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Abstract: Aiming to solve the problems of low accuracy of multi-step prediction and difficult 

determining of the maximum number of prediction steps of chaotic time-series, a multi-step 

time-series prediction model based on the dilated convolution network and Long Short-Term 

Memory (LSTM), named the Dilated Convolution- Long Short-Term Memory (DC-LSTM), is 

proposed. The dilated convolution operation is used to extract the correlation between the 

predicted variable and correlational variables. The features extracted by dilated convolution 

operation and historical data of predicted variable are input into LSTM to obtain desired 

multi-step prediction result. Furthermore, cross-correlation analysis (CCA) are applied to calculate 

the reasonable maximum prediction steps of chaotic time series. Actual applications of multi-step 

prediction were studied to demonstrate the effectiveness of the proposed model which has 

superiorities in RMSE, MAE and prediction accuracy because of the extracting of correlation 

between the predicted variable and correlational variables. Moreover, the proposed DC-LSTM 

model provides a new method for prediction of chaotic time series and lays a foundation for 

scientific data analysis of chaotic time series monitoring systems. 

Keywords: Chaotic time-series; Multi-step prediction; Dilated convolution network; Long 

Short-Term Memory 

 

1. Introduction 

The monitoring time series in the complex electromechanical systems are typical chaotic time 

series. As a typical complex electromechanical systems, process industry production system is 

composed of many subsystems, which are coupled by pressure, temperature, flow, vibration, 

rotation speed and other media networks (Wang et al. 2018).The distributed control system (DCS) 

database contains a large amount of monitoring data which includes abundant system status 

information. Scientific guidance for fault tracing and maintaining of process industry production 

system is important to ensure its operational safety and reliability. To guide the fault tracing and 

maintaining of process industry production system scientifically, it is necessary to recognize the 

changing trend of system performance in real time. Therefore, an accurate multi-step time series 

prediction research is of great significance. 

As an important research area in the data analysis field, time series prediction plays an 

important role in process industry (Wang et al. 2017b), financial analysis (Cao et al. 2019), clinical 

medicine (Alexander et al. 2018), social phenomena analysis (Wang et al. 2017a) and other fields (Ai 

et al. 2019), because of analyzing the historical data of a dynamic system and predicting its future 

operation pattern. The research of time series forecasting methods has begun with the regression 

analysis in mathematical statistics methods, such as polynomial interpolation method, least square 

method, and others. With the introduction of the Auto-Regressive Integrated Moving Average 

(ARIMA) model, the application of regression analysis method in time series forecasting has become 
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mature; however, regression analysis method can be applied only to linear time series (Pannakkong 

et al. 2018). Due to the non-linear characteristics of time series in practice, many scholars have 

carried out the research on non-linear time series prediction using the Back Propagation (BP) 

algorithm (Pal and Kar 2017), Support Vector Machine (SVM) (Xiao et al. 2019), Radial Basis 

Function (RBF) (Awad and Qasrawi 2018), Echo State Networks (ESN) (Lopez et al. 2018; Liang et al. 

2018), and other models (Yeh et al. 2019). The traditional artificial neural networks cannot capture a 

long-term dependence of time series data. Because the current output in Recurrent Neural Networks 

(RNN) depends on the previous computations, RNN are regarded as recurrent and frequently used 

in time series forecasting tasks (Chen et al. 2018). However, there is a problem of gradient 

disappearance in the RNN training process. To avoid this problem, an improved RNN model, the 

Long Short Term Memory Network (LSTM), has been proposed (Hochreiter and Schmidhuber 

1997). The LSTM model addresses the problems of gradient disappearance, gradient explosion, and 

insufficient long-term memory ability of RNNs, and can effectively use the time series information 

of long distance to predict time series. The traditional time series prediction models are single 

variable forecasting models. The Convolutional Recurrent Neural Network (CRNN) (Cirstea et al. 

2018) takes the results of convolution and pooling operations in each dimension of 

multi-dimensional data as an input of an RNN to realize multi-variable forecasting, but does not 

consider the correlation between variables. At present, the multi-step high-accuracy time series 

prediction methods such as the fusion convolutional long short-term memory network (FCL-Net) 

model (Ke et al. 2017), multi-output SVM model (Zhou et al. 2019) and a new hybrid vector error 

correction and nonlinear autoregressive neural network (VEC-NAR) model (Cheng et al. 2019), are 

all iterative prediction methods. With the increase in the number of prediction steps, the prediction 

error of the iterative prediction method increases rapidly, and the multi-step prediction accuracy 

decreases continuously. 

Convolution neural network was applied to document recognition when it was proposed firstly 

(Lecun et al. 1998). The deep learning method, gated CNN was applied to multi-step day-ahead time 

series prediction respectively, and the results were better than those of ARIMAX, a traditional time 

series prediction method (Cai et al. 2019). A mathematical theory of convolutional neural networks 

for feature extraction was proposed and proved (Wiatowski and Bölcskei 2017). As a variant of 

convolution neural network, dilated convolution network can implement the effect of convolution 

and pooling operations in convolution neural network by introducing a new parameter called the 

dilated rate into convolution operation (Li et al. 2018). Dilated convolution has been widely applied 

to the image segmentation tasks (Wang et al. 2019) and context features extraction (Sun et al. 2019). 

Many researchers (Strubell et al. 2017) (Chang et al. 2018) have proved that dilated convolutions can 

play a good role in extracting the sequence dependency, thus, dilated convolutions is applied to 

extract the features of multi-step time series prediction and capture the time dependence between 

variables in multivariate chaotic time series. It has been proved that dilated convolutions can be 

applied successfully to forecast financial time series of limited length (Borovykh et al. 2019). At the 

same time, as a typical RNN, LSTM which is often used in time series prediction can effectively 

utilize the long-distance temporal information of single variable (Liu et al. 2018). In addition, an 

improved LSTM which is called MSM-LSTM has shown good performance on the forecasting of 

typical chaotic time series obtained from the Lorenz system and the Kuramoto-Sivashinsky equation 

(Vlachas et al. 2018). In conclusion, the proposed DC-LSTM model, which is an improved LSTM 

based on a dilated convolution network, extracts the correlation between variables in multivariate 

chaotic time series using dilated convolution networks and making full use of the useful information 

of historical data. At the same time, it captures the long-distance temporal information of chaotic 
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time series data using the LSTM model, so as to effectively utilize a long-distance time series 

information for chaotic time series prediction. 

