normal tissues (TCGA dataset, Extended Data 6g), with colorectal cancer as 215 
prominent example, which also exhibit up-regulation of B7-H6. 216 
 217 

Functional link of chromatin remodeling and NK-sensitivity 218 
Building on our gene-level studies, we examined the molecular determinants of tumour cell 219 
responses to NK cells at the gene-set/pathway levels. Gene set enrichment analysis (GSEA; 220 
Extended Data 7a, Left) indicated that genes associated with NK cell resistance were enriched 221 
for epithelial-like gene signatures, antigen presentation machinery genes and its related 222 
pathways (e.g. signatures for graft-versus-host disease and MHC genes), consistent with the 223 



sgRNA depletion of MHC class I genes in our CRISPR studies. Conversely, genes associated 224 
with NK cell sensitivity were enriched for mesenchymal-like gene signatures and chromatin 225 
remodeling complexes (HDAC, SWI/SNF and Polycomb), consistent with the sgRNA 226 
enrichment for RBBP4, ARID1A in our CRISPR studies. This association of AUCs with B7-H6, 227 
genes of the GSEA enrichment core for chromatin remodeling and antigen presentation 228 
signatures was confirmed in analyses including all PRISM cell lines (Fig. 7a) and in stratified 229 
analyses including only epithelial-like or mesenchymal-like lines (Extended Data 7b). In addition, 230 
analysis of TCGA transcript levels reveals that tumours of mesenchymal origin express lower 231 
levels of antigen presentation genes and IFNγ response genes compared with tumours of 232 
epithelial origin (Extended Data 7c), suggesting a link between epithelial-like transcriptional 233 
signatures and antigen presentation or IFNγ response levels. The inverse correlation between 234 
chromatin remodeling genes and HLA-E or the positive correlation of HLA-E with antigen 235 
presentation genes, was observed in all tumour types of the TCGA dataset that we examined 236 
(Fig. 7b). Based on these observations, we further examined how perturbation of chromatin 237 
remodeling may affect the expression of antigen presentation genes and tumour cell response 238 
to NK cells. Indeed, these signatures are reversed in cell lines treated with various broad 239 
spectrum HDAC inhibitors18-20 (Fig. 7c) and knockouts of several chromatin remodeling genes 240 
leads to increased surface expression of MHC class I levels in CRISPR studies in K562 241 
leukemia cells21 (Fig. 7d). Importantly, pre-treatment of SW620 cells with HDAC inhibitor led to 242 
STAT1-independent upregulation of HLA-E; downregulation of B7-H6; and decreased sensitivity 243 
to NK cells (Extended Data 7d,e). 244 
 245 

ICI resistance correlates with NK sensitivity signature 246 
Loss of MHC class I molecules in tumour cells confers increased sensitivity to NK cells (e.g. Fig. 247 
4a,b), but has been implicated in resistance to immune checkpoint inhibition (ICI)5,6. 248 
Interestingly, our PRISM studies indicate that tumour cells with mesenchymal-like transcriptional 249 
program tend to be more sensitive to NK cells. Consistent with this observation, among 250 
mesenchymal tumours, most types of soft-tissue sarcomas tend to exhibit limited, if any, clinical 251 
response to ICI treatment, with the notable exception of undifferentiated pleomorphic sarcoma 252 
(UPS), which is over-represented within soft-tissue sarcomas that respond to ICI22,23. Given 253 
these considerations, we hypothesized that the broader collection of transcriptional signatures 254 
associated with NK cell responsiveness may correlate with decreased response to ICI. We 255 
addressed this hypothesis by comparing transcriptional profiles of tumour samples from non-256 
responders vs. responders from five cohorts of ICI-treated melanoma patients24-28; and tumours 257 



of patients with Leiomyosarcoma (LMS) vs. UPS. In both settings (Fig. 7e,f, Fig. 8a-c and 258 
Extended Data 7a right panel, f), transcriptional signatures associated with NK cell sensitivity 259 
are enriched in samples of patients who do not respond to ICI. Indeed, the transcriptional 260 
signature of genes defined by PRISM and CRISPR to be associated with NK sensitivity, as well 261 
as mesenchymal-like and chromatin remodeling signatures were upregulated, while 262 
transcriptional signatures associated with NK cell resistance, including epithelial-like and 263 
antigen presentation machinery genes were downregulated in ICI non-responders compared 264 
with ICI responders (Fig. 7e, Fig. 8a,b and Extended Data 7a right panel, f). Furthermore, 265 
analysis of patient-based NK-sensitivity gene score for these genes indicated significant 266 
difference for non-responders vs. responders (Extended Data 7g). Consistent with these results, 267 
the group of genes associated with NK resistance exhibited positive enrichment in UPS 268 
compared with LMS tumours in TCGA, while the NK sensitivity gene set had negative 269 
enrichment (Fig. 7f, Fig. 8c). Collectively, these observations suggest that molecular signatures 270 
of resistance to other forms of immunotherapy do not necessarily correlate with resistance to 271 
NK cells and may even be associated with increased responsiveness to NK cells. 272 
 273 

