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Synchronization

Faith Ellen · Rati Gelashvili · Nir Shavit · Leqi Zhu

Abstract For many years, Herlihy’s elegant comput-
ability-based Consensus Hierarchy has been our best
explanation of the relative power of various objects.
Since real multiprocessors allow the different instruc-
tions they support to be applied to any memory loca-
tion, it makes sense to consider combining the instruc-
tions supported by different objects, rather than consid-
ering collections of different objects. Surprisingly, this
causes Herlihy’s computability-based hierarchy to col-
lapse.

In this paper, we suggest an alternative: a complexity-
based classification of the relative power of sets of multi-
processor synchronization instructions, captured by the
minimum number of memory locations of unbounded
size that are needed to solve obstruction-free consensus
when using different sets of instructions.

1 Introduction

An object is defined by a domain of values, together with
a set of instructions that can be performed on these
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values. Herlihy’s Consensus Hierarchy [Her91] assigns a
consensus number to each object, namely, the number
of processes for which there is a wait-free binary con-
sensus algorithm using only instances of this object and
read-write registers. It is simple, elegant and, for many
years, has been our best explanation of synchronization
power.

Robustness says that, using any collection of ob-
jects with consensus numbers at most k, it is not pos-
sible to solve wait-free consensus for more than k pro-
cesses [Jay93]. The implication is that modern machines
need to provide objects with infinite consensus number.
Otherwise, they will not be universal, that is, they can-
not be used to implement all objects or solve all tasks
in a wait-free (or non-blocking) manner for any number
of processes [Her91,Tau06,Ray12,HS12]. The Consen-
sus Hierarchy is known to be robust when restricted to
deterministic one-shot objects [HR00] or deterministic
read-modify-write and readable objects [Rup00]. There
are ingenious non-deterministic constructions that prove
it is not robust [Sch97,LH00]. However, it is unknown
whether the Consensus Hierarchy is robust for all de-
terministic objects.

Since real multiprocessors allow the instructions they
support to be applied to arbitrary memory locations, it
makes sense to combine the instructions supported by
different objects, rather than just having a collection
of different objects. For example, consider two simple
instructions that can be performed on natural numbers:

– fetch-and-add(2), which returns the number stored
in a memory location and increases its value by 2,
and

– test-and-set(), which returns the number stored in
a memory location and sets it to 1 if it contained 0.
(This definition of test-and-set generalizes the do-
main of the standard definition from {0, 1} to N.)
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Objects that support only one of these instructions have
consensus number 2 [Her91]. Moreover, by robustness,
using both these deterministic read-modify-write ob-
jects, it is still not possible to solve wait-free consensus
for 3 or more processes. However, with one memory
location that supports both instructions, it is possi-
ble to solve wait-free binary consensus for any number
of processes: The memory location is initialized to 0.
Processes with input 0 perform fetch-and-add(2), while
processes with input 1 perform test-and-set(). If the
value returned is odd, the process decides 1. If the value
0 was returned from test-and-set(), the process also de-
cides 1. Otherwise, the process decides 0.

Another example considers three instructions de-
fined on the set of integers:

– read(), which returns the number stored in a mem-
ory location,

– decrement(), which decrements the number stored
in a memory location and returns nothing, and

– multiply(x), which multiplies the number stored in
a memory location by x and returns nothing.

A similar situation arises: Objects that support only
decrement() and read() or only multiply(x) and read()
have consensus number 1 and, together, they still can-
not be used to solve wait-free consensus for 2 or more
processes. Again, using a memory location that sup-
ports all three instructions, it is possible to solve wait-
free binary consensus for any number of processes: The
memory location is initialized to 1. Processes with in-
put 0 perform decrement(), while processes with input
1 perform multiply(n). The second operation by each
process is read(). If the value returned is positive, then
the process decides 1. Otherwise, the process decides 0.

Randomized wait-free binary consensus among any
number of processes can be solved using only read-write
registers, which support only read() and write(x) and
have consensus number 1. Thus Herlihy’s Consensus Hi-
erarchy collapses for randomized computation.

Historyless objects support only trivial operations,
such as read(), which never change the value of an ob-
ject, and historyless operations, such as write(x), swap(x),
and test-and-set(), which always change an object to
a predetermined value. They have consensus number
at most 2. Ellen, Herlihy, and Shavit [FHS98] proved
that Ω(

√
n) instances of historyless objects are neces-

sary to solve randomized wait-free consensus among n
processes. They noted that, in contrast, only one in-
stance of an object supporting read(), increment(), and
decrement() (which has consensus number 1), one in-
stance of an object supporting fetch-and-add(x) (which
has consensus number 2), or one instance of an ob-
ject supporting compare-and-swap(x, y) (which has in-

finite consensus number) suffices for solving this prob-
lem. Their lower bound implies that, in a system of
n processes, Ω(

√
n) instances of historyless objects are

needed for a randomized wait-free implementation of an
object that supports compare-and-swap(x, y) or an ob-
ject that supports fetch-and-add(x). Jayanti, Tan, and
Toueg [JTT96] improved this result by showing that at
least n− 1 instances of historyless objects or resettable
consensus objects are needed.

Ellen, Herlihy, and Shavit [FHS98] suggested that
another way to classify the power of an object is by
the number of instances of the object needed to solve
randomized wait-free consensus among n processes. In-
stead, in this paper, we decided to consider a classi-
fication of objects based on the number of instances
of that object needed to solve obstruction-free consen-
sus among n processes, i.e. there exists a deterministic
algorithm such that, from every reachable configura-
tion C, each process will decide if it is given sufficiently
many consecutive steps. Obstruction-freedom is a nat-
ural progress condition and is the guarantee provided
by some hardware transactions [Int12].

Although obstruction-freedom is a simpler property
than randomized wait-freedom, they are closely related.
In fact, any (deterministic) obstruction-free algorithm
can be transformed into a randomized wait-free algo-
rithm that uses the same number of memory locations
(against an oblivious adversary) [GHHW13]. Obstruction-
free algorithms can also be transformed into wait-free
algorithms in the unknown-bound semi-synchronous model
[FLMS05].

The lower bound by Ellen, Herlihy, and Shavit [FHS98]
was actually proved for consensus algorithms that sat-
isfy nondeterministic solo-termination, which is a less
restrictive property than either randomized wait-freedom
or obstruction freedom. Hence, it implies the same lower
bound for obstruction-free and randomized wait-free
algorithms. Nondeterministic solo-termination requires
that, for every process p and every reachable configu-
ration C, there exists a solo execution by p from C in
which p decides.

In a recent paper [EGZ18], Ellen, Gelashvili and
Zhu proved that if there is a nondeterministic solo-
terminating algorithm for a task using m read-write
registers, then there is an obstruction-free algorithm for
that task using the same number of read-write registers.
Thus, any lower bound on the number of read-write
registers used by obstruction-free consensus algorithms
is a lower bound on the number of read-write registers
used by nondeterministic solo-terminating consensus al-
gorithms and, hence, randomized wait-free consensus
algorithms. In the full version of that paper, the proof
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is extended to algorithms using any deterministic read-
able objects.

Since multiprocessors always provide read and write,
objects supporting at least these operations are most in-
teresting to study. Note that fetch-and-add(0), fetch-and-
multipy(1), and compare-and-swap(x, x), for any value
of x, all provide the same functionality as read . How-
ever, to understand the classification better, we also
classify some objects that do not support write.

Many well-known operations, for example read , write,
fetch-and-add , and compare-and-swap, have infinite do-
mains. Although it is reasonable to consider objects
whose domain sizes are constant or a function of the
number of processes, we have chosen to restrict atten-
tion to objects with a countably infinite domain. By
encoding the values in the domain as nonnegative in-
tegers, one could assume that the domain is N. The
lower bounds proved for these objects also apply to ob-
jects supporting the same set of instructions, but with
smaller domains. In some cases, the upper bounds hold
for smaller domains. When these upper bounds match
the lower bounds, this shows that, for these sets of in-
structions, domain size is not important. In any case, we
believe it is important to understand the relative power
of sets of instructions separately from their power when
the information they can convey is limited by the do-
main size.

1.1 Our Results

We use n-consensus to denote the problem of solving
obstruction-free n-valued consensus among n ≥ 2 pro-
cesses. Let SP(I, n) denote the minimum number of
instances of an object with a countably infinite domain
and that supports the instruction set I for which it is
possible to solve n-consensus. This is a function from
the set of integers 2 and larger to the set consisting
of the positive integers and ∞. Equivalently, SP(I, n)
is the minimum number of memory locations of un-
bounded size that are needed to solve n-consensus us-
ing only the instructions in I. For various sets of in-
structions, I, we provide lower and upper bounds on
SP(I, n). The results are summarized in Table 1.

We begin, in Section 2, by defining our model. In Sec-
tion 3, we consider the instructions

– multiply(x), which multiplies the natural number
stored in a memory location by the natural num-
ber x and returns nothing,

– add(x), which adds the natural number x to the
natural number stored in a memory location and
returns nothing, and

– set-bit(x), which sets bit x of a memory location to
1 and returns nothing.

We show that using read() and one of these instruc-
tions, it is possible to solve n-consensus with a single
memory location. The idea is to show that these in-
struction sets can implement n counters in the memory
location. We can then use a racing counters algorithm
that is similar to a consensus algorithm by Aspnes and
Herlihy [AH90].

Next, we consider a max-register [AAC09]. This is
a memory location that is initially 0 and supports the
instructions

– read-max (), which reads the natural number stored
in the memory location, and

– write-max (x), which stores the positive integer x in
the memory location, provided it contains a value
less than x, and returns nothing.

In other words, read-max () returns the largest x ∈
Z+ such that write-max (x) has been performed on the
memory location. It returns 0 if no write-max instruc-
tion has been performed on the memory location. We
prove that two max-registers are necessary and suffi-
cient for solving n-consensus in Section 4.

In Section 5, we prove that using read(), write(x),
and fetch-and-increment() and only one memory loca-
tion, it is not possible to solve n-consensus, for n ≥ 3.
We also present an algorithm for solving n-consensus
using these instructions andO(log n) memory locations.

An `−buffer is a memory location that supports
buffered read and buffered write instructions, with a
buffer of length ` ≥ 1. Specifically, an `-buffer-read
instruction returns the sequence of inputs, x, to the
` most recent `-buffer-write(x) instructions applied to
the memory location, in order from least recent to most
recent. If the number of `-buffer-write instructions pre-
viously applied to the memory location is `′ < `, then
the first ` − `′ elements of this sequence are ⊥. A 1-
buffer is simply a read-write register. Independently
and concurrently with our work, Perrin, Mostefaoui,
and Jard [Per16,PMJ16] defined the same object, but
called it a window stream of size `. Perrin [Per16] proved
that it has consensus number `.

A history object supports two operations, get-history()
and append(x), where get-history() returns the sequence
of all values appended to it by prior append opera-
tions, in order. It has infinite consensus number [Dav04,
DBF05]. A history object is the same as an `−buffer
with ` =∞.

