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Abstract 

Mild cognitive impairment (MCI) is a pre-existing state of Alzheimer's disease (AD). An accurate prediction on the 

conversion from MCI to AD is of vital clinical significance for potential prevention and treatment of AD. 

Longitudinal studies received widespread attention for investigating the disease progression, though most studies did 

not sufficiently utilize the evolution information. In this paper, we proposed a cerebral similarity network with more 

progression information to predict the conversion from MCI to AD efficiently. First, we defined the new dynamic 

morphological feature to mine longitudinal information sufficiently. Second, based on the multiple dynamic 

morphological features the cerebral similarity network was constructed by sparse regression algorithm with 

optimized parameters to obtain better prediction performance. Then, leave-one-out cross-validation and support 

vector machine (SVM) were employed for the training and evaluation of the classifiers. The proposed methodology 

obtained a high accuracy of 92.31% (Sensitivity=100%, Specificity=82.86%) in a three-year ahead prediction of 

MCI-to-AD conversion. Experiment results suggest the effectiveness of the dynamic morphological feature, serving 

as a more sensitive biomarker in the prediction of MCI conversion. 

Keywords:  Mild cognitive impairment, Dynamic morphological features, Elastic network, Magnetic resonance 

imaging 

Introduction 

Mild cognitive impairment (MCI) is an intermediate state between normal aging and dementia [1]. Studies have 

shown that MCI subjects tend to progress to probable Alzheimer's disease (AD) at a rate of 10–15% each year [2]. 

MCI can be divided into two subtypes, converting MCI and non-converting MCI. The MCI converter (MCI-C) 

indicates the group of patients who is likely to progress to AD in a short period of time, but the MCI non converter 
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(MCI-NC) remains stable for a certain period of time, with smaller risk of conversion to AD than the former[3]. 

Identifying these two different kinds of MCIs can predict the conversion from MCI to AD as early as possible, 

which is helpful for the prevention and treatment of AD. 

Neuroimaging has been proven to be a useful tool to understand the pathology of AD and MCI as well as many 

medical assistant diagnosis systems based on which have been applied in clinical practice [4]. In previous AD 

mechanism studies, structural magnetic resonance imaging (s-MRI) was the most widely used imaging tool in AD 

detection and prediction, with wide practicality, high diagnostic accuracy, and moderate cost [5]. However, s-MRI 

can only reflect the current state of the structure and further mining of s-MRI information will enhance its ability of 

clinical application. Many cross-sectional studies obtained classification accuracy of more than 95% which has 

achieved practical results in the diagnosis and identification of AD [6, 7]. Unfortunately, this method is not so 

effective in MCI conversion prediction. Because MCI is a state of conversion process, disease progression over time 

will be more indicative than static assessment using a snapshot [8, 9]. Longitudinal information has been added to 

the scope of research, while the existing longitudinal studies mostly selected data based on the longitudinal criteria 

and used only baseline data for further analysis [10, 11]. However, the progression information contained in follow-

up time points, which is of great importance for studying progressive diseases [8], is not utilized effectively. 

Therefore, taking the evolution information into consideration is critical to improve the performance for MCI 

conversion prediction. 

In addition to the original features acquired by MRI, brain structural network measures which are also referred to as 

anatomical connection patterns between different brain regions [12], providing new insights into brain network 

organization, topology, and complex dynamics, as well as a further understanding of the pathogenesis of the disease 

[13-15]. Previous studies show the significant differences in the measures of structural network between MCI 

subjects and Normal Controls (NC) [16, 17]. In the brain network based on cortical thickness structure, MCI group 

shows the decreased nodal centrality in the left lingual gyrus, middle temporal gyrus (MTG) and the increased nodal 

centrality in the precuneus cortex compared with NC, in which the nodal centrality is estimated by the betweenness, 

measuring the importance of a node in the network [16]. Similarly, the network properties such as small world 

attributes, local efficiency and degree have also greatly improved the predictive performance of MRI images [17]. In 

the studies of brain structure, the methods summarized the anatomical development of the entire brain into several 

scalar measures, such as cortical thickness, cortical volume and hippocampus, etc.[18, 19]. Researchers studied the 
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morphologic changes of AD and MCI by voxel based analysis [20, 21], or through analyzing region of interests 

(ROI) which is more targeted [15, 18, 19]. However, previous studies usually explored only a single measure 

(volume and cortical thickness) or several ROIs, ignoring the multiple morphological changes in the whole brain 

with the progress of AD [22, 23]. For these ROIs, research on their similar variation from a network perspective is 

focused rarely, though existing studies showed that many brain areas have the similar abnormal morphological 

patterns as the progression of AD [15, 24]. Recently, sparse learning techniques have attracted increasing attention 

due to their excellent performances in a series of neuroimaging applications on different modalities [25, 26].  A 

voxel-based sparse classifier on basis of a 𝑙1-norm regularized linear regression model is employed to classify AD 

and MCI which achieves significant results[27]. Elastic networks are used to identify neuroimaging and proteomic 

biomarkers of AD and MCI [28].  

