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ABSTRACT

This thesis comprises three essays on human studies and financial economics. The
first two essays explore the implications of Kahneman-Tversky’s prospect theory on
investors’ trading behavior, equilibrium relations among asset returns, equilibrium
relations between asset prices and trading volume, and Pareto optimal rules of risk
sharing. Based on experimental findings, the third essay develops a revised game
paradigm for the finitely repeated prisoners’ dilemma and applies this new paradigm
to study the interactions between debt maturity and firms’ product market compe-
tition.

‘The first essay shows that the trading volume tends to be higher when the asset
price rises than when it falls, if traders have preferences described by prospect theory.
This prediction is well supported by empirical evidence. The second essay shows
that the Sharpe-Lintner CAPM can be rebuilt in a two-period economy, if traders’
preferences are described by prospect theory and two fund separation holds. It also
provides a complete characterization of Pareto optimal sharing rules and rebuilds a
representative agent theorem. Cond:tions for a competitive equilibrium to exist are
derived.

The third essay shows that when an industry has a low concentration ratio and
firms share industry-wide information which is unavailable to investors, short-term
debt tends to help firms reduce competition. Collusive firms are shown to have high
debt-equity ratios, a prediction which is consistent with empirical evidence.

Thesis Supervisor: Dr. Chi-fu Huaung
Title: Professor of finance
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Chapter 1

A Price-Volume Formation Model

Abstract of Chapter 1!

This paper explores the implications of I{ahneman-Tversky’s prospect theory,
especially the feature of the isolation cffect, on the equilibrium relations between
price changes and trading volume using & price-volume formation model, which
comprises the ez ante primary market stage (a single auction), the interim secondary
market stage (a double auction) and the <z post liquidation stage. We show that,
as implied by the prospect theory, traders’ interim preferences depend on their pre-
trade positions. That traders differ in their interim preferences generates trades. A
perfect Bayesian equilibrium exists and in equilibrium, both the price and volume
convey useful information. More precisely, it takes the price and the volume together
to identify the values and the ranks of the signals recovered from the market price.
As to traders’ equilibrium bidding strategies, we show that regardless of their pre-
trade positions, traders with the same er ante preferences and interim information
must agree on the predicted direction of the price change. That is, they always
submit bids unanimously higher or unanimously lower than the price in the previous
period. A zero-position trader, however, hids more (less) aggressively than his long-
position counterpart whenever they feel optimistic (pessimistic) about the outlook
of the market. These findings about traders’ bidding behavior are used to establish
two equilibrium relations between price changes and the trading volume:

1. Given any distribution of interim information, the trading volume is higher
when the price rises than when it falls.

2. The trading volume is either extremely high or extremely low if the magnitude
of the price change is large and traders always have similar information.

1 This chapter has benefited from comments of John Heaton, Andrew Lo, Stewart Myers, Jeremy
Stein, Jean-Luc Vila, Shan Li, Sung-Hwan Shin, Dimitrios Vayanos, Lian Wang and especially
Jiang Wang and Kazuhiko Ohashi. My debt to Chi-Fu Huang remains beyond any acknowledge-
ment. All remaining errors are my own.



1.1 Introduction

The purpore of this paper is two-fold. First, it provides a pricc-volume formation
model where the formation of the asset price and trading volume is explicitly mod-
eled and in equilibrium, the price and volume convey different and useful information
to traders. Second, this price-volume formation model is used to study the impli-
cations of Kahneman-Tversky’s (1979) prospect theory on the equilibrium relations
between price changes and trading volume.

1.1.1 The Price-Volume Formation Model

The Rational Expectations Equilibrium (REE) models have replaced the Walrasian
models in most studies of financial markets with differently informed traders. Be-
cause REE models do not explicitly model the process through which asset prices
and trading volumes are formed, they generate several well-known paradoxes; see
for example Milgrom (1981a), Bray and Kreps (1987), and Dubey, Geanakopolos
and Shubik (1987). In view of these problems, the price formation models have
been proposed as an alternative way of modeling financial markets with differently
informed agents (Milgrom (1981a)). In a typical price formation model, there is a
single auction where a seller is determined to sell a certain quantity of some asset.
The trade is commonly known as being Pareto efficient. In general, the equilibrium
volume is simply the total supply of the asset. In the real-world financial markets,
however, sellers as well as buyers may choose not to clear their positions in one
transaction. The vrading volume is in general a random variable. Therefore a sim-
ple price formation model with fixed volume does not provide the right formulation
for transactions of most financial assets.

What is needed is 2 double auction model where both sellers and buyers can
determine their optimal quanitities of supply anddemand. The Milgrom-Stokey's
no trade theorem implies that trades cannot take place unless traders differ in
non-informational aspects. Thus the needed auction model is actually an asym-
metric double auction, where participants differ in informational as well as non-
informational aspects such as their preferences. In this paper, we shall provide an
equilibrium asyi.umetric double auction model where both the price and volume are
ez ante random variables and they convey useful information to traders ex post. The
information conveyed by the price and volume has nice interpretations as follows.

After trades occur, when a rational trader observes the equilibrium price, he
knows that some other traders have submitted a bid equal to the observed price.
Since in equilibrium, all traders’ bidding strategies are correctly expected, one can
recover from the price the private information received by the traders whose hid
equals the price. But, without knowing how many traders have received information
more favorable than this particualr signai, the latter itself is not very useful. For
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that information, we need volume. Trading volume tells traders the rank of the
signal recovered from the price in the entire distribution of signals received by all
traders. Thus it takes the price and volume together to convey useful information
to traders.

This price-volume formation model will be used te study the implications of
Kahneman-Tversky’s prospect theory on the equilibrium relations between price
changes and trading volume.

1.1.2 Prospeci Theory and Price-Volume Relations

It has been well documented that the trading volume and price changes of an asset
generally exhibit certain empirical relations. For example, the empirical evidence
from the stock market and the bond market suggests that the trading volume is
generally higher when the asset price rises than when it falls; see e.g. Ying (1966),
Morgan (1976), Harris (1984,1986), Smirlock and Starks (1985), Wood, Mclnish
and Ord (1985), Jain and Joh (1986), Richardson, Sefcik and Thompson (1987).
Also, the trading volume tends to he positively correlated with the magnitude of
the price change; see e.g. Ying (1966), Crouch (1970}, Epps and Epps (1976), West-
erfield (1977), Harris (1983, 1984, 1986), Wood, Mclnish and Ord (1985), Jain and
Joh (1988), Richardson, Sefcik and Thompson (1987). Recently, there has been a
growing literature which accounts for the price-volume relations using mcdels with
differently informed traders. For example, in Kyle (1985) and Adinati and Pfleiderer
(1988), when a less informed market maker observes a large sell order, he infers that
there are better informed traders camouflaged behind and thus lowers his bid price.
Similarly, when he observes a large buy order, he raises his ask price. The high
volume is, in this sense, the cause of significant price changes. In Wang (1991), the
less informed investors trade against the more informed investors who are known to
trade also for non-informational reasons. Information asymmetry implies a positive
correlation between the trading volume and the magnitude of the excess return.
Based on the assumption that some market participants are strictly less informed
than the others, these models are able to generate predictions about the relations
between the magnitude of the price change (or excess return) and the trading vol-
ume, but fail to explain why the direction of the price change also relates to the
trading volume. In other models, e.g. Varian (1987) and Hindy (1989), the trading
volume is high if traders have diverse opinions about the outlook of the market. If
the trading volume changes because of changes in the traders’ opinions, then why do
traders tend to disagree about the outlook of the market more when the price rises
than when it falls? Since this phenomenon is pervasive, we shall look for reasons
which are more fundamental than certain special assuinptions about information or



market imperpections.? The explanation we shall propose is about traders’ prefer-
ences. Assuming traders’ preferences are of Kahneman-Tversky’s type, we show that
the relation between the trading volume and the direction of the price change can
arise naturally under various information structures, including the case where the
information is always public and every trader interprets the information identically.

Prospect theory was proposed as an alternative to expected utility theory, when
the latter was found by psychologists to be inconsistent with the human behavior
under uncertanty (Kahneman and Tversky (1979)). The development of prospect
theory has been based on compelling experimental findings; see for example Tversky
(1972, 1979), Tversky and Kahneman (1974) and Kahneman and Tversky (1979).
Its predictions are found to be consistent with findings of subsequent research in
psychology and consumer behavior; see for example Tversky and Kahneman (1981)
and Thaler (1985). According to the prospect theory, when facing a random payoff,
an individual first compares the payoft to some reference point or bench mark. The
difference between the random payoff and the reference point defines the random
gain and loss. An individual’s preferences are then represented by a value function
defined on the space of gains and losses. A value function is concave on the positive
orthant, convex on the negative orthant and is everywhere increasing. The von
Neumann-Morgenstern (VNM) concave utility functions defined on the space of
consumption or wealth may be considersd as a special class of Kahneman-Tversky’s
value functions with zero reference point.®> Prospect theory is a descriptive theory
in the sense that its purpose is to accurately describe agents’ preferences under
uncertainty. The expected utility theory, on the other hand, is normative in the
sense that it is derived from a set of axioms which state the basic patterns an
individual’s perferences should exhibit. The approach to develop the prospect theory
is inductive, in the sense that it is driven by compelling eviuence and findings, which
contrasts with the deductive approach taken by the expected utility theory, which
is a necessary condition of its postulated axioms.

There are three major components of the prospect theory, the certainty cffect,
the reflection cffect and the isolation effect, which describe how the reference point
in an individual’s value function may vary with the context in which the individual

2Presumably, an asymmetric structure of tansaction costs may produce an asymmetric equi-
librium outcome. For example, assuming that it is more costly to short sell the risky asset than
to borrow at the riskless rate, or that the transaction costs of buying and selling an asset are dif-
ferent, one may be able to account for the relation between the trading volume and the direction
of the price change; see e.g. Jennings, Starks and Fellingham (1981). However, an asymmetry
assumption as such can be arbitrary. Even if it is consistent with the reality, whether its effects
are significant enough to give rise to the pervasive phenomenon is dubious.

3In chapter 2, I investigate the equilibrium relations among asset returns and the properties of
the optimal risk sharing rules, assuming that agents maximize expected Kahneman-Tversky value
functions. The obtained results indeed include those for the VNM utility functions as a special
case.
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makes his decisions. In this study, we introduce the feature of the isolation effect
to describe traders’ preferences. We shall show that, under general information
structures, this preferences assumption generates implications on traders’ bidding
bebavior and equilibrium price-volume relations that are consistent with empirical
findings.

1.1.3 The Isolation Effect

Example 1 Consider the following pairs of lotteries:*
A = (4000,0.8), B = (3000,1.0),

and
' = (4000,0.2), D = (3000,0.25),

where a lottery (M, p) is one that pays M with probability p and 0 with probability
1 — p. The experimental findings show that most subjects prefer B to A and (7
to D. This is a version of the famous Allais’ paradox. The results show that the
independencs axiom postulated in the expected utility theory is violated.® Now
consider a two stage game where in the first stage with 0.75 probability the game
ends and the player gets nothing, while with :".25 probability the game moves on to
the second stage, where the player gets the chance to make a choice between A and
B. The player is asked to commit his choice, A or B, at the beginning of the game.
The experimental findings show that most subjects prefer B to A.

Note that at the beginning of the two stage game, in terms of the payoffs in
final states, the player actually faces a choice hetween (* and D. However, the two
lotteries have been restructured to contain a common aspect, i.e. the probability 0.25
with which the game moves on to the second stage. Because of this restructuring,
most subjects make differenct choices. The experimental results suggest that the
subjects have ignored the common aspect of (' and D, and regarded the choice as
one between A and B. As is consistent with the results in earlier experiments, most
subjects choose B.

Example 2 Let us consider another example of the isolation effect, in which the
context is closer to the model we shall introduce in the sequel. In an experiment,
subjects are asked to make a choice between

A = (1000,0.5)

4The following examples for the isolation effect are borrowed from Kahneman and Tversky
(1979).

5The experimental findings also suggest that most subjects exhibit the certainty effect, which
means that the subjects put much more weight on a sure event than an event which is very probable.
The certainty effect suggests that in comparing A to B, an individual may have a reference point
which is different from that in comparing C' to D.
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and
B = (500,1.0).

Every subject who made the choice also receives a sure payoff of 1000. Most subjects
choose B over A. The same subjects are asked to make a choice between

¢! = (~1000,0.5)

and

D = (~500,1.0).

This time, every subject who made the choice can receive a sure payoff of 2000. Most
subjects choose (" over D.® Notice that, in terms of total wealth, A is identical to
(" and B is identical to D. If, for instance, the choice of B over A is consisteni with
an agent’s concern about random wealth, then the choice of (! over D maust violate
this concern.

These observations about the isolation effect give the follewing messages:

1. The isolation effect gives rise to certain patterns in human behavier which may
be interpreted as inconsistencies or irrationalities by economists who believe
in the expected utility theory.

2. On the other hand, if agents’ preferences are accurately described by the
prospect theory, these patterns of human behavior only indicate that agents
are individually rational, i.e. the decisions agents make are indeed optimal
with respect to their preferences.

3. The fact that value functions are monotonic in gains and losses implies that,
when frictionless financial markets are in equilibrium, there will be no arbitrage
opportunities.”

Althcugh prospect theory has hbeen supported by numerous experimental findings in
human studies at the individual level, its implications on economic activities at the
aggregate level remain unknown. In view of this, this paper introduces the isolation
effect to describe traders’ preferences and use the price-volume formation model
to study its implications on equilibrium price-volume relations. Before economists
reach concensus about which preference theory best captures the real-life agents’
behavior, learning the implications of various preference theories on economic activ-
ities should be helpful. Thus it is not our intention to argue that the prospect theory

8In two other experiments subjects are asked choose between 4 and B and between C' and D
respectively, without the sure payoffs. Most subjects prefer B to A and C to D. This phenomenon
is termed the reflection effect, which means that subjects exhibit risk-averse (risk-seeking) behavior
when the comparison involves only gains (only losses).

"Even if markets are imperfect, as long as every agent is subject to the same market imperfec-
tions, there can be no arbitrage opportunities.

11



is superior to the expected utility theory. The purpose is to understand what we
should expect to see in terms of the equilibrium price-volume relations, if prospect
theory does offer an accurate description of traders’ preferences.

1.1.4 Organization of the Paper

In section 1.2, we layout the three-stage model. At time 0, a firm issues a security to a
continuum of identical traders. The equilibrium price of the security in the primary
market is determined by a single auction. At time 1, traders first receive some
private and public signals, which are correlated with the time-2 random dividend,
and then they trade in the secondary market. The secondary market is modeled as
a double auction. At time 2, the security pays out a one-time liquidation dividend
to security holders and the economy ends. We show that there exists a symmetric
perfect Bayesian equilibrium for this economy. In equilibrium, at time 1, we show
that traders who differ only in the pre-trade security holding positions must agree
on the predicted direction of the price change. That is, they will submit bids which
are either unanimously higher or unanimously lower than the asset price at time
0. However, a zero-position trader’s bid is higher (lower) than that of his long-
position counterpart, whenever they feel optimisitc (pessimistic) about the outlook
of the market. This follows from the isolation effect, which, in the current context,
says that traders today will ignore the gains or losses from trade up to yesterday,
because those gains or losses have realized and are common to all their feasible
bidding strategies today. It follows that a trader whose preference exhibits the
isolation effect is eager to capture gains from trade immediately and always tries to
delay the loss from trade. For example, when the price is likely to fall, if a long-
position trader ends up selling the asset at the low price, he experiences a loss from
trade right away. On the other hand, if he carries the asset into the next period,
knowing that tomorrow he will not care about the loss up to today, psychologically
he feels that he can avoid the loss from today. Thus, in the event that the price is
likely to go down, a long-position trader has incentives to submit a higher bid than
his zero-position counterpart.

Ez post, after trades take place in the secondary market, both the price and
volume are shown to convey useful information. More precisely, it takes the price
and volume together to identify the values and the ranks of the signals recovered
from the market price. Contrary to Milgrom (1981a) and Hindy (1989), traders’
equilibrium bidding strategies do not possess the no-regret property.® It is shown
that traders are er post better off in some states of nature while regret their bids
in other states. In fact, since the trading volume in a double auction is a random

8By this is meant that in equilibrium, after observing the price and volume, each trader regrets
neither his bid nor his post-trade position.

12



variable, but traders are still not allowed to make their bids contingent on the
volume, the equilibrium generally does not possess the no-regret property.

In section 1.3, based on the findings about traders’ equilibrium bidding behavior,
we establish two equilibrium price-volume relations in theorems 1 and 2. In theorem
1, we show that given any distribution of traders’ private signals, the trading volume
is higher when the price rises than when it falls. The intuition follows directly from
the observation that when the price rises, every winning trader must have submitted
a bid higher than the previous asset price. But in this case, whenever a long-position
trader won the bid, his zero-position counterpart must have won the bid too. This

fieans that there are a lot of zero-position traders who won the bid, and so the
volume is high.® On the other hand, when the price falls, among those winning
traders who submitted bids lower than the previous asset price, a long-position
trader had more chance to win the bid than his zero-position counterparts. The
trading volume in this case cannot exceed that when the price rises.

In theorem 2, we show that the trading volume is either extremely high or ex-
tremely low, if the magnitude of the price change is large and traders always have
similar information. The intuition behind this theorem is the following. Accord-
ing to the prospect theory, the long-position traders and the zero-position traders
have different bidding behavior, and this difference becomes significant when the
magnitude of the price change becomes large. On the other hand, if traders always
have similar information, then traders with the same pre-trade positions will have
similar bidding behavior. Now suppose that the price always changes significantly
and traders always have similar information. Consider all the long-position traders’
bids as a group and all the zero-position traders’ bids as another group. Then, the
within-group variation will be small but the between-group variation will be large.
This means:

o When the price rises, and a long-position trader tends to lose the bid, so do
otlier long-position traders. The trading volume is therefore extremely high.

e When the price falls, and a long-position trader tends to win the bid, so do
other long-position traders. In this case, the trading volume is extremely low.

We conclude chapter 1 in section 1.4.

1.2 The Price-Volume Formation Model

In this section, we layout the price-volume formation model and solve for a perfect
Bayesian equilibrium.

