
1 

 

Probabilistic aggregation of uncertain geologic resources   

Gordon M. Kaufman
1
 • Ricardo A. Olea

2
 • Ray Faith

3 
• Madalyn S. Blondes

4 
• 

 

Abstract Commodities such as oil and gas occur in isolated reservoirs or accumulations, more 

generically called basic units here. To understand a study area’s economic potential and to craft 

plans for exploration and development, resource analysts often aggregate (sum, accumulate) 

basic unit magnitudes in distinct spatial subsets of the study area and then appraise the total 

area’s potential by summing these intermediate sums. In a probabilistic approach, magnitudes are 

modeled as random variables. Some have asked, “Do different methods of partitioning basic 

units into subsets lead to different probability distributions for the sum of all basic unit 

magnitudes?” Any method of aggregation of basic unit magnitudes which obeys the rules of 

probability leads to the same probability distribution of the sum of all unit magnitudes as that 

computed by direct summation of all basic unit magnitudes. A Monte Carlo simulation of a 

synthetic example in which the magnitude of resource in each unit is marginally lognormal and 

pairwise correlations among basic unit magnitudes are specified illustrates key features of 

probabilistic aggregation. The joint distribution of certain pairs of aggregates are closely 

approximated by a bivariate lognormal distribution. 
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1 Introduction 

Basic mineral commodities such as oil, gas, copper, silver and gold occur as isolated reservoirs 

(deposits, accumulations). A principal goal of studies that treat mineral magnitudes in individual 

accumulations as uncertain quantities—random variables (rvs)— is to provide probabilistic 

projections of magnitude totals of selected subsets of the collection of all accumulations in a 

(spatial) assessment frame as well as of the total of all accumulation magnitudes in the frame. 

Mineral resources of the type studied here are geographically discontinuous and disseminated 

over a study area, which can be as large as a country or a continent. These accumulations are 

three-dimensional objects whose spatial distribution often appears as a geographic map. 

Geologists customarily define a “basic unit” to be, say, a copper deposit or a petroleum reservoir, 

field or play, and assign a probability distribution to the magnitude of resources in each unit 

leading to as many marginal probability distributions as basic units.  

Direct probabilistic aggregation of a collection of basic unit magnitudes into a sum of all unit 

magnitudes requires specification of a joint probability distribution incorporating probabilistic 

dependencies among basic unit magnitudes, a daunting exercise when the number of units is 

large. Many resource assessment studies do specify a joint probability distribution of basic unit 

magnitudes (Carter and Morales 1998; Schuenemeyer 2005; Delfiner and Barrier 2008; Pike 

2008; Schuenemeyer and Gautier 2010; Van Elk and Gupta 2010; Blondes et al. 2013a and 

2013c; U.S. Geological Survey Carbon Dioxide Storage Resources Assessment Team 2013). 

Crovelli and Balay (1991) characterize dependencies among basic units and between aggregates 

in terms of covariances and correlations. 
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 Methodological issues that arise in the course of probabilistic aggregation are the subject of 

this contribution. In Sect. 2 two proofs show that if the rules of probability are obeyed distinct 

partial intermediate aggregations of basic unit magnitudes lead to the same distribution of the 

sum of all basic unit magnitudes. Said differently, multiple levels of aggregation (multiple stage 

aggregation) lead to the same probability distribution for the sum of all accumulation magnitudes 

as direct summation of all accumulation magnitudes (single stage aggregation). Sect. 3 outlines 

properties of the data generating process used in Sect. 4 numerical examples. As a set of basic 

units is aggregated into a smaller number of larger sets do (positive) pairwise correlations 

between sums of basic unit magnitudes increase, decrease or stay the same? Is there an ordinal 

ordering of pairwise correlations among these sums as the number of elements in them 

increases?  Sect. 5 addresses these questions, presents easy to compute bounds on allowable 

background correlations and establishes useful inequalities governing differences between 

pairwise correlations between basic unit magnitudes and pairwise correlations among aggregates 

of them. Remarks about practical aspects of aggregation and elicitation of geologic judgments 

appear in Sect. 6. 

2 Aggregation 

For many geological resources, such as oil and gas, there is a natural hierarchy of aggregation 

levels: individual accumulation magnitudes in an oil and gas field, the sum of individual 

magnitudes in a play, the sum of magnitudes in the collection of plays in a petroleum basin and 

in turn, a regional basin aggregate.  

A first principle is: 
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If the laws of probability laws are obeyed the probability distribution of the 

sum of all individual accumulation magnitudes in a sample frame is 

the same as the probability distribution for this sum computed by use of an 

aggregation scheme—no matter how one chooses to aggregate. 

Define aggregation as follows: assume that choice of labelling of magnitudes is 

non-informative. Partition a set of N uncertain magnitudes 1,...., }{ NX X into K

mutually exclusive and collectively exhaustive subsets 1,.., KA A . Define to be the 

sum of elements in , 1,...,K k KA . Then 1{ ,..., }KS S is an aggregate of  

 Assertion 1: The cumulative distribution function of the sum 1 ... NS X X    

of N uncertain accumulation magnitudes (rvs) is identical to that of the sum 

1 ... KS S  of aggregates 1,..., KS S . 

The following simple proofs extend to successive levels of aggregation of 1,..., KS S . 

First Proof: Each possible realization 1,..., Nx x of 1,..., NX X  is a set of N real numbers, 

each in ( , )  .  Use parentheses to partition 1 ... Nx x  as
11( ... )ix x  

1 2 11 1( ... ) ... ( ... )
Ki i Nix x x x
       . Sum numbers within each pair of parentheses 

and set
1 1 2 11 1 2 1 1... , ... ,..., ...