Discussion 274 
Understanding which molecular pathways regulate the activity of NK cells against large 275 
genotypically-diverse cohorts of human tumour cells is important for any efforts to “personalize” 276 
NK cell-based therapeutic approaches. We addressed this question through the orthogonal use 277 
of PRISM phenotypic screens and CRISPR gene-editing studies. PRISM enables multiplexed 278 
quantification of treatment responses across hundreds of “DNA-barcoded” cell lines. Our study 279 
thus comprehensively correlates the molecular features of large numbers of tumor cells with 280 
their response to uniform preclinical administration of a cell-based immunotherapy, at a scale 281 
that would logistically be challenging to achieve in clinical settings. CRISPR screens provide 282 
direct functional evidence of which gene perturbations influence treatment responsiveness in 283 
each individual cell line. This orthogonal use of PRISM and CRISPR provided an integrated 284 
“multi-omic” and functional genomics profile of a “typical” NK cell-sensitive tumour cell: although 285 
mechanisms in tumour cells that regulate their response to NK cells are multifactorial and 286 
appear to involve the aggregate impact of several parameters, cell lines more responsive to NK 287 
cells tend to have a “mesenchymal-like” transcriptional program; high levels of B7-H6 and 288 
transcriptional signatures for chromatin regulatory complexes (e.g. HDAC/Polycomb/BAF); and 289 
low levels of MHC class I molecules, especially HLA-E, and transcriptional signatures for 290 



antigen presentation machinery genes and IFNγ signaling. Two or more of these features often 291 
co-exist in NK cell-sensitive tumour cell lines (Fig. 8d).  292 
 293 
The mechanistic basis of the differential average NK cell sensitivity between mesenchymal-like 294 
vs. epithelial-like cell lines is likely multifactorial. Epithelial-like tumour cell lines exhibited on 295 
average, compared to mesenchymal-like lines, lower levels of transcriptional signatures for 296 
chromatin remodeling genes and higher levels for transcriptional signature for antigen 297 
presentation / MHC class I molecules. Our study also identified several genes (e.g. CDH1, a 298 
known ligand for the inhibitory NK receptor KLRG129, and CLDN7) which exhibit (i) positive 299 
correlation of their transcript levels with high AUC (lower sensitivity) in global analysis of all 300 
PRISM cell lines; (ii) higher transcript levels in epithelial-like (compared to mesenchymal-like) 301 
lines and (iii) sgRNAs depletion in at least one of our CRISPR studies, indicating that these 302 
latter genes can be considered plausible mediators, at least partly, of the lower average 303 
sensitivity of epithelial-like cell lines. In contrast, perturbation of several other genes differentially 304 
expressed between mesenchymal vs. epithelial-like lines (e.g. VIM or CDH2; data not shown) 305 
did not alter NK cell responsiveness. The differential average NK cell-sensitivity between 306 
mesenchymal- vs. epithelial-like tumour cells prompted us to perform stratified PRISM-based 307 
correlative analyses within each of these two clusters: this validated that top genes/pathways 308 
identified from our PRISM-CRISPR studies (including B7-H6, HLA-E or transcriptional 309 
signatures for HLA-class I/antigen presentation machinery or chromatin remodeling genes) 310 
remained associated with the extent of NK cell response within both clusters of tumor cells; but 311 
also provided a blueprint for prospective studies of markers with preferential role in either 312 
mesenchymal or epithelial tumours. 313 
 314 
B7-H6 is a known ligand for the NK cell-activation receptor NCR3 (NKp30), yet its role in 315 
regulating tumour cell responses to NK cells is under-studied. This may partly reflect the fact 316 
that most rodent models frequently used in tumour immunology studies lack a close homologue 317 
to the human B7-H612,13, which may explain why this gene was not identified in functional 318 
studies using a mouse melanoma cell line30. B7-H6 inversely correlates with MHC class I 319 
molecules, at both transcript and surface protein levels. Nevertheless, the role of B7-H6 on 320 
tumour cell sensitivity to NK cells is functionally independent of MHC class I molecules, as 321 
knockout of B7-H6 decreases tumour cell response to NK cells both in MHC class I-proficient 322 
cell lines (without affecting HLA-E expression) and -deficient lines. Two recent studies21,31 323 
identify B7-H6 as a “hit” in CRISPR knockout screens on NK cell-treated K562 leukaemia cells, 324 



a main target cell line for NK cell studies due to its pronounced NK cell responsiveness. Our 325 
correlative and functional studies document that the role of B7-H6 applies to a broad spectrum 326 
of genotypically-diverse cell lines from many solid tumour types, the large majority of which 327 
have not been previously studied in terms of their NK cell sensitivity.  328 
 329 
Our study’s orthogonal use of PRISM and CRISPR identified previously underappreciated 330 
genes. Other biologically plausible genes which did not emerge prominently in our study should 331 
not necessarily be considered less important for regulation of NK cell cytotoxicity. For instance, 332 
some NK-activating ligands, such as ligands for NKG2D (KLRK1), were not identified to be 333 
associated with higher responsiveness in the CRISPR screens, even though most of these 334 
proteins are expressed in the cell lines examined in our study32-34. One possible explanation is 335 
that loss-of-function screens for single genes may not detect as “hits” molecules that are 336 
functionally redundant because loss of one gene would be compensated by the unperturbed 337 
function of the other(s). Shedding of NKG2D ligands is another possible explanation, as their 338 
soluble form can block NK cell activation35. It is notable that ex vivo-expanded NK cells tend to 339 
gain NKG2A(KLRC1)/CD94(KLRD1), known to bind the inhibitory ligand HLA-E16. This may 340 
explain why HLA-C is not as prominent a “hit” in our CRISPR results as HLA-E. Ex vivo 341 
expansion of NK cells is currently (and potentially also for the foreseeable future) a key step in 342 
the application of NK cell immunotherapies, it is thus plausible that our study’s observation for a 343 
key role of HLA-E may also reflect how NK cell-based therapies operate when administered in 344 
vivo. Interestingly, HLA-E was identified in only one of the two CRISPR screens performed on 345 
K562 cells co-cultured with NK cells31, perhaps reflecting clonal differences in the specific cell 346 
line batches used in those studies, underscoring the value of performing CRISPR screens on 347 
more than one cell-line model.  348 
 349 
Tumour cells with transcriptional signatures associated with NK cell sensitivity (including 350 
mesenchymal-like or chromatin remodeling signatures) are associated with ICI resistance in 351 
multiple clinical studies. These observations suggest that tumours highly enriched for 352 
mesenchymal molecular features; or tumours with primary or secondary resistance to ICI may 353 
represent attractive settings for future therapeutic applications of NK cell-based therapies, and 354 
that combined or sequential treatments of ICI and NK cell therapy may be beneficial to delay or 355 
overcome ICI resistance5. Therapeutic interventions reported to enhance tumour cell responses 356 
to cytotoxic T cells / ICI (including broad spectrum HDAC inhibitors36) may reverse the 357 
molecular signature of NK cell sensitivity in tumour cells and suppress their NK cell response, 358 