The rest of the paper is organized as follows. In Section 2, the dilated convolution network, 

LSTM and multi-step prediction of chaotic time series are introduced. An improved LSTM model 

based on dilated convolution network is presented in Section3. The detailed process of the proposed 

framework for multi-step prediction is described in Section 4. In Section 5, the experimental setup 

includes the benchmark, dataset and performance metrics are introduced. The prediction results and 

some extend discussions are analyzed in Section 6. The conclusions are drawn in Section 7. 

2. Preliminaries 

In order to extract temporal correlation and realize feature extraction between variables in 

multi-dimensional chaotic time series, a dilated convolution network is introduced. Each 

convolution output of the dilated convolution network contains large range input information, and 

the dilated convolution network realizes the convolution and pooling operations of an ordinary 

convolution network without losing the input information. At the same time, to extract a long-term 

dependence between variables in multi-dimensional chaotic time series and effectively use the 

long-distance historical data for the multi-step chaotic time series prediction, an LSTM network 

model is used. 

2.1 Dilated Convolution Network 

Convolution networks denote a neural network type that use convolution operation (Lecun et 

al. 1998). In convolution networks, the convolution kernel determines the weight matrix between the 

input and output, and the receptive fields determines the corresponding relationship between the 

output and input. The larger the receptive field is, the larger the amount of information obtained 

from the input is. The convolution kernel moves through the input matrix according to the certain 

rules and convolutes the input matrix in the receptive field to get the output matrix of the 

convolution network. 

The dilated convolution is also known as an atrous convolution, and it introduces a new 

parameter called the dilated rate to the ordinary convolution. This parameter defines the stride of 

dilated convolution when convolution kernels process the data (Li et al. 2018). A 2-D dilated 

convolution can be defined by(Li et al. 2018): 

 

     
1 1

, , ,
M N

i j

y m n x m r i n r j w i j
 

     ,

 

(1) 

where  ,x m n  denotes the dilated convolution input,  ,w i j  denotes the convolution kernel of 

dilated convolution, ( , )r r  denotes the dilated rate of dilated convolution, and  ,y m n  denotes 

the output of dilated convolution. When the size of convolution kernel is k k , the size of the 

receptive field of 2-D ordinary convolution is also k k , and a receptive field of 2-D dilated 

convolution having the dilated rate of ( , )r r  is expressed as 

       1 1 1 1k k r k k r       . 

As shown in Figure 1(a), when the size of the convolution kernel is 3 3 , and the dilated rate is 

 1,1 , and the receptive fields of dilated convolution have the size of 3 3 , which is the same as 

ordinary convolution. However, as shown in Figures 1(b) and 1(c), when the size of convolution 
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kernel is 3 3 , and the dilated rate is  2, 2  and  3,3 , respectively, the receptive fields of dilated 

convolution will be 5 5  and 7 7 , and the receptive fields of 2-D ordinary convolution will have 

the size of 3 3 . 

 

(a)                            (b)                           (c) 

Figure 1. The receptive fields of dilated convolution 

Dilated convolution has been widely applied to the problems where an image needs the global 

information or voice text has a long sequence information dependence, such as in the image 

segmentation tasks (Wang et al. 2019), speech synthesis model (Tan et al. 2019), and context features 

extraction (Sun et al. 2019). 

2.2 LSTM 

Recently, due to the continuous development of deep learning, some deep learning models 

have been gradually applied to the research of time series data. In many deep learning models, 

RNNs introduce the concept of time sequence into the network structure design, which makes it 

more adaptable to the time series data analysis. In some RNNs, the LSTM model solves the problems 

of gradient disappearance, gradient explosion, and insufficient long-term memory ability, so that 

LSTM can effectively utilize the long-distance temporal information (Liu et al. 2018). 

The hidden layer of the original RNN has only one state h , and it is very sensitive to the 

short-term input. In the LSTM, the state c  is added to save the long-term state of a sequence, thus 

realizing the long-term memory of the sequence. The LSTM model has three inputs: tx  which is the 

input value of the current LSTM network, 1th   which is the output value of the previous LSTM 

network, and 1tc   which is the unit state of the previous LSTM network. The outputs of the LSTM 

model are th  and tc  which denote the output value and the unit state of the current LSTM 

network, respectively. Gates, such as forget gates, input gates, and output gates, are used to control 

the model state in LSTM (Hochreiter and Schmidhuber 1997). Forget gates aim to control the amount 

of information transmitted from the previous unit state 1tc   to the current unit state tc , input gates 

aim to control the amount of information transmitted from the current network input tx  to the 

current unit state tc , and the output gates aim to control the amount of information transmitted 

from the previous unit state 1tc   to the current network output th .  

The LSTM model has been successfully used in time series data research in different fields, 

including text sequence-related language modeling (Sundermeyer et al. 2015), speech recognition 

(Zhao et al. 2019), machine translation (Baniata et al. 2018), media sequence-related audio and video 
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data analysis (Liu et al. 2019), picture title modeling (Hua et al. 2019), transportation related traffic 

flow prediction (Tian et al. 2018), aircraft fault prediction (Zhang et al. 2018), and so on. 

