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Abstract In this paper, a comprehensive survey of evolu-
tionary computation (EC) methods for cybersecurity of mo-
bile ad hoc networks (MANETs) is presented. Typically, EC

methods are named based on the natural processes inspir-
ing them, such as swarm intelligence (e.g., ant colony op-
timization, artificial bee colony, and particle swarm opti-
mization), evolutionary algorithms (e.g., genetic algorithms,
genetic programming, grammatical evolution, and differen-
tial evolution), artificial immune systems, and evolutionary
games analyzing strategic interactions among different pop-
ulation types. We introduce these methods with their typi-
cal applications, and commonly used algorithms to improve
cybersecurity within the scope of MANETs. Ongoing and
speedy topology changes, multi-hop communication, non-
hierarchical organization, and power and computational lim-
itations are among the intrinsic characteristics of MANETs
causing cybersecurity vulnerabilities. We describe basic de-
fense mechanisms in MANETs for vulnerability detection,
attack deterrence, prevention and recovery, and risk mitiga-
tion. We classify principal applications of EC as intrusion
detection, trust management, and cryptography in cyberse-
curity systems to countermeasure adversarial activities.
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1 Introduction

With ever growing proliferation of interconnected computer
systems and, more recently, smart devices, one can observe a
significant increase in threats faced by networks of all types
and sizes. Adversarial actions in cyber space can jeopardize
large corporations, government programs, industrial equip-
ment, power plants, aviation infrastructures, health systems,
and military installments ( [1,4,126]). Cybersecurity encom-
pases a set of measures for protecting computers, networks,
programs, and data against security risks and malicious ac-
tions in cyber space. Cybersecurity attempts to deter, pre-
vent, and limit impacts of cyberattacks by eliminating vul-
nerability of computer systems and implementing a set of
countermeasures.

The features that make mobile ad-hoc networks (MANETs)
attractive to many modern applications, such as lack of a hi-
erarchical node structure, self-governing nodes using multi-
hop communication, and continuous and speedy changes in
topology due to node mobility, also create security vulnera-
bilities for MANETs. Biologically inspired computation tech-
niques are excellent candidates to bring effective solutions
to cybersecurity issues raised by MANET topology control,
routing and node collaboration. These techniques can find
desired (optimum or near-optimum) solutions to satisfy cy-
bersecurity objectives in otherwise prohibitively large search
spaces. Biologically inspired computation emulates the evo-
lutionary theory in nature, where better adapted individuals
have greater chances of survival in a given environmental
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niche than less fit ones and, therefore, of passing their ge-
netic materials to their offspring. Evolutionary Computation
(EC) is a broad area of Artificial Intelligence (AI) in which
biologically inspired optimization algorithms mimic evolu-
tionary processes in nature.

We classify EC techniques as: Evolutionary Algorithms
(EA), Swarm Intelligence (SI), Artificial Immune Systems
(AIS), and Evolutionary Games (EG). In EA, Genetic Al-
gorithms (GAs), Genetic Programming (GP), Grammatical
Evolution (GE), and Differential Evolution (DE) are included
in our study. Within the SI group, we consider Artificial Bee
Colony (ABC), Ant Colony Optimization (ACO), and Parti-
cle Swarm Optimization (PSO), which are among the most
frequently used algorithms to deal with MANET-related cy-
bersecurity issues.

Recent surveys on MANET security focus on intrusion
detection [28, 90], trust management [26, 88], detection of
malicious nodes [123], security of routing protocols [10,
77], and trust in opportunistic networks with intermittent
communication channels [135]. Although a few systems us-
ing some form of AI for MANET cybersecurity are reported
(e.g., artificial immune systems in network security manage-
ment [98], and EA and GA applications for MANET optimiza-
tion [35,100]), they are not comprehensive cybersecurity so-
lutions based on EC.

This paper presents a comparative evaluation of the state-
of-the-art EC methods reported in literature for MANET cy-
bersecurity. Our contributions include:

– summarize main vulnerabilities stemming from intrinsic
characteristics of MANETs,

– identify cyber threats and trust management issues,
– introduce key concepts in EC, and
– classify EC-based solutions against cyberattacks.

The rest of this paper is organized as follows. Section 2
introduces MANETs, their vulnerabilities to cyber threats,
and traditional cyber defense methods. Section 3 presents
fundamentals of EA including GA, GP, GE, and DE and their
applications in MANETs. SI methods and network security
countermeasures using ACO, ABC, and PSO are in Section 4.
In Section 5, principles of AIS and its application in cyber-
security are outlined. Section 6 familiarizes the reader with
EG concepts and their use in mitigating cyber threats for
MANETs. Concluding remarks are in Section 7.

2 Mobile Ad hoc Networks

MANETs are infrastructure-less wireless networks formed by
autonomous mobile nodes. Decentralized structure of MANETs
promotes high scalability and responsiveness that make them
particularly suitable for rapid deployments in many civilian
and military applications.

A MANET node may temporarily or permanently lose
connectivity to its neighbors due to node movements. Con-
stant variation of the number of nodes contribute to unpre-
dictable dynamics in MANETs. Ability to establish structure-
less networks in unfriendly environments makes MANETs
especially vulnerable to security threats to which structured
networks are typically immune. We also include decentral-
ized Wireless Sensor Networks (WSNs) [12] and peer-to-
peer networks in this study when their security solutions ap-
pear to be adaptable to MANETs.

2.1 Vulnerabilities of MANETs

Compared to networks using guided media (e.g., wired or
optical networks), MANET communication channels are rel-
atively easy to compromise at least due to propagation char-
acteristics of wireless signal. With respect to other wire-
less networks, such as cellular or infrastructured networks,
MANETs do not rely on access-regulating entities (e.g., a
Base Station (BS) or an Access Point (AP)). Main features
that make MANETs particularly vulnerable to cyberattacks
are: (a) wireless multi-hop communication, (b) nonhierar-
chical organization by self-governing nodes, (c) continuous
and unpredictable changes in topology resulting from node
movements to freely join, leave, and relocate, and (d) typi-
cal limitations in power and computational resources. Often
unavoidable in MANETs multi-hop communication makes
eavesdropping and obstructive routing attacks fairly easy for
adversaries, while lack of centralized authority prevents straight-
forward applications of protective cryptosystems or imple-
menting enforceable security policies. Due to its ever-changing
topology, it is difficult to determine a MANET’s security bound-
aries and appropriate trust levels of neighboring nodes, and,
hence, to identify compromised resources in a timely fash-
ion. Limited power resources can be exploited by adver-
saries to exhaust power of targeted mobile nodes with an
intention to cripple an entire MANET by, often permanently,
disabling its elements. Although main objective for MANET

security include achieving Confidentiality, Integrity, and Avail-
ability (CIA), it requires fundamentally new techniques and
significant changes to the traditional security countermea-
sures.

2.2 Cyber Threats for MANETs

Hostile entities can be either external or internal to a MANET.
In an external attack, an adversary attempts to compromise a
network without joining a MANET, while an internal attack
is carried out by a hostile node, which is already a part of it.
A node may be unaware of its own network-disturbing activ-
ities or be hostile with purely malicious intentions. It is also
possible that a cyber threat is not from a hostile entity, but
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Table 1: EC-based countermeasures against specific types of cybersecurity attacks

EC Methods
EA SI

AIS EG
GA GP GE DE ACO ABC PSO

DoS [13] [30] [27] [39] [29] [37] [124] [61] [55] [109]
[14]

[6] [66] [69] [14]
[13]

[102] [5]
[130] [73]

Attacks on
network security

[119]
[27]

[85] [136] [47]
[48] [124]

[58] [6] [8]

Disruption of data
collection

[13] [30] [39] [29] [61] [55] [14] [66] [69]
[108]

[17] [130]
[99] [110]

Attacks on nodes
behavior

[119] [61] [58] [6] [128] [84] [112]
[130] [99]

MiM, wiretapping,
illigal data access

[113]
[106]

[27] [6] [8] [57]
[99] [110]

from a member node acting selfishly trying to gain an ad-
vantage over other nodes. This selfish behavior can be moti-
vated by a node’s desire to accomplish its own tasks, while
ignoring the requirements for cybersecurity of the network.

Cyber attacks that attempt to alter network operations
can be grouped as: (a) Denial-of-Service (DoS) attacks (e.g.,
sleep deprivation, jamming, route modification, black hole,
rushing, or flooding attacks), (b) attempts to bypass or break
into network security measures (e.g., stealth, virus, worm,
Trojan horse, or unauthorized network access), (c) disrup-
tion of data dissemination (e.g., hijacking, dropping or al-
tering data packages, adding artificial latency, injecting false
data, gray-hole, wormhole, or neighbor attacks), and (d) al-
ternation or impersonation of node behavior or identity (e.g.,
impersonation, Sybil, blackmailing, on-off, and conflicting
behavior). Passive cyber attackers monitor or scan a net-
work, and hence, are often silent. Common examples of pas-
sive attacks include: (e) Man-in-the-Middle (MiM), (f) wire-
tapping and traffic analysis (eavesdropping), and (g) unau-
thorized location, topology, and data dissemination.

Cyber attacks on MANETs can also exploit weaknesses
in routing protocols, focusing on a specific OSI reference
model layer, or by targeting security measures. Table 1 sum-
marizes EC implementations recently reported in literature
as countermeasures for cyber attacks. Rows of Table 1 rep-
resent attack types, whereas columns are the EC-based secu-
rity methods that address them.

2.3 Traditional Methods for Mitigating MANET Threats

Cryptography has traditionally been at the forefront of net-
work cybersecurity for assuring CIA measures. For example,
a Public Key Infrastructure (PKI) can facilitate a network
security framework, where a centralized unit called Central-
ized Authority (CA) issues digital certificates (e.g., X.509)
for network entities asserting their identities and validity.
Since hierarchical structure of PKI is incongruent with dis-

tributed networks, shared CAs with a group of nodes needed
to collaboratively authenticate services may be more func-
tional for MANETs.