We consider `-buffers in Section 6. We show how
to solve n-consensus using dn

` e many `-buffers. We also
extend Zhu’s n − 1 lower bound [Zhu16] to prove that
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Set of Instructions I lower bound on SP(I, n) upper bound on SP(I, n)
{read(), test-and-set()}, {read(),write(1)} ∞ ∞

{read(),write(1),write(0)} n O(n logn)
{read(),write(x)} n n

{read(), test-and-set(), reset()} Ω(
√
n) O(n logn)

{read(), swap(x)} Ω(
√
n) n− 1

{`-buffer-read(), `-buffer-write(x)} d(n− 1)/`e dn/`e
{read(),write(x), increment()} 2 O(logn)

{read(),write(x), fetch-and-increment()}
{read-max(),write-max(x)} 2 2

{compare-and-swap(x, y)} {read(), set-bit(x)} 1 1
{read(), add(x)}, {read(),multiply(x)}

{fetch-and-add(x)}, {fetch-and-multiply(x)}
Table 1 Classification of Objects with a Countably Infinite Domain Supporting Different Sets of Instructions.

dn−1
` emany `-buffers are necessary to solve n-consensus.

This is tight, except when n− 1 is divisible by `.

In Section 7, we consider `-buffers extended to sup-
port atomic multiple assignment. This means that a
process can atomically perform one `-buffer-write to
any number of different `-buffers, instead of just one.
Multiple assignment to read-write registers plays an im-
portant role in the Consensus Hierarchy [Her91]: using
multiple assignment to m ≥ 2 read-write registers, it is
possible to solve wait-free consensus for 2m − 2 pro-
cesses, but not for 2m − 1 processes. We show that
at least dn−1

2` e different `-buffers are needed to solve
n-consensus, even in the presence of atomic multiple
assignment. Multiple assignment can be implemented
by simple transactions, so our result implies that such
transactions cannot significantly reduce the number of
read-write registers or `-buffers needed. This result is
the most technical contribution of the paper. The proof
further extends the techniques of [Zhu16] via a combi-
natorial argument, which is of independent interest.

There are algorithms that solve n-consensus using n
read-write registers [AH90,BRS15,Zhu15]. This is tight
by the recent result of [EGZ18], which shows a lower
bound of n read-write registers for obstruction-free bi-
nary consensus among n processes and, hence, for n-
consensus. In Section 8, we present an algorithm for
n-consensus using n − 1 memory locations supporting
{read(), swap(x)}. This is a modification of one of the
known anonymous algorithms for n-consensus [Zhu15].
A lower bound of Ω(

√
n) locations appears in [FHS98].

That lower bound also applies to memory locations that
only support read(), test-and-set() and reset() instruc-
tions.

Finally, in Section 9, we show that an unbounded
number of memory locations supporting read() and ei-
ther write(1 ) or test-and-set() are necessary and suffi-
cient to solve n-consensus, for n ≥ 3. Furthermore, we
show how to reduce the number of memory locations to
O(n log n) when, in addition to read(), either write(0)

and write(1) are both available, or test-and-set() and
reset() are both available.

2 Preliminaries

We consider an asynchronous system of n ≥ 2 pro-
cesses, with distinct identifiers 0, 1 . . . , n− 1, that com-
municate through a collection of identical memory loca-
tions, each supporting the same set, I, of deterministic
instructions.

The processes take steps at arbitrary, possibly chang-
ing, speeds and may crash at any time. Scheduling is
controlled by an adversary. When allocated a step by
the scheduler, a process atomically performs one in-
struction on one shared memory location and, based
on the result, may then perform an arbitrary amount
of local computation. This is a standard asynchronous
shared memory model [AW04], with the restriction that
all memory locations are instances of the same object.

A configuration consists of the state of every process
and the contents of every memory location. An execu-
tion from a configuration C consists of an alternating
sequence of steps and configurations beginning with C.
A P -only execution is an execution in which only pro-
cesses in P take steps. A solo execution is an execution
in which only one process takes steps.

We consider the problem of solving obstruction-free
m-valued consensus in such a system. Initially, each
of the n processes has an input from {0, 1, . . . ,m − 1}
and is supposed to output a value (called a decision),
such that all decisions are the same (agreement) and
equal to the input of one of the processes (validity).
Once a process has decided (i.e. output its decision),
the scheduler does not allocate it any further steps.
A solo-terminating execution is a finite solo execution
that ends when the process has decided. Obstruction-
freedom means that, from each reachable configuration
and for each process, there is a solo-terminating exe-
cution from that configuration by that process, i.e. if
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the adversarial scheduler gives the process sufficiently
many consecutive steps, then the process will eventu-
ally decide a value. When m = n, we call this problem
n-consensus and, when m = 2, we call this problem
binary consensus. Note that lower bounds for binary
consensus also apply to n-consensus.

In every reachable configuration of a consensus al-
gorithm, each process has either decided or has one spe-
cific instruction it will perform on a particular memory
location when next allocated a step by the scheduler.
In this latter case, we say that the process is poised to
perform that instruction on that memory location in
the configuration.

Consider any binary consensus algorithm. We say
that a set of processes P can decide v ∈ {0, 1} from
configuration C if there exists a P-only execution from
C in which v is decided. If P can decide both 0 and 1
from C, then P is bivalent from C. When the objects
and algorithms are deterministic, from each configura-
tion, a process only has one solo-terminating execution
and, hence, can only decide one value.

The following two results are important components
of a number of our lower bounds. They do not depend
on what instructions are supported by the memory.

Lemma 1. There is an initial configuration from which
the set of all processes in the system is bivalent.

Proof. Consider an initial configuration, I, with two
processes p0 and p1, such that pv starts with input v,
for v ∈ {0, 1}. Observe that {pv} can decide v from
I since, initially, I is indistinguishable to pv from the
configuration where every process starts with input v.
Thus, {p0, p1} is bivalent from I and, therefore, so is
the set of all processes.

Next, we show that, if a set of processes is bivalent
in some configuration, then it is possible to reach a
configuration from which 0 and 1 can be decided in
solo executions.

Lemma 2. Suppose U is a set of at least two processes
that is bivalent from configuration C. Then it is possible
to reach, via a U-only execution from C, a configura-
tion, C ′, such that, for all v ∈ {0, 1}, there is a process
qv ∈ U that decides v in its solo-terminating execution
from C ′.

Proof. Suppose, for a contradiction, that for every con-
figuration C ′ reachable via a U-only execution from
C, every process in U decides the same value in its
solo-terminating execution from C ′. In particular, ev-
ery process in U decides the same value, v, in its solo-
terminating execution from C. Since U is bivalent from
C, there is a U-only execution α from C in which v̄ is

decided. Consider the longest prefix α′ of α such that
some (and, hence, by assumption, every) process in U
decides v in its solo-terminating execution from Cα′.
Notice that α′ 6= α since v̄ is decided in α. Let δ be
the next step after α′ in α. Since α is a U-only exe-
cution, δ is by some process p ∈ U . By definition of
α′, every process in U decides v̄ in its solo-terminating
execution from Cα′δ. However, since p decides v in its
solo-terminating execution from Cα′, it decides v in its
solo-terminating execution from Cα′δ. This is a contra-
diction.

3 Arithmetic Instructions

Consider a system that supports only read() and either
add(x), multiply(x), or set-bit(x). We show how to solve
n-consensus using a single memory location in such a
system. The idea is to show that we can simulate certain
collections of objects that can solve n-consensus.

An m-component unbounded counter is a memory
location that has m components, each containing a non-
negative integer value. It supports increment(v), which
increments the count stored in component v by 1, and
scan(), which returns the counts of all m components.
In the next lemma, we present a racing counters algo-
rithm.

Lemma 3. It is possible to solve obstruction-free m-
valued consensus among n processes using an m-com-
ponent unbounded counter.

Proof. The components are indexed by the m possi-
ble input values. All components initially have value 0.
Each process alternates between incrementing one com-
ponent and performing a scan of all m components. A
process first increments the component indexed by its
input value. After performing a scan, if it observes that
the count stored in component v is at least n larger
than the counts stored in all other components, it re-
turns the value v. Otherwise, it increments one of the
components containing the largest count (breaking ties
arbitrarily).

If some process returns the value v, then each other
process will increment some component at most once
before next performing a scan. In each of those scans,
the count stored in component v will still be larger than
the counts stored in all other components. From then
on, these processes will keep incrementing component
v. Eventually, the count in component v will be at least
n larger than the counts in all other components, and
these processes will return v, ensuring agreement.

Obstruction-freedom follows because a process run-
ning on its own will continue to increment the same
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component, which will eventually be n larger than the
counts in all other components.

In this algorithm, the counts stored in the com-
ponents may grow arbitrarily large. The next lemma
shows that it is possible to avoid this problem, pro-
vided the memory location also supports decrement(v),
which decrements the count stored in component v by 1.
More formally, an m-component b-bounded counter ob-
ject has m components, where each component stores
a count in {0, 1, . . . , b}. It supports increment(v) and
decrement(v), for each component v, along with a scan()
operation, which returns the count stored in every com-
ponent. If a process ever attempts to increment a com-
ponent that has count b or decrement a component that
has count 0, the object breaks (and every subsequent
instruction a returns ⊥).

Lemma 4. It is possible to solve obstruction-free m-
valued consensus among n processes using an m-com-
ponent (3n− 1)-bounded counter.

Proof. The construction in the proof of Lemma 3 is
modified slightly by sometimes changing what a process
does when it wants to increment component v: If some
other component has count at least n, it decrements one
component (excluding v) that stores the largest count,
instead of incrementing component v. If all other com-
ponents have count less than n, it still increments com-
ponent v.

A component with count 0 is never decremented.
This is because, after the last time some process ob-
served that it had count at least n, each process will
decrement the component at most once before perform-
ing a scan(). Similarly, no component ever becomes
larger than 3n − 1: After the last time some process
observed that some component v had count less than
2n, each process will increment component v at most
once before performing a scan(). If the count in com-
ponent v is at least 2n, then either the counts in all
other components are less than n, in which case the
process decides without incrementing component v or
the process decrements some other component, instead
of incrementing component v.

In the following theorem, we show how to simulate
unbounded and bounded counters.

Theorem 5. It is possible to solve n-consensus using
a single memory location that supports only read() and
either multiply(x), add(x), or set-bit(x).

Proof. We first give an obstruction-free implementa-
tion of an n-component unbounded counter using a sin-
gle memory location of unbounded size that supports
read() and multiply(x). By Lemma 3, this is sufficient

for solving n-consensus. The location is initialized with
value 1. For each v ∈ {0, . . . , n − 1}, let pv be the
(v + 1)’st prime number. A process increments compo-
nent v by performing multiply(pv). A read() instruction
returns the value y currently stored in the memory loca-
tion. This provides a scan of all components: the value
of component v is the exponent of pv in the prime de-
composition of y.

A similar construction does not work using only
read() and add(x) instructions. For example, suppose
one component is incremented by calling add(a) and
another component is incremented by calling add(a′).
Then incrementing the first component a′ times or in-
crementing the second component a times results in the
memory location having the same value, a · a′.

However, we can use a single memory location that
stores an O(n log n) bit natural number and supports
{read(), add(x)} to implement an n-component (3n −
1)-bounded counter. By Lemma 4, this is sufficient for
solving consensus. We view the value stored in the lo-
cation as a number written in base 3n and interpret the
i’th least significant digit of this number as the count
of component i− 1. The location is initialized with the
value 0. To increment and decrement component i, a
process performs add((3n)i) and add(−(3n)i), respec-
tively. From the result of a read(), a process can obtain
a scan of all n components.

