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March 4, 2019

Abstract

A distributed computation in which nodes are connected by a partial communication graph is
called topology-hiding if it does not reveal information about the graph beyond what is revealed by
the output of the function. Previous results have shown that topology-hiding computation protocols
exist for graphs of constant degree and logarithmic diameter in the number of nodes [Moran-Orlov-
Richelson, TCC’15; Hirt et al., Crypto’16] as well as for other graph families, such as cycles, trees,
and low circumference graphs [Akavia-Moran, Eurocrypt’17], but the feasibility question for general
graphs was open.

In this work we positively resolve the above open problem: we prove that topology-hiding
computation is feasible for all graphs under either the Decisional Diffie-Hellman or Quadratic-
Residuosity assumption.

Our techniques employ random or deterministic walks to generate paths covering the graph, upon
which we apply the Akavia-Moran topology-hiding broadcast for chain-graphs (paths). To prevent
topology information revealed by the random-walk, we design multiple graph-covering sequences
that, together, are locally identical to receiving at each round a message from each neighbor and
sending back a processed message from some neighbor (in a randomly permuted order).

1 Introduction

The beautiful theory of secure multiparty computation (MPC) enables multiple parties to compute an
arbitrary function of their inputs without revealing anything but the function’s output [36, 16, 15]. In the
original definitions and constructions of MPC, the participants were connected by a full communication
graph (a broadcast channel and/or point-to-point channels between every pair of parties). In real-world
settings, however, the actual communication graph between parties is usually not complete, and parties
may be able to communicate directly with only a subset of the other parties. Moreover, in some cases
the graph itself is sensitive information (e.g., if you communicate directly only with your friends in a
social network).

A natural question is whether we can successfully perform a joint computation over a partial commu-
nication graph while revealing no (or very little) information about the graph itself. In the information-
theoretic setting, in which a variant of this question was studied by Hinkelman and Jakoby [22], the an-
swer is mostly negative. The situation is better in the computational setting. Moran, Orlov and Richelson
showed that topology-hiding computation is possible against static, semi-honest adversaries [30]; fol-
lowed by constructions with improved efficiency that make only black-box use of underlying primitives
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[23]. However, all these protocols are restricted to communication graphs with small diameter. Specifi-
cally, these protocols address networks with diameter D = O(log n), logarithmic in the number of nodes
n (where the diameter is the maximal distance between two nodes in the graph). Akavia and Moran [2]
showed that topology hiding computation is feasible also for large diameter networks of certain forms,
most notably, cycles, trees, and low circumference graphs.

However, there are natural network topologies not addressed by the above protocols [30, 23, 2]. They
include, for example, wireless and ad-hoc sensor networks (e.g. mesh networks for cellphones, etc), as
in [12, 32]. The topology in these graphs is modeled by random geometric graphs [31], where, with
high probability, the diameter and the circumference are simultaneously large [13, 5]. These qualities
exclude the use of all aforementioned protocols. So, the question remained:

Is topology hiding MPC feasible for every network topology?

1.1 Our Results

In this work we prove that topology hiding MPC is feasible for every network topology under the Deci-
sional Diffie-Hellman (DDH) assumption (and similarly under the Quadratic Residuosity (QR) assump-
tion), thus positively resolving the above open problem. The adversary is static, semi-honest, and can
corrupt any number of parties, as in the prior works [30, 23, 2].1 Our protocol also fits a stronger defini-
tion of security than that from prior works: instead of allowing the adversary to know who his neighbors
are, he only gets pseudonyms; importantly, an adversary cannot tell if two nodes he controls share an
honest neighbor. It is important to note that these prior protocols also work within this model, however,
it is not until this work that we formally define the pseudonym model as a stronger model.

Theorem 1.1 (Topology-hiding broadcast for all network topologies: informal). There exists a topology-
hiding protocol realizing the broadcast functionality on every network topology (under DDH assumption
or QR assumption, and provided the parties are given an upper-bound n on the number of nodes).

The formal theorem is stated and proved as theorem 5.4.
As in [30, 23, 2], given a topology-hiding broadcast for a point-to-point channels network, we can

execute on top of it any MPC protocol from the literature that is designed for networks with broadcast
channels; the resulting protocol remains topology-hiding. More explicitly, broadcast plus a public-key
interface implies that we can simulate point-to-point channels, as detailed in Appendix B. Then, put
together with the existence of secure MPC for all efficiently computable functionalities (assuming parties
have access to a broadcast channel and that public key encryption exists) [36, 16, 15], we conclude that
topology-hiding MPC for all efficiently computable functionalities and all network topologies exists
(assuming public key encryption exists).

Corollary 1.2. There exists a topology-hiding protocol realizing any efficiently computable functionality
on every network topology (under DDH or QR assumption, and provided parties are given an upper-
bound n on the number of nodes).

This is stated more formally as theorem 5.5, and the proof that broadcast implies general computation
is formally stated and proved in the UC model in Appendix B.

1.2 High-Level Overview of our Techniques

Our main innovation is the use of locally computable exploration sequences—walks, deterministic or
random, that traverse the graph. We use these sequences to specify a path, view this path as a chain-
graph, and then employ the topology-hiding broadcast protocol for chains of Akavia and Moran [2]. We
discuss two methods for getting these sequences: random walks and universal exploration sequences. In
this overview, we will describe how our protocol works with respect to random walks. Extending these
ideas to other kinds of sequences follows naturally.

1Moran et al.[30] consider also a fail-stop adversary for proving an impossibility result.

2



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 International Association for Cryptologic Research.

A challenge we face is that the random walk itself may reveal topology information. For example,
a party can deduce the graph commute-time from the number of rounds before a returning visit by the
walk. We therefore hide the random walk by using multiple simultaneous random walks (details below).
The combination of all our random walks obeys a simple communication structure: at every round each
node receives an incoming message from each of its neighbors, randomly permutes the messages, and
sends them back, one along each outgoing edge.

To give more details, first recall that the functionality of broadcast is as follows: a source party i has
a source-bit bi and by the end of the broadcast, all parties learn bi. Next, observe that broadcast can be
realized from computing the OR of all input bits, where the source party uses bi as its input and all other
parties input 0. Once we have broadcast, there is a simple method using a public-key cryptosystem for
compiling broadcast into an multiparty functionality. Details on this are given in Section B.2 and proved
formally in the UC model in Appendix B.

Now, let us recall the Akavia-Moran protocol for chain-graphs. The Akavia-Moran protocol pro-
ceeds in two phases: a forward and a backward phase. In the forward phase, messages are passed
forward on the chain, where each node adds its own encryption layer, and computes the OR of the
received message with its bit using homomorphic multiplication (with proper re-randomizing). In the
backward phase, the messages are passed backward along the same path, where each node removes its
encryption layer. At the end of the protocol, the starting node receives the plaintext value for the OR of
all input bits. This protocol is augmented to run n instances simultaneously; each node initiates an exe-
cution of the protocol while playing the role of the first node. So, by the end of the protocol, each node
has the OR of all bits, which will be equal to the broadcast bit. Intuitively, this achieves topology-hiding
because at each step, every node receives an encrypted message and public key. An encryption of zero is
indistinguishable from an encryption of 1, and so each node’s view is indistinguishable from every other
view. We note that in our protocol, we will not require homomorphic properties from our encryption
scheme: computing OR “homomorphically” on an encrypted bit c and a known bit b is simply c if b = 0
or an encryption of 1 if b = 1. This is an improvement over the requirements of previous schemes.

We next elaborate on how we define our multiple random walks, focusing on two viewpoints: the
viewpoint of a node, and the viewpoint of a message. We use the former to argue security, and the latter
to argue correctness.

From the point of view of a node v with d neighbors, the random walks on the forward-phase are
specified by choosing a sequence of independent random permutations πt : [d] → [d], where in each
forward-phase round t, the node forwards messages received from neighbor i to neighbor πt(i) (after
appropriate processing of the message, as discussed above). The backward-phase follows the reverse
path, sending incoming message from neighbor j to neighbor i = π−1

t ( j), where t is the corresponding
round in the forward-phase. Furthermore, recall that all messages are encrypted under semantically-
secure encryption. This fixed communication pattern together with the semantic security of the messages
content leads to the topology-hiding property of our protocol.

From the point of view of a message, at each round of the forward-phase the message is sent to a
uniformly random neighbor. Thus, the path the message goes through is a random walk on the graph.2

A sufficiently long random walk covers the entire graph with overwhelming probability. In this case, the
output is the OR of the inputs bits of all graph nodes, and correctness is guaranteed.

We can remove the randomness, and thus ensure all of our walks traverse the graph, by using Uni-
versal Exploration Sequences instead of random walks. These sequences are locally computable by each
node and only require knowing how many nodes are in the network.

1.3 Related Works

The related work considering the multi-party perspective can be divided into roughly four categories:
previous work done in the computational setting, previous work in the information-theoretic setting,

2We remark that the multiple random walks are not independent; we take this into account in our analysis.
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Graphs families [23, 30] [2] [This Work]
Log diameter constant degree + – +

Cycles, trees – + +

Log circumference – + +

Log diameter super-constant degree – – +

Regular graphs – – +

Arbitrary graphs – – +

Table 1: Comparison to previous works. Rows correspond to graph families; columns corresponds to
prior works in the first two columns and to this work in last the column. A +/- mark for graph x and
work y indicates that a topology hiding protocol is given/not-given in work y for graph x.

secure MPC in general (incomplete) networks, and finally, beyond the multi-party perspective, there is
related work dealing with the kind of tools that we use (our PKCR encryption, defined in Section 3.1).

Topology Hiding in Computational Settings. Table 1 compares our results to the previous results
on topology hiding computation and specifies, for each protocol, the classes of graphs for which it is
guaranteed to run in polynomial time.

The first result was a feasibility result in the work of Moran, Orlov, and Richelson [30]. Their result
was a broadcast protocol secure against static, semi-honest adversaries, and a protocol against failstop
adversaries that do not disconnect the graph. However, their protocol is restricted to communication
graphs with diameter logarithmic in the total number of parties.

The main idea behind their protocol is a series of nested multiparty computations, in which each node
is replaced by a secure computation in its local neighborhood that simulates that node. The drawback is
that in order to get full security, this virtualization needs to extend to the entire graph, but the complexity
of the MPC grows exponentially with the size of the neighborhood.

Our work is also a feasibility result, but instead builds on a protocol much more similar to the recent
Akavia-Moran paper [2], which takes a different approach. They employ ideas from cryptographic
voting literature, hiding the order of nodes in the cycle by “mixing” encrypted inputs before decrypting
them and adding layers of public keys to the encryption at each step. In this work, we take this layer-
adding approach and apply it to random walks over arbitrary graphs instead of deterministically figuring
out the path beforehand.

Other related works include a work by Hirt, Maurer, Tschudi and Zikas [23], which describes a
protocol that achieves better efficiency than [30] (and does not require general secure computation), but
is still restricted to network graphs with logarithmic diameter. Addressing a problem different from
topology-hiding, the work by Chandran, Chongchitmate, Garay, Goldwasser, Ostrovsky, and Zikas [9]
reduces communication complexity of secure MPC by allowing each party to communicate with a small
(sublinear in the number of parties) number of its neighbors. And finally, since the publication of the
original CRYPTO paper [1], there have been a couple of works extending these ideas to a stronger adver-
sarial setting: fail-stop. Here, the adversary is allowed to abort nodes, and while there is an impossibility
result for getting any topology-hiding broadcast against this adversary, if a small amount of leakage is
allowed (less than 1 bit), then we can get around the impossibility. First, Ball, Boyle, Malkin, and Moran
were able to accomplish this assuming secure hardware [4]. Later, LaVigne, Liu, Maurer, Mularczyk,
and Moran were able to get this same result from the standard assumptions [28]. As an additional result,
they were able to show how to get this mixing kind of encryption (privately key-commutative random-
izeable) from Learning With Errors. Previously it had only been known from Decision Diffie-Hellman
and Quadratic Residuosity.