Trust among MANET nodes can be established by vari-
ous methods such as coalition formation, authentication, ac-
cess control, intrusion detection, key management, and iso-
lation of misbehaving nodes. Trust relation among nodes [26]
is: (a) based on temporal and spacial local information, (b)
subjective, where one trustee can be assigned a distinct lev-
els of trust by different neighboring nodes, (c) not necessar-
ily transitive (i.e., if node n1 trusts n2, and n2 trusts n3, it
does not imply that n1 trusts n3), (d) asymmetric, hence not
reciprocal, (e) context dependent, such that a node’s trust to
its neighbor may vary for different applications, and (f) self-
organized and dynamically reconfigurable.

Monitoring malicious activities has traditionally been per-
formed by Intrusion Detection Systems (IDS). A Network
IDS (NIDS) monitors traffic on the entire network, whereas
a Host IDS (HIDS) runs as an autonomous agent on selected
nodes. NIDS may sniff a network communication or obtain
network activity information from active Software Agents
(SAs) to decide about an intrusion. Typically IDS employs
statistical analysis of traffic by comparing packets against
known threats. This method, however, suffers from high false-
positive and false-negative detections and can miss zero-day
attacks.

Table 2 presents cybersecurity defense mechanisms en-
hanced by EC algorithms such as EA, SI, AIS, and EG. Rows
of Table 2 are the defense mechanisms implemented by EC

algorithms, including cryptosystems, node trust and repu-
tation mechanisms, IDS, and other EC-based cybersecurity
approaches such as evolving policies [85], node identifica-
tion [47, 48], and jamming detection [109].
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Table 2: Cybersecurity defense mechanisms based on EC methods

EC Methods
EA SI

AIS EG
GA GP GE DE ACO ABC PSO

Cryptosystems [113]
[106]

[136] [61] [102] [8]

Trust and
Reputation

[119] [58] [128] [108] [84] [112]
[130]
[110] [73]

IDS and IPS [13] [30] [27] [29] [39] [37] [124] [55] [14] [6] [66] [69]
[13] [14]
[108]

[5] [17]
[57] [99]

Other [85] [47] [48] [109]

3 Evolutionary Algorithms

EAs mimic evolution processes observed in nature, hence,
biological terms are embraced to describe them. A chro-
mosome represents a possible solution called an individual,
whereas candidate solutions at a given time form the pop-
ulation. A selection mechanism picks parent chromosomes
for a crossover operation that yields one or more offspring.
With a small probability, chromosomes may mutate. A pop-
ulation evolves from one generation to the next by selection,
crossover, and mutation operations.

A mathematical function, called fitness, provides a nu-
merical representation of a candidate solution’s proximity
to the overall optimization goal. Determining an appropri-
ate fitness function for the problem at hand is crucial in all
biologically inspired algorithms. In a roulette wheel selec-
tion, a popular selection mechanism, a chromosome’s fitness
level is indicative of its chance of being selected as a parent
for the next generation. For all populations S , the prob-
ability of a solution ai to be selected as a parent is p(ai) =

f (ai)
∑a j∈S f (a j)

where f (.) is the fitness function yielding ai ∈S
(for i = 1, · · · , |S |). In Figure 1(a), selection of a candidate
from populationS for reproduction is illustrated. Let func-
tion rand([0,F )) generate a random number in the range of
[0,F ) (i.e., spinning a roulette wheel), whereF is the sum
of all fitness values for all candidates,F = ∑ai∈S f (ai). In
the example of Figure 1(a), a3 was selected as a parent.

Stochastic universal sampling [11] uses a random value
to select all parents at once, with each candidate mapped
into a segment of a line of length F proportional to its fit-
ness. Evenly spaced n pointers over a line with segments
for the fitness of each candidate with F/n space between
any two pointers, starting at a random number in [0,F/n)).
Candidate ai is a parent if it has pointer to its segment. In
Figure 1(b), a2 was omitted, while a1 and a3 are selected as
parents.

In tournament selection [9], a contest between two or
more randomly chosen candidates is used to select parents.

(a)

(b)

Fig. 1: (a) roulette wheel, and (b) stochastic universal selec-
tion mechanisms

The probability of the ith ranked candidate to be selected
from the ordered set S in a tournament among q randomly
selected individuals is p(ai) = 1

|S |q
(
(|S |− i+1)q−(|S |−

i)q
)

. In elitist selection, the fittest individuals are advanced
to the next generation without modifications, where the ratio
of elite group to the population size is typically kept small.

In a single-point crossover operation, one pivotal point
in both parents is selected such that data between parent
chromosomes are swapped around it. In Figure 2(a), infor-
mation after 15th bit in parents A andB is swapped to ob-
tain two offspring A ′ and B′. Crossover operation can be
implemented using multiple points and/or with more than
two parents. After crossover, mutation can be performed to
maintain genetic diversity in a population. With a small prob-
ability, mutation operator changes one or more bits in a chro-
mosome, which may be selected by using probability distri-
bution models.
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Table 3: Features of EA-based methods used in network security implementations

Characteristics of EA-based Techniques for Cybersecurity
Description Selection Crossover Mutation Fitness

G
A

[13] Dynamic IDS for
networks using AODV

Tournament Elitism on two best
parents

Gaussian Maximum coverage of
nonself spaces

[106] Verification for a key
exchange operation

Random Uniform Unspecified
parameters

String matching to
authenticate a node

[113] Use GA operations to
produce cipher text

Not used Two point Flipping randomly
selected bits

Not used

G
P

[30] Generate intrusion
detection program by
means of GP

Tournament among
seven random groups
of individuals

Mate with probability
of 0.9 and elitism

Parameters not
specified

Detection minus false
positive rates

[27] Dynamically evolve SA
to customize IDS

Parameters not
specified

Prevents crossover of
different tree types

Parameters not
specified

Differences of agent
and actual predictions

[119] Artificial trust relation
model

Tournament of two
random individuals

Two-points Type not specified Related to reduction in
the number of attacks

G
E

[29] Evolve intrusion
detection programs

Type not specified Elements mate with
the probability of 0.9

With probability of
0.01

Difference of detection
and false positive rates

[39] Detect DoS and data
dissemination attacks

Parameters not
specified

Parameters not
specified

Parameters not
specified

Proximity of a given
design to a set of goals

[85] Evolve fuzzy security
policies

Roulette wheel One-point with
probability of 0.9

Flipping bits with
probability of 0.01

Based on differences
of risk factors

D
E

[37] Evolve rules for
detecting anomalies in
computer networks

The best individual in
a generation

Binomial with
rounding satisfying the
boundary condition

DE/best/1 [116] Based on if-then rule
matching to testing
data connections

[124] Generate fuzzy rules to
construct a classifier

Regardless of the
fitness

Uniform with the
probability of 0.7

Type not specified Root-mean square
error with replacement

[136] Generate attacks on
transposition cipher

Better fitted vector Time-varying in the
range of 0.5 and 0.9

Parameters not
specified

Compares decrypted
message to a language

[48]
[47]

Verification of nodes at
physical layer of OSI

Parameters not
specified

Vector-based with
three random
individuals

Parameters not
specified

Based on kernel
regression criteria

Fig. 2: EA single-point crossover operation

3.1 Examples of Evolutionary Algorithms

In this section, we introduce GA, GP, GE, and DE for improv-
ing cybersecurity in MANETs. Table 3 presents examples for
each method, and their selection, crossover, mutation opera-
tions and fitness functions. EC-based cybersecurity methods
for WSNs are also included in Table 3 when they appear to
be applicable to MANETs.

3.1.1 Genetic Algorithms

Algorithm 1 presents a pseudocode for a simple GA [52, 70,
83]. First an initial (random) population of candidate solu-

Algorithm 1 A simplified implementation of GA

Initialize random population;
Evaluate fitness for each population element;
while stopping criteria is not attained do

Select parents for reproduction;
//Parents are selected from fittest individuals

Generate offspring by crossover and mutation;
Evaluate offspring and form a new generation;

// Offspring replaces less fit individuals
end while

tions is evaluated. Then, parents are selected and offspring is
formed by crossover and mutation. Finally offspring is eval-
uated for inclusion in the next generation. This process is
repeated for a predetermined number of iterations (or until a
satisfactory solution is found).
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Fixed-length chromosomes make GAs useful to solve
problems for which a solution can address an entire search
space, for example when determining the best location for
a mobile agent to move [78]. GA can be applied to network
routing problems [15], while Force GA (FGA) was successful
in topology control [104,105,122]. GAs are surveyed in [28]
for intrusion detection and data collection in MANETs and
multi-objective optimization techniques.

GA-based Intrusion Detection Systems GAAIS is an IDS

based on GA and artificial immune system for dynamic in-
trusion detection in AODV-based ad hoc networks [13]. Each
node in GAAIS uses a real-value GA with tournament and
elitism selections, where tournament winners are advanced
to next generation together with the fittest parent chromo-
somes to obtain best detectors.

GA-based Secure Key Exchange In a MANET, freely mov-
ing nodes can lose connectivity to their neighbors and, hence,
rejoin the network many times, which may generate vulner-
abilities exploitable by malicious agents. Security issues due
to node mobility are studied in [106], where threshold cryp-
tography ensures trust among MANET nodes. A GA is used
to verify secure key exchanges among nodes by providing
efficient authentication of the nodes entering the network.
In [113], secure symmetric key generation is accomplished
by a GA that adopts only crossover and mutation operations.

