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Abstract: Methods for wind farm power optimization through the use of wake steering often rely
on engineering wake models due to the computational complexity associated with resolving wind
farm dynamics numerically. Within the transient, turbulent atmospheric boundary layer, closed-
loop control is required to dynamically adjust to evolving wind conditions, wherein the optimal
wake model parameters are estimated as a function of time in a hybrid physics- and data-driven
approach using supervisory control and data acquisition (SCADA) data. Analytic wake models
rely on wake velocity deficit superposition methods to generalize the individual wake deficit to
collective wind farm flow. In this study, the impact of the wake model superposition methodologies
on closed-loop control are tested in large eddy simulations of the conventionally neutral atmospheric
boundary layer with full Coriolis effects. A model for the non-vanishing lateral velocity trailing
a yaw misaligned turbine, termed secondary steering, is also presented, validated, and tested in the
closed-loop control framework. Modified linear and momentum conserving wake superposition
methodologies increase the power production in closed-loop wake steering control statistically
significantly more than linear superposition. While the secondary steering model increases the
power production and reduces the predictive error associated with the wake model, the impact is not
statistically significant. Modified linear and momentum conserving superposition using the proposed
secondary steering model increase a six turbine array power production, compared to baseline control,
in large eddy simulations by 7.5% and 7.7%, respectively, with wake model predictive mean absolute
errors of 0.03 P1 and 0.04 P1, respectively, where P1 is the baseline power production of the leading
turbine in the array. Ensemble Kalman filter parameter estimation significantly reduces the wake
model predictive error for all wake deficit superposition and secondary steering cases compared to
predefined model parameters.

Keywords: wind farm; wake modeling; data assimilation; wake steering

1. Introduction

The mitigation of aerodynamic interactions between wind turbines operating in wind
farm configurations remains an outstanding challenge in order to decrease the cost of
electricity associated with wind power production. Aerodynamic interactions, or wake
losses, among wind turbines can reduce wind farm annual energy production on the order
of 10% [1] and may be even more substantial for the power produced during certain wind
conditions [2]. While wake losses may be partially mitigated through wind farm layout op-
timization [3], active wake control has demonstrated potential to increase operational wind
farm power production [4] and may modify the optimal layout result [5]. While there are
several promising active wake control methodologies (see Kheirabadi and Nagamune [6]
for a quantitative review), the present study focuses on wake steering, the intentional
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yaw misalignment of certain wind turbines within a wind farm configuration in order to
laterally deflection wake regions [7].

As a result of the computational complexity of computational fluid dynamics (CFD)
such as large eddy simulation (LES), which limits the potential to use real-time control
based on the dynamics of the wind farm and atmospheric boundary layer, the initial ap-
proach of wake steering operation has been open-loop control. In open-loop operation,
a computationally efficient engineering model is used to tabulate the model-optimal yaw
misalignment angles in a lookup table as a function of the wind conditions [8]. While
open-loop control has demonstrated potential to increase power production for certain
wind conditions in utility-scale field experiments [2,8,9], its formulation necessarily embeds
an assumption of stationary wind farm statistics, which can be accurately and sufficiently
described as a function of wind direction, wind speed, and turbulence intensity in a lookup
table. Further, wind condition discretization may lead to suboptimal performance com-
pared to continuous optimization [10]. Within this open-loop formulation, significant work
has been performed to improve the robustness of the model-optimal yaw misalignment
angle set-points in the lookup table by considering wind direction [11] and yaw misalign-
ment variability [12,13]. However, even robust set-point optimization may not account for
variations in wind farm behavior as a function of time, such as seasonal, climate, or tur-
bine operation variations, such as downtime, curtailment, or degradation [14]. Further,
the lookup table may not consider all independent parameters that govern wind farm op-
eration and performance, such as thermal stability [15], turbulence length scales [16], wind
speed and direction shear [17,18], capping inversion height and strength [19], and other
flow physics features.

As a result of these wake model-based open-loop limitations, recent studies have fo-
cused on data-driven yaw optimization [20], the dynamic application of lookup tables [21],
or wake model-based closed-loop control [10,22]. The present study focuses on the wake
model-based closed-loop control methodology developed by Howland et al. [10], where
a physics-based engineering wake model was used in tandem with a data-driven opti-
mal wake model parameter estimation approach [23] to improve the wake model power
production estimate, which uses parameterized flow physics, given that the wake model
parameters depend on the boundary layer and wind farm properties [24].

The development of accurate analytic models to represent wind farm flow physics
has received significant attention due to the computational complexity of CFD (see,
e.g., Archer et al., (2018) for a review [25]). Analytic wake deficit models are typically
derived to represent the velocity deficit trailing an individual wind turbine generator with
various superposition methodologies used to represent collective wind farm behavior,
including linear [26], sum-of-squares [27], and modified linear superposition [28]. Linear
superposition [26] is based on an analogy between scalars in the atmosphere and turbine
wakes, and sum-of-squares [27] is based on an assumption of energy conservation, which
may not hold in practice due to turbulent dissipation [29]. Modified linear superposi-
tion [28] yields good agreement with experimental data, but does not have a theoretical
justification. Recently, Zong and Porté-Agel (2020) [29] proposed a wake superposition
methodology that conserves momentum assuming spatially uniform, steady inflow and
neglecting turbulent transport. The method requires an iterative, nonlinear computation
of wake convection velocities and will hereafter be referred to as convective superposi-
tion. In the limit of equal convection velocities among the wakes within a wind farm,
the convective superposition methodology reduces to modified linear superposition. In
this paper, we investigate the influence of the wake superposition methodology in the
context of closed-loop wake steering control. While a particular closed-loop framework is
selected, the results are expected to apply to other wake model-based power estimation,
active wake control, or layout optimization applications.

Wind turbines operating in yaw misalignment generate a large-scale counter-rotating
vortex pair (CVP), which deflects and deforms the wake as it is convected downwind [30–32],
leading to the curled wake shape [31]. The CVP has been shown to persist for multiple
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rows of turbines downwind of a yaw misaligned turbine [33], significantly modifying
the distribution of energy spatially, the turbulent mixing and associated wake recovery,
and importantly, the magnitude of lateral velocity in the wind farm [31]. The non-trivial
lateral velocity trailing a yawed turbine will induce wake deflection downwind of a yaw
aligned turbine operating in the yawed turbine’s wake; this effect is termed secondary
steering [33]. In this study, we propose a simple, two-dimensional secondary steering
model and analyze its influence in the context of closed-loop control.

