
MIT Open Access Articles

An alternative to EM for Gaussian mixture models:
batch and stochastic Riemannian optimization

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: https://doi.org/10.1007/s10107-019-01381-4

Publisher: Springer Berlin Heidelberg

Persistent URL: https://hdl.handle.net/1721.1/131361

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/131361
http://creativecommons.org/licenses/by-nc-sa/4.0/

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

An alternative to EM for Gaussian mixture models: batch and
stochastic Riemannian optimization

Cite this article as: Reshad Hosseini and Suvrit Sra, An alternative to EM for Gaussian
mixture models: batch and stochastic Riemannian optimization, Mathematical Programming
https://doi.org/10.1007/s10107-019-01381-4

This Author Accepted Manuscript is a PDF file of an unedited peer-reviewed manuscript that
has been accepted for publication but has not been copyedited or corrected. The official version
of record that is published in the journal is kept up to date and so may therefore differ from this
version.

Terms of use and reuse: academic research for non-commercial purposes, see here for full
terms. https://www.springer.com/aam-terms-v1

https://doi.org/10.1007/s10107-019-01381-4
https://www.springer.com/aam-terms-v1

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Noname manuscript No.
(will be inserted by the editor)

An Alternative to EM for Gaussian Mixture Models:
Batch and Stochastic Riemannian Optimization

Reshad Hosseini · Suvrit Sra

Received: date / Accepted: date

Abstract We consider maximum likelihood estimation for Gaussian Mixture
Models (Gmms). This task is almost invariably solved (in theory and prac-
tice) via the Expectation Maximization (EM) algorithm. EM owes its success
to various factors, of which is its ability to fulfill positive definiteness con-
straints in closed form is of key importance. We propose an alternative to
EM grounded in the Riemannian geometry of positive definite matrices, using
which we cast Gmm parameter estimation as a Riemannian optimization prob-
lem. Surprisingly, such an out-of-the-box Riemannian formulation1 completely
fails and proves much inferior to EM. This motivates us to take a closer look
at the problem geometry, and derive a better formulation that is much more
amenable to Riemannian optimization. We then develop Riemannian batch
and stochastic gradient algorithms that outperform EM, often substantially.
We provide a non-asymptotic convergence analysis for our stochastic method,
which is also the first (to our knowledge) such global analysis for Riemannian
stochastic gradient. Numerous empirical results are included to demonstrate
the effectiveness of our methods.

Keywords Stochastic optimization · Riemannian optimization · Gaussian
Mixture Models · Positive definite matrices · Retraction · Non-asymptotic
rate of convergence

S. Sra was partially supported by NSF-IIS-1409802

Reshad Hosseini
School of ECE, College of Engineering, University of Tehran, Tehran, Iran.
School of Computer Science, Institute of Research in Fundamental Sciences (IPM), Tehran,
Iran
Tel.: +98-21-61119799
Fax: +98-21-88013139
E-mail: reshad.hosseini@ut.ac.ir

Suvrit Sra
Massachusetts Institute of Technology, Cambridge, MA, USA.
E-mail: suvrit@mit.edu

1 A preliminary version of this work appeared at the Advances in Neural Information
Processing Systems (NIPS 2015), wherein this reformulation was originally introduced.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

2 Reshad Hosseini, Suvrit Sra

1 Introduction

Gaussian Mixture Models are extensively used across many tasks in machine
learning, signal processing, and other areas [14, 24, 7, 29, 27, 33, 15]. For a
vector x ∈ Rd, the density of a Gaussian Mixture Model (Gmm) is given by

p(x) :=
∑K

j=1
αjpN (x;µj ,Σj), (1)

where pN is a Gaussian density with mean µ ∈ Rd and covariance Σ � 0, i.e.,

pN (x;µ,Σ) := det(Σ)−1/2(2π)−d/2 exp
(
− 1

2 (x− µ)TΣ−1(x− µ)
)
.

Given i.i.d. samples {x1, . . . ,xn} drawn from (1), we seek maximum likelihood
estimates {µ̂j ∈ Rd, Σ̂j � 0}Kj=1 and α̂ ∈ ∆K of the parameters of the Gmm.
This estimation is cast as the following log-likelihood maximization problem:

max
α∈∆K ,{µj ,Σj�0}Kj=1

n∑

i=1

log
(∑K

j=1
αjpN (xi;µj ,Σj)

)
. (2)

A quick literature search reveals that (2) is most frequently solved via
the Expectation Maximization (EM) algorithm [13] or its variants. Although
other optimization methods have also been considered [32], for solving practical
instances of (2) usual methods such as conjugate gradients, quasi-Newton,
Newton, are often regarded as being inferior to EM [44].

Difficulties and Motivation. The primary reason why standard nonlinear
methods have difficulties in solving (2) is the positive definiteness constraint
on the covariance matrices. Since this constraint defines an open subset of Eu-
clidean space, in principle, if the iterates remain in the interior, standard un-
constrained Euclidean optimization methods could be used. The iterates may,
however, approach the boundary of the constraint set, especially in higher di-
mensions, which can lead to very slow convergence. For instance, a possible
approach is to formulate the positive definite constraint via a set of smooth
convex inequalities [40] and use interior-point methods. It was observed in [37]
that using such sophisticated methods can be vastly slower (on some closely
related statistical problems) than simpler EM-like fixed-point methods, espe-
cially with growing problem dimensionality.

Another “natural” approach to handle the positive definite constraint is to
use the Cholesky decomposition, as was exploited for semidefinite program-
ming in [11], and more recently in [6]. In general, this decomposition can
add spurious local maxima and stationary points to the objective function
of general optimization problems, even for convex semidefinite programs [40].
Remarkably, it can be shown that such a decomposition does not add spurious
local maxima to (2). Nevertheless, we observed (empirically) that the con-
vergence speed of standard nonlinear solvers for estimating parameters of (2)
using Cholesky decomposition is considerably slower than EM.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 3

Motivated by the success of non-Euclidean optimization for some problems
with positive definite variables [37, 38], we consider an alternative approach to
EM. In particular, we solve (2) via Riemannian optimization. Surprisingly, a
näıve use of Riemannian methods completely fails to compete with EM, while
their use on a careful reformulation of (2) demonstrably succeeds.

We describe this reformulation in Section 3, and remark here informally
on why a näıve use of manifold optimization fails: The negative log-likelihood
for a single Gaussian is Euclidean convex (the key property that makes the
“M-step” of EM easy), but not geodesically convex. Reformulating the prob-
lem to remove this geometric mismatch might therefore be fruitful, i.e., if we
reformulate the single Gaussian likelihood to be geodesically convex, mani-
fold optimization may benefit. This intuition turns out to have remarkable
empirical consequences as will become apparent from the paper.

This reformulation was originally introduced in the preliminary work [20].
However, this preliminary work lacked global convergence results and did not
present any stochastic optimization algorithm. Moreover, in this preliminary
work it was impossible to develop a global convergence result starting from
an arbitrary point, because the log-likelihood of Gmm is not bounded above.
To resolve this difficulty, in this paper we develop similar reformulation for
a penalizer that helps the objective function be bounded above. We further
present a global convergence analysis for the Riemannian stochastic gradient
descent (SGD) for optimizing the penalized objective function.

Contributions. The main contributions of this paper are the following:

I In our preliminary work [20], we developed a reformulation only for Gmms.
In the current paper, we develop a reformulation for richer likelihood
models that incorporate conjugate priors.

I In our preliminary work [20], we presented batch optimization algorithms.
In this paper, we present a stochastic optimization algorithm that greatly
enhances the scalability of our methods. It is worth mentioning, our meth-
ods permit the use of retractions (beyond the usual exponential map) and
vector transport, which enables further scalability.

I We provide an iteration complexity analysis of stochastic gradient on
manifolds, obtaining a O(1/

√
T) bound. To our knowledge, this is the first

non-asymptotic convergence analysis for stochastic gradient on manifolds.
Subsequently, we present analysis that outlines why Riemannian SGD
applies to penalized Gmm-likelihood maximization.

We provide experimental evidence on several real-data comparing manifold
optimization to EM. As may be gleaned from our results, manifold optimiza-
tion performs well across a wide range of parameter values and problem sizes,
while being much less sensitive to overlapping data than EM, and while dis-
playing less variability in running times.

We review key concepts of first-order deterministic manifold optimiza-
tion. We also include the design and specific implementation choices of our
line-search procedure. These choices ensure convergence, and are instrumen-
tal to making our Riemannian LBFGS (Limited-memory Broyden-Fletcher-

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

4 Reshad Hosseini, Suvrit Sra

Goldfarb-Shanno) solver outperform both EM and Riemannian CG (Conju-
gate Gradients). This solver should be of independent interest too.

We will also release a Matlab implementation of the methods developed
in this paper. The manifold CG method that we use is directly based on the
excellent toolkit ManOpt [9].

1.1 Related work

EM is such a widely studied method, that we have no hope of summarizing all
the related work, even if we restrict to just Gmms. Let us instead mention a
few lines of related work. Xu and Jordan [44] examine several aspects of EM
for Gmms and counter the claims of Redner and Walker [32], who thought
EM to be inferior to general purpose nonlinear programming methods, es-
pecially second-order methods. However, it is well-known (see e.g., [44, 32])
that EM can attain good likelihood values rapidly, and that it scales to larger
problems than amenable to second-order methods. Local convergence analy-
sis of EM is available in [44], with more refined and precise results in [26],
who formally show that when data have low overlap, EM can converge locally
superlinearly. Our paper uses manifold LBFGS, which being a quasi-Newton
method can display local superlinear convergence, though this capability is
not the focus of our paper. Recently, Balakrishnan et al [4] showed initializing
closed enough to the global minimum, EM algorithm converges to the global
minimum of the cost function. Their analysis aims to quantify a Euclidean
ball around the global optimum by assuming a large-enough signal to noise
ratio and also assuming large-enough sample sizes. Since local and global op-
timality are topological properties of the cost function, independent of the
geometry imposed on the parameters (Euclidean, Riemannian, or otherwise),
under the same assumptions as theirs one can likely construct a Riemannian
ball around the global optimum, and perform a similar analysis. These aspects
are of statistical value, but lie outside the scope of the present paper.

Parameter fitting using gradient-based methods has also been suggested [30,
36]. Here, to satisfy positive definiteness, the authors suggest using Cholesky
decompositions. These works report results only for low-dimensional problems
and spherical (near spherical) covariance matrices.

Beyond EM, there is also substantial work on theoretical analysis of Gmms
[12, 28, 16, 4]. These studies are theoretically valuable (though sometimes
limited to either low-dimensional, or small number of mixture components, or
spherical Gaussians, etc.), but orthogonal to our work that focuses on practical
numerical algorithms for general Gmms.

The use of Riemannian optimization for Gmm is relatively new, even though
manifold optimization is by now a fairly well-developed branch of optimization.
A classic reference is [39]; a more recent work is [1]; and even a Matlab tool-
box exists now [9]. In machine learning, manifold optimization has witnessed

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 5

increasing interest2, e.g., for low-rank optimization [41, 23], optimization based
on geodesic convexity [37, 42], or for neural network training [43].

Beyond the choice of Riemannian metric on positive definite matrices used
in this paper, one may construct other Riemannian metrics as in [2] that
incorporate both the geometry of the open set and also the cost function. Af-
terwards, simple gradient descent method would suffice because the choice of
metric includes both curvature information of the objective function and also
the geometry of the open set. Beyond this, an infinite variety of other Rieman-
nian metrics can be placed on the set of positive definite matrices. The specific
choice of metric used in this paper is motivated by a variety of reasons: (i)
the empirical results it leads to (as shown in the current paper); (ii) its “affine
invariance” properties; (iii) the geodesic convexity that it yields, including for
the single component Gaussian maximum likelihood problem, (iv) its closed
form exponential and inverse exponential maps, as well as vector transport;
and somewhat more abstractly, (v) its interpretation as a Fisher-Rao met-
ric [18, 19] (see also the latter references for other collections of interesting
Riemannian metrics on positive definite matrices).

Bonnabel [8] studies SGD on Riemannian manifolds and focuses on its
asymptotic convergence under assumptions analogous to Euclidean SGD. Only
very recently, Zhang and Sra [45] developed non-asymptotic analysis (i.e..,
global iteration complexity analysis) for Riemannian SGD, albeit limited to
the geodesically convex case. Zhang et al [46] provide an extension to finite-sum
problems via the idea of variance reduced stochastic methods (to be pedan-
tic, randomized incremental gradient), obtaining non-asymptotic convergence
analysis — due to the finite-sum assumption, their analysis is not applicable
to stochastic optimization problems where one must minimize an expectation
over possibly infinitely many points.

More importantly, there is a critical difference between both [45, 46] and
the present paper. These other works assume that the iterates generated by
their stochastic procedures stay within a compact set. This assumption is
crucial for their convergence analysis, and it is enforced via an additional
metric projection onto a compact constraint set (which must be somehow
determined a priori). In contrast, we present an analysis for Riemannian-
SGD applied to Gmm optimization, for which we show that the iterates remain
within a compact set (see Theorem 6).

2 Background on manifold optimization

Manifolds are spaces that locally resemble a Euclidean space, and smooth
manifolds have smooth transitions between locally Euclidean-like subsets [25].
The tangent space TxM is an approximating vector space at each point x of
the manifold M. The tangent bundle of a smooth manifold M is a manifold
TM, which assembles all the tangents in that manifold, TM =

⊔
x∈M TxM =

2 Not to be confused with “manifold learning” a separate problem altogether.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

6 Reshad Hosseini, Suvrit Sra

{(x, y)|x ∈M, y ∈ TxM}. If a smooth manifold is equipped with a smoothly-
varying inner product on each of its tangent spaces, it is called Riemannian
manifold.