3.1.2 Genetic Programming

If a solution to a problem can be represented as a computer
program, Genetic Programming (GP) [74,75] can evolve can-
didate programs toward an acceptable solution. In GP, a can-
didate solution can be generated by combining a set of ter-
minals and functions. Each candidate is then run to deter-
mine its fitness. Better programs, obtained by reproduction,
crossover, and mutation operations, are advanced to next
generations. Figure 3 illustrates two programs generated us-
ing {AND,OR,NOT} functions and terminals of {c1,c2,c3}.
Figures 3(a) and (b) represent candidate programs ofP1 =
((c̄1 OR c3) AND c̄2) and P2 = (c1 AND (c̄3 OR c̄2)), re-
spectively (an overbar means negation). In this context, a
crossover operation swaps subtrees to generate new candi-
dates. P3 in Figure 3(c) is obtained from P1 by substitut-
ing subtree S1 with the subtree S2 of P2. Similarly, P4 is
formed withP2 with S2 replaced by S1 (Figure 3(d)).

In a mutation operation of GP, a subtree is replaced by a
random tree. For example, S1 in Figure 4(a) is replaced by
a randomly generated tree shown in Figure 4(b), resulting
in programP5 in Figure 4(c). Mutation in GP can substan-
tially alter programs, and hence, in practice, it is performed
with a small probability or not at all. Repetitively performed
crossover operations may lead to an increased complexity

(a) (b)

(c)

(d)

Fig. 3: GP crossover example: initial programs of (a)P1 and
(b)P2, and final programs of (c)P3 and (d)P4

(a)

(b)

(c)

Fig. 4: GP mutation example: (a) program P1 at point S3,
(b) a random tree, and (c) resulting programP5

of the tree structure with an uncontrolled growth (bloating).
Although bloating should be avoided, it can also be helpful
to develop attack variants on IDSs to uncover hidden mali-
cious software.

Although program size in GP can grow to consume sys-
tem resources, arbitrarily limiting the program size can re-
duce its ability to find optimal solutions. Linear GP (LGP) is
a variant of GP, where a program evolves as a sequence of
imperative language instructions [18, 19]. Basic structure of
LPG includes registers and a set of operational and branch-
ing instructions. To ensure that only valid programs are gen-
erated by LPG, crossover points are selected such that they
do not cut through instructions and that the mutation oper-
ation cannot change an instruction for a register. Linear so-
lutions of LGP reuses subprograms, and hence, are usually
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more compact in expressing complex calculations with less
instructions than traditional tree-based GP solutions.

GP has been applied to a wide range of problems, in-
cluding symbolic regression, image classification, pattern
recognition, software development, automated learning, in-
formation retrieval, finance, and medicine. Program gener-
ation for sensor nodes [134] and parallel evolutionary com-
puting models in WSN [60] are examples of GP applications
in networking. LGP has been used to provide optimal hierar-
chical structure of a solution space (e.g., menu layout) while
preserving constraints of tree elements [121]. Low complex-
ity intrusion detection programs can be generated by LPG to
identify DoS, probe attacks and attempts to circumvent ac-
cess privileges [89, 115].

GP-based Intrusion Detection Systems IDS agents can be
built using GP to effectively monitor network connections
under continuously changing conditions. In [27], each node
runs its autonomous agent independently to detect suspi-
cious values to be reported to an entity that compiles net-
work wide suspicion reports. GP can train autonomous agents
to detect intrusive behavior and engage in a distributed and
cooperative NIDS. The GP-based intrusion detection imple-
mentation in [27] generates separate programs for moni-
toring network timing, ports, and connections to privileged
ports to avoid obtaining unsafe parse trees. In [30], GP is
combined with a multi-objective evolutionary algorithm, where
programs to detect known attacks against MANETs (e.g., flood-
ing and route disruption attacks) are evolved using strongly-
typed GP and then evaluated on simulated networks to deter-
mine their effectiveness.

GP-based Trust and Reputation GP trees can provide math-
ematical functions to determine if future interactions with
peer neighbors should be carried out. Artificial trust relation
model [119] uses past interactions to determine trustwor-
thiness against individual, collaborative, and pseudospoof-
ing attacks in sharing peer-to-peer communication systems.
Based on a history of interactions and recommendations, a
GP tree can be built to include features such as total and suc-
cessful number of interactions, time between the last two
interactions, average trust values, and average satisfaction.
The selection, crossover, and mutation operations are simi-
lar to the ones used in ECJ toolkit [3], however the fitness
function here reduces the number of attacks.

3.1.3 Grammatical Evolution

Fixed-length chromosomes of traditional GA can have limi-
tations when addressing complex solution spaces. Chromo-
somes with pre-determined lengths can either miss a solu-
tion when they are too short, or deplete computations re-
sources when unnecessarily long. Variable-length chromo-
somes in Grammatical Evolution (GE) alleviate some of these

limitations [95, 103]. In GE, a syntactically correct program
is generated from binary strings to select production rules
in a Backus-Naur Form (BNF) grammar definition [95]. A
BNF notation for context-free grammar describes the syntax
of a language by a tuple {N,T,P,S}, where N is the set of
non-terminals behaving as variables, T is the set of termi-
nals (i.e., literal symbols) which may appear as the outputs,
P stands for a set of production rules, and S ∈ N is the start
symbol. Production rules use meta-symbol ::= to denote “is
defined as,” and | as a separator of alternative definitions for
a non-terminal. The pair of < and > encloses non-terminals.
A sequence of production rules maps elements of N to T ,
where an element of N may appear on a left or right side of
a rule, but terminals are never on a left side. For example,
consider the production rule

< int >::=< digit > |< int >< digit > (1)

where int and digit are non-terminals, and int is defined as
either a non-terminal digit or itself (i.e., int) followed by a
digit. Let us add another rule to the one above as

digit ::= 0|1|2|3|4|5|6|7|8|9 (2)

where digit is defined as one of the terminals 0 to 9. These
two rules constitute the BNF grammar for any integer.

Each choice in a production rule can be numbered. Since
digit has ten possible choices, a binary codon representing
digit must have 4-bits, whose decimal value ranges from 0 to
15. The modulo operation can be a mapping function as fol-
lows: rule = Cn MOD Rn, where Cn is the value of the codon
and Rn is the number of choices for this non-terminal. In
our example, let int = S be the starting non-terminal with an
initial binary string of

1001 1111 0100 1110 1001

whose transcription to a string of codons is

9 15 4 14 9

Since 9 MOD 2 = 1, int = S is expanded by using the rule
of < int >::=< int >< digit >, the solution now becomes
< int >< digit >. Expanding the non-terminals continues
with leftmost derivation rule as follows. 15 MOD 2 = 1 dic-
tates that leftmost non-terminal < int > is expanded to ob-
tain < int >< digit >< digit >. Now, the new leftmost <

int > is expanded to get < digit >< digit >< digit >. At
this point, the leftmost non-terminal is < digit > with 10
possible rules, and the next codon value to consider is 14.
Since 14 MOD 10 = 4, the solution becomes 4 < digit > <

digit >. Application of 9 to < digit > results in 48< digit >.
When there are no more codons left to traverse with some
non-terminals remaining to be processed, the codons must
be reused from the beginning, resulting in integer of 488.
Wrapping a sequence for codons is consistent with gene-
overlapping in biological processes.
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Successful GE applications include autonomous robotic
systems, (e.g., a GE-based mechanism to automatically de-
sign a decision-making function to improves exploration per-
formance [54]), finance sector [31] and neural network op-
timization [22].

GE-based Intrusion Detection Systems With success of GP

in generating programs capable of recognizing malicious ac-
tivities in MANETs, GE, potentially more universal and ad-
justable than GP, has also found its applicability in IDS im-
plementations. In a GE-based approach [29], a BNF consid-
ers mobility and packet-related features to discover drop-
ping, flooding, and route disruption attacks with a fitness
function based on the number of correctly detected attacks
and false positives. A medium mobility MANET is used as a
training environment. which is later deployed on each node
as an intrusion detection agent. In [39], a GE technique to de-
tect DoS and data dissemination attacks against AODV pro-
tocol is explored. Black hole, neighbor dropping, and route
disruption attacks are evolved by a GE algorithm.

GE-based Policy Evolution Formulating a right set of se-
curity policy rules often requires handling conflicting goals,
such as node exposure and security risks. In [85], GE in-
fers fuzzy multi-level security policies that is most consis-
tent with the supplied training decision set. A BNF grammar
for evolving policies to determine trustworthy entities with
appropriate need-to-know access rights is presented, where
a steady-state GA with different crossover operations is ex-
plored. Although this mechanism is proposed for mobile and
sensor networks, it can also be used for securing MANETs.

3.1.4 Differential Evolution

Differential evolution (DE) is a biologically inspired com-
putation technique that was conceived as a means for ef-
ficiently solving high order Chebychev polynomial equa-
tions [117]. Instead of classical crossover and mutation op-
erations, DE utilizes a new differential operator to create off-
spring. This operator is self-organizing and requires little in-
put from user. Self-organizing mechanism of DE takes the
difference vector of two randomly chosen population vec-
tors to perturb an existing vector. Every population vector
is perturbed in this manner. This idea is in contrast to tradi-
tional EC strategies where predetermined probability distri-
bution functions determine perturbations.

For a population of N candidate solutions, each individ-
ual is represented as a d-dimensional vector. For each in-
dividual at generation g, DE creates a variant and a trial
solution. A selection process determines if the trial solu-
tion will replace an individual in the next generation. Evolv-
ing each individual Pg

i from generation g to (g + 1) (i.e.,
Pg

i → Pg+1
i ) begins by creating a variant solution Vi, which

is determined by picking three different additional indices
k,r, and m. They will be used to select Pg

k ,Pg
r , and Pg

m from
current population for calculating a variant as

Vi = Pg
m +E ∗ (Pg

k −Pg
r ) (3)

where Pg
m is called the base vector, (Pg

k −Pg
r ) is called the

difference vector, and E is the scaling factor controlling am-
plification of the difference vector (typically E ∈ [0,2]).