This paper proposes a novel method to address the above problems, namely: limited evolution information, lacking 

similar variation research, and single measure studies by constructing longitudinal dynamic multi-morphological 

network (LDMN) using s-MRI data. Our hypothesis is that the dynamic morphological feature is a more sensitive 

biomarker and the sparse regression cerebral network constructed by the multiple dynamic morphological features 

can achieve a better performance in MCI conversion prediction. We highlight the contribution of this paper as 

follows: 1) Based on the longitudinal data to further mine the image information of s-MRI, we defined the dynamic 

morphological feature benefiting from the progression information. 2) We selected the subjects with 4 years follow-

up and chose four time points without conversion, extracting five cerebral cortex measures closely related to AD 

progression and calculating their dynamic features. 3) We adopted LASSO and elastic network to perform sparse 

regression on the multiple dynamic morphological features to construct the cerebral similarity network at different 

phases, employing the two-level tuning method to optimize parameters of sparse regression to make more excellent 

prediction results. Finally, we classified MCI-C and MCI-NC based on the commonly used network attributes, 

utilizing the method combining leave-one-out cross validation and support vector machine (SVM) to train and 

evaluate the classifiers.  

The remainder of this paper mainly includes the following parts. Section 2 illustrates the selection of the subjects 

and the pre-processing of the images. Section 3 describes the definition and calculation of the dynamic 

morphological feature, the methods of network construction and classification. Section 4 reports the experimental 

results. Section 5 discusses the achieved results and the clinical significance. Finally, Section 6 gives the conclusion. 
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Material 

Image Data 

The subjects were obtained from the publicly open Alzheimer's disease neuroimaging initiative (ADNI) database 

(http://adni.loni.usc.edu/)[29]. The ADNI was launched in 2003 by the National Institute on Aging, the National 

Institute of Biomedical Imaging and Bioengineering, the US Food and Drug Administration, private pharmaceutical 

companies, and several non-profit organizations [25].  

MCI is determined based on routine cognitive behavioral tests such as Mini-Mental-State -Examination (MMSE) 

scores, between 24 and 30, and Clinical Dementia Rating (CDR) score of 0.5. Using month18 as a reference point, 

subjects converted to AD before month 18 (including month 18) were excluded. The MCI-C included subjects who 

converted to AD between month 18 and month 48. Similarly, subjects were marked as MCI-NC once no conversion 

occurred in the period. We selected subjects with s-MRI data at four longitudinal time points without conversion, 

baseline (BL), 6th month (M6), 12th month (M12) and 18th month (M18). Seventy-eight participants were chosen, 

including 35 (75.3 ± 6.7) MCI-NC and 43 (73.6 ± 7.6) MCI-C. Their MMSE scores were from 24 to 30 and the 

score of CDR was 0.5. Details of the characteristics of the subjects selected are presented in Table1. To evaluate the 

specific effects that age and gender might have on the classification results, we performed the Two-sample T-test on 

age and the Chi-square test on gender, and found no statistical differences (𝑝 = 0.31 > 0.05;𝑝 = 0.61 > 0.05) [30]. 

Pre-Processing 

The images of the subjects were acquired by the T1 scanner from the ADNI library. We chose the Neuroimaging 

Informatics Technology Initiative (NIfTI) format, which had undergone spatial distortion correction processing due 

to gradient nonlinearity and B1 field non-uniformity. 

All the structural images were preprocessed with FreeSurfer v5.3.0 (http:// surfer.nmr.mgh.harvard.edu) [31] 

running under Matlab2012 on the CentOS 7.5.1804 operating system. The main steps of the pre-processing are 

recapitulated in the following contents. Firstly, the structural images were performed non-uniformity artifacts 

correction. Secondly, coordinate transformation was implemented [11, 32]. Next, the corrected images were 

segmented into gray matter, white matter, cerebrospinal fluid and other background categories. Then, the 

reconstruction of grey/white matter boundaries was followed [32]. After completing the cortical models, surface 

expansion, registration to the average template with group subjects’ information were executed[31, 33]. Finally, 

cortical features were extracted, including: cortical thickness (CT), surface area (SA), volume (VOL), sulcal depth 



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature.

 

5 

 

(SD), and gyrus height (GH) [34]. A full width at half maximum (FWHM) of 30 mm gaussian kernel was used for 

smoothing the images [35]. The segmentation was performed automatically whose errors were visually checked in 

FreeView and manually corrected [32]. The technical details of preprocessing by Freesurfer have been published 

online (https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurfer MethodsCitation).  

The CT reflects the closest distance between the white matter and the grey matter surface in each vertex [36].The 

SA is the average of the surrounding triangles at each vertex. The volume is a product of CT and SA [37]. The 

distance below (above) the average surface at each vertex reflects the depth (height) of sulci (gyrus) [38].  

Methods 

The overall structure of the proposed prediction framework is depicted in Fig. 1. The method mainly consists of 

following steps: the pre-processing of images, the dynamic morphological feature calculation, multi-morphological 

similarity network construction, and network attributes classification.  

The Dynamic Morphological Feature 

The developments of AD and MCI are often accompanied by the atrophy of brain regions and the decreased 

complexity of whole cortex with a shallower depth of the sulcus [39]. Surface area is also one of the important 

indicators to quantify changes in the brain structure [40]. Studies have shown that the use of multiple cortical 

measures can improve AD classification accuracy [32, 41]. Therefore, in addition to the two commonly used 

indicators, CT and VOL, in MCI conversion prediction, SD, GH and SA were also added. We partitioned the 

cerebral cortex data pre-processed by FreeSurfer according to the multi-modal parcellation (MMP) atlas [42], 

excluding the subcortical structures.   