2.3 Multi-step Prediction of Chaotic Time Series 

Many natural phenomena and industrial systems, such as meteorological prediction, financial 

analysis and industrial field, exhibit chaotic behaviors which is non-periodic and not completely 

randomized. For the aim to predict the future behavior and mode of chaotic systems, the data in 

chaotic systems was generally saved into time series data, and the research on chaotic time series 

forecasting is essential. Unfortunately, chaotic time series prediction is a challenge and difficult 

work, because the data do not have a similar pattern. Phase space reconstruction method using 

known chaotic time series data was proposed by Takens (1981). Chaotic time series display some 

stochastic behavior in time domain, at the same time, the determined behavior of chaotic time series 

was shown in phase space structure. Therefore, chaotic time series in phase space can be analyzed 

and predicted (Sivakumar 2002; Dhanya and Kumar 2010; Zhou et al. 2016). With the development 

of Artificial Intelligence, some machine learning models, such as ANN (Karunasinghe and Liong 

2006), SVM (Pano-Azucena et al. 2018) and ESN (Liang et al. 2018), have showed good prediction 

performance in chaotic time series forecasting.  

Time-series prediction refers to the problem of predicting the future of sequential data based on 

some finite history. In its simplest form, the problem is restricted to predicting a single time-step into 

the future. However, for real time series, such as financial data and industrial monitoring data, only 

accurate multi-step prediction can meet the practical application needs. According to the data 

requirement of realizing multi-step prediction, multi-step prediction can be divided into univariate 

prediction which refers to using only the historical data of predicted variable to achieve multi-step 

prediction and multivariable prediction which refers to using the historical data of predicted 

variable and correlational variables to achieve multi-step prediction of predict variable. In addition, 

according to the algorithm of multi-step time series prediction, multi-step prediction can be divided 

into iterative prediction and direct prediction. Iterative prediction refers to recursively apply a 

single-step prediction model by feeding its output as input to the next time-step. Direct prediction 

refers to directly predict the data after multi-step by using historical data to train a multi-step time 

series prediction model.  

What we study in this paper is multi-step chaotic time series prediction, in which the multi-step 

prediction method is multivariable direct prediction in order to make full use of multivariable data 

and avoid error accumulation in iterative prediction. 

3. Improved LSTM Model Based on Dilated Convolution Network 

The data processed in this paper represent multivariate time series data which can be expressed 

as 
1 2( , ,..., )mX X X X , where m  denotes the dimension of time series data. The data for each 

dimension is expressed as
1 2( , ,..., )i i i i

nX x x x , where 1,2,...,i m  and n  is the number of 

sampling points of time series data. The predicted sequence is expressed as 
1 2 p

ˆ ˆ ˆ ˆ( , ,..., )Y y y y , 

where p  denotes the continuous prediction length of time series. At the same time, the target 

observations Y  of predicted sequence Ŷ  in this model is equal to one-dimension data of 
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multivariate time series 
jX , where 1 j m  . Assuming that the current time is denotes as t , the 

input data of this model is historical data and it can be expressed as 
      1 2

, ,...,
t l t l t

X X X X
   

  

with the time length of l , and the output data of this model is predicted data which can be 

expressed as 
     1 2
ˆ ˆ ˆ( , ,..., )

t t t p
Y y y y


  
  with the time length of p ; namely, the p-step continuous 

prediction of time series data is realized. In this model, the number of data samples of training data 

is  0.9 2XN n l   , and of testing data is  0.1 2CN n l   . Variables including the 

predicted variable and the correlational variable are represented by V in this paper. 

The improved LSTM based on a dilated convolution network, i.e., the DC-LSTM, is a UY-Y 

method (Zhang et al. 2017), which uses the correlational variable U  and the predicted variable V  

as an input data to predict the value of V  after p  steps, which can be expressed as follows: 

                   1 1 1

1 1 1 1 1 1
, ,..., , , ,..., ,..., , ,...,k k k

t p UV V t t t l t t t l t t t l
v F v v v u u u u u u          

 .
 

(2) 

Equation (2) expresses the value of the predicted variable V  after p  steps (
t pv 

) by using l  

historical data of the predicted variable V  and l  historical data of the k-dimensional correlational 

variable that is given by 
1 2, ,..., kU U U . Because the historical information of the correlational 

variable U  and the predicted variable V  is used, the predicted results can be obtained better.  

In this work, to understand the model easily, the correlational variable is , 2,3,...,iV i m , and 

the predicted variable is 
1V . 

 

Figure 2. The improved LSTM model based on dilated convolution network 

The DC-LSTM model is shown in Figure 2, where it can be seen that the DC-LSTM input model 

is 
1 2( , ,..., )mX X X X . First, the dilated convolution of multivariate historical data 

1 2( , ,..., )mX X X X  is performed at kernel_size=  2,2  and dilated_rate=  ,1 , 1,2,...,i i l , so 

that the lead-lag matrix features(2) of the correlational variable 2V  and predicted variable 1V  is 

extracted. Then, features(2) is used as the initial unit state 0c  of the LSTM network, and the 

historical data 
2X  of correlational variable 2V  is used as the input of the LSTM network. The 

LSTM network outputs a simple prediction value 
 21

X̂  of the predicted variable 1V  obtained by 

using the correlational variable 2V . Similarly, 
   31 1ˆ ˆ,...,

m
X X  can be obtained by using the 

correlational variables 
3,..., mV V . At the same time, the historical data 

1X  of the predicted 

variable 1V  denotes the direct input into the LSTM network which is used to predict 
 11

X . Finally, 
     11 21 1ˆ ˆ ˆ, ,...,

m
X X X  are merged into a matrix 

 1
X̂ , which denotes the input into the LSTM 

network which is used to get the value of the predicted variable 
1V  after p  steps (

 
1ˆ
t p

y


). 
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4. General Framework of the Multi-step Prediction of Chaotic Time-series 

The general framework of the multi-step prediction of chaotic time series is shown in Figure 3, 

wherein it can be seen that it includes three parts: data preprocessing, DC-LSTM prediction, and 

multi-step continuous prediction. In addition, the pseudocode of this framework can be seen in 

Figure 4. 

 

Figure 3. The general framework of the multi-step prediction of chaotic time series 

4.1 Data Preprocessing 

(1) Selection of Predicted Variable and Correlational Variables 

The DC-LSTM model introduced in this paper is suitable for the multi-step prediction of chaotic 

time series. The variables that need to be predicted by using the multi-step time series are the 

predicted variable V , and the other monitoring variables are the correlational variable U . 