Figure 5 illustrates how a variant solution can be calcu-
lated using Eq. (3). Let individuals Pg

k ,Pg
r , and Pg

m be deter-

(a) (b)

Fig. 5: Example of DE with: (a) base and difference vectors,
and (b) variant solution Vi (adopted from [117])

mined as in Figure 5(a). In Figure 5(b) a variant Vi is com-
puted from Pg

k ,Pg
r , and Pg

m when E is selected to be 1. Using
Vi, we create a trial solution Ui = (ui,x,ui,y) as follows. Ran-
dom real numbers randx, randy, and rnbr in the range of [0,1]
are generated. A crossover constant (CR) in a real number in
range of [0,1] is then selected. If randx ≤ CR or rnbr = 0,
Vi for dimension x is used as the trial solution, otherwise
the existing value of Pg

i is used. The same computation is
performed for dimension y. For Ui, if fitness f (Ui) is better
than f (Pg

i ), Ui is used for generation (g + 1), otherwise Pg
i

remains.
DE has been successfully applied to MANETs and WSN

for node clustering [76], routing [62,87], and network topol-
ogy [45] problems. Cybersecurity applications include in-
teger factorization in RSA algorithm (Rivest, Shamir, and
Adleman’s encryption/description algorithm) and design of
S-boxes for symmetric key cryptosystems [81].

DE-based Intrusion Detection and Prevention Anomaly de-
tection in computer networks using a DE algorithm has been
investigated in [37], where security policies are in if-then
format (e.g., if some features have particular values then
anomaly is present). Policies include features such as type
of connection protocol, number of failed logins, being in a
host list, and ratio of erroneous connections. Candidate poli-
cies are evolved by DE with an elitist selection.
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In a Redesigned DE (RDE) algorithm to generate poli-
cies in fuzzy if-then format, pattern recognition and classi-
fication techniques detect previously unknown network in-
trusions [124]. A small set of policies can classify a broad
range of intrusions. In experiments on a DARPA database [2],
RDE algorithm can be used to evolve fuzzy pattern learning
policies to identify classes of attacks.

DE-based Cryptosystems DE can simulate network attacks
to expose possible vulnerabilities of a MANET. For example,
in [136], DE is adapted to stage cyber attacks on transposi-
tion ciphers. In this application, a fitness function compares
statistics of key decrypted messages to a known language
with bigrams and trigrams (i.e., the probability of a pair and
triple of words appearing in a sequence, respectively). It is
shown that the DE-generated attacks can compromise keys
of sizes up to nine characters [136].

DE-based Physical Layer Security In wireless communi-
cation, eavesdropping (wiretapping) and jamming (DoS) at-
tacks are among the main security risks associated with the
physical layer of the OSI model. Although spread spectrum
has traditionally been the leading defense mechanism to pre-
vent adversarial actions at this layer, other security coun-
termeasures have also been considered. For example, radio
frequency (RF) fingerprinting can discriminate adversarial
nodes to prevent unauthorized network access.

An RF attribute detection process incorporating DE-assisted
Learning From Signal (LFS) classification engine to deter-
mine optimal node detection parameters in multi-node wire-
less networks is proposed in [47, 48]. LFS approximates un-
known nodes based on available data on RF fingerprints with
a DE-optimized kernel regression technique on signal prop-
agation parameters.

4 Swarm Intelligence

Based on mechanisms observed in flock of animals in na-
ture, Swarm Intelligence (SI) can be used to control and an-
alyze collective behavior of decentralized autonomous sys-
tems [16]. Agents in SI systems interact with their nearest
neighbors and environment to obtain intelligence that may
be greater than the total intelligence of all individuals.

Self-organization can be defined as a capacity to emerge
from interactions among lower-level organisms that have not
been explicitly designed to achieve a goal [43]. For example,
social wasps are able to build an elaborated nest with each
worker depositing building materials based on a local en-
vironment. Wasps add deposits to a corner area of existing
wall with a greater probability than starting a new wall [21].
With the deposit of new material, nest configuration is al-
tered providing an updated information for the other wasps

in the future. This indirect communication through the en-
vironment is called stigmergy. Consequently, even simple
insects, such as wasps, are able to build very complex struc-
tures.

Self-organized systems may rely on positive and neg-
ative feedback, amplification of random fluctuations, and
multiple direct or indirect stigmergic interactions among in-
dividuals to obtain a dynamic system exhibiting emergent
properties with bifurcation (i.e., capable of obtaining a new
stable solution when system properties change).

4.1 Examples of Swarm Intelligence Algorithms

In the following sections, we introduce ACO, ABC, and PSO

for improving cybersecurity in MANETs (and some sensor
networks). Biological swarm models for securing MANETs
are presented in Table 4 using a classification similar to [43].
Rows of Table 4 present applications of SI algorithms, whereas
the columns correspond to characteristics of methods.

4.1.1 Ant Colony Optimization

Ant Colony Optimization (ACO) mimics ants depositing an
ephemeral hormone, the pheromone, on a ground in order
to mark the trial path while roaming for food [33]. When
the path is traveled more frequently and/or is shorter, the
pheromone trace on the ground remains stronger, attracting
more ants, and hence serving as stigmergic reinforcement of
a good path.

In Figure 6(a), ants collect food from a source. When
an obstacle blocks a path (Figure 6(b)), they may at first
randomly explore the area around the obstacle to consider
other paths to the food source (Figure 6(c)). Since a longer
path accumulates less pheromone, a positive feedback from
pheromone attracts more ants leading to an optimal solution
(Figure 6(d)).

In path selection decision of an ant, if m1 ants had used
the first bridge and m2 the second one up to the decision
point of an experiment, then the probability p1 of selecting
the first bridge by the next ant (m + 1) may be calculated
as p1(m+1) = (m1 + k)h/((m1 + k)h +(m2 + k)h), where k
and h are parameters tailored to fit a given experiment [34].

Finding an optimal path in a graph can be intuitively
mapped into an ant biological system (e.g., finding the short-
est route to a food source in Figure 6). Pheromone variables
on each node can indicate quality of links. Contrary to real
ants that deposit pheromone wherever they move, artificial
ants often would first discover a path and then update the re-
spective pheromone variables, and hence mimic deposition
of pheromone only on their way back.

In ACO all pheromone values should be decreased over
time to imitate pheromone evaporation process. Similarly,
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Table 4: Features of SI-based methods used in network security implementations

Characteristics of SI-based Techniques for Cybersecurity
Description Self-organization mechanism Collective behavior type Elements of self-organization

A
C

O

[61] PKI over ant routing
algorithm

Positive feedback with
stigmergic interaction by
artificial pheromones

Deliberation with
probabilistic selection of a
next hop

Dynamic topology
adjustment based on outer
factors

[58] Mechanism for distributing
trust certificates

Stigmergic interaction with
positive feedback

Indirect cooperation Inner colony factors such as
node mobility

[55] Detection and prevention of
cross-layer attacks

Feedback via timing of
routing packets

Nodes cooperate via shared
parameters

Inner colony factors such as
forwarding behavior

A
B

C

[14] Intrusion detection in
AODV-based MANETs

Positive feedback from
detectors identifying nonsafe
solution spaces

Sharing best immature
negative selectors to get
more promising search areas

Dynamic change of detection
profiles base on changes in
network’s topology

[109] Detecting network areas that
are under jamming attacks

Positive and negative
feedback via
probabilistically ranked
solutions

Collaborative information
sharing among employees,
onlookers, and scouts

Jammers attacking the
network

PS
O

[6] IDS based on PSO clustering
algorithm

Positive feedback with
reinforcing parameters

Particles express collective
behavior when reaching an
optimal objective

Internal interactions with
shared global best is
inherent for all PSO
algorithms

[66] Anomaly IDS with fuzzy
rules of confidence ratios

Positive feedback with
unspecified local/global
bests

[128] Node reputation to modify or
exclude collaboration

Positive feedback with
varying w

(a) (b) (c) (d)

Fig. 6: Ants finding the shortest path between the nest and
food source in the dynamical changing environemnt

pheromone values associated with good solutions, if dis-
covered, should be increased [34]. A local search for better
paths before updating the respective pheromone values may
improve performance of ACO. The pseudocode for ACO al-
gorithm presented in Algorithm 2 is based on [34].

Let L represent the set of all direct links in a network,
li j ∈ L denote the link between nodes i and j, and ϕi j be the
pheromone of li j. The pheromone update for the link join-
ing nodes i and j can be computed as ϕi j = τi j +∑

m
k=1 ∆τk

i j,
where m is the total number of ants and ∆ϕk

i j is the quantity

Algorithm 2 A simple ACO algorithm (adopted from [34])
Initialize pheromone trails;
while stopping criteria is not attained do

Obtain ant solution;
Apply local search; // This step is optional.
Update pheromones;

end while

of pheromone on link li j that was deposited there by ant k.
Let ck

i j denote the connection cost by ant k using link li j and
Ck be the total cost for k to travel current path. The amount
of pheromone left by k on li j is inversely proportional to Ck.

∆ϕk
i j can be computed as ∆ϕk

i j =
ck

i j
Ck .

Let ρ be the rate of pheromone evaporation per unit time
t, then at time (t + 1) the amount of pheromone on li j ∈ L
is computed as ϕ

(t+1)
i j = (1−ρ) ϕ t

i j. Finally, the probability
that an ant will select node j next when it is in i is

p(li j) =
ϕα

i j η(lin)β

∑lin∈C ϕα
in η(lin)

(4)

where function η(.) assigns a heuristic value to each link in
L, α weights an importance of a pheromone, and β deter-
mines the influence of the heuristic information.

