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Efficient Data Collection and Accurate Travel Time 
Estimation in a Connected Vehicle Environment via 
Real-Time Compressive Sensing 

 
Lei Lin · Weizi Li · Srinivas Peeta* 

 
 

 

Abstract Connected vehicles (CVs) can capture and transmit detailed data such as vehicle 
position and speed through vehicle-to-vehicle and vehicle-to-infrastructure communications. 
The wealth of CV data provides new opportunities to improve safety and mobility of 
transportation systems, which can overburden storage and communication systems. To 
mitigate this issue, we propose a compressive sensing (CS) approach that allows CVs to 
capture and compress data in real-time and later recover the original data accurately and 
efficiently. We evaluate our approach using two case studies. In the first study, we use our 
approach to recapture 10 million CV Basic Safety Message (BSM) speed samples as well as 
other BSM variables. The results show that we can recover the original speed data with 
root-mean-squared error as low as 0.05 MPH. In the second study, a freeway traffic 
simulation model is built to evaluate the impact of our approach on travel time estimation. 
Multiple scenarios with various CV market penetration rates, On-board Unit (OBU) 
capacities, compression ratios, arrival rate patterns, and data capture rates are simulated for 
our experiments. As a result, our approach provides more accurate estimation than 
conventional data collection methods by achieving up to 65% relative reduction in travel time 
estimation error. With a low compression ratio, our approach can still provide accurate 
estimation, therefore reducing OBU hardware costs. Lastly, our approach can improve travel 
time estimation accuracy when CVs are in traffic congestion as it provides a broader 
spatial-temporal coverage of traffic conditions and can accurately and efficiently recover the 
original CV data. 
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1 INTRODUCTION 