Topology Hiding in Information-Theoretic Settings. Hinkelmann and Jakoby [22] considered the
question of topology-hiding secure computation, but focused on the information theoretic setting. Their
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main result was negative: any MPC protocol in the information-theoretic setting inherently leaks infor-
mation about the network graph to an adversary. However, they also show that the only information we
need to leak is the routing table: if we leak the routing table beforehand, then one can construct an MPC
protocol which leaks no further information.

Secure Multiparty Computation with General Interaction Patterns. Halevi, Ishai, Jain, Kushile-
vitz, and Rabin [19] presented a unified framework for studying secure MPC with arbitrarily restricted
interaction patterns, generalizing models for MPC with specific restricted interaction patterns [17, 6, 20].
Their goal is not topology hiding, however. Instead, they ask the question of when is it possible to pre-
vent an adversary from learning the output to a function on several inputs. They started by observing that
an adversary controlling the final players Pi, · · · , Pn in the interaction pattern can learn the output of the
computed function on several inputs because the adversary can rewind and execute the protocol on any
possible party values xi, . . . , xn. This model allows complete knowledge of the underlying interaction
pattern (or as in our case, the communication graph).

Layered Public-Key Encryption Our techniques rely on something defined in the Akavia-Moran
work called Privately Key-Commutative Randomizable Encryption (PKCR encryption) [2]. The main
idea behind this tool is that one can change (or layer) the public key encrypting a message with ones
own secret key, and then later undo that change with the secret key. Moreover, one must be able to
re-randomize the encryption given the public key.

Halevi, Lindell, and Pinkas also explored the idea of having a layered encryption, where parties add
and remove layers in a very explicit sense (re-encrypting an encrypted message), in 2011 [21]. They call
this “layer re-randomizable encryption.” In their work, they encrypt a message with a vector of public
keys, and allow for re-randomization of ciphertexts when encrypted with these layers. Then, Gordon,
Malkin, Rosulek, and Wee generalized layer re-randomizable encryption in 2013 [18]. Instead of having
a vector of public keys, they aggregate the vector of public keys more formally, treating the resulting
aggregate key as a “normal” public key. This work is probably the closest that comes to what we need
from PKCR encryption, however notice that in all of these prior works, the layers of public keys are not
hidden, or if they are, this is not an inherent property of the scheme.

One of the most important qualities we need from our encryption scheme is to hide what the public
key was before adding a layer: if one do not know anything about the public-secret key-pair that was
used to change the public key encrypting a certain message, one cannot reconstruct the original public
key.

Along this line, Hirt et. al. accomplish this with their primitive, “multi-homomorhpic threshold
encryption with reversible randomization” [23]. This complex object consists of many parts: threshold
encryption (decryption involves decrypting with shares), and randomizing the public key that encrypts
a message. This primitive allows them to get away with a protocol that requires relatively few rounds.
To contrast, we only need the key and message randomization aspects. To that end, [2] defined their
own, simpler primitive: privately key-commutative randomizable encryption. This simple and intuitive
primitive is what we are able to use in our work.

1.4 Organization of Paper

In sections 2 to 3 we describe our adversarial model and introduce definitions and our notation. In
section 3.1 we detail the special properties we require from the encryption scheme that we use in the
cycle protocol, and show how it can be instantiated based on DDH and QR. In section 3.2, we discuss
the kinds of exploration sequences, sequences that cover the graph, that we need for our protocol to be
correct and secure In section 4, we define our security model, which is slightly stronger than the one
in both the work of Akavia and Moran and Hirt et al.[23, 2]. In section 5, we explain our protocol for
topology-hiding broadcast on general graphs and prove its completeness and security, going over a time
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and communication tradeoff and explaining how we can optimize our protocol with respect to certain
classes of graphs. Finally, in section 6, we conclude and discuss future work.

2 Preliminaries

2.1 Computation and Adversarial Models

We model a network by an undirected graph G = (V, E) that is not fully connected. We consider a system
with n parties denoted P1, . . . , Pn, where n is upper bounded by poly(κ) and κ is the security parameter.
We identify V with the set of parties {P1, . . . , Pn}.

We consider a static, passive and computationally bounded (PPT) adversary that corrupts some sub-
set of parties (any number of parties). That is, at the beginning of the protocol, the adversary corrupts
a subset of the parties may see all communication that passes through them. However, because the ad-
versary is passive, its corrupted parties may not deviate from the protocol. For general MPC definitions
including in-depth descriptions of the adversarial models we consider, see [14].

2.2 Notation

In this section, we describe our common notation conventions for both graphs and for our protocol.

2.2.1 Graph Notation

Let G = (V, E) be an undirected graph. For every v ∈ V , we define the neighbors of v as N(v) = {w :
(v,w) ∈ E} and will refer to the degree of v as dv = |N(v)|. Notice that N(v) does not contain v.

2.2.2 Protocol Notation

Our protocol will rely on generating many public-secret key pairs, and ciphertexts at each round. In fact,
each node will produce a public-secret key pair for each of its neighbors at every timestep. To keep track
of all these, we introduce the following notation. Let pk(t)

i→d represent the public key created by node
i to be used for neighbor d at round t; sk(t)

i→d is the corresponding secret key. Ciphertexts are labeled
similarly: c(t)

d→i, is from neighbor d to node i (encrypted under pk(t)
i→d).

2.3 UC Security

As in [30], we prove security in the UC model [7]. If a protocol is secure in the UC model, it can be
composed with other protocols without compromising security, so we can use it as a subprotocol in other
constructions. This is critical for constructing topology-hiding MPC based on broadcast—broadcast is
used as a sub-protocol.

A downside of the UC model is that, against general adversaries, it requires setup. However, setup is
not necessary against semi-honest adversaries that must play according to the rules of the protocol. Thus,
we get a protocol that is secure in the plain model, without setup. For details about the UC framework,
we refer the reader to [7].

3 Key tools

In this section we describe our two main tools to obtain topology-hiding computation. The first is from
[2]: PKCR-encryption. This tool will allow every party in the network to add at least one (maybe more)
of their own public keys to a message that traverses the whole graph. The second is Graph Exploration
Sequences. These allow messages to traverse the whole graph with, being sent from one node to one of
its neighbors in a locally-computable way. We will go into more detail in the following subsections.

6
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3.1 Privately Key-Commutative and Randomizable Encryption

As in [2], we require a public key encryption scheme with the properties of being privately key-commutative,
and re-randomizable. However, unlike all previous work using this strategy ([2], [1],[28]), we will not
need any homomorphic properties from our encryption scheme. In this section we first formally define
the properties we require, and then show how they can be achieved based on the Decisional Diffie-
Hellman assumption and the Quadratic Residue assumption. It was shown in work by [28] that one can
also get this property from the Learning-With-Errors assumption.

We call an encryption scheme satisfying this property, privately key-commutative and re-randomizable,
a PKCR-encryption.

3.1.1 Required Properties

Let PK be the space of public keys (which must form a group under the ~ operation), SK the space
of secret keys,M the space of plaintext messages, and C the space of ciphertexts. Because the central
theme of PKCR encryption is the ability to combine public keys, we will use the notation (pk, sk) to
denote a generic public-key secret-key pair, and k will denote a possibly combined public key; although
pk and k are elements from the same set (PK), this distinction will help with readability of the protocols
(k generally means that no one has access to the corresponding secret key). We will use the shorthand
[m]pk to denote an encryption of the message m under public-key pk. We assume that for every secret
key sk ∈ SK there is associated a single public key pk ∈ PK such that (pk, sk) are in the range of
KeyGen. We slightly abuse notation and denote the public key corresponding to sk by pk(sk).

A PKCR encryption scheme will consist of 6 functions. The first three are familiar to any public-key
cryptosystem. Below are the functions we need to get PKCR; the three new functions will be covered in
more detail in the following subsections.

• KeyGen : {0, 1}∗ → PK × SK generates public-secret key-pairs. This function may also take
in system parameters (common public parameters, e.g. a modulus or group generator). There is
implicit randomness involved.

• Enc :M×PK×{0, 1}∗ → C encrypts a message under a public key. There is implicit randomness.

• Dec : C × SK → M decrypts a message encrypted under some public key using the associated
secret key. Can be deterministic or random, but the probability of a successful decryption must be
at least 1 − negl(κ).

• Rand : C × PK → C re-randomizes a ciphertext encrypted encrypted under the given public key,
so that as long as the given ciphertext decrypts correctly, it outputs a ciphertext indistinguishable
from a fresh encryption of the message. There is implicit randomness involved.

• AddLayer : C × PK × SK → C takes an encrypted message, and then “adds a layer” to the
ciphertext corresponding to the public key of the input secret key. I.e. AddLayer (c, pk, sk) outpus
a ciphertext distributed computationally indistinguishable (even with the secret key) from a fresh
encryption of the same message under the public key k′ ~ pk(sk): Enc(m, k′ ~ pk(sk)). There is
implicit randomness involved.

• DelLayer : C × PK × SK → C takes an encrypted message, and then “removes a layer” to
the ciphertext corresponding to the public key of the input secret key. I.e. DelLayer (c, pk, sk) is
distributed computationally-indistinguishably (even with the secret key) from a fresh encryption
Enc(m, k′ ~ (pk(sk))−1). There is implicit randomness involved.

For the concrete instantiations of PKCR, we will need to define another function that generates the
publicly shared parameters (protocol parameters, or system parameters). For example, if using ElGamal,
all parties will need to be working in the same group with the same generator. We call this functionality
Gen, and it will never be needed to be called by a party — parties are assumed to have this basic system
information at the start of the protocol.

7
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Privately Key-Commutative: AddLayer and DelLayer

The set of public keys PK form an abelian (commutative) group. We denote the group operation ~.
Given any k1, k2 ∈ PK , there exists an efficient algorithm to compute k1 ~ k2. We denote the inverse
of k by k−1 (i.e. k−1 ~ k is the identity element of the group). Given a secret key sk, there must be an
efficient algorithm to compute the inverse of its public key (pk(sk))−1.

There exist a pair of algorithms AddLayer : C×PK ×SK 7→ C and DelLayer : C×PK ×SK 7→ C
that satisfy:

1. For every public key k′ ∈ PK , every secret key sk ∈ SK , every message m ∈ M and every
ciphertext c = [m]k′ ,

AddLayer
(
c, k′, sk

) ≡ Enc(m, k′ ~ pk(sk)) .

2. For every public key k′ ∈ PK , every secret key sk ∈ SK every message m ∈ M and every
ciphertext c = [m]k′ ,

DelLayer
(
c, k′, sk

) ≡ Enc(m, k′ ~ (pk(sk))−1) .

We call this privately key-commutative since adding and deleting layers both require knowledge of the
secret key. Note that since the group PK is commutative, adding and deleting layers can be done in any
order.