Finally, in systems supporting read() and set-bit(x),
we can implement an n-component unbounded counter
by viewing the memory location as being partitioned
into a countably infinite number of blocks, each con-
sisting of n2 bits. The (in + v)’th bit of its b’th block
is 1 if and only if process i has incremented component
v at least b times. Initially all bits are 0. Each process
locally stores the number of times it has incremented
each component. To increment component v, process i
sets the (in+v)’th bit in block b+1 to 1, where b is the
number of times it has previously incremented compo-
nent v. It is possible to determine the count stored in
each component via a single read(): The count stored in
component v is simply the sum of the number of times
each process has incremented component v, which is the
number of 1’s in bit positions congruent to v modulo
n.

4 Max-Registers

We show that two max-registers are necessary and suf-
ficient for solving n-consensus.

Theorem 6. It is not possible to solve obstruction-free
binary consensus for n ≥ 2 processes using a single
max-register.
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Proof. Suppose there is an obstruction-free algorithm
solving binary consensus using one max-register. Let C
be an initial configuration where a process p has in-
put 0 and another process q has input 1. Consider a
solo-terminating execution α of p from C and a solo-
terminating execution β of q from C. We show how to
interleave these two executions so that the resulting ex-
ecution is indistinguishable to both processes from their
respective solo executions. Hence, both values will be
returned, contradicting agreement.

To build the interleaved execution, run both pro-
cesses until they are first poised to perform write-max .
Suppose p is poised to perform write-max (a) and q is
poised to perform write-max (b). If a ≤ b, let p take
steps until it is next poised to perform write-max (a′),
with a′ > b, or until the end of α, if it performs no
such write-max operations. Otherwise, let q take steps
until it is next poised to perform write-max (b′), with
b′ > a, or until the end of β. Repeat this until one of
the processes reaches the end of its execution and then
let the other process finish.

Theorem 7. It is possible to solve n-consensus for any
number of processes using only two max-registers.

Proof. We describe an algorithm for n-consensus us-
ing two max-registers, m1 and m2. Consider the lexico-
graphic ordering ≺ on the set S = N × {0, . . . , n − 1}.
Let y be a fixed prime that is larger than n. Note that,
for (r, x), (r′, x′) ∈ S, (r, x) ≺ (r′, x′) if and only if
(x+ 1)yr < (x′ + 1)yr′ . Thus, by identifying (r, x) ∈ S
with (x + 1)yr, we may assume that m1 and m2 are
max-registers defined on S with respect to the lexico-
graphic ordering ≺.

Since no operations decrease the value in a max-
register, it is possible to implement an obstruction-free
scan operation on m1 and m2 using the double col-
lect algorithm [AAD+93]: A process repeatedly collects
the values in both locations (performing read-max () on
each location to obtain its value) until it observes two
consecutive collects with the same values.

Initially, both m1 and m2 have value (0, 0). Each
process alternately performs write-max on one com-
ponent and takes a scan of both components. It be-
gins by performing write-max (0, x′) to m1, where x′ ∈
{0, . . . , n−1} is its input value. If m1 has value (r+1, x)
and m2 has value (r, x) in the scan, then it decides x
and terminates. If both m1 and m2 have value (r, x) in
the scan, then it performs write-max (r + 1, x) to m1.
Otherwise, it performs write-max to m2 with the value
of m1 in the scan.

To obtain a contradiction, suppose that there is
an execution in which some process p decides value

x and another process q decides value x′ 6= x. Imme-
diately before its decision, p performed a scan where
m1 had value (r + 1, x) and m2 had value (r, x), for
some r ≥ 0. Similarly, immediately before its decision,
q performed a scan where m1 had value (r′+ 1, x′) and
m2 had value (r′, x′), for some r′ ≥ 0. Without loss
of generality, we may assume that q’s scan occurs af-
ter p’s scan. In particular, m2 had value (r, x) before it
had value (r′, x′). So, from the specification of a max-
register, (r, x) � (r′, x′). Since x′ 6= x, it follows that
(r, x) ≺ (r′, x′).

We show inductively, for j = r′, . . . , 0, that some
process performed a scan in which both m1 and m2

had value (j, x′). By assumption, q performed a scan
where m1 had value (r′ + 1, x′). So, some process per-
formed write-max (r′ + 1, x′) on m1. From the algo-
rithm, this process performed a scan where m1 and m2

both had value (r′, x′). Now suppose that 0 < j ≤ r′

and some process performed a scan in which both m1

and m2 had value (j, x′). So, some process performed
write-max (j, x′) on m1. From the algorithm, this pro-
cess performed a scan where m1 and m2 both had value
(j − 1, x′).

Consider the smallest value of j such that (r, x) ≺
(j, x′). Note that (r, x) ≺ (r′, x), so j ≤ r′. Hence, some
process performed a scan in which both m1 and m2 had
value (j, x′). Since (r, x) ≺ (j, x′), this scan occurred
after the scan by p, in which m2 had value (r, x). But
m1 had value (j, x′) in this scan and m1 had value
(r+1, x) in p’s scan, so (r+1, x) � (j, x′). Since x 6= x′,
it follows that (r + 1, x) ≺ (j, x′). Hence j ≥ 1 and
(r, x) ≺ (j − 1, x′). This contradicts the choice of j.
Thus, the algorithm satisfies agreement.

Suppose some process decides value x. Then it per-
formed a scan where m1 had value (r + 1, x) and m2

had value (r, x) for some r ≥ 0. Consider the smallest r′

such that some process performed write-max (r′, x) to
m1. If r′ > 0, then both m1 and m2 had value (r′−1, x)
in its preceding scan. But this means that some process
performed write-max (r′−1, x) to m1, contradicting the
definition of r′. Thus, r′ = 0. Since a process only per-
forms write-max (0, x) to m1 if it has input x, the algo-
rithm satisfies validity.

Suppose m1 had value (r, x) and m2 had value in
the first scan of a solo execution by some process. If
r = r′ + 1 and x = x′, then the process terminates im-
mediately. If r = r′ and x = x′, then it performs write-
max (r + 1, x) to m1 and terminates immediately after
its next scan. Otherwise, the process performs write-
max (r, x) to m2 and terminates after two more scans.
Thus, each process terminates after performing scan at
most 3 times in a solo execution. Hence, the algorithm
is obstruction-free.
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5 Increment

Consider a system that supports only read(), write(x),
and fetch-and-increment(). We prove that it is not pos-
sible to solve binary consensus and, hence, n-consensus
using a single memory location. We also consider a
weaker system that supports only read(), write(x), and
increment() and provide an algorithm for n-consensus
using O(log n) memory locations.

Theorem 8. It is not possible to solve obstruction-free
binary consensus for n ≥ 2 processes using a single
memory location that supports only read(), write(x),
and fetch-and-increment().

Proof. Suppose there is a binary consensus algorithm
for two processes, p and q, using only one memory loca-
tion. Let α be a solo-terminating execution by p starting
from any initial configuration in which p has input 0 and
let α′ be the longest prefix of α that does not contain a
write. Similarly, let β be a solo-terminating execution
by p starting from any initial configuration in which p
has input 1 and let β′ be the longest prefix of β that
does not contain a write. Without loss of generality,
suppose that at least as many fetch-and-increment()
instructions are performed in β′ as in α′. Let C be the
configuration that results from executing α′ starting
from the initial configuration in which p has input 0
and the other process, q has input 1.

Consider the shortest prefix β′′ of β′ in which p

performs the same number of fetch-and-increment() in-
structions as it performs in α′. Let C ′ be the configu-
ration that results from executing β′′ starting from the
initial configuration in which both p and q have input 1.
Then q must decide 1 in its solo-terminating execution
γ starting from configuration C ′. However, C and C ′

are indistinguishable to process q, so it must decide 1
in γ starting from configuration C. If p has decided in
configuration C, then it has decided 0, since q takes no
steps in α′. Then both 0 and 1 are decided in execution
α′γ starting from the initial configuration in which p
has input 0 and q has input 1. This violates agreement.
Thus, p cannot have decided in configuration C.

Therefore, p is poised to perform a write in config-
uration C. Let α′′ be the remainder of α, so α = α′α′′.
Since there is only one memory location, the configura-
tions resulting from performing this write starting from
C and Cγ are indistinguishable to p. Thus, p also de-
cides 0 starting from Cγ. But in this execution, both 0
and 1 are decided, violating agreement.

The following well-known construction converts any
algorithm for solving binary consensus to an algorithm
for solving n-consensus [HS12].

Lemma 9. Consider a system that supports a set of in-
structions that includes read() and write(x). If it is pos-
sible to solve obstruction-free binary consensus among n
processes using only c memory locations, then it is pos-
sible to solve n-consensus using only (c+2) ·dlog2 ne−2
locations.

Proof. The processes agree bit-by-bit in dlog2 ne asyn-
chronous rounds, each using c+ 2 locations. A process
starts in the first round with its input value as its value
for round 1. In round i, if the i’th bit of its value is 0, a
process p writes its value in a designated location asso-
ciated with bit 0 for the round. Otherwise, it writes its
value in a designated location associated with bit 1 for
round i. Next, it performs the obstruction-free binary
consensus algorithm using c locations to agree on the
i’th bit, vi, of the output. If the i’th bit of p’s value
differs from the decided bit, vi, then some other pro-
cess proposed vi. Before doing so, that other process
wrote its value to the designated location associated
with bit vi for round i. Then process p can read a value
from this designated location and adopt it for the next
round. This ensures that the values used for round i+1
are all input values and they all agree in their first i
bits. By the end, all processes have agreed on dlog2 ne
bits, i.e. on one of the at most n different input values.

We can save two locations because the last round
does not require designated locations associated with 0
and 1.

We can implement a 2-component unbounded counter,
defined in Section 3, using two locations that support
read() and increment(). The values in the two locations
never decrease. Therefore, as in the proof of Theorem 7,
an obstruction-free scan() operation that returns the
values of both counters can be performed using the
double collect algorithm [AAD+93]. By Lemma 3, n
processes can solve obstruction-free binary consensus
using a 2-component unbounded counter. The next re-
sult then follows from Lemma 9.

Theorem 10. It is possible to solve n-consensus us-
ing O(log n) memory locations that support only read(),
write(x), and increment().

6 Buffers

First, we show that a single `-buffer can be used to sim-
ulate a history object that can be updated by at most `
processes. This will allow us to simulate an obstruction-
free variant of Aspnes and Herlihy’s algorithm for n-
consensus [AH90] and, hence, solve n-consensus, using
only dn/`e `-buffers. Then we prove that d(n − 1)/`e
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`-buffers are necessary. This matches the upper bound
whenever n− 1 is not a multiple of `.

6.1 Simulations Using Buffers

We begin by showing how to simulate a history object
that supports arbitrarily many readers and at most `
different appenders, using a single `-buffer. When ` = 1,
this is straightforward, since a history object that sup-
ports only 1 appender can be simulated using a single-
writer register to which the appender writes the se-
quence of all values it has previously appended together
with the new value it wants to append.

Lemma 11. For ` ≥ 2, a single `-buffer can simulate
a history object on which at most ` different processes
can perform append(x) and any number of processes
can perform get-history().

Proof. Without loss of generality, assume that no value
is appended to the history object H more than once.
This can be achieved by having a process include its
process identifier and a sequence number along with
the value that it wants to append.

In our implementation, the `-buffer B is initially ⊥.
Each value written to B is of the form (h, x), where h
is an arbitrarily long finite history of appended values
and x is a single appended value.