The remainder of this paper is organized as follows. In Section 2, the wake velocity
deficit and superposition models are introduced. The two-dimensional secondary steering
model is proposed in Section 2.3. The closed-loop wake steering control algorithm is
discussed in Section 3. Two wake steering case studies are provided in Section 4. First,
an artificial wake steering case is tested to highlight the influence of the superposition and
secondary steering methods (Section 4.1). Second, closed-loop wake steering control cases
are run in large eddy simulations of a six turbine array operating in the conventionally
neutral atmospheric boundary layer with full Coriolis effects (Section 4.2). Conclusions are
provided in Section 5.

2. Wake Model Velocity Deficit Superposition Methodology

In this section, the velocity deficit and superposition models are described. In Section 2.1,
the individual wind turbine wake velocity deficit is introduced, and the effective, area-
averaged velocity for a two-turbine wake interaction with an arbitrary layout is given.
In Section 2.2, the wake superposition methodologies are introduced, and their extension
to the effective velocity for an arbitrary wind farm layout is derived. A simple two-
dimensional secondary steering model is proposed and validated in Section 2.3.

2.1. Wake Velocity Deficit Model

The wind turbine wakes are modeled as two-dimensional Gaussian velocity deficits [2,34,35].
More details on the wake velocity deficit model were provided by [2,35], but are described
here for completeness. The velocity deficit associated with an upwind turbine i is modeled as:

dui(x, y) = δui(x)
D2

8σ2
0,i

exp

(
− (y− yc,i(x))2

2σ2
0,id

2
w,i(x)

)
, (1)

where the turbine diameter is D, the wake spreading coefficient is kw, and the propor-
tionality constant of the presumed Gaussian wake is σ0. The streamwise and spanwise
directions are x and y, respectively. The normalized wake diameter is dw, and yc,i is the
lateral centroid of the wake of turbine i. The streamwise velocity deficit associated with
turbine i is:

δui(x) =
δu0,i

d2
w,i(x)

1
2

[
1 + erf

(
x√

2D/2

)]
, (2)

with δu0,i = 2aiu0,i, and the effective (rotor area averaged) velocity perceived by turbine i is

u0,i. The axial induction factor ai = 1/2
(

1−
√

1− CT,i cos2(γi)
)

. If there are no turbines
upwind of i, the incident velocity to turbine i is u0,i = u∞. The coefficient of thrust is
modeled as CT(γ) = CT(γ = 0) cos2(γ), which is accurate for actuator disk model wind
turbines in uniform or weakly sheared or skewed inflow, although more precise models
could be incorporated in future work [18,36]. The lateral centroid of the wake is computed
by integrating the spanwise velocity perturbation associated with the yaw misaligned
turbine i:

yc,i(x) =
∫ x

x0,i

−δvi(x′)
u∞

dx′, (3)

where δv0,i =
1
4 CT,iu∞ cos2(γi) sin(γi) [35], and δvi(x) is defined similarly to δui(x).
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The power production is modeled as P̂j =
1
2 ρACpu3

e,j, where Cp is the coefficient of
power, ρ is the density, A is the rotor area, and ue,j is the rotor area-averaged effective
velocity given by:

ue,j =
1
A

∫
A

u(x, y′)dy′ =
1
A

∫
A
[u0,i − dui(x, y)]dy′ = u0,i − ∆ui,j. (4)

The effective velocity deficit at downwind turbine j due to the presumed Gaussian wake
associated with a single upwind turbine i is computed by combining Equations (1) and (4):

∆ui,j(x) =
√

2πδui(x)dw,i(x)D
16σ0,i

[
erf
(

yT+D/2−yc,i(x)√
2σ0,idw,i(x)

)
− erf

(
yT−D/2−yc,i(x)√

2σ0,idw,i(x)

)]
, (5)

where yT is the lateral turbine centroid of turbine j. The effective velocity of turbine j is
given by ue,j = u0,i − ∆ui,j.

The coefficient of power Cp is modeled as Cp(γ) = Cp(γ = 0) cosPp(γ) [2,37,38],
which is representative of actuator disk model turbines with Pp ≈ 3. The control-oriented
Cp(γ) model developed by Howland et al., (2020) [18], which accounts for ABL shear, veer,
and wind turbine control systems, should be used in future work with the actuator-line [39]
or actuator-surface model [40] wind turbine simulations.

2.2. Wake Deficit Superposition Methods

In the wind farm environment, wake superposition methodologies are used to general-
ize the individual wind turbine wake model described in Section 2.1 to an arbitrary layout
and number of wind turbines. Lissaman (1979) [26] proposed linear wake superposition:

uj = u∞ −
N f

∑
i
(u∞ − uw,i), (6)

where N f is the number of turbines in front of the streamwise position x, u(x, y) is the
streamwise velocity, u∞ is the freestream velocity incident into the wind farm, and uw,i is
the wake velocity associated with turbine i. While Howland et al., (2019) [2] found that the
influence of the wake superposition methodology between linear wake superposition [26]
and sum-of-squares superposition [27] was less significant to the predictive capabilities
of the open-loop wake model than the influence of the wake model parameters, in this
study, we investigate the influence of recently developed wake superposition methodolo-
gies on closed-loop wake steering control. Niayifar and Porté-Agel (2016) [28] proposed
a modification to the linear wake superposition:

uj = u∞ −
N f

∑
i
(u0,i − uw,i), (7)

in which the incident velocity in Equation (2) is modified to u0,i, the velocity incident to
turbine i. The effective velocity is computed by combining Equations (5) and (7):

ue,j = u∞ −
N f

∑
i

∆ui,j. (8)

The linear wake superposition given by Equation (6) can be expressed in the same
form as Equation (8) with δu0 modified in Equation (2).