9We assume every limit order has a unit quantity.
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1.2.1 The Basic Model

Timing and The Mechanism of Asset Price Formation We consider a three-
period economy. At time 0, a firm issues a security to a continuum of identical
investors with total population of 25, where S is the total supply of the security.
The quantity of the security which an investor is allowed to hold is represented by a
density, which can be either 0 or 1.1° At time 2, each unit of the security pays a one-
time random liquidation dividend P;, whose support is a finite closed interval [0, K.
At time 0, in the primary market, the price of the security, Py, is determined by a
single auction. At time 1, in the secondary market, the price of the security, P,, is
determined by a balanced double auction.!! Specifically, Py and P, are respectively
the suprema at times 0 and 1 of such bids that traders whose bids are higher than
or equal to them have Lebesgue measures S. All transactions at time ¢, for ¢ = 1,2,
are consummated at the equilibrium price P;. For simplicity, we shall assume that
short-sale is forbidden. It follows that the trading volume is always bounded above
by §. In the following, ex ante refers to the time when the trading in primary
market has not begun, interim refers to the time when the trading at time 0 is over
and the trading at time 1 has not begun, and er post refers to the time when the
secondary market trading is finished.

Information Structure At time 1, prior to the trade in the secondary market,
there are in total S long-position traders and S zero-position traders in the economy.
Before trading begins in the secondary market, every trader is assumed to observe
some private and public signals about P,. The public information is represented by
a random variable Y which is correlated with P, and has the finite closed interval
[¥.,¥"] as its support. A zero-position and a long-position traders respectively re-
ceive private signals Xz and Xi, of which, conditional on each realization of P,
the common distribution is F(x|P;),'? an absolutely continuous, strictly increasing
function on the support [z.,z*]. Denote the common conditional density of Xz and
Xt by f(x|P,). For the public signal Y, we shall also assume that its conditional
distribution function, H(y|P;), is absolutely continuous and has conditional density
((y|Pz). Two assumptions will be made regarding the relations between signals X
and Y and the liquidation dividend P;:

Assumption 1 Strict Monotone Likelihood Ratio Property (MLRP) The

10Later on, we show that this density is integrable over traders.

1By balanced is meant that the Lebesgue measure of the poteniial sellers equals that of the
potential buyers in the double auction.

12That traders’ private signals are identically distributed leads to the fact that the impacts of
other traders’ bidding strategies on a particular trader's welfare are symmetric, if traders’ bidding
strategies are symmetric. This in turn makes the formulation an anonymous game (Jovanovic and
Rosenthsl; 1988).
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likelihood ratio

f(z|P)

f(x|P;)
is strictly decreasing in x for P, > P, and strictly increasing in « for P, > P}. Also,
the likelihood ratio

Wy Pz)

{y|P;)
is strictly decreasing in y for Py > P, and strictly increasing in y for P, > Pj.

Assumption 2 No Aggregate Uncertainty Conditional on P,, the Lebesgue
measure of traders who receive private signals lower than or equal to = is

25 . P(x|P).
Remark 1 Some remarks are in orde- regarding assumptions 1 and 2:

1. Assumption 1 stales that signals are always comparable in the terminology of
Milgrom (1981b). The comparability of signals follows from the assumed strict
MLRP. More precisely, the strict MLRP implics that an increase in the privale
or public signal leads to a firsi-order stochastic increase in P,. Moreover,
the two assumptions together imply thai any v-order statistic'® of a randomly
selected section from the private signals received by the entire economy also
has strict MLRP; see Hindy (1989). proposition 5.

2. In the above, we have assumed that all the information a trader may have,
prior to the trade in the secondary market, can be summarized by the realiza-
tions of two random variables (real-valued signals), X and Y. There are two
implicit assumptions about this representation of a trader’s information. First,
the two signals must be sufficient statistics for all the information the trader
has concerning P,. Second, they must also adequately summarize the trader’s
information regarding the signals received by other traders; see Milgrom and
Weber (1982).

3. The no-aggregate uncertainty property is assumed so that agents’ private sig-
nals are identical but not independent. Feldman and Gilles (1985) show that
it is not correct to postulate that the family of random variables obscrved by a
continuum of agents is a continuum of independent and identically distributed
random variables. The no-aggregate uncertainty formulation is one remedy for
this situation proposed by Feldman and Gilles. The no-aggregatc uncertainty
turns out to be one form of the law of large number in the following sense: Fol-
lowing the no-aggregate uncertainty assumption and the strict MLRP of privale

13] e., the signals higher than or equal to this statistic have a measure equal to ».
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signals, the realization of P, can be instantly revealed if, hypothetically, every
agent in this economy announces his private signal to the public.

As will be shown in the sequel, without loss of generality, we can assume that
interim, the zero-position traders and the long-position traders are respectively rep-
resented by the two closed intervals [0, S] and [S,25].1* Now, conditional on P,
let the private signals received by the zero-position and the long-position traders
be represented by two continuous and strictly increasing functions Gz(z|P;) and
Gr(z|P,), with

GL(z|Py) + Gz(z|P2) = 25 - F(z|P2),

GZ(mn|P2) = GL{mO|P2) = 07

and
Gr(z*|Py) = Gz(z*|P,) = S.

Note that conditional on P;, Gz(z|P,) and G(z|P;) denote respectively the Lebesgue
measures of the zero-position and the long-position traders whose private signals are
lower than or equal to x. Given Py, the two functions Gz(:|P;) and G L(-|Py) repre-
sent a random decomposition of 2S - F(+|P;), which is the distribution of the private
signals received by the entire economy. We have assumed that the realizations of
the two random functions Gz(+|P;) and G'L(+|P;) have certain nice properties: they
are continuous and strictly increasing.

In the following, we shall call any two such functions Gz(z|P;) and & L(z|P,) a
(realized) distribution of private signals or a distribution of traders’ types. This ter-
minology is adopted because ex anfe traders are identical, and thus receiving private
signals is equivalent to receiving traders’ types. Since Harsanyi (1967; 1968), the
type of a player in a Bayesian game has been used to refer to the private information
that the player has.

From the informational point of view, the security market gathers individual
traders’ private signals and transmits them into the equilibrium price and the trading
volume. Rational traders, when determining their bidding strategies, must take into
account how other traders’ private signals are incorporated in and revealed by the
market price and the trading volume.

Traders’' Preferences and the Motives for Trade Traders are assumed to
have preferences described by Kahneman-Tversky’s prospect theory. We shall show
that the prospect theory implies that traders’ interim preferences are {pre-trade)
position-dependent. That traders differ in their interim preferences generates trades.
This is why liquidity or noise trading is not needed in this model.’® According to

1414 will be shown that the identical traders at time 0 are indifferent about taking a long or zero
position in equilibrium. We can thus assume that at time 0, the security is sold to the traders in
the interval [S, 25].

15Gee Kyle (1985) and Admati and Pfleiderer (1988,1989) for passive behavior of liquidity traders
and Wang (1991) for a derivation of liquidity trading from traders’ optimizing behavior.
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the prospect theory, when facing a random payoff, an agent first compares the
random payoff to some reference point. The difference between the random payoff
and the reference point, depending on whether it is positive or negative, is defined
as respectively the gain and loss. An agent’s preferences about random payoffs is
represented by a Kahneman-Tversky’s value function defined on the space of gains
and losses. The value function is real-valued, strictly increasing, continuous, passing
through the origin, and is concave on the positive orthant and convexon the negative
orthant.’® We shall assume that traders care about accounting gains and losses from
trade. That is, a trader buying the security at time s and selling it at time £ > s
experiences a gain or loss of P, — P,.

One major feature of the prospect theory is the isolation cffect, by which is
meant that agents when making decisions tend to disregard the common aspects of
all feasible actions.!” In our model, when a trader determines his optimal bidding
strategy at time ¢ for an asset purchased at time s < f, the part of gain or loss
represented by P; ., — P, has already been realized and is common for all feasible
bidding strategies at time {. The isolation effect then asserts that this part of gain
or loss be disregarded. We shall assume:

Assumption 8 Traders’ preferences exhibit a major feature of the prospect theory,
the isolation effect, in the sense that traders at time t will disregard the realized
gains or losses from trade up to time t — 1.

Following assumption 3, a zero-position trader at time 1, after observing the
public signal y and private signal ¢, maximizes over feasible bids 7

E(llzzmv(Pz - PINXZ = a,Y =Y PO)'r

where V(-) is some Kahneman-Tversky’s value function and 14 equals 1 if the event
A occurs and 0 otherwise. Note that in the above maximization problem, P, is
deduced from other traders’ bidding strategies!® and the common prior beliefs about.
signals X and Y. Denote the solution to the above zero-position trader’s problem
by Z*(a,y, Py), whenever it exists. Thus, Z*(a,y, Py) is the reaction function of
a zero-position trader with private signal a and public signal y, which depends on
other traders’ bidding strategies. Now define

JZ(a"y’ PO) = E(]-[Z‘(a.y.Po)ZPl]V(Pz - Pl)|XZ =a,Y = Y, PO)

18]n-this-study, we only-use-the-monotonicity-of the value function.

17Tversky (1972) contains the experimental results about the isolation effect. In an experiment
regarding agents' gambling behavior, about 81% of the subjects exhibit the isolation effect. In
another experiment on selecting applicants for the admission to a school, about 94% of the subjects
exhibit the isolation effect. See also Kahneman and Tversky (1979). For a discussion about the
connection of the isolation effect to the independence axiom in the expected utility theory, see
appendix B.

18Rational expectations imply that other players' strategies are correctly expected.
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Then Jz, whenever exists, denotes the time-1 indirect value function of a zero-
position trader of type a. At time 1, a long-position trader after observing the
public signal y and private signal a, maximizes over feasible bids L

EQlypgV(P2 — ) + linep) V(P — Po)lXL = a,Y =y, P),

where note that at time 2, the part of gain or loss P, — Py has been ignored by the
long-position trader. Also note that the above long-position trader’s maximization
problem differs from that of his zero-position counterpart. That is, traders’ interim
preferences differ because of their pre-trade positions, although they have identical
ez ante preferences and interim information. As being fully rational, ez ante a trader
knows perfectly how his interim preferences will depend on his pre-trade position.
This is an implication of the prospect theory.

Now denote the solution to the above long-position trader’s maximization proh-
lem by L*(a,y,Po), whenever it exists. Again, L*(a,y,Pp) is the long-position
trader’s reaction function given other traders’ bidding strategies. Define

Ji(a,y, Po) = E(L(Le(ap.po)>P)V(P2— P )+ 1iLe(ay.po)<p ) V(Pi—Po)| XL = a,Y =y, Po).

Then Jp, whenever exists, denotes the time-1 indirect value function of a long-
position trader of type a. In the above formulation, we have assumed that partici-
pation in trades is budget feasible for each trader.

Equilibrium Concept In the above formulation, we have revealed our intention to
only focus on symmetric Bayesian equilibria for the secondary market. A symmetric
Bayesian equilibrium is composed of a set of common prior beliefs about signals
and P, and a pair of bidding strategies (Z*,L*), which map the private signal,
the public signal and the previous asset price into real numbers, such that, given
that all other long-position traders adopt strategy L* and all other zero-position
traders adopt strategy Z*, a zero-position (respectively, long-position) trader finds
it optimal to adopt Z* (respectively, L*) as well. This is a natural equilibrium
concept, considering ez ante, all traders are identical. Our auction model is one
of competitive bidding, in the sense that no single trader considers the effect of
his own bid on market price when solving his optimal bidding problem. Under the
assumption of a continuum of traders, competitive bidding is not only economically

formation mechanism in the secondary market at time 1 using a common value
double auction, and look for a symmetric Bayesian equilibrium.

At time 0, in the primary market, define P; as the time-0 security price which
makes the identical traders at time 0 indifferent about taking a long or a zero
position, i.e. P, solves

E(JL(XL,Y, Po)) = E(Jz(X2,Y, R)),

18
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where P, is the unknown. Note that Pj, if it exists, must depend on traders’
equilibrium bidding strategies in the double auction at time 1. In the sequel, we
shall show that both E(JL) and E(Jz) are continuous in Py in equilibrium. This,
together with some other facts, shows that the Py so defined exists generally. Given
traders’ equilibrium bidding strategies at time 1, Py defines a symmetric equilibrium
bidding strategy at time 0.!® Our task now is prove that a symmetric Bayesian
equilibrium exists for the double auction at time 1 and that a perfect Bayesian
equilibrium exists for the entire trading economy.

1.2.2 A Symmetric Perfect Bayesian Equilibrium

We now proceed to show the existence of a symmetric Bayesian equilibrium for the
double auction at time 1.2°

Note that any two realizations of the random functions Gz(x|P;) and Gr(=|P2),
which represent a realized distribution of traders’ types, generate two continuous,
strictly decreasing inverse functions £z(s|P;) and £p(s|P;) which satisfy, for all P,

£2(0|P;) = €L(0|Py) = =°

and
£2(S|P2) = E(S|P,) = ..

Note that £z(s|P;) is the private signal such that the Lebesgue measure of the zero-
position traders whose private signals are higher than or equal to ¢ z(8|P2) is s. The
interpretation of {1(s|P;) is similar. Note that £z(s|P;) and {(s|P;) are two random
functions which depend on P, as well as the random decomposition of 25 - F(x|Pz)
intc Gz(z|P,) and Gr(z|P;). To ease notation, from now on, we shall suppress the
dependence of £z(s) and £(s) on P;.

19T, see this, note that given that all other traders submit Py, a trader cannot win the security
by submitting a bid lower than Pg, but at the same time, submitting a bid strictly higher than Pg
does not increase the trader's welfare. Note that the Py so defined is actually the Nash equilibrium
price in a Bertrand competition model. Since at time 0, the primary market is characterized by a
continuum of identical traders who bid competitively in a single auction, the Bertrand price Fy is
a natural candidate for the time-0 equilibrinm price.

20The major difficulty involved is that the double auction is asymmetric; see Hindy (1989). By &an
asymmetric double auction is meant that prior to the trade, traders differ in the private information
as well as other non-informational aspects. Unlike in symmetric auction models, the proof of the
existence of a symmetric equilibrium in asymmetric auction models is generally difficult. The
difficulty firs! arises in recovering private signals from the price and volume without knowing
which classes of traders have submitted the bid which equals the market price. The complexity
leads some researchers to a study of boudedly rational trading behavior (Hindy (1989)). Our
treatment for this problem is, however, relatively simple. The idea is to make sure that whatever
the market price is, there are always traders of each class who submit the bid equal to the market
price. We shall remark on how this treatment resolves the problem.
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Let v be the trading volume at time 1. Then, v is the Lebesgue measure of the
pre-trade zero-position traders who win the bid in the double auction. Following
the short-sale constraint, 0 < v < S. A symmetric Bayesian equilibrium at time 1 is
composed of a set of common prior beliefs about the (private and public) signals and
P, and a pair of bidding strategies Z*(Xz,Y, Po) and L*(XL, Y, P), such that given
the common prior beliefs and that all zero-position traders adopt Z*(Xz,Y, F) and
all long-position traders adopt L*(Xy, Y, Pp) as respectively their bidding strategies,
no single trader wants to deviate unilaterally. When such an equilibrium exists, we
should have

P, = Z°(£z(v),y, Po) = L*(€(S — v),y, Po),

provided that in equilibrium there are both zero-position and long-position traders
who submit the bid P; when the volume is 1 and the public signal is y. In this case,
the above equality says that in a symmetric Bayesian equilibrium, after observing
the equilibrium price P;, traders learn both the private signals {z(v) and £,(S — »).
Indeed, the above equality gives the relation between {z(v) and {;(S — v). It follows
from proposition 5 of Hindy (1989) that given any v, both £,(S5 — v) and £z(v) have
strict MLRP.

Our strategy of showing the existence of a symmetric Bayesian equilibrium is
to, given the common prior beliefs about signals and P, construct two bidding
strategies, one for zero-position traders and the othes for long-position traders, and
then verify that the two prescribed strategies are actually equilibrium strategies
according to the prior beliefs. To begin, consider the following two equations,

E(V(P, - )Xz =a,Y =y)=0

and
E(V(P, - )|Xy =a,Y =y)=V( - PB),

where z and [ are respectively unknowns in the two equations. Denote the solutions
to the above two equations by respectively z(a,y) and l(a,y, Ps). Because V(.)
is strictly increasing, z(a,y) and I(a,y, Py) exist uniquely. Moreover, z(a,y) and
l(a,y, Po) are both non-negative, because V(P;) is non-negative.

Note that z(a,y) and l(a,y, P,) are the pre-trade reservation values for the se-
curity of respectively the zero-position and the long-position traders whose privaie
signal is a and public signal is y. That is, if it is known that trading will not reveal
any new information regarding P,?! z(a,y) and l{a,y, Fo) are respectively the max-
imum amounts of money the zero-position and the long-position traders are willing
to pay to acquire the security. The following lemma follows from the strict MLRP
of signals and the unique existence of z(a,y) and {(a,y, Po) for each private signal
a, public signal y and the previous market price Pp:

21In this case, the auction model becomes effectively a private valuation model.
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Lemma 1 Both functions z(a,y) and l(a,y, Py) are strictly increasing in the first
two arguments. Moreover, either z(a,y) < l(a,y, Po) < Py or z(a,y) > l(a,y, Po) >
Py.

Proof
See appendix A.0
Proposition 1 below shows the existence of a symmetric Bayesian equilibrium if
either
z(x*,y) < Uz, y, Po)

or
z(x.,y) > l(z*,y, Pp)

is true.’? The case where neitler 0. the above inequalities holds will be dealt with
in proposition 2.23

Proposition 1 Ifeither z(x*,y) < l(z.,y, Po) or z(z.,y) > U(z*,y, Po), then Z*(a,y, Po) =
z(a,y) and L*(a,y, Py) = l(a,y, Py) define a symmetric Bayesian equilibrium for the
double auction at time 1. In equilibrium, depending on the realization of Y, P, is
either higher or lower than all traders’ bids at time 1 and correspondingly, v is either

0 or S. Moreover, P, is always non-negative.