To implement append(x) on H, a process obtains a
history, h, by performing get-history() on H and then
performs `-buffer-write(h, x) on B. The operation is lin-
earized at this `-buffer-write step.

To implement get-history() on H, a process sim-
ply performs an `-buffer-read of B to obtain a vector
(a1, . . . , a`), where a` is the most recently written value.
The operation is linearized at this `-buffer-read . We de-
scribe how the return value of the get-history() opera-
tion is computed.

We prove that each get-history() operation, G, on
H returns the sequence of inputs to all append opera-
tions on H that were linearized before it, in order from
least recent to most recent. Let R be the `-buffer-read
step performed by G and let (a1, . . . , a`) be the vector
returned by R.

Note that (a1, . . . , a`) = (⊥, . . . ,⊥) if and only if
no `-buffer-write steps were performed before R i.e. if
and only if no append operations are linearized before
G. In this case, the empty sequence is returned by the
get-history() operation, as required.

Now suppose that k ≥ 1 `-buffer-write steps were
performed on B before R, i.e. k append operations were
linearized before G. Inductively assume that each get-
history() operation which has fewer than k append op-

erations linearized before it returns the sequence of in-
puts to those append operations.

If ai 6= ⊥, then ai = (hi, xi) was the input to an
`-buffer-write step Wi on B performed before R. This
step was performed during an append(xi) operation,
Ai, whose get-history() operation, Gi, returned the his-
tory hi of appended values. Let Ri be the `-buffer-read
step performed by Gi. Since Ri occurred before Wi,
which occurred before R, fewer than k `-buffer-write
steps occurred before Ri. Hence, fewer than k append
operations are linearized before Gi. By the induction
hypothesis, hi is the sequence of inputs to the append
operations linearized before Gi.

If k < `, then a1 = · · · = a`−k = ⊥. In this case, G
returns the sequence x`−k+1, . . . , x`. Since each append
operation is linearized at its `-buffer-write step and
x`−k+1, . . . , x` are the inputs to these k append opera-
tions, in order from least recent to most recent, G re-
turns the sequence of inputs to the append operations
linearized before it.

So, suppose that k ≥ `. Let hm be the longest his-
tory amongst h1, . . . ,h`. If hm contains x1, then G re-
turns h′, x1, . . . , x`, where h′ is the prefix of hm up
to, but not including, x1. By definition, a1, . . . , a` are
the inputs to the last `-buffer-write operations prior
to R, so x1, . . . , x` are the last ` values appended to
H prior to G. Since hm contains x1, it also contains
all values appended to H prior to x1. It follows that
h′ · (x1, . . . , x`) is the sequence of inputs to the append
operations linearized before G.

Now suppose that hm does not contain x1. Then
none of h1, . . . ,h` contain x1. Hence G1, . . . , G` were
linearized before A1 and R1, . . . , R` were performed
prior to W1. Since step W1 occurred before W2, . . . ,W`,
the operations A1, . . . , A` are all concurrent with one
another. This is illustated in Figure 1. ThereforeA1, . . . , A`

are performed by different processes. Only ` different
processes can perform append operations on H, so no
other append operations on H are linearized between
Rm andW1. Therefore, hm contains all values appended
to H prior to x1. It follows that hm · (x1, . . . , x`) is the
sequence of inputs to the append operations linearized
before G.

This lemma allows us to simulate any object that
supports at most ` updating processes using only a sin-
gle `-buffer. This is because the state of an object is
determined by the history of the non-trivial operations
performed on it. In particular, we can simulate an array
of ` single-writer registers using a single `-buffer.

Lemma 12. A single `-buffer can simulate ` single-
writer registers.
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...

R1:`-buffer-read()

R2:`-buffer-read()

R3:`-buffer-read()

...

W1:`-buffer-write(a1)

W2:`-buffer-write(a2)

W3:`-buffer-write(a3)

` concurrent append(xi) operations

returns h1

returns h2

returns h3

R`:`-buffer-read() W`:`-buffer-write(a`)

A1:append(x1)

A2:append(x2)

A`:append(x`)

Rm:`-buffer-read() Wm:`-buffer-write(am)Am:append(xm)

returns hm

returns h`

A3:append(x3)

Fig. 1 When hm does not contain x1, there are ` concurrent append operations.

Proof. Suppose that register Ri is owned by process pi,
for 1 ≤ i ≤ `. By Lemma 11, it is possible to simulate
a history object H that can be updated by ` processes
and read by any number of processes. To write value
x to Ri, process pi appends (i, x) to H. To read Ri, a
process reads H and finds the value of the most recent
write to Ri. This is the second component of the last
pair in the history whose first component is i.

Thus, we can use dn
` e `-buffers to simulate n single-

writer registers. An n-component unbounded counter
shared by n processes can be implemented in an obstruction-
free way from n single-writer registers. Each process
records the number of times it has incremented each
component in its single-writer register. As in the proof
of Theorem 7, an obstruction-free scan() can be per-
formed using the double collect algorithm [AAD+93].
Hence, by Lemma 3 we get the following result.

Theorem 13. It is possible to solve n-consensus using
only dn/`e `-buffers.

6.2 A Lower Bound

In this section, we prove a lower bound on the number
of `-buffers necessary for solving obstruction-free binary
consensus among n ≥ 2 processes.

In any configuration, memory location r is covered
by process p if p is poised to perform `-buffer-write on
r. A memory location is k-covered by a set of processes
P in a configuration if there are exactly k processes in
P that cover it. A configuration is at most k-covered by
P, if every process in P covers some memory location
and no memory location is k′-covered by P, for any
k′ > k.

Let C be a configuration and let Q be a set of pro-
cesses, each of which is poised to perform `-buffer-write
in C. A block write by Q from C is an execution, start-
ing from C, in which each process inQ takes exactly one
step. If a block write is performed that includes ` dif-
ferent `-buffer-write instructions to the same memory
location, and then some process performs `-buffer-read
on that location, the process gets the same result re-
gardless of the value of that location in C.

To obtain the lower bound, we extend the proof of
the n − 1 lower bound on the number of registers re-
quired for solving n-process consensus [Zhu16]. We also
borrow intuition about reserving executions from the
Ω(n) lower bound for anonymous consensus [Gel15].
The following auxiliary lemma is largely unchanged from
[Zhu16]. The main difference is that we only perform
block writes on `-buffers that are `-covered by P.

Lemma 14. Let C be a configuration and let Q be a
set of processes that is bivalent from C. Suppose C is at
most `-covered by a set of processes R, where R∩Q = ∅.
Let L be the set of locations that are `-covered by R in
C. Let β be a block write from C by the set of ` · |L|
processes in R that cover L. Then there exists a Q-only
execution ξ from C such that R∪Q is bivalent from Cξβ
and, in configuration Cξ, some process in Q covers a
location not in L.

Proof. Suppose process p ∈ R can decide value v ∈
{0, 1} from configuration Cβ. Since Q is bivalent from
C, there is a Q-only execution, ζ, from C in which v̄ is
decided. Let ξ be the longest prefix of ζ such that p can
decide v from Cξβ. Let δ be the next step by q ∈ Q in
ζ after ξ.

If δ is an `-buffer-read or is an `-buffer-write to a lo-
cation in L, then Cξβ and Cξδβ are indistinguishable to
p. This is impossible, since p can decide v from Cξβ, but
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cannot decide v from Cξδβ. Thus, δ is an `-buffer-write
to a location not in L, in configuration Cξ, q covers a
location not in L, and Cξβδ is indistinguishable from
Cξδβ to process p. Therefore, by definition of ξ, p can-
not decide v from Cξβδ, so it can decide v̄ from Cξβδ.
Since p can decide v from Cξβ, it follows This implies
that {p, q}⊆ R ∪Q is bivalent from Cξβ.

From a configuration that is at most `-covered by
a set of processes R, we show how to reach another
configuration that is at most `-covered by R and in
which another process z 6∈ R covers a location that is
not `-covered by R. This is similar to the induction
used by Zhu [Zhu16].

Lemma 15. Let C be a configuration and let P be a
set of n ≥ 2 processes. If P is bivalent from C, then
there is a P-only execution α starting from C and a set
Q ⊆ P of two processes such that Q is bivalent from Cα

and Cα is at most `-covered by the remaining processes
P −Q.

Proof. By induction on n. The base case is when n = 2.
Let Q = P and let α be the empty execution. Since
P −Q = ∅, the claim holds.

Now let n > 2 and suppose the claim holds for n−1.
By Lemma 2, there exist a P-only execution γ starting
from C and a setQ ⊂ P of two processes that is bivalent
fromD = Cγ. Pick any process z ∈ P−Q. Then P−{z}
is bivalent from D because Q is bivalent from D.

We construct a sequence of configurationsD0, D1, . . .

reachable from D such that, for all i ≥ 0, the following
properties hold:

1. there exists a set of two processes Qi ⊆ P−{z} such
that Qi is bivalent from Di,

2. Di is at most `-covered by the remaining processes
Ri = (P − {z})−Qi, and

3. if Li is the set of locations that are `-covered by Ri

inDi, thenDi+1 is reachable fromDi by a (P−{z})-
only execution αi which contains a block write βi to
Li by ` · |Li| processes in Ri.

By the induction hypothesis applied to D and P −
{z}, there is a (P−{z})-only execution η starting from
D and a set Q0 ⊆ (P − {z}) of two processes such
that Q0 is bivalent from D0 = Dη and D0 is at most
`-covered by R0 = (P − {z})−Q0.

Now suppose that Di is a configuration reachable
from D and Qi and Ri are sets of processes that satisfy
all three conditions.

By Lemma 14 applied to configuration Di, there is
a Qi-only execution ξi such that Ri ∪ Qi = P − {z} is
bivalent from Diξiβi, where βi is a block write to Li by

` · |Li| processes in Ri. Applying the induction hypoth-
esis to Diξiβi and P −{z}, we get a (P −{z})-only ex-
ecution ψi leading to a configuration Di+1 = Diξiβiψi,
in which there is a set, Qi+1, of two processes such
that Qi+1 is bivalent from Di+1. Additionally, Di+1

is at most `-covered by the set of remaining processes
Ri+1 = (P − {z}) − Qi+1. Note that the execution
αi = ξiβiψi contains the block write βi to Li by ` · |Li|
processes in Ri.

Since there are only finitely many locations, there
exist 0 ≤ i < j such that Li = Lj . Next, we insert
steps of z that cannot be detected by any process in
P − {z}. Consider any {z}-only execution ζ from Diξi
that decides a value v ∈ {0, 1}. If ζ does not con-
tain any `-buffer-write to locations outside Li, then
Diξiζβi is indistinguishable from Diξiβi to processes
in P − {z}. Since Diξiβi is bivalent for P − {z}, there
exists a P−{z} execution from Diξiβi and, hence, from
Diξiζβi that decides v̄, contradicting agreement. Thus
ζ contains an `-buffer-write to a location outside Li. Let
ζ ′ be the longest prefix of ζ that does not contain an
`-buffer-write to a location outside Li. Then, in Diξiζ

′,
z is poised to perform an `-buffer-write to a location
outside Li = Lj .