Ki i i K i Ns x x s x x s x x
          . Numbers 1,..., Nx x  

obey the associative law of arithmetic so 1 2 1 2... ...K Ns s s x x x        for any such 

partition of 1{ ,..., }Nx x . This obtains for each possible realization 1,..., Nx x of 1,..., NX X

and all possible partitions of 1{ ,..., }Nx x so the associative law of arithmetic applies to

1,..., NX X  as well. 

kS

}.,...,{ NXX1
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Second Proof: Suppose that the range of each 
1,..., NX X  is ( , )   and that the 

( 1)N  array of uncertain quantities
1( ,..., )N NX XX  possesses a continuous 

probability distribution (density) { } ( )NProb d f d X X X X with respect to Lebesgue 

measure on ( , )N  . Compare the cumulative distribution function 

1( ) { ... }NF s Prob X X s    of 1 ... NX X  with the cumulative distribution 

function 
1( ) { ... }K KG s Prob S S s     of 

1 ... KS S  . By construction

1 2 111 1 2 1 1( ... ), ( ... ),..., ( ... )
Kn n K n NnS X X S X X S X X
          so on applying 

the associative law of arithmetic to rvs 1,..., KS S , ( ) ( )KG s F s  for all ( , ).s    

Assertion 1 obtains irrespective of the structure of dependencies assigned to 1,..., NX X .  Distinct 

aggregation schemes, each of which obey the rules of probability, lead to identical moments of 

all order for the sum of all basic unit magnitudes. (Assertion 2 below). 

Blondes et al. (2013) make three assertions: first, that the probability distribution of an 

aggregated sum using multiple stages of correlation matrices is strongly dependent on the number 

of aggregation stages, the size of the individual groups, and the size of the total aggregation. 

Second, multiple stage aggregation will, if correlation coefficients are positive, narrow aggregate 

distributions. Third, the choice of partition of units into groups can have a larger impact on the 

distribution of the sum of all unit magnitudes than choices of correlation coefficient selected by 

experts. All or any of these assertions may obtain if geologists’ probability judgments do not adhere 

to laws of probability. In contrast, Assertion 1 says that any aggregation scheme obeying the rules 

of probability leads to the same probability distribution as that for the sum of all basic unit 

magnitudes. 
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2.1 Moments and Aggregates 

One tactic for simplifying the task of assessing properties of a large collection of basic units is to 

assume that the joint distribution of magnitudes
1,..., NX X  is a parametric distribution indexed by a 

mean vector, a variance matrix and possibly a small number of additional parameters. Even so, the 

task of specifying parameters can be daunting. If N is large, the covariance matrix of 
1,..., NX X  

possesses an intimidatingly large number of parameters. Aggregation of
1,..., NX X  into  

subsets helps in principle: an analyst must then assess or estimate from available data 

 variances and co-variances of sums.  

Turn next to an important property of variance matrices induced by aggregation. Define the 

vector rv 1( 1) ( ,..., )t

N NN X X X  and the variance matrix of  to be 

   ) .    (1) 

Let 1( ,..., )t

K KS SS be a ( 1)K  vector of aggregates and define ( )K N A  to be a matrix that 

maps elements of NX  into K N  distinct sums 1,..., KS S as defined in Sec. 1. Place kN 1s in the k
th

 

row ka of matrix A at labels of elements in kA and 0s elsewhere so that k N kSa X , the sum of 

magnitudes in the subset kA of elements of NX . Do this for all K subsets.  Then  

NK 
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1

2

K

 
 
 
 
 
 

a

a
A

a

                                                           (2) 

maps 1( ,.., )t

N K KS S X S . That is, N KAX S and ( ) ( ) ( ) t

k N NVar Var Var S AX A X A .  In turn, 

on defining to be a vector of 1s ( ) t t

K KVar S  1 AXA 1 . The punchline is that t

K N1 A 1 , a 

vector of N 1s so that ( ) ( )t t t

K K N N NVar Var S 1 AXA 1 1 X 1 . This establishes by computation 

Assertion 2: The variance of the sum of elements of NX equals the variance of the sum 

of aggregates of elements of NX for all possible partitions of elements of NX  into non-

null subsets. 

Assertion 2 is, of course, a direct consequence of Assertion 1. 

2.2 Multiple Stage Aggregation 

Matrices of type displayed in Eq. (2) yield a compact representation of means and variances of 

basic unit sums induced by multiple levels of aggregation. For any fixed ordering of elements of

1( ,..., )tN NX XX , the matrix in Eq. (2) maps NX  into a vector of aggregates 1( ,..., )t

K KS SS . 

Call A as in Eq. (2) 
(1)A so that

(1)

N KA X S . 

Use a new version of Eq. (2) to aggregate the K elements of KS  into M K  aggregates. 

Partition sums 1{ ,..., }KS S  into M  subsets 1,.., MB B  with 1,..., MM M members respectively. Place

mM 1s in the m
th

 row of a new matrix at labels of elements of kB and 0s elsewhere in that row. Then

(2)

m K mWa S , the sum of magnitudes in the subset kB  of elements of KS . Do this for all K subsets.  

The ( )M K matrix  

KK 1)1( 
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(2)

1

(2)

(2) 2

(2)

K

 
 
 
 
 
 

a

a
A

a

       (3) 

maps the K elements of 
KS  into M K  aggregates (2) (2) (1)(1 ) M K NM   W A S A A X . 

