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Abstract Tukey’s halfspace depth has attracted much interest in data anal-
ysis, because it is a natural way of measuring the notion of depth relative
to a cloud of points or, more generally, to a probability measure. Given an
i.i.d. sample, we investigate the concentration of upper level sets of the Tukey
depth relative to that sample around their population version. We show that
under some mild assumptions on the underlying probability measure, concen-
tration occurs at a parametric rate and we deduce moment inequalities at that
same rate. In a computational prospective, we study the concentration of a
discretized version of the empirical upper level sets.
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1 Preliminaries and notation

1.1 Preliminary

Tukey’s halfspace depth or, in short, Tukey depth, introduced by Tukey [46],
has attracted much attention in multivariate data analysis, as a tool for under-
standing and describing which data are relevant in a given cloud of points. For
a finite multivariate sample, Tukey depth at any given point x is the minimum
proportion of points of the sample enclosed in a closed halfspace containing
x. Tukey depth, together with other notions of statistical depths (see [48]
for general definitions) has been studied and used extensively especially for
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description or graphical representation of data [28], robust [1, 12] or nonpara-
metric (e.g., [29]) inference, bootstrap [47], supervised classification [16, 17],
etc. When the sample consists of i.i.d. random points, we call it empirical
Tukey depth and it has a population analog (one can find formal definitions
of the population Tukey depth in Euclidean spaces in [42] and extensions to
infinite dimensional Banach spaces in [13]). Consistency and limit theorems
for the empirical Tukey depth are well-known (see [34], for instance, where the
author tackles the asymptotic properties of the empirical Tukey depth seen as
a stochastic process).

In this work, we are interested in the upper level sets of Tukey depth (we
drop the qualifying upper in the sequel). These sets are nested and the center
of gravity of the deepest one is called the Tukey median. On the opposite, the
convex hull of a sample of n points is the largest bounded empirical level set.
Convergence and concentration of this random polytope has attracted a lot of
attention in convex and stochastic geometry (see [4, 6, 15] and the references
therein). Intermediate level sets of Tukey depth for a sample of n points are
extensions of the convex hull, called k-hulls, for k ě 1. The k-hull of a sample
of n points is the intersection of all closed halfspaces that contain at least n´k

sample points (see [9] for a similar definition) and the convex hull corresponds
to the 0-hull of the sample.

As Tukey mentioned in his seminal work on statistical depth [46], the con-
tours of Tukey depth are an informative tool for exploratory statistics and
data visualization. Moreover, like univariate quantiles, they provide a statisti-
cal tool that is robust to outliers. In [40] and [22], Tukey depth level sets are
used for classification. Let µ and ν be two probability measures and let X be
a random variable distributed either according to µ or to ν. Consider the task
of determining which of µ or ν is the distribution of X . If µ and ν are known,
one way of solving this task consists of computing the Tukey depth level sets
of order α of both µ and ν and determining to which X is the closest. Here,
α P p0, 1q is a tuning parameter. If µ and ν are unknown and only independent
samples from µ and ν are available, a solution is to use the corresponding em-
pirical level sets. In that case, one needs to control how close they are to their
population versions.

We consider the level sets of the the empirical Tukey depth function with
a given and fixed level, i.e., that does not depend on the sample size n. We
show that they concentrate about their population version at the parametric
speed of convergence, i.e., n´1{2. These empirical level sets correspond to the
k-hulls of the sample, when k is linear in n, i.e., of order αn for some α P
p0, 1q. In the sublinear regime, i.e., when k{n Ñ 0, the concentration rates
can be much worse (see [15] when the underlying distribution is log-concave
and [4] when it is supported on a convex body). Estimation of level sets is
a general problem in statistics (e.g., [11, 36]. An important case is that of
estimating the level sets of a density [38, 39, 45]. For the level sets of depth
functions, a very natural estimator is available: The level sets of the empirical
depth function. The asymptotics of these empirical level sets have already
been tackled in previous works for several depth functions, including Tukey
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depth. Consistency was proven in [20, 49]. In [24], the author shows that for
all ε P p0, 1q, with probability 1´ε, the empirical depth level set is sandwiched
between two population level sets whose levels are at a distance of order n´1{2

from each other. However, the constants are not explicit and the way they
depend on ε cannot be derived from the results, which, as a consequence, do
not yield moment inequalities. In [20, 24, 49], the proofs are based on the global
behavior of the stochastic process defined by the empirical depth, indexed by
the ambient Euclidean space. Hence, the results in these works are based on
global and strong assumptions on the underlying probability measure. For
instance, in [24] it is assumed that the underlying distribution has a unimodal
density and that the depth function does not oscillate and is not too flat. In
our work, we focus on Tukey depth and only make assumptions that guarantee
some local continuity properties of the directional marginals of the underlying
distribution. We show that these assumptions are very weak, in the sense that
they are satisfied by a broad class of distributions, including most commonly
used ones. Not only we achieve the same (parametric) rate as obtained in [24],
but our main result is nonasymptotic with explicit constants and it yields
moment inequalities with a parametric rate.

Our approach is based on a polyhedral representation of the level sets of
the population and empirical Tukey depths. As we will see in Lemma 1, which
is a refinement of Theorem 2 in [26], these level sets can also be written as mul-
tivariate quantile sets, defined as convex regions that satisfy infinitely many
linear constraints. It is because of such a multivariate quantile representation
that the level sets of Tukey depth have also attracted attention in multivariate
quantile regression (see [7, 19] and the references therein). With this approach,
we reduce the problem to that of estimating the support function of the popu-
lation level sets. We believe that the techniques we use in our proofs could be
useful in other problems related to support function estimation. For instance,
in [18], the support function of an unknown convex set is observed up to some
noise; We believe that our proof method could be used in order to bound from
above the risk for estimation of the unknown convex set in Hausdorff distance,
whereas the measure of the risk used in [18] does not have a natural, geometric
interpretation.

Computation of the empirical Tukey depth level sets for samples of n points
is a challenging problem. In dimension 2, they can be computed in Opn2q (see
[35]). A naive computation of the Tukey depth at one point would require to
explore infinitely many halfspaces, which is not feasible. In higher dimensions,
there is no practical and efficient way to compute the level sets of the Tukey
depth. A random version of the Tukey depth was defined in [10] where only
M independent random directions are considered. In [10], the choice of M is
only based on empirical evidence. We use this random version of the Tukey
depth in order to approximate the empirical level sets. We show that for a
specific choice of M , they are consistent and still concentrate at the same
parametric speed as the original empirical sets. The choice that we use for
M grows exponentially with the dimension of the ambient space, but have no
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lower bound on the minimal number of random directions that are necessary
to still achieve n´1{2-consistency.

Before going further into details, we introduce some notation. In this paper,
d ě 2 and n ě 1 are fixed integers, unless stated otherwise. The Euclidean
norm in Rd is denoted by | ¨ | and the dot product between two vectors x and
y is denoted by xx, yy. The pd´1q-dimensional unit sphere is Sd´1 “ tu P Rd :
|u| “ 1u. For u P Sd´1, uK stands for the hyperplane in Rd that is orthogonal
to u. If k is a positive integer, a P Rk and R ě 0, Bkpa, Rq (resp. B1

kpa, Rq)
stands for the closed (resp. open) Euclidean ball in Rk with center a and radius
R. When k “ d, we drop the subscript k.

The complement of a set A is denoted by AA. The symmetric difference
between two sets A and B in Rd is denoted by A△B. For k ě 1, if A is a
measurable set in Rk (equipped with the Lebesgue measure), we denote by
VolkpAq its k-dimensional volume, i.e., its Lebesgue measure in Rk.

For A Ď Rd, the interior of A is denoted by
˝
A: this is the largest open set

included in A. The collection of closed halfspaces in Rd is denoted by H. For
u P Sd´1 and t P R, we define the closed halfspace Hu,t “ tx P Rd : xu, xy ď tu.

The Hausdorff distance between two sets K, K 1 Ď Rd is

dHpK, K 1q “ inftε ą 0 : K Ď K 1 ` εBp0, 1q and K 1 Ď K ` εBp0, 1qu,

where we set infpHq “ 8. If K is a convex set, its support function hK is
defined as hKpuq “ sup

xPK

xu, xy, u P Rd: If u is a unit vector, hKpuq is the

signed distance from the origin to the farthest tangent hyperplane of K in the
direction of u.

The cardinality of a finite set I is denoted by #I. For x P R, we denote
by rxs (resp. txu) the smallest integer larger (resp. largest integer smaller) or
equal to x.

Throughout the paper, X, X1, X2, . . . are independent and identically dis-
tributed (i.i.d.) random variables defined on a probability space pΩ, F , Pq,
taking values in Rd. Their common probability distribution is denoted by µ

and is defined on the Borel σ-algebra of Rd. The empirical distribution µn

is defined by µn “ 1

n

řn
i“1

δXi
, where δa is the Dirac measure at the point

a P Rd.

For two positive sequences panqně1 and pbnqně1, we write an “ Opbnq when
the ratio an{bn is bounded uniformly in n ě 1. For two positive sequences of
random variables pAnqně1 and pBnqně1, we write An “ OPpBnq when for all
δ ą 0, there exists Mδ ą 0 such that PrAn ą MδBns ď δ, @n ě 1.

Section 2 is devoted to general results about Tukey depth level sets. Our
main theorems are given in Section 3 and the proofs are deferred to Section
4. The rest of this section is dedicated to important definitions.
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1.2 Definitions

The Tukey depth associated with a probability measure µ in Rd is the function

Dµpxq “ inf
HPH:xPH

µpHq, @x P Rd.

We refer to Dµ as the population Tukey depth and to Dµn
as the empirical

Tukey depth.

In this work, we are interested in comparing the level sets of Dµ and
Dµn

. Let α P p0, 1q be fixed. The α-level set of Dµ is defined as Gµ “
tx P Rd : Dµpxq ě αu and we denote by Ĝ the α-level set of Dµn

: Ĝ “ 
x P Rd : Dµn

pxq ě α
(
. We study how fast Ĝ concentrates around Gµ, i.e.,

how fast the stochastic convergence of dHpĜ, Gµq to zero is. As intermediate
tools and for independent interest, we introduce the following sets associated
with µ:

1. The multidimensional p1 ´ αq-quantile set of µ:
Let X be a random variable with probability distribution µ. For u P Rd, let
q5
u and q7

u be the lower and upper p1 ´ αq-quantile of xu, Xy, respectively:

q5
u “ inftt P R : Prxu, Xy ď ts ě 1 ´ αu and

q7
u “ suptt P R : Prxu, Xy ě ts ě αu.

The corresponding lower and upper multidimensional p1 ´ αq-quantile sets
of µ are defined as

G
η
MQ

“ tx P Rd : xu, xy ď qη
u, @u P S

d´1u, η P t5, 7u. (1)

2. The α-floating body of µ: GFB “
č

HPH:µpHqě1´α

H .