ConfigurationDiξiζ
′βi is indistinguishable fromDiξiβi

to P−{z}, so the (P−{z})-only execution ψiαi+1 · · ·αj−1

can be applied fromDiξiζ
′βi. Let α = γηα0 · · ·αi−1ξiζ

′βi

ψiαi+1 · · ·αj−1. Every process in P−{z} is in the same
state in Cα as it is in Dj . In particular, Qj ⊆ P−{z} is
bivalent from Dj and, hence, from Cα. Every location
is at most `-covered by Rj = (P −{z})−Qj in Dj and,
hence, in Cα. Moreover, since z takes no steps after
Diξiζ

′, z covers a location not in Lj in configuration
Cα. Therefore, every location is at most `-covered by
Rj ∪ {z} = P −Qj in Cα.

Finally, we can prove the main theorem.

Theorem 16. Consider a memory consisting of `-buffers.
Then any obstruction-free binary consensus algorithm
for n processes uses at least d(n− 1)/`e locations.

Proof. Consider any obstruction-free binary consensus
algorithm for n processes. By Lemma 1, there exists
an initial configuration from which the set of all n pro-
cesses, P, is bivalent. Lemma 15 implies that there is
a configuration, C, reachable from this initial configu-
ration and a set, Q ⊆ P, of two processes such that
Q is bivalent from C and C is at most `-covered by
the remaining processes R = P −Q. By the pigeonhole
principle, R covers at least d(n−2)/`e ≥ d(n−1)/`e−1
different locations.

Suppose that R covers exactly d(n− 2)/`e different
locations and d(n − 2)/`e < d(n − 1)/`e. Then n − 2
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is a multiple of ` and every location covered by R is,
in fact, `-covered by R. Since Q is bivalent from C,
Lemma 14 implies that there is a Q-only execution ξ
such that some process inQ covers a location that is not
covered by R. Hence, there are at least d(n−2)/`e+1 =
d(n− 1)/`e locations.

The lower bound in Theorem 16 can be extended to
a heterogeneous setting, where the lengths of the buffers
are not necessarily the same. To do so, we extend the
definition of a configuration C being at most `-covered
by a set of processes P. Instead, we require that the
number of processes in P covering each buffer is at most
the length of that buffer. Then we consider block writes
to a set of locations containing ` different `-buffer-write
operations to each `-buffer in the set. The general re-
sult is that, for any algorithm which solves consensus
for n processes and satisfies nondeterministic solo ter-
mination, the sum of the lengths of all buffers must be
at least n− 1.

The lower bound also applies to systems in which
the return value of every non-trivial instruction on a
memory location does not depend on the value of that
location and the return value of any trivial instruction is
a function of the sequence of the preceding ` non-trivial
instructions performed on the location. This is because
such instructions can be implemented by `-buffer-read
and `-buffer-write instructions. We record each invo-
cation of a non-trivial instruction using `-buffer-write.
The return values of these instructions can be deter-
mined locally. To implement a trivial instruction, we
perform `-buffer-read , which returns a sequence con-
taining the description of the last ` non-trivial instruc-
tions performed on the location. This is sufficient to
determine the correct return value.

7 Multiple Assignment

In this section, we explore whether multiple assignment
can improve the space complexity of solving obstruction-
free consensus. A motivation for this question is that
obstruction-free multiple assignment can be easily im-
plemented using a simple transaction.

We prove a lower bound that is similar to the lower
bound in Section 6.2. Suppose the `-buffer-read() and
`-buffer-write(x) instructions are supported on every
memory location in a system and, for any subset of loca-
tions, a process can atomically perform one `-buffer-write
instruction per location. Then dn/2`e locations are nec-
essary for n processes to solve binary consensus. As
in Section 6.2, this result can be further generalized to
a heterogeneous setting.

The main technical difficulty is proving an analogue
of Lemma 14. In the absence of multiple assignment,
if β is a block write to a set of `-covered locations, L,
and δ is an `-buffer-write to a location not in L, then
β and δ commute (in the sense that the configurations
resulting from performing βδ and δβ are indistinguish-
able to all processes). However, a multiple assignment
δ can atomically perform `-buffer-write to many loca-
tions, including locations in L. Thus, it may be pos-
sible for processes to distinguish between βδ and δβ.
Using a careful combinatorial argument, we construct
two blocks of multiple assignments, β1 and β2, such
that, in each block, `-buffer-write is performed at least
` times on each location in L and is not performed on
any location outside of L. Given this, we can show that
β1δβ2 and δβ1β2 are indistinguishable to all processes.
This is enough to prove an analogue of Lemma 14.

First, we define a notion of covering for this setting.
In configuration C, process p covers location r if p is
poised to perform a multiple assignment that includes
an `-buffer-write to r. The next definition is key to our
proof. Suppose that, in some configuration C, each pro-
cess in P is poised to perform a multiple assignment.
A k-packing of P in C is a function π mapping each
process in P to some memory location it covers such
that no location r has more than k processes mapped
to it (i.e., |π−1(r)| ≤ k). When π(p) = r we say that
π packs p in location r. A k-packing may not always
exist or there may be many k-packings, depending on
the configuration, the set of processes, and the value of
k. A location r is fully k-packed by P in configuration
C, if there is a k-packing of P in C and all k-packings
of P in C pack exactly k processes in r.

Suppose that, in some configuration, there are two
k-packings of the same set of processes, but the first
packs more processes in some location r than the sec-
ond. We show there is a location r′ in which the first
packing packs fewer processes than the second and there
is a k-packing which, as compared to the first packing,
packs one less process in location r, one more process
in location r′, and the same number of processes in all
other locations. The proof relies on existence of a cer-
tain Eulerian path in a multigraph that we build to
represent these two k-packings.

Lemma 17. Suppose g and h are two k-packings of
the same set of processes P in some configuration C

and r1 is a location such that |g−1(r1)| > |h−1(r1)|
(i.e., g packs more processes in r1 than h does). Then,
there exists a sequence of locations, r1, r2, . . . , rt, and
a sequence of distinct processes, p1, p2, . . . , pt−1, such
that |h−1(rt)| > |g−1(rt)| (i.e., h packs more processes
in rt than g), and g(pi) = ri and h(pi) = ri+1 for
1 ≤ i ≤ t − 1. Moreover, for 1 ≤ j < t, there exists a



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature.

A Complexity-Based Classification for Multiprocessor Synchronization 13

k-packing g′ such that g′ packs one less process than g
in rj, g′ packs one more process than g in rt, g′ packs
the same number of processes as g in all other locations,
and g′(q) = g(q) for all q 6∈ {pj , . . . , pt−1}.

Proof. Consider a multigraph with one node for each
memory location in the system and one directed edge
from node g(p) to node h(p) labelled by p, for each
process p ∈ P. The in-degree of any node v is |h−1(v)|,
which is the number of processes that are packed into
memory location v by h, and the out-degree of node v
is |g−1(v)|, which is the number of processes that are
packed in v by g.

Now, consider any maximal Eulerian path in this
multigraph starting from the node r1. This path con-
sists of a sequence of distinct edges, but may visit the
same node multiple times. Let r1, . . . , rt be the sequence
of nodes visited and let pi be the labels of the traversed
edges, in order. Then g(pi) = ri and h(pi) = ri+1 for
1 ≤ i ≤ t − 1. The edges in the path are all different
and each is labelled by a different process, so the path
has length at most |P|. By maximality, the last node
in the sequence must have more incoming edges than
outgoing edges, so |h−1(rt)| > |g−1(rt)|.

Let 1 ≤ j < t. We construct g′ from g by re-packing
each process pi from ri to ri+1 for all j ≤ i < t. Then
g′(pi) = ri+1 for j ≤ i < t and g′(p) = g(p) for all other
processes p. Notice that pi covers ri+1, since h(pi) =
ri+1 and h is a k-packing. As compared to g, g′ packs
one less process in rj , one more process in rt, and the
same number of processes in every other location. Since
h is a k-packing, it packs at most k processes in rt.
Because g is a k-packing that packs less processes in rt
than h, g′ is also a k-packing.

Let P be a set of processes, each of which is poised to
perform a multiple assignment in some configuration C.
A block multi-assignment by P from C is an execution
starting at C, in which each process in P takes exactly
one step.

Consider some configuration C and a set of pro-
cessesR such that there is a 2`-packing π ofR in C. Let
L be the set of all locations that are fully 2`-packed by
R in C, so π packs exactly 2` processes from R in each
location r ∈ L. Partition the 2` · |L| processes packed
by π in L into two sets, R1 and R2, each containing
` · |L| processes, such that, for each location r ∈ L, `
of the processes packed in r by π belong to R1 and the
other ` belong to R2. For i ∈ {1, 2}, let βi be a block
multi-assignment by Ri.

Notice that, for any location r ∈ L, the outcome of
any `-buffer-read on r after βi does not depend on mul-
tiple assignments that occurred prior to βi. Moreover,

we can prove the following crucial property about these
block multi-assignments to fully packed locations.

Lemma 18. Neither β1 nor β2 involves an `-buffer-write
to a location outside of L.

Proof. Assume the contrary. Let q ∈ R1 ∪ R2 be a
process with π(q) ∈ L such that, in C, q also covers
some location r1 6∈ L. If |π−1(r1)| < 2`, then there is
another 2` packing of R in C, which is the same as π,
except that it packs q in location r1 instead of π(q).
However, this packing packs fewer than 2` processes in
π(q) ∈ L, contradicting the definition of L. Therefore
|π−1(r1)| = 2`, i.e., π packs exactly 2` processes in r1.

Since L is the set of all fully 2`-packed locations,
there exists a 2`-packing h, which packs strictly fewer
than 2` processes in r1 6∈ L. From Lemma 17 with g = π
and k = 2`, there are sequences of locations, r1, . . . , rt,
and processes, p1, . . . , pt−1, such that |h−1(rt)| > |π−1(rt)|.
Since h is a 2`-packing, it packs at most 2` processes in
rt and, hence, π packs strictly less than 2` processes in
rt. Thus, rt 6∈ L. We consider two cases.

First, suppose that q 6= pi for all i = 1, . . . , t − 1,
i.e., q does not occur in the sequence p1, . . . , pt−1. By
the second part of Lemma 17 with j = 1, there is a
2`-packing π′ that packs less than 2` processes in r1,
one more process than π in rt, and the same number
of processes as π in all other locations. In particular, π′

packs exactly 2` processes in each location in L, includ-
ing π(q). Moreover, π′(q) = π(q), since q does not occur
in the sequence p1, . . . , pt−1. Consider another 2` pack-
ing of R in C, which is the same as π′, except that it
packs q in location r1 instead of location π(q). However,
this packing packs fewer than 2` processes in π(q) ∈ L,
contradicting the definition of L.

Now, suppose that q = ps, for some s ∈ {1, . . . , t −
1}. Since rs = π(ps) = π(q) ∈ L, it follows that |π−1(rs)| =
2`. By the second part of Lemma 17 with j = s, there
is a 2`-packing that packs less than 2` processes in rs,
one more process than π in rt, and the same number of
processes as π in all other locations. Since rs ∈ L, this
contradicts the definition of L.

Thus, in configuration C, every process in R1 ∪R2

only covers locations in L.

With C,R, β1, and β2 as defined prior to Lemma 18,
we now prove a lemma that replaces Lemma 14.

Lemma 19. Let Q be a set of processes disjoint from R
that is bivalent from C. Then there exists a Q-only exe-
cution ξ from C such that R∪Q is bivalent from Cξβ1

and, in configuration Cξ, some process in Q covers a
location not in L.
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Proof. Suppose process p ∈ R can decide value v ∈
{0, 1} from configuration Cβ1β2 and ζ is a Q-only exe-
cution from C in which v̄ is decided. Let ξ be the longest
prefix of ζ such that p can decide v from Cξβ1β2. Let
δ be the next step by q ∈ Q in ζ after ξ.