Although we have defined our primitive to be commutative, our protocol will only require removing
the most recently-added layer. This is because our protocol has a forward and backward phase, where the
backward phase removes layers in the opposite order in which they were added. So, while commutivity
is not strictly needed, the commutative-group property of keys makes it easy to argue that adding and
deleting layers is equivalent to encrypting under specific keys.

Randomizable: Rand

We require that there exists a ciphertexts “re-randomizing” algorithm Rand : C × PK × {0, 1}∗ 7→ C
satisfying the following:

1. Randomization: For every message m ∈ M, every public key pk ∈ PK and ciphertext c = [m]pk,
the distributions (m, pk, c,Rand (c, pk; U∗)) and (m, pk, c,Enc(m, pk; U∗)) are computationally in-
distinguishable.

2. Neutrality: For every ciphertext c ∈ C, every secret key sk ∈ SK and every choice of randomness
r ∈ {0, 1}∗,

Dec(c, sk) = Dec(Rand (c, pk(sk); r) , sk) .

Furthermore, we require that public-keys are “re-randomizable” in the sense that the product k~ k′ of an
arbitrary public key k with a public-key k′ generated using KeyGen is computationally indistinguishable
from a fresh public-key generated by KeyGen.

3.1.2 Instantiation of PKCR-enc under DDH

We use standard ElGamal, with a special method for encrypting only 0’s and 1’s, and augmented by the
additional required functions.

• EG.Gen(1κ). Generates master public parameters: a κ-secure DDH prime p and generator g of
Z∗p. If it is clear which modulus and generator we are using from context, these public parameters
are not written out as input.

• EG.KeyGen(g, p). Choose a secret key sk
$← Zp−1 and compute the public key h = gsk. Output

the secret key sk and public key pk = h.

8
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• EG.Enc(m ∈ 0, 1, pk). Choose r
$← Zp−1, and let c1 = gr. If m = 0, let c2 = pkr · g0. If m = 1,

choose another s
$← Zp−1 such that s , 0, and let c2 = pkr · gs. Output c = (c1, c2).

• EG.Dec(c = (c1, c2), sk). Evaluate c−sk
1 c2 = g−sk·r · pkrm = m. Output m.

The KeyGen, Dec and Enc functions are the standard ElGamal functions, except that to obtain a
one-to-one mapping between public keys and secret keys, we fix the group G = Z∗p and the generator
g, and different public keys vary only in the element h = gx. So, g is always the group generator in Z∗p.
Below, we define the Rand functionality, which is standard for ElGamal:

function EG.Rand(c = (c1, c2), pk; r)
return (c1 · gr, pkr · c2)

end function
We use the shorthand notation of writing Rand (c, pk) when the random coins r are chosen independently
at random during the execution of Rand.

Lemma 3.1. EG.Rand is a randomization of ElGamal ciphertexts that fits both the randomization and
neutrality constraints.

Proof. First, we show that it randomizes the ciphertext. That is, we need to show that the distribution
(m, pk, c,Rand(c, pk; U∗)) is at least computationally indistinguishable from (m, pk, c,Enc(m, pk; U∗)).
We we actually show that these distributions are equivalent for any ciphertext that is an encryption of m.

We rewrite c = (c1, c2) = (gr1 , pkr1 · m), and let c′ = Rand(c, pk; U∗) = (gr1+r2 , pkr1+r2 · m), and
ĉ = Enc(m, pk; U∗) = (gr′1 , pkr′1 · m). For any r ∈ Zp−1, PrRand[r1 + r2 = r] = PrEnc[r′2 = r] = 1

p−1 . So,
the distribution of the exponent in both c′ and ĉ is the same. Since this is all the randomness is used
for, this means the distribution generating c′ and ĉ is equivalent. Thus, (m, pk, c,Rand(c, pk; U∗)) ≡
(m, pk, c,Enc(m, pk; U∗)).

Neutrality is actually implied by the fact that these two distributions are identical. Since there is no
difference in the distributions of the re-encryption of c and a fresh encryption of m, and decryption is
always correct on a fresh encryption, decryption will still be correct on the re-randomized ciphertext. �

ElGamal public keys are already defined over an abelian group (multiplication in Zp), and the op-
eration is efficient. For adding and removing layers, we define the functions AddLayer and DelLayer,
both requiring the secret key and using Rand.

function AddLayer(c = (c1, c2), pk1, (pk2, sk2))
return Rand((c1, c

sk2
1 · c2), pk1 · pk2)

end function
function DelLayer(c = (c1, c2), pk1, (pk2, sk2))

return Rand((c1, c
−sk2
1 · c2), pk1)

end function
After adding a layer with sk2 (corresponding to pk2 = gsk2) to a ciphertext under pk1 (corresponding to
sk1), our new public key is gsk1+sk2 = pk1 · pk2. We will now show that AddLayer and DelLayer work
as we expect. That is, adding a layer is indistinguishable from a fresh encryption under the combined
public key, and deleting a layer is indistinguishable from a fresh encryption of the ciphertext with that
key’s component removed.

Lemma 3.2 ([2]). For any public key k1 and (pk2, sk2) in ElGamal, and c = (c1, c2) = EG.Enc(m, pk1),
the following are equivalent distributions:

{EG.AddLayer(c, sk2)} ≡ {EG.Enc(m, k1 · pk2)}

and for c′ = Enc(m, k1 · pk2),

{EG.DelLayer(c′, sk2)} ≡ {EG.Enc(m, k1)}

9
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Proof. For both equivalences, we will show that the intermediate input from AddLayer or DelLayer to
Rand is a valid ciphertext under the combined or un-combined public key. First, we notice that (c1, c2)
is a ciphertext encrypting the message m under the key k if and only if there exists an r ∈ Zp−1 such that
c1 = gr and c2 = kr · m. So, let c = (gr, kr

1 · m) and c′ = (c′1, c
′
2) = (gr, (k1 · pk2)r · m).

For AddLayer, we return Rand
(
(c1, c

sk2
1 · c2)

)
. The input to Rand, when expanded out, is

(c1, c
sk2
1 · c2) = (gr, gr·sk2 · gsk1·r · m) = (gr, (k1 · pk2)r · m).

This is a valid encryption of m under the public key k1 · pk2. Now, from lemma 3.1, we know that the
image of Rand is a fresh ciphertext under the public key k1 · pk2.

We will show that DelLayer works in a similar way. It calls Rand with

(c′1, c
′sk
1 · c′2) = (gr, g−sk2·rgsk1·r+sk2·r · m) = (gr, kr

1 · m).

This is a valid ciphertext encrypting m under public key k1. Thus, the ciphertext Rand returns is equiv-
alent to a ciphertext generated by a fresh encryption of m under that public key. �

This corollary is just saying that randomly choosing a new key-pair and adding a layer to a ciphertext
is equivalent to generating a new public key and freshly encrypting the message under that key. Thus
the requirement for “public-key re-randomization” holds.

Theorem 3.3 ([2]). ElGamal is a PKCR encryption scheme.

Proof. ElGamal is already known to be a semantically secure public key cryptosystem. We are just
adding Rand, AddLayer, and DelLayer. Lemmas 3.1 and 3.2 show that these functions work as they
should in a PKCR-encryption scheme. �

3.1.3 Instantiation of PKCR-enc under QR

We will be using an instantiation of Cocks’ Identity-Based Encryption scheme (IBE) [11]. One of the
main issues with using a scheme like this is requiring a shared RSA modulus N = pq. To instantiate the
protocol with QR, one would need a trusted-third-party to give all participating parties the RSA modulus
(thus trusting the third party with the master secret). This could mean the parties directly interact with
this or use a NIST codebook. In general, it is much harder for parties to agree upon a secure RSA
modulus than, as in ElGamal, a DDH-secure prime. So, the primary use-case for PKCR with QR is
for when an RSA modulus is being used already for another functionality in which all parties are also
involved in. For example, if Cocks’ IBE is already being used, parties can then continue using their
public and secret keys.

The scheme was shown to be homomorphic by Joye [24]. Joye’s work was extended to show that
the Cocks’ scheme can be used for two-way proxy re-encryption by LaVigne [27]. Using the same
techniques from LaVigne’s work, we can show that this IBE can be compiled into a PKCR encryption
scheme. Because these techniques are much more involved than with ElGamal, we have moved the
proofs to the appendix.

Instead of using Cock’s IBE as an identity-based scheme, we will be using the simpler public-key
version, which is all we need for PKCR-encryption — it is straightforward to convert the algorithms
from this version to the full IBE. Here is a quick review of the public-key scheme. For details on the QR
assumption and the Jacobi symbol, see appendix A.1.

• QR.Gen(1κ) choose an κ-secure RSA modulus N = pq, r
$← Z∗N , and R ← r2 (mod N). Output

the public-secret key pair pk = (N,R) and sk = r.

• QR.Enc(m ∈ {0, 1}, pk). Sample t
$← ZN until

(
t
N

)
= (−1)m (where

(
t
N

)
denotes the Jacobi

symbol). Output the ciphertext t + Rt−1.

10
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• QR.Dec(c, sk). Compute
(

2r+c
N

)
= (−1)m′ . Output m′.

Again, just as with ElGamal, we need to fix some parameters before generating public keys. In this
case, we need to fix an RSA modulus N. From there, public keys are just squares in Z∗N , and just as
public keys in ElGamal, the group operation is just multiplication mod N: note that a square multiplied
by a square in Z∗N is still a square in Z∗N , which represents a combined public key with the corresponding
secret key being the square root (which is also the product of the two original roots).

Unfortunately, using quadratic residues is more technical than using DDH, and so full descriptions
and proofs of QR.Rand, QR.AddLayer, and QR.DelLayer are in Appendix A.

Theorem 3.4. Cocks’ PKE is a PKCR encryption scheme.

Proof. Cocks’ PKE is already a semantically-secure public key scheme. Lemma A.5 shows that QR.Rand
satisfies the randomization and neutrality requirements for a randomizing function. Lemma A.6 shows
that QR.AddLayer and QR.DelLayer appropriately add and remove layers of public keys according to
the definition of PKCR encryption. Therefore, the whole scheme is a PKCR scheme. �

3.2 Random Walks and Other Graph Exploration Sequences

A key element in designing our algorithm is an exploration sequence. Informally, it is a sequence of
edges that, when given a node to start on, traverses the entire graph. Before going into the formal
definition, let us first define a few graph terms.

Definition 3.5. A walk (of length T ) on an undirected graph G = (V, E), where |V | = n and |E| = m is a
sequence of vertices (v0, . . . , vT ) such that for all i ∈ [k], (vi−1, vi) is an edge. A walk can visit the same
vertex multiple times, or take the same edge.

Next we will discuss how to induce a walk on a graph with just a sequence of integers, shown also
in figure 3.1.

An exploration sequence
starting at the node for party
P1. Because the sequence
starts with 0, the first step is to
take the edge labeled with 0 to
node P2.

The second element in the
sequence is 3. Since the walk
entered node P2 through the
edge it labeled 0, it will leave
the edge labeled 1 ≡ 0 + 3
mod deg(P2).

The next element in the
sequence is 1, and since the
walk entered node P3 through
the edge it labeled 2, it will
leave through the edge labeled
0 ≡ 1 + 2 mod deg(P3).

Figure 3.1: A figure demonstrating how to induce a walk on a graph when given an exploration sequence
and starting node.