Proof
See appendix A.O
Now, let us consider the case where

:('T.ay) 2 l(-‘l‘.,y,Po)

and
:(:l‘., y) .<_ l(:r‘,y, PO)

Our strategy is, again, to first consiruct two bidding strategies, one for the zero-
position traders and the other for the long-position traders, and then verify that
the two prescribed strategies are indeed equilibrium strategies. For this purpose,
given € € [0, 23=2], let us first consider two continuous and strictly increasing real

22 .e., cither that the most optimistic zero-position traders have a reservation value for the se-
curity lower than that of the most pessimistic long-position traders, or that the most pessimistic
gero-position traders have a reservation value for the security higher than that of the most opti-
mistic long-position traders.

23The idea of proposition 1 is that if irading does not reveal any new information, every trader
should simply submit the bid equal to his pre-trade reservation value for the security. In the
above equilibrium, P, equals cither Z*(x,,y, Pp) or L*(z., y, Po}. Thus, by observing the price P,
traders learn either £z(S) = 2z, or {£(S) = =,. But these have been contained in every trader's
pre-trade information set already. In this case, bidding the pre-trade reservation value for the
security is optimal.
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functions ((-) and A(-) which map [z. + €,2° — ¢] into [0, K]. Given y, P; and
the common prior beliefs about the signals and P,, for all a,b € [z, + €,7° - €],
define Z.(a,y, Py) and L.(b,y, Po) as respectively the solutions to the following two
equations:

B(V(P; - 2)|Xz = a,£2(v) = a,£5(S — v) = A" (¢(a))) = 0,
E(V(Py = DXy = b,£5(S = v) = b,&5(v) = (T (A(B))) = V(I - R,

where note that we have suppressed the conditioning of the expectations on y and
P, to ease notation, and that z and [ are respectively unknowns in the above two
equations. We shall define

AT ((a)) = =* — ¢,

in case that {(a) > M(z* — €). Similarly, define

A7H¢(a) = & +
in case that ((a) < A(z. + €). Also,

CHMa)) = 2* —¢,
in case that A(a) > ((=* — ¢) and

(M Ma)) =z + ¢

in case that A(a) < (. +¢€). Given y, P, and the common beliefs about signals and
P,, the above two equations are well defined for all a,b € [z, + €,2* — €]. Because
V(-) is strictly increasing, Z.(a,y, Py) and L(b,y, Py) both exist uniquely. Moreover,
they are both positive since V(P,) is positive.

Lemma 2 Giveny, Py and the common beliefs about signals, for each ¢ € [0, =5%=],
there exist a pair of functions ((,)) such that the correspondingly defined (Z,, L.)
turn out to be the functions ((, A) themselves. Moreover, for ecacha € (z.,2*), definc

Z(“‘a Y, PO) = !T(l) Zc(“'v Y, PO)

and
L(b,y, Py) = !‘l‘}) L(a,y, R).

Then, both limits exist.

Proof
See appendix A.O



Note that Z(a,y, Po) and L{b,y, P,) are respectively the solutions to the following
two equations:

E(V(PZ - z)|Xz = a’»EZ(V) = a’»fL(S - V) = L-I(Z(a’yy PO);y’ PO)) =0,
E(V(P, — )| XL = b,é1(S — v) = b,éz(v) = Z7(L(b,y, Po); 9, Po)) = V(I - By),

where z and [ are respectively unknowns. Now, define
Z(z*,y, Pp) = al_i_g}. Z(a,y, Po),

Z(xayy, Po) = al_l_g_l Z(a,y, Po),
L(z*,y, Po) = lim L(a,y, Fo),

and

L(z., y, Po) = allg_l L(a, vaO)'

That the above limits exist follows from the strict monotonicity of Z(a,y, Py) and
L(a,y, Pp) in a for all a € (z,,x*).2

We shall show in proposition 2 that given y, Py and the common prior beliefs
about signals and P, Z(a,y, Po) and L(a,y, Po) constitute a symmetric Bayesian
equilibrium. First we claim:

Lemma 3 Given y, Py and the common beliefs about signals and P, the following
inequalities hold:
Z(:r.",y, PO) 2 z(:c‘,y),
Z('r‘teys PO) S 2(1’.,3}),
L(=*, Y, Py) > l(x.vys PO)a

and

L(z.,y, Po) < l(z.,y, Po).

Proof
See appendix A.O
Following lemma 3 and the assumption that

z(zx*,y) 2 l(z.,y, Po)

and
:(Tn y) < l(-'t‘,y, PO)?

24Note that Z(a,y, Po) is the reservation value for the security of a zero-position trader with
private signal a, public signal y and the information that P, = Z(a,y, Po) and that other traders
respectively adopt Z(a,y, Po) and L{a,y, Po) as their bidding strategies. The interpretation of
L(a, y, Po) is similar.
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there must be both zero-position and long-position traders who submit the bid P, if
given the common prior beliefs about signals and P,, all zero-position and all long-
position traders respectively adopt Z*(a,y,Ps) = Z(a,y,Po) and L*(a,y,Pp) =
L(a,y, Py) as their bidding strategies. We need to show that given other traders
adopt the prescribed strategies, no single trader wants to unilaterally deviate. This
is accomplished in the next proposition:

Proposition 2 Ifz(z*,y) > l(x.,y, Po) and z(zx.,y) < U=z*,y, P,), then Z*(a,y, Po)
Z(a,y, Po) and L*(a,y, Po) = L(a,y, Po), together with the the common prior belicfs
about signals and P,, define a symmetric Bayesian equilibrium for the doublc auc-
tion at time 1. In equilibrium, each trader’s objective function has a unique peak,
which gives the trader’s optimal bid. Morcover, Py is always non-negative.

Proof
See appendix A.O

Given that a symmetric Bayesian equilibrium exists for the double auction at
time 1, the next proposition shows the existence of the time-0 equilibrium price Py,
which makes identical traders at time 0 indifferent about taking a long or a zero
position. By definition, this proves the existence of a symmetric perfect Bayesian
equilibrium for the entire trading economy:

Proposition 3 There crists a symmetric perfect Bayesian equilibrium for the trad-
ing economy. In equilibrium, Py is non-negative.

Proof
See appendix A.O

We have verified in the proof of proposition 3 that participation in trade is
individually rational for each trader.?*

Remark 2 Existence of equilibrium for asymmetric double auction: A
major difficulty facing an auction model with multiple classes of traders, i.c. traders
who differ in non-informational aspects such as preferences, is in showing the ex-
istence of an equilibrium. Hindy (1989) bypasses this difficulty by introducing a
notion of bounded rationality. Traders are assumed to play a different trading game
in which each trader reacts not to the real bidding strategics of other traders but to
some artificial market average trading strategy. Our treatment can be viewed as a
general resolution to the equilibrium existence problem. The moral is that, if there
are always traders in each class who submit the bid equal to the market price, then
it is possible to recover information from the equilibrium price and volume, as we

28This follows from the observation that interim a zero-position trader can always guarantee
himself a 0 utility. At time 0, in equilibrium, since all traders are indifferent about taking a long
ot a zero position, participation in trade must be er ante individually rational for everyone.
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showed in proposilion 2. For this to be possible, we have assumed that the private
signal s a continvous random variable and the economy has a continwum of traders.

Remark 3 The no-regret property What mainly distinguishes a price forma-
tion model from a rational ezpectations equilibrium (REE) model is that in the for-
mer traders submit bids simultaneously and must disregard the market pricc (Mil-
grom 1981a). However, when determining their optimal bidding strategies, traders
in a price formation model also take into account the information to be revealed by
the market price and the trading volume. Usually, after observing the market price
and the trading volume, traders may wish they could have submitted different bids.
But the fact they could not may not matter at all. For example, in the single auc-
tion model of Milgrom (1981a) and the double auction model of Hindy (1989), after
observing the market price and the trading volume, winning traders’ revised reser-
vation values for the asset are still higher than the market price and losing traders’
revised reservation values for the asset are still lower than the market price. Since
all transactions are made at market price, traders regret neither their post-trade
positions nor the bids they submitted. This is called the no-regret property.

The symmetric Bayesian equilibrium obtained in proposition 2 does not possess
the no regret property. Ex post, after observing the market price and the trading
volume, a trader on average will not regret his bid. (Traders will not regret their
bids if ex post they are not allowed to obscrve trading volume.) Note that unlike in
a single auction (cf. Milgrom (1981b)), the trading volume in a double auction is in
general a random variable.?® With an increase in the dimension of uncertainty, it is
quite intuitive that ex post traders, who are still allowed to submit single bids only,
may begin to regret their bids in certain stales of nature. However, in other states
of nature traders can experience gains from their bids. On average, traders do not
regret.

Remark 4 In the equilibrium obiained in proposition 2, both the market price and
the trading volume convey useful information about P,. More precisely, it takes the
price and volume together to determine the values and the ranks of the private signals
recovered from the equilibrium price. Note that an increase (decrease) in price with
constant volume is certainly good (bad) news. On the other hand, without further
information about the functions Gz(-|P;) and Gr(-|Pz), the implication of a higher
volume with price kept constant is ambiguous.*

2814 is interesting to note that boundedly rational traders in Hindy (1989) do not utilize infor-
mation of volume.

27Presumably, informational stories can be told to give implications of a change in the volume,
since long-position traders, having been security holders for one period, may have a different
distribution of private signals from that of the outside investors (Rajan 1998). Discussions about
such informational stories and their implications are out of the scope of the current paper.
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Now we investigate traders’ equilibrium bidding behavior at time 1. According
to propositions 1 and 2, a trader’s equilibrium bid is always an interior solution to
his optimal bidding problem at time 1. This implies that the first order condition
for the trader’s optimization problem must hold for his equilibrium bid. Precisely,
this means

Dz(Z*)= E(V(P,-2°)Ph=2", Xz =a,Y =y,P) =0
and
Dy(L*)= E(V(P, - L*)|P, = L*, XL = a,Y =y, P) - V(L" - P) =0,

where Dz(-) and Dy(-) are the first derivatives of objective functions of respectively
zero-position and long-position traders whose private signal is a and public signal
is y. A close inspection of the above two first order conditions gives the following
result:2®

Proposition 4 For all public signal y and private signal a, either Z*(a,y, Po) >
L*(a,y, Po) > Py or Z*(a,y,Po) < L*(a,y, Po) < Po.

Proof
See appendix A.[J

Remark 5 Proposition 4 gives the relation between the bidding behavior of a long-
position trader and his zero-position counterpart, which says that traders with the
same preferences and private information must agree on the predicted direction of
price change, but a long-position trader bids more (less) aggressively than his zero-
position counterpart when they are both pessimistic (optimistic) about the outlook of
the market. This fact will be used to establish theorem 1 below.

For the following two special cases, we can say more about the equilibrium price
and the volume at time 1:

Proposition 5§ Consider the following two cases where either the public signal Y
or the private signal X is absent:

28The proof of proposition 4 has used the fact that at time 1, after losing the bid, a zero-position
trader is guaranteed by a 0 utility, while a long-position trader’s welfare depends on whether the
price has risen or falled. As a consequence, before trading begins at time 1, if the price is very
likely to rise, a long-position trader knows that he may be well off even if he loses the bid. Thus at
time 1, a long-position trader’s willingness to hold the asset for one more period is lower when the
price is likely to rise than when the price is likely to fall. This fact translates into the long-position
trader’s bidding behavior and results in the relation stated in proposition 4.
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1. Suppose y, = y*. That is, the public signal is absent. Then, in the equilibrium
at time 1, there are always zero-position and long-position traders who submit
the bid P,. Moreover, volume is always strictly positive and less than S.

2. Suppose x, = z*. That is, the private signal is absent. Then, in the equilibrium
at time 1, volume is either 0 or S.

Proof
See appendix A.O

1.3 Equilibrium Relations Between Price Changes
and Volume

Now we proceed to establish the equilibrium relations between the price changes
and the trading volume for the double auction at time 1. Note that at time 1, given
a distribution of traders’ types, i.e. some realizations of the two random functions
Gz(x|P;) and Gr(x|P,), the price change P, — P, is completely determined by the
public information Y. The next is our first major result of this paper:

Theorem 1 Given any distribution of traders’ types, the trading volume v at time
1 is higher when P, > P, than when P, < P,.

Proof

Since both Z*(a,y, Po) and L*(a,y, Po) are strictly increasing in the trader’s private
signal a, for traders in the same pre-trade positions, a trader of a higher type always
has more chances to win the bid than one of a lower type. Given a distribution
of traders’ types, we want to show that there are more zero-position traders who
win the bid when the price rises than when it falls. To this end, first note that
when the price rises, i.e. P, > P,, all winning bids are higher than Py, while some
winning bids are lower than Py when the price falls. Our assertion then follows from
proposition 4. [J

A close inspection of the equations

Di(L*)=Dz(Z2*)=0
reveals that
Z°(a,y, Py) = L*(a,y, Z*(a,y, R)).

Let us call the above relation E, which indicates that the long-position trader’s
bidding strategy also contains information about the zero-position trader’s hidding
strategy. To setablish our second result, we shall first construct a measure for the
magnitude of the price change, without specifying in detail the distribution of the

27



signals. Given each public signal y, define the following random variable M(y),
which depends on P, as well as the distribution of traders’ private signals:

} — Z‘(-T'ay,Po)'— Po if PIZ-P(),
M(y) = { Py — Z*(x.,y, Py) otherwise.

It follows from propositions 1, 2, 4 and 5 that M(y) is a strictly positive random
variable. Following from the symmetry of traders’ equilibrium bidding strategies,
a stochastic increase in M(y) implies that |P, — Fo| is also big. Thus, without
specifying in detail the distribution of signals, a lower bound of M(y) gives a sense
of how big the magnitude of price change can be. In this sense, M defined below
measures traders’ perceived price variability at time 0, before they observe the pubuc
signal y:
M= inf inf M(y).

Y€[ye.w°]| GL.Gz
Define the interim informational heterogeneity of traders by é = «* — x.. As 6
tends to zero, the economy approaches an informationally homogeneous ore: all the
information traders have becomes public. The following is our second major result,
which shows that when traders are interim highly homogeneous, i.e. when § is small,
but the magnitude of the price change is perceived to be large, i.e. M is large, then
the trading volume is either extremely high or extremely low.

Theorem 2 The trading volume is either extremely high or extremely low if the
magnitude of the price change is percicved to be large and traders are highly homo-
geneous. More formally, for each M, there is a §( M) such that for all § < é( M),
v is zero whenever the price falls and v is S whenever the price rises. When M
increases, the required §( M) increases.

Proof
By the continuity of Z* in the private signal, for each k, M > 0, there exists a §( M)
so small that if § < §( A1), for all y € [y.,y*] and Py,

Z*(x*y, Po) — kM < Z*(xq, v, P5).

We shall call the above inequality relation F. Now, when the price rises, using mean
value theorem, for some 7 € [min( Py, Z*(=*,y, Po)), max(Po, Z*(z*,y, Po))], we have

oL*(=*,y,7)

L'(-T‘vi‘hpo)= L‘(m',y,Z‘(:z",y,Po))+ dP,

(Po — Z*(=*,y, o)),

which, using relation E, is equal to

aL*(x*,y,7)

Z‘(‘r‘ay»PO)+ 3P0

(Po - Z'(:r',y,Po)).
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Note that when the price rises,®

L*(=*yy, Po) < Z2°(=%,v, B),

and this implies that

aL’ '., ?
K(y|P > Py) = ——%,g—"! > 0.

We now have
L*(z*,y, Po) < Z*(z*,y, Po) — x(y) M.

Similaily, when the price falls, for some 5 € [min(Po, Z*(7.,y, Po)), max(Po, Z°(z.,y, Po))],
we have

® » aL. 1'03 b ] .
L (203 Po) = L (2039, 2°(ury Pol) + 2t IRy — 24200, P,
which, using relation E, is equal to
aL*(=x.,y, .
2(20ry, Po) + 22 (p 7oz, y, ).
P,
Again,
oL*(x,
K(ylPr < Py) = ——-——‘;P;y”" > 0.
We have

L*(x4,y, Po) 2 Z*(s,y, Po) + n(y) M.

Now, define x as the infemum of all x(y). When the price rises, we have
L.(z‘7ys PO) < Z.('T.’ Y, PO) - kM < Z‘(l’., Y, Pﬂ)’

where the last inequality follows from relation F. Ir this case, the trading volume
~ v is §. When the price falls, we have

L.(zn!h Po) 2> Z2*(x.,y, Po) + &M > Z*(2*,y, PO))

where the last inequality follows from relation F. In this case, the trading volume
v is 0. That §( M) is increasing in M is obvious.d

39The following inequality is strict. Otherwise, relation E implies that all bids at time 1 is
lower than Py, contradicting the assumption that the price rises.
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Remark 68 Let us bricfly remark on the intuition behind theorem 2. Note that the
prospect theory implies that a long-position trader’s bidding behavior differs from that
of his zero-position counterpart, because of his concern about his welfare in the case
where he loses the bid, which depends on Py. Thus, compared to his zero-position
counterpart, a long-position trader is historically emotional in the following sensc:
When the magnitude of the price change is perceived to be large, the emotional factor
becomes significant and consequently a long-position trader’s bid differs e lot from
that of his zero-position counterpart, in spitc of the fact that they have the same in-
formation about P,. On the other hand, if traders are interim highly homogeneous,
which meens that at time 1 the range of the private signal is small, then all traders
in the same pre-trade positions bekave similarly. Now, if the magnitude of the price
change is large and traders are also interim highly homogeneous, consider all the
long-position traders’ bids as a group and all the zero-position traders’ bids as an-
other group. The within-group variation will be small and th: between-group
variation wili be large. This means:

o When the price rises, it tends to rise much. Because traders are highly ho-
mogencous, when a long-position trader tends to lose the bid, so do other
long-position traders. Volume is thercfore extremely high.

o Wh-n the price falls, it tends to fall much. Because traders are highly homo-
geneous, when «a long-position trader tends to win the bid, so do other long-
position traders. Volume is therefore extremely low.

1.4 Conclusions

In this paper, we provide an equilibrium model where the price-volume formation
process is explicitly modeled and hoth the price and volume convey information in
equilibrium. The price-volume formation model is used to study the implications of
Kahneman-Tversky’s preference theory on the equilibrium relations between price
and volume. We obtain two equilibrium relations between price and volume,that
the volume is in general higher when the price rises than when it falls, and that the
volume is either extremely high or extremely low if traders have highly homogeneous
information and the price is volatile.