Recently, Zong and Porté-Agel (2020) [29] proposed a wake superposition method,
which conserves momentum assuming spatially uniform inflow and negligible turbu-
lent transport,

uj = u∞ −
N f

∑
i

uc
i,j

Uc
j
(u0,i − uw,i), (9)
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where uc
i,j is the mean wake convection velocity associated with the wake of turbine i

at turbine j and Uc is the mean convection velocity for the combined wake at turbine j.
The location of the turbines in the x coordinate direction is given by X. The convection
velocities are defined as:

uc
i,j =

∫
y uw,i(y′)dui,j(y′)dy′∫

y dui,j(y′)dy′
, (10)

where dui,j is the velocity deficit due to turbine i as a function of y at the x position of
turbine j (Equation (1)), dui,j(y) = dui(x = Xj, y), and:

Uc
j =

∫
y uw(y′)du(y′)dy′∫

y du(y′)dy′
, (11)

where uw and du are the total wake velocity and total velocity deficits at the x position of
turbine j (x = Xj), respectively. The combined wake mean convection velocity is calculated
using an iterative procedure for a given set of model parameters kw and σ0. Equation (9) is
combined with Equation (5) to produce the effective velocity:

ue,j = u∞ −
N f

∑
i

uc
i,j

Uc
j

∆ui,j. (12)

2.3. Two-Dimensional Secondary Steering Model

Yaw misaligned wind turbines induce a lateral velocity (δv) and a large-scale counter-
rotating vortex pair (CVP) at the rotor extents in z (see, e.g., [31]). While the laterally
induced momentum diffuses as a function of the downwind distance x, the lateral velocity
may be δv 6= 0 at the location of the downwind turbines. Further, the CVP persists
throughout the wake region as a function of x [31,41]. Fleming et al., (2018) [33] used LES
to show that the CVP may persist for multiple rows of turbines downwind. As a result,
the wake generated by a yaw aligned turbine operating in the wake of a yaw misaligned
turbine will be deflected in the lateral direction as a function of x; this effect is termed
secondary steering [33]. The development of a three-dimensional secondary steering
model is on-going [42,43]; in this study, we develop a simple, analytical, two-dimensional
secondary steering model to capture the effects of the non-vanishing δv(x).

The transverse velocity is superposed using convective superposition [29] along the
wake centerline to obtain the transverse velocity at the rotor of turbine j:

vr
j = δv0,j +

N f

∑
i

uc
i,j

Uc
j

∆vi,j, (13)

where δvi is the transverse velocity deficit along turbine i’s wake centerline. The initial
transverse velocity disturbance of turbine j according to γj is δv0,j. Equation (13) is included
in the iterative procedure for the convective velocities (Section 2.2). Equation (13) can also
be formulated using other superposition methodologies.

The initial transverse velocity disturbance is [35]:

δv0,j =
1
4

CT,ju0,i cos2(γj) sin(γj), (14)

and the wake centerline transverse velocity is:

δvi(x) =
vr

i
d2

w,i(x)
1
2

[
1 + erf

(
x√

2D/2

)]
, (15)

while the spanwise velocity is distributed as a presumed Gaussian function as with du,
Equation (1). The spanwise velocity distribution trailing a yaw misaligned wind turbine
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exhibits asymmetries, which result in non-Gaussian profiles [31], and future work should
investigate the two-dimensional lateral velocity profile. The rotor averaged lateral velocity
deficit trailing turbine i at turbine j is:

∆vi,j(x) =
√

2πδvi(x)dw,i(x)D
16σ0,i

[
erf
(

yT+D/2−yc,i(x)√
2σ0,idw,i(x)

)
− erf

(
yT−D/2−yc,i(x)√

2σ0,idw,i(x)

)]
. (16)

For simplicity, the same proportionality constant for the presumed Gaussian wake σ0
is used for the streamwise and lateral velocities, although future work could investigate this
model selection. The two-dimensional secondary steering model proposed here does not
introduce additional model parameters compared to the standard wake model presented
in Section 2.2 with convective superposition.

The secondary steering methodology is compared to the wind tunnel experiments
of Bastankhah and Porté-Agel (2019) [36] in Figure 1. Three turbines are considered
with the leading turbine yaw misaligned at 30◦, and the remaining turbines are yaw
aligned. Further experimental configuration details can be found in Bastankhah and
Porté-Agel (2019) [36]. The wake model parameters for Turbines 1 and 2 are set at kw =
[0.08 ± 0.04, 0.1 ± 0.04] and σ0 = [0.25, 0.35]. Since the wake centroid depends on the
wake model parameters, which are unknown for the experimental case, uncertainty in the
wake model parameters is introduced into the selected values of kw as ±0.04. Two model
wake center tracking methodologies are shown. The wake centroids of the individual
wind turbine wakes are shown, as well as the wake centroid for the collective wake with
convective superposition (see the wake superposition discussion in Section 2.2). The wake
centroids for the collective wake from [36] are shown for comparison. While the accuracy
of the model agreement with the experimental results of [36] depends on the wake model
parameters, the reasonable parameters selected demonstrate the ability for the simple
two-dimensional model proposed here to capture the trends of the secondary steering
effect. The wake model parameters have a weak effect on the wake deflection associated
with the leading wind turbine and a more significant influence on the collective wake
centroid downwind of the second wind turbine.

Figure 1. Secondary steering model validation case with three wind turbines. The leading turbine
is yaw misaligned by 30◦, and the two downwind turbines are aligned. The red circles are wake
centroids from [36]. The solid white lines are the wake centroids for the individual wakes of Turbines
1 and 2. The solid blue line is the collective wake centroid from the wake model with the shaded error
region representing wake centroid uncertainty due to uncertainty in the wake model parameters.
The contours are of the streamwise velocity from the wake model with convective superposition [29].
The dashed white line is y/D = 0.

3. Closed-Loop Wake Steering Control

The effect of the wake superposition methodology and secondary steering model are
tested in closed-loop control. The closed-loop wake steering controller selected in this study
was developed by Howland et al., (2020) [10], and a schematic of the framework is shown
in Figure 2. The wind farm power production data P(t) (supervisory control and data
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acquisition (SCADA) data) and wind turbine measured wind direction α(t) are provided
to the estimation algorithm. Collectively, the wake model can be written concisely as:

P̂ = G(X, Y, u∞, α, ψ), (17)

a nonlinear function G, which predicts the wind farm power production P̂ as a function of
the wind farm layout in X and Y, the incident velocity u∞, and wind direction α. The un-
known wake model parameters are represented by ψ = [kw,1, . . . , kw,Nt−1, σ0,1, . . . , σ0,Nt−1],
where Nt is the number of wind turbines in the farm. In the first step of the estimation
algorithm, the convection velocities are computed, if required for the wake superposi-
tion methodology (Equations (10) and (11)), for a given set of wake model parameters ψ.
The optimal wake model parameters are then estimated by the ensemble Kalman filter
(EnKF) [10,44]. The EnKF can be interpreted as a gradient-free optimizer to perform the
inverse problem model parameter estimation for ψ given wake model G and data P [45].
The model parameters and convection velocities are provided to the controller in which the
wake model G and the yaw optimizer (Section 3.1) are used to calculate the model-optimal
yaw misalignment angles for each wind turbine in the farm γ(t). The objective function to
be optimized in this study is the sum of the power productions over the turbines in the
farm. In the present study, since the focus is on wake model physics, yaw actuation duty is
not considered, although it has been shown to have a significant impact on the resulting
wind farm power production under wake steering control and an influence on the optimal
yaw misalignment update frequency [21].