Definition 3.6 ([26]). Let G be a graph and every node v ∈ V label its edges 0 to deg(v) − 1 (as in
figure 3.1). A sequence of integers (τ1, . . . , τT ) and starting node v0 induces a walk on a graph G in the
following way: the walk starts on v0 and the first step it takes is the edge labeled τ1 mod deg(v0) from
v0 to v1; at step i, if the walk entered vertex vi from edge j ∈ {0, . . . , deg(vi) − 1}, then it leaves vi to
go to vi+1 on the edge labeled j + τi mod deg(vi). The sequence (τ1, . . . , τT ) is called an exploration
sequence.
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(Exploration) Sequence and walk will often be used interchangeably because each node will have a
labeling for their edges so a sequence induces a walk and vice-versa. Next, we define the sequences we
want more formally.

If G is a d-regular graph, then (τ1, . . . , τT ) ∈ {0, . . . , d − 1}. If such a sequence and starting edge
ends up covering the entire graph, then it is an exploration sequence for G. If the sequence will cover
all graphs of n nodes from any starting edge, then we call it a universal exploration sequence. We will
more explicitely define these below.

Definition 3.7. A universal exploration sequence for d-regular graphs on n nodes is a sequence τ1, . . . , τT ∈
{0, . . . , d − 1} and starting edge e0 = (v−1, v0) so that the resulting walk v1, . . . , vT covers all d-regular
graphs on n nodes.

We can consider a “universal” exploration sequence with errors as well. In this model, we consider
the τi’s are generated by some random process, and so there could be some probability that the walk
fails to visit every node.

Definition 3.8. An δ-exploration sequence for n-node graphs with maximum degree d is a sequence
τ1, . . . , τT ∈ {0, . . . , d − 1} and starting node (v0) so that the resulting walk (v0, v1, . . . , vT ) covers every
n-node graph with max degree d with probability at least 1− δ over the randomness used to generate the
sequence.3

We will be using these sequences heavily in our protocol for topology-hiding OR: an encrypted mes-
sage will make its way through the graph following an exploration sequence. However, one exploration
sequence will end up meaning only one party gets output. To get correctness, we will need to run at
least one of these walks per node. But, if we just run any series of exploration sequences, the way they
“interfere” could reveal something about the topology of the graph, demonstrated in figure 3.2. So, to
make our protocol topology-hiding, we want to have one walk per direction on each edge (so a total of
2 · |edges| walks). For example, imagine that each undirected edge is actually two pipes from each of the
nodes: one pipe going from the first to the second and the other pipe from the second to the first; there
can only be one walk occupying one direction at each step. See also figure 3.3 for an illustration of what
a single step of all of these walks running at once looks like. The reason for requiring this property is
that it makes it easier to describe and analyze our protocols—the topology of the graph cannot interfere
with the walks when define them to have this property.

An example of two exploration sequences
interfering with each other. Notice because
these two sequences are taking the same edge,
P4 learns that P3 has at least two neighbors.

Instead, we want to make sure our sequences
do not interfere, so there is at most one walk
per edge, per direction at each step.

Figure 3.2: A figure demonstrating the difference between interfering sequences and non-interfering
sequences.

3Note that the probability that the sequence covers the graph is based on the randomness used to define the sequence.
Some exploration sequences may not be randomly generated; and then they would either cover all such graphs or have error
probability 1.
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Figure 3.3: What any single step of a non-interfering full collection of covering sequences looks like:
one walk traverses each direction of each edge.

It will be helpful to define this collection modularly. First, we will start with what a “full” collection
is—in essence, it is a collection of sequences meant to fill all of the pipes in a graph (at least in the first
step).

Definition 3.9. A full collection of sequences for graphs on n nodes with m edges is a collection of 2m
sequences that each start on a different edge or edge-direction.

Now we can define what it means for this collection not to interfere with itself.

Definition 3.10. A non-interfering full collection of exploration sequences for graphs on n nodes with
m edges is group of 2m exploration sequences such that if they run simultaneously, no two sequences
ever walk the same direction down the same edge.

So, a non-interfering full collection of covering sequences has one sequence traversing down each
direction of each edge at every step. Because of this non-interference property, at each node, we can
model each step of the sequences as a permutation on that node’s edges. That is, for every node v in
every round t ∈ [T ], there exists a permutation πv,t on that node’s edges. These permutations describe
all of the walks; if a walk enters node v from edge i at round t, it leaves that node from edge πv,t(i). So,
we define the following function taking a node v, a time t, and outputting a permutation πv,t ∈ Sdv where
dv is the degree of v:

Seq : (v, t) 7→ πv,t

Because our resulting protocol must be topology hiding, a node’s local view cannot rely on the
topology of the graph to generate its permutation. The function Seq needs to be generated information-
locally. That is, a node needs to be able to compute Seq(v, t) using only the local information it has on
itself and its direct neighbors; Seq is an information-local function.

Definition 3.11 ([2]). A function computed over a graph G = (V, E) is information-local if the output of
every node v ∈ V can be computed from its own input and random coins.4

Altogether, we will need a full collection of exploration sequences that is non-interfering and information-
local. Correlated random walks, for example, fit this description. We will also show that a deterministic,
polynomial-time constructible object (exploration sequences) also fit this description. We will analyze
and compare how well these objects do in section 5.4.

Remark. If we have can compute a full collection of non-interfering information-local exploration
sequences given the exact number of nodes n, then we also can compute full collection of non-interfering
information-local exploration sequences for graphs on at most n nodes.

We can do this simply by computing the exploration sequence for every i = 1 to n and concatenating
those sequences together. The length of the resulting sequence will still be polynomial in n and require
only local computation. There may be more efficient ways to do this depending on how one constructs
these exploration sequence (whether they are random or not, for example).

4The definition proposed by [2] generalizes this one with k-information-local functions. We only care about 0-information-
local functions for this work.
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3.2.1 Correlated Random Walks

Here we will prove that correlated random walks of length O(κ · n3) are an example of a collection of
non-interfering negl(κ)-exploration sequences.

Definition 3.12. A random walk starting at node v0 is a walk (v0, . . . , vT ) such that each subsequent step
is chosen independently at random. That is at step i, the walk is at node vi, and step i + 1 is at vi+1, a
uniformly-random chosen neighbor of vi.

Correlated random walks are simply random walks that do not interfere with each other. That is, if
two walks enter the same node, they must leave that node on different edges. This will ensure there is
no more than one walk per direction per edge.

Definition 3.13. In this work, a set of correlated random walks will be a set of random walks S =

{w1, . . . ,wk}, where step t of each walk is determined randomly, conditioned on the fact that it does not
interfere with any other walk. That is, if at step i, a subset of walks S ′ ⊂ S are all at vertex vi, then first,
|S ′| ≤ deg(vi) because no walks are allowed to interfere, and second, we choose

(
deg(vi)
|S ′ |

)
distinct edges

out from vi and then randomly choose which walks take which edges.

By theorem 5.4, this will imply an instantiation of our protocol that uses random walks. In order
to prove this, we will first need to prove some qualities about the random walks. We will rely on the
following definition and theorem from Mitzenmacher and Upfal’s book (see chapter 5)[29].

Definition 3.14 (Cover time). The cover time of a graph G = (V, E) is the maximum over all vertices
v ∈ V of the expected time to visit all of the nodes in the graph by a random walk starting from v.

Theorem 3.15 (Cover time bound). The cover time of any connected, undirected graph G = (u, v) is
bounded above by 4nm ≤ 4n3.

Corollary 3.16. LetW(u, τ) be a random variable whose value is the set of nodes covered by a random
walk starting from u and taking τ · (8n3) steps. We have

Pr
W

[W(u, τ) = V] ≥ 1 − 1
2τ
.

Proof. First, consider a random walk that takes t steps to traverse a graph. Theorem 3.15 tells us that we
expect t ≤ 4n3, and so by a Markov bound, we have

Pr
[
t ≥ 2 · (4n3)

]
≤ 1

2

Translating this into our notation, for any node u ∈ G, Pr[W(u, 1) = V] ≥ 1
2 .

We can represent W(u, τ) as a union of τ random walks, each of length 8n3: W(u1 = u, 1) ∪
W(u2, 1) ∪ · · · ∪ W(uτ, 1), where ui is the node we have reached at step i · 8n3 (technically, ui is
a random variable, but the specific node at which we start each walk will not matter). W(u, τ) will
succeed in covering all nodes in G if anyW(ui, 1) covers all nodes.

So, we will bound the probability that allW(ui, 1) , V . Note that eachW(ui, 1) is independent of
all other walks except for the node it starts on, but our upper bound is independent of the starting node.
This means

Pr [W(ui, 1) , V, ∀i ∈ [τ]] =
∏

i∈[τ]

Pr [W(ui, 1) , V] ≤ 1
2τ
.

Therefore,

Pr [W(u, τ) = V] = 1 − Pr [W(u, τ) , V] ≥ 1 − Pr [W(u, 1) , V]τ ≥ 1 − 1
2τ
.

�
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Lemma 3.17. A full collection of correlated random walks of length κ · 8n3 is a full collection of non-
interfering 2−κ-exploration sequences.

Proof. We already know that correlated random walks are non-interfering by definition. By corollary
3.16, we also know that each walk has probability 2−κ = negl(κ) of covering the entire graph. The lemma
follows immediately. �

3.2.2 Perfect Covering: Universal Exploration Sequences

In this section we will prove that Universal Exploration Sequences (UESs) are also a full collection
of non-interfering covering sequences. Unlike random walks, however, these are deterministic walks
that are guaranteed to cover the entire graph. We will see in section 5.4.2 that while these exploration
sequences are guaranteed to hit every node in the graph, we do not have good bounds on the length
of polynomial-time computable exploration sequences (only that we can compute them in polynomial
time, and they will be polynomial in length).

UESs are typically just described for d-regular graphs, but that is mostly because any general graph
can be transformed into a 3-regular graph using a transformation by Koucky [26].

Work by both Koucky and Reingold show that exploration sequences for any graph exist, are poly-
nomial in length, and can be computed in polynomial time.

Lemma 3.18 ([34]). There exists a polynomial length exploration sequence for all graphs on n nodes
which can be computed in polynomial time given only n.

So, what we have is a sequence that every node in a graph can compute locally (recall that an explo-
ration sequence explores all graphs on n nodes, and so computation does not require knowledge about
the graph), and in polynomial time. We just need to prove that if we run these UESs simultaneously,
they will not interfere.

Lemma 3.19. A full collection of identical universal exploration sequences (UESs) for graphs on n
nodes, is a full collection of non-interfering information-local 0-exploration sequences.

Proof. By definition, we know that every one of the exploration sequences in the collection will explore
the entire graph, so they are 0-exploration sequences (have 0 chance of error). Also note that from
lemma 3.18, each party can locally compute the identical sequence in polynomial time.