Obviously, the multi-step prediction of each dimension monitoring variable can be realized by 

changing the predicted variable, so as to realize the state prediction of the monitoring system. 

(2) Chaos Detection of Time Series 

The basic characteristic of chaotic motion is that it is very sensitive to the initial conditions. 

Namely, the trajectories generated by two very close initial values become exponentially separated 

over time. This phenomenon can be quantitatively described by the Lyapunov exponent. The 

Lyapunov exponent   refers to the eigenvalue obtained by averaging the whole phase space 
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trajectory after phase space reconstruction (Chlouverakis and Adams 2003). Starting from the 

sensitivity of the initial value of a chaotic system, it quantitatively describes the speed of exponential 

separation of phase trajectories generated by two similar initial values over time. When 0  , the 

reconstructed phase space trajectories are separated rapidly, and the system is highly sensitive to the 

initial value and tends to be chaotic, which indicates that the information sequence has chaotic 

characteristics. On the other hand, when 0  , the system is insensitive to the initial value. Lastly, 

0   represents the boundary state and needs to be studied further. Among a series of   

obtained from the phase space trajectory, the maximum value maxλ  represents the divergence 

speed of the phase space trajectory, and the minimum value minλ  represents the convergence speed 

of the phase space trajectory. Therefore, in this study, maxλ 0  is taken as the criterion of whether 

the information sequence has chaotic characteristics (Chlouverakis and Adams 2003). 

 

Figure 4. The pseudocode of the multi-step prediction of chaotic time series 

To obtain maxλ , the mutual information method proposed by Fraser (Fraser and Swinney 1986) 

is used to determine the delay time  . The basic idea of delay time selection based on the mutual 

information method is to calculate the mutual information function ( )I   at different values of time 

delay  . The value of   denotes the delay time that corresponds to the first local minimum of the 

mutual information function ( )I  , and a suitable phase space delay coefficient   can be 

determined. Here, the Cao method (Cao 1997) which denotes an improved pseudo-nearest neighbor 
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method(Rhodes and Morari 1997) was used to determine the embedding dimension. The Cao 

method can effectively distinguish the random signal and the deterministic signal. This method 

requires only the value of time delay to calculate the embedding dimension, and can calculate the 

embedding dimension d  with a small amount of data. Next, the Wolf algorithm (Wolf et al. 1985) is 

used to calculate the maximum Lyapunov exponent 
maxλ . Under the Euclidean distance, using the 

initial point 
1x  as the base point, we can find a phase point 

1nx  which is the closest point to 
1x  

as an endpoint in the phase space, and record the distance between these two points as 

11 1 nL x x  . For each point iX  in the phase space, the Euclidean distance 

' ( ) , 1,2,...,min( , )i j i j i
L j X X i m j m j 

      of the corresponding nearest neighbor pair is 

calculated after i -steps. Finally,    '

1

1
y

n

i

j

i lnL j
n t 



  is calculated, where n  refers to the 

number different from zero in  '

iL j . The slope of the fitting line which is obtained by the least 

square method represents the maximum Lyapunov exponent 
maxλ . 

(3) Calculation of Sliding Time Window Size 

The time lead-lag d  between the predicted variable V  and the correlational variable U  is 

an important parameter for calculating the sliding time window size of time series (Zhang et al. 

2017). In theory, as long as the correlational variable U  is ahead of the predicted variable V , the 

predicted variable V  can be predicted accurately. The cross-correlation analysis(CCA) (Perkel et al. 

1967) is an effective method for correlation analysis between variables. At the same time, the CCA 

can extract the temporal lead-lag relationship between variables, including the significant lead and 

significant lag. Therefore, we calculate the lead-lag relationship between the predicted variable V  

and the correlational variable U  by using the CCA. When the correlation variable ,2kX k m   

which is ahead of the predicted variable 1V  is found, the leading order ,2kd k m   is calculated, 

and  max kl d  is taken as the sliding time window size. Then the time series are slipped 

sequentially to obtain the input and output of the DC-LSTM model. 

(4) Selection of training set and test set 

When l  m-dimension historical data samples  1 1, ,...,k k k lX X X X


    are used to predict 

the value of the predicted variable after p  steps, 
1

1k l px    , first, the multidimensional time series 

data 
1 2( , ,..., )mX X X X  are slipped along the time sequence. Then, the first l  historical data 

samples  1 1, ,...,k k k lX X X X    are selected as the input data of the model, while 
1

1
ˆ

k l py     

denotes the output data of the model, so as the input dataset and output dataset of the model are 

obtained. At the same time, the first 90% data of the input database and output database are used as 

model training data, while the last 10% data of input database and output database are used as 

model test data. In other words, the number of samples of training data is  0.9XN N l    and 

the test data is  0.1CN N l   . 

4.2 DC-LSTM prediction 

(1) Calculation of maximum number of prediction steps using cross-correlation analysis 
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As already mentioned, the time lead-lag d  between the predicted variable V  and the 

correlational variable U  is an important parameter for determination of the maximum number of 

prediction steps of chaotic time series. In theory, as long as at least one selected correlational variable 

kU  is ahead of the predicted variable V , the maximum leading order of multiple correlation 

variable kU  is the maximum prediction step. In this paper, we calculate the lead-lag relationship 

between the predicted variable 
1V  and the correlational variable , 2,3,...,iV i m  by using the 

CCA. When the correlation variable ,2kV k m   which is ahead of the predicted variable 
1V  is 

found, the leading order ,2kd k m   is calculated, and  max max kp d  is taken as the 

maximum number of prediction steps. 