raising cautionary note about potential combined use of these therapeutic modalities. HDAC 359 
inhibitors can also upregulate NKG2D ligands37 and their effect on NK cell responses may thus 360 
vary from one cell type to another and be determined by the balance between treatment-361 
induced changes in the inhibitory and activating signals.  362 
 363 
Similar to other immune effector cell-based therapies, it is conceivable that anti-tumour activity 364 
of NK cells in patients will ultimately not depend only on the intrinsic cytotoxic potential of these 365 
cells or whether tumour cells’ molecular features would be permissive to effective engagement 366 
and rapid lysis by the administered NK cells. Indeed, it is also important that NK cells infiltrate in 367 
high numbers the tumour sites and overcome local microenvironmental mechanisms that 368 
protect tumour cells from diverse pharmacological38 or immune-based therapies39. Our current 369 
study focuses on in vitro co-cultures of tumour cells with donor-derived NK cells, as a basic 370 
model to define the landscape of cell-autonomous mechanisms that regulate tumour cell 371 
responsiveness to NK cells. The framework created by the current study can be applied in 372 
diverse other preclinical contexts, including use of other forms of NK cell-based therapies and/or 373 
preclinical models where tumour cells reside in the supportive local microenvironment of primary 374 
or metastatic lesions. Optimizing the potency, in vivo persistence, and tumour homing of NK 375 
cells or their ability to overcome stroma-induced protection of tumour cells39, as well as 376 
understanding how NK cells may be influenced by their interaction with different types of tumour 377 
cells, are areas of active investigation: as the field builds consensus on how to address these 378 
considerations, the knowledge provided by this study will be an important resource and the 379 
basis for comprehensive approaches to use, both cell-autonomous and nonautonomous 380 
markers, to estimate the probability of anti-tumour responses of NK cells. Ultimately, the 381 
molecular signatures of NK cell response vs. resistance identified in our study and similar ones 382 
from future preclinical research can be examined in prospective samples from clinical studies 383 
and provide insights into which patients may be more likely to benefit (or not) from each one of 384 
the diverse types of NK cell-based therapies that are available in different stages of preclinical 385 
or clinical investigation. 386 
 387 
Clinical studies of NK cell-based therapies have been already providing promising clinical 388 
outcomes (for example, chimeric antigen receptor-NK cells have clinical activity against 389 
relapsed or refractory CD19-positive hematologic malignancies1) which could further improve 390 
through biomarker-driven “personalized” administration of these therapies to patients whose 391 
tumours exhibit molecular features associated with NK cell sensitivity. Towards this goal, we 392 



integrated PRISM and CRISPR studies to define the landscape of molecular features 393 
associated with NK cell sensitivity or resistance. Our results provide insights in our 394 
understanding of the NK-tumour cell interaction and may help inform current and future efforts 395 
to apply NK cell-based therapies for the treatment of human tumours.  396 
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Figures Legends 533 
 534 
Fig. 1. Overview of the PRISM study using NK cells.  535 
a, Schematic depiction of PRISM study.  536 
b, AUC values calculated for each time point per cell line.  537 
c, CTG cytotoxicity assays (see Methods) for individual cell lines. Data represent mean ± s.d.(5 538 
replicates per line; two distinct experiments per line). P-values were calculated between the replicates 539 
of resistant vs. sensitive lines (two-way Mann-Whitney test, n=40 per group) in each E:T ratio. 540 
 541 
Fig. 2. Overview of the genome-scale CRISPR studies of NK cell treatment. 542 
a, Schematic depiction of CRISPR screens. 543 
b, Histogram of gene-level log2-fold-changes (expressed as z-scores). Listed are examples of genes 544 
with prominent quantitative metrics (MAGECK rank analysis) across more than one screen. 545 
 546 
Fig. 3. Mesenchymal-like tumour cells are on average more sensitive to NK cell cytotoxicity in 547 
vitro. 548 
a, PCA of PRISM lines based on reverse phase protein array (RPPA) and on RNAseq data for 1000 549 
most variable genes.  550 
b, AUC (24hr) values for mesenchymal-like (n=292) vs. epithelial-like (n=235) cell lines (Box plots 551 
demarcate the first and third quartiles of the distribution; the median is shown in the center; and 552 
whiskers cover data within 1.5× the interquartile range of the box). two-sided Mann-Whitney tests. 553 
c, Normalized expression levels (z-scores) for top 100 most differentially expressed (50 upregulated 554 
and 50 downregulated) genes in epithelial-like vs. mesenchymal-like cell lines.  555 
d, Volcano plot for differential gene expression between epithelial-like and mesenchymal-like cell lines 556 
(adjusted p-values). 557 
e, Left: AUC (24hr) distribution per tumour type, sorted by median AUC (Box plots plotted as described 558 
in b). Right: Percentage of epithelial-like and mesenchymal-like cell lines in each tumour type. 559 
f, Left: Flow cytometry for staining with antibodies against CDH1 and VIM of two clones from an 560 
ovarian patient-derived tumour (n=1). Right: NK cytotoxicity assays (see Methods) of the two clones 561 
(n=3 distinct experiments with different NK cell donors). 562 
 563 
Fig. 4. Key regulators of tumour cell responses to NK cells in PRISM and CRISPR studies 564 
a, Scatter plot of quantitative metrics of significance for sgRNA enrichment or depletion (upper or lower 565 
panels, respectively) of each gene in CRISPR (y-axis) and for correlation of transcript expression with 566 
AUC in PRISM (24hr; x-axis). Highlighted genes are included in panel b.  567 