This additional structure of a Riemannian manifold proves very useful in
developing optimization techniques specific to manifolds [39]. Indeed, it is easy
to extend unconstrained optimization techniques to smooth manifolds, at least
from the perspective of asymptotic complexity analysis [1]; though the non-
asymptotic case is considerably more complicated [45, 46].

The key manifold in this paper is Pd, the manifold of d × d symmetric
positive definite (PSD) matrices. At a point Σ ∈ Pd, the tangent space TΣPd
is isomorphic to the entire set of symmetric matrices; and the Riemannian
metric at Σ between two vectors ξ and η in TΣPd is given by

gΣ(ξ, η) := tr(Σ−1ξΣ−1η).

Riemannian manifolds have geodesics, which are curves that (locally) join
points along shortest paths which depends on the choice of Riemannian metric.
Geodesics help generalize the notion of convexity to manifolds.

2.1 Geodesic convexity

Let M be a Riemannian manifold and γxy a geodesic from x to y; that is

γxy : [0, 1]→M, γxy(0) = x, γxy(1) = y.

A set A ⊆ M is geodesically convex (henceforth g-convex) if for all x, y ∈ A
there is a geodesic γxy contained within A. Further, a function f : A → R is
g-convex if for all x, y ∈ A, the composition f ◦ γxy : [0, 1] → R is convex in
the usual Euclidean sense.

The Riemannian metric on Pd mentioned above induces a geodesic between
two pointsΣ1 andΣ2 that has the well-known closed-form (see e.g., [5, Ch. 6]):

γΣ1,Σ2(t) := Σ
1/2
1

(
Σ
−1/2
1 Σ2Σ

−1/2
1

)t
Σ

1/2
1 , 0 ≤ t ≤ 1.

Thus, a function f : Pd → R if g-convex on Pd if it satisfies

f(γΣ1,Σ2(t)) ≤ (1− t)f(Σ1) + tf(Σ2), t ∈ [0, 1], Σ1,Σ2 ∈ Pd.

The negative of a g-convex function is called g-concave. For a g-convex func-
tion, local optimality implies global optimality even if it is nonconvex in the
Euclidean case. This remarkable property follows easily from g-convexity upon
mimicking the corresponding Euclidean proof. This property has been inves-
tigated in some matrix theoretic applications [5, 38], and has been used in
recent theoretical and applied works in nonlinear optimization [35, 37, 42, 45].

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 7

Pd
<latexit sha1_base64="+eStkKz2vsTIlgPumaFEJe0d7BI=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4Amlslk0g6dTMI8hBL6G25cKOLWn3Hn3zhps9DWAwOHc+7lnjlhxpnSrvvtVNbWNza3qtu1nd29/YP64VFXpUYS2iEpT2U/xIpyJmhHM81pP5MUJyGnvXByW/i9JyoVS8WDnmY0SPBIsJgRrK3k+wnW4zDM27PHaFhvuE13DrRKvJI0oER7WP/yo5SYhApNOFZq4LmZDnIsNSOczmq+UTTDZIJHdGCpwAlVQT7PPENnVolQnEr7hEZz9fdGjhOlpkloJ4uMatkrxP+8gdHxdZAzkRlNBVkcig1HOkVFAShikhLNp5ZgIpnNisgYS0y0ralmS/CWv7xKuhdNz21695eN1k1ZRxVO4BTOwYMraMEdtKEDBDJ4hld4c4zz4rw7H4vRilPuHMMfOJ8/MuuRxg==</latexit><latexit sha1_base64="+eStkKz2vsTIlgPumaFEJe0d7BI=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4Amlslk0g6dTMI8hBL6G25cKOLWn3Hn3zhps9DWAwOHc+7lnjlhxpnSrvvtVNbWNza3qtu1nd29/YP64VFXpUYS2iEpT2U/xIpyJmhHM81pP5MUJyGnvXByW/i9JyoVS8WDnmY0SPBIsJgRrK3k+wnW4zDM27PHaFhvuE13DrRKvJI0oER7WP/yo5SYhApNOFZq4LmZDnIsNSOczmq+UTTDZIJHdGCpwAlVQT7PPENnVolQnEr7hEZz9fdGjhOlpkloJ4uMatkrxP+8gdHxdZAzkRlNBVkcig1HOkVFAShikhLNp5ZgIpnNisgYS0y0ralmS/CWv7xKuhdNz21695eN1k1ZRxVO4BTOwYMraMEdtKEDBDJ4hld4c4zz4rw7H4vRilPuHMMfOJ8/MuuRxg==</latexit><latexit sha1_base64="+eStkKz2vsTIlgPumaFEJe0d7BI=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4Amlslk0g6dTMI8hBL6G25cKOLWn3Hn3zhps9DWAwOHc+7lnjlhxpnSrvvtVNbWNza3qtu1nd29/YP64VFXpUYS2iEpT2U/xIpyJmhHM81pP5MUJyGnvXByW/i9JyoVS8WDnmY0SPBIsJgRrK3k+wnW4zDM27PHaFhvuE13DrRKvJI0oER7WP/yo5SYhApNOFZq4LmZDnIsNSOczmq+UTTDZIJHdGCpwAlVQT7PPENnVolQnEr7hEZz9fdGjhOlpkloJ4uMatkrxP+8gdHxdZAzkRlNBVkcig1HOkVFAShikhLNp5ZgIpnNisgYS0y0ralmS/CWv7xKuhdNz21695eN1k1ZRxVO4BTOwYMraMEdtKEDBDJ4hld4c4zz4rw7H4vRilPuHMMfOJ8/MuuRxg==</latexit><latexit sha1_base64="+eStkKz2vsTIlgPumaFEJe0d7BI=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4Amlslk0g6dTMI8hBL6G25cKOLWn3Hn3zhps9DWAwOHc+7lnjlhxpnSrvvtVNbWNza3qtu1nd29/YP64VFXpUYS2iEpT2U/xIpyJmhHM81pP5MUJyGnvXByW/i9JyoVS8WDnmY0SPBIsJgRrK3k+wnW4zDM27PHaFhvuE13DrRKvJI0oER7WP/yo5SYhApNOFZq4LmZDnIsNSOczmq+UTTDZIJHdGCpwAlVQT7PPENnVolQnEr7hEZz9fdGjhOlpkloJ4uMatkrxP+8gdHxdZAzkRlNBVkcig1HOkVFAShikhLNp5ZgIpnNisgYS0y0ralmS/CWv7xKuhdNz21695eN1k1ZRxVO4BTOwYMraMEdtKEDBDJ4hld4c4zz4rw7H4vRilPuHMMfOJ8/MuuRxg==</latexit>

x
<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

Tx
<latexit sha1_base64="kyvA5DqQwb1dvDt6VPi2tecsgX4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK/YI2lM120i7dbMLuRiyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vp7C2vrG5Vdwu7ezu7R+UD49aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzvz2IyrNY9kwkwT9iA4lDzmjxkoPjf5Tv1xxq+4cZJV4OalAjnq//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1XOr3v1lpXaTx1GEEziFc/DgCmpwB3VoAoMhPMMrvDnCeXHenY9Fa8HJZ47hD5zPH0B0jcM=</latexit><latexit sha1_base64="kyvA5DqQwb1dvDt6VPi2tecsgX4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK/YI2lM120i7dbMLuRiyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vp7C2vrG5Vdwu7ezu7R+UD49aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzvz2IyrNY9kwkwT9iA4lDzmjxkoPjf5Tv1xxq+4cZJV4OalAjnq//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1XOr3v1lpXaTx1GEEziFc/DgCmpwB3VoAoMhPMMrvDnCeXHenY9Fa8HJZ47hD5zPH0B0jcM=</latexit><latexit sha1_base64="kyvA5DqQwb1dvDt6VPi2tecsgX4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK/YI2lM120i7dbMLuRiyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vp7C2vrG5Vdwu7ezu7R+UD49aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzvz2IyrNY9kwkwT9iA4lDzmjxkoPjf5Tv1xxq+4cZJV4OalAjnq//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1XOr3v1lpXaTx1GEEziFc/DgCmpwB3VoAoMhPMMrvDnCeXHenY9Fa8HJZ47hD5zPH0B0jcM=</latexit><latexit sha1_base64="kyvA5DqQwb1dvDt6VPi2tecsgX4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK/YI2lM120i7dbMLuRiyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vp7C2vrG5Vdwu7ezu7R+UD49aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzvz2IyrNY9kwkwT9iA4lDzmjxkoPjf5Tv1xxq+4cZJV4OalAjnq//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1XOr3v1lpXaTx1GEEziFc/DgCmpwB3VoAoMhPMMrvDnCeXHenY9Fa8HJZ47hD5zPH0B0jcM=</latexit>

⇠x
<latexit sha1_base64="DSlkbdiYnm6+mJIkiA8EFFN3yJg=">AAACF3icdVBLSwMxGMzWV62vqkcvwSJ4kGW31lZvRS8eK9gHbJclm2bb0OyDJCsty/4LL/4VLx4U8ao3/43ZbQsqOhAYZuZLvowbMSqkYXxqhaXlldW14nppY3Nre6e8u9cRYcwxaeOQhbznIkEYDUhbUslIL+IE+S4jXXd8lfndO8IFDYNbOY2I7aNhQD2KkVSSU9aTfn6JxYeunRi6aTbqtcaJoZ+eVS9qpiL1DI20P6HOJHXKlUUGLjJwkYGmbuSogDlaTvmjPwhx7JNAYoaEsEwjknaCuKSYkbTUjwWJEB6jIbEUDZBPhJ3kK6XwSCkD6IVcnUDCXP0+kSBfiKnvqqSP5Ej89jLxL8+KpXduJzSIYkkCPHvIixmUIcxKggPKCZZsqgjCnKpdIR4hjrBUVZZUCYufwv9Jp6qbqqubWqV5Oa+jCA7AITgGJmiAJrgGLdAGGNyDR/AMXrQH7Ul71d5m0YI2n9kHP6C9fwGM3Jxp</latexit><latexit sha1_base64="DSlkbdiYnm6+mJIkiA8EFFN3yJg=">AAACF3icdVBLSwMxGMzWV62vqkcvwSJ4kGW31lZvRS8eK9gHbJclm2bb0OyDJCsty/4LL/4VLx4U8ao3/43ZbQsqOhAYZuZLvowbMSqkYXxqhaXlldW14nppY3Nre6e8u9cRYcwxaeOQhbznIkEYDUhbUslIL+IE+S4jXXd8lfndO8IFDYNbOY2I7aNhQD2KkVSSU9aTfn6JxYeunRi6aTbqtcaJoZ+eVS9qpiL1DI20P6HOJHXKlUUGLjJwkYGmbuSogDlaTvmjPwhx7JNAYoaEsEwjknaCuKSYkbTUjwWJEB6jIbEUDZBPhJ3kK6XwSCkD6IVcnUDCXP0+kSBfiKnvqqSP5Ej89jLxL8+KpXduJzSIYkkCPHvIixmUIcxKggPKCZZsqgjCnKpdIR4hjrBUVZZUCYufwv9Jp6qbqqubWqV5Oa+jCA7AITgGJmiAJrgGLdAGGNyDR/AMXrQH7Ul71d5m0YI2n9kHP6C9fwGM3Jxp</latexit><latexit sha1_base64="DSlkbdiYnm6+mJIkiA8EFFN3yJg=">AAACF3icdVBLSwMxGMzWV62vqkcvwSJ4kGW31lZvRS8eK9gHbJclm2bb0OyDJCsty/4LL/4VLx4U8ao3/43ZbQsqOhAYZuZLvowbMSqkYXxqhaXlldW14nppY3Nre6e8u9cRYcwxaeOQhbznIkEYDUhbUslIL+IE+S4jXXd8lfndO8IFDYNbOY2I7aNhQD2KkVSSU9aTfn6JxYeunRi6aTbqtcaJoZ+eVS9qpiL1DI20P6HOJHXKlUUGLjJwkYGmbuSogDlaTvmjPwhx7JNAYoaEsEwjknaCuKSYkbTUjwWJEB6jIbEUDZBPhJ3kK6XwSCkD6IVcnUDCXP0+kSBfiKnvqqSP5Ej89jLxL8+KpXduJzSIYkkCPHvIixmUIcxKggPKCZZsqgjCnKpdIR4hjrBUVZZUCYufwv9Jp6qbqqubWqV5Oa+jCA7AITgGJmiAJrgGLdAGGNyDR/AMXrQH7Ul71d5m0YI2n9kHP6C9fwGM3Jxp</latexit><latexit sha1_base64="DSlkbdiYnm6+mJIkiA8EFFN3yJg=">AAACF3icdVBLSwMxGMzWV62vqkcvwSJ4kGW31lZvRS8eK9gHbJclm2bb0OyDJCsty/4LL/4VLx4U8ao3/43ZbQsqOhAYZuZLvowbMSqkYXxqhaXlldW14nppY3Nre6e8u9cRYcwxaeOQhbznIkEYDUhbUslIL+IE+S4jXXd8lfndO8IFDYNbOY2I7aNhQD2KkVSSU9aTfn6JxYeunRi6aTbqtcaJoZ+eVS9qpiL1DI20P6HOJHXKlUUGLjJwkYGmbuSogDlaTvmjPwhx7JNAYoaEsEwjknaCuKSYkbTUjwWJEB6jIbEUDZBPhJ3kK6XwSCkD6IVcnUDCXP0+kSBfiKnvqqSP5Ej89jLxL8+KpXduJzSIYkkCPHvIixmUIcxKggPKCZZsqgjCnKpdIR4hjrBUVZZUCYufwv9Jp6qbqqubWqV5Oa+jCA7AITgGJmiAJrgGLdAGGNyDR/AMXrQH7Ul71d5m0YI2n9kHP6C9fwGM3Jxp</latexit>

Fig. 1: Visualization of line-search on a manifold: x is a point on the manifold, Tx is the
tangent space at the point x, ξx is a descent direction at x; the red curve is the curve along
which line-search is performed.