 
1
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Baseline
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   
  (1) 

The static feature was the mean of the morphological measure in each brain region at a single time point, which was 

commonly used in cognitive science research based on the cerebral cortex [15]. In order to make full use of the 

progress information contained in the longitudinal time points, we proposed the dynamic morphological feature 

relative to the static feature. For the definition of the dynamic feature, as shown in (1), where 𝐵𝑎𝑙𝑒𝑙𝑖𝑛𝑒𝑘𝑛 was the 

morphological measure value at the 𝑛𝑡ℎvertex in the 𝑘𝑡ℎbrain region at baseline time point and 𝑀𝑖
𝑘𝑛 denoted the 

value at the  𝑛𝑡ℎvertex in the  𝑘𝑡ℎbrain region of the measure in the 𝑖𝑡ℎ  month. The number of vertex in region 𝑘 was 

defined as 𝑁𝑘.  𝐷𝑗  stood for the dynamic morphological feature in phase 𝑗 on the brain region level. Dynamic 
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morphological features of five measures (CT, SA, VOL, SD and GH) were calculated according to equation (1). 

Because we selected four follow-up time points of subjects, four static features and three dynamic features were 

obtained on each cortical measure. In order to select a more superior phase (D1, D2 or D3) for the network 

construction and compare the ability of the static and dynamic features, the effectiveness of the static and dynamic 

morphological features to identify MCIs were evaluated by classification performances.  

Network Construction 

In previous studies, a multifeature-based network (MFN) with LASSO algorithm was proposed and achieved 

praiseworthy results in AD and NC classification [32]. Although LASSO regression has been widely applied in 

many studies, it also has limitations. LASSO is not robust enough as it selects only one random feature and neglects 

the others, especially when the variables are high correlation [43]. For instance, if there is a group of brain areas 

with high pairwise correlation, LASSO algorithm tends to select only one region from the group, regardless of 

which one is selected. Obviously, LASSO can-not solve the grouping effect problem, and may miss some relevant 

brain regions during the process of selecting related areas within the designated regions [28]. The elastic network is 

an extension of LASSO regression that is robust to extreme correlations among the predictors, making the result 

more credible [43]. Similar to LASSO, the elastic network can also solve the problem of sparse representation. 

Therefore, we adopted LASSO and elastic network regressions for individual network construction.  

As shown in (2), the single penalty term 𝑙1 was used in LASSO regression. The elastic network had the mixed 

penalty term of 𝑙1norm (LASSO) and 𝑙2 norm (ridge regression), which could be expressed as (3) regularized 

objective function optimization problem: 

 1m m m mminx A     (2) 

 
2

1 1 2 2m m m m mminx A      
 (3) 

We represented single participant as 𝑋 = [𝑥1,𝑥2, … 𝑥𝑚]
𝑇

∈ 𝑅 𝑚×𝑑with 𝑚 brain regions. Since the five kinds of 

morphological measures and the MMP atlas were used [42], 𝑚 was 358 (excluding subcortical tissues) and 

each 𝑥𝑚  stood for the 𝑚𝑡ℎregion containing five morphological measures (d=5). Every 𝑥𝑚was a target vector and 

could be expressed by a linear combination of other 𝑚 − 1 prediction vectors [32]. Before the construction of the 

cerebral similarity network, we normalized the five kinds of dynamic morphological features. The commonly used 

Min-Max normalization method was employed whose principle is as (4) shown  [44].  𝑋𝑚𝑎𝑥 represented the 

maximum value and 𝑋𝑚𝑖𝑛  meant the minimum value of each row in the original matrix. 𝑋 was defined as each 
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element of the row in the matrix that needed to be normalized. 𝑌𝑚𝑎𝑥 , 𝑌𝑚𝑖𝑛   denoted the maximum and minimum 

values of the range that needed to be standardized, respectively.   

 
     /max min min max min minY Y Y X X X X Y         (4) 

 
y Aw

 (5) 

The regression model was set to 𝑦 = 𝐴𝑤, where 𝑦 represented the target vector, 𝐴 (𝐴 = [𝑥1, 𝑥2, … 𝑥𝑖−1, 𝑥𝑖+1, … 𝑥𝑚]) 

was a matrix contained all regional vectors except 𝑥𝑖, and 𝑤 denoted the regression coefficient. We obtained the 

sparse solution by solving the corresponding optimization problem shown in (6).  

 
2

1 1 2 2min
w

y Aw w w     (6) 

In order to optimize the network ability and promote the accuracy of the classification, the two-level tuning method 

was proposed for the majorization of regression parameters. We first varied a range for the parameters, and based on 

the first classification results, delineated an elaborate range for fine-grained optimization. Referred to the previous 

studies for model parameters setting in LASSO and elastic network [5, 32], we constructed the longitudinal dynamic 

multi-morphological network with parameters in this range (𝜆1 ϵ {𝛼 × [10−4, 10−3, 10−2, 10−1]}, 𝛼 ∈  {2,3,4,6,8,9} , 

 𝜆2 ϵ{10−3, 10−2, 10−1, 100, 101, 102, 103} ) of elastic network firstly. For contrasting the performance of LASSO 

and elastic network, the λ of LASSO took the same range with λ1of elastic network ( λ ϵ{α ×

[10−4, 10−3, 10−2, 10−1]}, α ∈ {2,3,4,6,8,9} ). Then, we made a fine-grained division in the smaller range according 

to the distribution of the parameter optimization results in the first step, and this will be discussed in section 4 in 

more detailed. The SLEP package was used to solve the optimization problem [45]. We set the parameter of the 

SLEP package  𝑜𝑝𝑡𝑠. 𝑟𝐹𝑙𝑎𝑔  =   1 to make the maximal value of  λ1and  λ2, above which shall obtain the zero 

solution. Fig. 1 (e) and (f) show the network construction process, since each row of the sparse solution came from 

different regression processes, and the solution finally obtained was a 358 × 358 asymmetric matrix.  