Although prosepct theory is supported by numerous experimental findings at
the individual level and has been widely accepted by marketing researchers (Thaler
(1985)), its implications on economic activities at the aggregate level remain un-
known. This paper, to the author’s knowledge, is the first attempt in this direction.
The preference assumptions are always crucial in leading to the final predictions
of theoretical research in economics. Learning the implications of various prefer-
ence theories on economic activities is useful in settling the disputes among pref-
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erence theorists and it helps economists to reach concensus. The final veraict of
Kahneman-Tversky’s theory, of course, has to rely on more empirical evidence and
further studies in human behavior.
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Appendix A: Proofs of Lemmas and Propositions

Proof of Lemma 1

The first assertion follows from the strict MLRP of signals. To show the second
assertion, suppose that z{a,y) < Py. This means

E(V(P, - P)|Xz =a,Y =y) <0.

But, then
E(V(P, — Po)| XL = a.Y =y) - V(P - Fp)

= E(V(P, — P)|Xz =a,Y =y)<0.
This means l{a,y, Py) < Py. Also,

E(V(P; — z(a,y))|XL = a,Y =y) - V(z(a,y) - Ro)

= E(V(P; — z(a,y))|Xz = a,}Y =y) -~ V(z(a,y) -~ Po)
=0-V(z(a,y) - Po) 20,

which means l(a,y, Py) > z(a,y). We conclude that, in this case, z(a,y) < l[(a,y, P) <
Py. The case where z(a,y) > l(a,y, Po) > P is similar.0

Proof of Lemma 2

Given ¢, let H he the collection of all continuous and strictly increasing functions
which map [z. + ¢,2* — €] into [0, K']. Endow H a partial ordering > as follows.
Two elements of H, h; and h, are such that hy; > h,, if for all a € [z, + €,2* — ¢,
hi(a) > hz(a). First note that, given that ( and ) are two elements of H, Z, and
L. are also elements of H. Given A, an increase in ( in the sense of > leads to an
increase in Z, for all a. This means that an increase in ( in the sense of > leads to
an increase in Z, in the sense of = too. The Tarski’s theorem (Tarski 1955) therefore
implies that for each )\, there is a (*()) such that Z(¢*(A),A) = ¢*(A). Similarly,
one can show that for each ( there is a A\*(() such that L.({,A*(¢)) = A*({). Now
observe that A*((*())) is an increasing mapping from the complete lattice (X, >-)
into itself. The Tarski’s theorem then implies the existence of a fixed point A*® such
that A*(¢*(A**)) = A**. Thus, A** and (** = (*(A**) are the two asserted functions,
corresponding to which Z,({**,A**) = (** and L.((**,A**) = A**. Now we consider
the last assertion. Note that by construction, Z.(a) and L.(a) are both continuous
in ¢ for each k € [0,=5%2], € € [0,k] and a € [z, + k,z* — k]. Moreover, they are
both non-negative and bounded above by K. It follows that they must both be
uniformly continuous in €. A mathematic result (theorem 13-D of Simmiens (1963))
says that the image of a Cauchy sequence under a uniformly continuous mapping
must also be a Cauchy sequence. Now we pick a sequence of {¢,} converging to zero.
It follows that Z. (a) and L, (a) are both Cauchy sequences for all a € (x,,2*).0
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Proof of Lemma 3

Notice that given the common prior beliefs about signals and P,, for very small
positive number ¢, z(x* —¢, y) is a zero-position trader’s reservation value conditioned
on his private signal =* — ¢ and the public signal y, while Z(x* ~¢,y, Pp) is the same
trader’s reservation value conditioned on his private signal °* — ¢, the public signal y,
as well as the event that information conveyed by the market price is very favorable,
ie.,

E,(E(V(P: — z(2* - €,y))]
Xz =2"—-¢&z(v) = a,éL(S —v) = L"l(Z(u,y, Po)y, Po), Y =y, B)) =0,

and
E(V(P; — Z(x* — €,y, Po))|

Xz=2"-¢€z(Vv)=2"-€,&(S-v) = L—I(Z(z’."’f’yvPO)’y’PO)’Y =1,1p)) =0,

where in the first equation, E,(-) indicates that the expectation is taken over all
possible realizations of a. Thus, following the strict MLRP of signals, for ¢ small
enough we should have

Z(z* —€6,y,P) > z(2* — ¢,y).

Now note that
Z(a*,y, Po) = !‘_‘:l(‘, Z(x* — €,y, Po)

and
Hx*y) = lill(l’ (x* - €,y).
€ —t

This shows that Z(x*,y, Py) 2> =(«*,y). The remaining inequalities can be analo-
gously proved.O

Proof of Proposition 1

We consider only the case where z(x*,y) < l{z.,y, Po). The case where z(x,,y) >
l(=*,y, Po) can be analogously proved. First note that, when z(x°,y) < l(x.,y, Po),
if traders adopt z(a,y) and l(a,y, Po) as their bidding strategies, we know for sure
that P, = l(x.,y,Po). No new information is revealed after the trade. Thus, it
suffices to show that, conditional on a trader’s pre-trade information, z{a,y) and
l(a,y, Po) are his optimal bidding strategies respectively whken his pre-trade position
is zero and when it is long. Suppose the pre-trade position is zero. The objective
function of a zero-position trader with private signal a and public signal y is

E(Liz5p,)V(P. — P)|Xz = a,Y =1y)
= 1izstzea P | E(V (P2 = x4, 3, Po))| Xz = 0,Y = y)

< Lzstzewp E(V(F — 2(a,y))| Xz = a,}Y = y) = 0.
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The maximum, 0, is reached at any Z < l(z.,y, Po). In this case, z(a,y) is (weakly)
optimal for the zero-position trader. Similarly, we can show that [(a,y, P,) is optimal
for a long-position trader with private signal @ and public signal y. Now the last
assertion follows from lemma 1, which says that given any private signal a and public
signal y, either z(a,y) < l(a,y, Po) < Po or z(a,y) > l{a,y, Po) 2> Po.0)
Proof of Proposition 2
In the following, for simplicity, conditioning a random variable on {z(1#) = b actually
means conditioning it on {z(v) = b as well as £,(S —v) = L-Y(Z(b;y, Po); y, Po), fol-
lowing the hypothesis that there are always zero-position and long-position traders
who submit the bid P, in equilibrium. The conditioning on &,(S — v) = b is inter-
preted similarly.

Given y, Py, the common prior beliefs about the signals and P,, and that other
traders adopt respectively the two prescribed bidding strategies, a zero-position
trader with privaie signal a and public sigaal y % .s the objective function

E(Liz>z06up) V(P2 — Z(b,y, P))| Xz = @, Y =y, Pp)

Z-Y(Zy.P) i ; . N
= /_ E(V(P—2(b,y, Po))|Xz = a,Y = y,£2(v) = b)h(b| X7 = a,Y =y, Po)db,

where Z(b,y,Po) = P, and h(-|a,y, Fp) is the density of {z(~) conditional on the
pre-trade signals Xz = a, Y = y and the price Py. in the above integral, in those
states that b > a, the integrand

E(V(P, — Z(b,y, Po))|Xz = a,§z(v) = b,Y = y)
< E(V(P, — Z(b,y, R))|Xz = b,€2(v) = b,Y =y) =0,
and similarly, in those states that b < a,
E(V(Py — Z(b,y, Po))| Xz = a,€z(v) = b,Y =y) > 0.

Therefore, the optimal bid Z*(a,y, Po) should be such that the trader wins the asset
only in such states that b < a. This means that we want Z*(a,y, Py) > Z(b,y, P)
if and only if b < a, or, Z*(a,y, Ps) = Z(a,y, Py). This shows that Z(a,y, P) is
indeed the optimal bidding strategy of zero-position traders.

Similary, given y, Py, the commen prior beliefs about the signals and P,, and
that other traders adopt respectively the two prescribed bidding strategies, a long-
position trader with private signal a and public signal y has the objective function

E(lityp)V(P: — P1) + lip<p, V(P — Po)|XL = a,Y =y, R),
= E(I[sz,](V(Pz -h)-V(P - Po))|XL =a,Y =y, )
+E(V(P - Po)|XL = a,Y =y, R),
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which is equivalent to

E(1ieappppol( V(P2 — L(byy, Po)) — V(L(byy, Po) — o)) XL = a,Y =y, Fo)

L-'(Liy.Py)
= /_w E((V(P2—L(b,y, Po})—V(L(b,y, Po)~Po))| XL = a,Y = 3,£L(S—v) = b)

n(b|XL = a,Y =y, P)db,

where L(b,y, Py) = P, and 5(:|a,y, Po) is the density of (S — /) conditional on the
pre-trade signals X; = a, Y = y and the price Py. In the above integral, in those
states that b > a, the integrand

E((V(P: — L(b,y, Bo)) — V(L(b,y, 7o) — Po))| XL = a,&L(S — v) = b, Y = y) <0,
and in those states that b < a,
E((V(P; — L(b,y, Po)) — V(L(b,y, Po) — Po))| XL = a,€L(S —v) =b,Y =y} > 0.

Therefore, the optimal bid L*(a,y, Po) shouid be such that the trader continues to
hold the asset only in such states that b < a. This means that we want L*(a,y, Po) >
L(b,y, Py) if and only if b < a, or, L*(a,y,Py) = L(a,y,Po). This proves that
L(a,y, P) is indeed the optimal bidding strategy of long-position traders.]
Proof of Proposition 3
We must show that at time 0 the equilibrium price P; exists. First note that,
because the signals are continuous random variables, both E(J.) and E(Jz) are
continuous in Py. It then suffices to find two feasible Py’s, say Pos and Pyp, such
that under Py4, traders at time 0 all prefer a long position to a zero position and
under Ppp, traders at time 0 all prefer a zero position to a long position. Consider
that P4 = 0. Recall that P, is non-negative. In this case, all traders at time 0
~prefer a long position. To find Pyp, note that by the definition of I(a,y, Po), we
know that

fim l(a,y, Po) = oc.

Py ~00

Therefore, we can find some P, such that {(z.,y.,F5) 2 z(z*,y*). We claim that
at time 0, every trader prefers a zero position to a long position, if Pop = Fj is the
security price at time 0. To prove this claim, note that if P, is the security price at
time 0, there will be no trade at time 1, and all zero-position traders are guaranteed
by a zero utility. We shall show that, under Pop = P;, taking a long position at
time 0 results in a negative utility. Given that Py is the security price at time 0 and
that there will be no trade at time 1, a long-position trader has an expected utility
at time 0 equal to

E(V(P2 - l(m.,'y, P(;))) S E(V(P2 - :(m")y'))) S 0,
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where the last inequality follows from the definition of z(a,y) and the strict MLRP
of signals. In this case, traders at time 0 »all prefer a zero position to a long position.
The proof is now complete. O

Proof of Proposition 4

Since this assertion has heen proved for the case of proposition 1, we only need to
consider the case of proposition 2. In this case, recall that a trader’s equilibrium
bid is always an interior solution to his optimal bidding problem at time 1. This
implies that the first-order condition for a trader’s optimization problem must hold
for his equilibrium bid. Precisely, this means

Dz(Z2*)=E(V(P, - Z2*)|P, = Z2°,Xz = a,Y =y,P) =0
and
Dr(L*)= E(V(P, - L*)|P, = L*, Xy =a,Y =y, P) — V(L* — P) =0,

where Dz(-) and Dy(-) are the first derivatives of objective functions of respectively
zero-position and long-position traders whose private signal is @ and public signal
is y, and Z* = Z*(a,y, Py) and L* = L*(a,y, Py) are respectively zero-position and
long-position traders’ equilibrium bidding strategies. The assertion now follows from
the fact that both objective functions have unique peaks, according to proposition
2. To see this, suppose Z*(a,y, Py) > Po. Then,

Di(Fo) = Dz(P) > 0.

Moreover,

Dr(Z*) = -V(Z* - P) < 0.

This means Z*(a,y,Py) > L*(a,y, Py) > Py. The case where Z*(a,y, Po) < Py is
similar. 0

Proof of Proposition 5

Consider the first assertion. Suppose it is not true that there are both zero-position
and long-position traders who submit the bid P,. Then it follows from proposition
4 that Pp is either higher or lower than everyone’s bid at time 1. This means
~ that there is either a sure gain ¢r a sure loss from taking a long position at time
0, a contradiction to the fact that P, is the time-0 equilibrium price that makes
traders indifferent between taking a long or zero position. Now because Z*(x*) >
L*(z*,Py) > L*(zx.,P), the volume must be strictly positive. Similarly, we can
conclude that the volume is strictly less than S§. The second assertion follows from
proposition 1. O
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Appendix B: The Isolation Eftect and the Independence Ax-
iom '

The isolation effect, also known as the elimination by aspects, is originally re-
ported by Tversky (1972). In this appendix, we shall briefly discuss the connection
of the isolation effect to the independence axiom: in the expected utility theory.

Consider an abstract decision making context, where an agent is considering
taking one of the two alternatives, X and Y.The independence axiom says that the
agent’s preferences about X and Y sliould be independent of other alternatives, e.g.
Z. That is, if an agent prefers X to Y when Z is unavailable, he still does when Z
becomes available. However, the experimental findings strongly .uggest the oppo-
site: The agent’s preferences about X' a=d } a.e highly dependent on whether other
alternatives are available, and what other alternatives are.Tversky {1972) reports
how an agent’s preferences about X' and Y depend on other alternatives. The major
finding is that, agents tend to regard an alternative as a bundle of relevant aspects.
To be specific, let us consider the following example, where the three alternatives
X, Y and Z are expressed by their aspects:

X = apy,
Y = afy,
Z = (10/3.

Note that «a is a common aspect of all alternatives. Similarly, 3 and @ are respec-
tively the common aspects of X and Z, and Y and Z. The isolation effect asserts
that a is irrelevant to the agent’s decision. By eliminating aspect «, we have fous
relevant aspects left. Let the importance of each aspect be denoted by a strictly
positive number. Respectively, the importances of the four aspects are measured by
U(B),U(v),U(0) and U(g), with the sum of the four numbers normalized to one.
Then, without the presence of alternative Z, the probability that X is chosen over
Yis
Pxy = U(B) + U(v),
and the probability that Y is chosen over X is

Pyx = U(0) + U(p),

where note that the two probabilities sum to one, and that Pxy denotes the proba-
bility that X is chosen over Y when X and Y are the only two alternatives available.
When Z is also available, the probability that X is chosen over Y and Z is

U(B)Pxz + U(y),
the probability that Y is chosen over X and Z is

U(0)Pyz + U(p),
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and finally, the probability that Z is chosen over X and Y is
U(0)Pzy + U(B)Pzx.

Again, the three probabilities sum to one. Let us compare the probability that X
is chosen to the probability that }" is chosen. We have the following findings:

1. Introducing a competing alternative Z reduces the probability that either X
or Y will be chosen. This is quite intuitive.

2. X is now more likely to be chosen than Y, ii une newly introd .ced alternative
Z har m..e common aspects with ¥ than with X.

As a conclusion, Tversky (1972) points out that the independence axiom has been
violated in various contexts. Agents’ preferences about two alternatives X' and
Y highly depend on whether other alternatives are also available, and what other
alternatives are. In any case, agents tend to disregard the common aspects of all
alternatives.
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Chapter 2

Prospect Theory, Equilibrium
Asset Returns and Optlmal Risk
Sharing

Abstract of Chapter 2!

This paper explores the implications of Kah'neman Tversky’s prospect theory on
equilibrium relations among asset returns and Pareto optimal risk sharing rules. It
produces the following results:

1. The Sharpe-Lintner CAPM is rebuilt in a two-period economy where two-
fund separation holds in equilibrium and agents have preferences described by
prospect theory. In equilibrium, an agent’s optimal portfolio is mean-variance
as well as mean-third moment efficient. Merton’s Intertemporal CAPM is de-
rived in a continuous-time homogeneous economy due to Cox, Ingersoll and
Ross (1985). These results suggest that Kahneman-Tversky’: preference the-
ory is compatible with existing asset pricing theories.

2. Thaler’s optimal rules for segregating and integrating different prospects are
extended to the uncertainty case.

3. A complete characterization of optimal risk sharing rules is provided. Prospect
theory implies that, under optimal sharing rules, there exists an agent who
bears all the losses whenever they occur. Other agents are fully insured against
losses. The sharing rules are in general not monotonic, and hence non-linear.
Conditions on agents’ preferences so that the optimal sharing rules are piece-
wise linear are given.

1This essay has benefited from comments made by Phelim P. Boyle, Raymond Ken, Kazuhiko
Ohashi and in particular Chi-fu Huang, Jean-Luc Vila and Jiang Wang. Any remaining errors are
my own.
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4. Sufficient conditions for the existence of a competitive equilibrium are derived.
For a class of economies, a competitive equilibrium always exists and the
equilibrium allocations are Pareto optinal.

5. When Pareto optimal sharing rules are implemented in a competitive equi-
librium of complete asset markets, there exists a representative agent, whose
preference is described by prospect theory, such that after a translation of both
agents’ common beliefs and the Arrow-Debreu state prices which support the
original competitive equilibrium, the franslated beliefs and state prices sup-
port the representative agent’s optimal consumption plan, which prescribes
that the representative agent consumes the aggregate consumption in every
state of the world.

2.1 Introduction

The development of prospect theory by Kahneman and Tversky (1979) has been
based on compelling experimental findings. According to prospect theory, when an
individual faces some random payoff, he first compares the payoff to some reference
point, or bench mark. The difference between the payoff and the reference point is
defined as either a gain or a loss depending on whether it is positive or negative.
The individual’s perference is then represented by a value function defined on the
space of gains and losses. A value function is everywhere increasing, concave on the
positive orthant, and convex on the negative orthant. The traditional concave von
Neumann-Morgenstern utility functions may be considered as one special class of
value functions whose reference points are zero and prospects only involve random
gains.