Recent technological advances and their implications for socio-economic benefits associated 
with improved traffic conditions have prompted widespread focus on connected vehicles 
(CVs). CVs have the potential to improve safety and mobility of the transportation system by 
enhancing situational awareness and traffic state estimation through vehicle-to-vehicle (V2V) 
and vehicle-to-infrastructure (V2I) communications. 
    As an example of such endeavors, in 2012, the Safety Pilot Model Deployment (SPMD) 
program was launched in Ann Arbor, Michigan, United States. Nearly 3000 vehicles were 
equipped with GPS antennas and DSRC (Dedicated Short-Range Communications) devices. 
Each vehicle broadcasted Basic Safety Messages (BSMs), which included the position, 
velocity, and yaw rate, to nearby CVs and roadside units at a rate of 10 Hz (Bezzina and Sayer 
2015). This CV data provides opportunities for improving intelligent transportation system 
applications such as traffic state estimation (Lin et al. 2018a), traffic accident risk prediction 
(Lin et al. 2015b), traffic signal optimization (Huang et al. 2012), travel behavior analysis (Zhu 
et al. 2017) and so on. Nevertheless, the high sampling rate (i.e., 10 Hz) can result in 25GB 
data being captured and uploaded every hour (Hitachi 2017), which leads to prohibitive 
storage and communication costs. According to Muckell et al. (2014), the annual cost of 
tracking a fleet of 4000 vehicles would range from $1.8 million to $2.5 million. Due to the 
rapid increase in CV production and its increasing market penetration rate (MPR), this cost is 
expected to grow substantially in the near future.  
    In order to address the aforementioned issue, previous studies have mainly taken two 
approaches. The first is called sample-then-compression, which collects data at a fixed rate in 
real-time and compresses the data offline. The Douglas-Peucker algorithm is one of the 
classical sample-then-compression methods (Douglas and Peucker 2006). Richter et al. (2012) 
introduced a semantic trajectory compression method, which utilizes reference points in a 
transportation network to replace raw and redundant GPS trajectory data points. Popa et al. 
(2015) proposed an extended data model and a transportation network partitioning 
algorithm to increase trajectory compression rates without increasing the compression error. 
The limitation of the first approach is that no optimal solution is provided to adjust the online 
data sampling rate. Hence, redundant information is captured, transmitted, and stored. 
    The second approach uses a dynamic perspective by reducing the amount of data captured 
online while not compromising system awareness and control requirements of transportation 
authorities. As an example, the concept of Dynamic Interrogative Data Capture (DIDC) is 
proposed (Wunderlich 2016). The basic idea of DIDC is to identify the lowest data capture 
and transmission rate while satisfying a certain performance measure request (e.g., 
system-wide travel time estimation or shockwave location in a specific link). When faced 
with multiple requests, a DIDC controller will execute a heuristic optimization routine to 
prioritize the most important one. Though effective, the DIDC controller needs to determine 
the optimal data capture and transmission rate when multiple requests are received, and the 
prioritization and sorting of requests are non-trivial. Płaczek (2012) developed a framework 
that dynamically adjusts the data capture rate based on the uncertainty of control decisions 
instead of performance measures. Data is collected only when the uncertainty is higher than a 
predefined threshold and the uncertainty of traffic control decisions is quantified using a 
fuzzy number comparison approach (Sevastianov 2007). The main issue with the second 
approach is that the data collected is limited to specific tasks and time periods, which entails 
a higher requirement for the scalability and stability of the data analysis algorithms.  
    In this work, we propose a compressive sensing (CS) based approach for CV data capture 
and recovery. We also evaluate its impact on travel time estimation. CS has become an active 
research topic in recent years as a novel approach to capture and recover signals (Candes et 
al. 2006; Donoho 2006; Abo-Zahhad et al. 2015). Differing from the first approach in which 
huge amount of data is acquired and compressed, CS enables redundancy removal during 
the sampling process via a lower but more effective sampling rate (Razzaque and Dobson 
2014). Unlike the second approach, CS does not require dynamic adjustment to the data 
capture rate based on performance measures (Wunderlich 2016) or traffic control applications 
(Płaczek 2012). Instead, it performs a linear transformation to capture the essence of a signal 
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(Li and Cong 2015), which can then be used to recover the signal for various purposes. The 
high resemblance of the recovered and original signals allows existing data analysis 
algorithms to continue functioning without any modifications.  
    In the transportation domain, CS has been mainly applied for interpolating missing sensor 
data from loop detectors or probe vehicles to estimate traffic states. Accurate estimation of 
traffic states such as traffic flow and traffic speed plays an important role in traffic 
management and control (Huang and Sadek 2009; Lin et al. 2015a, 2018b). Li et al. (2011) 
sought to estimate traffic states based on trajectory data of taxis in an urban environment. 
They applied the CS algorithm for scenarios in which the spatial and temporal trajectory data 
were missing. Zheng and Su (2016) proposed an algorithm based on CS theory to recover 
missing traffic flow data from loop detectors and showed that it performs better than a 
Kalman filter based model. Recently, Li et al. developed a framework based on CS theory to 
estimate citywide travel times using sparse GPS traces (Li et al. 2017a) and later integrated 
their approach with a metamodel-based optimization technique to estimate missing traffic 
data in large city areas (Li et al. 2017b). Our method differs from these studies by applying CS 
theory for online CV data capture and storage rather than offline processing.  
    The contributions of this paper are twofold. First, we design a real time CS-based approach 
for CV data capture so that less information is needed to be stored and transmitted. A CV still 
examines data samples at a fixed rate, except that our approach determines whether to keep a 
sample or not. Our approach allows recovery of the captured data with high accuracy, which 
performance is evaluated using 10 million CV data samples from the SPMD program. As a 
result, the CV data can be recovered with a root mean squared error (RMSE) of 0.05 MPH by 
keeping only 20% of the original data (i.e., reducing storage and transmission costs by 80%).  
    Second, we evaluate the impact of our approach on travel time estimation using a 
simulation model for a five-mile two-lane freeway segment. In particular, we have compared 
our approach with two conventional techniques (i.e., using only loop detector data and using 
high-sampling CV data, respectively) using ground truth values. Our approach can generate 
the most accurate travel time estimations in all simulated scenarios, especially in the 
congested ones. Compared to the high-sampling CV data, the largest relative reduction of 
travel time estimation error using our approach can reach 65%. Hence, our approach enables 
a CV to have a smaller on-board unit (OBU) capacity, thus reducing equipment costs. 
    The rest of the paper is organized as follows. The next section introduces basic CS theory 
and the proposed CS approach for CV data capture and recovery. Then, two case studies are 
presented: applying the proposed approach for the compression and recovery of 10 million 
BSM speed samples, and evaluating the impact of this approach on travel time estimation. 
The paper concludes with a discussion on the experimental findings and future research 
directions.  

2 Methodology 

This section introduces the basic concepts of CS theory and the proposed CS approach for 
data capture and recovery. 