Previous research showed that network attributes present obvious advantages in classification [16, 17]. We 

calculated the common used network attributes, including clustering coefficient (CC), network degree (Deg), global 

efficiency (GE) and edge density (ED), of LDMN with the Brain Connectivity Toolbox (BCT) for classification 

[46]. The CC indicates the degree of aggregation of nodes in a graph. The Deg is the total number of edges 

connected to a node [47].The GE measures the efficiency of distant information transmission in the network [48]. 

The ED is the fraction of present edges to possible edges [46, 49]. 

Classification and Evaluation 
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SVM is a supervised multivariate classification method that identifies the optimal hyper plane of the maximum 

margin [50]. SVM usually need to map samples to a high-dimensional feature space, so that the samples are linearly 

separable, and the kernel function determines the mapping form [51] . Common ones include the linear kernel, the 

radial basis function (RBF) kernel, the polynomial kernel, etc. [52]. Among them, the linear kernel is more robust to 

high-dimensional features, and the RBF kernel is more suitable for low-dimensional features [51, 52]. In our study, 

according to the dimension differences in different types of features and data characteristics [52, 53], support vector 

machines based linear kernel and RBF kernel were used to classify the MCI-C and MCI-NC on the basis of their 

multiple dynamic morphological features, where we employed F-score for feature selection. Considering the small 

number of participants, leave-one-out cross validation (LOOCV) should be adopted to obtain a credible estimate for 

a classification algorithm [54-56]. In each LOOCV trial for n samples, n-1 samples were selected as training set 

elements and the leave-one sample was used for the testing step. In addition, a 10-fold cross validation was repeated 

ten times to evaluate the robustness of LOOCV, where the subjects were divided into 10 folds randomly and each 

fold was used for testing and the rest for training [57, 58]. A permutation test was conducted to estimate the 

statistical significance of the observed classification accuracy. Concretely, both the entire LOOCV and 10-fold cross 

validation procedures were repeated 5000 times using randomly shuffled labels [47, 59, 60]. 

F-score selected significant features by measuring the recognition ability of features in the classification of two-type 

pattern recognition problems. The training sample 𝑥𝑘 ∈ 𝑅𝑛 , 𝑘 = 1,2 …, was divided into two categories: positive and 

negative, where the number of positive samples was 𝑛+and the negative sample was 𝑛−. The score of the 𝑖𝑡ℎ  feature 

could be expressed as: 

  
     

         

2 2

2 2

, ,1 1

1 1

1 1

i i i i

n n

k i i k i ik k

x x x x
F i

x x x x
n n

 

 

   

 
 

  


  
 
 

 (7) 

 𝑥̅𝑖 was the average eigenvalue of the 𝑖𝑡ℎfeature over the entire training set.  𝑥̅𝑖
(+) meant the average eigenvalue of 

the 𝑖𝑡ℎ  feature in the positive class while 𝑥̅𝑖
(−) represented the average eigenvalue in the negative class. 𝑥𝑘,𝑖

(+)
 was 

defined as the eigenvalue of the 𝑖𝑡ℎ  feature on the 𝑘𝑡ℎ  positive class sample. On the contrary, the negative class 

sample was described by 𝑥𝑘,𝑖
(−)

. 

      2

2

1

, 0,1 ,
N

i i

i

b argmin c max y b


   w w w θ f  (8) 
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  K , T

j i j if f f f  (9) 

    2K , , 0j i j if f exp gf f g     (10) 

Given a training set {𝒇𝑖 , 𝑦𝑖}, where 𝒇𝑖  was the eigenvector and 𝑦𝑖  was the label of the subject 𝑖 (MCI-C or MCI-NC).  

 𝒇𝑖  was mapped to high-dimensional feature spaces via kernel functions as 𝛉(𝒇𝑖). The optimal SVM model 

{𝒘, 𝑏} was calculated by minimizing the cost function [8]. {𝒘, 𝑏} were the learned parameters of the model. 

Equations (9) and (10) are the digital representations of linear and RBF kernel functions, respectively. Here we 

implemented the classification via the LIBSVM toolkit [61]. 

Results 

Classification Performances 

On each cortical measure, we calculated the static features at four time points and the dynamic features of its three 

stages, comparing the classification performances of the dynamic and static features based on the measure values 

directly. The results demonstrated that the dynamic morphological feature was superior to the static feature in each 

cortical measure on the optimal results, as shown in Fig.2. More detailed, SD, GH and VOL obtained the best 

classification accuracy in D2 phase, while CT and SA performed best in D3 phase. The global (among CT, SA, 

VOL, SD and GH) best accuracy 83.33% was achieved in CT as the most common cortical indicator in MCI and 

AD classification research. Therefore, the dynamic morphological features of phases D2 and D3 were selected for 

the next cerebral similarity network construction. In our classification experiments based on LDMN, we employed 

accuracy (ACC), sensitivity (SEN), specificity (SPE), and area under the curve (AUC) obtained from the receiver 

operating characteristic (ROC) to evaluate the performance of the classification. 

In each of the selected phases (D2 and D3), we constructed the LDMN with LASSO (L-LDMN) and the LDMN 

based on elastic network (E-LDMN), optimizing the parameters of sparse regression for all networks. Next, the 

network properties (CC, Deg, GE, ED) were computed as features to train classifiers and then the concatenation of 

them was also used for classification.   

The best classification accuracy 92.31% was obtained in the E-LDMN of D2 stage in results of LOOCV. Except the 

global efficient of L-LDMN in D3 and the edge density in each stage, all classification results passed the 

permutation test (p<0.05). As depicted in Fig. 3 and Table 2, the classification performances in D2 phase were 

always better than D3 phase both in L-LDMN and E-LDMN which is also displayed in the ROC curves (Fig. 4). In 

addition, the method using elastic network obtained a better performance than LASSO. Fig. 5 shows that only less 
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than 10% of the features were selected when reaching the best accuracies in results of L-LDMN and E-LDMN. The 

10-fold cross validation was performed on the optimal feature of each LDMN in LOOCV results to estimate 

the robustness of results. As shown in Table 3, although the accuracy is slightly lower than that of LOOCV, 

the best result still expressed in D2 of E-LDMN, and all results passed the permutation test (p<0.05). 