This leads to: 

Assertion 3: If aggregation to a sum of all basic unit magnitudes is done in p stages, 

( ) (2) (1)...p   A A A  is an ( 1)N   row vector of  and   

         
( ) (2) (1)...p

NS    A A A X .    (4) 

3 Dependencies 

How best to appraise probabilistic dependencies among basic mineral resource units is a 

recurring issue—from the first large scale exercise in subjective geological assessment of basic 

mineral resources (Miller et al. 1975) to recent attempts. Authors of the Circum-Arctic study 

(Schuenemeyer and Gautier 2010) make it clear that probabilistic projections of oil and gas in 

this very large region are sensitive to variations in co-variabilities of basic unit magnitudes. They 

point out that when 48 Circum-Arctic assessment units are aggregated 90% uncertainty intervals 

for recoverable gas range from 1,471 TCF, to 2,009 TCF, to 3,515 TCF for assumptions of 

independence, assessor specified dependencies (correlations), and functional dependence of all 

units (Pearson correlation coefficient 1.0) respectively. Decision makers who rely on assessment 

results need accurate interval estimates. Too broad an interval provides little information; a too 

narrow interval gives a false sense of precision. 

s1
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To keep the assessment task within bounds geologists often limit appraisal of dependencies to 

pairwise correlations among
1,..., NX X  or among aggregates of them. In most realistic geological 

assessment exercises, pairwise correlations range from close to zero to close to 1.0 with large 

subsets of correlations in between. Several USGS studies (Collett 2008; Klett and Gautier 2009) 

state that zero pairwise correlation implies probabilistic independence of a pair of uncertain 

quantities and, at the opposite extreme, claim that assignment of correlation 1.0—often mislabeled 

as “perfect correlation”— allows computation of fractiles of a sum of all basic unit magnitudes by 

addition of basic unit fractiles. Neither statement is true in general. 

3.1 Data Generating Process 

In what follows, the probability law governing  is multivariate lognormal so the joint 

distribution of elements of the vector 1ln (ln ,..., ln )t

N N NX X X Y  is fully specified by 

assignment of a mean vector μ and variance matrixΣ  to natural logarithms of elements of the 

basic magnitude vector : 

                         

11 12 1

21 22

1,

1 , 1

( )

N

N N

N N N NN

Var

  

 



  





 
 
  
 
 
 

Y Σ .          (5) 

The correlation matrix associated withΣ  is  

        . 

12 1

21

1,

1 , 1

1

1
( ) , /

1

N

ij ij ii jj

N N

N N N

r r

r
Corr r

r

r r

  




 
 
  
 
 
 

Y .                                       (6) 

NX

NX
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3.2 Basic Unit Magnitude Correlation Structure 

The correlation structure of 1( ,..., )t

N NX XX  and that of 1ln (ln ,..., ln )t

N N NX X X Y  

demand attention. First, the dispersion of a sum of lognormal rvs is a function of sums of 

pairwise co-variances among them and small variations in co-variances can lead to large 

differences in dispersion of this sum. Second, while in theory personal probability judgments 

about basic unit magnitudes do not depend on whether elicitation in done in units of magnitude 

or units of logarithms of magnitude, in practice distinct choices of scale and function often lead 

to distinct probability judgments about unit magnitudes even when they should not.  

If 1 2( , )tX XX is lognormal (is ( )LN μ,Σ ) with 

           
1 11 12

2 21 22

and
  


  

   
    
   

        (7) 

the mean of X is 

   
1 11

1

2
2 22

}

}

1
exp{

2
( )

1
exp{

2

M
E

M

 

 

 
   

    
   

 

X     .    (8) 

With 11 22 12, andv v v as in Eq. (1),  

                   2 211 22
1 1 2 2( ) ( 1), ( ) ( 1)Var X M e Var X M e

 
    ,    (9) 

and the covariance of 1 2andX X is 

              12
12 1 2( 1)v M M e


   .                (10) 
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The correlation coefficient of
1 2andX X  is 

       12 11 22
1 2 12 11 22( , ) / ( 1) / 1 1Corr X X e e ev v v

  
       .  (11) 

Modest variations in variances of logarithms of basic unit magnitudes can induce large variations 

in 
1 2 1 2( , ) and ( , )Cov X X Corr X X .  However, when andii jj   are small    

      ( , ) (1 ( ))i j ij ii jjCorr X X r O     .                (12) 

3.3 Covariance Structure of Aggregates 

In the numerical study described below pairwise correlations among basic unit magnitudes are 

restricted to be positive. Consider 12 basic units partitioned into two subsets (clusters), one with 

7 units and the other with 5 units. In Table 1 within cluster pair-wise correlations of 0.7 and 0.6 

are assigned to green and blue clusters respectively and 0.4 to between cluster pairwise 

correlations.  

(Table 1 Here) 

The special structure of diagonal green and blue blocks in Table 1 allow calculation of 

simple formulae for variances of sums 1 1 7 2 8 12... and ...S X X S X X     . The green sub-

matrix in Table 1 is a version of an intra-class correlation matrix. With 1 1( ,..., )t

nX XX   ,

2 1( ,..., )t

n NX XX , within cluster correlations 1 ( , ) , 1,..., and i ji jCorr X X i j n    ,

2 ( , ) , 1,..., and i ji jCorr X X i j n N     , between cluster correlations  , ( 1) (1,...,1)t

nn 1

and 
1/2

11( ,..., )a nndiag v vD ,  

             
1/2 1/2

1 1 1( ) [(1 ) ]t
a n n n aVar    X D I 1 1 D .    (13) 
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Using Eq. (13), 7and 12n N   

            2

1 1 11 1 11( ) (1 )( ... ) ( ... )nn nnVar S v v v v        ,   (14) 

   2

2 2 1, 1 2 1, 1( ) (1 )( ... ) ( ... )n n NN n n NNVar S v v v v             (15) 

and  

.               1 2 11 1, 1 ,( , ) ( ... )( ... )nn n n N NCov S S v v v v          (16) 

Standard deviations of basic unit magnitudes in Table 5 along with correlations as in Table 1 

determine the variance matrix ( )NVar X . 