We only need to prove that these walks will not interfere with each other. We will prove this by
induction on the number of steps in the walks. In the statement of this lemma, since we have a full
collection of these sequences, each sequence starts at a different edge and direction. This means that at
the first step of the algorithm, no sequences will interfere. So, consider that no walks have interfered
at step t, and consider node i with degree di. Node i has di walks entering at time t. Each walk has the
same relative instruction at time t: τt. So, a walk entering from edge e will leave edge e + τt mod di.
For two walks to collide, e + τt = e′ + τt mod di, implying e = e′ mod di. Since 0 ≤ e, e′ < di, we get
that e = e′, contradicting that no walks were interfering before this step. Therefore, none of these walks
will interfere. �

4 A Stronger Simulation-based Definition of Topology-Hiding

Here we adapt the simulation-based definition of topology-hiding from [30] to be even stronger: the
simulator only needs to know pseudonyms for each neighbor of a party, instead of exactly which parties
correspond to which neighbors (in [30]). It is important to note that [30], [23], and [2] all work within
our stronger model; our contribution here is defining it and proving security within it. Our definition,
similar to [30], will be in the UC framework, and our discussion of it will be much the same.

The UC model usually assumes all parties can communicate directly with all other parties. To
model the restricted communication setting, [30] define the Fgraph-hybrid model, which employs a spe-
cial “graph party,” Pgraph. Figure 4.1 shows Fgraph’s functionality: at the start of the functionality, Fgraph
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Functionality Fgraph

Participants/Notation:
This functionality involves all the parties P1, . . . , Pn and a special graph party Pgraph.

Initialization Phase:

Inputs: Fgraph waits to receive the graph G = (V, E) from Pgraph, and Fgraph constructs a
random injective function f : E → [n2], labeling each edge with an element from [n2].

Outputs: For each node v, Fgraph gives the set of edge labels Lv = { f (u, v) : (u, v) ∈ E}
to Pv.

Communication Phase:

Inputs: Fgraph receives from a party Pv a destination/data pair (`,m) where f (v,w) =

` ∈ Lv indicates to Fgraph neighbor w, and m is the message Pv wants to send to Pv.

Output: Fgraph gives output (`,m) to Pw, where f (v,w) = `, indicating that the neighbor
on edge ` sent the message m to Pw.

Figure 4.1: The functionality Fgraph with edge labels. Note that since the graph is undirected, (u, v) =

(v, u) ∈ E and so f (u, v) = f (v, u).

receives the network graph from Pgraph, and then outputs, to each party, that party’s neighbors. Then,
Fgraph acts as an “ideal channel” for parties to communicate with their neighbors, restricting communi-
cations to those allowed by the graph.

Since the graph structure is an input to one of the parties in the computation, the standard security
guarantees of the UC model ensure that the graph structure remains hidden (since the only information
revealed about parties’ inputs is what can be computed from the output). Note that the Pgraph party serves
only to specify the communication graph, and does not otherwise participate in the protocol.

In our definition, FGraph recieves the graph from Pgraph (as in [30]), but—unlike [30]—FGraph does
not output the neighbors to each party. Instead, Fgraph reveals edge-labels. These labels act as pseudonyms
when one node wants to communicate with another, but without revealing which party corresponds to
which neighbor. So, we leak enough information for nodes to tell if they share an edge with another
node, but not enough to be able to tell if two nodes share a neighbor. We capture this leakage informa-
tion to any ideal-world adversary in the functionality FgraphInfo, which is just the initialization phase of
Fgraph. For any other functionality F we want to model in the ideal world, we compose F with FgraphInfo,
writing (FgraphInfo||F ). For more details on this definition and exact model, see Appendix B.1.

Now we can define topology-hiding MPC in the UC framework:

Definition 4.1. We say that a protocol Π is a topology-hiding realization of a functionality F if it UC-
realizes (FgraphInfo||F ) in the Fgraph-hybrid model.

Our definition also captures functionalities that depend on the structure of the graph, like shortest path
or determining the length of the longest cycle.

4.1 Differences of this Model: Neighbors of Neighbors

In the first model, proposed by [30], FgraphInfo reveals exactly the neighbors of each party Pv. This
means that if an adversary controls two nodes, he can tell if they have a common neighbor. In this
model, we reveal edge labels instead of the explicit edges, and since the label is only shared between
those two nodes that have that edge, corrupted nodes cannot tell if they have a common neighbor, unless
that neighbor is also corrupted.
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Functionality FOR

Participants/Notation:
This functionality involves all the parties P1, . . . , Pn.

Inputs: Each party Pi receives an input bit bi ∈ {0, 1}.
Outputs: All parties P1, . . . , Pn receive output b = OR(b1, . . . , bn).

Figure 4.2: The functionality FOR.

Functionality FBroadcast

Participants/Notation:
This functionality involves all the parties P1, . . . , Pn.

Inputs: The broadcasting party Pi receives a bit b ∈ {0, 1}.
Outputs: All parties P1, . . . , Pn receive output b.

Figure 4.3: The functionality FBroadcast.

4.2 OR functionality: FOR

In accordance with this definition, we need to define an ideal functionality of OR, denoted FOR, shown
in figure 4.2. We will prove that a simulator only with knowledge of the output of FOR and of the
local topology of the adversarially chosen parties Q can produce a transcript to Q indistinguishable from
running the protocol.

Our protocol for OR will provide the backbone of our Broadcast functionality, which is why we
define it here.

4.3 Broadcast functionality: FBroadcast

The functionality FBroadcast is included here in figure 4.3;as it will be the base protocol for which we will
be able to build all other functionalities. Just as with FOR, we will be able to produce a simulator that
can produce a transcript for the communication of adversarially corrupted parties Q indistinguishable
from a real-world running of our protocol, given only knowledge of the broadcasted bit and the local
topology of Q.

5 Topology Hiding Protocols for General Graphs

In this section, we describe two protocols: OR and Broadcast, proving they are complete and secure.
We will see that Broadcast is just a special case of our OR. Once we have broadcast, we will be able to
use it to realize any efficient function in a topology-hiding way.

5.1 Topology-Hiding OR Protocol

The protocol (see protocol 1) is composed of two phases: an aggregate (forward) phase and a decrypt
(backward) phase. In the aggregate phase messages traverse a walk (an exploration sequence, see def-
inition 3.8) on the graph where each of the passed-through nodes adds a fresh encryption layer and
homomorphically ORs the passed message with its bit. In the decrypt phase, the walk is traced back
where each node deletes the encryption layer it previously added. At the end of the backward phase, the
node obtains the plaintext value of the OR of all input bits. The protocol executes simultaneous walks,
locally defined at each node v with d neighbors by a sequence of permutations πt : [d] → [d] for each
round t, so that at round t of the forward phase messages received from neighbor i are forwarded to
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neighbor πt(i), and at the backward phase messages received from neighbor j are sent back to neighbor
π−1

t ( j).

At the start of the round, party
P3 recieves encrypted
messages from its neighbors.

Because P3’s bit is 0, P3 just
adds a layer of a fresh
public-secret key pair. If b3
were 1, then P3 would
generate fresh encryptions of 1
instead of adding a layer, but
the combined key would be
the same for all neighbors.

Then, P3 decides where to
continue sending each
message using the permutation
πt that will continue the
exploration sequence for each
message.

Figure 5.1: A figure illustrating the view of one node’s communication during the protocol in the
aggregate phase at step t.

Proof of simulation security Recall that a protocol Π is a topology-hiding OR protocol if it is a
topology-hiding realization of FOR. In this section, we will show that protocol 1 is a topology-hiding
OR protocol, satisfying definition 4.1. We will break the proof up into two parts. First lemma 5.1 will
show that our protocol outputs the correct bit with all but negligible probability. We will then use lemma
5.1 to prove the full security in lemma 5.2.

Lemma 5.1. Given a full collection of non-interfering, information-local, δ-Exploration Sequences for
any δ = negl(κ) of length T , Protocol 1 is complete: by the end of the protocol, every node gets the
output bit with all but negligible probability in the security parameter κ.

Proof. Consider one sequence, or walk, in the collection of exploration sequences. We will prove that
by the end of our protocol, the party that initiated that sequence will get the decrypted output bit. That is,
we will show that every node along the sequence OR’s its bit, and then resulting bit is decrypted. Then,
we will prove that with all but probability n · δ = negl(κ), every node has some walk that gets the output
bit, meaning that with high probability, the bit b at the end of the protocol is the output bit received by
each node.

So, consider a single node, u0, with bit b0. In the protocol, u0’s neighbors are identified by pseudonyms:
u0 just numbers them 1 to du0 and identifies them that way. We will follow one sequence that starts at
u0 with bit b0; ui will identify the ith node in the sequence. For the sake of notation, pki will denote
the public key generated by node ui at step i + 1 for node ui+1 (so pki = pk(i+1)

ui→ui+1), and ki will be the
aggregate key-product at step i (so ki = pk0 ~ . . . ~ pki).

• On the first step, u0 encrypts b0 with pk0 into c1 and sends it and public key pk0 to one of its
neighbors, u1. We will follow c1 on its walk through T nodes.

• At step i ∈ [T − 1], ci was just sent to ui from ui−1 and is encrypted under the product ki−1 =

pk0 ~pk1 ~ · · ·~pki−1, also sent to ui. ui computes the new public key pk0 ~ · · ·~pki = ki, adding
its own public key to the product.

Now, ui computes the new ciphertext. If its input bit, bi, is 0, then OR’ing it to the ciphertext
will not change the value. So, ui just adds its own public key to the encryption of ci, computing
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Protocol 1 Topology-hiding OR for general graphs. Inputs parameters: n is the number of nodes; negl(κ)
the failure probability; di the degree of node i; and bi the input bit of node i. See section 2.2.2 for an
explanation of notation.

1: procedure OR(n, κ, di, bi)
2: // The number of steps we take in our random walk will be T
3: T ← κ · 8n3

4: Generate T · di key pairs: for t ∈ [T ] and d ∈ [di], generate pair (pk(t)
i→d, sk(t)

i→d)← KeyGen(1κ).
5: Generate T − 1 random permutations on di elements {π1, · · · , πT−1}. Let πT be the identity

permutation.
6: // Aggregate phase
7: For all d ∈ [di], send to neighbor d a fresh encryption Enc(bi, pk(1)

i→d) and the public key pk(1)
i→d.

8: for t = 1 to T − 1 do
9: for Neighbors d ∈ [di] do

10: Wait to receive ciphertext c(t)
d→i and public key k(t)

d→i.
11: Let d′ ← πt(d).
12: Compute k(t+1)

i→d′ = k(t)
d→i ~ pk(t+1)

i→d′ .
13: if bi = 1 then
14: Compute ĉ(t+1)

i→d ← [1]k(t+1)
i→d′

// encryption of 1 under key k(t+1)
i→d′

15: else // bi = 0
16: Compute ĉ(t+1)

i→d ← AddLayer
(
c(t)

d→i, k
(t)
d→i, sk(t+1)

i→d′
)
.

17: end if
18: Send c(t+1)

i→d′ and k(t+1)
i→d′ to neighbor d′.

19: end for
20: end for
21: Wait to receive c(T )

d→i and k(T )
d→i from each neighbor d ∈ [di].

22: if bi = 1 then
23: compute e(T )

d→i ← [1]k(T )
d→i

.
24: else
25: Let e(T )

d→i = c(T )
d→i.

26: end if
27: // Decrypt phase
28: for t = T to 1 do
29: For each d ∈ [di], send e(t)

i→d′ to d′ = π−1
t (d). // Passing back

30: for d ∈ [di] do
31: Wait to receive e(t)

d→i and public key k(t)
d→i from neighbor d.

32: Compute d′ ← π−1
t (d).

33: e(t−1)
i→d′ ← DelLayer

(
e(t)

d→i, k
(t)
d→i, sk(t)

i→d′
)

// If t = 1, DelLayer decrypts.
34: end for
35: end for
36: // Produce output bit
37: b← ∨

d∈[di] e(0)
i→d.