Effect of Regression Parameters   

Existing research showed that parameter 𝜆 of regression algorithm has great impact on the network topology [62]. 

The size of 𝜆 is positively related to the network sparsity and negatively related to the noise content, affecting the 

credibility of the network and the performance of the classification ultimately. 

The method of two-level tuning was used for parameters optimization. Firstly, the previous sparse regression studies 

were referred to make parameters setting. Zheng et al. varied the parameter 𝜆 range (𝜆 ∈ {10−4, 𝑎 × 10−3, 𝑏 ×

10−2, 𝑐 × 10−1}, where 𝑎, 𝑏 ∈ {1,2 … ,9}, 𝑐 ∈ {1,2 … ,5}) for LASSO in MFN, while the best result was attained 

when 𝜆 = 0.06 and 𝜆 = 0.003 [32]. In our study, the parameter 𝜆1was varied in the range (𝜆1 ∈

 {𝛼 × [10−4, 10−3, 10−2, 10−1]}, 𝛼 ∈ {2,3,4,6,8,9}), where 𝛼 was set to multiples of  2 and 3 (𝛼 < 10). The range 

of  𝜆2 was set according to the parameter standard of Tong et al. [5] (  𝜆2 ∈  {10−3, 10−2, 10−1, 100, 101, 102, 103} ). 

Since the first parameter has a greater influence on the result in elastic network, the secondary tuning was mainly 

used for the first parameter 𝜆1. The best classification results were obtained in the range from 10−4 to 10−2 

of  𝜆1according to the first classification results. Classification accuracy can be improved with the increased number 

of 𝜆 values [63]. So the range (from 10−4 to 10−2) of  𝜆1was varied further. The range of 𝛼 would include all 

positive integers less than 10. Finally, E-LDMN-D3 achieved better classification performance at 𝜆1 = 0.05 within 

the more specific range, but the second tuning did not bring obvious improvement for E-LDMN-D2. The 

optimizations of parameter 𝜆1in all networks are shown in Fig. 6 and the first parameter tuning of E-LDMN-D2 is 

depicted in Fig.7. 

Brain Regions and Brain Structure Analysis 

We performed statistical analysis on the differential brain regions of morphological measures in the D2 phase, after 

the comparison between the static and dynamic features. Since CT and SA got the best performances in the D3 

phase, we also took the D3 phases of these two measures into account. In total 57 main brain regions with 

overlapped measures were implemented further analysis. As shown in Fig. 8, different colors are used to represent 

brain regions that have different number of morphological measure overlaps. 
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The main morphological differential brain regions were located in cingulate gyrus [64, 65], insular lobe [65], 

parahippocampal gyrus [65], olfactory cortex [66], partial front lobe (inferior frontal suleus, frontal pole, operculum 

frontale) [67], partial parietal lobe (parietal operculum, superior parietal cortex, the parietal lobe in groove) [67], 

partial occipital lobe ( transverse occipital sulcus, anterior occipital lobe) [64], and transverse temporal gyri [65, 68]. 

The detailed information for each main morphological differential brain region is provided in the Supplement 

Table 1.  

We used the LDMN under the best classification performance for network structure analysis to characterize clinical 

significance. Since the brain structure of MCI-NC has similarity to MCI-C, and most of the data did not satisfy the 

normal distribution. The chi-square test was carried out on the network connections between group MCI-C and 

MCI-NC with p<0.0001 (uncorrected). The cerebral regions connected by these difference links mainly included 

anterior hippocampal [65], cingulate gyrus [64, 65], insular lobe [65], frontal pole and operculum [67], partial 

occipital lobe (parietal-occipital, occipital belly) [64], superior temporal gyrus and sulcus [65] and tectum [67]. As 

the abnormal links were mostly long connections across the hemisphere, which may be related to information 

transmission, we also analyzed the global efficiency of the two groups by t-test and the result showed that significant 

changes occurred (p=0.012<0.05). 

The difference of the connection averages between  group MCI-C and MCI-NC was computed by (𝑎𝑣𝑔𝑐 − 𝑎𝑣𝑔𝑛𝑐) 

to further reveal the structural changes. The negative difference indicated that the relationship of two brain regions 

connected by this link was decreased in MCI-C. Conversely, it indicated the relationship was enhanced when the 

difference was positive. Fig.9 illustrates that decreased links were shown in most of differential connections. The 

specific p values are presented in the Supplement Table 2. The same analysis was also performed on the global 

efficiency averages and the declined global efficiency was found in MCI-C compared with MCI-NC. 

Comparison with Other Methods 

We compared the present results with the state-of-the-art results, which also used MRI data from the ADNI database 

to predict MCI conversion. 

As Table 3 demonstrated, the proposed method achieved competitive performance both in the metrics of ACC and 

SEN. Among all results in Table 4, the best classification performance was obtained by Seyed et al. [11].The high 

accuracy was mainly due to the combination of multimodal data in which the functional-MRI (f-MRI) 

complemented the finer dynamic information lacked in s-MRI [11]. Single modal (s-MRI) was used in the proposed 
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method which achieved better accuracy than the single modal result (s-MRI) in study of Seyed et al. 