(2) Feature Extraction Based on Dilated Convolution Network  

 

Figure 5. Feature extraction based on dilated convolution network 

As shown in Figure 5, the convolution matrix with the size of m l  is obtained by the dilated 

convolution operation using the convolution kernel with the size of 2 2  and the dilated rate of 

 1,1 , along with inputting the set 
1 2( , ,..., )mX X X X  with the size of m l  into the model 

after MinMaxScaler. The first row of the convolution matrix denotes the first-order lag-relationship 

vector 
 12

1r  between the predicted variable 
1V and correlational variable 

2V . Following the same 
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principle, the convolution matrix with the size of m l  is obtained by the dilated convolution 

operation using the convolution kernel size of 2 2  and the dilated rate of  ,1l , along with 

inputting the set 
1 2( , ,..., )mX X X X  with the size of  m l  into the model. The first row of the 

convolution matrix denotes the thl -order lag-relationship vector 
 12

lr  of the predicted variable 
1V  

and the correlational variable 2V . All the vectors, from the first-order lag-relationship vector 
 12

1r  

to the thl -order lag-relationship vector 
 12

lr  of the predicted variable 
1V  and the correlational 

variable 2V  are merged into a matrix with size of l l . The feature relationship matrix 

 2feature  of the predicted variable 
1V  and the correlational variable 2V  is obtained by the 

pooling operation. 

Similarly, the feature relationship matrix  3feature  of the predicted variable 
1V  and the 

correlational variable 3V  is obtained, and the same operation is repeated until the feature 

relationship matrix  feature m  of the predicted variable 
1V  and the correlational variable mV  

is obtained. 

 (3) LSTM-Based Direct Multi-step Time Series Prediction 

Firstly, the preliminary prediction value 
 1ˆ , 2,3,...,
i

X i m  is obtained by the LSTM 

prediction model using the feature relationship matrix   , 2,3,...,feature i i m  as the initial unit 

state value 0c  of the LSTM, and using the correlational variable , 2,3,...,iX i m  as the LSTM 

input. Simultaneously, a simple prediction value 
 11

X̂  is obtained by the LSTM prediction model 

using the correlational variable 1V  as the LSTM input. Then, all the preliminary predictive values 
 1ˆ , 1,2,...,
i

X i m  are merged into a matrix which denotes the LSTM, thus, the kth step predictive 

value 
 
1ˆ
t k

X


 of the predicted variable 
1V  is obtained by the LSTM model, where k=1,2,…,p. After 

the inverse transform of MinMaxScaler, the original scale of the predictive value 
 
1ˆ
t k

X


 is obtained. 

4.3 Multi-step Continuous Prediction 

(1) DC-LSTM model training 

In the case of optimal parameters, p different DC-LSTM models 1 2, ,..., pModel Model Model  

are trained, and then, 
     
1 1 1

1 2
ˆ ˆ ˆ, ,...,

t t t p
Y Y Y

  
 are predicted by the corresponding DC-LSTM models. 

(2) Multi-step continuous time series prediction based on model combination 

Previously predicted 
     
1 1 1

1 2
ˆ ˆ ˆ, ,...,

t t t p
Y Y Y

  
 by different DC-LSTM models are merged into a 

continuous vector        
1 1 1 1

1 2
ˆ ˆ ˆ ˆ( , ,..., )

t t t p
Y p Y Y Y

  
 , which denotes the p-step continuous prediction 

result of chaotic time series 
1X . 

5. Experimental Setup 

5.1 Time series data 

We conduct our experiments over two different datasets, the conditional monitoring dataset 

obtained from the UCI data set and the compressor group dataset obtained from the practical 

compressor group of an energy and chemical enterprise. Details of the two datasets are described 

below. 

(1) Conditional Monitoring dataset 
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Conditional monitoring dataset represents an open time series data set obtained from the UCI 

dataset(https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems)(Helwi

g et al. 2015). It is a multi-sensor based monitoring data-set for the hydraulic test-bed. The sampling 

frequency of different sensors are 1 Hz, 10 Hz or 100 Hz for 2205 minutes. In this work, the variables 

are unified to 0.1 Hz by downsampling to unify the time correspondence of different sensors. After 

unification, there are 13,230 data samples, including 17-dimensional indicators such as pressure, 

flow, and temperature. 

(2) Compressor group dataset 

Compressor group dataset is obtained from the practical compressor group of plant 

(https://pan.baidu.com/s/1xdiyrMzId3ULA1lB33cu3g (fetch code: c7cq)). The time series of the 

compressor group monitoring included the multi-dimensional monitoring data such as pressure, 

temperature, flow rate, rotating speed, vibration, and so on (Wang et al. 2017c). The 16-dimensional 

monitoring time series of the compressor group dataset are sampled for 120 hours, so a total of 7200 

data samples are obtained at the sampling frequency of 1/60Hz. 

(3) Parameter Calculations 

To verify the proposed model, variable 1V  is chosen as a predicted variable, while the variables 

, 2,3,...,iV i m  is chosen as the correlational variables. 

First, the time delay   of phase space reconstruction is calculated by using the mutual 

information method (Fraser and Swinney 1986), and the embedding dimension d  of the phase 

space reconstruction is calculated by using the Cao method (Cao 1997); then, the maximum 

Lyapunov exponent maxλ  is calculated by using the Wolf algorithm (Wolf et al. 1985). The 

calculated  , d  and maxλ  of the predicted variable 1V  are as follows: 

Table 1 The calculation results of chaotic detection parameters 

Dataset Variable name   d  maxλ
 

Conditional monitoring dataset 1V
 2 10 0.015697334 

Compressor group dataset 1V
 10 10 0.001008544 

As can be seen from Table 1, maxλ 0 , the variable 1V  of the conditional monitoring dataset 

and the variable 1V  of the compressor group dataset are both chaotic time series. 

Then, through the cross-correlation analysis, the time lag relationships between each correlated 

variable , 2,3,...,iV i m  and predicted variable 1V  are obtained and showed in Table 2 and Table 

3. Notably, the negative lag relationship indicates that the correlated variable , 2,3,...,iV i m  is 

ahead of the predicted variable 1V , and the insignificant indicates that the lag relationship between 

the correlated variables , 2,3,...,iV i m  and predicted variable 1V  is not significant, while the 

positive lag relationship indicates that the predicted variable 1V  is ahead of the correlated variable 

, 2,3,...,iV i m . 