As we will see in Lemma 1 below, these sets are other representations of the
Tukey depth level sets. The representation in terms of multidimensional quan-
tile sets is particularly convenient for our purposes because it characterizes the
Tukey depth level sets through linear constraints. We make the floating body
part of our analysis because it plays an important role for random polytopes.
Barany and Larman [2] proved that if µ is the uniform distribution in a convex
and compact set of volume 1, then the expected missing volume of the convex
hull of X1, . . . , Xn behaves aymptotically as the missing volume of the p1{nq-
floating body of µ. Fresen [15] proved that if µ is log-concave, the convex hull
of X1, . . . , Xn approximates the p1{nq-floating body of µ with high probability.
For very small values of α, even smaller than 1{n, when the empirical level set
would be a very poor estimator of Gµ, [21] defines and studies an estimator
that extends univariate estimators from extreme value theory.
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1.3 The one dimensional case

Tukey depth is a very simple and intuitive concept in dimension one. Let µ be
a probability measure in R and X1, . . . , Xn be i.i.d. random points distributed
according to µ. The Tukey depth of a given real number x is simply given by

Dµpxq “ min pµ pp´8, xsq , µ prx, 8qqq .

In particular, if the cumulative distribution function F of µ is continuous,
then Dµpxq “ min pF pxq, 1 ´ F pxqq. In that case, the α-level set of Dµ is the
interval rqα, q1´αs, where qβ is the β-quantile of µ, for all β P p0, 1q. Then,

the corresponding empirical level set Ĝ is the interval rXprnαsq, Xptnp1´αqu`1qs,
where pXp1q, . . . , Xpnqq is the increasing reordering of the list pX1, . . . , Xnq.
Then, convergence and concentration of Ĝ to Gµ reduces to convergence and
concentration of the empirical quantiles of X1, . . . , Xn. For all β P p0, 1q, qβ

can be estimated consistently if F is not too flat around β. In particular,
if ν has a density f such that fpqβq ą 0, then the empirical β-quantile is
asymptotically normal and in order to show concentration with rate n´1{2, it
is sufficient to assume that f is bounded away from zero in a vicinity of qβ ,
i.e., that F increases at least linearly around qβ .

Our results are built upon that fact: We will reduce the multivariate prob-
lem to one-dimensional problems, by considering projections of the measure µ

along all possible directions, in which we will prove concentration of empirical
quantiles around their population versions.

2 General results on Tukey depth level sets

We start with a simple lemma that shows the relationships between the sets de-
fined above: The Tukey depth level sets, the lower and upper multidimensional
quantile sets and the floating bodies. This lemma is a refinement of Theorem
2 in [26] but we include its proof at the end for the sake of completeness.

Lemma 1 GFB “ G5
MQ Ď G

7
MQ

“ Gµ.

In particular, if µ satisfies some continuity property, e.g., Assumption 1
below, then q5

u “ q7
u for all unit vectors u, so the inclusion becomes an equality

and all four sets are equal.
[26] provides an interesting discussion about the multivariate quantile rep-

resentation of Gµ: In brief, the knowledge of Gµ does not imply the knowledge
of all univariate quantiles q7

u, u P Sd´1. Indeed, some of the linear constraints

that define G
7
MQ

may not be active, i.e., there may be some unit vectors u for

which xu, xy ă q7
u, @x P G

7
MQ

. This fact constitutes the main difficulty in the

proof of Theorem 2 below, where we use the support function of G
7
MQ

. For

u P Sd´1, it is clear that the linear constraint “xu, xy ď q7
u” is active if and

only if hGµ
puq “ q7

u. If that constraint is not active, then hGµ
puq ă q7

u. In that
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case, not only Gµ provides no information about q7
u, as discussed in [26], but q7

u

alone does not give any information about hGµ
puq, and we need to understand

how hGµ
puq depends on the q7

v’s that correspond to active constraints.
For its independent interest, we may ask the following question: For which

distributions µ are all the linear constraints that determine G
7
MQ

active ? First,
we have the following proposition about polyhedral representations of convex
sets.

Proposition 1 Let ptuquPRd Ď R be positively homogeneous, i.e., tλu “ λtu,
@λ ě 0, u P Rd and define the convex set G “ tx P Rd : xu, xy ď tu, @u P Sd´1u.
Assume that

˝
G ‰ H. Then, the following statements are equivalent:

(i) All the linear constraints that define G are active;
(ii) For all u P Sd´1, hGpuq “ tu;
(iii) The family ptuquPRd is subadditive, i.e., tu`v ď tu ` tv, @u, v P Rd.

As a consequence of this lemma, the upper quantiles q7
u, u P Sd´1, are

completely determined by Gµ if and only if the family pq7
uquPRd is sublinear,

i.e., subadditive and positively homogeneous.

Open question 1 For what distributions µ are the upper quantiles q7
u, u P Rd,

sublinear, no matter the value of α P p0, 1q ?

A Gaussian distribution has sublinear upper quantiles, as a consequence
of the triangle inequality for symmetric positive semidefinite matrices. If µ is
the Gaussian distribution with centroid m and covariance matrix Σ, then for
all u P Sd´1, q7

u “ xu, my ` Φ´1p1 ´ αq
a

Σpu, uq, where Φ is the cumulative
distribution function of the univariate standard Gaussian distribution. The
triangle inequality ensures that the map u P Rd ÞÑ

a
Σpu, uq is sublinear,

yielding sublinearity of pq7
uquPRd .

As a generalization of Gaussian distributions, and because they are known
to be rigid (see [31] for examples of this rigidity), we may ask if a log-concave
probability measure have sublinear upper quantiles.

Open question 2 Assume that µ is log-concave. Is it true that the upper
quantiles q7

u, u P Rd are sublinear, no matter the value of α P p0, 1q ?

Remark 1 The multidimensional quantile sets are convex sets. Thus, they fail
to capture the structure of complex probability measures, such as mixtures.
The floating body (also called convex floating body in the convex geometry
literature, see [44]) is defined as an intersection of closed halfspaces, i.e., the
complement of the union of open halfspaces. Instead, one could think of an

r-convex floating body, using the notion of r-convexity (see [32]): G
prq
FB

“¨
˝

ď

aPRd:µpB1pa,rqqăα

B1pa, rq

˛
‚

A

and its empirical analog Ĝ
prq
FB

can be defined sim-

ilarly, by replacing µ with µn. When r “ 8, G
prq
FB

“ GFB. An asymptotic
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analysis of Ĝ
prq
FB

would require a different approach than ours, but seems to
be relevant in order to describe more complex probability measures. In [37],
r-convexity is exploited to estimate the support of probability distributions
while relaxing convexity and even connectivity assumptions. We leave this
question for further work.

The next result shows that unless µ has atoms, the level set Gµ is empty
when α is too large.

Theorem 1 Let α ą 1{2. Then, either Gµ is empty or it contains exactly one
point. In the latter case, i.e., if Gµ “ txu for some x P Rd, then x is an atom
of µ: µptxuq ě 2α ´ 1 ą 0.

On the one hand, if µ has an atom x with µptxuq ą 1{2, then Dµpxq ě
µptxuq ą 1{2, hence, Gµ ‰ H for α “ µptxuq ą 1{2. On the other hand, it
is known ([12], Lemma 6.3) that Gµ is always nonempty when α ě 1{pd ` 1q.
The following two examples show that very general probability measures µ

can satisfy Gµ ‰ H for large values of α ď 1{2, independent of the dimension
d, and yet have no atoms:

– If µ is centrally symmetric, i.e., satisfies µpx ` Aq “ µpx ´ Aq for all Borel
set A Ď Rd, where x is the center of symmetry of µ, then Dµpxq ě 1{2,
hence, Gµ is nonempty for all α P r0, 1{2s.

– If µ is log-concave, then any closed halfspace H containing the centroid of
µ satisfies µpHq ě e´1 (see Lemma 5.12 in [31]). Hence, the depth of the
centroid of µ is at least e´1, which implies that Gµ is non empty for α as
large as e´1 « .37.

3 Concentration of the empirical Tukey depth level sets

Consider the following assumptions, where we let ε, L, r, R be fixed positive
numbers satisfying ε ă r ď R.

Assumption 1 – For all u P Sd´1, the cumulative distribution function Fu

of xu, Xy is continuous on rq7
u ´ ε, q7

u ` εs.
–

ˇ̌
Fuptq ´ Fupq7

uq
ˇ̌

ě L
ˇ̌
t ´ q7

u

ˇ̌
, for all u P Sd´1 and all t P rq7

u ´ ε, q7
u ` εs.

Assumption 2 There exists a P Rd such that Bpa, rq Ď Gµ Ď Bpa, Rq.

Assumption 1 ensures that q5
u “ q7

u for all u P Sd´1, hence, that G5
MQ “

G
7
MQ

and that the cumulative distribution functions Fu are not too flat around

their quantiles q5
u “ q7

u. Note that this assumption is not global in nature,
however, the local control of Fu is required to hold uniformly in all directions
u P Sd´1. Yet, we introduce two more assumptions in the sequel (Assumptions
3 and 4), each of which is shown to be stronger than Assumption 1 for some
values of the parameters ε and L that depend on µ, and which are satisfied by
most commonly used distributions.
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By Lemma 1, Ĝ can also be written as the empirical upper multidimen-
sional p1 ´ αq-quantile set associated with X1, . . . , Xn:

Ĝ “ tx P Rd : xu, xy ď q̂7
u, @u P Sd´1u, (2)

where, for u P Rd, q̂7
u “ sup

!
t P R : #ti “ 1, . . . , n : xu, Xiy ě tu ě nα

)
is

the upper empirical p1 ´ αq-quantile of xu, X1y, . . . , xu, Xny. For the sake of
notation, we will write q̂u instead of q̂7

u in the sequel.
As a consequence of Lemma 1, in order to show concentration of Ĝ around

Gµ, one can compare their polyhedral representations given by (2) and G
7
MQ

,
which are written in terms of linear constraints. This is essential in the proof
of our next theorem, which uses semi-infinite linear programming as one of its
main ingredients.

Next theorem asserts that if Assumptions 1 and 2 are both satisfied, then
Ĝ concentrates around Gµ at a parametric speed. In particular, that speed
depends on the dimension d only through multiplicative constants.

Theorem 2 Let µ satisfy Assumptions 1 and 2. Then, the random set Ĝ

satisfies the following deviation inequality:

P

„
dHpĜ, Gµq ą Cx?

n


ď Ae´L2x2{2`10

?
5pd`1qx,

for all x ě 0 with
10
a

5pd ` 1q
L

ď x ă ε
?

n, where C “ R

r

1 ` ε{r
1 ´ ε{r and A “

e´250pd`1q.

Note that in Theorem 2, if n is not large enough, the domain for x will
be empty. Moreover, the upper bound in Theorem 2 is nontrivial as soon as

x ě 10
a

5pd ` 1q
L

´
1 `

a
maxp0, 1 ´ Lq

¯
. The constants depend on d and the

parameters ε, r, R, L. These parameters are hard to compute in practice, for
a given distribution µ. However, Theorem 2 provides a concentration inequal-
ity that is uniform over all distributions µ that satisfy Assumption 1 and 2.
Moreover, we give simple asymptotic consequences of Theorem 2 below.