Wind farm
γ(t)

kw(t), σ0(t) P (t), α(t)

Wake model G

Yaw optimizer

Wake model G

uci,j, U
C
j

EnKF

1

2uci,j(t) U
c
j (t)

Estimation

Controller

Figure 2. Schematic of the model-based closed-loop wake steering controller. The wind farm
power production P(t) and wind direction α(t) are provided to the estimation routine, which
leverages the nonlinear wake model G, and the ensemble Kalman filter (EnKF) to estimate the wake
model parameters kw(t) and σ0(t). The convection velocities uc

i,j(t) and Uc
j (t) are computed by

Equations (10) and (11), respectively. The parameters and convection velocities are provided to the
controller, which uses analytic gradients to optimize the yaw misalignment angles γ(t), which are
provided to the wind farm.

3.1. Analytic Gradient-Based Yaw Set-Point Optimization

In order to efficiently optimize the yaw misalignment set-points for each wind turbine
in the array, analytic gradient-based optimization is used [2]. These gradients are used to
update the yaw misalignment set-points according to common gradient update algorithms
(e.g., Adam optimization [46]). Analytic gradients are derived for the modified wake
superposition methodologies discussed in Section 2.

The total gradient of the power with respect to the yaw angle of a given turbine i for
linear wake superposition [26] is given as [2]:

∂P̂i
∂γi

=
∂P̂i

∂CP,i

∂CP,i

∂γi
+

∂P̂i
∂CP,i

∂CP,i

∂ap,i

∂ap,i

∂CT,i

∂CT,i

∂γi
. (18)
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The gradient of the power of a downstream turbine j with respect to the yawing
decision of an upstream turbine i is:

∂P̂j

∂γi
=

∂P̂j

∂ue,j

∂ue,j

∂yc,i

∂yc,i

∂γi
+

∂P̂j

∂ue,j

∂ue,j

∂ai

∂ai
∂γi

. (19)

With the modified linear wake superposition methodologies in Equations (7) and (12),
additional terms arise for the gradient of the power of downstream turbines with respect
to the yawing decisions of upwind turbines:

∂P̂j

∂γk
=

∂P̂j

∂ue,j

∂ue,j

∂ue,i

∂ue,i

∂yc,k

∂yc,k

∂γk
+

∂P̂j

∂ue,j

∂ue,j

∂ue,i

∂ue,i

∂ak

∂ak
∂γk

, (20)

where turbine k is upwind of turbine i, which is upwind of turbine j. With the secondary
steering methodologies in Equation (13), additional terms arise for the gradient of the
power of downstream turbines with respect to the yawing decisions of upwind turbines:

∂P̂j

∂γk
=

∂P̂j

∂ue,j

∂ue,j

∂yc,i

∂yc,i

∂γk
(21)

where turbine k is upwind of turbine i, which is upwind of turbine j.
The yaw misalignment angles are updated iteratively, until convergence, using the

update step:

γ(i+1) = γ(i) + α
mt√

vt
, (22)

where m(i) = β1m(i−1) + (1− β1)
∂P̂
∂γ and v(i) = β2v(i−1) + (1− β2)(

∂P̂
∂γ )

2. The hyperparam-

eters β1 = 0.9 and β2 = 0.999 are set to typical values [46]. The superscript (i) denotes the
step in the iterative optimization process.

The analytic gradients derived here are checked using numerical gradients for a model
problem with three aligned turbines (see the SI Appendix in [2]). The numerical gradients
are computed using second-order central finite differencing and are compared to the
analytic gradients for the leading turbine and the last turbine downwind in Figure 3 for
convective wake superposition (Equation (12)) with and without a secondary steering
model. The comparison reveals close agreement between the numerical and analytic
gradients for a variety of yaw misalignment angles implemented, validating the analytic
derivation and algorithmic implementation of the gradient calculation.
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-40

-20

0

20

40(a) (b)

-40

-20

0

20

40(c) (d)

Figure 3. Gradient checking for the furthest (a) downwind and (b) upwind turbines in a three turbine array for convective
superposition (Equation (12)) for various yaw misalignment angles indicated by the colors. Gradient checking for the
furthest (c) downwind and (d) upwind turbines in a three turbine array for convective superposition with secondary
steering (Equation (13)).

4. Wake Steering Case Studies

In this section, the various wake model superposition methodologies are compared in
their performance within closed-loop wake steering control. The secondary steering model
proposed in Section 2.3 is also tested. In order to provide insights into the differences
between the various wake model architectures, in Section 4.1, a six wind turbine test case is
defined. Artificial wind farm power production data are defined for the test case, and the
wake model parameters are estimated given the power data for the various superposition
methodologies; the resulting optimal yaw misalignment angles and power production
estimates are given. In Section 4.2, the wake models are tested in closed-loop control for
a six wind turbine conventionally neutral atmospheric boundary layer (ABL) LES case.

4.1. Six Turbine Test Case

Within the closed-loop wake steering algorithm described in Section 3, the model-
optimal yaw misalignment angles, for fixed wind conditions, turbine details, and wake
model physics, depend only on the wake model parameters. In turn, the wake model
parameters are calculated based on the input wind farm power production data (see Figure
2). In order to elucidate the effects of the wake model wake deficit superposition method
on closed-loop wake steering control, a six turbine test problem is defined. Provided fixed
wind conditions, the turbine details and layout, and fixed wind farm power production
data, differences in the wake model parameters and associated model-optimal yaw mis-
alignment angles will be caused only by wake model physics modifications. Artificial data
are designed for the test problem, and the results are revisited for LES of wind turbines
operating in the conventionally neutral ABL in Section 4.2.

Six wind turbines are considered with a streamwise spacing of Sx = 8D. The turbines
are aligned in the lateral direction except for a small offset of ε = 10−6D applied to the
lateral position of each successive turbine, such that the lateral positions are Yi = (i− 1) · ε,
for integer turbine labels i = 1–6. The small offset ε is added to introduce asymmetry into
the test problem such that γ > 0◦ leads to improved performance compared to γ < 0◦.
While yaw misalignment has an asymmetric influence on the power production of wind
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turbine arrays due to wake rotation [38], Coriolis effects [47] and yaw misaligned turbine
power production [18], the modeling of these effects is on-going and is not incorporated in
the present wake model considered. Therefore, with direct turbine alignment, positive or
negative yaw misalignment would lead to exactly equal power productions, and the ε
offset reduces the possibility of two equal global maximum values. It is worth noting in
practice that the probability of wind turbines to be aligned (to machine precision) in a field
or LES application of wake steering is vanishingly small.