2.2 First-order methods for Riemannian optimization

At a high-level, first-order methods for manifold optimization methods operate
iteratively as follows (see Fig. 1 for a conceptual demonstration):

i) Obtain a descent direction, namely, a vector in tangent space that decreases
the cost function if we infinitesimally move along it;

ii) Perform a line-search along a smooth curve on the manifold to obtain
sufficient decrease and ensure convergence.

Such a smooth curve that is parametrized by a point on the manifold and a
(descent) direction is called retraction. A retraction is a smooth mapping Ret
from the tangent bundle TM to the manifoldM. The restriction of retraction
to TxM, Retx : TxM→M, is a smooth mapping with

1) Retx(0) = x, where 0 denotes the zero element of TxM.
2) DRetx(0) = idTxM, where DRetx denotes the derivative of Retx and

idTxM denotes the identity mapping on TxM.

One possible candidate for retraction on Riemannian manifolds is the exponen-
tial map. The exponential map Expx : TxM→M is defined as Expx v = γ(1),
where γ is the geodesic satisfying the conditions γ(0) = x and γ̇(0) = v. The
reader is referred to [1, 39] for more in depth discussion.

First-order methods are based on gradients. The gradient on a Riemannian
manifold is defined as the vector ∇f(x) in tangent space such that

Df(x)ξ = 〈∇f(x), ξ〉, for ξ ∈ TxM,

where 〈·, ·〉 is the inner product in the tangent space TxM. Df(x)ξ is the
directional derivative of f along ξ. Let γ : [−1, 1] → M be a differentiable
curve with γ(0) = x and γ′(0) = ξ, then the directional derivative can be
defined by

Df(x)ξ =
d

dt
f ◦ γ(τ)

∣∣∣∣
τ=0

.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

8 Reshad Hosseini, Suvrit Sra

Differentials at each point on the manifold forms the cotangent space. The
cotangent space on the smooth manifold M at point x is defined as the dual
space of the tangent space. Elements of the cotangent space are linear func-
tionals on the tangent space.

Another important concept needed for methods like conjugate-gradient
and LBFGS is vector transport. Vector transport is a smooth function that
allows moving tangent vectors along retractions. A vector transport T :M×
M × TM → TM, (x, y, ξ) 7→ Tx,y(ξ) is a mapping satisfying the following
properties:

1) There exists an associated retraction Ret and a tangent vector ν satisfying
Tx,y(ξ) ∈ TRetx(ν), for all ξ ∈ TxM.

2) Tx,yξ = ξ, for all ξ ∈ TxM.
3) The mapping Tx,y(.) is linear.

An important special case of vector transport is parallel transport, which is
defined as a differential map between tangent spaces at different points on the
manifold with zero derivative along a smooth curve connecting the points. The
differential map between tangent spaces on the manifold is a smooth vector
field, where a vector field is an assignment of a tangent vector to each point
on a manifold. For computing the derivative of such a map, one first needs to
define a connection, which is a way to perform directional derivative of vector
fields. Let V(M) be the set of smooth vector fields on M, a connection is a
map ∇ : V(M) × V(M) → V(M) satisfying certain properties [1]. Given a
smooth curve γ : [0, 1] → M, transporting a vector ν0 ∈ Tγ(0) to a vector
ν(t) ∈ Tγ(t) can be done by solving the following initial value problem

∇γ̇(t)ν = 0, ν(0) = ν0.

For x = γ(0) and y = γ(t), the parallel transport of ν0 ∈ TxM to ν(t) ∈ TyM
is a vector transport ν(t) = Tx,yν0.

Table 1 summarizes the key quantities for Pd. The Euclidean retraction
is not positivity-preserving, meaning that for large ξ the retraction may not
stay in the space Pd, and is therefore not valid. Because of its non positivity-
preserving behavior, the Euclidean retraction can not be used easily in line-
search algorithms and therefore it is not used in our batch optimization algo-
rithms.

If the parameter space is a product space of several manifolds, the con-
cepts can be easily defined based on individual manifolds. For example, the
exponential map, gradient and parallel transport are defined as the Cartesian
product of individual expressions, and the inner product is defined as the sum
of inner product of the components in their respective manifolds.

2.3 Stochastic optimization

If the objective function has the form

min
X∈M

f(x) :=
1
n

∑n

i=1
fi(x), (3)

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 9

Table 1: Summary of Riemannian expressions for PSD matrices

Definition Expression for the PSD manifold
Tangent space Space of symmetric matrices
Metric between ξ, η at Σ gΣ(ξ, η) = tr(Σ−1ξΣ−1η)
Gradient at Σ if Euclidean gradient is ∇Ef ∇f(Σ) = 1

2Σ(∇Ef(Σ) + [∇Ef(Σ)]T)Σ
Exponential map at Σ in direction ξ ExpΣ(ξ) = Σ exp(Σ−1ξ)
Parallel transport of ξ from Σ1 to Σ2 TΣ1,Σ2 (ξ) = EξET , E = (Σ2Σ

−1
1)1/2

Euclidean Retraction at Σ in direction ξ RetΣ(ξ) = Σ + ξ

then for large n each iteration of the first-order methods explained above be-
comes very expensive, as merely computing the gradient requires going through
all n component functions. In this large-scale setting, one frequently passes to
stochastic / incremental optimization methods such as stochastic gradient de-
scent (SGD) that processes only a small batch of functions at each iteration.
Note that SGD is actually not a descent method; it makes progress by replacing
an exact descent direction by one which is a descent direction in expectation.

Riemannian SGD [8] runs the following iteration, where it ∼ U(n), i.e. a
random integer between 1 and n:

xt+1 ← Retxt(−ηt∇fit(xt)), t = 0, 1, . . . , (4)

where Retx is a retraction at the point x and ηt is a suitable stepsize that
typically satisfies

∑
t ηt =∞ and

∑
t η

2
t <∞.

After this background on the Riemannian optimization methods that we
will use for Gmm parameter optimization, we are now ready to describe the
problem reformulation and other important theoretical details.

3 Problem reformulation

Experience with mixture modeling shows that whenever an optimization method
works well for a single component, the same optimization method also works
well for the mixture model. We begin, therefore, with parameter estimation
for a single Gaussian. Although this problem has a closed-form solution that
benefits EM, our goal is to tackle it in the context of manifold optimization.

Consider, maximum likelihood parameter estimation for a single Gaussian,

max
µ,Σ�0

L(µ,Σ) :=
∑n

i=1
log pN (xi;µ,Σ). (5)

This objective is concave in the Euclidean sense. But our aim is to apply
manifold optimization and this objective is not g-concave on its domain Rd ×
Pd, which makes it geometrically somewhat of a mismatch.

We invoke a simple transformation that turns (5) into a g-concave opti-
mization problem. This transformation has a dramatic impact on the speed
of the convergence for a single Gaussian, as seen in Fig. 2. Define new vectors
yTi = [xTi 1]; then, the proposed transformed model is

max
S�0

L̂(S) :=
∑n

i=1
log qN (yi;S), (6)

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

10 Reshad Hosseini, Suvrit Sra

where qN (yi;S) := 2π exp(1
2)pN (yi;S). Note that this new cost function is not

just a reparametrization of (5). However, it becomes a reparametrization at a
maximum. More precisely, Theorem 1 shows that solving the reformulation (6)
also solves the original problem (5).

Theorem 1 If µ∗,Σ∗ maximize (5), and if S∗ maximizes (6), then L̂(S∗) =
L(µ∗,Σ∗) and

S∗ =
(
Σ∗ + µ∗µ∗T µ∗

µ∗T 1

)
. (7)

Proof We express S by new variables U , t and s by writing

S =
(
U + sttT st
stT s

)
. (8)

The objective function L̂(S) in terms of the new parameters becomes

L̂(U , t, s) = n
2 − d

2 log(2π)− n
2 log s− n

2 log det(U)

−
n∑

i=1

1
2 (xi − t)TU−1(xi − t)− n

2s .

Optimizing L̂ over s > 0 we see that s∗ = 1. Hence, the objective reduces to a
d-dimensional Gaussian log-likelihood, for which U∗ = Σ∗ and t∗ = µ∗. ut

In other words, Theorem 1 shows that our model transformation is “faith-
ful” because it leaves the optimum unchanged. Figure 2 shows the unmistak-
able impact this transformation has on the convergence speed of Riemannian
CG and Riemannian LBFGS.

Next, Proposition 1 proves another key property of this transformation:
the objective in (6) becomes g-concave. For proving Proposition 1, we need
the following lemma that is an easy consequence of [5, Thm. 4.1.3]:

Lemma 1 Let S, R � 0. Then, for a vector x of appropriate dimension,

xT (S−1/2(S1/2R−1S
1/2)1/2S−

1/2)x ≤ [xTS−1x]1/2[xTR−1x]1/2. (9)

Proposition 1 The objective L̂(S) in (6) is g-concave.

Proof By definition, for proving geodesic concavity, we need to prove that
L̂(γS,R(.)) is concave in the usual Euclidean sense. Because this function is
continuous, it suffices to establish mid-point geodesic concavity:

L̂(γS,R(1
2)) ≥ 1

2 L̂(S) + 1
2 L̂(R), for S,R ∈ Pd.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 11

Denoting inessential constants by c, the above inequality turns into

L̂(γS,R(1
2)) = − log det(S1/2R

1/2)− c
∑

i

yTi (S−1/2(S1/2R−1S
1/2)1/2S−

1/2)yi

≥ − 1
2 log det(S)− 1

2 log det(R)− c
∑

i

[yTi S
−1yi]

1/2[yTi R
−1yi]

1/2

≥ − 1
2 log det(S)− c

2

∑

i

yTi S
−1yi − 1

2 log det(R)− c
2

∑

i

yTi R
−1yi

= 1
2 L̂(S) + 1

2 L̂(R),

where the first inequality is follows from Lemma 1. ut
Theorem 2 A local maximum of the reformulated Gmm log-likelihood

L̂({Sj}Kj=1) :=
∑n

i=1
log
(∑K

j=1
αjqN (yi;Sj)

)

is a local maximum of the original log-likelihood

L({µj ,Σj}Kj=1) :=
∑n

i=1
log
(∑K

j=1
αjpN (xi|µj ,Σj)

)
.

Proof Let S∗1 , . . . ,S
∗
K be a local maximum of L̂. Then, S∗j is the maximum of

the following cost function:

−1
2

∑n

i=1
wi log det(Sj)−

1
2

∑n

i=1
wiy

T
i S
−1
j yi,

where for each i ∈ {1, . . . , n} the weight

wi =
qN (yi|S∗j)

∑K
j=1 αjqN (yi|S∗j)

. (10)

Using an argument similar to that for Theorem 1, we see that s∗j = 1, whereby
qN (yi|S∗j) = pN (xi; t∗j ,U

∗
j). Thus, at a maximum the objective functions

agree and the proof is complete. ut
Theorem 2 shows that we can replace (2) by a reformulated log-likelihood

whose local maxima agree with those of (2). Moreover, the individual compo-
nents of the reformulated log-likelihood are geodesically concave.

Finally, we also need to replace the constraint α ∈ ∆K to make the problem
unconstrained. We do this via a commonly used change of variables [22]:

ωk = log
(
αk
αK

)
, k = 1, . . . ,K − 1. (11)

Assume ωK = 0 to be a constant; then the final optimization problem is:

max
{Sj�0}Kj=1,{ωj}

K−1
j=1

L̂({Sj}Kj=1, {ωj}K−1
j=1) :=

n∑

i=1

log
(K∑

j=1

exp(ωj)∑K
k=1 exp(ωk)

qN (yi;Sj)
)

(12)
We solve (12) via Riemannian optimization problem in this paper; specifically,
it is an optimization problem on the product manifold

(∏K
j=1 Pd+1

)
× RK−1.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

12 Reshad Hosseini, Suvrit Sra

3.1 Formulations for Penalized Likelihoods

One of the problems with ML estimation for Gmms is covariance singular-
ity. There are several remedies to avoid this problem, and the most common
approach is to use a penalized ML estimate [34]. In our reformulation (6),
to avoid problems due to singularity, a suitable regularizer ψ(S) needs to be
added to the objective function. We state the following generic results that
helps us choose priors amenable to our framework.

Theorem 3 Let S be the block matrix defined in (8). Consider a regularizer
that splits over the blocks of S, and has the form

ψ(S) = ψ1(U , t) + ψ2(s),

where ψ2(s) has a unique maximizer at s = 1. Let S∗ be the maximum of the
penalized objective ψ(S) + L̂(S), where L̂(S) is the modified log-likelihood (6).
Assume that (µ∗,Σ∗) maximizes the penalized log-likelihood ψ1(Σ,µ)+L(µ,Σ),
where L(µ,Σ) is as in (5). Then, S∗ is related to (µ∗,Σ∗) via (7).