First, a truncated version of Ĝ has its expected error converging to zero at
the speed n´1{2:

Corollary 1 Define the random set

Ĝ˚ “
#

Ĝ X B1p0, log nq if Ĝ ‰ H
t0u otherwise.

Let µ satisfy Assumptions 1 and 2 and assume, in addition, that |a| ď τ for

some τ ą 0. Then, for all k ą 0, E

”
dHpĜ˚, Gµqk

ı
“ O

´
n´k{2

¯
. The mul-

tiplicative constants in these asymptotic comparisons depend on d, r, R, ε, L, τ

and k only.
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Remark 2 – In Corollary 1, the upper bounds are uniform on the class of
probability measures µ that satisfy both Assumptions 1 and 2 with |a| ď
τ . Hence, Corollary 1 gives an upper bound for the rate of the minimax
risk in estimation of Gµ on that class of probability measures, and this
rate is parametric. Note that the assumption |a| ď τ could be dropped
in Corollary 1, but then the multiplicative constants in the asymptotic
comparisons would also depend on a and we would loose uniformity of the
upper bounds.

– The threshold log n in the definition of Ĝ˚ is arbitrary and could be re-
placed with any sequence that grows to infinity at most polynomially in
n.

Define the maximal depth α˚
µ of µ as max

xPRd
Dµpxq. Consider the two following

assumptions:

Assumption 3 The probability measure µ is absolutely continuous with re-
spect to the Lebesgue measure, its density f is continuous and positive every-
where and there exist C ą 0 and ν ą d´1 such that fpxq ď C p1 ` |x|q´ν

, @x P
Rd.

In the sequel, if µ has a density f with respect to the Lebesgue measure,
we call the support of µ the set of vectors x P Rd for which fpxq ą 0.

Assumption 4 The probability measure µ is absolutely continuous with re-
spect to the Lebesgue measure, its support is bounded and convex and its density
is uniformly continuous on its support.

Assumptions 3 and 4 are sufficient but not necessary for next corollary.
However, they include a lot of useful distributions. For example, any log-
concave distribution in Rd with positive density satisfies Assumption 3: A
log-concave density is continous on its support and decays exponentially fast
when |x| Ñ 8. If µ has a density of the form fpxq “ hpxx, Σxyq, where Σ

is a d ˆ d symmetric positive definite matrix and h is a positive continuous
function that satisfies hptq ď Cp1 ` |t|q´ν for all t P R, with ν ą d ´ 1, then µ

satisfies Assumption 3 as well. If µ is the uniform distribution on a compact,
convex set in Rd, then it satisfies Assumption 4.

Corollary 2 Let µ satisfy either Assumption 3 or Assumption 4. Suppose that

α P p0, α˚
µq, independently of n. Then, dHpĜ, Gµq “ OP

´
n´1{2

¯
.

Remark 3 – Corollary 2 shows that the rate of convergence of the empirical
level sets is parametric.

– Surprisingly, if µ is the uniform distribution on a compact, convex set K

in Rd, the rate does not depend on the smoothness of the boundary of K.
This seems paradoxical, since it is known that if α “ 1{n, Ĝ is the convex
hull of X1, . . . , Xn, which converges to K at a rate that depends on the
smoothness of the boundary of K (see [2]). However, in [2]:
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– α “ 1{n depends on n. In our work, α does not depend on n and hence,
the floating body GFB “ Gµ is bounded away from the boundary of K,
which attenuates the effect of its smoothness.

– Convergence is towards the support K itself, not towards the floating
body of µ. When α “ 1{n, it is not clear whether the convergence of
the distance between the empirical and the population p1{nq-floating
bodies depends on the smoothness of the boundary of K. By the triangle
inequality, dHpĜ, Kq ď dHpĜ, Gµq`dHpGµ, Kq. The p1{nq-floating body
Gµ converges to K at a speed that depends on the smoothness of the
boundary of K [2, 44], but to the best of our knowledge, it is not
known whether the speed of convergence of dHpĜ, Gµq depends on the
smoothness of K too.

– [24] obtained the parametric rate n´1{2 for general measures of statistical
depth, under quite strong assumptions on µ which rule out many important
distributions, as compared to ours (e.g., compactly supported densities). In
addition, they do not compare Ĝ to Gµ directly, but to level sets of Dµ with
levels α ˘ Mn´1{2, for some M ą 0, leaving out a deterministic bias. Yet,
we believe that they could achieve the same rate as ours. However, unlike
Theorem 2, their result is not informative about the tail of the distribution
of dHpĜ, Gµq, because of implicit dependency of the constant M on the
probability level (see [24], Theorem 1).

Computation of Ĝ is a hard problem. Its concentration around Gµ is a ques-
tion of its own geometric and probabilistic interest, but it also has important
statistical implications. For instance, as we saw in Corollary 1, it provides a
benchmark for the minimax risk for estimation of Gµ based on an i.i.d. sample.

However, if Ĝ is too hard to compute, this does not have much of a practical
interest. Computation of the Tukey depth Dµn

at a single point is equivalent
to the problem of finding a hemisphere that contains the largest number of
points positioned on the unit sphere, which is NP hard in high dimension [23].
However, in fixed dimension, some deterministic and random algorithms to
compute an approximate or exact value of the Tukey depth have been sug-
gested (see [14, 40, 41] and the references therein). For the actual computation
of the Tukey depth level sets relative to a point cloud in dimension 2, we refer
to [35]. These sets are polygons, hence, their computation reduces to finding
either their vertices or their faces. To our knowledge, there are no algorithms
to compute these sets exactly when d ě 3. Here, we define a random approx-
imation of Ĝ that can be computed exactly, yet in an exponential time in
d. Lemma 1 gives a representation of Ĝ through infinitely many linear con-
straints. By selecting a finite number of these constraints, using a collection of
unit vectors that are well spread on the unit sphere, one can obtain a suitable
approximation of Ĝ.

Our random approximation is obtained by sampling random vectors on the
unit sphere. For M ě 1, set G̃M “

 
x P Rd : xUj, xy ď q̂Uj

, @j “ 1, . . . , M
(
,

where U1, . . . , UM are i.i.d. uniform random variables on Sd´1, independent
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of X1, . . . , Xn. The following theorem shows that a certain choice of M leads
to an estimator that of Gµ that concentrates as fast as Ĝ.

Theorem 3 Let µ satisfy Assumptions 1 and 2 and assume that the quantiles
pq7

uquPRd are subadditive. Then, for all M ě 1, the random set G̃M satisfies
the following deviation inequality:

P

„
dHpG̃M , Gµq ą Cx ` 4R?

n



ď Ae´L2x2{2`10

?
5pd`1qLx ` 6d exp

ˆ
´ M

2d8pd´1q{2nd´1
` pd{2q log n

˙
,

for all real numbers x with 10
a

5pd ` 1q ď x ă ε
?

n, where C “ R

r

1 ` ε{r
1 ´ ε{r .

Remark 4 In Theorem 3, we assume that the population quantiles are subad-
ditive, which, by Proposition 1, ensures that they are completely characterized
by the knowledge of Gµ. How strong this assumption is is an open question
(see Open questions 1 and 2).

Theorem 3 yields the following asymptotic upper bound for a truncated
version of G̃M , if M is chosen large enough.

Corollary 3 Define the random set G̃˚
M as

G̃˚
M “

#
G̃M X Bp0, lognq if G̃M ‰ H,

t0u otherwise.

Let k ą 0. Recall the notation and assumptions of Theorem 3. If, in addi-
tion, |a| ď τ for some τ ą 0, then for M ą d8pd´1q{2pd ` kqnd´1 log n, G̃˚

M

satisfies E

”
dHpG̃˚

M , Gµqk
ı

“ O
´
n´k{2

¯
. The multiplicative constants in this

asymptotic comparison depend only on d, r, R, ε, L and k.

In addition, the following stochastic upper bound holds under subadditivity
of the population quantiles and either Assumption 3 or Assumption 4 :

Corollary 4 Let α P p0, α˚
µq and µ satisfy either Assumption 3 or Assumption

4. Let M “ d28pd´1q{2nd´1 log n. Then, if the quantiles pq7
uquPRd are subaddi-

tive, dHpG̃M , Gµq “ OP

`
1{

?
n
˘
.

Note that the prescribed value of M rapidly becomes very large as d grows.
By the way G̃M is defined, there is a membership oracle (i.e., a systematic
way of concluding whether a given point is in G̃M ) that only needs to check
nM linear inequalities, where nM is of order d28pd´1q{2nd log n. This number
is exponentially large in d. However, compare this to the optimal cost for
outputing the list of vertices of the convex hull of n points in dimension d,
which is of order ntd{2u [8]. Therefore, it is not clear whether the prescribed
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value of M is optimal, but it seems that an exponential dependency in d is
unavoidable in general.

Finally, we note that Theorem 2 can be extended to more classes of distri-
butions. Namely, consider the following assumption, that is an alternative to
Assumption 1. We still let ε and L be fixed positive numbers and we add one
additional parameter γ ą 0.

Assumption 5 – For all u P Sd´1, the cumulative distribution function Fu

of xu, Xy is continuous on rq7
u ´ ε, q7

u ` εs.
– Fuptq ´ Fupq7

uq ě Lpt ´ q7
uqγ , for all u P Sd´1 and all t P rq7

u ´ ε, q7
u ` εs.

If γ ă 1, Assumption 5 allows for less smooth cumulative distributions
than Assumption 1. Then, it is easy to adapt the proofs of Theorem 2 and its
intermediate lemmas in order to show the following theorem.

Theorem 4 Let µ satisfy Assumptions 5 and 2. Then, the random set Ĝ

satisfies the following deviation inequality:

P

„
dHpĜ, Gµq ą Cx

n1{p2γq


ď Ae´L2x2γ{2`10

?
5pd`1qxγ

,

for all x ě 0 with

˜
10
a

5pd ` 1q
L

¸1{γ

ď x ă εn´1{γ , where C and A are the

same constants as in Theorem 2.

As a consequence, under Assumptions 5 and 2, the rate of convergence of
the empirical level set towards its population version is n´1{p2γq.

4 Proofs

4.1 Preliminary lemmas in convex geometry and semi-infinite linear
programming

Lemma 2 Let K and L be two convex sets and assume that L is closed. Then,
K Ď L ðñ hKpuq ď hLpuq, @u P S

d´1. In particular, K is bounded if and
only if the restriction of its support function to the unit sphere is bounded.

Proof In the first part of the lemma, the left-to-right direction directly follows
from the definition of the support function. The right-to-left direction is a
consequence of [43, Theorem 1.3.7]. Assume that hKpuq ď hLpuq, @u P Sd´1

and that there exists x P KzL. Then, by [43, Theorem 1.3.7], txu and L can
be strongly separated, i.e., there exist u P Sd´1 and t P R such that xu, xy ą t

and xu, yy ď t for all y P L. As a consequence, hLpuq ď t ă xu, xy ď hKpuq,
which is false.