 

 

b, Genes with significant differential expression (log2 fold-changes) between NK cell-sensitive vs. 568 
resistant lines in PRISM (24hr) (left) and with significant sgRNA depletion or enrichment (z-scores of 569 
log2 fold-changes) in ≥2 CRISPR screens and RBBP4 in one screen (see Methods).  570 
c, Flow cytometry of SW620 cells with sgRNA against B7-H6 (sgB7-H6) or OR10A2 as control (sgCtrl) 571 
stained with B7-H6 antibody. Unlabeled cells are colored grey, representative of n=2.  572 
d, NK cytotoxicity assays (CTG) for colorectal cell lines with sgB7-H6 or sgCtrl at E:T 2:1 (n=6 573 
replicates per experiment, 3 distinct experiments per cell line; mean ± s.d.; SW620 p=3.65x10-5, HCT15 574 
p=6.27x10-5, HT29 p=3.23x10-7, Mann-Whitney two-sided tests, n=18). 575 
e, Flow cytometry for live HT29 cells stained for B7-H6, after treatment with NK cells. Unlabeled control 576 
cells are colored grey. Lower panel: percentages of B7-H6 positive, B7-H6 negative cells 577 
(representative of n=2 experiments).  578 
f, Schematic depiction of studies on role of B7-H6 on NK cell responses in vivo.  579 
g, Tumor volume (caliper measurements; week 4) for NK cell-treated vs control tumors of SW620 cells 580 
with sgRNA for sgB7-H6 or sgCtrl (two-sided Mann-Whitney tests, n=10 per group, median ± 95% CI).  581 
h, Bioluminescence imaging (week 2) of mice receiving control (Left, “NK-”) or NK treatment (Right, 582 
“NK+”) (Color-coded scale on the right-hand side was used for images denoted by *). 583 
 584 
Fig. 5. HLA-E as a major regulator of tumour cell responses to NK cells 585 
a, Statistical significance of sgRNA depletion of HLA class I genes in genome-scale CRISPR knockout 586 
studies of NK cell-treated vs. control cells.  587 
b, Flow cytometric staining for HLA-E, HLA-A/B/C in HT29 and SW620 cells with sgSTAT1 or control 588 
sgRNA (sgCtrl) +/- IFNγ, representative of n=2 distinct experiments (grey: unlabeled control sgCtrl cells 589 
without treatment).  590 
c-d, CTG cytotoxicity assays for HT29, SW620 cells with sgRNA against STAT1 (sgSTAT1, c) or HLA-591 
E (sgHLA-E, d) or common control knockouts (sgCtrl, sgRNA against OR10A2) at E:T 1:1 (5 different 592 
experiments per line using NK cells from 2-3 donors, n=6 replicates per experiment. (STAT1 593 
p=7.24x10-6, HLA-E p=2.27x10-7, Mann-Whitney two-sided tests, n=30). Data (NK cell-induced 594 
cytotoxicity relative to respective NK cell-free control) are presented as mean ± s.d.. 595 
 596 
Fig. 6. Surface protein levels reveal functional relationship of B7-H6 and MHC class I molecules 597 
a, Schematic representation for evaluation of surface protein levels using FACS-based sorting of 598 
PRISM pools of barcoded cell lines.  599 
b, Left: Contour plot for B7-H6 surface levels (y-axis) vs side-scatter (x-axis), representative of n=4 600 
FACS runs. Upper: Normalized read counts of each bin sorted by SPIN40. Middle: calculated protein 601 
scores. Lower: RNA expression levels of B7-H6 in the corresponding cell lines (R=0.47, p=5.21x10-22, 602 
Pearson correlation between surface protein scores and transcript levels).  603 



 

 

c, same experimental setup as in b, with staining for anti-HLA-A/B/C antibody. Transcript levels or B2M 604 
and select HLA class I genes were compared with HLA-A/B/C protein scores (R=0.44, p=8.48x10-20, 605 
Pearson correlation between protein and B2M transcript levels).  606 
d, Upper left: B7-H6 protein scores vs. AUC; χ2 test, df=1. Results are shown for 24hr-AUC and are 607 
representative of results for the other time points. Upper right: Same setup, with staining for HLA-A/B/C 608 
protein scores. Lower left: scatter plot for surface protein scores of B7-H6 and HLA-A/B/C. Lower right 609 
quadrant represents the group of lines with both low surface HLA-A/B/C and high B7-H6 protein scores. 610 
Lower right: Venn diagram for intersection between cell line groups with low HLA-A/B/C and high B7-H6 611 
(hypergeometric test).  612 
 613 
Fig. 7. Transcriptional signatures associated with tumour cell responses to NK cells.  614 
a, Normalized expression levels of genes from select pathways correlating with AUC in PRISM 615 
analyses (see Methods).  616 
b, Correlation coefficients of transcript levels with HLA-E in TCGA datasets and in CCLE. 617 
c, Log2 fold changes of gene expression in cell lines treated with different HDAC inhibitors vs. 618 
respective controls18-20.  619 
d, sgRNA enrichment or depletion (log2 fold changes) in K562 cells with high vs. low surface 620 
expression of MHC class I after IFNγ treatment21. 621 
e, Log2 fold changes of transcript levels in non-responders vs. responders to ICI in melanoma24-28 (see 622 
Methods). Baseline=pre-treatment.  623 
f, Log2 fold changes of transcript levels in LMS vs. UPS in TCGA data from sarcoma patients. 624 
 625 
Fig. 8. GSEA for NK sensitivity and NK resistance gene sets in patient tumor samples 626 
a, GSEA normalized enrichment scores (NES) for NK sensitivity or resistance gene sets (identified 627 
based on both CRISPR [MaGECK] and PRISM [Supplementary Table 5]) in melanoma tumors of non-628 
responders vs. responders to ICI. Lack of significant changes (p>0.05) were colored white.  629 
b, GSEA enrichment plots for non-responders vs. responders to ICI in the Riaz et al. dataset (included 630 
in panel a). 631 
c, GSEA enrichment plots for LMS vs. UPS sarcoma tumours. 632 
d, Schematic summary of landscape of molecular features associated with NK cell sensitivity vs. 633 
resistance 634 