The basic computational steps of ACO can be applied
to secure packet routing in MANETs. For example, L could
be audited frequently in a dynamic topology, larger ρ may
reduce the reinforcement of inactive links, communication
cost may reflect the power needed for signal propagation,
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and η(.) represents reliability and trust for a next hop node
or a link.

An ant system where only the best ants can update the
pheromone is presented in [118]. AntNet [23] was introduced
as a proactive routing algorithm that uses a forward ant for
path discovery and a backward ant for link status changes.
AntHocNet [24] offers a hybrid ant based routing protocol
for finding a route on demand and proactively maintaining
and improving the existing routes, whereas HOPNET [129]
introduces an ACO based routing for MANETs with local
proactive route discovery and reactive communication be-
tween neighborhoods.

ACO-based Trust and Reputation Trust and reputation among
mobile nodes of a MANET are defined as the parameters re-
flecting the suitability for cooperation with a given node.
Computation and distribution of trust values for mobile nodes
are two main components of a comprehensive trust model [58].
Trust computation determines the trust level of a node through
its direct or indirect interactions with others. Analyzing his-
torical behavioral patterns can help to obtain an assessment
of node trustworthiness. Similarly, relying on information
from other nodes may be helpful in establishing secure in-
teractions with new neighbors or in refining already held be-
lieves. Trust levels for mobile nodes, which are obtained di-
rectly or indirectly, are distributed among MANET nodes.

Ant-Based Evidence Distribution (ABED) [58] is an ex-
ample for distribution of trust certificates, where a similarity
between cooperative interactions of MANET nodes and real
ants are exploited. Mobile artificial ants search for an opti-
mal path toward a trust evidence, similar to real ants search-
ing for food sources. Cybersecurity metrics can be incorpo-
rated into decision criteria for finding an optimal path. Each
node maintains a local Certificate Table (CT) with entries
for each known trust certificate and a probability associated
with it. When searching for a trust certificate of a node, uni-
cast forward ants are routed to a neighbor with the highest
probability in CT, whereas broadcast forward ants are dis-
patched if there is no entry in CT. A backward ant carries
the trust certificate to the requester, while updating all CTs
along the return path. As such, ABED mimics known ACO

routing protocols with CTs resembling routing tables con-
sulted when dispatching packets.

ACO-based Public Key Infrastructure Network maintenance
overhead due to message exchanges in a partially distributed
CA and a cluster-based PKI can be avoided by deploying ant
routing algorithms. In AntPKI [61], a lightweight PKI imple-
mentation, forward ants for route discovery carry self-issued
certificates and backward ants, which clinch final paths, carry
session keys. AntPKI uses Ant colony based Routing Algo-
rithm (ARA) [46] for piggybacking cryptographic informa-
tion. ARA creates new routes with forward and backward

ants that lay down pheromone tracks to source and destina-
tion nodes, respectively. AntPKI algorithms include positive
feedback via stigmergy, deliberate choice of best paths using
a probabilistic selection.

ACO-based Intrusion Detection and Prevention Analogous
to other uses of ACO for network security, forward and back-
ward ants can be explored to perform cybersecurity related
services. For example, forward and backward nodes can be
employed to detect and prevent cross layered attacks, such
as attacks on routing and medium access protocols [55]. For-
ward ants can be dispatched towards random destinations to
estimate delays between path request (PREQ) and path re-
spond (PREP) packets. Backward ants collect the delay in-
formation to update a (pheromone) table at the source node
to reflect the recent mean times for intermediary nodes to
be used to identify abnormal delays, which may be due to
malicious behavior. Another application of ACO is the de-
tection of suspicious neighbors by comparing the number of
neighbors found by the second and third OSI layers and the
number of receptions found separately by these layers [55].
A node is excluded from further forwarding if the parameter
values from these two OSI layers do not match.

4.1.2 Artificial Bee Colony Algorithms

Three main components of honey bee forage selection pro-
cess are (a) food sources and their values, (b) employed
forgers associated with the food sources, and (c) unemployed
forgers continually looking for new food sources. Unem-
ployed forgers are scouts searching (randomly) for new food,
while onlookers wait in the nest to establish new food sources.
Employed foragers convey information about the quality,
distance, and direction of their food sources through dura-
tion and type of their dance performed at a dance floor, such
that the onlookers can decide to employ themselves at the
most profitable food source.

Figures 7 and 8 demonstrate behavior of honey bees for-
aging for nectar (adopted from [63]), where the hive con-
tains a dance floor for sharing information about possible
food sources and an unloading area to store the collected
nectar. The employed bees, represented by EB1, repeat a set
of actions: deposit nectar in the unloading area, share food
source information on the dance floor to attract new bees
to collect them, and go back to the nectar area to continue
food collection. Another set of employed bees (denoted by
EB2) are involved only in iterative gathering of food and de-
positing it in the unloading area. Occasionally, bees may be-
come uncommitted (UB) to known food sources and, as un-
employed bees, are free to perform other tasks.

The unemployed bees may either try to discover new
nectar or monitor the dance floor to obtain information about
the most profitable food sources that are known at the time.
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Fig. 7: Honey bees foraging for food (adopted from [63])

Fig. 8: Unemployed honey bees scouting for new food
sources or observing dance floor (adopted from [63])

Figure 8 illustrates onlooking bees OB observing the dance
floor to gather information about profitability of the exist-
ing food sources demonstrated to them through the dance of
employed bees EB1. Onlooking bees determine where to get
employed (i.e., which food source to exploit) by respond-
ing to the quality and intensity of the dances. Contrary to
EB1 and EB2 bees employed for collecting the food, scatter-
ing bees SB in Figure 8 randomly search the area around the
hive.

Artificial Bee Colony (ABC) algorithm was introduced
for solving unimodal and multimodal numerical optimiza-
tion problems [63] and was quickly adopted to tackle con-
strained optimization problems [64]. The canonical ABC sim-
ulates foraging behavior of honey bees, employing artificial
bees of employee forgers, onlookers, and scouts. An ABC is
divided into two parts: one with employed bees, where the
number of employee bees is equal to the number of food
sources, and the other with onlookers.

Initially, one of the employed bees is designated as the
scout, which randomly searches the solution space. Employee
bees associate probability values with their food sources re-
flecting the quality of these food sources, which are used
by the onlooking bees in selecting the food sources. Em-
ployed bees whose food sources have been exhausted be-
come scouts and start looking for new food sources.

Algorithm 3 outlines a simple ABC procedure, which
meticulously exploits a search space in promising regions,
while searching for reaming space via scout bees.

Algorithm 3 An ABC algorithm (adopted from [64])
Randomly select and evaluate initial solutions;
while stopping criteria is not attained do

Employed bees evaluate solutions located nearby
current results and keep the fittest ones;

Calculate probabilities for the best solutions so far;
Onlookers choose solutions based on their probabilities;
Onlookers explore vicinity of the fittest solutions so far

to determine and store the best ones;
if solutions exist that can be abandoned then

Randomly scout for new solutions;
end if
Store the best solutions found so far;

end while

A fitness function used in Algorithm 3 indicates the qual-
ity of a solution such that a better solution yields a larger
value than a less fitted one (e.g., to continue our analogy
with honey bees, the fitness could reflect the proportional
amount of food at a source). Onlookers choose to explore
locations based on a probability distribution over the best
solutions so far.

After choosing a solution, an onlooker produces a can-
didate in the neighborhood of the selected solution. Let ak

i
refer to the kth dimension of solution ai, where ai ∈S set
of all possible solutions. We compute a candidate solution vk

i
as vk

i = ak
i + rand([−1,1])(ak

i −ak
j), where k ∈ {1,2, . . . ,d}

is a random dimension selector, rand([−1,1]) is a random
number function, and a j is a random candidate (ai 6= a j). A
food source is abandoned if it cannot be improved.

Examples of ABC-aided routing include a bee-inspired
design of mobile agents in MANETs [132], and enhancing
energy efficiency of routing protocols in wireless sensor net-
works [65]. A secure trust-based energy efficient clustering
for WSN [107], energy management [125], and service dis-
covery [7] systems can be listed as other ABC applications.

ABC-based Intrusion Detection Systems Maintaining a static
library (i.e., a profile) of malicious traffic is often inadequate
for a MANET with continuously changing topology since an
activity classified as perfectly acceptable at one point can be
recognized as malicious later.

An ABC and negative selection algorithm based biologi-
cal immune system, called BeeID, for intrusion detection in
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AODV-based MANETs is presented in [14]. It can be used to
detect flooding, blackhole, neighbor, rushing, and wormhole
attacks. Employed bees modify their positions to find a min-
imum overlap with positive antigens (known results). The
best of old and new positions is selected by each employe
bee and shared with onlookers in nearby locations.

ABC-based Physical Layer Security A typical physical layer
DoS attack jams communication frequencies used by MANET

nodes by saturating the spectrum with unwanted radio sig-
nal. Therefore, it is not surprising that jamming attack de-
tection is an important cybersecurity goal for wireless net-
works, MANETs, and WSNs.

DoS attacks by jammers within a WSN can be detected
by using packet delivery ratio, energy, distance, packet loss
ratio, and Signal to Noise Ratio (SNR) [109]. Based on these
parameters in employed and onlooker bees, an ABC imple-
mentation computes fitness for each node and selection prob-
abilities. An increase in the number of hops between nodes
may indicate that the network is under a jamming attack.