For the second part of the lemma, note that the support function of a ball
centered at the origin with radius R ě 0 is constant, equal to R on the unit
sphere. Hence, hKpuq ď R, @u P Sd´1 ðñ K Ď Bp0, Rq, which proves the
second part of the lemma.
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The following lemma, borrowed from [43, Theorem 1.8.11], conveniently
connects the Hausdorff distance between two convex bodies (i.e., convex and
compact sets) to their support functions.

Lemma 3 Let K and L be two convex bodies. Then,

dHpK, Lq “ max
uPSd´1

|hKpuq ´ hLpuq|.

In the next two lemmas, we let φ : Sd´1 Ñ R and K “ tx P Rd : xu, xy ď
φpuq, @u P Sd´1u.

Lemma 4 The set K is convex and compact.

Proof If K is empty, then it is convex and compact. Assume that K is nonempty.
It is closed and convex, as the intersection of closed halfspaces. Let us show
that K is bounded, which will end the proof. Since hK is convex, it is con-
tinuous on the interior of its domain (i.e., tu P Rd : hKpuq ă 8u). Moreover,
hKpuq ď |u|φpuq ă 8 for all u P Rd, yielding that hK is continuous on Rd.
Hence, since Sd´1 is compact, the restriction of hK on the Sd´1 is bounded.
Hence, by Lemma 2, K is bounded.

Lemma 5 If φ is continuous and x P Rd, then x P
˝
K ðñ xu, xy ă

φpuq, @u P Sd´1.

Proof Let x P
˝
K. Then, B1px, ηq Ď K for some η ą 0. Let u P Sd´1. Then,

x ` ηu P K, yielding xu, x ` ηuy ď φpuq. Hence, xu, xy ď φpuq ´ η ă φpuq
and this has to be true for all u P Sd´1. Now, let x P Rd satisfying xu, xy ă
φpuq, @u P Sd´1. The map u P Sd´1 ÞÑ φpuq ´ xu, xy is continuous and positive
on the compact Sd´1, hence, there exists η ą 0 such that for all u P Sd´1,

φpuq ´ xu, xy ě η. Then, it is easy to verify that B1px, ηq Ď K, yielding x P
˝
K.

When a convex set is defined through a collection of linear inequalities
indexed by the unit sphere, the support function at a given unit u0 vector can
be interpreted as the value of a semi-infinite linear program. The following
lemma states that under a continuity assumption, u0 needs to lie in the convex
cone spanned by the constraints that are active at a point x˚ that is a solution
of that linear program. Note that when the number of linear constraints is
infinite, the existence of active constraints is not granted, as the following
example shows.

Let u0 P Sd´1 and G “ tx P Rd : xu, xy ď 1, @u P Sd´1ztu0u, xu0, xy ď 2u.
Then, since it is also true that G “ Bp0, 1q, the value of the semi-infinite
linear program maxtxu0, xy : x P Gu is 1, uniquely attained at x˚ “ u0. Yet,
no constraint is active at x˚.

Lemma 6 Let φ be a continuous function on Sd´1 and let K “ tx P Rd :

xu, xy ď φpuq, @u P Sd´1u. Assume that
˝
K ‰ H. For all u0 P Sd´1, there

exists x˚ P K such that hKpu0q “ xu0, x
˚y. Moreover, there exists I Ď Sd´1

such that
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– #I ď d,
– xu, x˚y “ φpuq, @u P I,

– u0 “
ÿ

uPI

λuu, for some nonnegative numbers λu, u P I.

Proof By Lemma 4, K is compact, which grants the existence of x˚, since
K ‰ H. Let I˚ “ tu P Sd´1 : xu, x˚y “ φpuqu be the set of active constraints
at x˚ and let us prove that I˚ is not empty. The rest will follow using Theorem
2 in [30] (Slater’s condition is satisfied since we assume that K has nonempty
interior).

If I˚ was empty, then

@u P Sd´1, xu, x˚y ă φpuq. (3)

Hence, by Lemma 5, x˚ P
˝
K: Bpx˚, ηq Ď K for some η ą 0. This yields

hKpu0q ě xu0, x
˚ ` ηu0y

“ xu0, x
˚y ` η

ą hKpu0q,

which is a contradiction.

In the next two lemmas, for any map ζ : Sd´1 Ñ R and any subset N Ď
Sd´1, we define Gζ “ tx P Rd : xu, xy ď ζpuq, @u P S

d´1u and GN
ζ “ tx P Rd :

xu, xy ď ζpuq, @u P N u.

Lemma 7 Let φ and φ̂ be two continuous functions on Sd´1. Assume that Gφ

and G
φ̂

have nonempty interiors. Let R ą r ą 0 and assume that B1p0, rq Ď
Gφ Ď B1p0, Rq. Let η “ maxuPSd´1 |φ̂puq ´ φpuq|. If η ă r, then dHpG

φ̂
, Gφq ď

ηR

r

1 ` η{r
1 ´ η{r .

Proof Let u0 P Sd´1. By Lemma 6, there exist x P Gφ, x̂ P G
φ̂
, I, Î Ď Sd´1

with #I ď d, #Î ď d, such that hGφ
pu0q “ xu0, xy, hG

φ̂
pu0q “ xu0, x̂y, xu, xy “

φpuq, @u P I, xv, x̂y “ φ̂pvq, @v P Î and u0 “
ř

uPI λuu “
ř

vPÎ λ̂vv, for some

nonnegative families pλuquPI ,
´
λ̂v

¯

vPÎ
ě 0. Note that necessarily, for all u P I

and v P Î, φpuq “ hGφ
puq and φ̂pvq “ hG

φ̂
pvq. Then,

hG
φ̂

pu0q “ hG
φ̂

˜
ÿ

uPI

λuu

¸
ď

ÿ

uPI

λuhG
φ̂

puq ď
ÿ

uPI

λuφ̂puq ď
ÿ

uPI

λupφpuq ` ηq

“
ÿ

uPI

λuxu, xy ` η
ÿ

uPI

λu “ xu0, xy ` η
ÿ

uPI

λu “ hGφ
pu0q ` η

ÿ

uPI

λu.

(4)
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In a similar fashion, we have that

hGφ
pu0q ď hG

φ̂
pu0q ` η

ÿ

vPÎ

λ̂v. (5)

By Lemma 2 and since B1p0, rq Ď Gφ Ď B1p0, Rq, r ď hGφ
puq ď R, for

all u P Sd´1, yielding R ě xu0, xy “
ÿ

uPI

λuxu, xy “
ÿ

uPI

λuhGφ
puq ě r

ÿ

uPI

λu.

Hence,
ÿ

uPI

λu ď R

r
and by (4),

hG
φ̂

pu0q ď hGφ
pu0q ` ηR

r
. (6)

On the other hand,

ÿ

vPÎ

λ̂vxv, x̂y “ xu0, x̂y “ hG
φ̂

pu0q ď hGφ
pu0q ` ηR

r
ď R ` ηR

r
, (7)

where the first inequality comes from (6). In addition,

ÿ

vPÎ

λ̂vxv, x̂y “
ÿ

vPÎ

λ̂vφ̂pvq ě
ÿ

vPÎ

λ̂vpφpvq ´ ηq ě
ÿ

vPÎ

λ̂vpr ´ ηq

yielding, together with (7),

ÿ

vPÎ

λ̂v ď R

r

1 ` η{r
1 ´ η{r . (8)

Finally, (4), (5) and (8) yield

|hGφ
pu0q ´ hG

φ̂
pu0q| ď ηR

r

1 ` η{r
1 ´ η{r . (9)

Since (9) is true for any arbitrary u0 P Sd´1, Lemma 7 is proven, using Lemma
3.

Definition 1 Let δ ą 0. A δ-net of the sphere Sd´1 is a subset N Ď Sd´1

such that sup
uPSd´1

inf
vPN

|u ´ v| ď δ.

Lemma 8 Let δ P p0, 1q and N be a δ-net of Sd´1. Let φ and φ̂ : Rd Ñ R,
and assume that φ is sublinear. Let r ă R be two positive numbers and assume
that B1p0, rq Ď Gφ Ď B1p0, Rq. Let η “ maxuPN |φpuq ´ φ̂puq|. If η ă r, then

dHpGφ, GN

φ̂
q ď ηR

r

1 ` η{r
1 ´ η{r ` 2Rδ

1 ´ δ
.
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Proof Before starting the proof, let us recall the following important property
for support functions. If K Ď B1p0, Mq is a convex set, with M ą 0, then its
support function is M -Lipschitz. By the triangle inequality,

dHpGφ, GN

φ̂
q ď dHpGφ, GN

φ q ` dHpGN
φ , GN

φ̂
q. (10)

By Proposition 1, φpuq “ hGφ
puq, @u P Sd´1. Hence, φpuq ď R, @u P Sd´1.

Let x P GN
φ with x ‰ 0 and let u “ x{|x|. Then, |u ´ u˚| ď δ for some

u˚ P N , yielding |x| “ xu, xy “ xu˚, xy ` xu ´ u˚, xy ď φpu˚q ` δ|x| ď R` δ|x|.
Hence, |x| ď R

1 ´ δ
and GN

φ Ď B1p0, R{p1 ´ δqq. This entails that hGN
φ

is

R{p1 ´ δq-Lipschitz. Now, let u0 P Sd´1. On the one hand, since Gφ Ď GN
φ ,

hGφ
pu0q ď hGN

φ
pu0q. On the other hand, if u˚ P N satisfies |u0 ´u˚| ď δ, then

hGN
φ

pu0q ď hGN
φ

pu˚q ` Rδ

1 ´ δ
ď φpu˚q ` Rδ

1 ´ δ
“ hGφ

pu˚q ` Rδ

1 ´ δ

ď hGφ
pu0q ` R|u0 ´ u˚| ` Rδ

1 ´ δ
ď hGφ

pu0q ` Rδ ` Rδ

1 ´ δ

“ hGφ
pu0q ` Rδp2 ´ δq

1 ´ δ
ď hGφ

pu0q ` 2Rδ

1 ´ δ
,

where we used the fact that hGφ
is R-Lipschitz. Therefore,

dHpGφ, GN

φ̂
q ď 2Rδ

1 ´ δ
. (11)

Since B1p0, rq Ď Gφ Ď GN
φ , GN

φ has nonempty interior. So does GN

φ̂
, since

it is clear that B1p0, r ´ ηq Ď GN

φ̂
, using the facts that φpuq ě r, @u P Sd´1,

by Lemma 2 and that η ă r. Hence, using similar arguments as in the proof
of Lemma 7,

dHpGN
φ , GN

φ̂
q ď ηR

r

1 ` η{r
1 ´ η{r . (12)

Thus, (10), (11) and (12) yield the desired result.