In spite that prospect theory has been supported by subsequent experimental
findings in human studies and wide acceptance of marketing rescarchers (Thaler
(1985)), it has not attracted much attention of economists for several reasons. First,
some economists suspect that an agent with preference described by prospect theory
may be irrational, i.e. the agent may take actions to reduce his own wealth. Second,
the indeterminacy of the reference point in the agent’s value function is disturbing.
In two different decision-making contexts, an agent may make completely opposite
decisions because different reference points are chosen. Finaily, and most impor-
tantly, prospect theory has not been developed into a powerful analytic tool like
expected utility theory, although it was originally proposed to replace the latter,
when the latter was found by psychologists to be inconsistent with human behavior
under uncertainty (Kahneman and Tversky (1979)).

First, as to irrationality, given any reference point in an agent’s value function,
that the value function is increasing implies that the agent’s preference is monotonic
in wealth. Thus rationality simply requires that, given each decision-making context,

43



the reference point be properly chosen such that the agent’s preference is increasing
in his wealth. Rationality of a prospect-theory agent has been subject to suspicion,
probably because of misinterpretations of some well-known experimental findings.
Here is an example. In two separate experiments the same subjects are asked to
choose one lottery out of two. In the first experiment, a subject chose lottery A over
lottery B. In the second experiment, the same subject chose lottery (' over lottery
D. It turns out that the payoffs to the portfolio B + D first-order stochastically
dominate those to the portfolio A + C'. It was therefore argued that this subject
is irrational. Note that the subject was not allowed to choose among portfolios
in the experiments, nor did he know the existence of the second experiment when
he participated in the first one. If a subject had been allowed to choose among
portfolios A+ C, A+ D, B+ C, and B+ D, should he not have used the payoffs to
one of these portfolios as a reference point? But in that case, he would never choose
the dominated portfolio A + (', as his preference is monotonic on the space of gains
and losses!

The above example shows how the reference point is sensitive to the context in
which the agent makes decisions. In the comparisons between A and B and that
between (' and D, a subject probably have two different reference points. Moreover,
neither of the two reference points is used in the new context where the subject is
allowed to choose among portfolios. In any case, a rational prospect-theory agent
who fully understands the context will always choose the reference point properly
so that irrational decisions are never made.

Second, regarding how the reference point may adjust with the decision-making
context, we currently have only a few clues provided by Kahneman and Tversky.
For example, the isolation cffect says that, before a decision is made, a decision
maker tends to choose a reference point such that the common aspects of all feasible
alternatives are ignored; see Chen (1992).

Finally, in view of the fact that prospect theory has not been analytically useful to
ecoromists, this paper studies some analytic properties of the Kahneman-Tversky
value function and its implications on financial economics. The issues we choose
to deal with include optimal rules for creating the framing effect (Thaler (1985)),
the equilibrium relations among asset returns, and the Pareto optimal rules of risk
sharing among a finite number of agents.

In section 2.2, we analyze the basic properties of a value function. Thaler’s
proposition (Thaler (1985)) about how different prospects should be optimally in-
tegrated or segregated is extended to the uncertainty case.

In section 2.3, we explore the implications of value functions on equilibrium
asset returns. We first give equivalent conditions for first-order and second-order
stochastic dominances. Assuming two fund separation holds in equilibrium, we re-
derive the Sharpe-Lintner CAPM. An agent’s optimal portfolio is mmean-variance as
well as mean-third moment efficient.

44



In section 2.4, we characterize the optimal risk sharing rules among N agents.
It is shown that under the optimal sharing rules, there exists one agent who bears
losses whenever they occur. All other agents are fully insured against losses. The
optimal sharing rules are not always implementable in competitive asset markets
equilibrium, even if markets are complete. Arrow (1964) shows that for the optimal
sharing rules to be always implementable in competitive asset markets equilibrium,
the value functions must be everywhere concave. Thus for Kahneman-Tversky value
functions, joint conditions on value functions and return distributions are needed to
guarantee the implementability. Sufficient conditions for the existence of competitive
equilibria are derived. A class of economies always have competitive equilibria and
moreover, the equilibrium allocations are Pareto optimal.

A representative agent theorem is established when Pareto optimal sharing rules
are implemented in a competitive equilibrium of complete asset markets. We show
that the representative agent’s preference has expected value function representa-
tion. After a translation in both the agents’ common beliefs and the Arrow-Debreu
state prices which support the original competitive equilibrium, the translated state
prices and beliefs support the representative agent’s optimal consumption plan,
which prescribes that the representative agent consumes the aggregate consump-
tion in every state of the world.

The optimal sharing rules are generally not monotoenic, and therefore non-linear.
We obtain conditions on agents’ value functions such that the optimal sharing rules
are piece-wise linear.? The conditions require agents’ value functions also he piece-
wise. Each piece is a so-called HARA (hyperbolic absolute risk aversion) function.
We conclude in section 2.5.

2.2 Basic Properties of Value Function and Fram-
ing Effect

A prospect in static environments is a random variable with its reelization repre-
senting a gain if it is positive and a loss if it is negative. A prospect is said to be
regular, if with strictly positive probabilities a gain and a loss can respectively occur.
An increasing continuous real function V(.) defined on the real line is a Kahneman-
Tversky value function (henceforth value function) if the following three conditions
are satisfied:

1. V(0) =0;

*This analysis is meaningful, because a simple capital structure composed of debt and equity
implies piece-wise linear sharing rules for claimants on the firm. From capital market's point of
view, piece-wise linear sharing rules can be implemented by a small set of assets, such like a riskless
asset, a risky asset with payoff proportional to the aggregate consumption and a European call
option written on the risky asset.
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2. For all z € R, let V!(z) be the left-hand derivative at z. Then, for all = > 0,
VI(-z) 2 V(z);

3. For = 2 0, V(=) is concave; for # < 0, V() is convex.

Clearly, an expected value function is unique up to a multiplication by any strictly
positive number. It follows from condition 3 that V' (x) has global maximum at 0. It
follows immediately from the first two conditions that forall « > 0, -V (-z) > V(z).
This says that a consumer suffers from a particular amount of loss more than he can
benefit from the same amount of gain. Intuition then suggests that if a consumer is
indifferent about taking a prospect with oniy two possible realizations, the prospect
should have expected gain. This indeed is true and can be easily verified. For
general regular prospects with more than two outcomes, however, this is not true.
A consumer is said to be risk averse, if he never takes fair gambles, i.e. prospects
with zero mean. An expected value function maximizer in general may take a fair
gamble while reject another. Hence his risk attitude cannot be defined on the entire
space of prospects.

An interesting issue raised in prospect theory by Kahneman and Tversky is the
so-called framing effect. As a tradition, economists have assumed that money has
no labels. A consumer never distinguishes money incomes from different sources.
~ Experimental findings about human behavior (Thaler 1985), however, suggest that
consumers seem to have some mental accounting systems. Incomes from different
sources are recorded in different mental accounts.® The belief that framing effect
exists leads to the analysis of how different prospects can be optimally integrated or
segregated. The following proposition is due to Thaler (1985), which concerns sure
gains and sure losses:

Proposition 1 Let a and b be two real numbers.

1. Two sure gains should be segregated. That is, if a,b > 0, then V(a + 8) <
V(a) + V(b).

2. Two sure losses should be integrated. That is, if a,b < 0, then V(a + b) >
V(a) + V(b).

3. A surc gain and a sure loss should be integrated if integration creates a sure
gain. That is, ifab< 0, and a + b > 0, then V(a + b) > V(a) + V(d).

3This observation is important, for example, for marketing researchers. Retzilers offering short-
term price deals instead of permanent price cuts may believe that orly the short-term price deals
are regarded as gains by consumers, while a permanent price change is considered a change of
reference point which yields no gain.
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The proof for the above proposition is obvious. Note that if V(z) is three-time
differentiable at 0, V”(0) = 0 and V"'(0) < 0. Generally, V'"(x) need not exist.
Under the assumption that for all x, V""'(x) exists and is negative, which says that
a consumer becomes more risk averse when the prospect involves higher gains, we
can rebuild Thaler’s proposition for the case of uncertainty:

Proposition 2 Assume that for all y, V"'(y) < 0.

1. Let x be a random variable with E(x) > 0. Let z be a strictly positive number.
Then, E(V(x + z)) < E(V(x)) + V(z). That is, the two prospects x and z
should be segregated.

2. Let x be a random variable with E(z) < 0. Let = be a strictly negative number.
Then, E(V(z + z)) > E(V(x)) + V(z). That is, the two prospecis x and z
should be integrated.

3. Let = be a random variable and = be a strictly positive number with E(z) > z.
Then, E(V(z — z)) > E(V(x))+ V(—=z). That is, the two prespecis x and —=
should be integrated.

Proof
First we prove assertion 1. Define h(:) = E(V(x + z)) — E(V(x)) — V(z). Then,
h(0) = 0. We have

h'(z) = E(V'(x + z)) - V'(z) < VI(E(x) + z) = V'(z) <0,

where the second inequality follows from concavity of V(z) on positive orthant.
Therefore, for all z > 0, h(z) < 0.
Now we consider the second assertion. Note that in this case A(0) = 0 and

h'(z)= E(V'(z + z)) - V'(z) < V!(E(x)+ z) - V'(z) <0,

where the second inequality follows from convexity of V(x) on negative orthant.
Therefore, for all z < 0, h(z) > 0.
Now the last assertion. Define H(zx) = V(x — z) — V() — V(—=z). We have

H'(z)=V"(z - z) - V"(x) > 0,

where the inequality follows from the assumption that V"(x) < 0. Then H(z) is
globally convex. We have

E(H(z)) > V(E(z) - z) - V{E(z)) = V(=z) > 0,

where the last inequality follows from assertion 3 of proposition 2.0J

We now turn to section 2.3 for a discussion of multi-asset return relations.
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2.3 Stochastic Dominance, CAPM and Intertem-
poral CAPM

A prospect A is said to first-order stochastically dominate prospect B if A is pre-
ferred to B by all agents who maximize expected increasing and continuous value
functions. A prospect A is said to second-order stochastically dominate prospect B
if A is preferred to B by all agents who maximize value functions which are concave
on the positive orthant, conver on the negative orthant, and continuous at 0.* In
this section we will investigate the conditicns for the first- and second-order stochas-
tic dominances and derive an equilibrium relation among asset returns under the
assumption that two-fund separation holds. The following equivalent condition for
first-order stochastic dominance is identical to that in the case of expected utility
function.

Proposition 3 Let A and B be two regular prospects with the closed interval [a, b
being the union of their supporis. Lel Fs(x) and Fp(z) be the distribution functions
Jor respectively prospects A and B. Then, A first-order stochastically dominates B
if and only if Fa(x) — Fp{x) < 0 for all = € {a,}].

The proof for the above proposition is identical to that for the case of expected
utility function. See, for example, Huang and Litzenberger (1988). The following
equivalent condition for second-order stochastic dominance is a direct extention of
that in the case of expected utility function.

Proposition 4 For all z € [a,b], define S(x) by [F(Fa(z) — Fp(z))dz. Then, a
regular prospect A second-order stochastically dominates a regular prospect B, if
and only if A and B have the same ezxpected values and S(z) > 0 for all z € [a,0]
and S(z) < 0 for all = € [0,d]. Necessarily, S(0) = 0.

Proof
The proof is similar to that for the case of expected utility function. First consider
the sufficiency part. Using integration by parts, one can show that

E(V(ea)) ~ E(V(es)) = | S(e)dV/(x),

which is positive by the assumption about S(z), the convexity of V(x) on the neg-
ative orthant, and the concavity of V() on the positive orthant. Next consider the
necessity part. Since S(z) is absolutely continuous, it is continucus. If for some
x > 0, §(x) > 0, then there exists a strictly positive number ¢, such that for all

4If a function is concave or convex on an interval, the function is continuous on that interval.
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y € [max(0,z — &),z + €], S(y) > 0. Then we can find a value function which is
linear outside the interval [max(0,z — £), = + ], and strictly concave on the interval.
For this particular value function, E(V(x,4)) — E{V(zp)) is negative, contradicting
the definition of second-order stochastic dominance. If for some z < 0, S(z) < 0,
an analogous contradiction can be established. This finishes the necessity part. (3

Following Rothschild and Stiglitz (1970), there is another equivalent condition
for the second-order stochastic dominance: prospect A second-order stochastically
dominates prospect B if and only if there are two prospects uy and wp such that
24 + uy and zp + up are equal in distribution,

E("‘Ale) =0, E("‘BlmB) =0,

up =0if x4 <0,and ugp = 0if zp > 0. The following is an example:
Example There are four equally likely states w;,7 = 1,2,3,4. The following table
summarizes the information about x4, p, 14, and ug.

Prospects/states | wy |ws |ws |ws
A 22 |-1 |15 {15
B -15)-15 1 2
Uy 0 0 -0.5 0.5
up 0505 {0 0
Note that prospect A second-order stochastically dominates prospect B.
The three functions Vij(z) = x,Vo(x) = —a and V3(x) = —x3 are all concave

on the positive orthant and convex on the negative orthant. Thus, if a prospect A
second-order stochastically dominates prospect B, we should have E(z4) > E(xp),
E(—z4) > E(—zp), and E(—x%) > E{—z%). This means that the two prospects
should have the same expected value, and the dominating prospect should have
smaller third moment.

An N-vector of prospects =’ = (x1,%3,%a,-+,%n), where ' denotes transpose, is
said to exhibit two fund separation if there exist two N-vectors a and A such that
o't = f'v = 1, where ¢ is an N-vector of one’s, and for any other N-vector v with
7't = 1, there exists a real number A(v) such that

E(V(Xy)a'z + (1 - A(7))8'z)) = E(V(~'z)),

for all V(z) which are concave on the positive orthant and convex on the negative
orthant. That is, two fund separation holds if there exist two fixed distinct portfolios
constructed from the N prospects, such that every feasible portfolio constructed
from the same set of prospects is second-order stochastically dominated by some
portfolio of the two fixed portfolios. If one of the two separating portfolios is a
riskless asset, the phenomenon is called two fund monetary separation (Cass and
Stiglitz 1970).
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We shall show that, if two-fund separation holds in the equilibrium of a two-
pericd economy, then the Sharpe-Lintner CAPM holds. Assume that there is a
riskless asset with rate of return denoted by r;. There are N risky assets with rates
of return denoted by the N-vector r;. + z and expected rates of return denoted by
the N-vector rs¢ + e. Agents trade at date 0 and assets pay off at date 1. Denote
by the N-vector a the proportions of initial date-0 wealth invested in respeciively
the N risky assets. Thus the random gain or loss per dollar generated by strategy
ais a'z.

Assume two fund separation holds in equilibrium. Then given that a'c equals
a constant j, the dominating portfolio constructed from the two separating funds
should have minimum third moment. The existence of this minimum is implied by
the assumption that two fund separation holds. Thus the dominating portfolio a is
a solution to the following minimization program:

min E((a'z)®)

subject to a'e = pr. Forming the Lagrangian, and denoting the Lagrangian multiplier
by 3%, we are minimizing

E((a'€)®) — 3m(a'e — p).

For the solution to exist, it is necessary that the first-order conditions hold. That
is, forall : = 1,2,..., N,

a'Aja = we;,

where

A; = E(z;za').

Note that for all 7,5 € {1,2,..., N}, the two matrices A; and A; are both symmetric
and they commute. That is, for all 7,5 € {1,2,...,N}, 4; = A! and

AiA; = A A,

It follows from a well-known fact in linear algebra that there exist an erthogonal
matrix ¢ and N diagonal matrices D; for i = 1,2,..., N, such that for all : =
1,2,...,N,

A; = C'D;C.

Substituting this result into the N first-order conditions, we haveforall: = 1,2,..., N,
b D;b = ~e;,

where
b="Ca.
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The above conditions can be rewritten as
DV = re,

where the N x N matrix D is so constructed that its i-th row is the major diagonal
elements of matrix D;, for all : = 1,2,..., N, and the N-vector b" is so constructed
that its i-th element is the i-th element of b raised to the n-th power. We will
assume that matrix D is of full rank. This assumption corresponds to the full rank
assumption about the variance-covariance matrix of asset returns in the derivation
of traditional CAPM. We now have

Ca = b= (D 're)t,

where the vector (D-1¢)} is such that its i-th element raised to the second power is
equal to the i-th element of D-'¢. Certainly (D~¢)# so defined is not unique. But
under the assumption that two fund separation holds, for all x, the optimal solution
a must correspond to the same vector (D-'¢)3. It follows that

p=ea= 6'("'(0—17"5')*1

or,
T = 12('C' (D)) 2.

So = is strictly positive for all 2 > 0. Note that from the first-order conditions, the
minimum third moment is equal to

E((e'7)?) = mp.
Now we can characterize the efficient frontier and the two separating funds.

Proposition 5 The following are a characterization of the first momenti-third mo-
ment efficient frontier and the two separating funds.

1. (Efficient Frontier) The mean-third moment efficient frontier is the following
polynomial:

E((a'z)?) = p3('C (D e))2.

2. (Separating Funds) The two scparating funds are the riskless asset and the
risky portfolio which has the proportions of wealth invested in the N risky
assets denoted by the following N -vector

C'(D )5 (L C(De)3)
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This portfolio contains no riskless asset and will be termed the market port-
folio and denoted by m. The expected ezcess rate of return on the market
portfolio is

eC"(D1e)}

vC(D-1e)t

A frontier portfolio a with a'e = p is generated by investing the proportion

LC(D )b
N ocD-1e)t

of one’s initial wealth in the above risky portfolio and investing the rest of his
wealth in the riskless asset.

Proof
Assertion 1 is clear, following the above discussion. To see that assertion 2 is true,
note that the frontier portfolio a with a'e = p is

a = pC'(Dte)i('C"(D1e)) 1.0

Since one of the two separating funds is the riskless asset, we have two-fund
monetary separation. Now we are ready to show the equilibrium relation among all
asset returns. Let j be any portfolio and denote its rate of return by

ri=ry+j'x.

Given the asset structure x, define the beta of portfolio 7 with respect to market
portfolio m by
_ E({m'z)*(j'x))
%= = Bmier)
We use the same beta as the one in the traditional CAPM to denote the measure
for systematic risk, because it is indeed equal to the beta in the traditional CAPM,
a fact to be established later. The following theorem rebuilds the CAPM:

Theorem 1 Assume two fund separation holds. Then for any feasible portfolio 3,
its expected rate of return E(r;) must satisfy the following relation:

E(r;) = vy + Bi( E(vm) — 75).