Proof Similar to the proof of Theorem 1, it is easy to see that the penalized
objective ψ + L̂ has its maximum at s∗ = 1. Therefore, the objective reduces
to a penalized log-likelihood of a Gaussian at its maximum. ut

A widely used penalizer is obtained by placing an inverse Wishart prior
on covariance matrices and using a maximum a priori estimate. The inverse
Wishart prior is a conjugate prior for the covariance matrix, and is given by

p(Σ;Λ; ν) ∝ det(Σ)−(ν+d+1)/2 exp
(
− 1

2 tr(Σ−1Λ)
)
,

where ν is a degree of freedom and Λ is a scale parameter. The conjugate
prior for the mean parameter is a Gaussian distribution conditioned on the
covariance matrix; that is,

p(µ|Σ;λ, κ) ∝ det(Σ)−1/2 exp
(
−κ2 (µ− λ)TΣ−1(µ− λ)

)
,

where κ is a so-called shrinkage parameter.
In the following, we propose a penalizer to our reformulated objective

function. This penalized objective function converges to the penalized log-
likelihood for Gmm, when one uses the aforementioned conjugate priors for
covariance matrices and means.
Consider the penalizer

ψ(S;Ψ) = −ρ
2

log det(S)− β 1
2 tr(ΨS−1), (13)

where Ψ is the block matrix

Ψ =
(α
βΛ+ κλλT κλ

κλT κ

)
, (14)

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 13

and the parameter ρ = α(d + ν + 1) + β. By construction Ψ is a positive
definite matrix. The matrix Λ is positive definite and therefore the first block
α
βΛ+κλλT is also positive definite. Therefore, for showing positive definiteness
of Ψ it suffices to show that the determinant of Ψ is positive. This is true
because the determinant is equal to det

(
α
βΛ
)
κ.

If we write S as the block matrix

S =
(
U + sttT st
stT s

)
,

then the penalized cost function (13) becomes

ψ(S;Ψ) = −ρ
2
[
log det(U) + log(s)

]

− β
2

[
α
β tr(ΛU−1) + κ(tTU−1t) + κ(λTU−1λ)− 2κλTU−1t+ κ

s

]
.

Rearranging the terms, we thus obtain

ψ(S;Ψ) = α log p(U ;Λ; ν) + β log p(t|U ;λ, κ)− ρ

2
log(s)− βκ

2s
+ c, (15)

for some constant c. In order for this penalizer to satisfy the conditions of
Theorem 3 we need the following condition:

α = β
κ− 1

d+ ν + 1
.

Using Proposition 1 one can again show that this penalizer is g-concave. We
summarize these results as an informal corollary below.

Corollary 1 The penalizer given in (15) is g-concave and fulfills the structure
required by Theorem 3. Hence, it can be used for penalized ML estimation.

It is easy to see that the single component results above extend to penal-
ized maximum likelihood of Gmms. That is, Theorem 2 can be generalized to
penalized maximum likelihood for Gmms.

Indeed, recall that a common prior on mixture weights is the symmetric
Dirichlet prior that assumes the form

p(α1, . . . , αK ; ζ) ∝
K∏

i=1

αζi . (16)

The penalizer for the mixture weights is the logarithm of (16), namely,

ϕ({ωj}K−1
i=1 ; ζ) := ζ

K∑

i=1

log
(

eωj∑K
k=1 e

ωk

)
= ζ

K∑

i=1

ωi −Kζ log
(K∑

k=1

eωk
)
. (17)

The final optimization problem for the penalized mixture model is

max
{Sj�0}Kj=1,{ωj}

K−1
j=1

L̂({Sj}Kj=1, {ωj}K−1
j=1)+

K∑

j=1

ψ(Sj ;Ψ)+ϕ({ωj}K−1
i=1 ; ζ), (18)

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

14 Reshad Hosseini, Suvrit Sra

where L̂({Sj}Kj=1, {ωj}K−1
j=1), ψ(S;Ψ) and ϕ({ωj}K−1

i=1 ; ζ) are given by (12),
(13), and (17), respectively.

We have now presented our formulation of the main optimization problems of
this paper, both Gmm fitting, as well as a penalized version based on using an
conjugate priors on means and covariance matrices combined with a Dirichlet
model for mixture components weights. We can solve both these problems
using Riemannian LBFGS procedure or a Riemannian SGD method for larger
scale problems. The former method was also studied in [20]; we thus dedicate
Section 4 to an general analysis Riemannian SGD before specializing it to our
Gmm problems in Section 5.

4 Riemannian stochastic optimization

In this section, we consider the stochastic gradient descent algorithm

xt+1 ← Retxt(−ηt∇fit(xt)), t = 0, 1, . . . , (19)

where Retx is a suitable retraction (to be specialized later). We assume for
our analysis of (19) the following fairly standard conditions:

(i) The function satisfies the Lipschitz growth bound

f(Retx(ξ)) ≤ f(x) + 〈∇f(x), ξ〉+ L
2 ‖ξ‖2. (20)

(ii) The stochastic gradients in all iterations are unbiased, i.e.,

E[∇fit(xt)−∇f(xt)] = 0.

(iii) The stochastic gradients have bounded variance, so that

E[‖∇fit(xt)−∇f(xt)‖2] ≤ σ2, 0 ≤ σ <∞.

When the retraction is the exponential map, condition (i) can be reexpressed
as (provided that Exp−1

y (·) exists)

f(x)− f(y)− 〈∇f(y), Exp−1
y (x)〉 ≤ L

2 d
2(x, y). (21)

Given these conditions, the iterates produced by (19) satisfy the following:

Lemma 2 Assume conditions (i)-(iii) hold. Then, the gradients in SGD sat-
isfy the bound

T∑

t=1

(
η2
t − L

2 η
2
t

)
E[‖∇f(xt)‖2] ≤ f(x1)− f∗ + Lσ2

2

∑T

t=1
η2
t . (22)

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 15

Proof Denote the stochastic error by δt = ∇f(xt)−∇fit(xt); also, as a short-
hand set gt = ∇fit(xt). Then, we have

f(xt+1) ≤ f(xt) + 〈∇f(xt), −ηt∇fit(xt)〉+ L
2 ‖ηt∇fit(xt)‖2

= f(xt)− ηt〈∇f(xt), gt〉+ Lη2
t

2 ‖gt‖2

= f(xt)− ηt‖∇f(xt)‖2 − ηt〈∇f(xt), δt〉+
Lη2

t

2

[
‖∇f(xt)‖2 + 2〈∇f(xt), δt〉+ ‖δt‖2

]

= f(xt)−
(
η2
t − L

2 η
2
t

)
‖∇f(xt)‖2 −

(
ηt − Lη2

t

)
〈∇f(xt), δt〉+ Lη2

t

2 ‖δt‖2.

Summing over t = 1, . . . , T , using telescoping sums and rearranging we obtain

T∑

t=1

(
η2
t − L

2 η
2
t

)
‖∇f(xt)‖2

≤ f(x1)− f(xT+1)−
T∑

t=1

(
ηt − Lη2

t

)
〈∇f(xt), δt〉+

L

2

T∑

t=1

η2
t ‖δt‖2

≤ f(x1)− f∗ −
T∑

t=1

(
ηt − Lη2

t

)
〈∇f(xt), δt〉+

L

2

T∑

t=1

η2
t ‖δt‖2,

where we used f∗ ≤ f(xt) for all t. Now taking expectations, and noting
that by our assumption E[‖δt‖2] ≤ σ2 while by unbiasedness of the stochastic
gradients we have E[〈∇(xt), δt〉] = 0. Thus, we obtain the bound (22). ut

By using a specific choice of parameter ηt and using Lemma 2, we can obtain
a convergence rate result for SGD with a slight modification.

Theorem 4 Assume a slightly modified version of SGD which output a point
xa by randomly picking one of the iterates, say xt, with probability pt :=
(2ηt − Lη2

t)/ZT , where ZT =
∑T
t=1(2ηt − Lη2

t). Furthermore, choose ηt =
min{L−1, cσ−1T−1/2} for a suitable constant c. Then, we obtain the following
bound on E[‖∇f(xa)‖2], which measures the expected gap to stationarity:

E[‖∇f(xa)‖2] ≤ 2L∆1

T
+
(
c+ c−1∆1

) Lσ√
T

= O
(

1
T

)
+O

(
1√
T

)
. (23)

Proof Using the definition of xa and using Lemma 2, we immediately have

E[‖∇f(xa)‖2] =
T∑

t=1

ptE[‖∇f(xt)‖2] ≤ 2(f(x1)− f∗)
ZT

+ Lσ2
∑T
t=1 η

2
t

ZT
.

Using the choice of ηt in the theorem, this bound yields (23). ut

Theorem 4 uses a randomized stopping rule, a choice motivated by [17].
If one wishes to avoid such a rule, then under a stronger assumption one can
obtain the same rate. Specifically, in the theorem below we replace conditions
(ii) and (iii) with the stronger condition (iv).

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

16 Reshad Hosseini, Suvrit Sra

(iv) The function f has a G-bounded gradient, that is ‖∇fi(x)‖ ≤ G for all
i ∈ [n]

Under this condition, we can obtain the following convergence rate.

Theorem 5 Assume conditions (i) and (iv) hold. Then, the gradient in SGD
satisfies the following bound for a suitable choice of ηt:

1
T

T∑

t=1

E[‖∇f(xt)‖2] ≤ 1√
T

(
f(x1)− f(x∗)

c
+
Lc

2
G2
)
. (24)

Proof The Lipschitz smoothness condition yields

E[f(xt+1)] ≤ E[f(xt)] + E
[
〈∇f(xt), −ηt∇fit(xt)〉+ L

2 ‖ηt∇fit(xt)‖2
]

≤ E[f(xt)]− ηtE
[
‖∇f(xt)‖2

]
+ Lη2

t

2 G2.

Rearranging the terms above we obtain

E
[
‖∇f(xt)‖2

]
≤ 1
ηt

E
[
f(xt)− f(xt+1)

]
+
Lηt
2
G2.

Choose ηt = c√
T

for some constant c and sum over t = 0 to T − 1 to obtain

1
T

T∑

t=1

E
[
‖∇f(xt)‖2

]
≤ 1√

Tc
E[f(x1)− f(xT+1)] +

Lc

2
√
T
G2

≤ 1√
T

(
f(x1)− f(x∗)

c
+
Lc

2
G2
)
. ut

By optimizing over the constant c, the following corollary is immediate.

Corollary 2 Assume conditions (i) and (iv) hold, then for suitable ηt we have

min
1≤t≤T

E[‖∇f(xt)‖2] ≤ O
(

1√
T

)
. (25)

5 SGD for GMM

In this section, we investigate if SGD based on retractions satisfies the con-
ditions needed for obtaining a global rate of convergence when applied to
our Gmm optimization problems. Since Euclidean retraction turns out to be
computationally more effective than many other retractions, we perform the
analysis below for Euclidean retraction.

Recall that we are maximizing a cost of the form 1
n

∑n
i=1 fi(·) using SGD.

In a concrete realization, each function fi is set to the penalized log-likelihood

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 17

for a batch of observations (data points). For simpler notation, assume that
each fi corresponds to a single observation. Thus,

fi({Sj � 0}Kj=1, {ηj}K−1
j=1) = log

(K∑

j=1

exp(ηj)∑K
k=1 exp(ηk)

qN (yi;Sj)
)

+
1
n

(K∑

j=1

ψ(Sj ;Ψ) + ϕ({ωj}K−1
i=1 ; ζ)

)
,

(26)

where qN , ψ and ϕ are as defined by (13) and (17), respectively. Since we are
maximizing, the update formula for SGD is
{
{Sj � 0}Kj=1,{ωj}K−1

j=1

}
←

Ret{Sj�0}Kj=1,{ηj}
K−1
j=1

(
ηt∇fi

(
{Sj � 0}Kj=1, {ωj}K−1

j=1

))
,

(27)

where i is a randomly chosen index between 1 and n.
Note that, the conditions needed for a global rate of convergence are not

satisfied on the entire set of positive definite matrices. In particular, to apply
our convergence results for SGD we need to show that the iterates stay within
a compact set. Theorem 6 below ensures this property.

Theorem 6 If the stepsize is smaller than one, then the iterates of SGD with
Euclidean retraction for the penalized likelihood of Gmm stay within a compact
subset of the Riemannian manifold.

Proof We write down the formula of the gradient and show that the update
formula (27) guarantees that the variables remain in a compact subset. To this
end, we show that the eigenvalues of matrices Sj remain bounded. Then, we
show that the values of ωj remain in a bounded set too. Then we can easily
conclude that the iterations remain in a compact subset of the underlying
manifold.

The Euclidean gradient of penalized log-likelihood with respect to one of
the covariance matrices Sj for a single datapoint yi is equal to

∇Efi(Sj) = −w
2
S−1
j +

w

2
S−1
j yiy

T
i S
−1
j −

ρ

2n
S−1
j +

β

2n
S−1
j ΨS−1

j , (28)

where w, a weight calculated as in (10), is a positive number smaller than 1
and ρ, a small constant that appears in ψ(S;Ψ), is of order of 10−2. Using the
update formula (27), Sj is updated by

Sj ←
(

1− ηt
w + ρn−1

2

)
Sj + ηtΨ

′, (29)

where

Ψ ′ =
w

2
yiy

T
i +

βn−1

2
Ψ .