     (Table 2 Here) 

Standard deviations of 71 1 ...S X X   and 2 8 12...S X X    are 184 and 150 respectively, 

1 2( , )Cov S S   179 and 1 2( , )Corr S S = 0.562.  The variance of the sum of all 12 basic unit 

magnitudes is 87,381 and its standard deviation is 296. 

Variance and correlation matrices for basic units aggregated into four clusters{1,2,3,4}, 

{5,6,7}, {8,9,10}, {11,12} appear in Table 3. 

(Table 3 Here) 

Table 4 displays variance correlation matrices for Table 4 clusters aggregated into two larger 

clusters {1,2,3,4,5,6,7} and {8,9,10,11,12}. 

(Table 4 Here) 
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In Tables 3 and 4 correlations of aggregated sums are larger than the common pairwise 

correlation 0.4 assigned to pairs of individual basic unit magnitudes, each member of a pair in a 

distinct cluster.  

4. Simulation 

Properties of aggregates of basic unit magnitudes possessing marginal distributions shown in 

Table 5 and correlation structure as in Table 1 are computed by Monte Carlo simulation.  A key 

assumption is that basic unit magnitudes are jointly lognormal. 

Figure 1 displays boxplots of Table 5 marginal distributions:  

 (Table 5 Here)  

(Figure 1 Here)  

4.1 Numerical Aggregation 

Figures 2 and 3 are overlays of the empirical cumulative distribution function of the sum of all 

twelve magnitudes and a fit of a lognormal distribution to this sum. They are virtually 

indistinguishable. This feature is possibly an artifact of the small variation in the range of 2 (0.202 

to 0.631) and in the range of (3.004 to 4.200) among the twelve basic unit distributions in Table 5. 

(Figure 2 Here) 

(Figure 3 Here) 

A Q-Q plot provides a finer pictorial resolution of right tail behavior. Figure 4 shows a 

lognormal fit to be surprisingly good out to the 15/100,000
th

 =0.99985
th
 fractile beyond which right 

tail deviations are visible.  
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(Figure 4 Here) 

Figures 5(a), 5(b) and 5(c) compare empirical marginal distributions of sums of magnitudes 

in clusters{1,2,3,4,5,6}and in {7,8,9,10,11,12}and of total magnitude with lognormal density fits 

using 100,000 Monte Carloed values. 

(Figures 5(a), 5(b), 5(c) Here) 

Figure 6(a) is a scatterplot of sums of magnitudes in clusters {1,2,3,4,5,6} and 

{7,8,9,10,11,12}.  Figure 6(b) is a scatterplot of logarithms of sums of magnitudes in these two 

clusters.  

(Figures 6(a), 6(b) Here) 

4.2 Approximate Lognormality 

The shape of the scatterplots in Fig. 6 suggests that a bivariate lognormal distribution may be a 

reasonable fit to the joint distribution of the logarithms of cluster sums.  The fit to un-normalized 

sums is quite good for the particular set of correlated lognormal rvs used here. Figs. 7(a), 7(b) 

and 7(c) are Q-Q plots of the empirical distribution of the sum of magnitudes in cluster 

{8,9,10,11,12} conditioned on the sum of magnitudes in cluster {1,2,3,4,5,6,7} at slices taken at 

the median and  standard deviations from the median. 

 

(Figures 7(a), 7(b), 7(c) Here) 

5 Aggregation and Correlation 

1
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Do pairwise correlations between sums of basic unit magnitudes increase, decrease or stay the 

same as basic units are aggregated into smaller numbers of larger and larger sets? Is there an 

ordinal ordering of pairwise correlations among these sums as the number of elements in them 

increases? Answers to both questions are “No” in general. However, variance matrices structured 

as in the USGS Circum-Arctic study and in Table 1 lead to useful inequalities between pairwise 

correlations among individual unit magnitudes and correlations between sums of magnitudes. 

Partition the set of all basic units into two distinct subsets (clusters) 1A  and 2A  chosen so that 

the magnitude of any unit in 1A  and that of any unit in 2A  possess identical pairwise 

correlation. Sect. 5.2 provides a proof that, for positive background correlations, the pairwise 

correlation between the sum of unit magnitudes in 1A  and the sum of unit magnitudes in 2A  is 

uniformly larger than the common (background) correlation assigned to two individual units in 

distinct clusters. Sect. 5.1 sets the stage with presentation of properties of Shür complements 

used to show that, as the number of elements in 1A  and the number of elements in 2A  increase 

in accord with a uniform asymptotic regime described in Sect. 5.3, the pairwise correlation 

between 1A  and 2A  sums approaches a limit proscribed by a function of weighted averages of 

within cluster correlations.  

5.1 Shür Complements 

Consider the ( )N N variance matrix of 1 1( ... )t

nX X  X and 2 1( ... )t

n NX X  X : 

          
1 11 12

11

2 21 22

( ) , ( )Var Var n n
   

      
   

X V V
X V V

X V V
 .                   (17) 
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Here elements of
1X ares interpretable as magnitudes of a cluster of geologically similar units for 

which geologists provide sufficient information to pin down numeric values for components of

11V . Interpret 
2X  and 

22V  similarly. According to Schuenemeyer and Gautier (2010) 

correlations between two basic unit magnitudes lying in distinct clusters are not easy to pin down 

and the number of them their study is large. To limit complexity they assume that almost all 

pairwise correlations between two units in distinct clusters share a common value and call each 

such correlation “background correlation”. Table 1 is a simple example in which pairwise 

correlations between basic unit magnitudes within each of two distinct clusters share a common 

value. Assertion 4 below documents how allowable values of background correlation depend on 

variance matrices assigned to clusters. 