Proof
Let the parameter pt be equal to

p(m) = m'e.
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Then the first-order condition for minimizing the third moment, after being multi-
plied by some feasilbe portfolio j’, is

E((m'z)*(j'z)) = mp(5),

where 7 (actually 37) is the Lagrangian multiplier corresponding to the above spec-
ified parameter u{m), and p(7) denotes j'e. Then it follows that

E((m'z)*(j'z))

T

mi) =
which, using the definition of 3; and the fact that
mp(m) = E((m'z)%),

is equal to
Bip(m).

Now, using the definition of u(j), we have for every feasible protfolio j,
E(r;) =rs+ Bi( E(rm) — 74).0
Now we stzte one equivalent condition for two fund separation.
Proposition 8 Two fund separation holds if and only if

1. z;’s, the ezcess rates of return on risky asset i, foralli = 1,2,... N —1 is
related to some random variable m in the following way:

T = /3,'11! + €,

where 3;’s are constants and ¢; is such that E(e;m) =0 and ¢; =0 if m < 0;
and

2. oy is such that m is some wcighf%avcragc of x1,--+,xN.

Proof
This directly follows from the necessary and sufficient condition for second-order
stochastic dominance. The only difference here is that it is impossible for every
dominated portfolio to be less risky on the negative orthant than the dominating
portfolio. O

Following the above proposition, the CAPM derived in theorem 1 is in fact the
Sharpe-Lintner CAPM, which one can easily verify.

Our last task of this section is to rebuild Merton’s Intertemporal CAPM using
a third-degree polynomial, a counterpart to the quadratic utility function in the
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expected utility theory. Just like quadratic function, satiation may occur for the
third-degree polynomijals.

We consider a continuous-time homogeneous economy due to Cox, Ingersoll and
Ross (1985), CIR henceforth. We assume that each agent only cares about the gains
from continuous trades. Everyone maximizes an expected third-degree polynomial
value function.® Following CIR, assume there are n real assets with prices denoted
by the n-vector diffusion process S;:

dS, = Is(jt(Se, t)dt + o(Se, t)dW,,

where Is is an n x n diagonal matrix with the i-th real asset’s price S;; being its i-th
major diagonal element; p(S;,t), o( S, t) and W, stand for respectively the n-vector
mean returns, the n x (n + k) instantaneous variance-covariance matrix and the
n + k-vector Brownian motions which are the primitive uncertainties. There are k
contingent claims with prices 7,, which have the following dynamics:

dm = ,,,(a,dt + bfdwf):

where the k x k diagonal matrix I, is defined similarly to Is; a; and b, are to be
determined in equilibrium. A borrowing and lending rate r, is also available and
is to be determined in equilibrium.® At time ¢, a generic agent in this economy
maximizes

T
E( j{ e -dmX, - dX3)|F),

where rote that the economy ends at time T, that the agent has a value function
parameter m, a tie preference parameter § and personal wealth X, at time ¢
and that the time-¢ information set F; is common for everyone. Let n-vector a,
and k-vector B, denote respectively the numbers of shares of the real and financial
assets held by the individual at time t. The usual self-financing constraint implies
a dynamics for X;:

dX; = Xe(re + af(pe — 7etn) + Bi(as — meer))dt + Xo(afo, + Bebe)dW,,

where +; is a j-vector of ones. To ease notation, in the above we have suppressed
the dependence of i and o on S;. Assuming that

T
E( /' e S=(mX, — 3X3)(aar + Bb,)AW,|F;)

5To generate meaningful results, some assets should have positive supplies. If all assets are in
zero supply, as in the economy of Duffie and Zame (1987), since aggregate wealth is unchanged,
homogeneity among consumers implies that everyone has a zero indirect value function over time.

SWe have been very imprecise in describing the primitives of the economy. The probability
space, information filtration, technical conditions on parameters in the price dynamics as well as
the boundary conditions for contingent claim prices have all been left out. For these we refer
readers to the original construction of CIR. For now, it is important to mention that o(S,,t) is
always of rank n.

54



is zero, the objective function is reduced to

T
E(‘/: e~ (mX, -3X3)(ro 4ol (ptr—rrtn )+ B (ar—7rtx ) )T -3X (&, 0o+ BLb, )0+ ALD, )| dr

The temporal value function is now concave in controls a, and 3,. Standard dynamic
programming techniques are used to solve for this problem.

Define J(S, X,t) as the indirect value function at time ¢ with current real asset
prices S and personal wealth X. Define

Jy = Jx — e #(3X?% —m),

where subscripts denote partial derivatives. The next proposition summarizes the
equilibrium outcomes. The derivations of these results follow the original treatment
of CIR and thus the proofs are omitted.

Proposition 7 1. In equilibrium, there is no borrowing or lending, 3; = 0,Vt,
and s I-Je
oy = 00’ —1' —JX + S'«‘.s
=l ey Y Xy
where the two terms on the right-hand side are respectively the mean-variance
efficient portfolio and the hedging demand at time t.

2. The instantaneous expected excess rate of return on the optimal portfolio at

time & is
. —XJixx Var(dX) + —~XJ%s Cov(dX,dS)
% X2 Jx X2 |
- 3. Define '
ox = J“'_“- Var(dX) + 1‘1‘;(-’017@;\', dS)
Ik I
and Js 7e
¢s = Var(dS)E + FECou(dX, dS).
X X
Then,

I(a¢ — retr) = nx dx + nsés,
which is version of Merton’s Intertemporal C'APM.
As agents are assumed to derive satisfaction completely from gains of trade, we

do not have implications about Breeden’s Consumption-based CAPM. When real
asset prices follow geometric Brownian motions, clearly two-fund separation holds.
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2.4 Optimal Risk Sharing Rules

There are three major objectives in this section: to offer a complete characterization
of optimal sharing rules, to establish a representative ageat theorem and to give
conditions on agents’ preferences such that the optimal sharing rules are piece-wise
linear.

2.4.1 Characterization of Optimal Sharing Rules

We start with the two-agent case. Let regular prospect = be the aggregate gain
or loss to be shared by a principal and an agent endowed with respectively value
functions V(-) and U(-). Let V* be the agent’s reservation value. An optimal
risk sharing rule is a compensation schedule for the agent, s(x), which solves the
following Lagrangian:

L(s(z),m) = max E(U(x — s(x))) + m(E(V(s(x))) - V7),
where 7 is the Lagrangian multiplier for the agent’s individual rationality condition.

Let s(x) be the optimal sharing rule and f(x) be any function which is not identically
zero. Define the functional J(a, f(x), L(s(z),w)) ( for brevity, J(a)) by

J(a) = L(s(x) + af(x), ).

For s(x) to be the optimal sharing rule, it is necessary that for all function f(x),
the following two conditions hold:

J'(a)lazo = 0,

and
J”(O )'a:O S 0.

The above first condition yields the famous Borch rule: for all realizations of «,

['(x — s(z)) _
Vi(s(z))

We shall call these equalities condition 1. The above second condition yields the
following inequalities, which we shall call condition 2: for all realizations of z,

U"(x — s(x)) + 7V"(s(z)) < 0.

Condition 2 says that even when the partnership is suffering from an aggregate loss,
one agent still enjoys a gain. The other agent must bear the entire loss. Now we
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assume that the optimal sharing rule is continuous and almost everywhere differ-
entiable. Differentiating condition 1 with respect to = and using condition 2, we
have

mﬂ"ﬂ'(S(l)) S 0.

This says that almost everywhere s'(x) > 1 if and only if s(z) < 0. Similarly,

1
37(770 (x - s(z)) <0,

which says that almost everywhere s(z) is increasing if and only if z > s(z).

Now we have a complete description of the optimal sharing rules for the two-
agent case. One agent has an everywhere increasing sharing rule, while the other’s
sharing rule decreases first and then increases again. The agent whose sharing rule
is everywhere increasing bears the entire loss whenever a loss occurs. The other
agent is fully insured against losses.” Let us call the agent who may bear the loss
“agent 1”. The following are the major features of the two sharing rules:

e When an aggregate loss occurs, the slope of agent 1's sharing rule is greater
than 1, while at the same time, the slope of the other agent’s sharing rule is
negative.

© When an aggregate gain occurs but is very small, agent 1 still bears some loss.
The entire gain is enjoyed by the other agent.

e When an aggregate gain occurs and is big, both agents share the gain. In this
case the slope of each agent is between 0 and 1.

We now turn to the N-agent case. One can think of the case as being one where
one principal and N—1 agents, with respectively value functions U(-), V;(-), Va(+), - - -, Viv_ 1(+),
are looking for optimal compensation schemes for the agents. For convenience, some-
times we call the principal “agent N” and replace the notation U(-) by Vi(-). The
optimal rules are N —1 functions of aggregate gain or loss, 8,(x), s2(z),- -+, sy_1(z)
representing the compensation schedules for the N — 1 agents. In the following,
sometimnes we use the notation sy(x) to mean z — V77 s(z). Let | 9% (AFRTIN
be respectively the reservation values of the N — 1 agents. The optimal sharing rules
are solutions to the following Lagrangian:

N-1
max = L(si(z);mizi=1,.-- ,N-1) = E(U(zx~ Z

si(x)i=1,...,N~ -1

N-1
si(x)))+ Y m(E(Vi(si(x)))-V7),
i=1

"Certainly the agent who bears losses may be compensated in other states of the world where
aggregate gains are available.
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where =; ic the Lagrangian multiplier for agent ¢’s individual rationality condition.
Given N — 1 functions fi(z), fo(x),- -+, fn-1(z), none of which are identically zero,
define a functional J(a,,az,---,an_1) by

J(a'lxa'z)"'va'N-l) = L(ﬂ,‘f,’(ﬂ?) + 3!'(1");”";1' = 11"',N - l)'

The following are two sets of necessary conditions for (s;(x);¢i = 1,2,...,N — 1) to
be the optimal sharing rules: For all functions fi(z),---, fv_1(z),

1. (condition 1) forall i = 1,2,..., N—1, the partial derivative of J at (0,...,0)
with respect to a; is zero. That is, Ji(a)].=0 = 0; and

2. (condition 2) for all i = 1,2,...,N — 1, the Hessian of J at (0,...,0) is
negative semi-definite.

Condition 1, once again, gives the Borch rule. Condition 2 implies that in every state
of the world there is at least one person who has a gain. The following proposition
shows that there is at most one person who bears losses in each state of the world.

Proposition 8 Suppose a set of optimal sharing rules exist. For all realizations of
x, there is at most one person who bears losses.

Proof
Note that if (si(x);7 = 1,2,..., N — 1) are the optimal sharing rules, then any two
people cannot increase their welfare by re-allocating their gains and losses between
themselves. Consider any two people i and j. We must have s;(x) = s{(si(x)+s;(x))
and s;(x) = s3(si(x) + s;(x)), where (sp(x);k = 1,j) are one set of optimal sharing
rules between agents ¢ and j with aggregate gain or loss being s;(z) + s;(z) and
either agent 7 or agent j’s individual rationality condition is satisfied. Following
our discussion for the two-agent case, there is at most one person between : and
J who bears the losses. Considering each two-person risk sharing problem leads
to the conclusion that in every state of the world, under the optimal sharing rules
(si(z);i =1,2,...,N—1), at most one person bears losses. To see this, suppose there
are two persons both bearing losses in some state of the world. Then, the sharing
rules between the two persons are not optimal , contradicting the assumption that
(si(z);t =1,2,..., N — 1) are the optimal sharing rules. O

Since at least one person must bear losses when they occur, the above proposition
says that ezactly one person bears the loss in each state of the world where a loss
occurs. One question comes to mind: if there are more than one state of the world
where losses can occur, under the optimal sharing rules, can different people bear
losses in different states?

The answer is clearly negative for N = 2. We thus assume N > 2. Suppose
there are two people i and j who bear losses in two different states of the world
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under the optimal sharing rules s;(z) and s;(x), which are both continuous and
almost everywhere differentiable. Then consider the two-agent risk sharing problem
with the aggregate gain and loss being si(x) + 3;(x). Denote the two-agent optimal
sharing rules by s}(y) and s}(y). Assume two distinct states

= si(x1) + sj(xy) > si(=2) + sj(z2) = 2

are such that
si(xy) < 0,8_,'(.'!‘.2) < 0.

Then,
8{(y2) = si(x2) > 0 > si(x1) = 8] (y1).

This cannot be true, by the continuity of s!(y) and that s{(y) is increasing whenever
8!(y) < 0. We thus conclude that there is one agent who bears losses whenever they
occur.

The next proposition is part of the characterization of the optimal sharing rules.

Proposition 9 Let agent 1 be the one who bears losses when they occur. Let y =
z — 8)(x). Then, for all agents ¢ = 2,...,N, where agent N is the principal,
0 < d‘. < 1

Proof

Let (s!(y);i = 2,...,N) be one set of optimal sharing rules for agents 2,..., N given
that the aggregate gain and loss to be shared is y and the individual rationality
conditions for agents : = 2,..., N — 1 are satisfied. Differentiating the Borch rule

with respect to y gives

d~'(y)

Vi (s5(y)——

m st )

forall 2,5 € {2,...,N}. Since forall i € {2,...,N}, s!(y) is positive and that —15(—”)

sum to 1, we havefor all : € {2,...,N},0 < d—'}-(”—) <10

The above proof has used the fact that s (y) = si(z), for all ¢ = 2,...,N.
Note that y = z — s,(x) is a general positive prospect. If for some i € {2,...,N},
s:(y) < 0 with strictly positive probability, then the original sharing rules (s;(z);¢ =
1,...,N —1) are not optimal, for there are two people bearing losses in some states
of the world. This seems to suggest that when aggregate losses never occur, under
the optimal sharing rules, everyone should be fully insured against losses. From now
on, to be comparable to the case of expected utility function, we shall impose this
intuitive restriction on optimal sharing rules:

Assumption 1 If aggregate losses never occur, no agents cver bear losses.
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It can be shown that if for all i = 1,...,N, V/(0) = oc, then there exist opti-
mal sharing rules satisfying this restriction. In this case, everyone’s sharing rule is
everywhere increasing with slope between 0 and 1.

We now have a complete characterization of ihe optimal sharing rules for the
N-agent case.

Theorem 2 Assume the aggregate gain and loss is a regular prospect. If the optimal
sharing rules ezist and are continuous and almost everywhere differentiable, then
under the optimal sharing rules, the following assertions are true.

1. There is ezactly one pcrson who bears losses whenever losses occur.

2. Except for the person who may bear losses, all other people are fully insured
against losses. The sharing rule for the person who bears losses is increasing.

3. If the agent who may bear losses has a positive reservation value, then there
ezrists an aggregaie gain K such that! when the aggregate gain K occurs, this
agent bears no loss and shares no gain. That is, without loss of generality,
assuming the agent who bears losses is agent 1, we have

N-1
UK - 3 si(K)) = mV}(0).

=2

Then, ezcept for the person who bears losses, everyone’s sharing rule takes a
minimum at K.

Proof

Assertion 1 follows from the previous discussion. For assertion 2, we now show that
agent 1, who bears losses when they occur, has an increasing sharing rule. Note that
for the principal, i.e. agent N, and agents 2,...; N -1, we have s}(z —s;(x)) = s;(x),
fori=2,...,N, where (s!(z — s1(z));i = 2,...,N) are one set of optimal sharing
rules among agents 2,..., N, when aggregate gain and loss is * — s;(x) and the
individual rationality conditions for agents 2,..., N — 1 are satisfied. Then

N-1 N-1
{.;(;);Qﬁ"mw_l} E(U(x — 'z:; si(z))) + ?::l x( E(Vi(si(z))) - V)
is equivalent to
N-1
{!’n(a:)c}m(E(Vx(sx(m))) — V) + E(V(z — 8i(=))) - 3 mV?,
. =2
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where 7;, for all i = 2,..., N — 1, are part of the solutions to the original problem
and treated as constants here, and

N-1
V) =Uly - Z st(y)) + Z mVi(si(v)),

for all y > 0 and V(y) is some increasing and convex function for y < 0 with
limy ~o V(y) = 0. Thus V(y) is 2 well-defined value function:

1. When y = 0, since for all i = 2,..., N, s{(y) are non-negative and sum to y,
they are all zero. Thus V(0) =

2. Forally >0, V'(y) = U’(y— TN-1s!(y)) > 0; and

l—l'-—

3. Forall y > 0, V"'(y) = U"(y TN e (y))(1 — TN ‘”)), which by the

fati=2

previous proposition, is negative.

The monotonricity of s;(x) now follows from our previous discussions about optimal
sharing rules in the two-agent case.

Now we prove the last assertion. Maintain that the agent who may bear losses
is agent 1. If agent 1 has positive reservation value, he must have a gain in some
state of the world. Since the aggregate gain and loss is a regular prospect, agent 1
must bear a loss in some state of the world. Since agent 1’s sharing rule is increasing
and continuous, there exists a constant K such that when = K, he has no gain or
loss. For # < K, monotonicity of agent 1’s sharing rule implies that he has a loss.
Note that Borch rule implies that when agent 1 is bearing a loss, the slope of his
sharing rule has an opposite sign to those of other agents’ sharing rules; and that
when agent 1 has a gain, the slope of everyone’s sharing rule is increasing. Since
agent 1’s sharing rule is increasing everywhere, this means that all other agents’
sharing rules take minima at K. O

For the case of expected utility function, where only positive prospects are in-
volved, all sharing rules are increasing with slopes between 0 and 1. In this case,
the common minimum K = 0.

2.4.2 Existence of Competitive Equilibrium

Because prospect theory implies non-convex preferences, fixed point theorems based
on continuity do not apply. This means competitive equilibrium may not exist for
a given economy. In this section, we shall give conditions on preferences so that a
competitive equilibrium can exist for any endowments except those confined in a
finte region. For simplicity, we shall consider the two-state static economy. Let us
start with the single agent economy. Suppose two states 1 and 2 may take place
with respectively probabilities # and 1 — w. The agent with value function V'(.) is
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endowed with e, and e, respectively in the two states. Because V(-) is increasing,
indifference curves are decreasing.