4.1.3 Particle Swarm Optimization Algorithms

Particle Swarm Optimization (PSO) is an SI optimization
technique inspired by social behavior observed in bird flock-
ing and fish schooling. It was developed as a particularly
suitable tool for solving problems, in which the best solution
can be represented as a point in the space [67]. As a robust
stochastic optimization technique based on the movement
and intelligence of swarms, PSO applies the concept of so-
cial interaction to multi-dimensional optimization problems.
In PSO, if one of the individuals finds a good solution, all the
other individuals make use of that knowledge.

PSO is a multi-agent parallel search method where each
particle flies over a search space. A particle j adjusts its fly-
ing based on own experience as well as the experiences of
others. At any given time t, node j with a position p(t) and
velocity v(t), keeps track of the best fitness it has achieved
so far (Pbest ), and the best value global value obtained so far
by the swarm (Gbest ).

Let P(g+1)
j be the new position for j, and Pg

j its cur-
rent position. We evolve the speed of j at generation (g+1)
as V(g+1) = wV(g)+ C1R1(Pbest

j − P
g
j)+ C2R2(Gbest − P

g
j),

where V(g+1) and V(g) are the new and current speeds for
j, respectively, the weight factor for inertia w is a real num-
ber within [0,1], C1 and C2 are real numbers within [0,4],
and R1 and R2 are random numbers within [0,1].

The momentum of j is controlled by w as a trade-off be-
tween global and local exploration. For w = 0, no knowledge
from the past is kept, whereas w≈ 1 implies that particles do
not easily change their directions. R1 influences Pbest

j , while
R2 impacts Gbest in velocity updates. C1 represents parti-
cle self-confidence for contribution of own experience to the

search. Similarly, C2 indicates the confidence on swarm mo-
tion. If the new position of j, given as P(g+1)

j = Pg
j +V (g+1),

has a better fitness than the personal or global best fitness,
they are updated accordingly. Regardless of its fitness, j
moves to its new location. A typical PSO implementation
is in Algorithm 4.

Algorithm 4 A typical implementation of PSO

for each particle do
Initialize each particle with feasible random number;

end for
while stopping criteria is not attained do

for each particle do
if fitness better than fitness value of Pbest then

Set current value as the new Pbest ;
end if

end for
Choose the particle with the best fitness as Gbest

for each particle do
Calculate particle velocity and update position;

end for
end while

PSO algorithms have been popular for optimal path dis-
covery and maintenance in networks with power constrained
mobile nodes. For example, [101] uses PSO to obtain opti-
mal paths while considering transmission cost, energy con-
sumption, and traffic intensity. Simulated annealing and PSO

can schedule optimal time slot and channel for establishing
communication in WSNs [71]. Another example is maintain-
ing topology of underwater wireless networks for unmanned
underwater vehicles with limited local information [138].

PSO-based Intrusion Detection Systems Clustering is a method
for finding distinct patterns in a group of data without re-
quiring extensive knowledge about the data itself. Network
clustering identifies groups of similar nodes which are dis-
jointed from others. In cybersecurity, clustering analysis can
be employed to build an IDS model by formulating the intru-
sion detection as an optimization problem.

For example, MapReduce [6] is an IDS tool utilizing a
PSO-based clustering algorithm, where each cluster is repre-
sented by a centroid. Initial centroids (particles) are selected
randomly, then they are continuously updated with new ve-
locities until a global best vector of particles is obtained. The
fitness of a cluster centroid is evaluated based on its average
minimum distance to data instances. At the completion of
PSO, traffic data is clustered as normal or one of the four
groups of attacks (i.e., probing, DoS, unauthorized remote
and root directory access).

In another application, an anomaly based IDS implemen-
tation incorporates PSO to protect computer networks (e.g.,
MANETs) against unknown cyber attacks [66]. The mecha-
nism for intrusion detection relies on fuzzy rules with asso-
ciated confidence ratio for comparing current network traffic
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with a behavioral model of normal network activities. Opti-
mum membership functions for the fuzzy anomaly detection
are evolved using a PSO algorithm.

PSO-based Trust and Reputation Trustworthiness of a node
can be used to identify cyber attacks in a network. Based on
its reputation, the usefulness of data from a WSN node can
be classified using a near-neighbor voting mechanism, and
data from untrustworthy nodes can be excluded [128]. Trust-
weighted medians are computed for each node based on in-
formation from its local neighbors, which are later used to
select nodes for further participation in a mutual task. The
most trustworthy node aggregates data with a PSO-driven
centralized data fusion.

5 Artificial Immune Systems

Artificial Immune System (AIS) derives its principles from
infection defense mechanisms observed in vertebrates [38].
An Immune System (IS) in nature comprises lymphocytes
capable of detecting and responding to foreign (nonself ) agents,
referred to as pathogens, by recognizing antigens (identifi-
able proteins) of pathogens. A host organism trains its im-
mune system to coexist with substances it identifies as self,
to discriminate against them if nonself pathogens invade. A
lymphocyte can recognize a pathogen by binding to an anti-
gen, where the degree of binding is reflected by their affin-
ity [97].

Lymphocytes include T-cells maturing (i.e., learning how
to detect nonself elements) in a thymus and B-cells matur-
ing in bone marrow. During maturation, T-cells are exposed
to examples of self molecules. Any cell that reacts strongly
to self is not allowed to mature, hence the organism uses
negative selection to prevent an over-reactive immune sys-
tem. An organism maintains a few memory cells to trigger a
rapid and targeted response in case a pathogen reappears. B-
cells may respond to pathogens by clonal selection, produc-
ing large quantities of antibodies to neutralize foreign ob-
jects. They may undergo positive selection, where efficient
antibodies are reproduced with greater probability. To pre-
vent lymphocytes from destroying unknown but not harm-
ful organisms, T-cells require two signals to react: one from
binding with harmful antigens and a second (costimulatory)
signal triggered by recognizing that ”something” is wrong
(danger theory [20]).

After maturing, detectors of an AIS can identify unknown
and potentially harmful (nonself) activities. Actions of friendly
nodes can be represented by a set of binary strings. A node
can train on this set by determining if two strings, one from
the set and one representing an immature detector, match.

Matching two strings, simulating biological binding, can
be determined by, for example, the number of the same con-
tiguous bits in them [51]. In Figure 9, binary stringsA1 from

a friendly action set and B1 and B2 from immature detec-
tors. The affinity between A1 and B1 in Figure 9(a) is 10

(a) Match

(b) No match

Fig. 9: Binding strings: (a) 10-bit and (b) 5-bit match rule

bits. If, for example, only 8 bits are needed to determine a
match, we can eliminateB1 from further consideration as a
mature detector. If, on the other hand, match is less than 8
bits (e.g., in Figure 9(b)), we keep training (i.e., tolerizing)
B2 with other actions from the friendly action set. Detector
B2 matures if it does not match to any friendly actions. If
B2 survives this negative selection, it is added to matured
selectors.

Affinity of two numerical strings can also be determined
by the Hamming or Euclidean distance between them. Let
A i and Bi represent ith elements of strings A and B, re-
spectively, then Hamming distance [25] between A and B
is calculated as

HA ,B =
`

∑
i=1

δ ,where δ =

{
1 if A i 6=Bi

0 otherwise
(5)

For distance d =
√

∑
`
i=1(A i−A i)2 betweenA andB,

Euclidean affinity EA ,B of two strings is EA ,B = d/
√

∑
`
i=1 r2

i ,
where r is the data range for i [131].

Since negative selection use only the dataset of known
and acceptable actions, a mature detector may match a valid
but unknown action, leading to erroneously recognizing it
as a cyber attack. This problem may be alleviated by imple-
menting the danger theorem in AIS, where an additional sig-
nal reflecting well-understood symptoms of a compromised
MANET is needed to identify an attack. Clonal selection of
B-cells can be modeled in AIS by evolving fitter mature de-
tectors. The fitter detectors would bind with higher affinity
to malicious activities. AIS maintains a set of countermea-
sures to furnish rapid responses, simulating memory cells of
a biological IS.
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Table 5: Features of AIS-based methods used in network security implementations

Characteristics of AIS-based Techniques for Cybersecurity
Description Negative selection Affinity measure Danger theory Memory cells upkeep

[69] HIDS for MANETs
using AODV

Neighboring nodes
recognized as self

Parameters not
specified

Using DC algorithm Clonal evolution with
termination of bad
cells

[14]
[13]

Dynamic IDS for
networks using AODV

ABC [14], GA [13] with
acceptable activities

Euclidean distance Not used Updating otherwise
expiring good
detectors

[108]
Detect misbehaving
nodes

Virtual tolerization on
normal network
actions

Clustering mechanism Signal from packet
losses

Clonal evolution of
successful detectors

An AIS-based anti-virus technique developing antibod-
ies to previously unknown computer viruses and worms is
proposed in [68]. LISYS [51], an IDS implementation based
on AIS, is shown to be adaptable, decentralized, error toler-
ant, dynamic, and self-monitoring by harnessing a biologi-
cal IS to provide anomaly and signature-based detection. For
anomaly detection in HIDS, identification of unknown at-
tacks by an AIS can be combined with either EA [32], which
evolves memory cells for secondary responses, or with fuzzy
rules [111]. A review of AIS applications in MANET security
can be found in [59].

5.0.4 AIS-based Cybersecurity

In this section, we present a sample group of cybersecu-
rity techniques that implement AIS, which are organized by
their cyber defense mechanisms, including IDS, trust man-
agement techniques and the specific attack that they prevent.
Table 5 summarizes different AIS approaches for network
security improvement in terms of negative and positive se-
lections, affinity measures, danger theory, and memory cells.

AIS-based Intrusion Detection Dendritic Cell (DC) algo-
rithm offers an extension to the danger theorem [44] by us-
ing immature, semi-mature, and mature cells (detectors). The
semi-mature cells continue tolerization process of immature
cells whenever they bind to unself antigens when safe cos-
timulatory signals are present. However, they cannot initiate
a response, which can only come from mature cells in the
presence of unsafe costimulatory signals.