The artificial power production is shown in Figure 4a. A constant power production as
a function of wind turbine row is often seen in experimental measurements of aligned wind
turbine columns [36,48,49] as a result of convergence to a balance of turbulent mean kinetic
energy transport and wind turbine energy sinks. The power data are prescribed Gaussian
noise with zero mean and a standard deviation of 0.1 P1. The power production estimations
P̂ for the wake model with linear [26] and convective wake superposition [29] are shown
in Figure 4a. Through the use of the EnKF wake model parameter estimation (see Figure 2),
both linear and convective wake superposition are able to estimate the power production P
with a low mean absolute error (MAE); the MAE is 0.0073 P1 and 0.0105 P1 for the linear and
convective superposition methods, respectively. The resulting wake model parameters are
provided in Figure 4b. For both linear and convective wake superposition, the wake model
parameters kw and σ0 weakly increase as a function of downwind row number. In general,
increasing the ith turbine parameters kw,i or σ0,i decreases the magnitude of the individual
ith wind turbine wake. For both linear and convective wake superposition, the increasing
wake model parameters demonstrate that the individual wakes decrease their magnitude
in order to fix the turbine power production as a function of the row number (Figure 4a).
Secondary steering does not influence the wake model parameter estimation in this case
since all wind turbines in the baseline control strategy corresponding to the artificial data
are yaw aligned, and therefore, no lateral velocity is introduced into the wake model.

(a) (b) (c)

Figure 4. Artificial data wake steering optimization experiment for linear and convection superposition. (a) Baseline power
and model calibrations, (b) estimated model parameters, and (c) optimized yaw misalignment set-points.

With the wake model parameters (Figure 4b) estimated from the EnKF provided with
the power production shown in Figure 4a, yaw misalignment set-point optimization is
performed. The yaw misalignment set-point optimization leverages analytic gradients,
as discussed in Section 3.1. The optimization is run for linear wake superposition and
convective wake superposition. Additionally, for convective wake superposition, the opti-
mization is run separately with and without the secondary steering model. The resulting
model-optimal yaw misalignment angle set-points are shown in Figure 4c. Finally, the op-
timal yaw misalignment angles for the convective wake superposition with secondary
steering, but with no EnKF model parameter estimation are shown; the wake model pa-
rameters used are kw = 0.08 and σ0 = 0.25 for each wind turbine in the array for the case
without estimation.

The optimal yaw misalignment angles for linear γ∗l and convective γ∗c wake superpo-
sition are both qualitatively and quantitatively similar, with positive yaw misalignment
angles, which decrease as a function of the turbine row number. With secondary steering
incorporated, the yaw misalignment angle for the leading turbine is reduced, but the yaw
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misalignment for all other turbines is increased. For the case without estimation with
fixed wake model parameters, the yaw misalignment values are approximately constant
as a function of the turbine row. While the artificial data are not precisely representative
of a physical wake steering case, and therefore there is no true global optimal set of yaw
angles for reference, the differences arising between the various wake model architectures
highlight a few key points. While the specific optimal yaw misalignment angles depend
on the baseline power production and wind farm layout, there is a weak sensitivity of the
optimal yaw set-points to the wake model superposition. There is a strong sensitivity of the
optimal yaw set-points to the wake model parameters. With EnKF parameter estimation,
convective superposition, and secondary steering incorporated, the model-optimal yaw
set-points have a monotonic decrease as a function of the turbine row, which is similar
to the reported experimental optimal yaw angles for a six turbine case case [36] (the yaw
aligned baseline power production shown by [36] exhibited constant power production as
a function of turbine row after Row 2, as do the artificial data in this section). The results of
this case study suggest that the trend of decreasing optimal yaw misalignment magnitude
as a function of turbine row is not specific to the secondary steering effect, but is more
fundamental to the geometry and resulting power production associated with wind turbine
interactions in a multi-row array.

The wake modeled power productions P̂ for the various wake steering experiments
are shown in Figure 5. For reference, several additional results are shown. The power
production associated with linear and convection wake superposition for yaw aligned
operation γ = 0 are shown with P̂γ0 . Linear wake superposition predicts slightly smaller
wake losses for Turbine 2 and slightly larger wake losses for Turbines 3, 4, 5, and 6. The
optimal yaw misalignment angles for the linear superposition case are given by γ∗l . These
yaw angles, γ∗l , are used to generate power production estimates for P̂γ∗l

for both linear and
convection superposition. Again, the differences are very small, with linear superposition
predicting slightly larger power for Turbines 2 through 6. The convective superposition
with the associated convective superposition optimal yaw angles are shown with P̂γ∗c ,
and the convective superposition with secondary steering is shown with P̂γ∗s,c . The col-

lective baseline power production is ∑Nt
i P̂i,γ0 /P1,γ0 = 3.56. The collective optimal power

production predictions for the linear, convective, and convective with secondary steering
are ∑Nt

i P̂i,γ∗l
/P1,γ0 = 3.66, ∑Nt

i P̂i,γ∗s /P1,γ0 = 3.63, and ∑Nt
i P̂i,γ∗s,c /P1,γ0 = 3.64. Overall,

there are slight differences in the power production estimations P̂ between the various
wake model physics cases, in addition to the optimal yaw angle differences mentioned pre-
viously, although all cases estimate power increases over baseline operation. Linear wake
superposition estimates slightly more power increase due to wake steering than convec-
tive superposition. Secondary steering increases the magnitude of the estimate of power
production improvement with wake steering control.