2.1 Background 

Consider a signal vector     . It can be represented in terms of a set of orthonormal basis 
       

 ,     
  as: 

 
                                          (1) 
 
where  is an     matrix called Sparsifying Matrix. The signal   is  -sparse if  , the 
transformed coefficient vector, has   nonzero entries. 
    Using the traditional data compression approach (i.e., sample-then-compression), the full 
signal vector   needs to be acquired first, then the vector   is computed through       and 
only the   largest coefficients are kept (Baraniuk 2007).  
    In contrast, CS directly acquires a compressed signal through the following sampling 
process: 
 
                                                (2) 
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where      is an     matrix.      is the sampled vector;    .   is an     
matrix called Sensing Matrix. 
  and   determine the compression ratio, which is computed as    . 
    Equation (2) defines an underdetermined linear system as the number of equations (i.e.,  ) 
is much less than the number of unknown entries (i.e.,  ) (Razzaque and Dobson 2014). The 
 -sparse   can be recovered from   which consists of   measurements by solving the 
following   -norm minimization problem: 
 
           , subject to                                     (3) 
 
where the   -norm      indicates the number of non-zero elements in the vector denoting the 
signal’s sparsity. Equation (3) is a NP-hard problem and has no efficient solutions.  
    The CS theory addresses this issue by introducing the following definition (Candes and 
Wakin 2008): Suppose there is a matrix  ; it satisfies the restricted isometry property (RIP) of 
order   if there exists a constant          such that:  
 
          

       
            

                        (4) 
 
for     satisfying         
    If the matrix   satisfies the RIP of order    which can be represented as Equation (5), an 
accurate reconstruction of a signal can be obtained by solving the following   -norm 
optimization problem in Equation (6) (Candes and Wakin 2008): 
 
           

       
             

                           (5) 
 
where         and        . 
 
           , subject to                               (6) 
 
    The rationale is that the distance between any pair of  -sparse signals    and    will not be 
stretched or compressed to a large degree during the dimension reduction from      to 
     so that the salient information of a  -sparse signal is preserved (Baraniuk 2007). 
Equation (6) can be solved via linear programming or conventional convex optimization 
algorithms.  

2.2 CS Approach for CV Data Capture and Recovery 

In this section, we discuss the proposed CS approach for CV data capture and recovery. In 
particular, it illustrates how to select the matrix   to transform the original CV data vector to 
a sparse one and the matrix   that satisfies the RIP of order    to guarantee accurate 
recovery. 
    Suppose      is a vector of CV data samples, e.g., speed samples collected at a fixed rate.    
According to Equation (1), we need a transform       so that   has a sparse 
representation in the domain of  . Typical transforms include discrete Fourier transform 
(DFT), discrete cosine transform (DCT), and Discrete Wavelet Transform (DWT). DCT is a 
Fourier-based transform similar to DFT, but uses cosine functions and the transformed 
coefficients are real numbers. DWT is more suitable for piecewise constant signals (Razzaque 
and Dobson 2014), which is not applicable to fluctuating speed samples. Therefore, we select 
DCT to transform the CV speed signal (Batal and Hauskrecht 2009): 
 

             
         

 

 
                                  (7) 

 

where      
 

  
 when    , 

      
 

 
 when        . 

Next, we need to select a matrix   to obtain the sampled vector      (i.e., Equation (2)). 
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As stated earlier,   should satisfy the RIP of order    so that the original vector   can be 
recovered. Previous studies have shown the following theorem: 

 
Theorem 1 (Bajwa et al. 2009) Suppose an     matrix   is obtained by selecting   rows 
independently and uniformly at random from the rows of an     unitary matrix  . By 
normalizing the columns to have unit    norms,   satisfies the RIP with probability   

       
   for every           provided that: 

 
      

                                         (8) 
 
where                   is called the coherence of the unitary matrix  . 
    Following Theorem 1, we select an     inverse discrete cosine transform (IDCT) matrix 
  as the unitary matrix  , and randomly select   rows to form the matrix  . This allows us to 
skip the DCT and IDCT transforms and acquire   samples (i.e.,  ) directly from real 
observations   as follows:  
 
                                               (9) 
 
where      represents a random subset of M rows of an     identity matrix. 
    Finally, after determining matrix   and  , the CS approach can be summarized as follows. 
Suppose a CV is capturing speed samples at a fixed rate. We keep a sample if it is generated 
from a uniform distribution over       and is less than or equal to the compression ratio    . 
When full data is needed for certain applications, it can be reconstructed by solving the 
  -norm optimization problem defined in Equation (6). We illustrate the proposed CS 
approach for the following two case studies. 