Table 2 The time lag relationship between Vi, i=2,…,17 and V1 in the conditional monitoring dataset 

Correlated Variables Time Lag Correlated Variables Time Lag 
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Variable 2 0 Variable 10 -4 

Variable 3 -2 Variable 11 -4 

Variable 4 -2 Variable 12 0 

Variable 5 Insignificant Variable 13 -5 

Variable 6 Insignificant Variable 14 0 

Variable 7 0 Variable 15 -1 

Variable 8 -2 Variable 16 -1 

Variable 9 Insignificant Variable 17 -2 

Table 3 The time lag relationship between Vi, i=2,…,16 and V1 in the compressor group dataset 

Correlated Variables Time Lag Correlated Variables Time Lag 

Variable 2 -4 Variable 10 36 

Variable 3 13 Variable 11 -11 

Variable 4 -5 Variable 12 -5 

Variable 5 -12 Variable 13 -18 

Variable 6 Insignificant Variable 14 -1 

Variable 7 -13 Variable 15 Insignificant 

Variable 8 -10 Variable 16 Insignificant 

Variable 9 94   

Last, as shown in Tables 2 and 3, there are three kinds of time lag relationships, positive, 

negative and insignificant. Since only negative time lag relationships play a theoretical role in our 

multi-step prediction, we take the value with the largest absolute value in negative as the input 

length of the model to maximize the utilization of useful information in historical data for multi-step 

prediction. So that the sliding time window size of the conditional monitoring dataset is calculated 

to be  max max( 2 , 2 , 2 , 4 , 4 , 4 , 5 , 1 , 1 , 2 ) 5kl d             . By calculation, 

the input length 5l   and the maximal predicted length max 5p   of the conditional monitoring 

dataset. The number of samples in training data is 

 0.9 2 0.9 (13230 2 5) 11898XN N l        , and the test data is 

 0.1 2 0.1 (13230 2 5) 1322CN N l         of the conditional monitoring dataset. At the 

same time, as shown in Table 3, about the compressor group time series, the size of the sliding time 

window  max max( 4 , 5 , 12 , 13 , 10 , 11 , 5 , 18 , 1) 18kl d            . The input 

length 18l  , and the maximal predicted length max 18p  . The number of data samples of 

training data is  0.9 0.9 (7200 2 18) 6447XN N l        , and the test data is 

 0.1 0.1 (7200 2 18) 717CN N l        . 

5.2 Benchmark models 

To verify the validity of our proposed DC-LSTM model, several well-known and effective 

chaotic time series forecasting models such as the LSTM time series forecasting model, the 

Multi-task convolutional neural network (MTCNN) model, the encoder-decoder model and the 

convolutional recurrent Neural Network (CRNN) model are selected for comparison. 
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As an improved RNN, the LSTM model (Hochreiter and Schmidhuber 1997) solves the 

problems of gradient disappearance, gradient explosion and insufficient long-term memory of a 

typical RNN, an it has been often used in time series prediction. As a baseline, input shape is set to 

be ( ,1)l , and the units of LSTM layer is set to be 32.  

The encoder-decoder model (Wang and Zhang 2018) uses one LSTM model to encode the time 

series in the encoder part, and then uses another LSTM model to decode the coding vector in the 

decoder part. The encoder-decoder model has made great progress in the machine translation field, 

but it can also be used in time series prediction. As a baseline, input shape is set to ( ,1)l , and the 

units of LSTM layer in encoder and decoder are both set to 32.  

The MTCNN model (Pang et al. 2017) uses the Convolutional Neural Networks (CNNs) to 

extract features from the multi-variable time series data, and then uses the feature data as an input of 

the Artificial Neural Network (ANN) for non-linear processing, so as to realize the prediction of time 

series data. The MTCNN model utilizes the feature extraction ability of CNN to improve the 

prediction accuracy of time series data. As a baseline, input shape is set to (m, ,1)l . The filters is set 

to 8 and kernel_size is set to (1,2)  of Conv2D layer, next come a MaxPooling2D layer whose 

pool_size is (1,2) , then two Dense layers and one Dropout layer are behind the merge of m 1  

MaxPooling2D layers’ output. 

The CRNN model (Cirstea et al. 2018) uses CNN to extract the correlation features of time series 

data and uses an RNN to capture the time dependence of time series data. First, CNN is applied to 

extract the features from the multi-variable time series data, and then the RNN is applied to the 

results of feature extraction to realize the time series prediction. As a baseline, input shape is set 

to (m, ,1)l . The filters is set to 8 and kernel_size is set to (1,2)  of Conv2D layer, next come a 

MaxPooling2D layer whose pool_size is (1,2) , then LSTM layer whose units is set to 32 is behind 

the merge of m 1  MaxPooling2D layers’ output. 

As a control group, the Yesterday model use the current data as the p  steps prediction data to 

verify whether the prediction results are affected only by the current time data, where max[1, ]p p . 

About DC-LSTM model, input shape is set to (m, ,1)l , 1l   AtrousConv2D layers whose 

kernel_size=  2,2  and dilated_rate=  ,1 , 1,2,...,i i l  and 1l   LSTM layers whose units is set to 

l  are set, then LSTM layer whose units is set to 32 is behind the merge of m  LSTM layers’s output. 

All experiments are carried out in the Python compiling environment using an Intel Core 

i7-7770 CPU machine. Implementation of all benchmark and DC-LSTM models rely on the Python 

package: pandas, numpy. All Deep-Learning based models are developed using the Keras 

(https://github.com/keras-team/keras).  

5.3 Performance metrics 

We use multiple criteria to evaluate our model, including the rooted mean squared error 

(RMSE) and the mean absolute error (MAE), both of which are widely used in regression tasks. The 

RMSE and MAE are respectively defined by: 

 

 
2

1 1

1

1
ˆ

N

i i

i

RMSE x x
N 

  ,

 

(3) 

 

1 1

1

1
ˆ

N

i i

i

MAE x x
N 

  ,

 

(4) 



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional.

 15 of 23 

 

where N denoted the number of test data samples, 
1

ix  denoted the true value of the ith test data 

sample, and 
1ˆ
ix  denoted the predicted value of the ith test data sample.  