Methods 635 
  636 
Cultures of tumor cells and primary NK cells 637 



 

 

The PRISM pool of cell lines was cultured in RPMI 1640, in the absence of phenol red, with 10% heat-638 
inactivated FBS and penicillin/streptomycin. Other cell lines were cultured in RPMI 1640 with 10% heat- 639 
inactivated FBS and penicillin/streptomycin. All cell lines were tested for mycoplasma using the 640 
MycoAlert kit. Cultures were incubated at 37°c with 5% CO2. Details on the culture and experiments 641 
with ovarian cancer patient-derived samples are provided in Supplementary Note.  642 
Primary NK cells were isolated from different anonymous healthy donors. For PRISM experiments, 643 
CD56+ NK cells were isolated using a NK cell negative selection kit (Miltenyi) and cultured in RPMI 644 
1640 with 10% heat inactivated FBS, 10ng/ml IL-2 and penicillin/streptomycin. All other co-culture 645 
experiments were performed using expanded NK cell, isolated from healthy donors. To expand NK 646 
cells, CD3-depleted PBMCs (Stem Cell Kit, Lymphoprep) were cultured for 10-14 days in NK culture 647 
media (SCGM media with 10% heat-inactivated FBS, 10ng/ml IL-2, 1% Glutamax and 648 
penicillin/streptomycin) with a target density of 0.5x106 cells/ml. The purity of the NK cells culture was 649 
determined by flow cytometry, using anti-CD56-APC (NCAM1, 1:100), anti-CD3-FITC (1:100). Cells 650 
were frozen in SCGM media with 7% DMSO and 20% heat inactivated FBS. Upon thawing, cells were 651 
cultured in the NK culture media, supplemented with 20% conditioned media collected at the time of 652 
expansion. NK cell profiling was determined by flow cytometry using antibodies against CD56 (NCAM1, 653 
1:100), NKG2D (KLRK1, 1:100), NKp46 (NCR1, 1:10), NKp30 (NCR3, 1:40), NKG2A (KLRC1, 1:100), 654 
NKG2C (KLRC2, 1:100), KLRG1 (1:40). We observed similar qualitative patterns of expression for 655 
selected NK markers across donors and modest quantitative differences between some batches for 656 
individual markers (data not shown). 657 
 658 
PRISM-based phenotypic studies in pooled format to quantify NK cell cytotoxicity against DNA-659 
barcoded cancer cell lines 660 
PRISM allows phenotypic screens with pools of different cancer cell lines each harboring a distinct DNA 661 
barcode as previously described7. Briefly, 568 adherent cancer cell lines, stably transduced with their 662 
respective DNA barcode sequences were seeded in 25 cm2 flasks (100x103 cells/flask) in experimental 663 
replicates, 6 for controls without NK cells and 3 per effector-to-target (E:T) ratio and for each different 664 
time points  (24, 48 and 72 hours). Cells were incubated in 5 ml PRISM growth media for 24 hours: at 665 
that point, primary NK cells were washed, resuspended in PRISM growth media and added to the 666 
PRISM cell cultures in 4-5 different E:T ratios of 10:1,5:1,2.5:1 and 1.25:1 (1 ml/flask; for 24hr we 667 
examined an additional E:T of 0.625:1). Control flasks were supplemented with the same volume of 668 
media only. At 24, 48 and 72 hours post-NK coculture, adherent cells of the respective flask were 669 
washed with PBS and incubated for 1 hour at 60ºC in lysis buffer (1 ml per flask), prepared using 670 
doubled distilled water with 10% PCR buffer (20mM Tris-HCL pH 8.4, 50mM KCL), 0.45% NP40, 0.45% 671 
TWEEN and 10% proteinase K. The DNA from the lysates, which contained the "DNA barcode" 672 
sequences for different cell lines of the PRISM panel, was amplified and sequenced as previously 673 



 

 