3 Case Study: Capture and Recovery of 10 Million BSM Speed Samples 

The first case study focuses on efficient capture and accurate recovery of 10 million 
real-world BSM speed samples with the CS approach. The recovery performance of other 
BSM variables is also evaluated in detail.  

3.1 Dataset Introduction 

In the SPMD program, BSMs are generated by each CV at 10 Hz (Bezzina and Sayer 2015). A 
BSM includes the device ID, timestamp, latitude, longitude, vehicle speed, vehicle heading, 
yaw rate, and radius of curve. In addition, a BSM includes a  “steady state confidence level”, 
which indicates the measurement accuracy; for example, a high confidence level value is 
commonly found on straight roadways when the CV is in a steady state (US Department of 
Transportation 2015). In total, we extracted 10 million BSM speed samples. To protect the 
privacy of the SPMD participants, Personally Identifiable Information (PII) is removed from 
our dataset. Our dataset consists of 16798 continuous trips, conforming the 10 Hz sampling 
rate.  The mean and standard deviation of the trip speeds are 38.5 MPH and 24.2 MPH, 
respectively. As an illustration, Figs. 1(a) and 1(b) show an example of a  -sparse signal   
with        which is a set of BSM speed samples, and the corresponding DCT coefficients 
 . In this example, 157 DCT coefficients are greater than 1 and the others are negligible, which 
roughly indicates the value of  .  
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Fig. 1. (a) the original 1000 BSM speed samples; (b) the 1000 DCT coefficients. 

3.2 Recovery Accuracy Evaluation Criterion 

When the full data is needed for an application such as travel time estimation, it can be 
recovered by solving Equation (6) to convert      to coefficients in DCT domain     . 
The IDCT is then performed on   to obtain the recovered data      . The recovery process 
can be easily implemented in parallel. The recovery accuracy is measured by calculating the 
root mean squared error (RMSE) normalized with respect to the   -norm of the entire data 
series (Razzaque and Dobson 2014): 
 

     
         

     
                                      (10) 

 
where    is the original 10 million speed samples and    is the recovered BSM speed data.  

3.3 Recovery Performance related to   and   

The key parameters of our approach are   and  , which determine the compression ratio 
and affect the recovery accuracy. Fig. 2(a) shows the RMSEs of the 10 million speed samples 
under different compression ratios.  
    When the compression ratio is 0.1, the RMSE of        is the lowest. As the compression 
ratio increases, the RMSEs become lower and close to each other for different values of  . 
When the compression ratio is greater than 0.2, the RMSEs are capped at 0.025. When the 
compression ratio reaches 0.6, all RMSEs are close to zero.   
 

(a) 

(b) 
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Fig. 2. (a) RMSE by compression ratio (    ; (b) Time per recovery by  

compression ratio (    . 
 
    The computational complexity of   -norm optimization in Equation (6) is           
(Baraniuk 2007). The average time per recovery is also calculated and shown in Fig. 2(b). All 
experiments are conducted in Windows 10, using i7-6820HK CPU and 64 GB RAM. 
    The time per recovery is close to zero for all compression ratios when       and 
     . When       and       , the curves of time per recovery have a big increase 
under larger compression ratios. In particular, the time is higher than 1.4 seconds per 
recovery when the compression ratio is equal to 0.6 and       .  
    Based on the above analysis of RMSEs and computational efficiency, we select      and 
      for this case study. The corresponding RMSE calculated using Equation (10) under 
these parameter values is about 0.05.  
    To illustrate the effect of our approach on CV data collection, a trip made by CV number 
“2300” is selected. The trip originally has 4967 speed samples. After applying the 
compression ratio 0.2 (M=40 and N=200), only 993 samples are retained. Fig. 3(a) shows 
locations of some original speed samples (marked in black) and Fig. 3(b) shows locations of 
the samples distilled using our approach (marked in red). Fig. 3(c) further shows the original 
4967 speed samples (black) and the corresponding recovered samples (red). The recovered 
data highly resemble the original data with only 0.02 RMSE. 
 

(a) 

(b) 
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Fig. 3. (a) Locations of original speed samples (black), (b) Locations of compressed speed 

samples from the CS approach (red), and (c) Original and recovered speed samples. 