Lemma 9 Let K Ď Rd be a convex set with nonempty interior. Let A “
tpu, tq P Sd´1 ˆ R : ptu ` uKq X K ‰ Hu. Then, a pair pu, tq P Sd´1 ˆ R is in
˝
A if and only if there exists η ą 0 satisfying

psu ` uKq X
˝
K ‰ H, @s P rt ´ η, t ` ηs. (13)

Proof Let pu, tq P Sd´1 ˆ R.

Assume that pu, tq P
˝
A. Then, there exists η ą 0 such that pu, sq P A, for

all s P rt ´ 2η, t ` 2ηs. Let s P rt ´ 2η, t ` 2ηs. Since pu, sq P A, the affine

hyperplane su ` uK intersects K. It actually needs to intersect
˝
K. Indeed,

˝
K

is also the relative interior of K, since K has nonempty interior. Hence, for
the affine hyperplane su ` uK to intersect K but not its interior, it has to be
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a supporting hyperplane of K. This contradicts the fact that K has elements
on both sides of su ` uK.

Now, assume that pu, tq satisfies (13) for some η ą 0. Then, there exists

x P ptu`uKqX
˝
K ‰ H. In particular, x P

˝
K. Without log of generality, assume

that η is small enough so Bpx, ηq Ď
˝
K. Let δ “ η{p1`|x|q and pv, sq P Sd´1ˆR

with both |v´u| ď δ and |s´t| ď δ. Since x P xv, xyv`vK, the affine hyperplane
sv ` vK intersects B1px, ηq if and only if |s ´ xv, xy| ď η, which holds by our
choice of δ.

Lemma 10 Let k be a positive integer and K be a compact and convex set in

Rk such that 0 P
˝
K. Let u P Sk´1 and let punqně1 a sequence of unit vectors in

Rk that converges to u. Let pxnqně1 be a sequence in Rk that converges to zero
and pUnqně1 be a sequence of isometries in Rk that converges to the identity.
Then, as n Ñ 0,

1. Volk´1

``
pK ` xnq X uK

n

˘
△pK X uK

n q
˘

ÝÑ 0;

2. Volk´1

``
UnpKq X uK

n

˘
△pK X uK

n q
˘

ÝÑ 0.

Proof For u P Sk´1, set pKpuq “ maxtλ ě 0 : λu P Ku. This is the (multi-
plicative) inverse of the gauge of K. By [43, Section 1.7], the gauge function
gK (defined on Rd) of K satisfies the following properties:

– Since 0 P
˝
K, there exists M ą 0 with gKpuq ď M , for all u P Sd´1;

– Since K is bounded, there exists m ą 0 with gKpuq ě m, for all u P Sd´1;
– gK is subadditive and positively homogeneous, so it is M -Lipschitz on

Sd´1:
|gKpuq ´ gKpvq| ď M |u ´ v|, @u, v P S

d´1.

As a consequence, pKpuq ě M´1 for all u P Sk´1 and pK is Lipschitz on
Sd´1, with Lipschitz constant L “ M{m2.

First statement of the lemma: For n ě 1, write xn “ λnun ` vn, with
λn P R and vn P uK

n and denote by Kn “ K ` λnun. Recall that pA, Bq ÞÑ
Volk´1pA△Bq is a pseudo-metric on the class of compact subsets of uK

n , so it
satisfies the triangle inequality:

Volk´1

``
pK ` xnq X uK

n

˘
△pK X uK

n q
˘

ď
Volk´1

``
pKn ` vnq X uK

n

˘
△pKn X uK

n q
˘

` Volk´1

``
pK ` λnunq X uK

n

˘
△pK X uK

n q
˘
. (14)

Since vn P uK
n , the first term on the right hand side of (14) is equal to

Volk´1

``
pKn X uK

n q ` vn

˘
△pKn X uK

n q
˘
. (15)

It is easy to see that dH

`
pKn X uK

n q ` vn, Kn X uK
n

˘
ď |vn|, which is less than

one if n is large enough. Hence, using the same argument as in the proof
of Lemma 1 in [5], there is a positive constant C that does not depend on
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n such that (15) is bounded from above by CdH

`
pKn X uK

n q ` vn, Kn X uK
n

˘
.

Therefore, the first term of the right hand side of (14) goes to zero as n goes
to infinity. Let n ě 1 be large enough so λn ă m. Set αn “ pKpunq and
βn “ pKp´unq. Suppose that λn ě 0 (the case λn ă 0 would be handled
similarly). Then, by convexity of K,

αn

αn ` λn

pK ` λnunq Ď K Ď βn

βn ´ λn

pK ` λnunq . (16)

Since 0 P K, it is true that for all λ P R and v P Sk´1, pλKqXvK “ λpK XvKq.
Using this fact together with (16) yields

`
pK ` λnunq X uK

n

˘
△pK X uK

n q Ď
ˆˆ

αn ` λn

αn

pK X uK
n q
˙

zpK X uK
n q
˙

Y
ˆ

pK X uK
n qz

ˆ
βn ´ λn

βn

pK X uK
n q
˙˙

. (17)

Since 0 P K, the volume of the set in the right hand side of (17) is bounded
from above by

˜ˆ
αn ` λn

αn

˙k´1

´ 1 `
ˆ

βn ´ λn

βn

˙k´1

´ 1

¸
Volk´1pK X uK

n q,

which goes to zero as n goes to infinity, since K is bounded and αn and βn

are bounded away from zero (they are at not smaller than m). This ends the
proof of the first statement of the lemma.

Second statement of the lemma: Let L be the corresponding Lipschitz con-
stant. Let tn “ }Un ´ Ik}, where Ik is the identity map in Rk and we define
the norm of any linear map A : Rk Ñ Rk by }A} “ max

vPSk´1

|Apvq|. Then,

since Un converges to the identity, tn goes to zero as n goes to infinity. Define

cn “ M´1

M´1 ` Ltn
. Note that 0 ď cn ď 1. Then, let us show that for all n ě 1,

cnK Ď UnpKq. (18)

Let x P K and set y “ U´1

n pcnxq. If x “ 0, then y “ 0 yielding y P K by
assumption, which proves (18). If x ‰ 0, then y ‰ 0 and let v “ y{|y|. In order
to prove that y P K, it is enough to show that

|y| ď pKpvq. (19)

Since Un is an isometry, |y| “ cn|x| and since x P K, |x| ď pKpx{|x|q. There-
fore,

|y| “ cn|x| ď cnpKpx{|x|q “ cnpKpUnpvqq ď cnpKpvq ` cnL|Unpvq ´ v|
ď cnpKpvq ` cnLtn “ pKpvq ` cnLtn ´ p1 ´ cnqpKpvq
ď pKpvq ` cntnL ´ p1 ´ cnqM´1

“ pKpvq,
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by definition of cn. This proves (19) and hence, (18). As a consequence, since
0 P K, cnpK X uK

n q “ pcnKq X uK
n Ď UnpKq X uK

n , yielding

Volk´1

`
pK X uK

n qz
`
UnpKq X uK

n

˘˘
ď Volk´1

`
pK X uK

n qz
`
cnpK X uK

n q
˘˘

ď p1 ´ ck´1

n qVolk´1pK X uK
n q,

which goes to zero as n Ñ 8, since K is bounded and cn Ñ 1. In a similar
fashion, we prove that Volk´1

``
UnpKq X uK

n

˘
zpK X uK

n q
˘

also goes to zero as
n Ñ 8, which ends the proof of the second statement of the lemma.

Lemma 11 Let M be a positive integer and let U1, . . . , UM be i.i.d. uniform
random variables on Sd´1. Let δ P p0, 1s and let C be the event satisfied when
the collection tU1, . . . , UMu is a δ-net of the sphere (see Definition 1). Then,
the complement CA of C satisfies

PrCAs ď M

˜
1 ´

ˆ
δ

4

˙pd´1q{2¸M

ď 6d exp

ˆ
´ Mδd´1

2d8pd´1q{2 ` d log

ˆ
1

δ

˙˙
.

Proof Let N be a pδ{2q-net of Sd´1. By a simple volume argument, it is
possible to choose N satisfying #N ď p6{δqd, which we assume in the sequel.
If C is not satisfied, there exists u P Sd´1 for which |u ´ Uj| ą δ, for all
j “ 1, . . . , M . Hence, if v P N is such that |u ´ v| ď δ{2, one has, for all j “
1, . . . , M , by the triangle inequality, |v´Uj | ě |u´Uj|´|u´v| ě δ´δ{2 ě δ{2.
Therefore, using the union bound and mutual independence of the Uj ’s,

PrCAs ď P

„
Dv P N , |v ´ Uj| ą δ

2
, @j “ 1, . . . , M


ď

ÿ

vPN

P

„
|v ´ U1| ą δ

2

M

.

(20)

For any v P Sd´1, P

„
|v ´ U1| ď δ

2


is the ratio of the surface area of a spherical

cap of the unit sphere and the total surface area of the unit sphere. The height
of this cap is h “ δ2{8 ă 1. Then,

P

„
|v ´ U1| ď δ

2


“ 1

2
I2h´h2

ˆ
d ´ 1

2
,
1

2

˙
, (21)

where Ixpa, bq “
şx
0

ta´1p1 ´ tqb´1 dt
ş
1

0
ta´1p1 ´ tqb´1 dt

, for x P r0, 1s and a, b ą 0 (see, e.g., [27]).

If b ď 1, one has

ż x

0

ta´1p1 ´ tqb´1 dt ě
ż x

0

ta´1 dt “ xa

a
and a

ż
1

0

ta´1p1 ´

tqb´1 dt “ pa ` bq
ż

1

0

tap1 ´ tqb´1 dt ď pa ` bq
ż

1

0

p1 ´ tqb´1 dt “ a ` b

b
. Hence,

Ixpa, bq ě b

a ` b
xa and (21) yields, with x “ 2h ´ h2, a “ d´1

2
and b “ 1{2,
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that P

„
|v ´ U1| ď δ

2


ě 1

2d
p2h ´ h2qpd´1q{2. Since h ă 1, 2h ´ h2 ě h “ δ2{8,

hence,

P

„
|v ´ U1| ď δ

2


ě δd´1

2d8pd´1q{2 . (22)

Together with (22), (20) implies

PrCAs ď #N

ˆ
1 ´ δd´1

2d8pd´1q{2

˙M

ď 6d exp

ˆ
´ Mδd´1

2d8pd´1q{2 ` d log

ˆ
1

δ

˙˙
,

which ends the proof of Lemma 11.

4.2 Preliminary lemmas for empirical and population quantiles

Lemma 12 Let µ satisfy Assumption 1. Then, the map u P Sd´1 ÞÑ q7
u is

continuous.

Proof For notation’s sake, we write qu instead of q7
u in the sequel of the proof.

Step 1: Denote by Φpu, tq “ Prxu, Xy ď ts, u P Sd´1, t P R. We first show that
Φ is continuous A “

 
pu, tq P Sd´1 ˆ R : qu ´ ε ă t ă qu ` ε

(
.