38: Output b.
39: end procedure
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ci+1 as AddLayer(ci, pki). However, if bi is 1, then OR’ing it to the ciphertext will ensure that the
ciphertext is encrypting 1. So, ui just computes ci+1 as fresh encryption of 1 under the combined
public key ki.

In both cases, ci+1 now encrypts b0 ∨ . . . ∨ bi under key ki.

• At step T , node uT receives cT , which is the encryption of b0 ∨ b1 ∨ · · · bT−1 under key pk0 ~ · · ·~
pkT−1 = kT−1. uT then OR’s his own bit with the procedure described in the previous steps. If bT

is 0, then the ciphertext eT = cT−1. If bT is 1, then eT = [1]kT−1 . uT sends eT , an encryption of
b0 ∨ . . . ∨ bT under kT−1, back to uT−1.

• Now, on its way back in the decrypt phase, for each step i ∈ [T − 1], ui has just received ei

from node ui+1 encrypted under pk1 ~ · · · ~ pki = ki. ui deletes the key layer pki to get ki−1 and
then using DelLayer, removes that key from encrypting ei to get ei−1. ui sends ei−1 and ki−1 to
ui−1 = (π(ui)

i )−1(ui+1).

• Finally, node u0 receives e0 encrypted only under public key pk0 on step 1. u0 deletes that layer
pk0, revealing e0 = b0 ∨ · · · ∨ bT .

Now notice that each of these “messages” sent from every node to every neighbor follows an explo-
ration sequence that covers the graph with probability 1−δ. Let S u be a random variable denoting the set
of nodes covered by the representative sequence starting at vertex u — although deg(u) sequences start at
node u, we only need to consider one of these sequences for the proof of completeness. We know that the
individual probability of each of these sequences succeeding in covering the graph is 1−δ = 1−negl(κ),
and so the probability that there exists a node whose representative sequence does not cover the graph is

Pr
S

[∃u : S u , V] ≤
∑

u∈V
Pr
S u

[S u , V] ≤ n · δ = n · negl(κ) = negl(κ)

because n = poly(κ), and where the probability is taken over the random coins used in determining the
sequences. �

We will now use the completeness of our protocol to show topology-hiding security from defini-
tion 4.1.

Theorem 5.2. If the underlying PKCR encryption scheme is CPA-secure and a full collection of non-
interfering, information-local, δ-Exploration Sequences for any δ = negl(κ) of length T , then protocol 1
realizes the functionality of FOR in a topology-hiding way against a statically corrupting, semi-honest
adversary.

Proof. First, we will describe an ideal-world simulator S: S lives in a world where all honest parties are
dummy parties and has no information on the topology of the graph other than what a potential adversary
knows. More formally, S works as follows

1. Let Q be the set of parties corrupted by A. A is a static adversary, so Q and the inputs of parties
in Q must be fixed by the start of the protocol.

2. S sends the input for all parties in Q to the broadcast function FOR. FOR outputs bit bout and sends
it to S. Note S only requires knowledge of Q’s inputs and the output of FOR for this step.

3. S gets the local neighborhood for each P ∈ Q: S knows how many neighbors each P has, and if
a neighbor is also in Q, S knows which party that is. S doesn’t need to know anything else about
the topology. S denotes N(P) the neighborhood of pseudonyms for each P ∈ Q. 5.

4. Consider every party P ∈ Q such N(P) 1 Q. S will need to simulate these neighbors not in Q.

5Recall that from definition 4.1, FgraphInfo does not reveal if nodes in Q have neighbors in common. All S needs to know is
which neighbors are also in Q.
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• Simulating messages from honest parties in Aggregate phase. For every Q ∈ N(P) and
Q < Q, S simulates Q as follows. At the start of the algorithm, S creates T key pairs:

(pk(1)
Q→P, sk(1)

Q→P), · · · , (pk(T )
Q→P, sk(T )

Q→P)← Gen(1κ)

At step t = i in the for loop on line 8, S simulates Q sending a message to P by sending
([0]pk(i)

Q→P
, pk(i)

Q→P). S receives the pair (c(i)
P→Q, k

(i)
P→Q) from P at this step.

• Simulating messages from honest parties in the Decrypt phase. Again, for every P ∈ Q,
Q ∈ N(P) and Q < Q, S simulates Q. At t = i in the for loop on line 20, S sends [bout]k(i)

Q→P

to P. S receives e(i)
P→Q from P.

We will prove that any PPT adversary cannot distinguish whether he is interacting with the sim-
ulator S or with the real network except with negligible probability using many hybrids. The
hybrid structure is multidimensional, where each dimension represents a finer gradation. The
order of these multi-dimensional hybrids, denoted by h.(i, t), is first t goes from 0 to T or 2T
(the number of rounds), then when t gets to T or 2T , i increases and t goes back to 1; when
both i (representing the number of neighbors of each corrupt party) and t reach their upper
bounds, we increase the hybrid number h. For example, the sub-hybrids of 2 are ordered 2.(1, 1),
2.(1, 2), . . . , 2.(1,T ), 2.(2, 1), . . . , 2.(|M|, 1), . . . , 2.(|M|,T ).

(a) Hybrid 0. S simulates the real world exactly and has information on the entire topology of
the graph, each party’s input, and can simulate each sequence identically to how the walk
would take place in the real world.

(b) Hybrid 1. S now does pseudonym replacement. Now, S simulates the real world, but sepa-
rates the simulated parties P ∈ N(Q) to parties in N ′(Q), defined as follows. Consider the
multiset M =

⋃
Q∈QN(Q). Now let N ′(Q) be the set {P′1, . . . , P′|M|}, where each P′i corre-

sponds to the real party in M with that label. That is, if P is the neighbor of both Q1 and
Q2 ∈ Q, then P gets separated into two parties in N ′(Q). Notice that in the pseudonym
model, all the adversary has access to is this set of parties N ′(Q), and cannot tell whether
two of its parties share a neighbor. This hybrid makes this explicit for the simulator. So, in
this hybrid, messages that would have been sent from Pi ∈ N(Q) to Q ∈ N(Q) are instead
sent by the corresponding simulated party P′i′ ∈ N ′(Q). S chooses pseudonyms for each P′i′
at random from [n2].

(c) Hybrid 2. This hybrid consists of many sub-hybrids: we will replace the real keys that
corrupted parties, Q, see with simulated, freshly-generated public keys, but we will need to
do that one key, one round at a time. For m ∈ [|M|], at every round t ∈ [T ], we have a
separate sub-hybrid 2.(i, t).
At hybrid 2.(i, t), for every i′ < i, the keys that party P′i′ would have given to Q ∈ Q have been
replaced with freshly generated public keys. For P′i , at every round t′ ≤ t, we have replaced
the key given to some Q ∈ Q at round t′ with a freshly generated public key. Messages sent
are sent under this fresh public key instead of with a layered public key.

(d) Hybrid 3. S now will send encryptions of 0 during the aggregate phase regardless of what
the actual bit is. To be formal about this, we split this into |M| · T rounds. Hybrid 3.(i, t)
has the following structure: for every i′ < i, all messages sent from simulated party P′i′ are
(fresh) encryptions of 0 under a fresh public key, and for every t′ ≤ t, messages sent from
simulated party P′i are always (fresh) encryptions of 0 under a freshly generated public key.

(e) Hybrid 4. S now starts simulating the decrypt phase, replacing the unlayered encryptions
of the OR’d bits with fresh encryptions of them. Note that this is still not quite the ideal
functionality since the bits we have OR’d together are generated by the walk, not necessarily
bout. We again need to split this hybrid into |M| · T sub-hybrids. So, hybrid 4.(i, t) is as
follows: for all parties i′ < i, S has the simulated party P′i′ send a fresh encryption (under

21



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 International Association for Cryptologic Research.

the appropriate public key) of the bit generated by the walk, and for t′ ≤ t, S has party P′i′
send fresh encryptions of this bit instead of the unlayered ones.

(f) Hybrid 5. S finally simulates the ideal functionality at the during the decrypt phase, sending
fresh encryptions of bout, the output of FOR, under the simulated public keys. This is instead
of simulating the sequences through the graph and ORing only specific bits together.
Notice that hybrid 5 is equivalent to our original description of S and requires no knowledge
of other parties’ values or of the graph topology other than local information about Q (as
specified by the FgraphInfo functionality).

Now, let’s say we have an adversary A that can distinguish between the real world and the sim-
ulator. This means A can distinguish between Hybrid 1 and Hybrid 4. So, A can distinguish,
with non-negligible probability, between two consecutive hybrids. We will argue that given the
security of our public key scheme and the high probability of success of the algorithm, that this
should be impossible.

(a) First, we claim no adversary can distinguish between Hybrid 0 and 1. This will be because
these distributions are identical in the view of the adversary. In Hybrid 0, the adversary
sees pseudonyms chosen independently of whether or not a party is the neighbor to multiple
corrupt parties, and so the pseudonyms are distributed identically to Hybrid 1. The messages
sent in Hybrid 0 and Hybrid 1 are also identically distributed; messages from a specific party
that was split into two or more in N ′(Q) are just forwarded to the corresponding simulated
party.

(b) First, we claim no adversary can distinguish between Hybrid 1 and 2.(1, 1). The difference
between these hybrids is distinguishing between AddLayer and computing a fresh encryption
key. The difference between hybrid 1 and 2.(1, 1) is simply that the first message sent by
party P′1 is encrypted under a fresh key instead, but this is also how the protocol starts.
In general, the difference between hybrids 2.(i,T ) and 2.(i + 1, 1) is non-existant. Now, the
difference between hybrid 2.(i, t) and 2.(i, t+1) is that we change from using a layered public
key to using a fresh public key to encrypt our bit. This is indistinguishable to an adversary
since we claim that the following two distributions are equivalent in a PKCR encryption
scheme for any k ∈ PK :

{
k ~ pknew|(pknew, sknew)← KeyGen(κ)

} ≡ {
pknew|(pknew, sknew)← KeyGen(κ)

}

and finally since these two distributions are equivalent and a fresh encryption is equivalent
to a layered encryption, no adversary can distinguish between a layered encryption with a
layered key and a fresh encryption with a fresh key.

(c) Now we will show that no PPT adversary can distinguish between Hybrids 2 and 3. The
only difference between these two hybrids is thatA sees encryptions of the broadcast bit as
it is being transmitted as opposed to seeing only encryptions of 0 from the simulator. We
will examine how each sub-hybrid is computationally indistinguishable from the next. First,
consider the difference between hybrid 2.(|M|,T ) and 3.(1, 1). The difference here is that on
the first message, party P′1 may be sending an encryption of 0 instead of 1. Similarly, the
difference between any 3.(i, t) and 3.(i, t + 1) or 3.(i,T ) and 3.(i + 1, 1) is that the contents
of an encrypted message may be 0 instead of 1. In all of these cases, due to the semantic
security of the encryption scheme, a computationally-bounded adversary cannot distinguish
between any of these hybrids.

(d) Next, we will show that Hybrids 3 and 4 are indistinguishable. For each sequential hybrid
pair, of the form 3.(|M|,T ) and 4.(1, 1) or 4.(i, t) and 4.(i, t + 1) or 4.(i,T ) and 4.(i + 1, 1),
the only difference is that the simulator gives a fresh encryption of a single message during
the protocol to a corrupted party, instead of removing a layer from the real ciphertext that
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has been simulated on the entire graph. From the definition of PKCR encryption, we know
that the distribution of ciphertexts after removing a layer is equivalent to that of a fresh
encryption under the resulting public key. This implies that these pairs are each individually
indistinguishable.