3.4 Recovery Performance of Other BSM Variables 

We further explore the recovery performance of the CS approach for other BSM variables, 
e.g., various speed categories. The original 10 million speed samples are split into 8 categories 
by every 10 MPH and the corresponding RMSE and the number of samples in each category 
are calculated. Fig. 4(a) shows that most speed categories have more than 1 million samples 
except the “11-20” and “51-60” categories. The RMSE curve decreases substantially as speed 
category increases. This implies the CS approach performs better in high speed situations. 
Note that the actual traffic states of the original data are unknown. So, it may not be 
reasonable to apply speed category as a proxy for actual traffic states. 
    The recovery performance of the CS approach is evaluated in terms of driving conditions 
categorized by yaw rate. In total, there are 12 yaw rate categories from           at 60 
degrees interval. Fig. 4(b) shows the RMSEs and number of samples in each yaw rate 
category. A negative yaw rate implies that a CV is turning to the left while a positive value 
indicates it is turning to the right. Most yaw rates fall into [-60, 0) and [0, 60) categories. For 
other categories, only few thousand samples exist which are highly likely noisy data due to 
physical limitations. The RMSEs are close to zero for categories [-60, 0) and [0, 60) and become 
larger when yaw rate is higher. 

(a) (b) 

(c) 
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Fig. 4. (a) Recovery performance by speed category, (b) Recovery performance by yaw rate 
category, and (c) Recovery performance by steady state confidence level category. The blue 
and red curves represent RMSE and the number of samples in each category, respectively. 

 
    Furthermore, the correlation between the recovery accuracy using the CS approach and the 
BSM variable “steady state confidence level” is examined. The confidence level interval 
       is uniformly divided into 10 categories. Fig. 4(c) shows the RMSEs and number of 
samples for each steady state confidence level category. There are more samples in higher 
steady state confidence level categories: about 5 million speed samples have more than 80% 
confidence level. The RMSE curve decreases when the confidence level increases. This shows 
the quality of the CV data impacts the recovery performance. Data with higher measurement 
error cannot be recovered as accurately as that with minor measurement error. 

(a) 

(b) 

(c) 
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    In this case study, the proposed CS approach is evaluated using 10 million BSM speed data 
from the SPMD program. However, it is difficult to evaluate the impact of this approach on a 
certain application (such as travel time estimation) without ground truth traffic data. To do 
so, in the next case study, we build a traffic simulation model. 

4 Case Study: Impact of the CS Approach on Travel Time Estimation 

This case study evaluates the impact of the proposed CS approach on travel time estimation 
for a freeway segment through a traffic simulation model. Travel time estimation aims to 
provide the travel time from one point to another in a link for a certain time interval (Mori et 
al. 2015; Li et al. 2018). Accurate and reliable travel time estimation plays a critical role in 
active traffic management (Lin et al. 2014, 2016).  

4.1 Travel Time Estimation from Various Data Sources 

Using a simulation model, for each segment s and each time interval  , we can estimate travel 
times from three data sources: traditional loop detector data, CV data captured at a fixed rate, 

and CV data via the CS approach. For convenience, these travel times are referred to as     
   , 

    
    and     

    here after. As the trajectory data of each vehicle is also available, the ground 

truth travel times, denoted as     
   , can also be acquired. The computation of these quantities 

is as follows: 
 

   
   
 

  

   
                                       (11) 

 

where            or   , indicating the data sources,    is the length of segment  , and    
    

is the space mean speed over the segment  at time interval   based on data source  . 

    The space mean speed    
   is calculated in two ways in the literature. Double-loop detector 

is a key source to measure vehicle speed (Lin et al. 2015a). In this case,    
    is defined as the 

harmonic mean of the speeds of vehicles passing the loop detector at the end of segment   
during a time interval  , which is calculated as (Zhang 2006).  
 

   
   
 

    

 
 

    

    
   

                                      (12) 

 

where     ,      is the number of vehicles passing the loop detector at the end of segment   

at time interval  , and      is the speed of vehicle   passing the loop detector at the end of 

segment   at time interval  . 
    When the trajectory data from probe vehicles such as CVs is available, some studies define 
the space mean speed as the average of the mean speeds of all probe vehicles over segment   
at an instant of time   within a time interval   (Kianfar and Edara 2013; Mori et al. 2015): 
 

   
   
 

  
       
    
   
    

 
  
   

  
                                   (13) 

 

where               represents the data source for providing the data,    is the number of 

time steps in time interval  ,      is the number of probe vehicles at segment   at time step  , 

and        is the speed of probe vehicle   at segment   at time step  . 