described7. The log2 ratios of read counts for the barcode of each cell line in the replicates of each E:T 674 
ratio vs. their respective controls (without NK cells) were used to calculate the area under the curve 675 
(AUC) of tumour cell survival, representing a quantitative measure of the resistance of each cell line to 676 
NK cell cytotoxicity. For all figures, 24hr-AUCs are shown as representative for the other time points. 677 
In this study, the terms NK cell “sensitivity” / “sensitive” cells vs. “resistance” / “resistant” cells are used 678 
interchangeably with the terms “low AUC” vs. “high AUC”, respectively, and refer to the relative ranking 679 
of cell lines of our PRISM panel according to their AUC, as a quantitative metric of their response to NK 680 
cells, rather than a binary status for NK cell killing of all vs. none of the cells of an individual cell line. 681 
We did not observe a specific cutoff point or major “gap” of AUC values which clearly separates all 682 
sensitive vs. all resistant lines. Instead, the large majority of cell lines are distributed along a 683 
quantitative continuum of responses between the highest and lower observed AUC levels. Most 684 
analyses correlating AUC values with molecular data took into account the whole range of AUCs. Some 685 
analyses involved dichotomization of the PRISM panel to groups of lines with “lower AUC” (“sensitive”) 686 
vs. “higher AUC” (“resistant”), based on AUC cutoff points (e.g., lower vs. upper tertiles; or median AUC 687 
value), as indicated in the respective Figure Legends or other parts of this Methods section. 688 
 689 
Correlation of molecular profiling data with AUC values from PRISM study 690 
RNAseq, RPPA and mutation data on the cell lines of the PRISM panel were accessed through the 691 
molecular profiling data of these cell lines within the larger CCLE panel, which have been previously 692 
released by the Broad Institute of MIT and Harvard11. Further details on the analyses which examined 693 
the correlation of these molecular profiling data with the AUC values from the PRISM study of NK cell 694 
treatment are provided in Supplementary Note. 695 
 696 
Genome-scale CRISPR gene editing screens 697 
Genome-scale CRISPR gene editing screens to define determinants of tumor cell response vs. 698 
resistance to NK cells were performed using reagents and protocols similar to previous studies by other 699 
groups8-10 or ours41. The cell lines chosen for these screens were HCT15 (B2M mutant and 700 
hypersensitive to NK cells); SW620 (highly NK cell-sensitive line with mesenchymal-like transcriptional 701 
signature); and HT29 (intermediately sensitive cell line with epithelial-like signature). The genome-scale 702 
sgRNA libraries GeCKO V2 (sub-libraries V2.1 and V2.2 for HCT15 cells) and Brunello (for SW620 and 703 
HT29 cells) were applied. Each cell line was examined with 3-4 distinct biological replicates, involving 704 
tumour cells treated with NK cells from different donors vs. their respective control. Each replicate was 705 
treated on consecutive days and involved co-culture for 6 hours with primary NK cells expanded from 706 
its respective donor. The selected E:T ratio of each line was selected to kill ~50% of the tumour cells. 707 
The number of tumour cells in each replicate had a target sgRNA representation of 500-1000 708 
cells/sgRNA. After each screen, DNA extraction, PCR amplification and next generation sequencing, as 709 



 

 

well as processing of sequencing results were performed similar to prior studies (e.g.10 and41) to 710 
quantify the distribution of sgRNAs in the NK cell-treated vs. control samples in each screen. One-sided 711 
test for enrichment or depletion of the sgRNAs and sgRNA rank aggregation was performed for each 712 
gene using MaGECK (Model-based Analysis of Genome-wide CRISPR-Cas9 Knockout), with default 713 
parameter settings42. Olfactory receptor genes (generally not expressed or considered to influence 714 
tumour cell immune responses) were used to establish a control distribution of sgRNAs for the rank 715 
aggregation procedure. Based on MaGECK output, a gene was considered to exhibit a significant 716 
enrichment/depletion of its sgRNAs, if it satisfied the following conditions: p-value≤0.05, enriched (or 717 
depleted) sgRNA≥2, rank of enrichment or depletion ≤2000 and RPKM>1 (CCLE RNAseq dataset11) in 718 
the respective cell line. STARS, a negative binomial distribution method8, was run as a complementary 719 
approach to assess enrichment or depletion of sgRNAs, using the average log2-fold change of 720 
normalized readcounts of sgRNAs for a given gene, across all replicates in each screen. Emphasis was 721 
placed on genes with significant enrichment/depletion of their sgRNAs concordantly for both MaGECK 722 
and STARS within a screen of a specific cell line, or across CRISPR screens in multiple cell lines; and 723 
also between CRISPR and PRISM results. None of these identified genes belonged to the olfactory 724 
receptor set. 725 
Further details on genome-scale CRISPR screens and on experiments for CRISPR-based studies of 726 
individual genes are provided in Supplementary Note. 727 
 728 
NK cell cytotoxicity assays  729 
To examine if NK cell cytotoxicity results obtained in pooled format by PRISM are concordant to those 730 
obtained by conventional testing of individual cell lines in non-pooled format, 8 individual cell lines (from 731 
several different cancer types) without the “DNA barcode” were tested as examples of NK cell-sensitive 732 
vs. -resistant lines: Cell Titer Glow (CTG) viability assays were performed for each cell line in 6 different 733 
E:T ratios: controls (no NK, E:T 0:1), 0.3:1, 0.6:1, 1.25:1, 2.5:1 and 5:1, with 5 replicates per 734 
experimental condition. Every plate had a set of wells which were seeded only with NK cells. Tumour 735 
cells were seeded in 384 plates (5,000 cells per well in 50 μL growth media) and after overnight 736 
incubation, primary NK cells (cell suspension of 50 μL per well) were added for 6 hours. Similar 737 
approaches were applied in CTG assays for single-gene CRISPR knockouts of B7-H6, STAT1, HLA-E 738 
and (as control knockout) OR10A2, except the latter experiments were performed with n=6 replicates 739 
per experimental condition. Tumour cells were seeded in 384 plates (10,000 cells per well in 20μl 740 
growth media) and, after overnight incubation, NK cells from different donors (20 μL per well) were 741 
added in the cultures for 4 hours.  742 
At the end of these assays, 10% CTG was added to each well for 20 minutes incubation and the plates 743 
were read with a microplate reader (BioTek Synergy 2, BioTek, Winooski, VA). In these CTG assays, 744 
NK cytotoxicity against each cell line was calculated for each E:T ratio as follows: 745 



 

 