(92.31%>89.40%), and combining multiple modes may further improve our classification effect. Besides, it is worth 

noting that the proposed method obtained more excellent sensitivity than [11]. The high sensitivity is considered to 

be advantageous for confident MCI diagnosis, which can provide potentially clinical aid in early intervention [69]. 

Our proposed method employed the dynamic morphological feature that utilized the longitudinal evolution 

information more sufficiently and provided a good basis for the superior classification results. Similarly, Sidra et al. 

[10] also obtained nearly 90% classification accuracy based on progression information by synthesizing information 

from multiple time points. Therefore, we believe that the full use of evolution information is conducive to improving 

classification accuracy. Sun et al. [8] gained a commendable accuracy by using longitudinal information combined 

with the anatomy of the whole brain. Also from the longitudinal standpoint, our proposed method constructed the 

cerebral network combining multiple morphological measures from the perspective of the whole brain. These 

indicate that the prediction of AD benefits from the whole brain perspective. 

Discussions 

Analysis of Classification Results 

The comparison result of the static and dynamic features proves that more progress information is helpful for the 

diagnosis of MCIs. From the network classification results, the elastic-network based method achieved better 

performance than the LASSO based approach which is consistent with previous study [62]. The classification results 

on basis of CC performed better than other network attributes and the ED has limited diagnostic value of MCIs. The 

fusion of the network properties did not improve the classification accuracy, which may be associated with the 

plane-based classification mechanism of SVM [70]. 

Wei et al. found that more stable and higher classification accuracy can be obtained from the short-term prediction 

(12 month) compared with the long-term prediction (18 month) [15]. From Yuan’s research, we acknowledge that 

MCI-NC and MCI-C gray matter atrophy occur differently [71]. The atrophy in MCI-NC is later than MCI-C, and 

the significant changes of MCI-C have been clearly reflected in M12 [71]. In our study, the best prediction 

performance was obtained in the second stage (from baseline to month 12) with the superior accuracy 92.31%, 

which shows that the morphological difference between MCI-NC and MCI-C in the second phase is more 

significant than the third phase. Therefore, we deem that the second phase would be a better clinical diagnosis 

period. Longitudinally, the significance difference of brain atrophy between MCI-C and MCI-NC presented a non-
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linear trend, which may be due to some compensation mechanism of the brain. In addition, we found that with 

disease progression, the alterations of cortical measures differed. The significant difference between MCI-C and 

MCI-NC of CT and AREA achieved the best recognition effect in the third stage, while SD, GH and VOL were in 

the second stage, which may be related to the diversity of AD progress. 

The results of randomization tests showed that in both LOOCV and 10-fold cross validation, the main results are 

significantly higher than the random performance (p<0.05) with statistical significance [59, 60]. While compared 

with LOOCV, a slight decrease was happened in 10-fold cross validation results. We have already used a filtering 

feature selection algorithm F-score to prevent over-fitting, and only a small part of features (far less than the number 

of subjects) were employed when the highest classification accuracies were achieved in LOOCV results [47]. 

Notably, the trends that D2 stage is better than D3 phase and the elastic network based method is superior to the 

lasso based approach in classifying MCIs are expressed both in LOOCV and 10-fold cross validation results, 

proving the robustness of the dynamic features. In addition, the main results of LOOCV and 10-fold cross validation 

all passed the permutation test. Therefore, we deem that the small decrease in the accuracies of 10-fold cross 

validation compared to LOOCV is mainly due to insufficient model training as the result of limited samples, rather 

than over-fitting of LOOCV. The results of LOOCV are reliable. 

Analysis of Characteristic Brain Regions and LDMN Structure 

In the main 57 morphological differential brain regions, the left and right brains were basically symmetrical [24]. 

While the number of ROIs in the right brain was slightly more than the left, which consists with the right brain being 

more sensitive to human memory [72]. The fact that the morphological characteristic brain regions mostly 

overlapped with the ROIs in previous AD and MCI research proves the dynamic morphological feature has certain 

robustness. 

The difference of LDMN structure between MCI-NC and MCI-C indicates that the changes in the cortical structure 

of the brain region significantly affect the relationship among cerebral areas. Consistent with previous studies, the 

structural links showing significant difference between MCI-C and MCI-NC were mainly long-range connections 

across the cerebral hemisphere [16]. The abnormal long-range connections might mean a change in the information 

transfer path of the patient group across global brain areas. Further analysis of network attributes suggested that the 

global efficiency of MCI-C declined than that of MCI-NC. The MCI-C showed the decreased connections between 

mostly cerebral regions compared to MCI-NC [32], which might indicate descending efficiency of collaborative 
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work between these brain regions. The decreased links also demonstrate that the similarity of brain regions would 

subside during the conversion from MCI to AD, as the connections of LDMN reflect a similar relationship between 

cerebral regions.  

The affected brain regions found in our study in terms of dynamic features, were mainly located in limbic, insula, 

frontal and occipital lobes. Structures of parietal and temporal lobes were also affected. According to the 

histopathological staging, MCI belongs to the limbic stages of AD [73, 74]. The key charateristics of the stages are 

the severe involvement of the transentorhinal and entorhinal regions and higher order association areas of the 

neocortex, as well as interrupted connections between components of the limbic loop at multiple sites [73]. The 

limbic loop plays an important role in maintaining memory function and emotional balance, and these special sites 

are most prone to AD-related pathology [74, 75]. The abnormal limbic loop components between MCI-C and MCI-

NC  were detected in our study, which may hamper the exchange of data between the higher order components of 

the limbic system and the prefrontal, occipital cortex [74].  The change of temporal lobe is related to the 

accumulation of neurofibrillary tangles and neuropil threads in the hippocampus [76, 77]. Parietal lobe has sensory 

centers and many other important areas, whose abnormality may result face agnosia and is an important clinical 

manifestation of AD [74, 78]. These affected regions all have been extensively reported in previous AD and MCI 

studies, which demonstrates that these characteristic areas are more significant in the development of AD and more 

attention should be paid to them clinically. 