6. Results and discussion 

6.1 Model comparison 

Through the training, the parameters of the LSTM, encoder-decoder, CRNN, MTCNN, and 

DC-LSTM are optimized, for example, the ‘epochs’ of DC-LSTM model is 10 and the ‘batch_size’ is 

0.1 XN . The error comparisons of the conditional monitoring dataset and the compressor group 

dataset are shown in Table 4 and Table 5. Notably, the RMSE and MAE values in Tables 4 and 5 

denote the average values of 20 successive model predictions under the same conditions to avoid the 

randomness of the results. The column of ‘Improved %’ indicates the % improvement from the best 

result among the benchmark models to DC-LSTM model. The raw of ‘Average Improved %’ means 

the average % improvement of all max, 1,2,...,p p p  steps. 

Table 4 The average error comparison for the conditional monitoring dataset of 20 runs 

Steps Error LSTM 
Encoder 

-decoder 
MTCNN CRNN Yesterday 

DC 

-LSTM 

Improved

% 

1 step 
RMSE 1.156  1.144  1.039  1.235  6.701  0.819  21.174% 

MAE 0.738  0.741  0.615  0.804  5.418  0.315  48.780% 

2 steps 
RMSE 1.419  2.026  1.079  1.084  8.488  0.834  22.706% 

MAE 1.218  1.497  0.669  0.667  6.573  0.350  47.526% 

3 steps 
RMSE 2.642  2.611  1.070  1.374  9.319  0.795  25.701% 

MAE 1.880  1.732  0.684  0.957  7.756  0.270  60.526% 

4 steps 
RMSE 2.676  1.879  1.032  1.230  8.485  0.808  21.705% 

MAE 1.937  1.373  0.642  0.847  6.573  0.309  51.869% 

5 steps 
RMSE 0.836  0.898  1.112  1.078  6.702  0.832  0.478% 

MAE 0.380 0.472  0.687  0.692  5.419  0.344  9.474% 

Average 

Improved 

% 

RMSE 18.353% 

MAE 43.635% 

Table 5 The average error comparison for the compressor group dataset of 20 runs 

Steps Error LSTM 
Encoder 

-decoder 
MTCNN CRNN Yesterday 

DC 

-LSTM 

Improved

% 

1 step 
RMSE 0.063 0.108 0.409 0.226 0.024 0.022 6.925% 

MAE 0.066 0.100 0.402 0.215 0.015 0.020 -35.630% 

2 steps 
RMSE 0.047  0.096  0.474  0.241  0.043  0.013  69.653% 

MAE 0.054  0.083  0.468  0.227  0.027  0.010  62.711% 

3 steps 
RMSE 0.071  0.157  0.317  0.190  0.059  0.023  61.315% 

MAE 0.077  0.151  0.311  0.179  0.038  0.021  44.088% 

4 steps RMSE 0.132  0.196  0.522  0.205  0.074  0.033  55.650% 
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MAE 0.136  0.190  0.517  0.190  0.047  0.029  38.517% 

5 steps 
RMSE 0.083  0.146  0.345  0.263  0.088  0.033  60.357% 

MAE 0.088  0.138  0.337  0.250  0.056  0.027  51.964% 

6 steps 
RMSE 0.078  0.114  0.485  0.180  0.101  0.045  42.608% 

MAE 0.083  0.106  0.478  0.165  0.064  0.035  45.519% 

7 steps 
RMSE 0.079  0.100  0.420  0.273  0.113  0.053  33.088% 

MAE 0.084  0.084  0.412  0.261  0.072  0.044  38.537% 

8 steps 
RMSE 0.081  0.276  0.345  0.374  0.125  0.048  40.424% 

MAE 0.090  0.269  0.336  0.363  0.078  0.030  61.740% 

9 steps 
RMSE 0.083  0.366  0.363  0.184  0.135  0.067  19.270% 

MAE 0.090  0.362  0.355  0.174  0.085  0.048  43.306% 

10 steps 
RMSE 0.069  0.444  0.404  0.241  0.145  0.067  3.115% 

MAE 0.080  0.440  0.395  0.227  0.091  0.043  46.515% 

11 steps 
RMSE 0.090  0.161  0.628  0.220  0.154  0.060  33.006% 

MAE 0.101  0.149  0.623  0.206  0.097  0.037  61.895% 

12 steps 
RMSE 0.087  0.075  0.480  0.236  0.163  0.072  3.383% 

MAE 0.100  0.053  0.474  0.223  0.103  0.043  19.219% 

13 steps 
RMSE 0.124  0.079  0.189  0.202  0.171  0.087  -9.960% 

MAE 0.133  0.059  0.176  0.190  0.109  0.054  8.448% 

14 steps 
RMSE 0.070  0.324  0.349  0.214  0.179  0.070  -0.488% 

MAE 0.087  0.317  0.339  0.203  0.115  0.050  42.634% 

15 steps 
RMSE 0.080  0.268  0.382  0.223  0.186  0.076  5.105% 

MAE 0.094  0.259  0.374  0.211  0.120  0.049  47.974% 

16 steps 
RMSE 0.073  0.152  0.482  0.205  0.192  0.053  26.916% 

MAE 0.087  0.141  0.474  0.194  0.125  0.030  65.449% 

17 steps 
RMSE 0.083  0.309  0.421  0.319  0.197  0.070  15.156% 

MAE 0.091  0.301  0.413  0.308  0.130  0.044  51.662% 

18 steps 
RMSE 0.104  0.123  0.299  0.166  0.203  0.070  33.003% 

MAE 0.121  0.112  0.287  0.151  0.135  0.042  62.561% 

Average 

Improved 

% 

RMSE 27.696% 

MAE 42.062% 

About the conditional monitoring dataset, as can be seen in Table 3, the RMSE and MAE values 

of DC-LSTM model are lower than the minimum values of the other five models in all 1-, 2-, 3-, 4- 

and 5- steps prediction. And the RMSE and MAE of the DC-LSTM method were respectively 

reduced by 18.353% and 43.635% on average compared with the minimum values of the other five 

methods. In addition, as shown in Table 4, except the RMSE in 13- , 14- steps and the MAE in 1- step, 

other steps’ RMSE and MAE of DC-LSTM model are lower than the minimum values of the other 

five models, so that 27.696% of RMSE and 42.062% of MAE decreased on average. The above results 
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verify the effectiveness and superiority of the DC-LSTM method in the multi-step time series 

prediction of the conditional monitoring dataset. 