The idea is to require that an indifference curve have positive second derivatives
except on a finite interval.® In this case, except in a finite region, every point on
the indifference curve can be sustained by a set of equilibrium prices. Denote the
indifference curve by

z2 = f(z|7V(21) + (1 — #)V(x2) 2 ).
Then,
Filzs) = — *V'(z,)? V'(x1) V'(=2) x V'(z3)
VE TS 7))V ()2 Vi(zy) Vi(z1) 1= Vi{(za)
Thus a sufficient condition for the indifference curve to be locally convex except on

a finite interval is as follows. For each v, there exists a positive number M(v) such
that whenever z, > M(v),

V"(xl)V'(V_l("_ﬂ’:‘ )) - V"(V—l(.'i:ll’%’_&‘_l!)) .
Vi) Viim) L vyy-1(=Ed))

Example: Piece-wise CARA Value Functions Consider the following value
function: V(z) =1 — e~4% if z > 0 and V(z) = €B7 — 1 if otherwize. One can show
that every indifference cuzve with v > 27 — 1 is convex. Thus given that the sin-
gle agent has the piece-wise CARA value function, any endowments e, and e, with
xV(e1)+(1—7)V(ez) > 27 —1 are sustained by some competitive equilibrium. Cor-
respondingly, in a multi-agent economy, the equilibrium allocations will be Pareto
optimal if everyone’s preference is represented by a piece-wise CARA value function
and he has a reservation utility higher than 27 — 1.

2.4.3 A Representative Agent

Assume there is a single consumption good. Assume there are N agents respectively
endowed with value functions (Vi(-);? = 1,...,N). There are two dates, 0 and 1.
For simplicity, agents only consume at date 1. Assume that agents have a common
reference point R for date-1 random consumption ¢;. Define z; = ¢;— R, Z = N =
and ¢ = TV, ¢;. Then, Z = C — NR. Assume Z is a continuous random varinble
with probability density furction #(Z). For simplicity, assume each realization of Z
completely describes the state of the world. Assume there exists an Arrow-Debreu
security for each realization of Z with price ¢(Z), which pays out R + 1 units

8The upper contour set {(z;,22) : #V(21) + (1 — x)V(x2) > v} can be convexified if the
indifference curve has positive second derivatives except on a finite interval.
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of consumption at date 1 if the realization Z occurs and R units of consumption
otherwise. A consumer ? is endowed with consumption R + ¢;(Z) in state Z.
Agent ¢ has the following maximization program:

max E(Vi(=(2)))s.t. [ :’m HZ)(=HZ) - e Z))dZ = 0.

Assuming that every agent i consumes a positive amount of consumption in every
state of the world and that a competitive equilibrium exists. Then, the first-order
conditions are necessary: for every two distinct states of the world Z and Z’,

n(Z)V(=(2) _ $(2)
(22 N2

We assume that the equilibrium implements the optimal sharing rules (z;(Z2);i =
1,...,N) which, given the set of strictly positive weights \; for each agent i, solve
the following Lagrangian:

N 00 N
max L= PMB(Vi(z)) + [, a2z -3 =(2)z,

zi( Z)3i=1,...,.N; =1
where 8(Z) is the Lagrangian multiplier for the resource constraint in state Z.

Theorem 3 Maintain the above assumptions. Since Z is a regular prospect, among
the N agents there is exactly one agent who bears losses whenever they occur. With-
out loss of generality, let him be agent 1. That is, if Z < 0, then z;(Z) < 0. Define
K as such that for some 1 # 1,

AV K)) = MV(0).

Thus, K depends on the weights X;. Following Borch rule, this definition is unique
for all i # 1. Define V(Z) = TN, \Vi(zi(Z)). Define W(Z) = V(Z + K) —
V(K). Then, W(Z) is a value function satisfying the three postulated conditions at
the beginning of section 2. The representative agent is assumed to have preference
represented by value function W(.).

Proof
First note that W(0) = 0 and

N
W'(Z)=V(Z+K) =Y AV!(zAZ + K))z{(Z + K) = \V{(21(Z + K)) >0,
i=1

where the last equality follows from Borch rule. So, W(Z) is monotonic. Note that

W'(Z)=V"(Z + K) = \V'(2(Z + K))z(Z + K),
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which, by the definition of K and the monotonicity of agent 1’s sharing rule, is
negativeif and only if Z > 0. O

The relation between the representative agent and the equilibrium state prices
is stated in the next theovem:

Theorem 4 Consider a representative agent with preference represented by the
value function W(-) defined in the previous theorem. Define the translations of
x(Z) and §(2) by

n(Z + K)

JE-NR n(s)ds ’

7(Z) =

and .
¢*(Z)=HZ + K).

Then, the translated belief #*(Z) and the translated state prices $*(Z) support the
optimal consumption plan of the representative agent, which prescribes the represen-
tative agent to consume the aggregate consumption in every state of the world.

Proof | - e
Note that for every two distinct states Z and Z’,
™(ZW'(2) #{Z+K)V/(z2{Z +K)) _ #Z+K) ¢'(Z)
™(ZW'(2')  ®(Z'+ K)W/(2(Z2'+ K)) ~ §(Z'+K)  ¢(2")
The state prices in the representative agent economy are translated from those of
the original competitive economy. For the equilibrium state prices in the representa-

tive agent economy to equal the state prices in the original competitive equilibrium,
either the translation degenerates, i.e. K =0, or the function

V(z1())
Vi(z(y))

is jointly periodic, i.e. given the constant K, for all z and y in the support of Z,

f(z,y) = f(z+ K,y + K).

O

H=zy) =

One can show that f(-,-) is never jointly periodic. We are left with the first
possibility. In view of the representative agent proposition, we can consider the
two-agent case. Suppose there are two agents with value functions U(-) and V(-),
with the latter being the one who bears losses when they occur. We can normalize
the weight for the first agent to 1 and denote the weight for the second agent by A.
The necessary condition for K = 0 is that




This is a joint condition on the weights distribution and agents’ preferences. This
condition says that given agents’ preferences, very few weights distributions allow
the equilibrium state prices in the representative agent economy to be identical to
those in the original competitive economy.

Note that in the case of expected utility function, everyone's sharing rule takes
minimum at K = 0, for all weights distributions. This says that, for the case of
expected utility function, the equilibrium state prices in the representative agent
economy are always identical to those in the original competitive economy. Also,
when K = 0, W(.) = V(-), which gives the familiar construction of the representa-
tive agent for the case of expected utility function.

2.4.4 Piece-Wise Linear Sharing Rules

We show in the previous section that optimal sharing rules, if exist, are in general not
monotonic when the aggregate gain and loss is a regular prospect. This implies that
optimal sharing rules are generally non-linear. We now investigate the conditions
on agents’ value functions such that the optimal sharing rules are piece-wise linear.®
Since the derivation of the conditions is based on Borch rule and is independent of the
number of agents, we will consider the two-agent case for the ease of demonstration.

Let the two agents be U/ and V. First we consider the necessary condition on the
two agents’ value functions, U/(-) and V(-), for the sharing rules to be non-linear.
Normalize the weight for agent I7 to 1 and denote the weight for agent V by .
Suppose the sharing rules are

su(Z)=a+bZ + cMax(K,Z)

and
sy(Z)=d+eZ + fMax(K, Z),

where si(Z) and sy(Z) are respectively agents [/’s and Vs optimal sharing rules
and a,b,c,d, ¢, f and K are all differentiable functions of A. Necessarily, a = —d,
¢=—f and

b+e=1.

We therefore rewrite agent V ’s sharing rule as
sv(Z)=—a+(1-b)Z — cMax(K, Z).
By Borch rule, we have for all Z
'(su) = AV'(sv),

%A continuous piece-wise linear sharing rule is almost everywhere differentiable.
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U"(sp)b= AV7(sy)(1 —b) ifZ< K
U'(su)(c+b)=AV"(sy)(1 —-b—-¢c) f Z> K

and

U"(su)(@’ + K + cK' + VZ) = A\V"(sy)(~a' — K + —cK' + (=b')Z) + V'(sv)
U"(sp)(e’ + (¢ + b)Z) = AV"(sy )(—a’ + (—b' — ¢')Z) + V'(sv)

where ! denotes differentiation with respect to A. Under the assumption that Z is a
regular prespect, one of the two agents must have an everywhere increasing sharing
rule and the other is fully insured against all losses. Let agent U be the one who
shares losses when they occur. Using the above three conditions, we have for Z < K,
e sy L0,

U'(&(r) o '
—m = A(A) + B(A)SU,
where | ¥ KK
AX) = =Md' + 'K + cK' - "T - E-b—),
and Y
B()) = -—b—;
and for Z > K, i.e. sy >0,
U'(sv) _
~T(sn) C(X) + D(N)su,
where ¥ + )
() = —Ma' = 22T
C(A) = —Ma P e )
and A + )
c
D)) = —————.
(A) (b+c)
Similarly for agent V, we have for all sy > 0,
Vi(sy)
TVn(sy) E(}X) + B(A)sv,
where

oy, @18 a¥  CK(1-b) cK'(d- b) VeK
E(A) = -M1+ A +b+ B + A + B )
and B()) is defined above. There is no restriction on the negative orthant of V(-).
The above necessary conditions say that the two agents [/ and V must have piece-

wise HARA (hyperbolic absolute risk aversion) value functions with the negative
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piece of agent [/’s value function having the same Arrow-Pratt measure of risk
cautiousness!® as that of the positive piece of agent V’s value function. A HARA
function k(z) is a solution to the ordinary differential equation —,:'—;',1% = a + bz, for
some constants @ and b. An example of piece-wise HARA functions is the following
piece-wise CARA (constant absolute risk aversion) function:

V() = { Al - exp"it) ifz>0
~B(1 — expF) otherwise,

where A and B are two positive constants. Ou> can show that if the two agents
U and V have well-defined piece-wise HARA value functions with their Arrow-
Pratt measures of risk cautiousness satisfying the above condition, then the optimal
sharing rules, whenever exist, are piece-wise linear. Thus given that optimal sharing
rules exist, these are equivalent conditions for optimal sharing rules to be piece-wize
linear.

2.5 Concluding Remarks

We have analyzed the implications of Kahneman-Tversky’s prospect theory on equi-
librium asset r=turns and Pareto optimal risk sharing rules. We showed that prospect
theory is compatible with existing asset pricing theories such as CAPM and intertem-
poral CAPM. Since expected utility function can be regarded as a special case of
expected value function, we have verified that the results we obtain include familiar
results for expected utility function as special cases.

Most relevant issues in financial economics appear in a dynamic economy. We
expect the implications of prospect theory on dynamic financial economics to be
abundant and useful for understanding important issues like asset pricing and con-
sumers’ optimal intertemporal consumption problems. These constitute a direction
of future research.

10The definition of Arrow-Pratt measure of risk cautiousness for a value function h(z) at = is

dr
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Chapter 3

Debt Maturity and Product
Market Competition:
Cooperation in the Finitely
Repeated Prisoners’ Dilemma

Abstract of Chapter 3!

This paper provides a revised paradigm for the finitely repeated prisoners’ dilemma
where rational cooperation between the two prisoners arises in equilibrium. The ma-
jor feature of this new paradigm is that, unlike the Kreps-Milgrom-Roberts-Wilson
paradigm, it does not assume information asymmetry between the two prisoners.
We apply this paradigm to study the interactions between debt maturity and firms’
product market competition. We show that short-term debt reduces firms’ product
market competition, an opposite prediction to that of the long-purse theory in the
industrial organization literature. We also show that collusive firms tend to have
high debt-equity ratios.

3.1 Introduction

The purpose of this paper is two-fold. Fizst, at the game theoretical level, it provides
& revised paradigm for the finitely repeated prisoners’ dilemma, where rational coop-
eration between the two prisoners arises in equilibrium. Unlike the Kreps-Milgrom-
Roberts-Wilson paradigm (1982), this new paradigm retains the symmetry between

1This essay has benefited from comments made by Chi-fu Huang, Stewart Myers, David Scharf-
stein, Miguel Villas-Boas, Jiang Wang and in particular Jeremy Stein, Jean-Luc Vila, and Raghu-
ram Rajan. All remaining errors are my own.
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the two prisoners. Second, at its application level, this paradigm is used to study
the interactions between debt maturity and firms’ product market competition.

Several paradigms created by game theorists have proven to be very useful in
modeling economic affairs. One of the most famous game paradigms is the prisoners’
dilemma; see Rapoport and Chammah (1965). In the traditional story, the two
prisoners have jointly committed some crime and are being held separately. If each
stays quiet (cooperates), they are both convicted of a minor charge and receive
a one-year sentence. If just one confesses and agrees to testify against the other
(defects), he goes free while the other receives a ten-year sentence. If both confess,
they both receive a five-year sentence. This game is interesting because confessing
is the dominating strategy: it pays to confess no matter what the other person does.
The assumptions of rationality and self-interest therefore yield the prediction that
people playing a game with this structure will defect. Moreover, when this game is
repeated several times, to defect is still the unique equilibrium strategy.

This prediction, however, has been found to be violated in a large number of ex-
periments with multiple trials on the prisoners’ dilemma; see Axelrod (1981), Smale
(1980) and Thaler (1992). A common pattern in these experiments is that sub-
jects cooperate in several trials but the cooperation decays over time. To reconcile
the theoretical prediction and the experimental findings, Kreps, Milgrom, Roberts,
and Wilson (1982) provide a revised paradigm for the finitely repeated prisoners’
dilemma, where one rational prisoner is uncertain about whether his partner is fully
rational. An irrational prisoner is assumed to play the tit-for-tat strategy, which
requires the player to begin by cooperating and then to choose the same response
the other player has made on the previous trial. What Kreps et al. show is that,
if you are playing against an opponent who you think may be irrational, then it
may be rational to cooperate early in the game in order to induce your irrational
opponent to cooperate too (Thaler (1992)).

The Kreps-Milgrom-Roberts-Wilson paradigm is able to generate rational coop-
eration in the revised finitely repeated prisoners’ dilemma at a decaying rate, but
the symmetry between the two prisoners is destroyed. In view of this, this paper
provides an alternative way of revising the original prisoners’ dilemma, in which
the symmetry between the prisoners is retained and rational cooperation arises in
equilibrium at a decaying rate. This new paradigm can be used to study a lot of
economic activities in different contexts.

The idea is to embed the original prisoners’ dilemma in an enlarged game, into
which a third party is introduced. The third party is to provide punishment to
both prisoners whenever defection occurs. To be concrete, we consider two firms
competing in the product market for a finite number of periods. The two firms are
identical and each has a 50% market share. Each firm can make some investment
to change his and his rival’s current market shares while the total size of the market
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remains unchanged.? If only one firm invests, his market share increases while his
rival’s market share decreases by a commensurate magnitude. If both invest, with
equal probability each may win the campwign. This is a version of the prisoners’
dilemma. The unique equilibrium is one where both firms make the inefficient
investments (defect) and end up with the same market share.

To introduce a third party into this game, we assume that neither of the two
firms has sufficient funds to operate in the product market. They therefore must
raise money from investors (the third party).® Investors, however, have incomplete
industry-wide information. In particular, although investors realize that there are
two firms in the industry, they cannct tell whether the two firms are local monop-
olists or competitive firms.* Under stanlard debt contracts, investors’ payoffs will
be concave in the firm’s profit. As a consequence, even if investors are risk neutral,
they prefer local monopolists to competitive firms, because competition increases
the business risk of a firm. In the presence of short-term debt, the two competitive
firms thus have incentives to avoid competition in earlier periods, in order to pretend
to be local monopolists and obtain better terms of refinancing.

The above story leads to the prediction that short-term debt can be used to
reduce firms’ product market competition in certain contexts. The traditional long-
purse theory, however, predicts that short-term debt generally results in more com-
petition; see for example Bolton ard Scharfstein (1988). The long-purse story goes
roughly as follows. There are two firms, one with a long-purse and the other with
a shallow pocket. That is, one firm has abundant internal fund and does not need
external financing, while the other has to raise money from outside investors. The
usual moral hazard argument implies that refinancing will become very costly for
the shallow-pocket firm, if his performance in earlier periods is not good enough.
This fact encourges the long-purse firm to compete more aggressively in order to
make sure that his shallow-pocket rival gets punishment from the investors. As a
corclusion, short-terin debt should lead to more competition.

Our prediction does not contradict the long-purse story. In fact, the two different
stories provide useful insights in two different contexts. The moral is that,

1. if both firms need external financing and reducing competition can jointly
produce & favorable signal to the investors, then short-term debt leads to
more cooperation and less competition; -

2. if only one firm needs external financing, and the two firms do not share some
industry-wide information which they want to conceal from the investors, then

2Think of advertising campaign as an example.

3Here I have abused the terminology a little. Investors in this model do not make collective
decisions.

4This depends on, for example, consumers' loyalty to the products of the two firms. But this
information is in general unavailable to the investors.
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short-term debt generally leads to more competition.®

If, other things being equal, small firms need external financing more than large
firms do, then the above predictions say that for industries with high (respectively,
low) concentration ratios, high competition is likely to be accompanied by short
(respectively, long) debt maturity.

This model also generates predictions about the capital structures of collusive
firms. We show that collusive firms tend to have high debt-equity ratios. The
reasoning is the following. Note that the two firms cannot sustain collusion by
themselves in the original prisoners’ dilemma. A higher debt-equity ratio means a
higher involvement of the outside investors (the third party) and therefore the latter
have more incentives to provide punishment whenever firms defect. This makes
collusion more likely to occur. Thus, to facilitate collusion, the firms should pay out
free cash flows (Jensen (1986)), lever up and commit to the financial market.®

We also show that the likelihood of collusion is decreasing in the industry-wide
profitability. There are two reasons for this result. First, the immediate gain of
deviation from collusion increases with the industry-wide profitability. Second, when
the entire industry is more profitable, other things being equal, firms become less
risky. Accordingly, after a deviation takes place, firms only receive lighter financial
punishment from investors. This again makes deviation more attractive.