Possible Reasons for the Excellent Performance of LDMN 

The satisfied performances in prediction from MCI to AD indicate the practicability of our method. Compared with 

other longitudinal research, our study used the new longitudinal biomarker “the dynamic morphological feature” 

which considers the pathological information evolving over time. Existing longitudinal studies mostly used the 

longitudinal data as a criterion to select subjects, finally the baseline data was selected for classification and data 

analysis [8, 10, 11], which still belong to a kind of ''cross-sectional'' study. The dynamic morphological feature used 

in our method reflects the course of disease progression and complements the evolution information in time 

dimension of s-MRI, providing richer information for disease conversion prediction. The feature enhances the 

difference between MCIs (MCI-C and MCI-NC) in s-MRI data, and is more sensitive to the recognition of two kinds 

of MCI. By adopting the multiple dynamic morphological features, the classification and prediction abilities of 

LDMN were further improved. 
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 The LDMN combined multiple cortical measures (CT, SA, VOL, SD and GH) to build brain networks. These 

measures are thought to be closely related to the development of AD and MCI [39]. The fusion of multi-measure 

features ensured the LDMN included more detailed and comprehensive information [32, 41]. Meanwhile, the use of 

MMP atlas provided a boost for the excellent classification results due to finer brain areas parcellation [11]. In 

addition, the application of sparse multiple regression model can more fully reflect the nature of brain network 

connections [32, 62]. Different from the commonly used pair-wise correlation network, which only considers the 

relationship between the two simple brain regions [62], the multivariate regression model in our study takes all 

cerebral regions into consideration, according to that AD and MCI are accompanied by multiple brain regions 

atrophy usually [22, 23]. 

Previous study showed that sparse regression can be employed to construct networks and achieve commendable 

classification performance [25]. We utilized the elastic network method to integrate the multiple dynamic 

morphological features. Elastic networks, as a robust and more applicable sparse regression method, also obtained 

better classification ability than LASSO regression in our study. Compared with LASSO, elastic network has one 

more parameter (𝑙2-norm) which can greatly affect the calculation result and work well in solving the grouping 

effect [43]. Therefore, with 𝑙1 being for automatic variable selection and 𝑙2 encouraging grouped selection [62], the 

integration of 𝑙1 and 𝑙2 significantly improved the construction of LDMN. A larger range of parameters was set for 

optimization and a more reasonable two-level tuning method was took for tuning, which also ensured the superior 

classification results. 

Limitations and Future Directions 

Due to the limitation of subjects’ number, the conclusions need to be further validated on a larger data set in future 

work. The hippocampus and amygdaloid nucleus are important clinical features for AD patients and MCI subjects, 

while our study was based only on the cerebral cortex. Subsequent work will attempt to integrate the cortical and 

subcortical features for prediction. In addition, the neuropsychological measure is also a commonly used biomarker 

in neurological diseases studies. The combination of different biomarkers is also our follow-up focus. 

Conclusion 

The dynamic morphological feature is proved to be a more sensitive biomarker for predicting the conversion from 

MCI to AD in our study. Based on the biomarker, the cerebral similarity network was constructed with multiple 

morphological features using sparse regression algorithm. The dynamic multi-morphological network integrates the 
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multiple cortical measures, incorporating the longitudinal evolution information of the MCI conversion process. The 

proposed method achieves an excellent performance in MCI conversion prediction and provides possible assistance 

for clinical diagnosis. In addition, the analysis of LDMN connections offers an interesting perspective for revealing 

the complex lesions of AD.  
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Table 1 Demographic and clinical data for all participants. 

means± SD, n MCI-C MCI-NC p-value 

Sample size 43 35 — 

Male/Female 35/8 30/5 0.611* 

Age(years) 73.6 ± 7.6 75.3 ± 6.7 0.314# 

MMSE Score 27.0 ± 1.4 28.1 ± 1.4 0.01 

CDR Score 0.5 0.5 — 

SD = standard deviation. MCI-C= Mild cognitive impairment converter; MCI-NC= Mild cognitive impairment non-

converter. *=Chi-square test. # = Two-sample T-test. MMSE=Mini-Mental State Examination. CDR= Clinical 

Dementia Rating. 

Table 2 Classification performances of LDMN based on LASSO and Elastic network in stage D2 and D3. 

   L- LDMN-D2    E- LDMN -D2    

 kernel ACC SEN SPE AUC λ1 p ACC SEN SPE AUC λ1 λ2 p 

CC linear 84.65% 100% 65.71% 0.6571 0.009 0.0002 92.31% 100% 82.86% 0.8465 0.009 0.001 0.0002 

Deg linear 60.26% 67.44% 51.43% 0.5355 0.009 0.0218 67.95% 93.02% 37.14% 0.6841 0.009 0.001 0.0006 

GE RBF 58.97% 72.09% 42.86% 0.5894 0.009 0.0456 57.69% 90.70% 17.14% 0.4807 0.009 0.001 0.0426 

ED RBF 32.05% 51.16% 08.57% 0.2993 0.009 0.9990 46.15% 83.72% 00.00% 0.4478 0.009 0.001 0.7401 
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NP linear 71.79% 74.42% 68.57% 0.7229 0.009 0.0004 84.62% 90.70% 77.14% 0.9037 0.009 0.001 0.0002 