4.2 Traffic Simulation Model Setup 

To evaluate the impact of the CS approach on travel time estimation, a simulation model is 
built for a five-mile two-lane freeway segment using SUMO (Krajzewicz et al. 2012). The 
layout of the freeway segment is shown in Fig. 5. 
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Fig. 5. Five-mile two-lane freeway segment. 

 
    The five-mile freeway segment consists of 10 small segments,    to    , of length 0.5 miles 
each.  One loop detector and one RSU are located at every 0.5 mile. The total simulation time 
is 3600 seconds, and the traffic demand is set at 2400 vehicles. The traditional, non-connected 
vehicles (blue) and CVs (green) are generated based on a predefined CV penetration rate. The 
simulation period is split into 12 time intervals of 300 seconds,         . The first 3 time 
intervals are considered as the warm-up period, and thus excluded from the analysis. In time 
intervals   ,    and   , we close the inner lanes of segments   and    to create congestion 
conditions. Additional assumptions are as follows: 
    1. CV On-board Units (OBUs) are assumed to have a limited capacity. According to Kianfar 
and Edara (2013), the OBU can store up to 30 snapshots including the vehicle speed, location, 
and the time stamp according to the SAE J2735 standard are stored. In this case study, we 
conduct analysis under different OBU snapshot capacities. 
    2. If the OBU capacity is reached before the CV passes a road-side unit (RSU), earlier 
recordings will be replaced by later snapshots, causing information loss (Chen et al. 2014).  
    3. When a CV passes a RSU, all recorded snapshots are transmitted to the RSU instantly. A 
RSU can communicate with multiple CVs at the same time (Chen et al. 2014). No 
transmission loss or delay are considered.  
    4. All loop detectors and RSUs used in the simulation model operate normally. The loop 
detectors can record accurate vehicle speeds.  
    5. After the CV data captured using our approach is transmitted to RSUs and uploaded to 
the transportation management center, the recovery operation is executed. Travel times are 
then estimated using the recovered CV data. 

4.3 Travel Time Estimation Accuracy Evaluation Criterion 

Using Equations (12)-(14), the overall Mean Absolute Percentage Errors (MAPE) of travel 
time estimation     ,      or      is calculated as follows: 
 

      

  
   

 
   
     

   
 

  
  
   

 
   

 
   

           
                             (14) 

 
where         or    indicates the three data sources for travel time estimation,      
because there are 10 small segments of length 0.5 miles each,      because the simulation 
time is split into 12 time intervals of 300 seconds each,   starts from 2 because vehicles enter 
the segment    with a speed of zero in SUMO, and   starts from 4 because the first 3 time 
intervals are considered as warm-up period.  

4.4 Sensitivity Analysis 

Various parameters in the simulation model can be adjusted: OBU Capacity, Compression 
Ratio, CV Data Capture Rate, CV MPR and Arrival Rate.  
    We first set the CV MPR at a fixed value 0.6 and define OBU capacity set as {50, 100, 150, 
200, 250, 300} snapshots, CV data capture rate set as {1, 10} Hz, and Compression Ratio set as 
{0.2, 0.5}. For the compression ratio 0.2,   and   are set as 40 and 200, and for the 
compression ratio 0.5,   and   are set to 100 and 200, respectively. Two Arrival Rate patterns 
are tested. One uses a fixed arrival rate 2400 vehicles/hour, and the other uses a varying 
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arrival rate: 1200 vehicles/hour for   -  , 2400 vehicles/hour for   -  , 4800 vehicles/hour for 
  -  , and 1200 vehicles/hour for    -    (the total demand is still 2400 vehicles). Fig. 6 shows 
the performances of     ,     , and      in different scenarios when the CV MPR is 60%. For 
each scenario, we run the simulation 5 times and compute the average       ,        and 
      .  
    First, in most scenarios,        and        are lower than       , except the few cases 
when the data capture rate is 10 Hz and the OBU capacity is set to either 50 or 100 snapshots 
as shown in Fig. 6(b). This is mainly because only limited road information can be stored in a 
CV at a high data capture rate using a small OBU capacity. One exception is that when CVs 
collect data via our approach with a compression ratio 0.2, although the OBU capacity is as 
small as 50, we observe a lower MAPE than     . 
    Second, as shown in all subplots of Fig. 6, the        and        curves decrease as OBU 
capacity increases. Using the same simulation setting,        is always lower than       . 
This is because our approach offers broader spatio-temporal coverage and can accurately 
recover the CV data. The simulation results verify that trading a little accuracy for broader 
spatial-temporal coverage is beneficial for travel time estimations using CV data. 
 