Figure 5. Artificial data wake steering optimization experiment power production results. The mean
of the artificial baseline power production data is shown in red with the error bars representing
the prescribed standard deviation. The wake model parameters are calibrated to the artificial data,
and the resulting parameters are shown in Figure 4b. The model-based optimal yaw misalignment
angles for each case are shown in Figure 4c, and the resulting power production values are shown.
In the legend, convection superposition with secondary steering is abbreviated as Conv., sec.
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4.2. Conventionally Neutral ABL LES

In this section, the various wake model superposition methodologies are tested in
large eddy simulations of a turbine array operating in the conventionally neutral ABL.
The wind turbine array immersed in the LES ABL simulation is the surrogate for the wind
farm block in Figure 2. During the simulation, closed-loop control is initiated with the
control architecture described in Section 3. Within the wake model, a sub-component of
the closed-loop control architecture (see Figure 2), the wake model superposition method,
secondary steering model, and wake model parameter estimation methodologies are tested
and compared to the baseline aligned control. In Section 4.2.1, the LES methodology
and computational setup are introduced. The results and discussion are provided in
Section 4.2.2.

4.2.1. Large Eddy Simulation Setup

Large eddy simulations of six turbines operating in the conventionally neutral ABL
are performed using the open-source pseudo-spectral code PadéOps (https://github.com/
FPAL-Stanford-University/PadeOps). LES simulations were previously performed with
PadéOps to study planetary boundary layer turbulence [50], Coriolis effects [51], wind
farm control [10], and multi-rotor wind turbines [52]. The conventionally neutral ABL is
a representative planetary boundary layer wherein the background stratification has a zero
lapse rate until the capping inversion and a stable free atmosphere [19,53,54]. Full details
of the LES methodology were provided by [10], and relevant details are summarized here
for completeness.

The LES is forced according to a geostrophic balance in the free atmosphere [55],

∂PG

∂xi
= − 2

Ro
εijkΩjGk, (23)

where PG is the geostrophic pressure, G is the geostrophic wind vector, Ω is Earth’s
rotational vector, and Ro = Gs/ωL is the Rossby number, where Gs is the geostrophic
wind speed magnitude, ω is Earth’s angular velocity, and L is a relevant length scale.
The horizontal directions are x (i = 1) and y (i = 2), and the wall-normal direction
is z (i = 3). All simulations considered in this study prescribe a Froude number of
Fr = Gs/

√
gL = 0.14, where g is the gravitational acceleration, and a Rossby number

based on the turbine rotor diameter of RoD = 544. The computational domain x-axis is
aligned with the geostrophic wind speed vector such that G = [Gs, 0, 0]. All wind speeds
are nondimensionalized by Gs. Wind turbines are modeled using the actuator disk model
without rotation [56] and have diameters and hub heights of D = 126 and zh = 100 m,
respectively. The computational domain is 12× 6× 2.4 km with 480× 240× 192 grid points
in the x, y, and z directions, respectively. The simulation is executed with a concurrent
precursor methodology (see, e.g., [57,58]). The precursor simulation has the same domain
setup and grid spacing with no turbine models included. The precursor outflow is provided
to the primary domain as inflow conditions as a function of time to ensure realistic ABL
turbulent inflow with appropriate time and length scales, but without the wake of the
turbine array. The flow is initialized with perturbations in the potential temperature
field and is run until quasi-statistical stationarity is reached; the closed-loop controller is
then initiated (see [54] for a thorough discussion on ABL quasi-stationarity). Precursor
simulation details were provided in [54].

Earth’s rotational vector is projected into a non-inertial Earth-fixed frame of reference
such that Ω = [0, cos(φ), sin(φ)], where φ is the latitude. The traditional approximation
enforces the assumption that Ω2 = 0 [55]. Non-traditional effects, such that Ω2 6= 0,
affect Ekman layer stability [59], wind turbine wakes [51], and the interaction of wind
farms with the atmospheric boundary layer [54] and are therefore included in the present
simulations. As a result of Coriolis effects, the wind direction depends on the height z,
approximately following an Ekman spiral in the conventionally neutral ABL. The wind
direction at the wind turbine hub height of zh = 100 m varies due to turbulence and inertial

https://github.com/FPAL-Stanford-University/PadeOps
https://github.com/FPAL-Stanford-University/PadeOps
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oscillations, but is approximately 14–19◦, measured from the domain x-axis. Six model
wind turbines are included in a column with an alignment offset by 18◦ such that aero-
dynamic wake interactions persist between the turbines for the mean hub height inflow
direction (Figure 6).

ũ(zh)

Sx = 4.2D

Sy = 0.075D

Figure 6. Top view of the wind turbine array for the LES cases, where the black lines are the
turbine locations. The turbines are immersed in a representative conventionally neutral ABL flow.
The geostrophic wind direction is aligned with the computational domain x axis, and the wind
direction changes as a function of height z. The turbine layout is shown in coordinates (x̃, ỹ),
which have been rotated according to the mean wind direction at a hub height of zh = 100 m.
The streamwise and spanwise separation between the turbines are Sx = 4.2D and Sy = 0.075D,
respectively. The solid gray line is ỹ/D = 0 where (x̃, ỹ) = (0, 0) is the location of the leading turbine
in the rotated coordinate frame.

Upon quasi-statistical stationarity, the yaw control architecture is initialized. The mean
wind farm statistics of power production and wind direction are averaged over a prescribed
timescale T. The averaged LES model turbine power is normalized by P1,γ0 , the actuator
disk model power of the leading turbine given the existing primary LES flow field and
γ = 0. Future work may incorporate an additional adjacent reference turbine to calculate the
normalizing power, which may be more robust given axial induction variations as a function of
γ, but introduces uncertainty associated with wind field heterogeneity in finite time averages.
The averaged quantities are provided to the parameter estimation algorithm to estimate the
optimal model parameters over the previous time horizon of length T. The parameters are
then provided to the optimizer, which estimates the optimal yaw misalignment given the
wake model physics and wake model parameters corresponding to the averaged power
production and wind direction provided by the LES wind farm. Within the conventionally
neutral ABL, the mean states are approximately stationary except for inertial oscillations;
however, significant high-frequency variations persist as a function of time due to turbulence.
Therefore, the time step T in this study was selected to be 50 min (see the further discussion
by [10]), to converge the statistics within each control update; within the turbulent, transient
diurnal cycle ABL, the mean state of the wind conditions is constantly evolving, and a more
rapid yaw misalignment update frequency would be required [21].