Necessary conditions for V as in Eq. (17) to be positive definite are first that 11V is PDS 

11( 0)V  and second, that the Schür complement 

     
1

11 12 22 21

 V V V V 0 .         (18) 

Factor 11V and 22V  so that
1/2 1/2 1/2

11 1 11 1 1 11, ( ,..., )nndiag v v  A D V D D  and 

1/2 1/2 1/2

22 2 22 2 2 1, 1, ( ,..., )NNn ndiag v v 

  A D V D D . Then 11A and 22A are correlation matrices 

generated by 11V and 22V . The necessary condition Eq. (18) is equivalent to 

                 
1

11 12 22 21

 A A A A 0  , 
/12 /12

12 1 12 2

 
A = D V D .         (19) 

A version of the following assertion appears in Kaufman (2016) along with tighter but more 

recondite inequalities for patterned variance matrices. 

Assertion 4:  
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(1) The sum
 
of elements of the inverse of any PDS correlation matrix is strictly greater 

than one. 

(2) Consider the correlation matrix 
11 12

21 22

 
 
 

A A

A A
associated with V as in (17) when

12( ) t

n mn N n    A 1 1 and
11 22, A A 0 . Define

ig to be the sum of elements of 1

ii


A  . 

Then V is PDS if and only if 

                   
1 2 1 2

1 1

g g g g
     .                 (20)  

The message for geologists is that the allowable range of background correlation is restricted 

(sometimes severely) by assignment of within cluster correlations. A coherent assessment 

scheme must account for this constraint. Consider Table 1, Table 1 green and blue matrices are 

examples of intra-class correlation matrices for which computation of upper and lower bounds 

on background correlation  are particularly simple. The proof relies on elementary properties of 

an intra-class correlation matrix: 

(a) An ( )N N intra-class correlation matrix with correlation coefficient is

1
1

1
iff

N
  


. 

(b) The sum of elements of the inverse of an  intra-class correlation matrix with 

correlation coefficient  is / (1 ( 1) ).N N    

The sum of elements of the inverse of the green matrix in Table 1 is 1 1.346g  and sum of 

elements of the inverse of the blue matrix is 2 1.471g  . Pairwise background correlation 

between clusters is restricted to lie in ( 0.711,0.711).  If the green matrix is replaced with a

PDS

)( NN 
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 identity matrix and the blue matrix is replaced with a (5 5) identity matrix then  is 

restricted to lie in ( 0.169,0.169).  

5.2 Background Correlation  

Partition basic unit magnitudes into K clusters and write the vector of uncertain basic unit 

magnitudes as 1( ,..., )t

KX X X . Redefine the variance matrix of X to be 

              

11 12 1

21 22

1,

1 , 1

( )

K

K K

K K K KK

Var




 
 
 
 
 
 

V V V

V V
X

V

V V V

 , ( )ii iVarV X and ( , )ij i jCovV X X .   (21) 

Interpret iiV as the variance matrix assigned to magnitudes of geologically similar basic units 

assigned to the thi  cluster. In (21) ijV  is the covariance of pairs of elements, one in cluster i and 

the other in cluster ,j i j . 

If K is small to moderate and no single cluster is large, geologists can often provide coherent 

assessment of elements of each iiV . However, even when the number of clusters is small to 

moderate, the number of pairwise co-variances can be large enough to make direct subjective 

assessment of dependencies between units in distinct clusters impractical. Assignment of a 

common background correlation to all unit magnitudes as in Table 1 or to unit magnitudes as in 

the Circum-Arctic study is one tactic for dodging this difficulty. Define
1/2

iD  to be a diagonal 

matrix with diagonal elements composed of positive square roots (standard deviations) of 

diagonal elements of iiV  and 

)77( 
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1/2

1

1/2

1/2 2

1/2

t

t t

K

 
 
 
 
 
 

D 0 0

0 D
D

0

0 0 D

.     (22) 

The correlation matrix of X  is  

          

11 12 1

21 22

1,

1 , 1

K

K K

K K K KK





 
 
 
 
 
 

C C C

C C

C

C C C

  = 1/2 1/2 
D VD .   (23) 

Within cluster correlation matrices are
1/2 1/2, 1,...,kk k kk k k K  C D V D  and 1/2 1/2,ij i ij j

 C D V D  

, 1,..., ,i j K j i   are between cluster correlation matrices. Assigning special structure to C  

reduces the assessment burden in return for restricting allowable ranges of some pairwise 

correlations.   For example, assume that all elements of each ,ij i jC  equal a common 

background correlation  . Define 
t

i1  to be a ( ( ) 1)n i   vector of 1s and set       

            , 1,... ,t

ij i j i j N i j   C 11  .                (24) 

The correlation matrix, Eq. (23) is then 

                  

11 1 2 1

2 1 22

1

1 1

t t

K

t

t

K K

t t

K K K KK

 





 





 
 
 
 
 
 

C 1 1 1 1

1 1 C
C

1 1

1 1 1 1 C

.                     (25) 

The Circum-Arctic study employs a version of (25) with a small number of off block diagonal 

correlations assigned values different from . In order for C as in (25) to be PDS the correlation 

coefficient   must lie in an interval ( , )   with    the largest negative root and   the 
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smallest positive root of a polynomial ( )P  of degree K whose coefficients are composed of 

elementary symmetric functions of 
1,..., Kg g with

kg the sum of elements of 1

kk


C . Alternatively, 

on applying a similarity transform to C that maps it into block diagonal form,    is the largest 

negative eigenvalue and   is the smallest positive eigenvalue of a ( )K K matrix appearing on 

the diagonal of transformed C  (Kaufman (2016)). 