If δ is an `-buffer-read or a multiple assignment in-
volving only `-buffer-write operations to locations in L,
then Cξβ1β2 and Cξδβ1β2 are indistinguishable to p.
Since p can decide v from Cξβ1β2, but cannot decide v
from Cξδβ1β2, δ must be a multiple assignment that in-
cludes an `-buffer-write to a location not in L. Thus, in
configuration Cξ, q covers a location not in L. For each
location r ∈ L, the value of r is the same in Cξδβ1β2 as
it is in Cξβ1δβ2 due to the block multi-assignment β2.
By Lemma 18, for each location r 6∈ L, neither β1 nor
β2 performs an `-buffer-write to r, so the value of r is
the same in Cξδβ1β2 as it is in Cξβ1δβ2. Since the state
of process p is the same in configuration Cξβ1δβ2 and
Cξδβ1β2, these two configurations are indistinguishable
to p.

By definition of ξ, p cannot decide v from Cξδβ1β2

and, hence, it can decide v̄ from Cξδβ1β2. Therefore, p
can decide v̄ from Cξβ1δβ2. Since p can decide v from
Cξβ1β2, it follows thatR∪Q is bivalent from Cξβ1.

Using these tools, we can prove the following ana-
logue of Lemma 15.

Lemma 20. Let C be a configuration and let P be a
set of n ≥ 2 processes. If P is bivalent from C, then
there is a P-only execution α and a set Q ⊆ P of two
processes such that Q is bivalent from Cα and there
exists a 2`-packing π of the remaining processes P −Q
in Cα.

Proof. By induction on n. The base case is when n = 2.
Let Q = P and let α be the empty execution. Since
P −Q = ∅, the claim holds.

Now let n > 2 and suppose the claim holds for n−1.
By Lemma 2, there exists a P-only execution γ starting
from C and a setQ ⊂ P of two processes that is bivalent
fromD = Cγ. Pick any process z ∈ P−Q. Then P−{z}
is bivalent from D because Q is bivalent from D.

We construct a sequence of configurationsD0, D1, . . .
reachable from D, such that, for all i ≥ 0, the following
properties hold:

1. there exists a set of two processes Qi ⊆ P−{z} such
that Qi is bivalent from Di,

2. there exists a 2`-packing πi of the remaining pro-
cesses Ri = (P − {z})−Qi in Di, and

3. if Li is the set of all locations that are fully 2`-packed
by Ri in Di, then Di+1 is reachable from Di by a
(P − {z})-only execution αi which contains a block
multi-assignment βi such that, for each location r ∈

Li, there are at least ` multiple assignments in βi

that perform `-buffer-write on r.

By the induction hypothesis applied to D and P −
{z}, there is a (P−{z})-only execution η starting from
D and a set Q0 ⊆ (P −{z}) of two processes such that
Q0 is bivalent from D0 = Dη and and there exists a
2`-packing π0 of the remaining processes R0 = (P −
{z})−Q0 in D0.

Now suppose that Di is a configuration reachable
from D and Qi and Ri are sets of processes that satisfy
all three conditions.

By Lemma 19 applied to configuration Di, there is a
Qi-only execution ξi such thatRi∪Qi = P−{z} is biva-
lent from Diξiβi, where βi is a block multi-assignment
in which `-buffer-write is performed at least ` times
on r, for each location r ∈ Li. Applying the induction
hypothesis to Diξiβi and P − {z}, we get a (P − {z})-
only execution ψi leading to a configuration Di+1 =
Diξiβiψi, in which there is a set, Qi+1, of two pro-
cesses such that Qi+1 is bivalent from Di+1. Addition-
ally, there exists a 2`-packing πi+1 of the remaining
processes Ri+1 = (P − {z})−Qi+1 in Di+1. Note that
the execution αi = ξiβiψi contains the block multi-
assignment βi.

Since there are only finitely many locations, there
exists 0 ≤ i < j such that Li = Lj , i.e., the set of
fully 2`-packed locations by Ri in Di is the same as
the set of fully 2`-packed locations by Rj in Dj . Next,
we insert steps of z that cannot be detected by any
process in P − {z}. Consider any {z}-only execution ζ
from Diξi that decides a value v ∈ {0, 1}. If ζ does not
contain any `-buffer-write to locations outside Li, then
Diξiζβi is indistinguishable from Diξiβi to processes
in P − {z}. Since Diξiβi is bivalent for P − {z}, there
exists a P−{z} execution from Diξiβi and, hence, from
Diξiζβi that decides v̄, contradicting agreement. Thus
ζ contains an `-buffer-write to a location not in Li. Let
ζ ′ be the longest prefix of ζ that does not contain an
`-buffer-write to a location outside Li. Then, in Diξiζ

′,
z is poised to perform a multiple assignment containing
an `-buffer-write to a location outside Li = Lj .

ConfigurationDiξiζ
′βi is indistinguishable fromDiξiβi

to P−{z}, so the (P−{z})-only execution ψiαi+1 · · ·αj−1

can be applied fromDiξiζ
′βi. Let α = γηα0 · · ·αi−1ξiζ

′βi

ψiαi+1 · · ·αj−1. Every process in P−{z} is in the same
state in Cα as it is in Dj . In particular, Qj ⊆ P−{z} is
bivalent from Dj and, hence, from Cα. The 2`-packing
πj of Rj in Dj is a 2`-packing of Rj in Cα and Li = Lj

is the set of locations that are fully 2`-packed by Rj in
Cα. Since z takes no steps after Diξζ

′, z covers a lo-
cation r not in Lj in configuration Cα. Since r 6∈ Lj ,
there is a 2`-packing π′j of Rj in Cα which packs less
than 2` processes into r. Let π be the packing that
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packs z into location r and packs each process in Rj in
the same location as π′j does. Then π is a 2`-packing of
Rj ∪ {z} = P −Qj in Cα.

We can now prove the main theorem.

Theorem 21. Consider a memory consisting of `-buffers,
in which each process can atomically perform `-buffer-write
to any subset of the `-buffers. Then any obstruction-free
binary consensus algorithm for n processes uses at least
d(n− 1)/2`e locations.

Proof. Consider any obstruction-free binary consensus
algorithm for n processes. By Lemma 1, there exists
an initial configuration from which the set of all n pro-
cesses, P, is bivalent. Lemma 20 implies that there is
a configuration, C, reachable from this initial configu-
ration, a set of two processes Q ⊆ P such that Q is
bivalent from C, and a 2`-packing π of the remaining
processes R = P−Q in C. By the pigeonhole principle,
R covers at least d(n− 2)/2`e different locations.

Suppose that R covers exactly d(n−2)/2`e different
locations and d(n−2)/2`e < d(n−1)/2`e. Then n−2 is
a multiple of 2` and every location is fully 2`-packed by
R. Since Q is bivalent from C, Lemma 19 implies that
there is a Q-only execution ξ such that some process in
Q covers a location that is not fully 2`-packed by R.
Hence, there are at least d(n−2)/2`e+1 = d(n−1)/2`e
locations.

8 Swap and Read

The swap(x ) instruction atomically sets the memory
location to have value x and returns the value that it
previously contained. In this section, we present Algo-
rithm 1, an anonymous obstruction-free algorithm for
solving n-consensus using n − 1 shared memory loca-
tions, X1, . . . , Xn−1, which support read and swap. It
is similar in spirit to the racing counters algorithm pre-
sented in the proof of Lemma 3, but more complicated.
The main idea is that one register can be eliminated by
having each process use the information its gains when
it performs a swap.

It is possible to implement a linearizable, obstruction-
free scan of the n − 1 shared memory locations, by
having each process include its process identifier and
a strictly increasing sequence number as part of the ar-
gument of each swap it performs. As in the double col-
lect algorithm [AAD+93], a process repeatedly collects
the values in all the locations (using read) until it ob-
serves two consecutive collects with the same values. In
addition to a process identifier and a sequence number
(which we will henceforth ignore), each shared memory

location stores a vector of n non-negative integers, all
of which are initially 0.

Intuitively, the processes view the possible input
values as competing to complete laps. Each process
has a local variable, ` ∈ Nn, storing, for each value
v ∈ {0, . . . , n − 1}, the lap `v ≥ 0 that the process
thinks v is on. The process updates ` after performing
a scan. Initially, these are all 0. A process with input
x begins by setting `x to 1. Then it repeatedly tries to
complete a lap for a value that it thinks is in the lead.
When it thinks that some value has a substantial lead
on all other values, it decides that value. Each process
also has two other local variables, ~a, in which it stores
the result of its last scan(X1, . . . , Xn−1) and s, in which
it stores the value returned by its last swap operation.
The i’th component ~a(i) of ~a is the vector in Nn that
it last read from Xi. Initially, s contains a vector of n
zeros.

In its first step, a process performs a scan of all n−1
memory locations. Then, for each value v, it updates
the lap, `v, that it thinks v is on to be the maximum
among `v, the v’th component, sv, of s, and the v’th
component, ~a(i)v, of the vector in memory location i
when the scan was performed, for 1 ≤ i ≤ n− 1. Next,
it chooses its preferred value, v∗ to be a value it thinks
is on the largest lap (breaking ties in favour of smaller
values). If there is a memory location that does not
contain `, the process performs swap(`) on the first such
location. Now suppose all the memory locations contain
`. If `v∗ is at least 2 larger than every other component
of `, the process decides v∗. Otherwise, it considers v∗

to have completed lap `v∗ , it increments `v∗ , performs
swap(`) on X1, and repeats this sequence of steps.

Fix an execution of the algorithm. For each scan, S,
by a process p, let `(S) be the value of p’s local variable
` immediately after the for loop on lines 6–8 following
S. For each value v ∈ {0, . . . , n − 1}, let `v(S) denote
component v of this n-component vector. Similarly, for
every swap, U , by a process p let `(U) be the value of
p’s local variable ` immediate before U is performed on
line 21 and let `v(U) denote its component v.

We now prove that the algorithm is correct. We be-
gin with some easy observations, which follow from in-
spection of the code.

Observation 22. Let U be a swap by some process p
and let S be any scan that p performed before U . Then
`v(U) ≥ `v(S) for every value v ∈ {0, . . . , n− 1}.
Observation 23. Let U be a swap by some process
p and let S be the last scan that p performed before
U . If there exists a value v ∈ {0, . . . , n − 1} such that
`v(U) > `v(S), then `v(U) = `v(S) + 1, `v′(S) ≤ `v(S)
for all other values v′ 6= v, and S returned `(S) from
each shared memory location.
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Algorithm 1 An anonymous n-consensus algorithm
for a process with input value x using swap and scan.
1: `← ~0
2: `x ← 1
3: s← ~0
4: loop
5: ~a← scan(X1, . . . , Xn−1)
6: for v ∈ {0, 1, . . . , n− 1} do
7: `v ← max({`v, sv} ∪ {~a(j)v : 1 ≤ j ≤ n− 1})
8: end for
9: `∗ ← max{`0, . . . , `n−1}

10: v∗ ← min{v : `v = `∗}
11: if ~a(j) = ` for all 1 ≤ j ≤ n− 1 then
12: . value v∗ has completed lap `∗

13: if `∗ ≥ `v + 2 for all v 6= v∗ then
14: . v∗ is at least 2 laps ahead of all other values
15: decide v∗ and terminate
16: end if
17: `v∗ ← `v∗ + 1
18: . value v∗ is now on the next lap
19: end if
20: j ← min{j : ~a(j) 6= `}
21: s← swap(Xj , `)
22: end loop

Observation 24. Let U be a swap by some process
p that returned s. Let S be any scan that p performed
before U and let S′ be any scan that p performed after
U . Then `v(S′) ≥ max{sv, `v(S)} for every value v ∈
{0, . . . , n− 1}.