 
 

Fig. 6. Travel time estimation performance by OBU Capacity, Arrival Rate, Compression 
Ratio, and Data Capture Rate (CV MPR = 60%). 
 
    Third, by comparing Fig. 6(b) to Fig. 6(a), when the data capture rate changes from 10 Hz to 
1 Hz, the MAPE performances of      and      are improved. This indicates a higher CV 
data capture rate (e.g., 10 Hz) may not be necessary for travel time estimation when limited 
OBU capacity is available. The same observation can be made by comparing Figs. 6(d) and 
6(c).  
    Fourth, when the data capture rate is 1 Hz, comparing the       curves in Fig. 6(a) 
indicates that for all the OBU capacities except “300”, the one with the compression ratio 0.2 
performs better than the one with the compression ratio 0.5. Once again, this is due to the 
broader spatio-temporal coverage provided by the proposed CS approach. Similarly, in Fig. 
6(c) when the arrival rate varies, the      with a compression ratio 0.2 always performs better 
than the one with a compression ratio 0.5. This suggests that a smaller compression ratio does 
not require the CV to have a large OBU capacity to reach the same travel time estimation 
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accuracy. Therefore, the hardware costs of OBUs can be reduced using our technique.  
    Next, we fix the CV Data Capture Rate at 1 Hz and explore the impact of OBU Capacity, 
Arrival Rate, Compression Ratio, and CV MPR on travel time estimation. First, the decreasing 
pattern is not as dramatic as the increasing pattern of CV MPR, irrespective of the values of 
other quantities. Second,        is consistently lower than        in all scenarios, 
demonstrating the effectiveness of our approach. Third, in Figs. 7(a) and 7(c) when the OBU 
Capacity is 50,      with compression ratio 0.2 is more accurate than the value with 
compression ratio 0.5. By contrast, in Figs. 7(b) and 7(d) when the OBU capacity is 300, the 
two        curves are closer to each other. This indicates that a lower compression ratio 
would allow a CV with a small OBU Capacity to cover a larger road segment and for a longer 
period of time. Nevertheless, when the OBU Capacity is large enough, the effect of the 
compression ratio is not as prominent. 
 

 
 

Fig. 7. Travel time estimation performances by OBU Capacity, Arrival Rate, Compression 
Ratio, and CV MPR (CV Data Capture Rate = 1 Hz). 

 
In order to further analyze the performance of the proposed CS approach, we fix the CV 

Data Capture Rate, Compression Ratio, and OBU Capacity and test all combinations of 
Arrival Rate and CV MPR by running each scenario 5 times. Fig. 8(a) shows the means and 
standard deviations of        and        based on the parameter “CV Data Capture 
Rate-Compression Ratio-OBU Capacity”. The means of        and       decrease as the 
Data Capture Rate decreases from 10 Hz to 1 Hz, the Compression Ratio decreases from 0.5 to 
0.2, and the OBU Capacity increases from 50 to 300 snapshots. The mean of        is 
consistently lower than the mean of       . Except for the scenario of “10-0.5-50”, even the 
upper bound of        is lower than the lower bound of       . Fig. 8(b) further calculates 
the relative reduction by comparing the mean of        to the mean of       . The result 
shows that when Data Capture Rate is 10 Hz, the relative reduction is always lower than 
40%.Generally, the relative reduction is higher when the Data Capture Rate is 1 Hz; in 
particular, the relative reduction ranges from 43% to 65% when the “Data Capture 
Rate-Compression Ratio-OBU Capacity” changes from “1-0.2-50” to “1-0.2-300”.  
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Fig. 8.  (a) Mean and standard deviation of        and        by CV Data Capture 

Rate-Compression Ratio-OBU Capacity, and (b) Relative reduction of comparing means of 
       and        by CV Data Capture Rate-Compression Ratio-OBU Capacity. 