5.3 Aggregation of Clusters 

To illustrate how aggregation affects order relations between background correlation and 

correlations of aggregates partition a ( 1)N  vector X of basic unit magnitudes as 1 2( , )t t tX X X  

and let 

             
11 12

21 22

( )Var
 

  
 

V V
X

V V
             (26) 

as in Eq. (17). Define 1 11( ,..., )nndiag v vD , 2 1, 1( ,..., )n n NNdiag v v D , 

        
1

2

t

 
  
 

D 0
D

0 D
               (27) 

and factor ( )Var X as 

    
11 121/2 1/2

21 22

( ) with conformableVar
 

   
 

C C
X D CD C

C C
.                 (28) 

Assume that pairwise correlations between elements of 1X and elements of 2X are 12 1 2

t C 1 1 as 

in Eq. (25). 
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Assertion 5: Provided that
1,..., NX X are positively correlated and elements of 

1{ ,..., }nX X and

1{ ,..., }n NX X
possess common (background) correlation  , the pairwise correlation of

1 1 ... nS X X   and
 2 1 ...n NS X X   is larger than .  

(a) The pairwise correlation of 1 2andS S  is             

      

(1 ) (1 )N n N nn n n N nc c f c c f



      

     .                   (29) 

Here, parameters nc  and N nc   are weighted correlations defined in Eq. (35) and Eq. (37), 

                  11
2

11

...

( ... )
nn

n

nn

v v
f

v v

 


 
 and 1, 1

2
1, 1

...

( ... )

NNn n
N n

NNn n

v v
f

v v

 


 

 


 
.      (30) 

(b) If variances iiv are bounded away from zero and are finite, background correlation is less 

than the geometric mean of nc  and N nc  : 

                
1/2 1

( ) (1 ( ))N nnc c O
N

    .                                (31) 

If pairwise correlations within clusters are bounded away from zero then

and areboth (1)N nnc c O . If Eq. (20) implies that within cluster correlations are 
1

( )O
N

 then

and N nnc c   are
1

( )O
N

. 

Proof: Use the identity 

                                  2

1 1( ... ) ...n n i j

i j

v v v v v v


      .        (32) 




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Apply it to the variance of a sum of rvs with variance matrix
11( )n n V 0  possessing diagonal 

elements
11,..., nnv v . Equation (32) implies the inequality 

       2

11 11... ( ... )nn ij ii jj nn

i j

v v c v v v v


      .     .       (33) 

Let 
*

, 1,..., ,i j n i j 
  and write 

                         
*

1 11( ) nn ij ii jjVar S v v c v v   .        (34) 

Use
* 2

11 11( ... ) ( ... )ii jj nn nnv v v v v v       to construct a weighted correlation 

        
*

2

11 11( ... ) ...

ii jj

n ij

nn nn

v v
c c

v v v v


    
  .      (35) 

Then
* 2

11 11[( ... ) ( ... )]ij ii jj n nn nnc v v c v v v v       so the variance of  is representable 

as 

             
2

1 11 11( ) (1 ) ( ... ) ( ... ) .n nn n nnVar S c v v c v v                   (36)   

Treat 2( )Var S  similarly. Define
**

, 1,..., ,k l n N k l  
  and 

         
**

2

1, 1 1, 1( ... ) ...

kk ll

kl

n n NN n n NN

N n
v v

c c
v v v v   

 
    

             (37) 

so that 

             
2

2 1, 1 1, 1( ) (1 ) ( ... ) ( ... ) .N n N nn n NN n n NNVar S c v v c v v                  (38) 

1S
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The pairwise correlation of 
1 2andS S is 

  
11 1, 1

1 2

1 2

( ... ) ( ... )
( , )

( ) ( )

nn n n NNv v v v
Corr S S

Var S Var S


     
  .      (39) 

Using Eq. (36) 

  
1/211 11

2

1 11

... ...
[( (1 ) ]

( ) ( ... )

nn nn
n n

nn

v v v v
c c

Var S v v

   
   

 
.                   (40) 

As (0,1)nc  and 2

11 11( ... ) / ( ... ) 1nn nnv v v v     the denominator on the RHS of Eq. (40) 

is less than one. Treat 2( )Var S  similarly. Taken together equations (36), (38), (39) and Eq. (40) 

yield 

       1/2 1/2[ (1 ) ] [ (1 ) ]N n N nn n n N nc c f c c f         .      (41) 

Suppose that variances are bounded away from zero and are restricted to be finite so that there 

exists small  and large  such that . Then   

         11

2

11

...

( ... )

nn

nn

v v B

nB nv v





 
 

 
        (42) 

so nf is
1

( )O
n

 and N nf   is 
1

( )O
N n

. In the uniform asymptotic regime ,
n

N
N

   with 

bounded away from zero and one (1 )0 and 0N Nf f   leading to Eq. (31).  

A simple example is informative. Suppose that 1 1( ) ( )Var CorrX X  is the (7 7)  intra-class 

correlation green matrix in Table 1 with 1 0.7  , 2 2( ) ( )Var CorrX X is the (5 5)  blue intra-

0 0B Bvii 
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class correlation matrix with
2 0.6  and 

1 2 1 2( , ) ( , )Cov CorrX X X X is the black matrix with 

common elements 0.4  .  Direct computation yields 

          1 2

1 2
1 2

( , )
1 1

Corr S S

n N n



 
 


 

  


.               (43) 

The allowable range of 1  is
1

( ,1)
1n




and that of 2  is
1

( ,1)
1N n


 

. For 1  and 2 in their 

allowable ranges 1
1

1

n





   and 2

2

1

N n








 are positive. Because the sum of elements of the 

inverse of the green matrix in Table 1 is 1 1/ (1 ( 1) )g n n     and the sum of elements of the 

blue matrix is 2 2( ) / (1 ( 1)g N n N n      , Assertion 4 says that the correlation coefficient

( 0)  must be less than the denominator in (43) in order for 1 2( ) with ( , )t tVar X X X X to be 

positive definite. (The Cauchy-Schwartz inequality says the same).  In this example

7, 5,n N n   1 0.7nc   , 2 0.6N nc    , 1/ 1/ 7nf n   and 1/ ( ) 1/ 5N nf N n    . For

0.4  1 2( , ) 0.563Corr S S  . The allowable range of  is ( 0.711,0.711) . 