Case NA uses a baseline yaw aligned controller wherein at each control update (after
time T), each wind turbine in the farm sets its nacelle position to equal its locally measured
incident wind direction, therefore enforcing zero yaw misalignment aside from turbulent
wind direction variations. The power production results of all cases are compared to Case
NA as a function of time. The initialization and processor topology are fixed between
the cases, and therefore, the differences that arise are only due to the differences in yaw
misalignment. Upon wake steering initialization, the controller gathers baseline (yaw
aligned) power production and wind direction data and averages over time T. For each
case, the resulting power production and wind direction averages at the first control update
step are identical to machine precision. The various wake steering controllers will then
calculate differing model-optimal yaw misalignment angle set-points γ∗s , and differences
in LES power production will be correspondingly measured for the second control update
step and beyond.
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Case NL uses linear wake superposition Equation (8), [26]. The EnKF wake model
parameter estimation is iterated for 2000 epochs to reduce the mean error associated
with the wake model fit to the wind farm power data (as in ensemble Kalman inversion
gradient-free optimization; seethe extensive discussion by [45]). Case NL1 also uses linear
wake superposition, but does not iterate the EnKF parameter estimation (one epoch). As
a result, the wake model power estimate P̂, which attempts to estimate P averaged over
the previous window of time T, will have a higher calibration error, but the wake model
parameters will be constrained more closely to their physics-based initialization prior belief
(see the extensive discussion by [10]). Cases NC and NC1 are similar to NL and NL1 except
convective wake superposition is used, Equation (12) [29]. Case NMS1 uses modified linear
wake superposition Equation (7) with the secondary steering model incorporated, while
Case NCS1 uses convective superposition and secondary steering. Finally, Cases NFCS1
and NFCS2 use convective superposition and secondary steering, but have fixed wake
model parameters as a function of time (no EnKF parameter estimation). Case NFCS1 uses
kw = 0.1 and σ0 = 0.25 for each turbine in the array, and Case NFCS2 uses kw = 0.1 and
σ0 = 0.35.

4.2.2. Large Eddy Simulation Results

The wake superposition and secondary steering methodologies are used in closed-
loop control (Section 3) within the LES environment described in Section 4.2.1 in a variety
of cases. Each case is run for 23 update time steps, each of length T, which is approximately
19 hours of physical wind farm operation in the conventionally neutral ABL. The results
of each case are summarized in Table 1. The time averaged wind turbine array power
production for each case is shown in Figure 7a. The averaged power for each case is
compared to Case NL1, the linear superposition case with one EnKF estimation epoch; cases
with statistically significantly more power than Case NL1, as tested by a one-sided two-
sample Kolmogorov–Smirnov test at a 5% significance level, are indicated in Figure 7a. The
mean absolute errors (MAE) of the wake model predictions for the power production given
the yaw misalignment set-point γ∗s are shown in Figure 7b. The wake model predictions
P̂t of time step t are compared to the LES power production Pt+1 results of t + 1. The
modified linear and convective wake superposition models underpredict the realized LES
power production under wake steering control for every time step, whereas the linear wake
superposition Cases NL and NL1 overpredict the power in 60% and 10% of the control
update steps, respectively. The time averaged power production and yaw misalignment as
a function of the turbine number in the array are shown in Figure 8a,b, respectively.

Table 1. Wake model superposition LES experiments. The cases are defined in Section 4.2.1. The
power production percent gains are provided with respect to Case NA. The array power production
sums are normalized by the leading turbine power production in yaw aligned control Pbaseline,1.
Cases NFCS1 and NFCS2 have fixed wake model parameters and do not execute EnKF parameter
estimation.

Case Steering Superposition Epochs ∑ P−∑ Paligned
∑ Paligned

(%) ∑ P ± STD(∑ P)

Wind turbine column alignment 18◦

NA - - - - 3.04± 0.11
NL Linear 2000 5.0% 3.18± 0.13

NL1 Linear 1 5.7% 3.20± 0.11
NC Convective 2000 6.6% 3.23± 0.11

NC1 Convective 1 7.2% 3.24± 0.10
NMS1 Mod., Sec. 1 7.5% 3.26± 0.11
NCS1 Conv., Sec. 1 7.7% 3.26± 0.12

NFCS1 Conv., Sec. 0 7.8% 3.26± 0.11
NFCS2 Conv., Sec. 0 6.4% 3.22± 0.13
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All cases under wake steering control produce significantly more power than baseline
yaw aligned control in this conventionally neutral LES environment. Cases with EnKF
epochs greater than one (NL and NC) have reduced performance compared to a single
parameter estimation step (NL1 and NC1). The wake steering strategy in linear wake super-
position is more sensitive to the wake model parameters than the convective superposition,
as shown in Figure 8b. The yaw misalignments for Cases NC and NC1 are similar, whereas
γ∗s for Cases NL and NL1 are significantly different. The inverse problem to compute the
optimal model parameters for the convective superposition is more complex as a result of
the iterative convective velocity calculation, leading to larger variations in the resulting
wake model parameters for linear superposition than for convective.

While increasing the number of EnKF epochs reduces the training MAE for all cases
(not shown for brevity), it increases the predictive MAE for linear superposition, but
reduces the predictive MAE for convective superposition. The power production training
power estimates P̂ compared to the LES power P for convective and modified linear
superposition are shown in Figure 9. Case NC, with a larger number of EnKF epochs, is
able to train to estimate P with low MAE. However, Case NC1, with only one EnKF epoch,
has significant training MAE compared to Case NC. Finally, Case NMS1, with only one
EnKF epoch, but modified linear superposition instead of convective superposition, has
low training MAE. Together, the results suggest that the nonlinear, iterative calculation
of the convective velocities, the only difference between the convective and modified
linear wake superposition methodologies, introduces complexity into the model parameter
estimation inverse problem and therefore generates larger training MAE.

As discussed by Howland et al., (2020) [10], the hyperparameters of the wake model
variances and parameter estimation epochs establish parameter constraints on kw and σ0.
With a larger number of parameter estimation epochs, the training error (fitting error to
the previous control update step power measurements) is reduced; however, this behavior
exhibits overfitting and potentially correcting for model bias. Instead, with the prescribed
wake model parameter variances and one estimation epoch, the wake model parameter
modifications are constrained by the prior belief of the parameters, therefore imposing
a minimum threshold of performance for the physics-based wake model (see also the
discussion by Schreiber et al., (2020) [60]). As such, all comparisons for the remainder of
this discussion will be made to cases with a single parameter estimation step.

(a) (b)

Figure 7. (a) Time averaged wind turbine array power production for the various wake steering cases. Error bars denote
one standard deviation as a function of the control update steps. Baseline yaw aligned control is given by Case NA and is
colored blue. Cases NL and NL1 are shown in purple. Statistical significance is characterized by a two-sample one-sided
Kolmogorov–Smirnov test at a 5% significance level. Cases in green produce statistically significantly more power than
Case NL1. Cases in red do not produce significantly more power than Case NL1. Green cases are not significantly different
from each other. (b) Time averaged predictive mean absolute error 1/Nt ∑Nt

i |Pi − P̂i|/P1 for each case.