(e) For this last case, we will show that there should not exist a PPT adversary A that can
distinguish between Hybrids 4.(|M|,T ) and 5.
For any sequence that covers a set of S nodes, let bS =

∨
u∈S bu, and notice that bout =∨

i∈[n] bi, the OR of all parties’ bits. Lemma 5.1 states that with all but negligible probability
bS = bout. So, the chance that in one of these walks, the real-world bit bS is different from
bout is negligible, making all of these sub-hybrids statistically indistinguishable. In fact, by
a union bound, the probability that any of these walks fails is at most 2n2 · negl(κ), which is
still negligible.

�

5.2 Topology-Hiding Broadcast from Topology-Hiding OR

Broadcast can be seen as just a special case of OR: there is a source-node s with a source bit bs, and
all other parties have 0 as their input bits. By the end of the protocal, every protocol will have the
OR(0, . . . , 0, bs, 0, . . . , 0) = bs. In this section, we will formally prove that topology-hiding OR implies
topology-hiding broadcast, and then get the corollary that we achieve topology-hiding broadcast from
the previous subsection.

Lemma 5.3. If protocol Π realizes topology-hiding OR, then there exists a protocol Π′ that achieves
topology-hiding broadcast. Moreover, Π and Π′ have the same communication and round complexity.

Proof. Π′ is actually a special case of Π. Parties all run protocol Π with the following inputs: if party Pi

is not the source, then they run Π with input bit bi = 0; otherwise they are the source with broadcast bit
bsource, and they will run Π with input bi = bsource. After Π finishes, then by the correctness of Π each
party gets the output bsource = OR(0, . . . , 0, bsource, 0, . . . 0).

Π′ is a topology-realization of FBroadcast. First, the output of Π′ matches the output for broadcast.
Second (we now need to prove that there exists a simulator) because for any set of corrupted parties,
there exists a simulator for Π such that any PPT adversary cannot distinguish between interacting with
the real network or with the simulator. We can just use this same simulator for Π′, using the inputs as
determined above. �

Given we have a topology-hiding OR protocol and a method for using OR to compute a broadcast
we now get one of our main results: topology-hiding broadcast for all graphs.

Theorem 5.4 (Topology-hiding broadcast for all network topologies). Suppose there exists a PKCR en-
cryption scheme and a full collection of information-local non-interfering negl(κ)-exploration sequences
of length T = poly(κ). Then, there exists a polynomial-time protocol Πn that is a topology-hiding broad-
cast over any network topology G of at most n = poly(κ) nodes. Moreover, this protocol takes 2T
rounds.

Proof. We will show that protocol 1 is the topology-hiding realization of FBroadcast using the transfor-
mation from lemma 5.3. Recall that this is just having the broadcast node input the broadcast bit into
the protocol, and all other parties inputting 0. Since we assume existence of a PKCR, we are able to run
our protocol. The rest of this proof is simply combining the results of lemma 5.1 and theorem 5.2.

To show protocol 1 is complete, lemma 5.1 states that for our parameter κ, protocol 1 outputs the
correct bit for every node with probability at least 1 − negl(κ). This means, our protocol is correct with
overwhelming probability with respect to the security parameter κ.

To show our protocol is sound, theorem 5.2 states that for our input parameter κ, an adversary can
distinguish a simulated transcript from a real transcript with probability negligible in κ. Therefore,

23



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 International Association for Cryptologic Research.

protocol 1 is sound against all PPT adversaries: they have only a negligible chance with respect to κ of
distinguishing the simulation versus a real instantiation of the protocol. �

5.3 Topology-Hiding Computation from PKCR

Now that we have shown protocol 1 can satisfy definition 4.1 for topology-hiding broadcast (by comput-
ing OR on the correct inputs) in lemma 5.2 and 5.3, we can formally state and prove the main theorem
(that there is topology-hiding broadcast), and its corollary (that there is topology-hiding computation for
all efficient functions).

As mentioned in section 1, we can use public-key cryptography to compile broadcast into multiparty
computation in the UC model. Recall that for every functionality F , we say that a protocol Π is a
topology-hiding protocol for F if it is a polynomial-time topology-hiding realization of F .

Theorem 5.5 (Topology-hiding computation for all network topologies). Suppose there exists a PKCR en-
cryption scheme and a full collection of information-local non-interfering negl(κ)-exploration sequences
of length T = poly(κ). Then for every polynomial-time functionality F , there exists a protocol Πn that is
a topology-hiding protocol for F over any network topology graph G on at most n nodes. Moreover, if
there exists an MPC protocol running in T ′ rounds, then there exists a topology-hiding protocol for F ,
Πn, that only takes 2T · T ′ + 1 rounds.

Proof sketch. Because the UC model is very technical and requires more definitions and helper lemmas,
the full proof and model is explained in Appendix section B. Here we will provide the backbone intuition.

Theorem 5.4 states that we can get topology-hiding broadcast in our model. So, given broadcast
and a PKI (implied by our assumption that a PKCR encryption scheme exists), we explain how to
simulate point-to-point channels between parties with the following protocol. In the first round, every
party generates a public-secret key-pair ((pki, ski) for party Pi), and broadcasts the public key to the
network. Now, if party Pi needs to send a message m to party P j, Pi simply encrypts m using pk j and
broadcasts this encrypted message. No other parties can read this message, and we can make sure to tag
the encryption in such a way that P j knows it is for them. See section B.2 for more details.

Now, we know that there exists an efficient MPC protocol Π f for every efficiently-computable func-
tion f that uses point-to-point channels [36, 16, 15]. We can compile Π f into Π, a topology-hiding
realization of the functionality of f , in the following manner. First, all parties broadcast their public
keys, keeping their secret keys private. Then, for every round of Π f , for every message Pi sends to P j,
Pi encrypts it under P j’s public key, and broadcasts it. Now, notice that these broadcasts can all happen
simultaneously (as per the nature of the UC model — these protocols do not interfere with each other),
so if Π f took T ′ rounds and our broadcast takes 2T rounds, then Π takes 1 + T ′ · 2T = 2TT ′ + 1 rounds.
This accounts for 1 round of broadcasting public keys, and then all of the broadcasts. �

5.4 Complexity, Success Probability, and Optimizations for Broadcast and Computation

In this section, we will discuss the complexity of our protocol with a concrete realization of an explo-
ration sequence: random walks. We will also discuss how to optimize the length of the walks if we
restrict ourselves to certain kinds of graphs (for example, it requires much fewer steps to cover an ex-
pander than an arbitrary graph). We will also discuss our other method for exploring the graph: universal
exploration sequences. Unfortunately, concretely nailing down the length of a locally (and efficiently)
computed universal exploration sequence is difficult, but the guarantees will be stronger.

5.4.1 Communication Complexity with Correlated Random Walks

There has fortunately already been research into how long it takes for a random walk to cover a graph,
especially when it comes to analyzing different kinds of graphs. Here we consider expanders and regular
graphs in addition to arbitrary graphs [29, 8, 25].
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Corollary 5.6. There exists 2 · (κ · 8n3)-round topology-hiding broadcast for any graph G that succeeds
with probability 1 − negl(κ).

Proof. Lemma 3.17 shows that with a collection of correlated random walks of length κ · 8n3, we get
2−κ-exploration sequences. By theorem 5.4, we get a 2 · κ · 8n3-round topology-hiding broadcast from
protocol 1 (we have to go forward through the walk and then back, hence the extra factor of 2). �

We show that the communication complexity is Θ(Bκm) group elements, where B is an upper bound
on the cover time of the graph (for our protocol on general graphs, we have B = 4n3). We measure
the communication complexity in terms of the overall number of group elements transmitted throughout
the protocol (where the group elements are for the ciphertext and public-key pairs of the underlying
DDH-based encryption scheme, and their size is polynomial in the security parameter).

Claim 5.7 (Communication complexity). The communication complexity of protocol 1 using correlated
random walks of length T = 2κB is Θ(Bκm) group elements.

Proof. The random-walks in protocol 1 are of length T = 2Bκ, yielding 2T total rounds of communi-
cation including both the forward and backwards phases. At each round, every node v sends out deg(v)
messages. Summing over all v ∈ V , all of the nodes communicate 2m messages every round—one for
each direction of each edge (for m denoting the number of edges in the network graph). By the end of
the protocol, the total communication is 4Tm = Θ(Bκm). �

We conclude the communication complexity of protocol 1 on input n, κ is Θ(κn5) group elements.

Corollary 5.8. On input n, κ, the communication complexity of protocol 1 is Θ(κn5) group elements.

Proof. For a graph with at most n nodes, B = 4n3 is an upper bound on the cover time (see theorem
3.15), and m = n2 is an upper bound on the number of edges. Assigning those B,m in the bound from
claim 5.7, the proof follows: Θ(Bκm) = Θ(κ · n3 · n2) = Θ(κn5). �

Better Bounds on Cover Time for Some Graphs Now that we have seen how the cover time bound
B controls both the communication and the round complexity, we will look at how to get a better bound
than O(n3).

Cover time has been studied for various kinds of graphs, and so if we leak the kind of graph we are
in (e.g. expanders).then we can use a better upper bound on the cover time.

For example, on expander graphs (arising for example in natural applications on random regular
graphs), it is known that the cover time is CG = O(n log n), much less than O(n3) [8]. This means that
for expanders, we can run in CG = O(n log n) round complexity, and O(CGκm) = O(κmn log n) commu-
nication complexity. Even assigning the worst case bound m ≤ n2, we get round and communication
complexity O(n log n) and O(κn3 log n) respectively—much better than the general case that has O(κn3)
round complexity and O(κn5) communication complexity.

5.4.2 The Benefits of Universal Exploration Sequences

There are two possible sources of error in the construction in corollary 5.6: first, the encryption scheme
may have some small probability of error when decrypting, and second, some of the random walks
could fail to cover the entire graph. We can actually get rid of the second source of error if instead of
using random walks, we use UESs. So, if our encryption scheme is perfectly correct, we get a perfectly-
complete topology-hiding broadcast protocol. As noted before, however, we do not have good bounds on
the round-complexity for using a UES: while we know that UES’s exist that are about the same length as
random walks (O(n4 log n) [3]), being able to construct one efficiently locally requires log space, which
gives no bounds on the size of the output except polynomial [34]. If parties all recieved polynomial
advice in the form of a UES for a graph of n nodes, then parties could all just use the same UES of
length O(n4 log n) for the protocol, but advice is not something we considered in our model.
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Lemma 5.9. Assuming a perfectly-correct PKCR encryption scheme, there exists a polynomial-round
topology-hiding broadcast for any graph G that always succeeds.

Proof. First, a perfectly-correct PKCR encryption scheme is one such that after any combination of
adding and deleting layers, it decryption is always correct. This means that as long as every walk passes
every node in the graph at least once, the protocol will be correct and sound.