The rest of this paper is organized as follows. In section 3.2, we layout the
revised prisoners’ dilemma. The game proceeds at three dates, 1, 2, and 3. Financial
contracts are determined at date 1 and possibly renewed at date 2 if they are short-
term. Firms compete at dates 2 and 3. We show that for a set of parameters, this
game has a pooling perfect Bayesian equilibrium for where both local monopolists
and competitive firms choose short-term debt at date 1 and competitive firms collude
at date 2. Namely, competitive firms cooperate in the first round of their product
market competition. In section 3.3, we show that the likelihood of collusion is
increasing in the two firms’ debt-equity ratios. In section 3.4, we relate our model
to recent literature on debt maturity and product market competition. Section 3.5
gives concluding remarks.

®The information structure is at least as important as the number of firms who need external
financing in leading to these results. In Rotemberg and Scharfstein (1990), two firms both need
external financing, but because of different information structure, short-term debt does not lead
to less competition.

%In addition to debt maturity, forward market transactions may also be used as commitments
to reduce competition in the product market. I thank Jean-Luc Vila for pointing out this to me.



' 8.2 The Model

We consider an industry with two identical firms who live for three dates, 1, 2 and
3. Firms operate in the product market at dates 2 and 3, which will be referred to
as the first-period and the second-period competitions respectively. At dates 1 and
2, each firm has to spend $1 to initiate respectively the first-period and the second-
period operations. For the time being, assume every firm has sufficient funds to
cover the one-dollar cost per period. There are two possible types of industry,
called M and C. The firms in M industry. henceforth M firms, are local monopolists
who cannot taking actions to affect their rivals’ profits. The per-period profit for
an M firmis Y > 1.

3.2.1 Competition in C Industry: A Prisoners’ Dilemma

On the other hand, the firms in C industry, henceforth C firms, are competitors in
the sense that they can simultaneously” make some investments, e.g. on advertising
campaigns, to change their market shares and thus current-period profits. The
investment costs # € [0,1) per period. If neither spends 8 (stays quiet), each C firm
has pf&fit Y per period. If just one firm spends § (defects), then his current-period
profit becomes

N=(1+6)Y -4,

and at the same time his rival’s profit reduces to
T =(1-0)Y.

Namely, the investment has constant return to scale in terms of market share. If
both spend 8, because the two firms are equal in competitive power, with 50% chance
each may win the campaign and get the winner’s profit I1.® The following bimatrix
summarizes the payoffs to the two competitive firms in each possible outcome:
Firm 1/Firm 2 | Cooperate | Defect
Cooperate (Y,Y) (m,I1) Since defecting is the dominating strat-
Defect (I,=) (¥ -,Y -0)
_ egy, both C firms spend 6 in the unique Nash equilibrium and end up with the same
‘market shares. ‘

In the prisoners’ dilemma presented above, C firms defect in equilibrium, if they
both have sufficient internal funds to operate in the product market. Our task is
to show that, if the two C firms have paid out all free cash flows prior to date 1,

7This is not an assumption about the timing of the game. Rather, it is about players’ irfor-
mation sets when they take actions. Here a competitive firm has to make the investment decision
before he sees his rival’s investment decision.

8Note that when @ is zero, M firms and C firms are identical.




and must raise money from outside investors, then short-term debt contracts can
serve as a commitment, which allows C firms to reach a Pareto improved equilibrium
where neither of them defects in the first-period competition.

Before we start to introduce investors, we need to impose some restrictions on
the parameters § and Y to rule out irregular and uninteresting cases:

Assumption 1

1
0<l<-
< <3

and
1 l+80<y 1+8

1-6

The above conditions imply that:

1. Non-triviality: = < 1.

2. Positive NPV’s: Y -6 > 1.

3. Necessity of refinancing: 11 -1< 1.
Note that

I>Y>Y—-0>1>7>0.

3.2.2 Introducing A. Third Party: The Investors

From now on, we shall assume that both M firms and C firms need to raise money
from outside investors at dates 1 and 2, to initiate their first-period and second-
period operations in the product market. Investors are competitve, risk neutral, and
have no time preferences. Firms are also risk neutral and have no time preferences.
Investors realize that there are two firms in the industry, but fail to distinguish C
firms from M firms.

Assumption 2 Assume for simplicity that:
1. Renegotiation of long-term financial contracts are prohibited.

2. If a long-term financinal coniract is signed at dale 1, no cash payments can be
distributed at date 2.

3. Profits are observable but not verifiable.

4. Liquidation is costless.



Since profits cannot be verified in court,” the repayments of a financial contract
cannot be contingent on (and thus must be invariant to) the borrower-firm’s profit
realizations. It follows that we should consider only simple debt contracts. A simple
debt contract specifies respectively the amount of meney the firm borrows now and
that to be repaid at the maturity date. It also allows the creditors to liquidate
the firm when the latter fails to fully repay the debt. In the current framework, a
firm borrowing at date 1 has to repay at either date 3 (long-term debt) or date 2
(short-term debt). In the latter case, the firm has to renew the short-term contract
at date 2 in order to continue his second-period business.

We now fix some notation:

1. m: At date 1, investors commonly believe that with probability m the bor-
rowers are M firms.

2. m’: The off-equilibrium path belief corresponding to the equilibrium belief m.
3. L(m): The long-term debt repayment when the equilibrium belief is m.
4. S(m): The short-term debt repayment when the equilibrium belief is m.

Since profits are observable and investors are given the right to liquidate the
firm when default takes place, it is always incentive compatible for a borrower-firm
to repay the smaller amount between the required repayment of debt and his total
profit. Bankruptcy thus never occurs in equilibrium.

Lemma 1 For all m € [0,1],
1< S(m)<Y,

and

2< L(m) <2(Y —8).

Proof
See appendix.
According to the previous lemma, we can solve for S(m) and L(m) from the
following equations:
1-m 1

—m ’
5 ™+ 5 S(m)+mS(m) =1,

Lo+ (1- 1—"4—"1)L(m.) = 2.

9 Alternatively, we can assume that profits are not even observable without affecting our major
results. In this case, however, bankruptcy may occur and makes the model more complicated.
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We have

S(m) 2 _l(]‘_‘__mm)w,
8 —2(1 -
L(m) = 3(+ mm)w

Now we can solve for the product market equilibria at dates 2 and 3, given each
possible financial arrangements of firms at date 1.

3.2.3 Product Market Equilibria

In this model, M firms are rather passive in the product market stage. Our current
analysis thus focuses on C firms. At date 3, it is clear that C firms will compete
and yield an expected second-period profit Y — 4.

Now we consider C firms” competitive behavior at date 2. The following argu-
ments are straightforward:

e If long-term debt has been used by C firms at date 1, without the chance for
refinancing, they simply compete at date 2.

o If there has been a separating equilibrium at date 1, then C firms compete at
date 2.

e Suppose both M firms and C firms have used short-term debt at date 1. That
C firms compete at date 2 elways forms an equilibrium at date 2.

The next lemma shows the existence of a date-2 equilibrium where C firms cooperate:

Lemma 2 Suppose both M firms and C firms have used short-term debt at date 1.
If 8 and Y satisfy conditions in assumption 1,

1+ 39

}'<———1+0,

and
m> . (Y -1)9
T(Y-1)0+(304+1—(1 +‘0)Y’
then at date 2 there is a pooling equilibrium where C' firms choose not to make the
investments. The first-period profit is Y for an M firm as well as a C' firm.

Proof |

See appendix.
The above lemma states an upper bound on Y and a lower bound on m in order

for the cooperative equilibrium to arise at date 2. To see the intuitions behind these
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bounds, we examine C firms’ incentives of deviating from collusion. At date 2, given
that his rival chooses to cooperate, a C firm gets the following continuation payoff
by defecting:

H—S(l)+%(H—S(0))+-;--0, '

where the first-period repayment is S(1) because in equilibrium C frms pool with
M firms at date 2, and the second-pericd repayment is S(0) because C firms reveal
their identities after competing.
On the other hand, if the C firm chooses to cooperate too, his continuation payoff
will be ) )
Y -S(1)+ -2—(11 - S§(m))+ 3 -0,

where the second-period repayment is S(m) because in a pooling equilibrium the
posterior belief is the same as the prior. By inspection, we see that

1. The higher Y is, the more tempting for a C firm to unilaterally deviate from
the collusion. Therefore, for the cooperative equilibrium to arise, Y cannot be
too high.

2. The higher m is, i.e. the more likely the borrowers are M firms, the more costly
~ the competition between C firms becomes. Thus m should be high enough to
prevent C firms from competing with each other.

3.2.4 A Pooling Perfect Bayesian Equilibrium

Now we are back to date 1. Standard backward induction procedure yields the
following result:

Proposition 1 If9 and Y satisfy conditions in assumption 1,

Y < 1436
1+6°
and
(Y -1)8 3-L0) -~

m > max(

VDT (30 + 1 (1707 L0 -1 —x”
then this game has a pooling perfect Bayesian equilibrium, in which both M firms and
C firms use short-term debt at date 1, and C' firms collude at date 2. The supporting
off-equilibrium belief is any :

8 —2r — 3(S(m)+1)
!
m < S(m)y+1-2r

Proof
See appendix.
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3.3 Likelihood of Collusion

In the previous section, we have shown that introducing a third party into the
original prisoners’ dilemma generates rational cooperation between the two players.
In the specific context we have been dealing with, C firms collude at date 2. In this
section, we continue to study the factors that affect the likelihood of cooperation.

3.3.1 Industry-wide Profitability

The first factor is the industry-wide profitability, measured by Y. The incentive
compatibility condition for a C firm to cooperate given that his rival cooperates is

JY)={Y - S(1) + -;-(II - §(m))}

—{II‘—‘ S(li + %(H - §(0))} > 0.
We have
m

' — —— —
JY)= -6 1+4m

(1-6)<0.
This means: |

Proposition 2 The likelihood of collusion is decreasing in the industry-wide prof-
itability. o

Note that the increase in C firms’ incentives of deviation comes from two sc;urces:
1. The immediate gain from deviation,
6(Y - 1),
increases in Y.

2. When Y gets higher, other things being equal, C firms become less risky.
Accordingly, after deviation takes place, C firms receive only lighter financial
punishment from investors. This again makes deviation more attractive.

3.3.2 Debt-Equity Ratio

As in the original prisoners’ dilemma, C firms fail to reach the cooperative equilib-
rium by themselves, because they have sufficient internal funds to operate in the
product market. One thus may expect the likelihood of cooperation to be relate to
‘the capital structures of the firms. We now confirm this conjectare.
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Assume that at dates 1 and 2, every firm has internal fund & < 1 generated by
other business segments of the firm. The firia thus needs to raise only 1 — a in each
period. The accounting debt-equity ratio is defined as

l1—-a

«a

which is strictly decreasing in a.
C firms’ incentives to unilaterally deviate from the collusion are now measured

by

J(Y,a) = —6(Y —1) —

m
T m(*lr -1+ a).

We have
Jo < 0.

This means:

Proposition 8 The likelihood of collusion is increasing in the debt-equity ratio of
the firms.

The idea is that, it is optimal for collusive firms to pay out free cash flows
(Jensen (1986)), lever up and commit to the financial market. By doing so, a third
party, i.e. the outside investors, is introduced into the game and provides credible
punishment to the firms whenever deviation from the collusion is detected. The
above proposition is consistent with the empirical evidence documented by Phillips
(1990).

3.4 Discussions

This section relates our model to several issues in corporate finance and product
market competition.

3.4.1 Productive Efficiency vs. Informational Efficiency

Efficient market hypothesis has been one of the most important hypotheses in finance
theory. The traditional wisdom is that, if financial markets are efficient, then assets
are fairly priced. This helps to reach productive efficiency. The current model,
however, presents a couterexample to this argument.

In the pooling equilibrium obtained in proposition 1, markets are not strong
form efficient at date 2, because C firms do not reveal their identities at date 2.1°
However, compared to an equilibrium where C firms compete at date 2, this pooling

10Markets are strong form efficient, if all private information is revealed in equilibrium.
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equilibrium is indeed more productively efficient. The point is that C firms can
avoid the inefficient competition in the product market, only if the financial market
provides them correct incentives. If the financial market allows them to conseal
their identities, they will not engage in wasteful competition.

In general, if the distribution of information across investors is independent of
the firms’ productive decisions, then informational efficiency is consistent with pro-
ductive efficiency. Otherwise, there may be trade-off between the two, as our model
shows.

3.4.2 The Contracts-Separating Equilibrium

In the current model, financial contracts are never informative. Namely, only pooling
equilibria may arise at date 1.1

One possible extention of the current model is to assume that the investment
made by C firms may not be socially wasteful. For example, an effective advertising
campaign may increase the total market demand, or in an declining industry, prevent
demand from going down too fast. With such a revision, contracts-separating equi-
librium may appear at date 1. One can show that, whenever a contracts-separating
equilibrium exists at date 1, firms in the high-quality industries will use long-term
debt.!? This result is very close to the prediction of Diamond (1989). In Diamond
(1989), investors cannot distinguish a high-quality firm from a low-quality one. In
the presence of short-term debt, prior to refinancing, some noisy information arrives.
Based on the noisy information, a high-quality firm may be mistakenly liquidated.
To avoid being jeopardized by the low-quality firm and being inefficiently liquidated,
a high-quality firm considers using the costly long-term debt at the very beginning
to distinguish himself from the low-quality mimicker. Similarly, in our model, firms
in the high-quality industry use long-term debt to distinguish themselves from those
in the low-quality industry in a contracts-separating equilibrium. We can conclude
that in general, using long-term debt is good news to investors.

3.4.3 The Efficiency of Short-term Debt

In general, is short-term debt more efficient than long-term debt? Previous research
provides the following insights:

1. First, a short maturity enables the short-term creditors to reduce the agency
problems associated with debt in several ways. By threatening to cut off the
credit, short-term creditors can provide the firm with the incentives to take the
right investments (Stiglitz and Weiss (1983)). Short-term creditors can also

11This is because the Spence-Mirslee's sorting condition fails in this case.
12The proofs are available upon request.
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screen prospective clients (Diamond (1989a)). As a result of reduced adverse
selection as well as moral hazard problems, short-term debt appears to be
more efficient than long-term debs.

2. Rajan (1990) points out that the firm’s ez ante investment decisions may be
distorted because of the information monopoly that a bank (a short-term cred-
itor) may enjoy ez post. The idea is that, compared to the public investors,
a bank that has business relations with a firm may be able to acquire supe-
rior information about the firm’s quality. The bank’s privileged information
together with its ability to control the firm implies that ez postit has strong
bargaining power against the firm. The ez post bank opportunism leads to
distortions in the firm’s er ante production plans. The distortion may be so
big that short-term debt becomes less efficient than long-term debt.

Unlike the previous literature, we considered the efficiency of short-term debt in
the context of product market competition. The major feature of short-term debt is
in this model is that it can result in different pooling equilibria in product market.
Depending on the efficiency in these pooling equilibria, short-term debt may and
may not be more efficient than long-term debt. To be more specific, we consider the
following two cases:

1. In the basic model presented in section 2, short-term debt leads to higher
productive efficiency than long-term: debt, because the wasteful competition
between C firms are avoided in the pooling equilibrium resulting from the
short-term debt.

2. Alternatively, let us assume that (i) profits are unobservable and the invest-
ments are observable, (ii) with some probability the second-period demand
in both M and C industries may vanish, and (iii) the investments of C firms
can prevent the second-period demand in C industry from declining. One can
show that,!? in this case, for a set of parameters, the game has a pooling
equilibrium where both M firms and C firms use short-term debt at date 1
and both M firms and C firms make the investments at date 2. Recall that
according to our previous assumption, these investments have no effects on M
firms. Thus the investments made by M firms are completely wasteful. This
is a reverse story to that presented in section 2. The idea is that, by spending
on useless projects, M firms can pool with C firms and obtain better terms of
refinancing. Short-term debt leads to double inefficiencies in this pooling equi-
librium: First, M firms spend on useless projects. Second, M firms may obtain
refinancing even if their operations in the second period are socially wasteful

13The proof is available upon request.
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(negative NPV). In this case, short-term debt, that leads to this inefficient
pooling equilibrium, is less efficient than long-term debt.

As a conclusion, in the context of product market competition, short-term debt may
and may not be more efficient than long-term debt. The relative efficiency of short-
term debt to long-term debt depends on the efficiency of the pooling equilibrium
resulting from the short-term debt.

3.5 Concluding Remarks

We have provided in this paper a revised paradigm for the finitely repeated prison-
ers’ dilemma and shows that rational cooperation hetween the two prisoners arise
in equilibrium. As an application, we have used this paradigm to study the rela-
tions between debt maturity and firms’ product market competition and generated
several testable predictions. In particular, if other things being equal, small firms
need external financing more than large firms do, then for an industry with low con-
centration ratio, i.e. the firms are mostly small and need external financing, short
maturity is likely to be accompanied by low competition. On the other hand, the
long-purse theory predicts that, for an industry with high concentration ratio, i.e.
long-purse big firms and shallow-pocket small firms co-exist, short maturity only
encourages big firms to predate small ones, leading to high competition.

The model also predicts that the collusion is more likely to arise it the industry
has relatively low profitability. At the corporate level, collusive firins tend to commit
to high debt-equity ratios.

This game paradigm can also be used to study other economic problems with
similar structures. For example, it can be used to study the optimal compensation
scheme for two employees who share the private information about their working
ability, which is unavailable to the employer. A conjecture following our previous
analysis is that short-term labor contract may lead to more cooperation between
the two employees.

Like most recent theoretical literature in corporate finance, this model has as-
sumed specific information and competitive structures. The predictions of this paper
are quite sensitive to the information and competitive structures assumed at the very
beginning. Applications of these predictions must be cautious, as these predictions
work well only if the real-world data exhibit similar structures. A unifying theory
regarding the relations between debt maturity and product market competition is
still in order.



Appendix

Proof of Lemma 1

The proof follows directly from assumption 1 and the solutions for S(m) and L(m).
O

Proof of Lemma 1

The proof directly follows from the incentive compatibility condition under which a
C firm cooperates given that his rival cooperates. O

Proof of Preposition 1

One can easily verify that under the conditions on @, Y, m and m' stated in the
proposition, neither C firms nor M firms want to deviate. The derivation of these
conditions, though straightforward, is quite tedious. It is available upon request. O
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