4.5 Impact of Lane Closing 

As stated earlier, to create congestion conditions, the inner lanes in    and    are closed 
during time intervals   ,   , and   , and reopened after these three intervals. Fig. 9 shows the 
map of the ground truth vehicle speed by segment and time interval from simulation results 
with constant arrival rates. Starting from time interval   , a shockwave is observed moving 
backwards from upstream segment    to   , where the traffic state changes from a free-flow 
state to a congested state.  

To evaluate the impact of the traffic state transition on travel time estimation, the        
and       are computed by segment and time interval when CV MPR = 60% and OBU 
capacity = 300. Fig. 10 illustrates that due to congestion, travel time estimation has the least 
accuracy on the upstream segments   -  from the 8th time interval. In both Figs. 10(a) and 
10(b), the highest MAPE occurs on Segment 3 in the 9th time interval. A comparison of Figs. 
10(a) and 10(b) shows that, in most cases, travel times      are more accurate than      on 
the upstream segments starting from the 8th time interval. This is because if a CV with 
limited OBU capacity is collecting data at a fixed rate and is stuck in a traffic jam, the OBU 
will be saturated with close to 0 speed readings. By comparison, the proposed CS approach 
offers broader spatio-temporal coverage, and hence provides more accurate results reflected 
by the lower MAPE. 
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Fig. 9. Map of ground truth vehicle speed by segment and time interval. 

 
 

 
Fig. 10. MAPEs by segment and time interval (CV MPR = 60%, OBU Capacity = 300, Data 

Capture Rate = 1 Hz). 
 

5 Conclusion and Future Research Directions 

As connected vehicles (CVs) become more widespread, huge amounts of data are being 
collected, stored, and transmitted. Hence, there exists the possibility of redundant 
information that overwhelms storage and communications, resulting in prohibitive costs. To 
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mitigate this critical issue, we propose a Compressive Sensing (CS) based approach for CV 
data collection and recovery. Our technique allows CVs to compress data in real-time, and 
can accurately and efficiently recover the original data. The propose approach is evaluated 
using two comprehensive case studies, which demonstrate its effectiveness and efficiency, 
and use in applications such as travel time estimation. 
    In the first case study, 10 million Basic Safety Message speed samples are extracted from 
the SPMD program. When the compression ratio is 0.2 (     and      ), the CS 
approach can efficiently recover the original speed data with RMSE as low as 0.05. The 
recovery performance of the approach is also evaluated for speed, yaw rate, and steady state 
confidence level. The results suggest that the approach performs better when the CV is 
driving with a high speed or a low yaw rate. The approach also performs better with a high 
steady state confidence level, which indicates that measurement error is small. 
    The second case study uses a five-mile two-lane freeway simulation model to evaluate the 
impact the approach on travel time estimation. Congestion is created by shutting down one 
lane in the middle of the freeway for certain periods of time. Multiple scenarios under 
various CV Market Penetration Rates, On-board Unit Capacities, Compression Ratios, 
Arrival Rates, and Data Capture Rates are simulated. In each scenario, the travel times are 
estimated from different sources: traditional loop detector data, CV data collected with a 
fixed rate, and CV data using our approach. The proposed CS approach consistently obtains 
the lowest MAPE when compared to the ground truth values. For certain scenarios, the 
relative MAPE reduction of applying the CS approach instead of conventional data collection 
methods can reach 43% to 65%. The study also shows that this approach offers broader 
spatio-temporal coverage when used with a small compression ratio. In addition, it can 
recover travel times accurately using a small OBU capacity and scales well when the OBU 
capacity increases. This implies that the OBU costs can be reduced using the CS approach. 
Also, it significantly improves the estimation accuracy in a congested environment. 
    There are several possible future research directions. First, the impact of our approach can 
be analyzed for other CV applications such as information propagation through real-time 
V2V communications. Second, the CS approach can be applied for multimodal data capture 
in autonomous vehicles which have multiple sensors such as cameras and LIDAR (Li et al. 
2019). Third, network simulator NS-3 can be incorporated to build more realistic simulation 
(Chao et al. 2019). A citywide traffic simulation model can also be built to evaluate the impact 
of the CS approach for large-scale traffic state estimation, in which case the optimal number 
and locations of road-side units (RSUs) will be explored as well. Fourth, the impact of factors 
such as transmission loss and delay on the CS approach can be examined. Finally, it would be 
interesting to derive a dynamic compression ratio       based on data quality and driving 
conditions (such as low steady state and speed). 
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