The next lemma follows from these observations. It
says that if there was a scan, S, where value v is on lap
` > 0, i.e. `v(S) = `, then there was a scan where v
is on lap ` − 1 and all the swap objects contained this
information.

Lemma 25. Let S be a scan and let v ∈ {0, . . . , n−1}
be a value. If `v(S) > 0, then there was a scan, S′,
performed prior to S such that S′ returned `(S′) from
each shared memory location, `v(S′) = `v(S) − 1, and
`v′(S′) ≤ `v(S′), for all v′ 6= v.

Proof. Since each memory location initially contains an
n-component vector of 0’s and `v(S) > 0, there was
swap U prior to S such that `v(U) = `v(S). Consider
the first such swap. Let p be the process that performed
U and let S′ be the last scan performed by p before U .
By Observation 22, `v(U) ≥ `v(S′). If `v(U) = `v(S′),
there would have been a swap U ′ prior to S′ and, hence,
prior to U with `v(U ′) = `v(S′) = `v(U) = `v(S), con-
tradicting the definition of U . Therefore `v(U) > `v(S′).
By Observation 23, it follows that `v(U) = `v(S′) + 1,
`v′(S′) ≤ `v(S′) for all other values v′ 6= v, and S′ re-
turned `(S′) from each shared memory location. Since
`v(U) = `v(S), it follows that `v(S′) = `v(U) − 1 =
`v(S)− 1.

The following lemma is key to the proof of correct-
ness. It says that, if a process performs a scan S where
all the components have the same value and, as a result,
thinks value v has completed lap `, then every process
will think that v is at least on lap ` when it performs
any scan after S.

Lemma 26. Suppose S is a scan that returned `(S)
from each shared memory location. If T is a scan per-
formed after S, then, for each v ∈ {0, . . . , n−1}, `v(T ) ≥
`v(S).

Proof. Suppose, for a contradiction, that there is a scan
T performed after S such that `v(T ) < `v(S) for some
v ∈ {0, . . . , n− 1}. Consider the first such scan T .

By definition of `v(T ), T returned a vector ~a such
that ~a(j)v < `v(S) for every component j ∈ {1, . . . , n−
1}. Since S returned a vector whose components all
contain `(S), for each j ∈ {1, . . . , n− 1}, some process
qj performed a swap Uj on Xj between S and T such
that ~a(j) = `(Uj).

Let S′j be the last scan prior to Uj by qj . By Ob-
servation 22, `v(Uj) ≥ `v(S′j). Since `v(S) > ~a(j)v =
`v(Uj), it follows that S 6= S′j . If S′j occurred after S,
then, by definition of T , `v(S′j) ≥ `v(S). Thus S′j oc-
curred before S.

Since processes alternately perform scan and swap,
it follows that q1, . . . , qn−1 are distinct processes and
none of them is the process, p, that performed S. Each
of them is poised to perform swap to a different memory
location immediately after S.

Let j ∈ {1, . . . , n− 1} be arbitrary and let s be the
vector returned by Uj . If s = ~̀(S), then sv ≥ `v(S).
So, suppose s 6= `(S). Since S returned `(S) from each
shared memory location, s = `(U ′) for some swap U ′

performed between S and Uj . Consider the process that
performed U ′. This process is not qj , since qj takes no
steps between S and Uj . If U ′ is by p, then, by Observa-
tion 22, sv ≥ `v(S). Now suppose U ′ is by some process
qi 6= qj . Since qi was poised to perform swap to a dif-
ferent memory location immediately after S, U ′ occurs
after Ui. Let S′ be the last scan by qi before U ′. Then
S′ occurs between S and T . Hence, `v(S′) ≥ `v(S), by
definition of T . By Observation 22, `v(U ′) ≥ `v(S′).
Hence, sv = `v(U ′) ≥ `v(S).

By Observation 24, `v(T ′) ≥ sv ≥ `v(S) for any
scan T ′ performed by qj after Uj . Since `v(T ) < `v(S)
and T was performed after Uj , it follows that T was
not performed by process qj .

Note that p is the only process besides q1, . . . , qn−1.
Therefore, T was performed by p. However, by Obser-
vation 24, `v(T ) ≥ `v(S). This is a contradiction.

The previous lemma allows us to prove that once a
value v∗ is at a lap ` that is 2 laps ahead of v 6= v∗ and
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every swap object contains this information, then v will
never reach lap `, so v∗ will always be at least one lap
ahead of v.

Lemma 27. Suppose S is a scan that returned `(S)
from each shared memory location and there is some
v∗ ∈ {0, . . . , n− 1} such that `v∗(S) ≥ `v(S) + 2 for all
other values v 6= v∗. Then `v(T ) ≤ `v(S) + 1 for every
scan T and every value v 6= v∗.

Proof. Suppose, for a contradiction, that there is some
scan T and some value v′ 6= v∗ such that `v′(T ) ≥
`v′(S) + 2. Consider the first such scan. Since `v′(S) +
2 > 0, Lemma 25 implies there was a scan, T ′, prior to
T such that T ′ returned `(T ′) from each shared memory
location, `v′(T ′) = `v′(T )−1, and `v∗(T ′) ≤ `v′(T ′). By
definition of T and T ′, `v′(T ′) < `v′(S) + 2 ≤ `v′(T ) =
`v′(T ′) + 1, so `v′(S) + 2 = `v′(T ) = `v′(T ′) + 1.

If S was performed after T ′, then, by Lemma 26,
`v(S) ≥ `v(T ′) for all v ∈ {0, . . . , n − 1}. However,
`v′(S) < `v′(T ′), so S was performed before T ′. Then
Lemma 26 implies that `v∗(T ′) ≥ `v∗(S). By assump-
tion, `v∗(S) ≥ `v′(S)+2. Hence, `v∗(T ′) ≥ `v′(S)+2 =
`v′(T ′) + 1. This contradicts the fact that `v∗(T ′) ≤
`v′(T ′).

We can now prove that the algorithm satisfies agree-
ment, validity, and obstruction-free termination.

Lemma 28. No two processes decide differently.

Proof. From the code, the last step performed by a pro-
cess before deciding value v∗ is a scan, S, such that
S returns `(S) from each shared memory location and
`v∗(S) ≥ `v(S) + 2 for all other values v 6= v∗. Con-
sider the first such scan by any process. By Lemma 26,
`v∗(T ) ≥ `v∗(S) for every scan T performed after S.
By Lemma 27, `v(T ) ≤ `v(S) + 1 for all v 6= v∗. Hence,
`v∗(T ) > `v(T ). It follows that no process ever decides
v 6= v∗.

Lemma 29. If some process decides x, then some pro-
cess has input x.

Proof. Suppose that some process decides x, but it has
input value x′ 6= x. It initializes its local variable `x′ = 1
and, from the code, `x′ never decreases. Let ~a be the
result of its last scan. By line 11, ~a(j)x = `x for all
1 ≤ j ≤ n−1 and, by line 13, `x ≥ `x′+2 > 0. Initially,
every memory location contains a vector of n zeros, so
there is a swap, U , such that `x(U) > 0.

Consider the first such swap. Let p be the process
that performed U . Prior to U , component x of every
shared memory location is 0. Moreover, its local vari-
able s contains a vector of n zeros. Hence, prior to U ,
p’s local variable `x is not changed by line 7. By lines

2 and 9, its local variable `∗ ≥ 1. Thus, if p does not
have input value x, then `x = 0 immediately prior to
U . Then, by definition, `x(U) = 0, which is a contra-
diction. Hence p has input value x.

Lemma 30. Every process decides after performing at
most 3n− 2 scans in a solo execution.

Proof. Let p be any process and consider the first scan
S performed by p in its solo execution. Let `′ = `(S).
After performing at most n−1 swaps, all with argument
`′, p will perform a scan that returns `′ from every
shared memory location. Let v∗ = min{v : `v(S) ≥
`v′(S) for all v′ 6= v}. If `′v∗ ≥ `′v + 2 for all v 6= v∗,
then p decides v∗. Otherwise, p performs n − 1 swaps,
all with argument `′′, where `′′v∗ = `′v∗ + 1 and `′′v = `′v,
for v 6= v∗. Then it performs a scan that returns a
vector whose components all contain `′′. If `′′v∗ ≥ `′′v + 2
for all v 6= v∗, then p decides v∗. If not, then p performs
an additional n− 1 swaps, all with argement `′′′, where
`′′′v∗ = `′′v∗ + 1 = `′v∗ + 2 and `′′′v = `′′v = `′v for v 6= v∗.
Finally, p performs a scan that returns a vector whose
components all contain `′′′. Since p performs at most
3(n − 1) swaps and each swap is immediately followed
by a scan, this amounts to 3n− 2 scans, including the
first scan, S.

The preceding lemmas immediately yield the follow-
ing theorem.

Theorem 31. There is an anonymous, obstruction-
free algorithm for solving consensus among n processes
that uses only n − 1 memory locations supporting read
and swap.

In [FHS98], there is a proof that Ω(
√
n) shared

memory locations are necessary to solve obstruction-
free consensus when the system only supports swap and
read instructions.

9 Test-and-Set and Read

Consider a system that supports only test-and-set()
and read(). It is impossible to solve 2-consensus using
only 1 memory location. To see why, first note that, in
a solo-terminating execution from an initial configura-
tion, a process must decide its input value, because the
other process might have the same input value. More-
over, in every such execution, a process must perform
test-and-set() on the location. (If not, the location still
has value 0 after the execution, so, if it is followed by
a solo-terminating execution by the other process with
the other input, agreement will be violated.) Then the
memory location has value 1 after any solo-terminating
execution by a process from an initial configuration, so
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the value decided by the other process cannot depend
on what the first process decided. Hence, there is an ex-
ecution in which the second process decides a different
value, violating agreement.

It is possible to solve wait-free binary consensus for
2 processes using only 2 memory locations, which are
both initially 0. In Algorithm 2, a process with input
0 begins by performing test-and-set() on memory loca-
tion M0 and, if the result is 0, it decides 0. Otherwise,
it reads memory location M1 and decides the value
it read. A process with input 1 begins by performing
test-and-set() on M1 and, if the result is 1, it decides 1.
Otherwise, it performs test-and-set() on memory loca-
tion M0 and decides the complement of the result.

Algorithm 2 A wait-free 2-consensus algorithm for a
process with input value x
1: if x = 0 then
2: if test-and-set(M0) = 0 then
3: decide 0
4: else
5: if read(M1) = 0 then
6: decide 0
7: else decide 1
8: end if
9: end if

10: else
11: if test-and-set(M1) = 1 then
12: decide 1
13: else
14: if test-and-test(M0 ) = 0 then
15: decide 1
16: else decide 0
17: end if
18: end if
19: end if

First suppose both processes have input 0. The first
process to perform test-and-set(M0) gets 0 and imme-
diately decides 0. The other process gets 1 and then
reads 0 from M1, so it also decides 0.