 Consider an alternative partition of the twelve basic units in Table 1 into two subsets with 

labels {1,2,3,4,5,6,7,8,9}and{10,11,12}  . This partition “splits” clusters in such a way that 

common background correlations of 0.4 in Table 1 appear in the correlation matrix for units 

labelled{1,2,3,4,5,6,7,8,9}along with correlations 0.7. The set of all pairwise correlations 

between elements of and elements of  are no longer identical so 

*

1 1 2 9...S X X X     and
*

2 10 11 12S X X X    are not block diagonal aggregates. In this 

particular case the pairwise correlation of
*
1S  and

*

2S  is 0.635, substantially greater than 

},,{ 121110 },,,,,,,,{ 987654321
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background correlation 0.4. In general, when a partition of basic unit magnitudes splits clusters 

possessing common background correlations as in the above example the pairwise correlation 

between resulting sums can be greater than, equal to or less than background correlation.  

6 Assessment tradeoffs 

6.1 Parsimony 

Direct assessment of second moments of N unit magnitudes requires appraisal of N variances 

and 
1

( 1)
2

N N  pairwise correlations. Partitioning aggregate units into a small number of clusters 

and directly assessing correlations between sums of basic unit magnitudes in each cluster 

(multiple stage aggregation) is an attractive alternative because it modulates the tyranny of large 

numbers.  An example is direct assessment of correlations between pairs of sums of oil 

equivalent in each of several petroleum plays instead of between individual prospects and 

accumulations. To a geologist assigned the task of assessing co-variability among basic unit 

magnitudes this sounds like a magically simple recipe! The number of pairwise correlation 

coefficients decreases at the expense of requiring subjective appraisal of co-variability of sums 

of oil equivalents. Aggregation of 1,..., NX X
 
to 1,..., KS S , K N  requires specification of

( 1) / 2K K   pairwise correlation coefficients and K variances. The reduction in number of 

parameters to assess is beguiling! For example, a (12 12)  variance matrix of basic unit 

magnitudes 1 12,...,X X requires specification 12 variances and 66 pairwise co-variances.  If 

1 12,...,X X are partitioned into two subsets 71{ ,..., }X X
 
and 8 12{ ,..., }X X , the variance matrix 

for sums 1 1 7...,S X X   and 2 8 12...,S X X  possesses only three parameters. Asking a 

geologist to assess 1 2 1 2( ), ( ) and ( , )Var S Var S Cov S S  in place of parameters of the variance matrix 
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of 1 12,...,X X  greatly reduces the assessment burden but shifts focus away from properties of 

basic unit magnitudes. A modeling tactic that trims the number of parameters to assess is to 

assign common pairwise correlation of oil equivalent magnitudes to members of each petroleum 

play in a sample frame and to specify a common background correlation between oil equivalent 

magnitudes in distinct plays—as in Table 1 for example. 

Because variances and co-variances of aggregates of
1,..., NX X  are functionally dependent on 

all variances and co-variances of 1,..., NX X  introduction of multiple levels of aggregation reduces 

the number of parameters to assess but increases the number of constraints on second moments 

of aggregates. Assessment schemes must take these features of aggregates into account.  

6.2 Elicitation of Dependencies and Correlation 

When measureable data available to estimate oil and gas depositional model parameters are not 

available the only way to proceed is to elicit geologists’ judgments about parameters and 

dependencies (Meyer and Booker 2001; O’Hagan et al. 2006; Delfiner and Barrier 2008; 

Daneshkhah and Oakley 2010). Geologic analogy (a qualitative measure of similarity) plays an 

important role here. Choice of which analogy is highly subjective, adding a layer of complexity 

to the assessment process. Team effects occur often: correlations among basic units in distinct 

areas assessed by a particular team are often larger than correlations between units assessed by 

that team and units assessed by a different team. In addition to these assessment issues, 

subjective appraisal of pairwise co-variability by elicitation of judgments about pairwise 

correlations deserves particular attention. Appraisal of the impact of subjective assessment biases 

is important. If basic units are probabilistically dependent, assessment error at one unit can 

propagate to assessment errors at other units.  
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The Pearson correlation coefficient 1 1    is a measure of the strength of linear 

association between two uncertain quantities. Although it can be computed for any pair of 

uncertain quantities whose joint distribution is known, an estimate of it computed from observed 

data is neither robust nor resistant to outliers (Wilcox 2016) and if not carefully interpreted can 

be misleading (Anscombe 1973). Here pairwise correlations are not estimated from data so 

estimation robustness is not an issue.  However, use of pairwise correlation as a measure of 

dependence of one random variable Y on another random variable X can be misleading in other 

ways. How to interpret the meaning of depends on the particular joint probability law 

governing andX Y . If andX Y are bivariate normal the expectation ( )E Y X of givenY X is a 

linear function of X so  is a sensible measure of the elasticity (variation of) Y with respect to X

as well as of the dispersion of Y around the regression line ( )E Y X a bX  . If andX Y are 

bivariate lognormal ( )E Y X  is no longer a linear function of the pairwise correlation of andX Y . 

More generally, the pairwise correlation between functions of two bivariate Normal rvs is not a 

robust measure of dependency. 