Let pu, tq P A and pup, tpqpě1 be a sequence in A that converges to pu, tq as
p goes to infinity. Let η be an arbitrary positive number. We show that if p is
large enough, then |Φpup, tpq ´ Φpu, tq| ď 2η, which will prove our statement.
First, note that |Φpup, tpq ´ Φpu, tq| ď µ

`
Hu,t△Hup,tp

˘
. Let R ą 0 satisfy

Pr|X | ą Rs ď η. Then,

µ
`
Hu,t△Hup,tp

˘
ď µ

`
Bp0, Rq X pHu,t△Hup,tp

q
˘

` µpRdzBp0, Rqq
ď µ

`
Bp0, Rq X pHu,t△Hup,tp

q
˘

` η.

It is easy to check that

Bp0, Rq X pHu,t△Hup,tp
q Ď

`
Hu,tp`R|up´u|zHu,t

˘
Y
`
Hu,tzHu,tp´R|up´u|

˘
,

which entails

µ
`
Bp0, Rq X pHu,t△Hup,tp

q
˘

ď |Fu ptp ` R|up ´ u|q ´ Fuptq| ` |Fuptq ´ Fu ptp ´ R|up ´ u|q| .
(23)

Since pup, tpq ÝÝÝÑ
pÑ8

pu, tq and qu ´ε ă t ă qu `ε, one has qu ´ε ď tp ´R|up ´
u| ď tp`R|up´u| ď qu`ε for all large enough p. Hence, since Fu is continuous
on rqu ´ ε, qu ` εs, (23) implies that µ

`
Bp0, Rq X pHu,t△Hup,tp

q
˘

ď η if p is
large enough, which ends the the proof of the continuity of Φ on A.
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Step 2: Let u P Sd´1 and pupqpě1 be a sequence of unit vectors converging
to u as p goes to infinity. Let us show that qup

converges to qu. If this was
not the case, there would be a positive number η and an increasing sequence
of positive integers ppkqkě1 satisfying |qupk

´ qu| ě η, @k ě 1. Let us assume
that qupk

ě qu ` η for an infinite number of indices k ě 1. The case when
qupk

ď qu ´ η for an infinite number of indices k ě 1 would be handled
similarly. For the sake of notation, we renumber the sequence and assume that
for k ě 1, quk

ě qu ` η. Without loss of generality, assume that η ă ε. Hence,
for all k ě 1,

1 ´ α “ Fuk
pquk

q ě Fuk
pqu ` ηq

“ Fupqu ` ηq ` Φpuk, qu ` ηq ´ Φpu, qu ` ηq
ě Fupquq ` Lη ` Φpuk, qu ` ηq ´ Φpu, qu ` ηq
“ 1 ´ α ` Lη ` Φpuk, qu ` ηq ´ Φpu, qu ` ηq. (24)

The fact that Fvpqvq “ 1´α, @v P Sd´1, is a consequence of the continuity and
strict monotony of Fv in a neighborhood of qv, for all v P Sd´1. Since η ă ε,
pu, qu`ηq P A, so by the first part of the proof, Φpuk, qu`ηq´Φpu, qu`ηq ÝÝÝÑ

kÑ8
0. Thus, by letting k grow to infinity in (24), we get that Lη ď 0, which is a
contradiction. Hence, we have proved that qup

ÝÝÝÑ
pÑ8

qu, which ends the proof.

Lemma 13 Let µ be a probability measure on Rd that satisfies either As-
sumption 3 or 4 and let K be its support. For u P Sd´1, let fu and Fu be,
respectively, the density and the cumulative distribution function of xu, Xy,
where X is a random variable with distribution µ. Let A “ tpu, tq P Sd´1 ˆR :
ptu ` uKq X K ‰ Hu. Define φpu, tq “ fuptq and Φpu, tq “ Fuptq, for all
pu, tq P A. Then,

– φ and Φ are continuous on
˝
A;

– @pu, tq P
˝
A, φpu, tq ą 0 and 0 ă Φpu, tq ă 1.

Proof Note Φpu, tq “
ż t

´8
φpu, sq ds, for all pu, tq P A, where we set φpu, sq to

zero if pu, sq R A. Hence, by dominated convergence, continuity of φ will au-
tomatically yield that of Φ. Let pu, tq P A and consider an arbitrary sequence
pun, tnqně1 of elements of A that converges to pu, tq.

Let µ satisfy Assumption 3. In this case, the second statement is trivial since
f is continuous and positive everywhere. Hence, we only prove the first state-
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ment. Let ǫ ą 0 and R ą 0. For all n ě 1,

|φpun, tnq ´ φpu, tq| “
ˇ̌
ˇ̌
ˇ

ż

uK
n

fptnun ` vq dv ´
ż

uK

fptu ` vq dv

ˇ̌
ˇ̌
ˇ

ď

ˇ̌
ˇ̌
ˇ̌
ż

vPuK
n :

|v|ďR

fptnun ` vq dv ´
ż

vPuK
:

|v|ďR

fptu ` vq dv

ˇ̌
ˇ̌
ˇ̌

`
ż

vPuK
n :

|v|ąR

fptnun ` vq dv `
ż

vPuK
:

|v|ąR

fptu ` vq dv

ď

ˇ̌
ˇ̌
ˇ̌
ż

vPuK
n :

|v|ďR

fptnun ` vq dv ´
ż

vPuK
:

|v|ďR

fptu ` vq dv

ˇ̌
ˇ̌
ˇ̌

` C

ż

vPuK
n :

|v|ąR

p1 ` |v|q´ν dv `
ż

vPuK
:

|v|ąR

p1 ` |v|q´ν dv.

(25)

For n ě 1, let Un be an isometry in Rd such that Unpunq “ u. Then, the first

term in (25) can also be written as

ˇ̌
ˇ̌
ˇ̌
ż

vPuK
:

|v|ďR

`
fptnun ` U´1

n pvqq ´ fptu ` vq
˘
dv

ˇ̌
ˇ̌
ˇ̌,

which converges to zero by dominated convergence. Hence, for large n, the first
term in (25) is smaller than ǫ.

Using polar coordinates, both the second and third terms in (25) can be

rewritten as C 1
ż 8

R

xd´2p1 ` xq´ν dx, for some positive constant C 1 that does

not depend on n or R. Hence, both the second and third terms in (25) are
bounded from above by C2R´pν´d`1q, for some positive constant C2 that does
not depend on R or n. Hence, if R was chosen large enough, both these terms
are smaller than ǫ. Finally, we have proved that φpun, tnq Ñ φpu, tq, as n Ñ 8.

Let µ satisfy Assumption 4. Let ǫ ą 0. For n ě 1, write

|φpun, tnq ´ φpu, tq| ď
ż

uK
n

|fptnun ` vq ´ fptu ` vq| dv

`
ˇ̌
ˇ̌
ˇ

ż

uK
n

fptu ` vq dv ´
ż

uK

fptu ` vq dv

ˇ̌
ˇ̌
ˇ . (26)

Let Bn “ tv P uK
n : tnun ` v P Ku and Dn “ tv P uK

n : tu ` v P Ku. The first
integral in (26) can be decomposed as

ż

BnXDn

|fptnun ` vq ´ fptu ` vq| dv

`
ż

Bn△Dn

|fptnun ` vq ´ fptu ` vq| dv. (27)
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Recall that f is uniformly continuous on K and Vold´1pBn X Dnq is bounded
uniformly in n, by boundedness of K. Hence, if n is large enough, the first
integral in (27) is smaller than ǫ. For the second integral, since f is uniformly
continuous on the bounded set K and vanishes everywhere else, it is bounded
and the integral is bounded from above by psupK fqVold´1pBn△Dnq. The
latter converges to zero as n goes to infinity, thanks to Lemma 10. Hence, it
becomes smaller than ǫ if n is large enough, so the first term in (26) is at most
2ε for large values of n. For n ě 1, let Un be an isometry in Rd such that
Unpunq “ u and such that Un converges to the identity, as n goes to infinity.
Then, the second term in the right hand side of (26) can be written as

ˇ̌
ˇ̌
ż

uK

`
fptu ` U´1

n pvqq ´ fptu ` vq
˘
dv

ˇ̌
ˇ̌ . (28)

Let Ku “ pK ´ tuq X uK and Kn
u “

`
U´1

n pK ´ tuq
˘

X uK. Since the integrand

vanishes outside of KuYK
pnq
u , the integral inside the absolute value in (28) can

be decomposed as the sum of two integrals: One on Ku XKn
u and the other on

Ku△Kn
u . Since Un converges to the identity as n goes to infinity, U´1

n pvq Ñ v

as n Ñ 8, for all v P Rd. Since f is uniformly continuous on K and K is
bounded, f is bounded. Hence, by dominated convergence, uniform continuity
of f on K together with the fact that Vold´1pKu X Kn

u q is bounded uniformly
in n implies that the first term goes to zero as n Ñ 8. Since fpxq “ 0 for
x R K, f is bounded on Rd. Hence, by Lemma 10, the second term goes to
zero as n Ñ 8, since Un converges to the identity. This ends the proof of the
first statement of the lemma.

For the second statement, first note that K needs to have a nonempty
interior. Otherwise, since it is convex, it would be included in a hyperplane,
i.e., there would exist u P Sd´1 and t P R such that xu, xy “ t, @x P K. Hence,
xu, Xy “ t almost surely, which contradicts the fact that X has a density with

respect to the Lebesgue measure in Rd. Let pu, tq P
˝
A. By Lemma 9, there

exists η ą 0 such that both pt ` ηqu ` uK and pt ´ ηqu ` uK intersect
˝
K.

Hence, by convexity of
˝
K, psu ` uKq X

˝
K ‰ H, yielding that the pd ´ 1q-

dimensional Lebesgue measure of psu ` uKq X K needs to be positive, for
all s P rt ´ η{2, t ` η{2s. Therefore, fu is positive on this interval, yielding
φpu, tq ą 0 and 0 ă Φpu, tq ă 1.

Lemma 14 Let µ be a probability measure on Rd that satisfies either Assump-
tion 3 or 4 and let X be a random variable with distribution µ. Denote by Fu

the cumulative distribution function of xu, Xy. Let β P p0, 1q. For u P Sd´1,
let qu be the β-quantile of xu, Xy, defined as in Lemma 12 (with β “ 1 ´ α).
Then,

– For all u P Sd´1, qu is the unique real number t that satisfies Fuptq “ β;
– The map u P Sd´1 ÞÑ qu is continuous.



Concentration of the empirical level sets of Tukey’s halfspace depth 25

Proof Let K be the support of µ and let A “ tpu, tq P Sd´1 ˆ R : ptu ` uKq X
K ‰ Hu.

Let u P Sd´1. Since µ is absolutely continuous with respect to the Lebesgue
measure, so is the distribution of xu, Xy. Hence, Fu is continuous on R, which
yields that Fupquq “ β. In addition, if fu is the density of xu, Xy, then fu is
positive in a neighborhood of qu. Indeed, since K is convex, the support of
fu is an interval. Since Fupquq “ β P p0, 1q and Fu is continuous, there is a
neighborhood of qu on which Fuptq P p0, 1q, i.e., there is a neighborhood of qu

that is included in the support of fu. In particular, Fu is strictly increasing on
this neighborhood, which shows the uniqueness of qu.