Now suppose both processes have input 1. The first
process to perform test-and-set(M1) gets 0. Then it per-
forms test-and-set(M0), gets 0, and decides 1. The sec-
ond process to perform test-and-set(M1) gets 1 and im-
mediately decides 1.

Finally, suppose one process, say p0, has input 0
and the other process, p1, has input 1. If p1 takes the
first two steps, it performs test-and-set(M1), gets 0, per-
forms test-and-set(M0), gets 0, and returns 1. Then p0

performs test-and-set(M0), gets 1, reads 1 from M1,
and returns 1. So, suppose that p1 does not take both
of the first two steps. In particular, it does not perform
test-and-set(M0) before p0. Hence, when p0 performs
test-and-set(M0), it gets 0 and immediately decides 0.
The first step by p1 is test-and-set(M1), which returns

0, and its second step is test-and-set(M0), which returns
1. Thus p1 also decides 0.

However, if the only instructions available are read(),
test-and-set , and write(1), then any algorithm for solv-
ing obstruction-free binary consensus among n ≥ 3 pro-
cesses must use an unbounded number of memory lo-
cations.

Lemma 32. Let p0, p1, and q be different processes and
let C0 be a configuration. If {p0, p1} is bivalent from C0,
then, for every k ≥ 0, it possible to reach a configuration
Ck by a {p0, p1, q}-only execution such that {p0, p1} is
bivalent from Ck and at least k memory locations have
been set to 1 in Ck.

Proof. By induction on k. The base case, k = 0, holds
trivially for C0. Given Ck, for some k ≥ 0, we show
how to reach Ck+1. By Lemma 2, it is possible to reach
a configuration C ′k by a {p0, p1}-only execution from
Ck such that p0 and p1 decide different values in their
solo-terminating executions, γ0 and γ1, from C ′k. With-
out loss of generality, assume that p0 decides 0 and p1

decides 1. Let L be the set of memory locations that
have been set to 1 in C ′k. By the induction hypothesis,
|L| ≥ k.

Let δ be q’s solo-terminating execution from C ′k.
If δ does not contain a test-and-set() or write(1) to a
location outside L, then C ′kδ is indistinguishable from
C ′k to {p0, p1} and, hence, both γ0 and γ1 are applicable
from C ′kδ. Since some value v ∈ {0, 1} is decided in δ

and v̄ is decided in γv̄, this violates agreement.
So, δ contains at least one test-and-set() or write(1)

to a location outside L. Let δ′ be the longest prefix
of δ that does not contain such an instruction and let
C = C ′kδ

′. Then q is poised to perform a test-and-set
or write(1), δ′′, to a location ` /∈ L at C. Since δ′ does
not set any new memory locations to 1, C is indistin-
guishable from C ′k to {p0, p1} and, hence, both γ0 and
γ1 are applicable from C.

If {p0, p1} is bivalent from Cδ′′, then Ck+1 = Cδ′′

satisfies the claim since |L∪ {`}| ≥ k+ 1 memory loca-
tions are set to 1 in Ck+1. So, without loss of generality,
suppose that {p0, p1} is 0-univalent from Cδ′′. Let γ′1
be the longest prefix of γ1 such that p0 decides 0 from
Cγ′1δ

′′. Note that γ′1 6= γ1 since 1 is decided in γ1. Let
γ′′1 be the first step in γ1 following γ′1.

If γ′′1 is a test-and-set() or write(1) to a location in
L∪{`} or γ′′1 is a read , then Cγ′1γ

′′
1 δ
′′ is indistinguishable

from Cγ′1δ
′′ to p0. This is impossible, since p0 decides 0

from Cγ′1δ
′′ and decides 1 from Cγ′1γ

′′
1 δ
′′. Thus, γ′′1 is a

test-and-set() or write(1) to a location outside L∪{`}. It
follows that Cγ′1γ

′′
1 δ
′′ = Cγ′1δ

′′γ′′1 and, hence, p0 decides
1 from C ′γ′1δ

′′γ′′1 .
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Let Ck+1 = Cγ′1δ
′′. Since p0 decides 0 from Ck+1, p0

decides 1 from Ck+1γ
′′
1 , and γ′′1 is a step by p1, it follows

that {p0, p1} is bivalent from Ck+1. Furthermore, |L ∪
{`}| ≥ k + 1 memory locations are set to 1 in Ck+1.
Therefore, Ck+1 satisfies the claim.

By Lemma 1, there is an initial configuration from
which the set of all processes in the system is bivalent.
Then it follows from Lemma 32 that any binary consen-
sus algorithm for n ≥ 3 processes uses an unbounded
number of locations.

Theorem 33. For n ≥ 3, it is not possible to solve n-
consensus using a bounded number of memory locations
supporting only read(), test-and-set(), and write(1).

There is an algorithm for obstruction-free binary
consensus that uses an unbounded number of shared
memory locations that support only read() and write(1)
[GR05]. All locations are initially 0. The idea is to
simulate a counter using an unbounded number of bi-
nary registers and then to run the racing counters algo-
rithm presented in Lemma 3. In this algorithm, there
are two disjoint, unbounded tracks on which processes
race, one for preference 0 and one for preference 1.
Each track consists of an unbounded sequence of shared
memory locations. To indicate progress, a process per-
forms write(1) to the location on its preferred track
from which it last read 0. Since the count on each track
does not decrease, a process can perform a scan using
the double collect algorithm [AAD+93]. It is not neces-
sary to read all the locations in a track to determine the
count it represents. It suffices to read from the location
on the track from which it last read 0, continuing to
read from the subsequent locations on the track until
it reads another 0. A process changes its preference if
it sees that the number of 1’s on its preferred track is
less than the number of 1’s on the other track. Once a
process sees that its preferred track is at least 2 ahead
of the other track, it decides its current preference.

It is possible to generalize this algorithm to solve
n-valued consensus by having n disjoint tracks, each
consisting of an unbounded sequence of shared memory
locations. Since test-and-set() can simulate write(1) by
ignoring the value returned, we get the following result.

Theorem 34. It is possible to solve n-consensus using
an unbounded number of memory locations supporting
only read() and either write(1) or test-and-set().

Now, suppose we can also perform write(0) or reset()
a memory location from 1 to 0. There is an existing bi-
nary consensus algorithm that uses 2n locations, each
storing a single bit [Bow11]. Then, it is possible to
solve n-consensus using O(n log n) locations by apply-
ing Lemma 9. There is a slight subtlety, since the algo-

rithm in the proof of Lemma 9 uses two designated lo-
cations for each round, to which values in {0, . . . , n−1}
can be written. In place of each designated location, it
is possible to use a sequence of n binary locations, all
initialized to 0. Instead of performing write(x) on the
designated location, a process performs write(1) to the
(x+1)’st binary location. To find one of the values that
has been written to the designated location, a process
reads the sequence of binary locations until it sees a 1.

Theorem 35. It is possible to solve n-consensus using
O(n log n) memory locations supporting only read(), ei-
ther write(1) or test-and-set(), and either write(0) or
reset().

10 Conclusions and Future Work

In this paper, we classify sets of instructions based on
the minimum number of instances of an object with a
countably infinite domain supporting these operations
that are needed to solve obstruction-free consensus. We
used consensus because it is a well-studied problem that
seems to capture a fundamental difficulty of multipro-
cessor synchronization.

One instance of a history object can be used to get
a wait-free implementation of any sequentially defined
object. To perform a non-trivial operation, a process
appends it identifier, a sequence number, the name of
the operations, and the values of its arguments. It can
use get-history to obtain the sequence of all non-trivial
operations that have been performed, from which it can
compute the result of a trivial operation or the last
nontrivial operation it appended.

Likewise, a memory location that supports compare-and-swap
(and, hence, read) can be used to implement any se-
quentially defined object in a non-blocking (and, hence,
obstruction-free) manner. The memory location stores
the value of the object. To perform an operation, a pro-
cess begins by reading the location. If the operation is
trivial, it uses the value, v, read to decide what to re-
turn and returns it. Otherwise, it computes the value v′

the object would have if its operation were to be per-
formed when the object has value v and the result r
that would be returned from the object. Then the pro-
cess performs compare-and-swap(v, v′). If v is returned
from the compare-and-swap, then the process returns
r. If not, it tries to perform the operation again.

Consequently, it may make sense to classify objects
based on the minimum number of instances of the ob-
ject needed to implement a history object or an ob-
ject that supports only compare-and-swap. Motivated
by our work, researchers have used combinations of in-
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structions to get efficient implementations of history
objects [GKSW17] and queues [KW18].

As mentioned in the introduction, it is reasonable
to consider objects with bounded domains, instead of
just countably infinite domains. It would be interesting
to study how the domain size of an object affects the
number of instances of the object that are necessary for
solving n-consensus or binary consensus among n pro-
cesses. Another direction for future work is to explore
a classification based on the expected step complexity
or solo step complexity of solving n-consensus.

There are several other interesting open problems.
Except for the recent results in [EGZ18], existing space
lower bounds rely on a combination of covering, va-
lency, and indistinguishability arguments. When cover-
ing processes apply swap(x), as opposed to write(x),
they can observe differences between executions. Thus,
to maintain indistinguishability, these processes cannot
be reused. For this reason, Lemma 4 [Zhu16] cannot
be directly extended to swaps instead of writes, even
though Lemmas 1, 2, and 3 can be extended. We be-
lieve that getting an Ω(n) space lower bound for solv-
ing n-consensus using only swap(x) and read() would
most likely require new techniques. An algorithm that
uses o(n) shared memory locations would be even more
surprising, as the processes would have to modify the
sequence of memory locations they access based on the
values they receive from swaps. (If they don’t do this,
then Lemma 4 can be extended.) We are unaware of
any such algorithm.

Getting an ω(
√
n) space lower bound for solving n-

consensus using only test-and-set(), reset() and read()
is also interesting. With test-and-set(), a covering pro-
cess can observe a difference between two executions, as
it can with swap(x). However, each location can only
store a single bit. This restriction could potentially help
when proving a lower bound.

To prove that dn−1
` e `-buffers are necessary for solv-

ing n-consensus, we extended the technique of [Zhu16].
The n − 1 lower bound of [Zhu16] has since been im-
proved to n by [EGZ18]. Hence, we expect that the new
simulation-based technique used there can also be ex-
tended to prove a tight space lower bound of dn

` e.
We conjecture that, for a set of instructions, I, which

contains only read(), write(x), and either increment()
or fetch-and-increment(), SP(I, n) ∈ Θ(log n). Simi-
larly, we conjecture that SP(I, n) ∈ Θ(n log n) for I =
{read(),write(0),write(1)}. Proving these conjectures
is likely to require techniques that depend on the num-
ber of input values, such as in the lower bound for m-
valued adopt-commit objects by Aspnes and Ellen [AE14].

We would like to understand the properties of sets
of instructions that are classified by the same function.

What properties enable a collection of instructions to
solve n-consensus using a single memory location? Is
there an interesting characterization of the sets of in-
structions I for which SP(I, n) is constant? What com-
binations of sets of instructions decrease the amount
of space needed to solve consensus? For example, us-
ing only read(), write(x), and either increment() or
decrement(), at least two memory locations are needed
to solve binary consensus. But with both increment()
and decrement(), a single memory location suffices. Are
there general properties governing these relationships?
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