In a wake steering application, the wake model parameters are unknown a priori, and
tabulated physics-based wake model parameters introduce significant model predictive
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bias, as shown in Figure 7b (see also [10]). Cases NFCS1 and NFCS2 prescribe two different
cases of fixed wake model parameters within the expected parameter range and utilize
convective wake superposition. Both cases prescribe kw = 0.1 for each turbine, and Case
NFCS1 prescribes σ0 = 0.25, while Case NFCS2 prescribes σ0 = 0.35. Reducing σ0 increases
the magnitude of the predicted wake losses for downwind turbines. As a result, the baseline
model predictions for yaw aligned operation will have significantly higher wake losses
in Case NFCS1, and the corresponding model-optimal yaw misalignment values in Case
NFCS1 are significantly larger than Case NFCS2 (see Figure 8b). The turbine array power
production results are compared to Case NL1. Case NFCS1 has statistically significantly
higher power production than Case NL1, while Case NFCS2 does not. The wake model
power production estimates P̂ for Cases NFCS1 and NFCS2 are compared to the LES
power production P in Figure 9a. The prescribed wake model parameters in Case NFCS1
generally overpredict the wake losses, while Case NFCS2 underpredicts the losses. Both
cases capture the qualitative wake power deficit profile shape with power production
decreasing significantly from Turbine 1 to 2 and then remaining approximately constant
thereafter. As a result of the wake model parameters, the wake steering approach in
Case NFCS1 is aggressive, with larger values of yaw misalignment, while Case NFCS2
is conservative. Case NFCS1 performs similarly to Case NCS1, which leverages EnKF,
while Case NFCS2 performs statistically significantly worse. These results suggest that
the EnKF model parameter estimation reduces predictive wake model error and may lead
to enhanced wake steering performance. Although some a priori wake model parameter
estimates may be sufficient to realize power production increases, as in Case NFCS1, these
potential increases come with significant uncertainty and predictive error (see Figure
7b). As a result, site- and time-specific wake model parameter estimation is suggested as
a mechanism to reduce the uncertainty associated with wake steering power production
increase forecasts.

(a)

(b)

Figure 8. Time averaged (a) power production and (b) yaw misalignment set-point as a function of the turbine number
for the various conventionally neutral LES cases. Error bars denote one standard deviation as a function of the control
update steps.
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The three wake deficit superposition methodologies are tested in closed-loop control
in LES. Both modified linear superposition (Case NMS1) and convective superposition
(Case NCS1) produce significantly more power than linear wake superposition (Case
NL1). However, Case NCS1 is not significantly better than Case NMS1. Modified linear
superposition (Case NMS1) has slightly larger averaged yaw set-points than convective
superposition (Case NCS1). The predictive MAE associated with NMS1 is less than Case
NCS1. The higher predictive MAE associated with NCS1 is likely related to the additional
complexity introduced into the inverse problem of parameter estimation (see Figure 9b).

(a) (b)

Figure 9. Comparison between LES power production P and wake model power estimation P̂ for (a) convective superposi-
tion without EnKF parameter estimation and (b) convective and modified linear wake superposition with EnKF parameter
estimation for baseline yaw aligned control. Error bars denote one standard deviation as a function time.

The secondary steering model proposed in Section 2.3 is also tested in LES between
Cases NC1 and NCS1, where the only architectural difference between the two simulations
is that the wake model in Case NCS1 includes secondary steering effects. The inclusion of
the secondary steering model increases the resulting power production and reduces the
predictive MAE, although the effect on the power production is not statistically significant
in this case. Interestingly, in this partial wake scenario (Figure 6), the inclusion of secondary
steering results in an increase in the magnitude of the yaw misalignment set-points γ∗s ,
except for Turbine 5. Further, there is not a noticeable decrease in the magnitude of the yaw
misalignment angles as a function of the turbine row, again except for Turbine 5, which
occurs in the directly aligned wind turbine column case (see the discussion by King et al.,
(2020) [42]). Instead, in the present case with the prescribed yaw misalignments shown in
Figure 8b, the power production of the downwind turbines increases, especially for Turbine
6. This would potentially not occur for a larger wind farm scenario where deep array
effects may be significant [61]. Future work should investigate the statistical significance of
a fully three-dimensional secondary steering model.

5. Conclusions

This paper investigates the effects of wake velocity deficit superposition methodolo-
gies, wake model parameter estimation, and secondary steering models in the context of
closed-loop wake steering control. An analytic formulation of the lifting line model [2,35] is
derived for arbitrary wake velocity deficit superposition methodologies and the associated
analytic gradients are presented. A simple two-dimensional secondary steering model is
developed and validated against previously published experimental results given wake
model parameter uncertainty. The various wake model superposition methodologies are
tested in closed-loop control of a six wind turbine array embedded in a large eddy simula-
tion of a conventionally neutral atmospheric boundary layer with Coriolis effects included.
The main conclusions are:

1. Modified linear [28] and convective [29] superposition methodologies produce statis-
tically significantly higher power in the present case than linear superposition [26].
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2. Convective superposition [29] leads to the larger power gain over the baseline control
than modified linear superposition, although it was not significantly higher.

3. The nonlinear, iterative procedure required to compute the convective velocities in
the convective wake superposition methodology results in increased predictive error
due to additional complexity in the model parameter inverse problem, suggesting
that the optimal parameter estimation requires more investigation for convective
superposition.

4. The proposed secondary steering model increases the power production and reduces
predictive MAE, but does not have a statistically significant impact on the closed-loop
wake steering case presented.

A major outstanding issue within analytic wake models is model predictive bias.
While the ensemble Kalman filter parameter estimation significantly reduces the mean
absolute error associated with the wake model predictions, model bias remains due to the
nature of the simplified wake model. With the two-dimensional secondary steering model
presented in this study, the modified linear and convective wake superposition methods
underpredict the LES power given wake steering operation for all control update steps,
suggesting the influence of three-dimensional curled wake effects [31] and wind speed and
direction shear effects [62]. Future work should consider the novel hybrid RANS/analytic
wake model developed by Martínez-Tossas et al., (2020) [43], which reduces the predictive
bias compared analytic wake models by capturing the three-dimensional curled wake
deformation [31]. Future work should also incorporate yaw actuation duty into the closed-
loop yaw misalignment set-point optimization framework [21].
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