 746 Cytotoxicity(X) = 1 − X − average(NK	only)average(controls)  

Two-sided Mann-Whitney tests were applied to compare the NK cytotoxicity between NK- sensitive vs. 747 
-resistant lines of the PRISM study for each E:T ratio; or between CRISPR knockout of a given gene of 748 
interest vs. control knockout. The statistical significance of these comparisons was also confirmed with 749 
two-way analyses of variance and Sidak post-hoc tests. 750 
 751 
NK cell cytotoxicity against tumor cells was also assessed by flow cytometry assays in different 752 
configurations. For these assays, tumour cells were typically plated at a concentration of 2x105 753 
cells/well in 6-well plates overnight, washed with fresh media and then treated with primary NK cells 754 
(that had been labeled with eFluor 450 per manufacturer's instruction) for 6 hours. Cells in suspension 755 
and (after their trypsinization) adherent cells were collected from each well, incubated for 30 min at 756 
37oC for recovery and then stained using the LIVE/DEAD Fixable Green Dead Cell Stain Kit (1:1000) 757 
for 30 min on ice, followed by 15 min incubation with 4% formalin on ice. Cytotoxicity was calculated as 758 
a ratio (1 – [percent of live cells in a given E:T ratio / percent of live tumor cells in control cultures 759 
without NK cells]) after gating on cells negative for both eFluor 450 and green fluorescence which 760 
represent the live tumour cell population.  761 
For cocultures of NK cells (labeled with eFluor 450) with HT29 tumour cells (which exhibit 762 
heterogeneous expression of B7-H6) and the monitoring of B7-H6 surface expression on the residual 763 
live tumour cells (Fig. 4e), cells were stained with both LIVE/DEAD Fixable Green Dead Cell Stain 764 
(1:1000) and anti-B7-H6 antibody (APC conjugated, 1:10) for 30 min on ice and surface B7-H6 765 
expression was assessed after gating on the live tumour cell population (negative for both eFluor 450 766 
and green fluorescence).  767 
For NK cell cocultures of the ovarian carcinoma clones which were expressing tdTomato (see 768 
Supplemental Information), cytotoxicity was assessed by LIVE/DEAD Fixable Green Dead Cell Stain 769 
after gating on the live tdTomato-labeled tumour cells. These cocultures were performed with NK cells 770 
derived from three different donors. In NK cell cytotoxicity assays against SW620 cells with vs. without 771 
pretreatment with panobinostat, tumor cells were separated in 2 groups and stained with either CFSE 772 
or eFluor 450 per manufacturer’s instructions. Each of these differentially labeled tumor cell populations 773 
was plated in 6-well plates (6x105 cells/well) and were then treated for 12 hours with either DMSO or 774 
the broad spectrum HDAC inhibitor panobinostat (12.5nM). After washout, fresh drug-free media were 775 
added and in vitro-expanded primary donor-derived NK cells were added for 6 hours at different E:T 776 
ratios. Two washes with PBS, to remove NK cells and dead cells, and trypsinization for tumour cell 777 
detachment were performed. The DMSO- or panobinostat-pretreated tumour cell samples (which had 778 
been labeled with different fluorophores) and exposed to NK cells at the same E:T ratio were combined 779 



 

 

and fixed with 4% formalin for 15 minutes on ice. Relative cytotoxicity for panobinostat- vs. DMSO-780 
pretreated cells was assessed by flow cytometry and calculated for each E:T ratio vs. control cultures 781 
without NK cells as a ratio, i.e. (1 – [percent of CFSE-positive cells in a given E:T ratio / percent of 782 
CFSE-positive cells in control cultures without NK cells]) or conversely (1 – [percent of eFluor450-783 
positive cells in a given E:T ratio / percent of eFluor450-positive cells in control cultures without NK 784 
cells). Flow cytometric analyses were performed on a BD LSRFortessa™ cell analyzer (BD 785 
Biosciences, Inc). 786 
 787 
Mesenchymal-like transcriptional signature 788 
Principal component analyses of proteomic and transcriptional profiles were used to identify two main 789 
lineage clusters of cell lines exhibiting epithelial-like vs. mesenchymal-like characteristics. A 790 
transcriptional score of mesenchymal-like state was calculated based on the average normalized 791 
expression of the top 50 genes that were over-expressed in the mesenchymal-like cluster compared 792 
with the epithelial-like cluster (Fig. 3c in manuscript). The terms “epithelial-like” vs. “mesenchymal-like” 793 
refer in this study to the constitutive state of the respective cell lines under conventional culture 794 
conditions, in the absence of any stimuli (e.g., cytokines, growth factors, genetic/epigenetic 795 
perturbations) that might cause epithelial-to-mesenchymal transition (EMT) or its reverse transition 796 
(MET). Additional future research is warranted to examine if either of these transitions (EMT or MET) 797 
can also be associated with significant changes in the extent of NK cell sensitivity of a genotypically 798 
diverse spectrum of cell lines. 799 
 800 
In vivo experiments 801 
Female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice (Jackson Laboratory) were housed and fed with 802 
autoclaved food and water at the Dana-Farber Cancer Institute (DFCI) Animal Research Facility (ARF). 803 
Animal studies were performed according to a protocol approved by the Dana-Farber Cancer Institute 804 
Animal Care and Use Committee, mice were maintained on a 12-h/12-h light/dark cycle under ambient 805 
temperature and humidity. Mice aged 6 weeks were divided into a control group and a NK cell-treated 806 
group. In this experiment, we applied the Winn assay43-47, to co-inject subcutaneously tumour and NK 807 
cells, and test the effect of NK cells in the tumour microenvironment. Control mice (n=10) were injected 808 
subcutaneously with 2x106 SW620-Cas9-luc transfected with sgRNAs against B7-H6 (sgB7-H6) to the 809 
right flank and with 2x106 SW620-Cas9-luc transfected with sgOR10A2 (sgRNAs against OR10A2; 810 
olfactory receptor gene which is considered to have no impact on tumour cell response to immune 811 
effector cells) as control knockouts (sgCtrl) to the left flank. The NK cell-treated groups (n=10) were 812 
injected subcutaneously with a mix of 2x106 primary NK cells and 2x106 SW620-Cas9-luc transfected 813 
with sgRNAs against B7-H6 to the right flank and with a mix of 2x106 primary NK cells and 2x106 814 
SW620-Cas9-luc transfected with sgRNAs against OR10A2 as control knockouts to the left flank. The 815 