CC linear 78.25% 100% 51.43% 0.5694 0.0008 0.0002 87.18% 100% 71.43% 0.8027 0.05 1 0.0002 

Deg linear 79.48% 88.37% 68.57% 0.8306 0.0008 0.0002 73.08% 86.05% 57.14% 0.7548 0.05 1 0.0002 

GE RBF 30.77% 51.16% 05.71% 0.1528 0.0008 0.9998 60.26% 97.67% 14.29% 0.2492 0.05 1 0.0122 

ED RBF 37.18% 67.44% 00.00% 0.0000 0.0008 0.9808 51.28% 93.02% 00.00% 0.1548 0.05 1 0.3831 

NP linear 73.08% 83.72% 60.00% 0.7542 0.0008 0.0002 76.92% 83.72% 68.57% 0.7508 0.05 1 0.0002 

ACC=Accuracy. SEN=Sensitivity. SPE= Specificity. AUC= Area under the curve.CC=Clustering coefficient. 

Deg=Degree. GE=Global efficiency. ED=Edge density. NP=Combination of Network properties. RBF=Radial basis 

function. 

Table 3 Classification Results of 10-Fold Cross Validation. 

 ACC SEN SPE AUC λ1 λ2 p 

L-LDMN-D2 78.26% 87.25% 61.67% 83.12% 0.0090 -- 0.0002 

L-LDMN-D3 75.44% 89.20% 58.33% 71.30% 0.0008 -- 0.0002 

E-LDMN-D2 84.62% 93.00% 73.33% 92.46% 0.0090 0.001 0.0002 

E-LDMN-D3 81.38% 90.25% 69.58% 80.47% 0.0500 1 0.0002 

ACC=Accuracy. SEN=Sensitivity. SPE= Specificity. AUC= Area under the curve. 

Table 4 Comparison with recent state-of-the-art results based ADNI database. 

Author Data Subjects Manner ACC SEN SPE AUC Year Method 

Moradi [79] MRI/CT 164C/100NC cross-sectional 82.00% 87.00% 84.00% 0.9020 2015 TSVM 

Wei[15] MRI 76C/83NC longitudinal 76.39% 65.57% 84.34% 0.8130 2016 SVM 

Liu[69] MRI 117C/117NC cross-sectional 79.25% 87.02% 75.54% 0.8344 2016 SVM 

Minhas [10] MRI/NM 16C/13NC longitudinal 89.66% 87.50% 92.31% — 2017 NPC 

Tong[5] MRI/CT 171C/129NC cross-sectional 84.10% 88.70% 76.50% 0.9170 2017 SVM 

Sun[8]  MRI 67C/43NC longitudinal 92.00% 95.00% 90.00% 0.9400 2017 SVM 

Hojjati [11] MRI/fMRI 18C/62NC cross-sectional 97.00% 95.00% 100% 0.9800 2018 SVM 
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Minhas [80] MRI/NM 54C/65NC longitudinal 84.29% 70.36% 92.31% 0.8893 2018 SVM 

Proposed MRI 43C/35NC longitudinal 92.31% 100% 82.86% 0.8465 2019 SVM 

CT =Cognitive test; NM=Neuropsychological measures. ACC=Accuracy. SEN=Sensitivity. SPE= Specificity. 

AUC= Area under the curve. TSVM=Transductive support vector machine. NPC=No parametric classification. 

Fig. 1 Illustration of the proposed method. (a b c) Represents the procedure of pre-processing. (d) Represents the 

calculation and extraction of the dynamic morphological features of each measure. (e f g h) Represents the 

construction of multi-morphological similarity network and the calculation of network attributes. (i) Represents the 

leave-one-out cross validation. BL, baseline. M06, 6th month. M12 12th month. M18, 18th month. D1, dynamic 

features in the first phase. D2, dynamic features in the second phase. D3, dynamic features in the third phase. 

Fig. 2 The classification results of the five cortical measures in the comparison. The static and dynamic features are 

represented by different colors. The triangle represents the best result in dynamic features and the rhombus 

represents the best result in static features. CT, Cortical thickness. SA, Surface area. VOL, Volume. SD, Sulcal 

depth. GH, Gyrus height. 

Fig.3 The accuracy statistics of the four classification results based on network properties, including the clustering 

coefficient (CC), the degree of network (Deg), the global efficiency (GE), the edge density (ED) and the 

combination of the network properties (NP). 

Fig.4 ROC curves of four classification results based on the clustering coefficients.  

Fig.5 The classification accuracies with varying number of selected features. 

Fig. 6 Regularization parameter λ1 ( λ ) with α including all positive integers less than 10. The value of  λ2 are set to 

0.001 and 1 for E-LDMN-D2 and E-LDMN-D3, respectively. The dotted lines are located at the extreme points of 

the network classification performances. 

Fig. 7 The first elastic-network tuning in E-LDMN-D2. (λ1ϵ{a × [10−4, 10−3, 10−2, 10−1]}, a ∈

 {2,3,4,6,8,9} , λ2ϵ{10−3, 10−2, 10−1, 100, 101, 102, 103}) 

Fig. 8 The main morphological differential brain regions selected by dynamic features of multiple measures. The 

different colors represent the number of overlaps with different measures. The green area is the region selected by 

two cortical measures (Two-overlap). Similarly, purple stands for Three-overlap, and pink represents Four-overlap. 
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Fig. 9 The significantly different brain network connections in MCI-C compared with MCI-NC (p<0.0001). The 

orange and blue lines indicate the significantly increased and decreased interregional relationships between the 

corresponding regions, respectively. The six brain lobes are represented by different colors. 