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

18 Reshad Hosseini, Suvrit Sra

If ηt ≤ 1, then the first term in (29) remains positive definite. Assume λ and
λ′ to be the smallest eigenvalue of Sj before and after the update of (29). Fur-
thermore, assume the smallest eigenvalue of Sj before update be λmin(Sj) =
τλmin(Ψ). From the update rule (29) and knowing that the smallest eigenvalue
of sum of two matrices with positive eigenvalues is not smaller than sum of
smallest eigenvalue of two matrices, we have

λ′ ≥ λ+
ηt
2
λmin(Ψ)

(
−τ(w + ρn−1) + βn−1

)
.

If τ < β/(n+ ρ), then λ′ > λ. Otherwise, λ′ ≥ τ(1− ηt
2 (1 + ρn−1))λmin(Ψ) +

ηt
2 βn

−1λmin(Ψ). Since ηt
2 (1+ρn−1) < 1, the smallest eigenvalue of Sj can not

become smaller than

λmin(Ψ)
β

n+ ρ
.

Now, assume λ and λ′ to be the largest eigenvalue of Sj before and after
the update given in (29). Furthermore, assume the largest eigenvalue of Sj
before update be ‖Sj‖ = τ‖Ψ‖. From the update rule (29) and knowing that
the largest eigenvalue of sum of two matrices with positive eigenvalues is not
larger than sum of largest eigenvalues of two matrices, we have

λ′ ≤ λ+
ηt
2
‖Ψ‖

(
−τ(w + ρn−1) + w

‖yi‖
‖Ψ‖ + βn−1

)
.

If

τ > max
w∈[0,1]

wmaxi{‖yi‖}
‖Ψ‖ + βn−1

w + ρn−1 ,

then λ′ < λ. Therefore, the largest eigenvalue of Sj remains smaller than

max
w∈[0,1]

wnmaxi{‖yi‖}+ β‖Ψ‖
wn+ ρ

.

Till now, we have shown that the largest and the smallest eigenvalues of Sjs
remain smaller and larger than certain numbers, respectively. We use the same
procedure to show that ωjs also remain in a bounded interval. The Euclidean
gradient of the objective with respect to ωj for a single data-point is given by:

∇Efi(ωj) = w − αj +
ζ

n
− Kζ

n
αj .

If αj < ζn−1

1+Kζn−1 , then the gradient is positive and ωj is increased after update.
From (11), it is clear that log(αj) ≤ ωj . Using the update formula ωnew

j =

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 19

ωj + ηt∇Efi(ωj), we get the following lower bound:

ωnew
j ≥ min

ωj≥log
(

ζn−1

1+Kζn−1

)
[
ωj + ηt

(
w − αj +

ζ

n
− Kζ

n
αj

)]

≥ min
ωj≥log

(
ζn−1

1+Kζn−1

)
[
ωj + ηt

(
1− exp(ωj) +

ζ

n
− Kζ

n
exp(ωj)

)]

= log
(

ζn−1

1 +Kζn−1

)
.

From the definition (11), we have log(αi) = ωi− log(
∑K
k=1 exp(ωk)). Using

Jensen inequality, we obtain log(αi) ≤ −
∑n
k=1
k 6=i

ωk. Therefore, we obtain the

following upper bound for ωj

ωj ≤ log(αi)−
n∑

k=1
k 6=i,k 6=j

ωk

≤ −(K − 2) log
(

ζn−1

1 +Kζn−1

)
.

Therefore, one sees that all the parameters (Sjs and eigenvalues of ωjs) remain
in a bounded set. ut

It is worth nothing that the aforementioned theorem is necessary, because
neither condition (iv) nor condition (ii) hold for the entire space. From (28),
it is easy to see that the Riemannian gradient of penalized log-likelihood with
respect to one of the covariance matrices Sj for a single datapoint yi is equal
to

∇fi(Sj) = −w
2
Sj +

w

2
yiy

T
i −

ρ

2n
Sj +

β

2n
Ψ . (30)

Therefore if the norm of a component ||Sj || go to infinity, then the norm of
gradient go to infinity too. This means that the condition (iv) does not hold
for the entire space. Let the norm of some components are bounded and the
norm of one component goes to infinity, then it is clear that the condition (ii)
can not hold either.
Since we proved the parameters remain in a compact subset of the underlying
Riemannian manifold, we may invoke the following theorem:

Theorem 7 (Boumal et al. [10]) LetM be a compact Riemannian subman-
ifold of a Euclidean space. Let Ret be a retraction on M. If f has a Euclidean
Lipschitz continuous gradient in the convex hull of M, then the function sat-
isfies the Lipschitz growth bound with some constant L for all retractions.

We have shown above that the iterations of SGD for penalized log-likelihood
stay within a compact set. It is also easy to see that the objective has a Eu-
clidean Lipschitz continuous gradient on this set. Therefore, we can invoke
Theorem 7 to show that the objective function satisfies condition (i) needed

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

20 Reshad Hosseini, Suvrit Sra

by Theorems 4 and 5. Furthermore, the objective function has a G-bounded
gradient in this compact set and the iterations stay within it. Therefore, con-
dition (iv) needed for Theorem 5 also holds. We summarize this result in the
following corollary.

Corollary 3 Assume SGD is used for optimizing the penalized log-likelihood
of Gmm, which is given by

f({Sj � 0}Kj=1, {ηj}K−1
j=1) =

1
n

n∑

i=1

fi({Sj � 0}Kj=1, {ηj}K−1
j=1),

where fi is as in (26). Then, the gradient of the objective after T iterations
with constant step-size equal to ηt = c/

√
T satisfies

min
1≤t≤T

E[‖∇f t({Sj � 0}Kj=1, {ηj}K−1
j=1)‖2] ≤ 1√

T

(
f∗ − f0

c
+
Lc

2
G2
)

= O
(

1√
T

)
,

where f t is the penalized objective evaluated at the value of parameters after t
iterations; f∗ is the value of penalized objective at its optimum; f0 is the value
of the objective at its initial point; L is the Lipschitz-growth bound constant;
and G is the constant for the G-bounded condition of the gradient.

6 Experiments

In all experiments, the parameters of the penalizer in (13) are ρ = κ = 0.01
and α = β = 1. The parameter Λ is set to 0.01 of sample covariance of the data
and λ is sample mean of the data. The parameter ζ of the penalizer in (17) is
set to 1. We initialize the mixture parameters using k-means++ [3] by testing
30 different initial candidate and choosing the one with the best cost function.
All methods stop when the difference between cost functions falls below 10−6.

In order to show the efficacy of SGD, we fix the step-size rule in all ex-
periments. We use exponential decay for the step-size. Given the maximum
number of epochs, we set the starting step-size to 1 and the last step-size to
10−3. The batch size is set to be equal to the dimensionality of data.

For the deterministic Riemannian optimization methods, we use exponen-
tial map and parallel transport as they lead to superior performance compared
to other kinds of retractions and vector transports. For Riemannian SGD, we
report the result of using Euclidean retraction. We also tested a more ex-
pensive exponential map and a different positivity-preserving retraction [21].
However, we observed no difference in cost function decrease as a function of
gradient evaluations.

Two typical line-search methods are used in practice, one is Armijo rule
and the other is line-search algorithm satisfying Wolfe conditions. For the case
of LBFGS method, it is more common to use Wolfe line-search because it can
guarantee that each step of LBFGS creates a descent direction [35]. In the
following subsection, we give a short overview of manifold optimization algo-
rithms used in this paper. Then in the next subsection, we explain the details
of Wolfe line-search. We present the simulation results in the last subsection.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 21

Algorithm 1 Sketch of batch optimization algorithms (CG, LBFGS) on manifold

Given: Riemannian manifold M with Riemannian metric g; vector transport T on M;
retraction Ret; initial value x0; a smooth function f
for t = 0, 1, . . . do

Obtain a descent direction ξt based on stored information and ∇f(xt) using defined
g and T

Use line-search to find α such that it satisfies appropriate conditions
Calculate xt+1 = Retxt (αξt)
Based on the memory and need of algorithm store xt, ∇f(xt) and αξt

end for
return xt+1

Algorithm 2 Manifold SGD

Given: Smooth manifoldM with retraction Ret; initial value x0; a function f that is the
average of n smooth functions f(.) = 1

n

∑n
i=1 fi(.)

for t = 0, 1, . . . do
The set It contains the indices of the data in the tth batch
Obtain the direction ξt = − 1

|It|
∑
i∈It ∇fi(xt)

Use a step-size rule to choose the step-size αt
Calculate xt+1 = Retxt (αtξt)

end for
return xt+1

6.1 Manifold optimization algorithms

Algorithm 1 sketches a generic batch manifold optimization algorithm used in
this paper. Two common optimization algorithms that fall into this generic one
are Riemannian CG and Riemannian LBFGS. Key concepts needed for imple-
menting the algorithms were explained in Section 2. Pseudocode for manifold
SGD is shown in Algorithm 2.

Algorithm 3 is the pseudocode we used for implementing our Riemannian
LBFGS algorithm. There are different variants of Riemannian LBFGS algo-
rithm differ on where to apply the vector transport. We tested several variants
and observed that the variant presented in Algorithm 3 which is the same as
that of [38] achieved the best result. The vector transport used in our case of
Algorithm 3 is the parallel transport. The adjoint of the parallel transport T ∗x,y
is equal to the inverse of it T −1

x,y which is also equal to Ty,x. We use Riemannian
CG implementation of the ManOpt toolbox [9].

6.2 Wolfe line-search

The first Wolfe condition is a sufficient-decrease condition and is given by

f(Retxt(αξt)) ≤ f(xt) + c1αDf(xt)ξt,

where 0 < c1 < 1 is a constant typically chosen to be around 10−4 for
LBFGS. This condition alone does not ensure that the algorithm makes suffi-

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

22 Reshad Hosseini, Suvrit Sra

Algorithm 3 Riemannian LBFGS

Given: Riemannian manifold M with Riemannian metric g; vector transport T on M;
retraction Ret; initial value x0; a smooth function f
Set initial Hdiag = 1/

√
gx0 (∇f(x0),∇f(x0))

for t = 0, 1, . . . do
Obtain the descent direction ξt ← Desc(−∇f(xt), t)
Use line-search to find α such that it satisfies Wolfe conditions
Calculate xt+1 = Retxt (αξt)
Define st+1 = Txt,xt+1 (αξt)
Define yt+1 = ∇f(xt+1)− Txt,xt+1 (∇f(xt))
Update Hdiag = gxt+1 (st+1, yt+1)/gxt+1 (yt+1, yt+1)
Store yt+1; st+1; gxt+1 (st+1, yt+1); gxt+1 (st+1, st+1); Hdiag

end for
return xt+1
function Desc(p, t) //obtaining the descent direction by unrolling the BFGS method
if t > 0 then

p̃ = p− gxt (st,p)
gxt (yt,st)

yt

p̂ = Txt−1,xtDesc(T ∗xt−1,xt
p̃, t− 1)

// T ∗x,y is the adjoint of Tx,y [35] (defined by
// gy(v, Tx,yu) = gx(u, T ∗x,yv) ∀u ∈ TxM, v ∈ TyM)

return p̂− gxt (yt,p̂)
gxt (yt,st)

st +
gxt (st,st)
gxt (yt,st)

p

else
return Hdiagp

end if
end function

cient progress. Another condition called curvature condition is needed,

Df(Retxt(αξt))Txt,Retxt (αξt)(ξt) ≥ c2Df(xt)ξt, (31)

where c2 > c1 is a constant smaller than 1 (around 0.9 for LBFGS). Practical
line-search algorithms usually satisfy strong Wolfe conditions, where (31) is
replaced by the stronger condition:

|Df(Retxt(αξt))Txt,Retxt (αξt)(ξt)| ≤ c2|Df(xt)ξt|.

Algorithm 4 summarizes a line-search algorithm satisfying strong Wolfe con-
ditions based on the Euclidean algorithm explained in [31]. The algorithm is
divided into two phases: bracketing and zooming. In the bracketing phase, an
interval is found that contains a point satisfying the strong Wolfe condition.
Next, in the zooming phase, the actual point is found. Theory behind why
this algorithm is guaranteed to find a step-length satisfying (strong) Wolfe
conditions can be found in [31]. For the interpolation and extrapolation steps
of the line-search one can find the minimum of a cubic polynomial approxi-
mation to the function in an interval. For cubic polynomial interpolation, we
approximate the function by a cubic polynomial so that the function φ(·) and
its gradient φ′(·) matches the function value and the gradient of the cubic
polynomial at the end-points of the interval. For extrapolation, we use the
function and gradient at 0 and at the end-point. To ensure numerical stability,
the interval wherein the minimum of the cubic polynomial is computed in the

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 23

Algorithm 4 Wolfe line-search

1: Given: Current point xt and descent
direction ξt

2: φ(α)← f(Rxt (αξt)); φ′(α)← αDf(xt)ξt
3: α0 ← 0, α1 > 0 and i← 0.
4: while i ≤ imax do
5: i← i+ 1
6: if φ(αi) > φ(0) + c1αiφ

′(0) or
φ(αi) ≥ φ(αi−1), i > 1 then

7: αlow = αi−1 and αhi = αi
8: break
9: else if |φ′(αi)| ≤ c2φ′(0) then

return αi
10: else if |φ′(αi)| ≥ 0 then
11: αlow = αi and αhi = αi−1
12: break
13: else
14: Extrapolate to find αi+1 > αi
15: end if
16: end while
17: Call ZoomingPhase

Algorithm 5 ZoomingPhase

1: while i ≤ imax do
2: i← i+ 1
3: Interpolate to find αi ∈ (αlow, αhi)
4: if φ(αi) > φ(0) + c1αiφ

′(0) or
φ(αi) ≥ φ(αlow) then

5: αhi ← αi
6: else
7: if |φ′(αi)| ≤ c2φ′(0) then

return αi
8: else if φ′(αi)(αhi − αlow) ≥ 0

then
9: αhi ← αlow

10: end if
11: αlow ← αi
12: end if
13: end while
14: return failure

interpolation phase is chosen to be smaller than the actual interval so to have
certain distances from the end-points of the interval (we choose the distance to
be 0.1 times the interval length). The interval for the extrapolation is assumed
to be between 1.1 and 10 times the value of the current point.