 

 

NK and tumours cells were mixed right before the injections. Bioluminescence measurements were 816 
taken weekly at the DFCI ARF. Two-way Mann-Whitney tests were applied between groups. Statistical 817 
significance of results for comparison of signal (log10) was also confirmed with one-way analysis of 818 
variance (e.g. Brown-Forsyth Welch test and Dunnet’s T3 post-hoc tests). Caliper measurements were 819 
taken at the end of the experiment before tumour collection (nonpalpable tumors were assigned tumor 820 
volume of 1 mm3 for data visualization, Fig. 4g). Two-way Mann-Whitney test was applied for 821 
comparison of tumor burden between groups. Statistical significance of results was also confirmed with 822 
one-way analysis of variance (e.g. Brown-Forsyth Welch test and Dunnet’s T3 post-hoc tests). 823 
 824 
PRISM-based surface protein level evaluation  825 
PRISM pools of cell lines were stained with antibody against HLA/A/B/C (Alexa-488 conjugated, 5μl/106 826 
cells) or against B7-H6 (PE conjugated, 10μl/106 cells) on ice for 40 or 90 minutes, respectively (4 827 
replicates per antibody; 107 cells/replicate). Each replicate was FACS-sorted based on negative, low, 828 
medium and high fluorescence levels using a BD FACSAria II Cell Sorter. For each antibody staining, 6 829 
replicates of 106 cells each were kept as unsorted controls. Following lysis (as described above), DNA 830 
material (containing the "DNA barcodes" of each respective cell line) from each FACS-sorted or 831 
unsorted sample was amplified and sequenced as described above for PRISM assays to determine the 832 
read counts of each "DNA barcode" and its corresponding cell line in each sample. Data were 833 
normalized according to the median of total read counts across samples and were log2 transformed. 834 
Cell lines with low representation in the unsorted controls were filtered out. Z-scores per cell line were 835 
calculated and results across samples were sorted by SPIN40. Surface protein scores were then 836 
calculated from the SPIN-sorted data using polynomial curve fitting (degree=3). In view of the dynamic 837 
range of the B7-H6 antibody staining, the upper two bins and the lower two bins were combined into 838 
‘high’ and ‘low’ surface expression, respectively. Analysis was performed on all lines with available 839 
protein scores for both B7-H6 and HLA-A/B/C (n=383). Pearson correlation coefficients (and respective 840 
p-values) between surface protein scores and transcript levels for various genes were calculated using 841 
the two-sided Matlab corr function. Association of surface protein scores with AUC values was 842 
evaluated by χ2 test. 843 
 844 
Gene Set Enrichment Analysis (GSEA)  845 
GSEA was performed using the pre-ranked option on the MSigDB collections KEGG, Biocarta, PID and 846 
additional three custom sets described at Supplementary Table 6. Further details are provided in 847 
Supplementary Note. 848 
 849 
 850 
Statistics and reproducibility 851 



 

 

For CRISPR screens, each replicate was performed as a separate experiment using different donor NK 852 
cells. For the cytotoxic assays, n refers to the number of replicates, and the number of distinct 853 
experiments is stated in the figure legends. For those NK cell cytotoxic assays with n≤4 replicates, p-854 
values were not calculated. Statistical tests were performed using two-sided Mann-Whitney test, unless 855 
stated otherwise. P-values for CRISPR were calculated by MAGECK, p-values for correlation were 856 
calculated by Matlab corr function. Adjusted P values (q-values) were calculated in the case of multiple 857 
testing using the Benjamini–Hochberg adjustment. 858 
 859 
Software 860 
Matlab R2013b   https://www.mathworks.com/products/matlab.html 861 
MaGECK 0.5.2  https://sourceforge.net/projects/mageck/ 862 
GSEA 2-2.2.3 pre-ranked http://software.broadinstitute.org/gsea/index.jsp 863 
PRISM 8 Graphpad   https://www.graphpad.com/scientific-software/prism/ 864 
R 3.5.3    https://rstudio.com/ 865 
FlowJo 10    https://www.flowjo.com/ 866 
cutadapt v1.9.1   http://journal.embnet.org/index.php/embnetjournal/article/view/200 867 
firehose_get    https://gdac.broadinstitute.org/ 868 
STARS 1.0@134828e https://portals.broadinstitute.org/gpp/public/analysis-tools/crispr-gene-869 

scoring 870 
BioRender    https://BioRender.com 871 
BD FASCDiva 8.0.1,  https://www.bdbiosciences.com/en-us/instruments/research-872 

instruments/research-software/flow-cytometry-acquisition/facsdiva-873 
software 874 

Data Availability Statement 875 
TCGA data were acquired from the Broad Firehose web site, version 2016_07_15. Readcounts from 876 
the CRISPR and PRISM screens are available in Supplemental Table 4. Raw data can be available 877 
upon request. Molecular profiling data of tumor cells treated with broad spectrum HDAC inhibitors were 878 
accessed from Gene Expression Omnibus (GEO; GSE108191, GSE96649, GSE101708 and 879 
GSE37376). RNAseq data of tumors from patients treated with ICI were accessed from GEO: 880 
GSE115978 (Jerby-Arnon et al.25), GSE91061 (Riaz et al.26), GSE78220 (Hugo et al.24). The Van-Allen 881 
dataset was acquired from dbGaP (accession phs000452.v2.p128).  882 
 883 



 

 

Code Availability Statement 884 
The study did not develop new software of custom code, but applied in sequence different previously 885 
available codes for which details are provided in the Online Methods and Supplemental Information. All 886 
code used in this study can be available upon request. 887 
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