In [69], negative selection, clonal selection, and DC al-
gorithms are incorporated into a Combined Immune Theo-
ries Algorithm (CITA) to implement adaptive and distributed
IDS for MANETs. A MANET node runs CITA as a part of the
AODV protocol whenever it receives an alarm signal (e.g.,
a high number of requests from one source, a request from
unself node, or a request to forward sensitive information).
After detecting a malicious node, CITA excludes it from all
valid routes and drops all packets arriving from it.

AIS can be used together with ABC [14] to provide IDS-
based protection in MANETs. Each node uses normal traffic
features in a niching ABC (NicheABC) algorithm to train ma-
ture detectors for tolerance. A mature negative detector can
evolve through an updating process searching for nearby so-
lutions to discriminate normal and malicious activities. AIS

can also be combined with GA [13] to obtain comparable
countermeasures in MANETs.

AIS-based Trust and Reputation Misbehaving nodes in a
MANET can be automatically detected by implementing a
virtual thymus, danger signals, and memory cells [108]. In a
virtual thymus, detectors are tolerized on a set of Dynamic
Source Routing (DSR) events from friendly nodes. A faulty,
selfish, or malicious node can be recognized by matching its
actions with mature detectors in a clustering mechanism and
costimulatory signal from packet losses. A clonal selection
evolves persistent selection rules from the most successful
mature detectors that would otherwise expire shortly. AIS-
based detection of misbehaving nodes can be augmented to
obtain a reputation system to forbid unfriendly nodes from
relaying DSR packets.

6 Evolutionary Games For MANET Cybersecurity

Traditional Game Theory (GT) provides a framework for an-
alyzing behavior of rational players in strategic situations,
where an outcome depends on actions of all participants.
Since its initial developments, GT has been broadly applied
to problems in economics, political science, and computer
science. Evolutionary Games (EG) are the games that use
evolutionary computation components in their decision mak-
ing mechanisms. For many MANET operations (e.g., topol-
ogy control of mobile nodes), a game-theoretical approach
can be adapted where incentives and deterrents can be built
into node actions in a game structure to provide an optimal
or near-optimal solution, eliminating a need for broad coor-
dination and cooperation among nodes.
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6.1 Traditional Game Theory

Recent developments in GT include normal form simultane-
ous move games represented as matrices, extensive form se-
quential games represented as trees and cooperative games
in which any cooperation is enforceable by an outside party [94].
Nash Equilibrium (NE) is a stable state in a game from which
players have no advantage to deviate [91, 92, 93] . In in-
complete information games players are not aware of oth-
ers’ strategies or payoffs (numerical representations of in-
centives) [49].

A normal form game is defined by a nonempty and finite
set I of m players, a strategy profile space S, and a set U of
payoff (utility) functions. Each individual player ui ∈ I has
an associated set Si of possible strategies from which, in a
pure strategy normal-form game, she chooses a single strat-
egy si ∈ Si to realize. A game strategy profile is defined as a
vector s = 〈s1,s2, . . . ,sm〉. If a strategy profile s is played in
a game, ui(s) denotes a payoff function reflecting the profit
for player ui. It is usually convenient to single out a strategy
of a player ui and refer to strategies of all other players as a
deleted strategy profile s−i.

If a player randomly selects among her pure strategies,
we say that she is playing a mixed strategy game. A mixed
strategy σi is a probability distribution over Si, where σi(si)
is the probability of si being selected. We denote a mixed
strategy profile as a vector σ = 〈σ1,σ2, . . . ,σm〉= 〈σi,σ−i〉,
where in 〈σi,σ−i〉 we separate a mixed strategy of player ui
from a deleted mixed strategy of the remaining players. Con-
trary to a deterministic payoff function ui(s) in pure strategy
games, the payoff function ui(σ) for a player ui in a mixed
strategy game expresses her expected payoff.

Many operations performed by MANET nodes can be
modeled as non-cooperative competitions in either a normal
or extensive form. In repeated games, interactions of a sim-
ple game are repeated more than once. Unlike a game played
once, in a repeated game a strategy can be contingent on the
past moves, and hence, a player can build a reputation and
introduce retribution actions [41].

In a cooperative game, players are allowed to form coali-
tions, whereas players of a non-cooperative game act ratio-
nally only with respect to their own objectives and regard-
less of others. A mixed strategy profile (σ∗i ,σ∗−i) is NE if

∀ui∈I , ∀si∈Si ui(σ∗i ,σ∗−i)≥ ui(si,σ
∗
−i) (6)

NE is an important condition for predicting outcomes in games
with rational players. Any normal-form mixed strategy game
has at least one NE, whereas some pure strategy games may
have either one, multiple, or no NE.

In Bayesian games [49], also called games of incomplete
information, players are uncertain about strategy profiles or
payoffs of their opponents. In general, payoffs are numeri-
cal representations of profits that can rank a player’s prefer-

ences. In classical Bayesian games a special game partici-
pant, called nature, randomly selects a type for each player
based on a probability distribution across a player’s possible
types [49]. Although a player may be uncertain of another’s
type at the beginning of an interaction, it may update her be-
liefs over time. An expected payoff for a Bayesian game is
calculated as a function of probabilities for all possible types
of all players.

In a perfect information game, history of previous ac-
tions taken by all players is known to everyone. In an asym-
metric information game, one player’s knowledge is broader
than the others. Players of a symmetric game earn the same
payoff for the same actions against the same set of oppo-
nents, whereas players of an asymmetric game may either
have distinct strategy sets or they share the same strategy set
but with different payoffs for the same interactions.

A wide range of challenges seen in MANET operations
can be alleviated by GT-based solutions, including control
dynamic spectrum sharing [53, 56, 96], routing [42, 50], and
dynamic network topology control [36, 72, 80]. Additional
applications of GT in wireless networks can be found in [86].

6.2 Evolutionary Game Theory

EG improves traditional GT by alleviating rationality assump-
tion of players. It introduces a fully dynamic game model
and hence emerges as an effective method to predict equilib-
rium for realistic models of player interactions in MANETs.
We first introduce basic concepts in EG and then we discuss
its applications to MANET cybersecurity. Description of EG

includes measuring a fitness of a member by its probabil-
ity of survival [82], defining Evolutionary Stable Strategy
(ESS) [114] and formalizing Replicator Dynamics (RD) [120].

In EG, players form a population. All possible strate-
gies that players can adapt are represented as a set of player
types. Payoff in EG is the fitness, promoting more success-
ful strategies to reproduce faster than less prosperous ones.
A large population size and repeated interactions among ran-
domly drawn players are typical assumptions in an EG. There-
fore, the probability of a player encountering the same op-
ponent twice is negligible and hence each interaction can be
treated as an independent game.

ESS represents a strategy that cannot be invaded by any
other strategy in a population. Let u(s∗,s′) be the payoff for a
player with strategy s∗ against an opponent strategy s′. Then,
s∗ is an ESS if one of the following conditions holds

u(s∗,s∗) > u(s′,s∗) ; (7)(
u(s∗,s∗) = u(s′,s∗)

)
∧
(
u(s∗,s′) > u(s′,s′)

)
(8)

where ∧ represents the logical AND operation. Since ESS

does not require players to be rational or reason perfectly, it
represents a desirable NE refinement.
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RD models the changes of each strategy in a popula-
tion over time. It highlights the role of selection mechanism
without considering mutation processes. In a typical RD, the
players with the same pure strategy form a group whose rep-
resentation in a population is reciprocal to the number of in-
dividuals in it [133]. For example, all individuals in group
Gs play strategy s, while individuals in Gs′ play strategy s′

for s 6= s′ and s,s′ ∈ S, where S is the set of all strategies
played in the game. Let I be a set of m players (population),
and |Gs| represent the number of individuals in group Gs,
then ∑∀s∈S

|Gs|= m and 0≤ |Gs| ≤m. We define xs (popula-
tion share) as the frequency with which a strategy s is played
(i.e., xs = |Gs|

m and ∑s∈S xs = 1) and u(s,s′) as the payoff for
s when interacting with strategy s′. Expected payoff Es for
strategy s at a random match is

Es = ∑
∀s′∈S

xs′ u(s,s′) (9)

Hence, the expected payoff for an individual interacting with
a randomly drawn opponent is identical to her expectations
when she plays a pure strategy against a player mixing strate-
gies proportionally to population shares of all xs in S. The
average payoff in a population is

φ = ∑
∀s∈S

xs Es (10)

and RD of s is defined by [120] as

ẋs = xs (Es−φ) (11)

where ẋs is the time derivative of frequency of s. Therefore,
∀s ∈ S the growth rate (ẋs/xs) of Gs is equal to the difference
between the current payoff (fitness) of s and the average pay-
off of the population [133]. As the strategies in a population
change, the expected payoff for a player alters and, even-
tually strategies with better payoffs grow. Equilibrium with
two interacting strategies s and s′ can be achieved when

fs(x) = fs′(x) (12)

where vector x defines a proportional composition of the
population (i.e., x = (xs,xs′) = 1) and fs(x) and fs′(x) are
the fitness of strategies s and s′, respectively.

Relative fitness of two interacting strategies is depicted
in Figure 10, where the vertical axis marks the fitness dif-
ference of fs(s)− fs′(s) and the horizontal one is for the
proportional representation of xs in the population. After
achieving a stable equilibrium, the balance in the popula-
tion between two strategies does not change. If, however, xs
accidentally increases, fs(s) decreases in the next generation
(with Eq. (11)) and lowers xs back to the stable equilibrium.
Similarly, if xs decreases from a stable equilibrium, a higher
fitness of s than s′ will ensure that xs grows. In Figure 10(a),
the stable equilibrium (shown as a solid circle) is at the point
where the vertical axis is zero (i.e., fs(s)− fs′(s) = 0). Some

systems may not have a stable equilibrium. In an unstable
equilibrium, an increase in xs increases fs(s) and makes s
dominate the entire population (i.e., xs = 1) (with Eq. (11)).
Similarly, a small decrease in xs results in xs = 0. Once an
unstable equilibrium moves to xs = 0 or 1, it becomes stable
and will not recover. Figure 10(b) shows the unstable equi-
librium (hollow circle) at the point where fs(s)− fs′(s) = 0,
which becomes stable at xs = 0 or 1 (solid circles).