Let u P Sd´1 and let punqně1 be an arbitrary sequence of unit vectors
that converges to u. Suppose that qun

does not converge to qu. Then, there
exists η ą 0 and a subsequence of un (renamed un after renumbering) such
that |qun

´ qu| ě η, for all n ě 1. Assume that for an infinite number of
indices n, qun

ě qu ` η. The case when qun
ď qu ´ η for an infinite number of

indices n would be handled similarly. Thus, up to renumbering the sequence
again, assume that qun

ě qu ` η, for all n ě 1. By a similar argument as in

the end of the proof of Lemma 13, for all pu, tq P A, pu, tq P
˝
A if and only if

0 ă Fuptq ă 1. Hence, pu, quq P
˝
A. Hence, there exists ξ ą 0 such that pv, tq P

˝
A

for all v P Sd´1 and t P R with |v ´ u| ď ξ and |qu ´ t| ď ξ. By Lemma 13,

since φ is continuous and positive on
˝
A, there is a positive constant c such

that φpv, tq ě c ą 0 for all pv, tq P Sd´1 ˆ R with |v ´ u| ď ξ and |qu ´ t| ď ξ.
Assume that ξ ď η, without loss of generality. Then,

β “ Fun
pqun

q “ Φpun, qun
q ě Φpun, qu ` ηq ě Φpun, qu ` ξq

“ Φpun, quq `
ż ξ

0

φpun, tq dt

ě Φpun, quq ` cξ Ñ β ` cξ,

as n goes to infinity. This is a contradiction, since β ` cξ ą β. Hence, qun

needs to converge to qu as n Ñ 8 and Lemma 14 is proven.

Lemma 15 Let µ satisfy Assumption 1. Then, for all n ě 1 and z P R with
10

?
5pd`1q

L
?

n
ď z ă ε,

P

„
sup

uPSd´1

|q̂u ´ q7
u| ď z


ě 1 ´ A exp

´
´L2z2n{2 ` 10

a
5pd ` 1qLz

?
n
¯

,

where A “ e´250pd`1q.

Proof Let C0 “ tpu, tq P Sd´1 ˆ R : q7
u ´ ε ď t ď q7

u ` εu and rC0 “
tpu, tq P C0 : u P Qd´1 ˆ R, t P Qu. Denote by H0 “ tHu,t : pu, tq P C0u
and rH0 “ tHu,t : pu, tq P rC0u.
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Step 1: We first show that

sup
HPH0

|µnpHq ´ µpHq| “ sup
HP rH0

|µnpHq ´ µpHq| almost surely. (29)

If pu, tq P Sd´1, denote by F̂uptq “ µnpHu,tq, i.e., the empirical cumulative
distribution function of xu, Xy. Then,

sup
HPH0

|µnpHq ´ µpHq| “ sup
pu,tqPC0

|F̂uptq ´ Fuptq|

“ max

˜
sup

pu,tqPC0

pF̂uptq ´ Fuptqq, sup
pu,tqPC0

pFuptq ´ F̂uptqq
¸

.

Hence, it suffices to prove that sup
pu,tqPC0

pFuptq ´ F̂uptqq “ sup
pu,tqP rC0

pFuptq ´ F̂uptqq

and that sup
pu,tqPC0

pF̂uptq´Fuptqq “ sup
pu,tqP rC0

pF̂uptq´Fuptqq. These two statements

follow from the fact that the supremum of a lower semicontinuous function on
a given set coincides with its supremum on a dense subset. First, note that rC0

is dense in C0. Second, pu, tq ÞÑ F̂uptq is the average of indicator functions of
closed sets, which are all upper semicontinuous. Hence, pu, tq ÞÑ F̂uptq is upper
semicontinuous, yielding that pu, tq ÞÑ ´F̂uptq is lower semicontinuous. Since
pu, tq P C0 ÞÑ F̂uptq is continuous on C0, as proved in Step 1 of the proof of
Lemma 12, pu, tq P C0 ÞÑ Fuptq ´ F̂uptq is lower semicontinuous on C0. Hence,

sup
pu,tqPC0

pFuptq´F̂uptqq “ sup
pu,tqP rC0

pFuptq´F̂uptqq. Now, note that for all u P Sd´1,

continuity of Fu on the segment rq7
u´ε, q7

u`εs ensures that sup
q

7
u´εătăq

7
u`ε

F̂uptq´

Fuptq “ sup
q

7
u´εătăq

7
u`ε

Ĝuptq ´ Fuptq, where Ĝuptq “ 1

n

nÿ

i“1

1xu,Xiyăt. Now, the

function pu, tq P C0 ÞÑ Ĝuptq ´ Fuptq is lower semicontinuous on C0, yielding
sup

pu,tqPC0

Ĝuptq ´ Fuptq “ sup
pu,tqP rC0

Ĝuptq ´ Fuptq. As a consequence,

sup
pu,tqPC0

F̂uptq ´ Fuptq “ sup
pu,tqP rC0

Ĝuptq ´ Fuptq

ď sup
pu,tqP rC0

F̂uptq ´ Fuptq

ď sup
pu,tqPC0

F̂uptq ´ Fuptq,

where the second inequality comes from the fact that Guptq ď Fuptq, for all
u P Sd´1 and t P R. This yields the second statement and proves (29). In
particular, the random variable sup

pu,tqPC0

|F̂uptq ´ Fuptq| is measurable and the

probability term in the statement of the lemma is well defined.
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Step 2: Let u P Sd´1. By definition of q̂u, the following holds for all t P R,
where, as we recall, H´u,´t is the halfspace H “ tx P Rd : xu, xy ě tu:
– If t ă q̂u, then µnpH´u,´tq ě α,
– If t ą q̂u, then µnpH´u,´tq ă α.

Assume that for some u P Sd´1, |q̂u ´ q7
u| ą z. Then, either q̂u ą q7

u ` z

or q̂u ă q7
u ´ z. If q̂u ą q7

u ` z, let H “ H´u,´pq7
u`zq P H0. Then, µnpHq ě α.

Hence, by Assumption 1, µpHq “ Prxu, Xy ě q7
u ` zs “ 1 ´ Fupq7

u ` zq ď
1 ´ Fupq7

uq ´ Lz “ α ´ Lz, yielding that µnpHq ´ µpHq ě Lz. If q̂u ă q7
u ´ z

a similar reasoning yields |µpHq ´ µnpHq| ě Lz for H “ H´u,´pq7
u´zq P H0.

Hence, using (29), it follows that

P

„
sup

uPSd´1

|q̂u ´ q7
u| ą z


ď P

«
sup

HP rH0

|µnpHq ´ µpHq| ě Lz

ff
. (30)

Now, denote by S “ sup
HP rH0

|µnpHq ´ µpHq|. Since rH0 Ď H, it has Vapnik-

Chervonenkis dimension at most d ` 1. Moreover, it is a countable class of

sets, so Proposition 3.1 in [3] yields ErSs ď 10

?
5pd`1q?

n
. Therefore, by Theorem

2.5 in [25], if Lz ě 10

?
5pd`1q?

n
,

PrS ě Lzs ď P

«
S ´ ErSs ě Lz ´ 10

a
5pd ` 1q?

n

ff

ď A exp
´

´L2z2n{2 ` 10
a

5pd ` 1qLz
?

n
¯

, (31)

where A “ e´250pd`1q. Lemma 15 follows from (30) and (31).

Lemma 16 Let f1, . . . , fn be n real valued continuous functions defined on a
topological space E and k P t1, . . . , nu. For x P E, denote by fpkqpxq the k-th
smaller number in the list f1pxq, . . . , fnpxq. Then, fpkq is continuous.

Proof Write fpkqpxq “ min
JPPk

max
jPJ

fjpxq, where Pk is the collection of all sub-

sets of t1, . . . , nu of size k. Continuity of fpkq follows from continuity of the
maximum and minimum of finitely many continuous functions.

4.3 Proofs of the main results

Proof of Lemma 1: Let us first show that G5
MQ “ GFB. Let x P G5

MQ and

H P H satisfying µpHq ě 1´α. Write H “ Hu,t, for some u P Sd´1 and t P R.
Then, µpHq “ Prxu, Xy ď ts ě 1 ´ α, which yields t ě q5

u. Since x P G5
MQ,

xu, xy ď q5
u and, hence, x P H . Therefore, G5

MQ Ď GFB. Now, let x P GFB and

u P Sd´1. Let H “ Hu,q5
u
. By definition of q5

u and since Fu is right continuous,

µpHq “ Fupq5
uq ě 1 ´ α, so x P H . Hence, x P G5

MQ and thus, GFB Ď G5
MQ.
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This ends the proof of the equality G5
MQ “ GFB.

Inclusion G5
MQ Ď G

7
MQ

follows from the inequalities q5
u ď q7

u, for all u P Sd´1.

Now, let us prove that G
7
MQ

“ Gµ. For x P G
7
MQ

, we show that Dµpxq ě α,
i.e., that any closed halfspace H containing x needs to satisfy µpHq ě α. Let
H be such a halfspace and write H “ Hu,t for some u P Sd´1 and t P R. Then,

xu, xy ď t,so x´u, xy ě ´t. Since x P G
7
MQ

, x´u, xy ď q
7
´u, hence, ´t ď q

7
´u.

Therefore,

µpHq “ Prxu, Xy ď ts “ 1 ´ Prxu, Xy ą ts “ 1 ´ Prx´u, Xy ă ´ts
ě 1 ´ Prx´u, Xy ă q

7
´us ě 1 ´ p1 ´ αq “ α.

Thus, x P Gµ, and hence, G
7
MQ

Ď Gµ. Now, let x P Gµ and u P Sd´1. Since x P
H´u,x´u,xy and Dµpxq ě α, µpH´u,x´u,xyq ě α, i.e., Prx´u, Xy ď x´u, xys ě
α. Hence, Prxu, Xy ă xu, xys ď 1 ´ α,which, by definition of q7

u, implies that

xu, xy ď q7
u. So, x P G

7
MQ

. Therefore, G
7
MQ

“ Gµ.

Proof of Proposition 1

– (i) ñ (ii): Assume that all the constraints are active and let u P Sd´1.
First, by definition of the support function, hGpuq ď tu. Second, since
the constraint corresponding to u is active, there exists x˚ P G such that
xu, x˚y “ tu, yielding tu ď hGpuq, hence, tu “ hGpuq.

– (ii) ñ (i): Let u P Sd´1. By Lemma 4, G is compact, yielding the existence
of x˚ P G satisfying hGpuq “ xu, x˚y. Hence, the constraint corresponding
to u is active.