The initial step-length α1 can be guessed using the previous function and
gradient information. We propose the following choice that is quite effective:

α1 = 2
f(xt)− f(xt−1)

Df(xt)ξt
. (32)

Equation (32) is obtained by finding α∗ that minimizes a quadratic approxi-
mation of the function along the geodesic through the previous point (based
on f(xt−1), f(xt) and Df(xt−1)ξt−1):

α∗ = 2
f(xt)− f(xt−1)
Df(xt−1)ξt−1

. (33)

Then, assuming that first-order change will be the same as in the previous
step, we write

α∗Df(xt−1)ξt−1 ≈ α1Df(xt)ξt. (34)

Combining (33) and (34), we obtain our procedure of selection α1 expressed
in (32). Nocedal and Wright [31] suggest using either α∗ of (33) as the initial
step-length, or using (34) where α∗ is set equal to the step-length obtained
in the line-search at the previous point. We observed the our choice (32) pro-
posed above leads to substantially better performance than these other two
approaches.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

24 Reshad Hosseini, Suvrit Sra

10−1 100 101 102

21.4

21.6

21.8

22

22.2

22.4

22.6

22.8

23

23.2

Time (seconds)

A
ve

ra
ge

lo
g-

lik
el

ih
oo

d

LBFGS, Reformulated MVN
CG, Reformulated MVN
LBFGS, Usual MVN
CG, Usual MVN

100 101 102 103 104 105
26

27

28

29

30

31

32

33

Time (seconds)

A
ve

ra
ge

lo
g-

lik
el

ih
oo

d

LBFGS, Reformulated MVN
CG, Reformulated MVN
LBFGS, Original MVN
CG, Original MVN

Fig. 2: The effect of reformulation in convergence speed of manifold CG and manifold
LBFGS methods (d = 35); note that the X-axis (time) is on a logarithmic scale [20].

6.3 Simulation Results

In the first experiment, the effect of the problem reformulation of Section 3
is investigate. This effect is shown if Figure 2. The left plot is the result of
optimization for a single Gaussian and the right plot is the result for Gmm
with seven components. It can be seen that the reformulation has significant
effect on the convergence speed.

Simulated Data

In the next set of experiments, we evaluate the statistical properties of dif-
ferent methods in recovering true parameters of underlying distribution. To
this end, we sample from GMMs with known means and covariance matrices.
It is know that the performance of EM algorithm depends on the degree of sep-
aration of the components in the mixture models [26, 44]. We use the method
of [12] to generate the parameters of GMMs with given degree of separation.
In this method, the mean of components satisfy the following inequality:

∀i 6=j‖µi − µj‖ ≥ cmax
i,j

{
tr(Σi), tr(Σj)

}

where c shows the degree of separation between different components. We
use three different degrees of separation in our experiments: c = 0.2 (low
separation), c = 1 (mid separation) and c = 5 high separation. Averaged
negative penalized log-likelihood cost function of different methods for d = 5
and K = 5 are shown in Table 2. The eccentricity of the covariance matrices,
i.e. the ration of the largest to the smallest eigenvalue, is set to e = 10. The
numbers are reported for different amount of data 10d2, 100d2 and 1000d2,
and different iterations 5, 20, 50, and also last iteration shown as END in the
table. As it can be seen in the table, Riemannian SGD not only outperforms
other methods in terms of convergence speed, but it also achieves better cost
functions which means it can reach better local minima of the cost function.

To evaluate how well different methods recover the parameters of under-
lying distribution, we evaluate the estimation error of different methods. The

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 25

Table 2: Averaged negative penalized log-likelihood cost function of GMMs
for different methods, different amount of data and three different degrees of
separation of components. The values for 5th, 20th, 50th and the last iteration
are shown in the table. The results are averaged results for 10 different runs
of algorithms for the data sampled from GMMs with d = 5, K = 5 and e = 10
(eccentricity of covariance matrices).

c method n 5 20 50 END
low EM 250 3.261 3.162 3.120 3.085

2500 3.205 3.047 2.980 2.968
25000 3.524 3.390 3.323 3.301

SGD 250 3.319 3.152 3.084
2500 2.996 2.965 2.970
25000 3.312 3.303 3.301

LBFGS 250 3.316 3.130 3.097 3.097
2500 3.247 3.051 2.985 2.979
25000 3.571 3.393 3.319 3.305

CG 250 3.317 3.162 3.106 3.105
2500 3.265 3.089 2.990 2.981
25000 3.584 3.413 3.326 3.305

mid EM 250 3.625 3.562 3.541 3.539
2500 3.918 3.827 3.803 3.800
25000 3.739 3.644 3.643 3.599

SGD 250 3.705 3.569 3.522
2500 3.809 3.794 3.782
25000 3.565 3.548 3.548

LBFGS 250 3.692 3.538 3.526 3.525
2500 3.986 3.815 3.799 3.794
25000 3.805 3.679 3.647 3.568

CG 250 3.703 3.545 3.532 3.528
2500 3.980 3.826 3.807 3.794
25000 3.801 3.687 3.658 3.599

high EM 250 3.666 3.666 3.666 3.666
2500 3.833 3.833 3.833 3.833
25000 3.520 3.520 3.520 3.520

SGD 250 3.699 3.667 3.666
2500 3.834 3.833 3.833
25000 3.521 3.520 3.520

LBFGS 250 3.677 3.666 3.666 3.666
2500 3.848 3.833 3.833 3.833
25000 3.533 3.520 3.520 3.520

CG 250 3.685 3.666 3.666 3.666
2500 3.849 3.833 3.833 3.833
25000 3.536 3.520 3.520 3.520

estimated error for the mean vectors and the covariance matrices are shown in
Table 3 and Table 4, respectively. The estimation error for the mean vectors is
calculated by summing norm of difference between estimated and true mean
vectors, i.e.

Eµ =
K∑

k=1

‖µk − µ∗k‖,

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

26 Reshad Hosseini, Suvrit Sra

Table 3: Parameter estimation error of GMMs’ mean vectors for different meth-
ods, different amount of data and three different degrees of separation of com-
ponents. The values for 5th, 20th, 50th and the last iteration are shown in the
table. The average and standard deviation are reported for 10 different runs
of algorithms for the data sampled from GMMs with d = 5, K = 5 and e = 10
(eccentricity of covariance matrices).

c method n 5 20 50 END
low EM 250 3.779±0.656 3.497±0.759 3.328±0.768 3.230±0.807

2500 3.096±0.623 1.640±0.767 0.705±0.409 0.441±0.208
25000 3.394±0.731 1.964±0.713 0.802±0.637 0.175±0.156

SGD 250 3.886±0.624 3.275±0.557 2.941±0.739
2500 1.043±0.474 0.382±0.096 0.468±0.197
25000 0.361±0.192 0.198±0.152 0.167±0.143

LBFGS 250 3.986±0.630 3.558±0.787 3.395±0.894 3.382±0.885
2500 3.628±1.016 1.589±0.817 1.012±0.453 1.005±0.599
25000 4.442±1.880 2.366±1.420 0.993±1.038 0.405±0.464

CG 250 4.024±0.624 3.574±0.665 3.479±0.854 3.469±0.852
2500 3.791±1.105 2.218±1.011 1.182±0.468 1.023±0.494
25000 4.578±1.787 2.825±1.422 1.219±1.140 0.443±0.542

mid EM 250 2.808±0.590 2.749±0.711 2.800±0.746 2.811±0.758
2500 1.983±1.447 1.249±1.266 1.017±1.277 0.939±1.146
25000 2.601±1.301 1.618±1.723 1.526±1.601 0.909±1.323

SGD 250 3.116±0.732 2.571±0.705 2.346±0.785
2500 1.132±1.151 0.675±0.895 0.653±0.894
25000 0.559±0.985 0.329±0.768 0.328±0.766

LBFGS 250 3.022±0.758 2.692±0.693 2.662±0.688 2.663±0.687
2500 2.274±1.502 1.230±1.325 0.821±0.942 0.631±0.849
25000 3.083±1.209 2.050±1.596 1.276±1.289 0.702±1.307

CG 250 3.106±0.696 2.689±0.687 2.660±0.668 2.664±0.696
2500 2.288±1.546 1.338±1.473 0.957±1.013 0.634±0.851
25000 3.074±1.207 2.141±1.535 1.484±1.362 0.958±1.413

high EM 250 0.720±0.150 0.720±0.150 0.720±0.150 0.720±0.150
2500 0.246±0.057 0.246±0.057 0.246±0.057 0.246±0.057
25000 0.078±0.018 0.078±0.018 0.078±0.018 0.078±0.018

SGD 250 0.711±0.153 0.719±0.151 0.719±0.149
2500 0.241±0.054 0.245±0.057 0.246±0.056
25000 0.089±0.018 0.079±0.019 0.079±0.017

LBFGS 250 0.716±0.142 0.720±0.150 0.720±0.150 0.720±0.150
2500 0.352±0.161 0.246±0.057 0.246±0.057 0.246±0.057
25000 0.169±0.048 0.078±0.018 0.078±0.018 0.078±0.018

CG 250 0.737±0.143 0.720±0.150 0.720±0.150 0.720±0.150
2500 0.374±0.257 0.246±0.057 0.246±0.057 0.246±0.057
25000 0.232±0.168 0.078±0.018 0.078±0.018 0.078±0.018

where µk is estimated and µ∗k is its corresponding true mean vectors. The esti-
mation error for the covariance parameters is calculated by summing Frobenius
norm of difference between estimated and true covariance matrices.

As it is clear from Tables 3 and 4, Riemannian SGD significantly outper-
forms EM algorithm and other optimization methods both in terms of speed
and also accuracy. In compare to Table 2, where we reported the cost function,

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 27

Table 4: Parameter estimation error of GMMs’ covariance matrices for different
methods, different amount of data and three different degrees of separation of
components. The values for 5th, 20th, 50th and the last iteration are shown
in the table. The average and standard deviation are reported for 10 different
runs of algorithms for the data sampled from GMMs with d = 5, K = 5 and
e = 10.

c method n 5 20 50 END
low EM 250 2.585±0.463 2.473±0.540 2.462±0.673 2.506±0.676

2500 2.236±0.606 1.338±0.615 0.818±0.520 0.567±0.370
25000 2.247±0.416 1.625±0.405 0.848±0.510 0.274±0.336

SGD 250 2.646±0.439 2.370±0.581 2.336±0.690
2500 1.001±0.348 0.490±0.247 0.642±0.329
25000 0.597±0.359 0.279±0.230 0.224±0.190

LBFGS 250 2.639±0.454 2.604±0.660 2.619±0.657 2.624±0.661
2500 2.453±0.844 1.609±1.061 1.046±0.377 0.986±0.411
25000 2.377±0.580 1.605±0.667 0.737±0.720 0.375±0.348

CG 250 2.626±0.431 2.568±0.566 2.535±0.705 2.531±0.716
2500 2.406±0.726 1.791±0.960 1.206±0.581 1.058±0.495
25000 2.424±0.515 1.895±0.778 0.894±0.782 0.394±0.391

mid EM 250 2.149±0.665 2.133±0.731 2.096±0.722 2.083±0.718
2500 1.294±0.760 0.900±0.646 0.798±0.629 0.745±0.556
25000 1.361±0.462 0.725±0.638 0.711±0.626 0.467±0.565

SGD 250 2.416±1.009 2.100±0.675 1.956±0.628
2500 0.901±0.644 0.682±0.564 0.653±0.525
25000 0.418±0.647 0.232±0.376 0.232±0.373

LBFGS 250 2.341±1.046 2.004±0.726 2.015±0.744 2.022±0.738
2500 1.468±0.750 0.878±0.619 0.704±0.440 0.609±0.381
25000 1.752±0.340 1.112±0.685 0.817±0.639 0.353±0.513

CG 250 2.366±1.077 2.004±0.728 2.019±0.731 2.008±0.748
2500 1.538±0.845 0.912±0.687 0.805±0.533 0.611±0.382
25000 1.763±0.340 1.167±0.653 0.851±0.639 0.482±0.587

high EM 250 0.928±0.303 0.928±0.303 0.928±0.303 0.928±0.303
2500 0.355±0.086 0.355±0.086 0.355±0.086 0.355±0.086
25000 0.095±0.020 0.095±0.020 0.095±0.020 0.095±0.020

SGD 250 1.207±0.389 0.945±0.306 0.933±0.303
2500 0.373±0.088 0.358±0.086 0.356±0.087
25000 0.113±0.023 0.095±0.019 0.095±0.019

LBFGS 250 0.948±0.294 0.928±0.303 0.928±0.303 0.928±0.303
2500 0.603±0.335 0.356±0.086 0.355±0.086 0.355±0.086
25000 0.298±0.143 0.096±0.020 0.096±0.020 0.096±0.020

CG 250 1.049±0.360 0.927±0.303 0.927±0.303 0.927±0.303
2500 0.628±0.434 0.355±0.087 0.355±0.087 0.355±0.087
25000 0.414±0.362 0.095±0.020 0.095±0.020 0.095±0.020

we here see more improvement. This behavior can be attributed to the obser-
vation that the SGD method has a tendency to converge to a point closer to
the true parameters than that of other methods. An example of this behavior
can be seen in Fig. 3, where all methods converge to pretty much the same
cost function, but SGD converges to a better local minimum in the sense of
closeness to the true parameters. Fig. 4 shows an interesting behavior of SGD,

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

28 Reshad Hosseini, Suvrit Sra

0 20 40 60 80 100 120 140
10−5

10−4

10−3

10−2

10−1

100

101

Iterations

A
ve

ra
ge

d
C

os
t

D
iff

er
en

ce

SGD (it=5)
SGD (it=20)
SGD (it=50)
EM
LBFGS
CG

0 20 40 60 80 100 120 140
2

3

4

5

6

7

Iterations

Su
m

N
or

m
of

M
ea

n
D

iff
er

en
ce

s

SGD (it=5)
SGD (it=20)
SGD (it=50)
EM
LBFGS
CG

Fig. 3: Comparison of optimization methods on the simulated data (d = 5, n = 25000,
e = 10, mid separation). Left plot shows best cost minus current cost values as the function
of number of function and gradient evaluations. Right plot shows sum norm of distances
between estimated and true mean parameters of GMM components.