(a)

(b)

Fig. 10: Behavior of (a) stable and (b) unstable equilibrium
in an evolutionary game with two interacting strategies

In an EG application to a network routing problem, tradi-
tional GT assumptions are replaced with a learning process
based on previous experiences of players [40]. The inter-
actions among users for cooperative spectrum shearing as
an EG is investigated in [127], where a population of sec-
ondary users implementing distributed learning algorithm
converges to a stable state. A node spreading EG that runs
at each MANET node to autonomously make movement de-
cisions based on local data while the movement probabil-
ities of possible next locations are assigned by a GA was
presented in [79].

6.3 Evolutionary Games in Cybersecurity

In this section, we analyze implementations of cybersecu-
rity techniques based on EG. Research reported in the liter-
ature can be grouped based on the employed cyber defense
techniques (e.g., IDS, cryptosystems, and trust management
techniques). Table 6 summarizes features of different EG

techniques for improving network security in terms of their
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Table 6: Features of EG-based methods used in network security implementations

Characteristics of EG-based Techniques for Cybersecurity
Description Players Strategies Utility Factors Stable Point

[5] Analysis of DDoS
attacks

Users accessing BS and
jammers

Elect to transmit or not
(users) and (jammers)

Difference of SINR and
transmission costs

ESS where either users
or jammers
transmitting

[99] Active defense system
for WSNs

Defending and
attacking nodes

Deployment of
security measures
(defender) and attack
or not (attacker)

Costs and rewards for
attack, defense, and
loss of a node

ESS where attacker do
not attack

[8] Select appropriate
security measures in
WSNs

Nodes representing
defenders and
adversaries

Strong or weak
cryptography for
defenders

Any mix of strategies
can be supported as
ESS

[102] Broadcast
authentication with
preventing DoS

Uncertified and normal
sensor nodes

Apply or not
buffer-selection to
prevent DoS

Value of broadcast
packets and costs for
corresponding security
levels

Unique ESS for
different scenarios

[110] Enforce cooperation in
MANETs

Senders, forwarders,
and receivers

Forward or discard a
packet (forwarder)

Following prisoner
dilemma game’s
format

None of the strategy
has been proven to be
ESS

[57] Physical layer security
to keep away
evasdroppers

All sensor nodes
capable of adjusting
own strategies

Select a level of
transmission power

The secrecy level
minus the power
consumed

Multiple ESSs with all
nodes obtaining
adequate secrecy

[130] Level classifications
for transmissions with
risks

Transmitter, receiver,
and neighboring nodes

Attack, cooperate, or
not cooperate

Cost, benefit, and risk
levels

ESS under sufficient
conditions

[17] Malicious and HIDS
node interactions

Malicious and regular
(defending) nodes

Levels of monitoring
and attacking

Attack cost, detection
rate, and asset value

ESS for limited initial
setup parameters

[112] [84] Trust management
system in WSN

All sensor nodes Trust and distrust Gain and cost for a
selected strategy

ESS with nodes either
trusting or distrusting
their neighbors

[73] Trust based packet
forwarding

Forwarding and
next-hop nodes

Between neighboring
nodes incentivizing
packet forwarding

History of neighbors
actions

Fully cooperative
network at low load

players, strategies, utility functions, and abilities to generate
stable solutions.

EG-based Intrusion Detection An EG can be implemented
at network nodes dynamically adjusting defense strategies
to protect against selective forwarding, sinkhole, Sybil, false
disruptive data injection, and data aggregation attacks [99].
An RD system representing attacker and defender actions
can demonstrate an ESS equilibrium, where attackers do not
attack and defenders do not have to defend [99].

In another application, EG is deployed to improve a phys-
ical layer security in WSNs [57]. A wiretap model over a
noisy channel among a transmitter, a receiver, and an eaves-
dropper [137] is considered to obtain secrecy without a shared
key in [57]. The rate of reliable communication at which an
eavesdropper is unable to decode the information is maxi-
mized by using a non-cooperative secrecy-rate game. A trans-
mitter communicates with a cluster head by adaptively ad-
justing transmission power level to maximize the secrecy
level, hence it balances between conflicting objectives of in-
trusion prevention and energy preservation. The secrecy rate

game evolves to multiple ESSs, each indicating appropriate
strategies (transmission powers) of sensor nodes.

Distributed Denial of Service (DDoS) attacks occur when
multiple adversaries coordinate their actions to diminish re-
sources of a node. DDoS attacks carried by a group of jam-
mers are investigated by an EG-based approach in [5], where
jammers deny or degrade performance of users connected
to a BS or an AP by injecting interference into communi-
cation spectrum. Users trying to enhance their Signal-to-
Interference-plus-Noise Ratio (SINR) and jammers intend-
ing to lower users’ SINR form two separate populations in
an EG. In an asymmetric game, where a strategy may be
more beneficial to a user than a jammer (or vice versa), an
asymptotically stable ESS can be identified using RD.

An EG system to predict cyber attacks and to determine
the best countermeasures to improve IDS performance in
MANETs is proposed in [17], where a malicious node can
choose levels of attack based on the value of the attacked
asset and detection probability of its attack. Similarly, a de-
fending node, that implements HIDS, calculates its own cost
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and level of monitoring. Payoff for a malicious node is high
for undetected attacks while the defender benefits more from
higher ratio of detection rate.

EG-based Cryptosystems An EG-based adaptive approach
for dynamic selection of cryptographic protocols to obtain
an appropriate defense mechanism is presented in [8]. De-
fenders can select a cryptographic protocol as deterrence
against attackers by taking into account the cost of defense
and reward for protection by a strong cryptography. Player
payoffs can influence an asymptotical ESS [8].

DoS attacks on multi-level lightweight broadcast authen-
tication protocols (i.e., µTESLA) can be modeled with EG.
To resist DoS attacks, each packet with attached Message
Authentication Code (MAC) should be buffered as long as its
cryptographic key is secret. In DoS-resistant Authentication
Protocol (DAP) [102], a node’s strategy depends on actions
of other nodes. To minimize packet size, nodes in DAP store
µMACs as hashes.

EG-based Trust and Reputation In a game-based packet
forwarding system [110], a node computes trustworthiness
of its neighbors to decide its forwarding strategy. With an EG

model, a cooperation is imposed among selfishly motivated
nodes to make decisions based on outcomes of a repeated
2-player game and a long-term strategy. A cooperative or
selfish trust value is calculated based on the route-request
acceptance ratio and cooperation threshold to capture un-
certainty of a trust. With a direct reciprocity model (e.g.,
help those who helped us) and history of node transactions,
a cooperation can be attained despite selfish nodes. None of
the strategies in [110] are evolutionary stable but they are
resilient against being invaded by selfish strategies.

An EG based management for a WSN node can either
play a trust strategy and provide forwarding services to its
neighbors or distrust strategy without cooperation [112]. Us-
ing RD, evolution of trust in a population of sensor nodes
is possible. Cooperation gain due to a particular neighbor’s
strategy may lead a population to ESS with all WSN nodes
either participating in network activities or not cooperating.
In another application, trust is built into an evolution process
as an incentive for cooperation among nodes [84].

Repeated interactions among nodes in wireless ad hoc
networks can be managed by EG with nodes observing their
neighbors, predicting their actions based on a game model,
and selecting the best neighbor to forward a packet [73].
The best next node is determined among all one-hop neigh-
bors using trustworthiness and expected payoff of a game.
A neighbor with a high ratio of dropped packets may be iso-
lated to prevent potential DoS attacks.

7 Concluding Remarks

Evolutionary algorithms are effective tools in implementing
cyber defense and counter measure mechanisms against a
broad array of adversarial activities in MANETs or akin net-
works. This paper presents a tutorial containing evolutionary
algorithms, their applications to cybersecurity, and a classifi-
cation based on the attacks that they counteract and defense
methods that they employ.

For cybersecurity of MANETs, we found successful ap-
plications of evolutionary algorithms in the forms of genetic
algorithms, grammatical programming, grammatical evolu-
tion, and differential evolution. They implement trust man-
agement, policy evaluation, and cryptographic functions to
protect MANETs. Swarm intelligence methods of ant colony
optimization, artificial bee colony, and particle swarm op-
timization are promising tools for tackling many network-
related problems. Although they may improve intrusion de-
tection, trust, cryptography, and jamming defense mecha-
nisms, their applications in MANETs are not widespread. Pop-
ularity of artificial immune systems in image processing and
pattern recognition was not matched in providing cybersecu-
rity for MANETs, with only limited applications to intrusion
detection with dynamic rule updates. Evolutionary games
are mainly used in MANETs to identify strategies for attack-
ers and defenders and to determine stable solutions in IDS,
trust, and cryptographic designs.

The algorithms used in implementation of evolutionary
computation methods outlined in this paper are typically
light-weight with low computational complexities. There is
a linear relation between search space size and computa-
tional cost of these algorithms to obtain optimal or near-
optimal solutions. They can easily handle large search spaces
involving, for example, thousands of variables over thou-
sands of generations.
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28. Şen, S.: A survey of intrusion detection systems using evolution-
ary computation. In: Bio-Inspired Comput. in Telecomm, pp.
73–94. Elseiver (2015)
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