– (ii) ñ (iii) is a direct consequence of the sublinearity of support functions.
– (iii) ñ (ii): Assume that the family ptuquPRd is subadditive and let u0 P

Sd´1. Since u P Rd ÞÑ tu is subadditive and positively homogeneous,
it is convex. Hence, it is continuous on the interior of its domain, here,

Rd. Since
˝
G ‰ H, Lemma 6 yields the existence of x˚ P G satisfying

hGpu0q “ xu0, x
˚y and of u1, . . . , ud P Sd´1, λ1, . . . , λd ě 0 satisfying

u0 “ řd
i“1

λiui and, for i “ 1, . . . , d, xui, x
˚y “ tui

. Hence, hGpu0q “

xu0, x
˚y “

dÿ

i“1

λixui, x
˚y “

dÿ

i“1

λitui
ě tu0

, by positive homogeneity and

subadditivity of v ÞÑ tv. Since, in addition, hGpu0q ď tu0
by definition of

the support function, we obtain hGpu0q “ tu0
.

Proof of Theorem 1 Let α be greater than 1{2 and assume that Gµ is nonempty.
Let x P Gµ: We prove that µptxuq ě 2α ´ 1.

Let E be an affine hyperplane passing through x. Let H1 and H2 be the two
distinct halfspaces whose common boundary is E. Since x P Gµ, Dµpxq ě α.
In particular, since both H1 and H2 contain x, µpHjq ě α, j “ 1, 2. Hence,
1 ě µpH1 Y H2q “ µpH1q ` µpH2q ´ µpEq ě 2α ´ µpEq, which implies that
µpEq ě 2α ´ 1.
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Let k P t1, . . . , d ´ 1u. Assume it is known that any affine subspace E

of dimension k, containing x, satisfies µpEq ě 2α ´ 1. Let F be an affine
subspace of dimension k ´ 1, containing x. Let G be the linear subspace of
vectors that are orthogonal to F . Let p ě 2 be an integer and let u1, . . . , up

be unit vectors in G, such that no two of them are collinear. For i “ 1, . . . , p,
set Ei “ F ` Rui “ tf ` λui : f P F, λ P Ru. Then, for all I Ď t1, . . . , pu with

#I ě 2,
č

iPI

Ei “ F and as a consequence of the inclusion-exclusion principle,

1 ě µ

˜
pď

i“1

Ei

¸
“

pÿ

i“1

µpEiq ´
pÿ

j“2

p´1qj

ˆ
p

j

˙
µpF q ě pp2α ´ 1q ´ pp ´ 1qµpF q,

yielding µpF q ě p

p ´ 1
p2α ´ 1q ´ 1

p ´ 1
. Since p is an arbitrary integer, we can

let it go to infinity and we get µpF q ě 2α ´ 1.
By induction, this proves that µptxuq ě 2α ´ 1 ą 0 and this must hold for

all x P Gµ. Since Gµ is convex, it cannot contain more than one point. Indeed,
if x, y P Gµ, then rx, ys Ď Gµ, yielding µptzuq ě 2α ´ 1, for all z P rx, ys.
Hence, if x ‰ y, then µprx, ysq “ 8, which is impossible.

Proof of Theorem 2 Without loss of generality, let us assume that a “ 0 in
Assumption 2: translating the measure µ and the sample points does not affect
the Haussdorf distance between Gµ and Ĝ. For the sake of notation, we write
qu “ q5

u “ q7
u for all u P Sd´1.

Let z P r10
a

5pd ` 1q{pL?
nq, εq and let the event A “ t|q̂u ´ qu| ď z, @u P

S
d´1u hold. Since Bp0, rq Ď Gµ, ru P Gµ for all u P Sd´1. By Lemma 1, this

implies that r “ xu, ruy ď qu, @u P Sd´1. Hence, for all u P Sd´1, q̂u ě qu´z ě
r´ε ą 0, yielding that B1p0, r´εq Ď Ĝ, hence, that Ĝ has a nonempty interior.
So does Gµ, since it contains B1p0, rq.

By Lemmas 12 and 16, the maps u ÞÑ qu and u ÞÑ q̂u are continuous.
Indeed, q̂u is the rnp1 ´ αq ` 1s-th order function of xu, X1y, . . . , xu, Xny.
Note that the map t P r0, 1q ÞÑ 1 ` t

1 ´ t
is nondecreasing. Thus, by Lemma

7, dHpĜ, Gµq ď zR

r

1 ` z{r
1 ´ z{r ď Cz, where C “ R

r

1 ` ε{r
1 ´ ε{r . Hence, if AA stands

for the complement of the event A, then

PrdHpĜ, Gµq ą Czs ď P
“
AA‰ . (32)

Write z “ x{?
n, for some real number x satisfying

10
a

5pd ` 1q
L

ď x ă ε
?

n.

By Lemma 15,

P
“
AA‰ ď A exp

´
´L2x2{2 ` 10

a
5pd ` 1qLx

¯
. (33)

The desired result is a consequence of (32) and (33).
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Proof of Corollary 1 The proof is based on a consequence of Fubini’s theorem
which ensures that if Z is a nonnegative random variable, then

ErZks “ k

ż 8

0

tk´1P rZ ą ts dt, (34)

for all positive number k.

First, note that for all k ą 0,

E

”
dHpĜ˚, Gµqk

ı
“ E

”
dHpĜ˚, Gµq1

Ĝ‰H

ı
` E

”
dHpĜ˚, Gµqk

1
Ĝ“H

ı
, (35)

where 1 stands for the indicator function.

By definition of Ĝ˚, the second term in the right hand side of (35) is equal

to dHpt0u, GµqkP

”
Ĝ “ H

ı
. First, it is clear that dHpt0u, Gµq ď |a|`R ď τ `R.

Second, as we saw in the proof of Theorem 2, P

”
Ĝ “ H

ı
ď P

“
AA‰ where we

set z “ ε{2. Hence, by (33),

E

”
dHpĜ˚, Gµqk

1
Ĝ“H

ı
“ O

´
n´k{2

¯
, (36)

with multiplicative constants that depend on d, ε, R, L and τ only.

For the first term of (35), note that if Ĝ ‰ H, then, since Ĝ˚ Ď B1p0, log nq
and Gµ Ď B1pa, Rq, dHpĜ˚, Gµq ď |a| ` log n ` R ď τ ` log n ` R. Denote by

B “ τ ` log n ` R. Then, if we set Z “ dHpĜ, Gµq,

E

”
dHpĜ˚, Gµqk

1
Ĝ‰H

ı
ď E

“
Zk

1ZďB

‰
. (37)

In the following, we set k “ 1. General values of k would be handled sim-
ilarly, using (34). Using (37) and (34) with k “ 1, ErdHpĜ˚, Gµq1

Ĝ‰Hs ď
ż B

0

P

”
dHpĜ, Gµq ą t

ı
dt. Split the integral in three integrals. First, from 0 to

10C
a

5pd ` 1q
L

?
n

, where we bound the integrand by 1. Then, from
10C

a
5pd ` 1q

L
?

n
to ε, where we use the bound provided by Theorem 2. Third, in the remaining
interval, where, using monotonicity, we bound the integrand using the upper
bound given in Theorem 2 with x “ ε

?
n. Then,

ErdHpĜ˚, Gµq1
Ĝ‰Hs “ O

´
n´1{2

¯
, (38)

with multiplicative constants that depend on d, ε, r, R and L only. Together
with (36), (38) yields the desired result.
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Proof of Corollary 2 It is enough to prove that if µ satisfies either Assumption
3 or 4, then it satisfies both Assumptions 1 and 2, for some values of ε, L, r

and R. Hence, Theorem 2 will apply and yield the desired result.

Let X be a random variable in Rd with probability measure µ. If u P
Sd´1, denote by fu the density of xu, Xy and by Fu its cumulative distribution

function. For u P Sd´1 and t P R, let φpu, tq “ fuptq “
ż

uK

fptu ` vq dv, where

the integral is evaluated with respect to the pd ´ 1q-dimensional Lebesgue
measure on uK.

Let K be the support of µ and let A “ tpu, tq P Sd´1 ˆR : ptu`uKqXK ‰
Hu. Note that

˝
A is included in the support of φ. Thus, by Lemma 13, φ is

continuous on
˝
A.

From now on, we assume that µ satisfies either Assumption 3 or 4. For
u P Sd´1, since Fu is continuous, q7

u “ q5
u: Denote this value by qu. Let αmax “

max
xPRd

Dµpxq. This quantity is well defined, since Dµ is upper semicontinuous

and quasi-concave (see [34]). Let T P Rd satisfy DµpT q “ αmax. Since µ has a
connected support and is absolutely continuous with respect to the Lebesgue
measure, such a point exists and is unique (see [34] or Prop. 3.5 in [33]). Let
α1 and α2 be positive numbers such that α1 ă α ă α2 ă αmax. For u P Sd´1,

denote by q
p1q
u the p1 ´ α1q-quantile of Fu and by q

p2q
u the p1 ´ α2q-quantile of

Fu. By Lemma 14, qu, q
p1q
u and q

p2q
u are continuous functions of u. In addition,

for all u P Sd´1, xu, T y ă qp2q
u ă qu ă qp1q

u , by definition of the quantiles and by
the first part of Lemma 14. Hence, since Sd´1 is compact, there exist positive
numbers r, R and ε with ε ă r ă R and such that for all u P Sd´1,

xu, T y ` r ď qp1q
u ď qu ´ ε ď qu ` ε ď qp2q

u ď xu, T y ` R. (39)

In particular, the first and last inclusions of (39) imply that BpT, rq Ď Gµ Ď
BpT, Rq. Hence, µ satisfies Assumption 2. In addition, by a similar argument as
in the proof of Lemma 14, the intermediate inclusions show that the compact
set B “ tpu, tq : u P Sd´1, qu ´ ε ď t ď qu ` εu is included in the interior of A.
Hence, by Lemma 13, φ is continuous on and positive on B, thus, it is bounded
from below by a positive constant L on B, yielding Fupt1q ´ Fuptq ě Lpt1 ´ tq,
for all u P Sd´1 and t, t1 P R such that qu ´ ε ď t ď t1 ď qu ` ε. This, together
with continuity of Fu, for all u P Sd´1, shows that µ satisfies Assumption 1,
which finally ends the proof of Corollary 2.

Proof of Theorem 3: Let M ě 1,
10
a

5pd ` 1q
L

?
n

ď z ă ε and δ “ 1{
?

n.

For simplicity, we denote by qj “ qUj
and q̂j “ q̂Uj

, for j “ 1, . . . , M . Let

A “ t|q̂j ´qj | ď z, @j “ 1, . . . , Mu and C “
 

tU1, . . . , UM u is a δ-net of Sd´1
(
.

Let both A and C hold. Then, by Lemma 8, dHpG̃M , Gµq ď Cz ` 4Rδ, where
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C “ R

r

1 ` ε{r
1 ´ ε{r . Therefore, by Lemmas 15 and 11, setting x “ z

?
n,

P

„
dHpG̃M , Gµq ą Cz ` 4R?

n



ď Ae´L2x2{2`10

?
5pd`1qLx ` 6d exp

ˆ
´ M

2d8pd´1q{2nd´1
` pd{2q log n

˙
,

for any x P R satisfying
10
a

5pd ` 1q
L

ď x ă ε
?

n.
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