It is more natural for geologists to think about how the magnitude iX of basic unit i varies 

with variations in jX rather than how ln iX varies as ln jX varies. For i j  suppose that the 

( , )thi j  element ijc of C  is the pairwise correlation between basic unit magnitudes. In general 

( , )i jCorr X X  is not equal to (ln ,ln )i jCorr X X . However, when NX  is multivariate lognormal 

with 
2(ln ) , 1,...,i iiVar X i N  and (ln ,ln )i jCorr X X r  fixed, for small

2, 1,...,ii i N 

( , )i jCorr X X r . A protocol designed to elicit geologists’ judgments about degrees of 

dependencies among basic unit magnitudes assumed to be lognormal must take into account 
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these facts. A review of some analytical methods for modeling dependencies that go beyond 

pairwise correlation and its cousins appears in Kaufman (2018). 

                  

6.3 Principal Conclusions 

 
Any method of aggregation of basic unit magnitudes obeying the rules of probability leads to the 

same distribution of the sum of all unit magnitudes.  

If not carefully policed, personal (subjective) judgments by geologists elicited at distinct levels 

of aggregation may or may not be coherent and may or may not lead to a distribution for the sum 

of all basic unit magnitudes identical to that computed by direct summation of all of them. This 

is an implementation not a mathematical problem. Multiple stage aggregation requires fewer 

judgmental assessments about fewer parameters. The tradeoff is that multiple stage aggregation  

directs geologists’ subjective probability assessments away from primitive geological attributes 

underpinning properties of basic unit magnitudes.  

Probabilistic aggregation of resources that incorporates expert judgment is coherent if and only if 

judgments adhere to the rules of probability. Resolution of many issues that plague assessment 

practice remain to be studied and resolved. 
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Table 1 Basic unit magnitude correlation matrix 

1 
      

     
0.7 1 

     
     

0.7 0.7 1 
    

     
0.7 0.7   0.7 

 

1 
   

    
 0.7 0.7 0.7 0.7 1 

  
    

0.7 0.7 0.7 0.7 0.7 1 
 

     
0.7 0.7 0.7 0.7 0.7 0.7 1 

     
0.4 0.4 0.4 0.4 0.4 0.4 0.4 1 

    0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 1 
   0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6 1 

  0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6 0.6 1 
 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.6 1 
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Table 2 Basic unit variance matrix 

 

1 2 3 4 5 6 7 8 9 10 11 12 

1 670 606 595 633 508 460 604 433 346 329 346 422 

2  
1117 769 817 656 594 780 559 447 425 447 544 

3   
1080 803 645 584 767 550 440 418 440 535 

4   
 

1219 685 621 815 584 467 444 467 569 

5     786 498 655 469 375 356 375 457 

6      645 593 425 340 323 340 414 

7      
 

1113 558 446 424 446 543 

8 
       

1751 839 798 840 1022 

9 
       

 1118 637 671 817 

10 
       

  1009 638 776 

11 
       

   
1119 817 
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12 
       

    
1658 

 

 

 

 

 

 

 

 

 

 

 

Table 3 Variance and correlation matrices for clusters {1,2,3,4}, {5,6,7}, {8,9,10}, {11,12}  

 

                    
  {1,2,3,4} 11948 7188 4809 3389 
 

1 0.864 0.507 0.474 

 {5,6,7} 7188 5787 3252 2352 
 

0.864 1 0.493 0.473 

{8,9,10} 4809 3252 7523 4376 
 

0.507 0.493 1 0.771 

{11,12} 3389 2352 4376 4278 
 

0.474 0.473 0.771 1 
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Table 4 Variance and correlation matrices for clusters {1,2,3,4,5,6,7} and {8,9,10,11,12}  

  

          
  {1,2,3,4,5,6,7} 32112 13802 
 

1 0.537 

{8,9,10,11,12} 13802 20554 
 

0.537 1 
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Table 5 Properties of marginal lognormal distributions. St. Dev = standard deviation 

      Unit Number 

 
1 2 3 4 5 6 7 8 9 10 11 12 

Mean 27.6 42.3 61.8 73.8 32.5 35.2 49.0 55.9 67.4 40.2 45.5 59.8 

St Dev 25.9 33.4 32.9 34.9 28.0 25.4 33.4 41.8 33.4 31.8 33.4 40.8 

Median 20.16 33.18 54.61 66.70 24.60 28.54 40.49 44.77 60.35 31.56 36.65 49.45 

Mode 10.73 20.43 42.59 54.51 14.11 18.77 27.65 28.70 48.44 19.43 23.80 33.77 

0.9 

Fractile 56 81 103 119 64 65 89 105 110 77 85 109 

0.1 

Fractile 9.0 17.8 39.7 51.5 12.1 16.7 24.8 25.3 45.5 17.0 21.1 30.3 

 3.004 3.502 4.000 4.200 3.203 3.351 3.701 3.801 4.100 3.452 3.601 3.901 
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0.794 0.696 0.499 0.449 0.745 0.647 0.618 0.667 0.469 0.696 0.657 0.618 

 0.631 0.485 0.249 0.202 0.556 0.419 0.381 0.445 0.220 0.485 0.432 0.381 

      

Fig. 1 Basic unit magnitude boxplots 



2
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Fig. 2 Overlay of empirical and lognormal fit to cumulative distribution function of the sum of 

all basic unit magnitudes 

 

   Fig. 3 Overlay from 0.95
th
 to 0.999

th
 fractiles 
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Fig. 4 Lognormal Q-Q plot of sum of all basic unit magnitudes 

  



40 

 

 

Fig. 5 Histograms and fitted lognormal distributions: (A) aggregation of  basic units 1−7  (B) 

aggregation of basic units 8−12 (C) sum of (A) and (B) 
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Fig. 6 Scatterplot of partial aggregations of basic units 1−7 and 8−12: (A) original space; (B) 

logarithmic space 



42 

 

 
Fig. 7 Q-Q slices of ln(Total2): (A) near −1 standard deviation; (B) near center; (C) near +1 

standard deviation. 
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