0 10 20 30 40 50 60 70
10−5

10−4

10−3

10−2

10−1

100

Iterations

A
ve

ra
ge

d
C

os
t

D
iff

er
en

ce

SGD (it=5)
SGD (it=20)
SGD (it=50)
EM
LBFGS
CG

0 10 20 30 40 50 60 70
3

3.5

4

4.5

Iterations

Su
m

N
or

m
of

M
ea

n
D

iff
er

en
ce

s

SGD (it=5)
SGD (it=20)
SGD (it=50)
EM
LBFGS
CG

Fig. 4: Comparison of optimization methods on the simulated data (d = 5, n = 250,
e = 10, mid separation). Left plot shows best cost minus current cost values as the function
of number of function and gradient evaluations. Right plot shows sum norm of distances
between estimated and true mean parameters of GMM components.

where the method converges to a point with worst cost but closer to the true
parameters.

In Table 5, we reported the estimation error for the case of smaller number
of components K = 2. In this simple case, all methods perform well, while
SGD outperforms other methods in one of the cases, that is low separation
and small number of data.

Since components with low eccentricity have more overlap, we evaluate the
performance where the components have no eccentricity, that is the case where
covariance matrices are spherical. The results shown in Table 6 illustrate the
fact that more overlap leads to slower convergence for optimization methods.
The mid separation is the only place where we see other optimization methods
outperform SGD. We attribute this behavior to the flatness of the objective
function near optimum. In such cases, stochastic gradient descent would suf-
fer from slow convergence behavior. An example of the result happening for

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 29

Table 5: Parameter estimation error of GMMs’ mean vectors for different meth-
ods, different amount of data and three different degrees of separation of com-
ponents. The values for 5th, 20th, 50th and the last iteration are shown in the
table. The average and standard deviation are reported for 10 different runs of
algorithms for the data sampled from GMMs with d = 5, K = 2 and e = 10.

c method n 5 20 50 END
low EM 250 0.486±0.137 0.344±0.222 0.306±0.223 0.290±0.222

2500 0.783±0.273 0.200±0.154 0.072±0.029 0.056±0.015
25000 0.682±0.235 0.233±0.271 0.076±0.146 0.016±0.006

SGD 250 0.400±0.199 0.222±0.150 0.182±0.066
2500 0.062±0.018 0.057±0.015 0.056±0.015
25000 0.023±0.008 0.016±0.007 0.016±0.006

LBFGS 250 0.486±0.192 0.319±0.218 0.287±0.216 0.281±0.211
2500 1.055±0.455 0.496±0.516 0.146±0.201 0.056±0.015
25000 0.913±0.520 0.426±0.389 0.173±0.281 0.016±0.006

CG 250 0.530±0.163 0.363±0.220 0.290±0.219 0.282±0.212
2500 1.081±0.460 0.525±0.493 0.181±0.258 0.056±0.015
25000 0.965±0.539 0.552±0.493 0.195±0.298 0.016±0.006

mid EM 250 0.237±0.158 0.143±0.067 0.135±0.065 0.135±0.065
2500 0.147±0.252 0.117±0.222 0.049±0.019 0.045±0.019
25000 0.208±0.422 0.139±0.397 0.012±0.003 0.012±0.003

SGD 250 0.173±0.080 0.145±0.059 0.137±0.063
2500 0.047±0.019 0.045±0.018 0.045±0.018
25000 0.019±0.003 0.014±0.004 0.013±0.004

LBFGS 250 0.208±0.145 0.136±0.065 0.135±0.065 0.135±0.065
2500 0.144±0.261 0.047±0.017 0.045±0.018 0.045±0.018
25000 0.233±0.430 0.136±0.387 0.013±0.003 0.012±0.003

CG 250 0.210±0.141 0.135±0.064 0.135±0.065 0.135±0.065
2500 0.155±0.256 0.047±0.017 0.045±0.019 0.045±0.019
25000 0.247±0.423 0.067±0.170 0.012±0.003 0.012±0.003

high EM 250 0.122±0.037 0.122±0.037 0.122±0.037 0.122±0.037
2500 0.042±0.010 0.042±0.010 0.042±0.010 0.042±0.010
25000 0.012±0.004 0.012±0.004 0.012±0.004 0.012±0.004

SGD 250 0.127±0.040 0.122±0.037 0.122±0.037
2500 0.041±0.011 0.042±0.010 0.042±0.010
25000 0.018±0.004 0.013±0.005 0.013±0.005

LBFGS 250 0.121±0.036 0.122±0.037 0.122±0.037 0.122±0.037
2500 0.059±0.028 0.042±0.010 0.042±0.010 0.042±0.010
25000 0.021±0.008 0.012±0.004 0.012±0.004 0.012±0.004

CG 250 0.127±0.040 0.122±0.037 0.122±0.037 0.122±0.037
2500 0.072±0.050 0.042±0.010 0.042±0.010 0.042±0.010
25000 0.019±0.020 0.012±0.004 0.012±0.004 0.012±0.004

the case of mid separation is shown in Fig. 5. The slow convergence of EM
algorithm is clear from this figure. Riemannian LBFGS and CG algorithms
estimate curvature information of the cost function and therefore they have
faster convergence behavior. It is worth nothing that although SGD have rela-
tively larger estimation error but its density is very close to the density of true
distribution, because there exist some parameters with large distance from the
true distribution that lead to almost the same density.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

30 Reshad Hosseini, Suvrit Sra

Table 6: Parameter estimation error of GMMs’ mean vectors for different meth-
ods, different amount of data and three different degrees of separation of com-
ponents. The values for 5th, 20th, 50th and the last iteration are shown in the
table. The average and standard deviation are reported for 10 different runs
of algorithms for the data sampled from GMMs with d = 5, K = 5 and e = 1
(spherical covariance matrices).

c method n 5 20 50 END
low EM 250 0.611±0.051 0.601±0.057 0.587±0.058 0.577±0.088

2500 0.540±0.051 0.490±0.048 0.475±0.046 0.456±0.066
25000 0.543±0.039 0.472±0.043 0.434±0.048 0.381±0.055

SGD 250 0.630±0.076 0.526±0.028 0.481±0.060
2500 0.341±0.085 0.227±0.064 0.206±0.044
25000 0.164±0.009 0.155±0.012 0.163±0.014

LBFGS 250 0.636±0.069 0.601±0.066 0.600±0.073 0.602±0.076
2500 0.624±0.096 0.555±0.075 0.535±0.070 0.541±0.102
25000 0.720±0.137 0.630±0.139 0.570±0.122 0.555±0.111

CG 250 0.645±0.076 0.593±0.059 0.604±0.072 0.600±0.077
2500 0.643±0.097 0.554±0.072 0.533±0.062 0.521±0.084
25000 0.726±0.141 0.634±0.137 0.579±0.124 0.550±0.141

mid EM 250 0.781±0.107 0.741±0.109 0.741±0.105 0.735±0.120
2500 0.604±0.156 0.504±0.157 0.439±0.152 0.400±0.176
25000 0.616±0.094 0.518±0.116 0.427±0.125 0.187±0.160

SGD 250 0.848±0.104 0.736±0.119 0.694±0.115
2500 0.549±0.120 0.645±0.050 0.606±0.067
25000 0.563±0.070 0.547±0.120 0.499±0.145

LBFGS 250 0.852±0.110 0.772±0.117 0.757±0.109 0.761±0.112
2500 0.824±0.221 0.579±0.201 0.496±0.209 0.478±0.215
25000 0.713±0.110 0.536±0.109 0.309±0.176 0.133±0.126

CG 250 0.873±0.109 0.784±0.114 0.756±0.118 0.750±0.113
2500 0.838±0.230 0.607±0.210 0.497±0.196 0.446±0.210
25000 0.730±0.098 0.554±0.109 0.434±0.144 0.142±0.122

high EM 250 0.163±0.024 0.163±0.024 0.163±0.024 0.163±0.024
2500 0.055±0.006 0.055±0.006 0.055±0.006 0.055±0.006
25000 0.017±0.004 0.017±0.004 0.017±0.004 0.017±0.004

SGD 250 0.186±0.037 0.163±0.024 0.163±0.024
2500 0.055±0.007 0.055±0.006 0.055±0.006
25000 0.019±0.004 0.017±0.004 0.017±0.004

LBFGS 250 0.176±0.042 0.163±0.024 0.163±0.024 0.163±0.024
2500 0.078±0.034 0.055±0.006 0.055±0.006 0.055±0.006
25000 0.041±0.017 0.017±0.004 0.017±0.004 0.017±0.004

CG 250 0.190±0.049 0.163±0.024 0.163±0.024 0.163±0.024
2500 0.085±0.036 0.055±0.006 0.055±0.006 0.055±0.006
25000 0.055±0.044 0.017±0.004 0.017±0.004 0.017±0.004

We also evaluate the performance of different algorithms for synthetic data
of a larger dimension which is shown in Table 7. It can be seen that SGD sig-
nificantly outperforms other methods in low separation case. Unlike previous
results, we see in this table that all methods work similarly well in mid separa-
tion and high separation. This is because in higher dimensions, the components
with high eccentricity are less likely to overlap.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 31

0 100 200 300 400
10−5

10−4

10−3

10−2

10−1

100

Iterations

A
ve

ra
ge

d
C

os
t

D
iff

er
en

ce

SGD (it=5)
SGD (it=20)
SGD (it=50)
EM
LBFGS
CG

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

Iterations

Su
m

N
or

m
of

M
ea

n
D

iff
er

en
ce

s

SGD (it=5)
SGD (it=20)
SGD (it=50)
EM
LBFGS
CG

Fig. 5: Comparison of optimization methods on the simulated data (d = 5, n = 25000, e = 1
and mid separation). Left plot shows best cost minus current cost values as the function
of number of function and gradient evaluations. Right plot shows sum norm of distances
between estimated and true mean parameters of GMM components.

0 10 20 30 40 50
10−5

10−4

10−3

10−2

10−1

100

101

Iterations

A
ve

ra
ge

d
C

os
t

D
iff

er
en

ce

SGD (it=5)
SGD (it=20)
SGD (it=50)
EM
LBFGS
CG

0 20 40 60 80
10−5

10−4

10−3

10−2

10−1

100

101

Iterations

A
ve

ra
ge

d
C

os
t

D
iff

er
en

ce

SGD (it=5)
SGD (it=20)
SGD (it=50)
EM
LBFGS
CG

Fig. 6: Comparison of optimization methods on natural image data (d = 35, n = 200000).
Y-axis: best cost minus current cost values. X-axis: number of function and gradient evalu-
ations. Right: 3 number of components. Left: 7 number of components.

Real Data

In the last set of experiments, we compare the performance of manifold opti-
mization methods on the reformulated problem and EM on some real datasets.
One of the datasets is a dataset of natural images [20]. The other three datasets
called ‘corel’, ‘yearpredict’ and ‘wine’ data are taken from UCI machine learn-
ing dataset repository3. The results are shown in Figure 6-9. The dimension-
ality d of data and number of data-points n are given in the figure legends.

It can be seen than deterministic manifold optimization methods achieve
and outperforms the EM algorithm. The manifold SGD shows remarkable
performance. This method leads to fast increase of the objective function in
early iterations.