6.2 Results of multi-step continuous prediction based on DC-LSTM model 

As shown in Figure 6, after training the DC-LSTM model with the conditional monitoring 

dataset, the data of 12000th, 12200th, 12400th, 12600th, 12800th and 13000th were predicted successively 

in five steps. In Figure 6, it can be seen that the multi-step continuous prediction results of the 

DC-LSTM model were good, and the dynamic characteristics of time series data could be captured. 

Meanwhile, the direct prediction results of 18 steps for the testing data are shown in Figure 7. Using 

the combination of the DC-LSTM models, the compressor data of 6600th, 6700th, 6800th, 6900th, 7000th 

and 7100th were predicted in 18 steps. As shown in Figure 7, the predicted results could capture the 

development trend of real data. 

 

Figure 6. The 5-step continuous prediction of the conditional monitoring dataset by DC-LSTM 

 

Figure 7. The 18-step continuous prediction result of the compressor group dataset by DC-LSTM 

6.3 Discussion 
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(1) Complexity analysis 

As described in the former sections, the LSTM model mainly consists of a LSTM layer, the 

Encoder-decoder model mainly consists of two LSTM layers, the MTCNN model mainly consists of 

1m  Conv2D layers and two Dense layers, the CRNN model mainly consists of 1m  Conv2D 

layers and a LSTM layer, and the proposed DC-LSTM model consists of 1l   AtrousConv2D 

layers and 1l m   LSTM layers. The number of training parameters about all benchmark models 

and the proposed DC-LSTM model are illustrated in Table 6. It can be seen that there is no order of 

magnitude difference in training parameters between the DC-LSTM model and other models. In 

other words, the training complexity of the DC-LSTM model approximately equals to that of other 

models. The reason for this is that the training parameters of a AtrousConv2D layer are far less than 

a Conv2D layer because of many parameters in a AtrousConv2D layer are preset to 0 and don’t need 

to be trained. 

Table 6 The training parameters of all benchmark models and DC-LSTM model 

Model LSTM 
Encoder 

-decoder 
MTCNN CRNN 

DC 

-LSTM 

Training 

parameters  
4385 8737 6360 5922 7146 

(2) The advantage of the proposed DC-LSTM 

In the prediction of chaotic time series, the calculation of a reasonable maximum number of 

prediction steps is always challenging. Namely, if the maximum number of prediction steps is set to 

be too small, the prediction requirements cannot be met; on the other hand, if the maximum number 

of prediction steps is set to be too large, the prediction accuracy is very low. The DC-LSTM model 

calculates the time-delay relationship between the predicted variable and correlational variables 

using the CCA, so as to calculate the maximum number of prediction steps. The verification which is 

conducted using the conditional monitoring dataset and compressor group data showed that the 

maximum number of prediction steps calculated by the DC-LSTM model could satisfy the 

prediction requirements on the premise of guaranteeing the prediction step size. 

The multistep prediction of chaotic time series can be divided into the iterative prediction and 

direct prediction. Due to the error accumulation of the iterative multi-step prediction, direct 

prediction was used to realize the multi-step prediction in DC-LSTM model. The continuous 

multi-step prediction of chaotic time series is realized using the combination of developed DC-LSTM 

models. In the verification with the conditional monitoring dataset, the RMSE and MAE values of 

the DC-LSTM multi-step prediction are respectively 18.353% and 43.635% lower than the minimum 

values of the other methods, and they are 27.696% and 42.062% about the compressor group dataset. 

Consequently, the proposed DC-LSTM multi-step prediction method can reduce the multi-step 

prediction error of chaotic time series. 

(3) The future challenge 

In the previous hypothesis and argument, one of the most important advantages of the 

DC-LSTM is the ability to take advantage of the correlation between the predicted variable and 

correlational variables by use dilated convolution in the DC-LSTM model. After validation of the 
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conditional monitoring dataset and the compressor group dataset, we can conclude that extracting 

the correlation between the predicted variable and correlational variables is useful for multi-step 

prediction of chaotic time series, but it cannot quantify whether the correlation extracted by 

DC-LSTM model is maximized at present. So that the next step is to study how to maximize the 

useful information contained in multi-dimensional time series to serve the prediction of multi-step 

time series. Moreover, the current DC-LSTM model can get good accuracy in max[1, ]p  steps 

prediction, but the accuracy cannot be guaranteed if step number is bigger than maxp . Therefore, 

the next research plan is to optimize the DC-LSTM model so that it can be used in long-period 

chaotic time series prediction.  

7. Conclusions 

Prediction of multi-step chaotic time series is always a difficult problem. In order to determine 

the correlation between the predicted variable and correlational variables, the dilated convolution 

operation was introduced in DC-LSTM model. At the same time, the features extracted by dilated 

convolution operation and historical data of predicted variable are input into LSTM to achieve good 

multi-step prediction result. Additionally, CCA was used to calculate the reasonable maximum 

prediction steps of chaotic time series. 

In this study, a new general framework for the multi-step prediction of chaotic time series was 

proposed, and data preprocessing, DC-LSTM prediction, and multi-step continuous prediction 

included. The RMSE and MAE of the conditional monitoring dataset and the compressor group 

dataset were obtained based on the trained DC-LSTM model. Comparing with the existing models, 

such as the LSTM model, the MTCNN model, the Encoder-decoder model and CRNN model, the 

DC-LSTM model proposed in this paper has superiorities in RMSE, MAE and prediction accuracy 

because of the extracting of correlation between the predicted variable and correlational variables. 

Thus, the proposed DC-LSTM model provides a new method for prediction of chaotic time series 

and lays a foundation for scientific data analysis of chaotic time series monitoring systems. 
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