3 Available via https://archive.ics.uci.edu/ml/datasets

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

32 Reshad Hosseini, Suvrit Sra

Table 7: Parameter estimation error of GMMs’ mean vectors for different meth-
ods, different amount of data and three different degreess of separation of com-
ponents. The values for 5th, 20th, 50th and the last iteration are shown in the
table. The average and standard deviation are reported for 10 different runs of
algorithms for the data sampled from GMMs with d = 5, K = 5 and e = 20.

c method n 5 20 50 END
low EM 4000 2.072±0.476 1.112±0.798 1.042±0.726 1.015±0.684

40000 1.490±0.966 0.730±0.989 0.654±0.857 0.612±0.814
400000 1.708±0.536 0.943±0.657 0.807±0.665 0.408±0.579

SGD 4000 1.115±0.799 0.804±0.612 0.859±0.551
40000 0.465±0.397 0.319±0.358 0.232±0.245
400000 0.397±0.393 0.146±0.281 0.139±0.269

LBFGS 4000 3.849±1.129 1.472±0.782 1.152±0.772 1.146±0.759
40000 3.869±1.010 1.268±0.971 0.604±0.763 0.410±0.556
400000 4.865±1.595 1.423±1.010 0.687±0.771 0.137±0.284

CG 4000 4.629±1.407 1.870±0.766 1.029±0.814 1.004±0.741
40000 5.759±2.138 1.531±1.160 0.705±0.899 0.432±0.602
400000 6.001±1.510 2.227±1.227 0.673±0.707 0.136±0.282

mid EM 4000 0.938±1.475 0.929±1.445 0.920±1.418 0.921±1.422
40000 0.582±1.367 0.578±1.356 0.568±1.325 0.553±1.277
400000 0.479±1.369 0.472±1.348 0.467±1.333 0.464±1.321

SGD 4000 0.941±1.437 0.923±1.427 0.923±1.426
40000 0.551±1.262 0.552±1.276 0.553±1.278
400000 0.091±0.008 0.058±0.006 0.053±0.004

LBFGS 4000 1.890±1.423 0.921±1.414 0.916±1.405 0.913±1.394
40000 1.587±1.620 0.883±1.559 0.565±1.315 0.556±1.287
400000 0.991±1.136 0.409±1.147 0.107±0.192 0.046±0.004

CG 4000 1.845±1.408 0.920±1.417 0.915±1.402 0.914±1.400
40000 1.646±1.461 0.852±1.504 0.559±1.296 0.541±1.240
400000 1.276±1.150 0.390±1.085 0.046±0.004 0.046±0.004

high EM 4000 0.488±0.071 0.488±0.071 0.488±0.071 0.488±0.071
40000 0.162±0.027 0.162±0.027 0.162±0.027 0.162±0.027
400000 0.046±0.007 0.046±0.007 0.046±0.007 0.046±0.007

SGD 4000 0.502±0.078 0.488±0.072 0.488±0.071
40000 0.165±0.026 0.162±0.027 0.162±0.027
400000 0.088±0.008 0.057±0.008 0.052±0.008

LBFGS 4000 1.435±0.862 0.488±0.071 0.488±0.071 0.488±0.071
40000 1.126±0.665 0.162±0.027 0.162±0.027 0.162±0.027
400000 0.900±0.428 0.046±0.007 0.046±0.007 0.046±0.007

CG 4000 1.125±0.656 0.488±0.071 0.488±0.071 0.488±0.071
40000 1.284±0.948 0.162±0.027 0.162±0.027 0.162±0.027
400000 0.642±0.377 0.046±0.007 0.046±0.007 0.046±0.007

7 Conclusions and future work

In this paper, we proposed a reformulation for the Gmm problem that can
make Riemannian manifold optimization a powerful alternative to the EM
algorithm for fitting Gaussian mixture models. The deterministic manifold
optimization methods can either match or outperform EM algorithm. Fur-
thermore, we developed a global convergence theory for SGD on manifolds.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 33

0 10 20 30 40 50
10−5

10−4

10−3

10−2

10−1

100

101

Iterations

A
ve

ra
ge

d
C

os
t

D
iff

er
en

ce

SGD (it=5)
SGD (it=20)
SGD (it=50)
EM
LBFGS
CG

0 20 40 60 80 100 120 140 160 180 200
10−5

10−4

10−3

10−2

10−1

100

101

Iterations

A
ve

ra
ge

d
C

os
t

D
iff

er
en

ce

SGD (it=5)
SGD (it=20)
SGD (it=50)
EM
LBFGS
CG

Fig. 7: Comparison of optimization methods on year predict data (d = 90, n = 515345).
Y-axis: best cost minus current cost values. X-axis: number of function and gradient evalu-
ations. Right: 3 number of components. Left: 7 number of components.

0 20 40 60 80 100 120
10−5

10−4

10−3

10−2

10−1

100

101

102

Iterations

A
ve

ra
ge

d
C

os
t

D
iff

er
en

ce

SGD (it=5)
SGD (it=20)
SGD (it=50)
EM
LBFGS
CG

0 50 100 150 200 250
10−5

10−4

10−3

10−2

10−1

100

101

102

Iterations

A
ve

ra
ge

d
C

os
t

D
iff

er
en

ce

SGD (it=5)
SGD (it=20)
SGD (it=50)
EM
LBFGS
CG

Fig. 8: Comparison of optimization methods on corel data (d = 57, n = 68040). Y-axis:
current objective values minus best objective. X-axis: number of function and gradient eval-
uations. Right: 3 number of components. Left: 7 number of components.

We applied this theory to the Gmm modeling. Experimentally Riemannian
SGD for Gmm shows remarkable convergence behavior, making it a potential
candidate for large scale mixture modeling.

There are several venues for future works:

I Extension of Riemannian optimization to estimation in hidden Markov
models.

I An exploration of manifold optimization for non-Gaussian mixture mod-
els.

I Study of richer priors for Gmms beyond the usual conjugate priors.
I Developing the Riemannian analog of the work of Balakrishnan et al [4].

That is to show Riemannian optimization methods (especially Rieman-
nian SGD) achieve optimal statistical properties for the case of Gmms.

I Developing almost sure (or high-probability) convergence results to the
stationary points of the objective function.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

34 Reshad Hosseini, Suvrit Sra

0 20 40 60 80 100
10−5

10−4

10−3

10−2

10−1

100

101

Iterations

A
ve

ra
ge

d
C

os
t

D
iff

er
en

ce

SGD (it=5)
SGD (it=20)
SGD (it=50)
EM
LBFGS
CG

0 20 40 60 80 100 120
10−5

10−4

10−3

10−2

10−1

100

101

Iterations

A
ve

ra
ge

d
C

os
t

D
iff

er
en

ce

SGD (it=5)
SGD (it=20)
SGD (it=50)
EM
LBFGS
CG

Fig. 9: Comparison of optimization methods on wine data (d = 11, n = 6497). Y-axis:
current objective values minus best objective. X-axis: number of function and gradient eval-
uations. Right: 3 number of components. Left: 7 number of components.

References

1. Absil PA, Mahony R, Sepulchre R (2009) Optimization algorithms on matrix manifolds.
Princeton University Press

2. Alvarez F, Bolte J, Brahic O (2004) Hessian Riemannian gradient flows in convex pro-
gramming. SIAM journal on control and optimization 43(2):477–501

3. Arthur D, Vassilvitskii S (2007) k-means++: The advantages of careful seeding. In: 18th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp 1027–1035

4. Balakrishnan S, Wainwright MJ, Yu B (2014) Statistical guarantees for the EM algo-
rithm: From population to sample-based analysis. arXiv:14082156

5. Bhatia R (2007) Positive Definite Matrices. Princeton University Press
6. Bhojanapalli S, Kyrillidis A, Sanghavi S (2016) Dropping convexity for faster semi-

definite optimization. In: 29th Annual Conference on Learning Theory (COLT), pp
530–582

7. Bishop CM (2007) Pattern recognition and machine learning. Springer
8. Bonnabel S (2013) Stochastic gradient descent on Riemannian manifolds. IEEE Trans-

actions on Automatic Control 58(9):2217–2229
9. Boumal N, Mishra B, Absil PA, Sepulchre R (2014) Manopt, a matlab toolbox for

optimization on manifolds. The Journal of Machine Learning Research 15(1):1455–1459
10. Boumal N, Absil PA, Cartis C (2016) Global rates of convergence for nonconvex opti-

mization on manifolds. arXiv:160508101v1
11. Burer S, Monteiro RD, Zhang Y (1999) Solving semidefinite programs via nonlinear

programming. part I: Transformations and derivatives. Tech. Rep. TR99-17, Department
of Computational and Applied Mathematics, Rice University, Houston TX

12. Dasgupta S (1999) Learning mixtures of Gaussians. In: 40th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pp 634–644

13. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, Series B 39:1–38

14. Duda RO, Hart PE, Stork DG (2000) Pattern Classification, 2nd edn. John Wiley &
Sons

15. Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning. Springer
16. Ge R, Huang Q, Kakade SM (2015) Learning mixtures of Gaussians in high dimensions.

arXiv:150300424
17. Ghadimi S, Lan G (2013) Stochastic first- and zeroth-order methods for nonconvex

stochastic programming. SIAM Journal on Optimization 23(4):2341–2368
18. Hiai F, Petz D (2009) Riemannian metrics on positive definite matrices related to means.

Linear Algebra and its Applications 430(11-12):3105–3130

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Batch and stochastic Riemannian optimization for GMMs 35

19. Hiai F, Petz D (2012) Riemannian metrics on positive definite matrices related to means.
ii. Linear Algebra and its Applications 436(7):2117–2136

20. Hosseini R, Sra S (2015) Matrix manifold optimization for Gaussian mixtures. In: Ad-
vances in Neural Information Processing Systems 28 (NIPS), pp 910–918

21. Jeuris B, Vandebril R, Vandereycken B (2012) A survey and comparison of contempo-
rary algorithms for computing the matrix geometric mean. Electronic Transactions on
Numerical Analysis 39:379–402

22. Jordan MI, Jacobs RA (1994) Hierarchical mixtures of experts and the EM algorithm.
Neural Computation 6(2):181–214

23. Journée M, Bach F, Absil PA, Sepulchre R (2010) Low-rank optimization on the cone
of positive semidefinite matrices. SIAM Journal on Optimization 20(5):2327–2351

24. Keener RW (2010) Theoretical Statistics. Springer Texts in Statistics, Springer
25. Lee JM (2012) Introduction to Smooth Manifolds. Springer
26. Ma J, Xu L, Jordan MI (2000) Asymptotic convergence rate of the EM algorithm for

Gaussian mixtures. Neural Computation 12(12):2881–2907
27. McLachlan GJ, Peel D (2000) Finite mixture models. John Wiley and Sons
28. Moitra A, Valiant G (2010) Settling the polynomial learnability of mixtures of Gaus-

sians. In: 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp 93–102

29. Murphy KP (2012) Machine Learning: A Probabilistic Perspective. MIT Press
30. Naim I, Gildea D (2012) Convergence of the EM algorithm for Gaussian mixtures with

unbalanced mixing coefficients. In: 29th International Conference on Machine Learning
(ICML), pp 1655–1662

31. Nocedal J, Wright SJ (2006) Numerical Optimization. Springer
32. Redner RA, Walker HF (1984) Mixture densities, maximum likelihood, and the EM

algorithm. Siam Review 26:195–239
33. Reynolds DA, Quatieri TF, Dunn RB (2000) Speaker verification using adapted Gaus-

sian mixture models. Digital Signal Processing 10(1-3):19–41
34. Ridolfi A, Idier J, Mohammad-Djafari A (1999) Penalized maximum likelihood estima-

tion for univariate normal mixture distributions. In: Actes du 17e Colloque GRETSI,
pp 259–262

35. Ring W, Wirth B (2012) Optimization methods on Riemannian manifolds and their
application to shape space. SIAM Journal on Optimization 22(2):596–627

36. Salakhutdinov R, Roweis ST, Ghahramani Z (2003) Optimization with EM and
expectation-conjugate-gradient. In: 20th International Conference on Machine Learn-
ing (ICML), pp 672–679

37. Sra S, Hosseini R (2013) Geometric optimisation on positive definite matrices for ellip-
tically contoured distributions. In: Advances in Neural Information Processing Systems
26 (NIPS), pp 2562–2570

38. Sra S, Hosseini R (2015) Conic geometric optimization on the manifold of positive
definite matrices. SIAM Journal on Optimization 25(1):713–739

39. Udrişte C (1994) Convex functions and optimization methods on Riemannian manifolds.
Kluwer Academic

40. Vanderbei RJ, Benson HY (2000) On formulating semidefinite programming problems as
smooth convex nonlinear optimization problems. Tech. Rep. ORFE-99-01, Department
of Operations Research and Financial Engineering, Princeton University, Princeton NJ

41. Vandereycken B (2013) Low-rank matrix completion by Riemannian optimization.
SIAM Journal on Optimization 23(2):1214–1236

42. Wiesel A (2012) Geodesic convexity and covariance estimation. IEEE Transactions on
Signal Processing 60(12):6182–89

43. Wisdom S, Powers T, Hershey J, Le Roux J, Atlas L (2016) Full-capacity unitary
recurrent neural networks. In: Advances in Neural Information Processing Systems 29
(NIPS), pp 4880–4888

44. Xu L, Jordan MI (1996) On convergence properties of the EM algorithm for Gaussian
mixtures. Neural Computation 8:129–151

45. Zhang H, Sra S (2016) First-order methods for geodesically convex optimization. In:
29th Annual Conference on Learning Theory (COLT), pp 1617–1638

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

36 Reshad Hosseini, Suvrit Sra

46. Zhang H, Reddi S, Sra S (2016) Riemannian SVRG: Fast stochastic optimization on Rie-
mannian manifolds. In: Advances in Neural Information Processing Systems 29 (NIPS),
pp 4592–4600