Now, let us analyze each walk. Every walk hits every single node in the graph because it follows
a UES. So, the bit produced by every walk is going to be the OR of every node’s bit, including the
broadcaster’s. Since there is no error in OR’ing bits together, this is guaranteed from lemma 5.1. So,
every walk results in the output bit, and hence every party gets the output bit, so protocol 1 is perfectly
complete. �

Unfortunately, we are less precise when discussing communication complexity of our protocol when
using UESs. This is because known explicit, deterministic, polynomial-time constructions use log-
space, and these works, as far as we could find, do not discuss how long the resulting sequence is. More-
over, every source with the exception of Koucky’s thesis only discusses d-regular graphs[26]. Koucky’s
work provides a transformation of d-regular graph sequences to general graphs at a cost which requires
knowing the number of edges in the original graph.6 With that in mind, we will discuss what is known
and, if advice is allowed to be given to nodes, about how long these sequences may need to be.

Reingold’s paper implies that the algorithm for computing the exploration sequences for general
graphs is log space, meaning the running time of computing such an exploration sequence and the
length of the resulting sequence could be anything polynomial. However, looking at Koucky’s thesis,
we can get a generic transformation of a universal traversal sequence (UTS) on a regular graph of length
T to one of length approximately O(n2 · T ).

Theorem 5.10 ([34]). There exists a log-space algorithm that takes as input 1n and outputs a universal
traversal sequence on 3-regular graphs with n nodes.

Log-space implies polynomial time and polynomial length in n, the number of nodes. So, what is
left is to be able to transform a UTS on a 3-regular graph to a UTS on general graphs if we only know
the number of nodes. For this transformation, we will rely on the following theorem from Koucky’s
thesis [26].

Theorem 5.11 ([26]). Let m ≥ 1 be an integer. For any traversal sequence τ1, . . . , τt, that is universal
for 3-regular graphs on 3m vertices, we can compute, with AC0 circuits, an exploration sequence that is
universal for graphs containing m edges.

Lemma 5.12. We can produce a UES on general graphs with n nodes of length O(n2 · T ) where T is the
maximum length of a UTS generated by Reingold’s algorithm for 3-regular graphs with 3(n − 1) to 3n2

nodes.

Proof. We will essentially be applying theorem 5.10 in conjunction with theorem 5.11 O(n2) times
because we do not know the exact number of edges in our graph.

Let S = () be an empty sequence. For every m ∈ {n− 1, . . . , n2}, we will use Reingold’s algorithm to
construct a UTS for 3-regular graphs on 3m nodes, and then transform it into a UES on general graphs
with m edges. We then append this sequence to S .

Now, for any connected graph on n vertices, it will have somewhere between n − 1 and n2 edges (to
be connected). Let m∗ be the number of edges it has. There is some subsequence in S that is a UES for
general graphs on n nodes with m∗ edges; that subsequence is guaranteed to explore the graph.

S has a length equal to the sum of all of the exploration sequences for each m. There are O(n2) such
m’s, and so we can upper bound the total length using the longest such exploration sequence (length T ):
the length of S is O(n2T ). �

6The transformation actually takes universal traversal sequences on d-regular graphs and turns them into universal explo-
ration sequences on general graphs with m = 3d edges
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PKCR Exploration Success Round Bandwidth
Assumption Scheme Sequence Probability Complexity Per Round
DDH ElGamal UES’s 1 poly(κ) 3 log p
DDH ElGamal Random Walks 1 − negl(κ) 2 · (κ · 8n3) 3 log p
QR Cock’s PKE Random Walks 1 − negl(κ) 2 · (κ · 8n3) 2 log N
QR Cock’s IBE Random Walks 1 − negl(κ) 2 · (κ · 8n3) 3 log N
LWE Regev’s PKE Random Walks 1 − negl(κ) 2 · (κ · 8n3) O(κ2 log p) + 2 log p

Table 2: A table comparing how the different assumptions can be used, their round complexity (given
whether or not they use UES’s or random walks), and bandwidth of messages sent each round. Since the
ElGamal encryption scheme is the only one with zero-error (QR induces a small probability of error after
re-randomizing ciphertexts, and LWE has error built-in), we do not consider the other two assumptions
with UES’s. Note that in every case, we need to send both the public key and the encrypted message.

It is interesting to note that since UESs are guaranteed to cover the graph, their length does not
depend at all on the security parameter κ, unlike the random walk construction. Therefore, it is more
efficient to use UESs in this protocol if n is small compared to κ. However, since we do not have good
bounds on how long these constructable UESs are, we cannot give the exact point at which it becomes
better to use this method.

5.5 Complexity of Broadcast with Concrete Assumptions

Cover time directly correlates to round-complexity, while the assumption (DDH, QR, or LWE) correlates
with total communication complexity. In this subsection we will analyze the communication complexity
of our broadcast protocol assuming DDH, QR, or LWE, and compare them. We also note that DDH
implies an error-free PKCR. From section 5.4.2, we know that this implies our broadcast protocol is
perfectly correct under those assumptions.

Getting PKCR from LWE was recently done by [28]. They showed that Regev’s PKE [33] was
also a PKCR, allowing for adding and deleting layers while preserving the integrity of the ciphertext.
Assuming LWE is quantum-secure, this result means get topology-hiding computation against quantum
adversaries. The downside to using this scheme is that it is less efficient both in terms of computation
and space: Regev LWE ciphertexts are much larger than ElGamal or Cock’s ciphertexts.

Corollary 5.13. Suppose one of DDH, QR, or LWE is true, and there is a full collection of information-
local non-interfering negl(k)-exploration sequences of length T = poly(κ). Then, there exists a polynomial-
time protocol Πn that is a topology-hiding broadcast over any network topology G of at most n = poly(κ)
nodes. Moreover, this protocol takes 2T rounds.
Moreover, if DDH is true, then there exists a perfectly-correct polynomial-time protocol Π′n that takes
poly(κ) rounds.

Proof. First, consider QR and LWE. Theorem 3.4 showed that given N as a security parameter, Cock’s
PKE and IBE are both PKCR encryption schemes. Then, by a theorem from [28], we get that LWE is
also a PKCR encryption scheme. Therefore, if either QR or LWE holds, theorem 5.5 states that we get
topology-hiding computation for any functionality.

Theorem 3.3 shows that ElGamal is a PKCR encryption scheme. We also know that ElGamal is
error-free, regardless of how many times Rand was used on a ciphertext, or the starting encryption
randomness. With corollary 5.9, we realize a perfectly-correct topology-hiding broadcast, which in
turn compiles into a perfectly-correct topology-hiding protocol for any polynomial-time functionality
by theorem 5.5. �

27



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 International Association for Cryptologic Research.

Work Graphs Round Complexity Communication Complexity
Moran et. al. ’15 [30] Diameter D 2O(D) · poly(κ) 2O(D) · poly(κ)
Hirt et. al. ’16 [23] Diameter D 5D O((d + 1)Dnκ)

maximum-degree d
Akavia-Moran ’17 [2] Cycles, trees, 2n 2n2 · poly(κ)

low-circumference
This work All 16n3κ 16n5κ · poly(κ)
(random walks)

Table 3: A table directly comparing the communication and round complexity of our broadcast protocol
with that of [30], [23], and [2]. Note that [30], [23], and this work all yield protocols for general graphs,
but [2] only applies to cycles and trees.
The first work, [30], employs a generic MPC protocol, and we were unabel to compute estimates on the
round or communication complexity. We do know that the round complexity increases exponentially
with the diameter.
The last term in the communication complexity of [2] and this work is the size of a single ciphertext.

6 Conclusion and Future Work

This work showed that topology-hiding computation is feasible for every network topology (in the com-
putational setting, assuming DDH or QR), using random walks or UESs. This resolution completes a
line of works on the feasibility of topology hiding computation against a static semi-honest adversary
[30, 23, 2]. As noted in table 3, our round and communication complexity is better than all previous
works for general graphs (e.g. when diameter and max-degree both must be treated as the worst case
n), though the use of random walks means it is less efficient for graphs with well defined structures
(e.g. cycles and trees). The work by Hirt et. al. is more efficient than our protocol in terms of round
complexity, but has a problem when it comes to communication complexity. Only when we are okay
leaking an upper bound on the maximum degree of the communication graph and this upper bound is
O(log(n)) is the communication complexity close to being as efficient as our protocol.

All of these results were building towards a feasibility result against the weakest possible adversary.
This leaves completely open the feasibility question against a malicious or adaptive adversary.

Although there are impossibility results for even very weak malicious adversaries (fail-stop) [30],
one can consider models in which we are able to restrict the amount of information the adversary learns.
To this end, since the publication of this result, there have been a few works extending these results.
First, by assuming secure hardware, [4] was able to get topology-hiding computation on arbitrary graphs
against fail-stop adversaries, leaking at most a single bit of information. Soon after, [28] was able to get
the same result but only requiring one of the standard cryptographic assumptions: DDH, QR, or LWE.

Moreover, the impossibility result hinges on the fact that the adversary is able to disconnect the
network. So, if we limit the adversary so that it cannot disconnect the graph, there is hope that we can
get some results (say a t-connected graph and the adversary can abort/control at most t nodes).

There is also the question of whether or not topology-hiding can be more efficient using standard
assumptions. Given hardware, as in [4], round complexity can be optimal (based on diameter) against
passive adversaries. However, for standard assumptions, we seem to be stuck with polynomial rounds
in the number of parties and security parameter: quadratic or more. There may be many other strategies
we have not discovered that are more efficient, or perhaps there are lower bounds implying stronger
assumptions are necessary for fewer rounds.

Then, there is the model of dynamic graphs, which are especially relevant in some mesh networks.
For example, consider the following application: smart cars on a highway communicating with their
local neighbors about weather, traffic, and other hazards, without needing to coordinate their information
with a third party or reveal their location relative ot other vehicles. Cars are constantly entering and
exiting the highway and changing location relative to other cars, so the graph, while it remains connected,
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is not static. The impossibility results do not rule out this model. Perhaps we can even adjust this
relatively simple protocol to work for these kinds of graphs.

Topology hiding computation is still a relatively unexplored subject in cryptography, having (in the
computational setting) its first feasibility result in 2015 [30]. It will be exciting to see what else can be
proved in this model.
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A Quadratic-Residue based PKCR Encryption

To keep this paper self-contained, in this section we will go over the results from [27]. Specifically,
we will be proving that the algorithms we referenced in section 3.1.3, re-randomization and proxy-
reencryption, are correct and sound. This will finish the proofs in section 3.1.3, showing that Cocks’
public-key encryption scheme is a PKCR encryption scheme.

A.1 The QR Assumption, Jacobi Symbol, and Other Preliminaries

Before going into the re-randomization and re-encryption algorithms, we will first explain some notation
and the assumption used in Cocks’ scheme. First, let QRN be the set of quadratic residues mod N, so

QRN := {a ∈ Z∗N : ∃b s.t. b2 ≡ a mod N}.

Next, we use the standard notation for the Jacobi symbol:
(

a
N

)
∈ {±1}, which is polynomial-time com-

putable via the law of Quadratic Reciprocity, and has the property that is multiplicative. So, for N = pq
(primes p and q), ( a

N

)
=

(
a
p

)
·
(
a
q

)
and

(
ab
N

)
=

( a
N

)
·
(

b
N

)
.

Where
(

a
p

)
= 1 (called the Legendre symbol because p is prime) if and only if a ∈ QRp (same for q).
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The QR assumption states that it is hard to tell if an element in ZN with Jacobi symbol 1 is a square
or not. That is, we cannot tell if a ∈ ZN is both a square mod p and mod q or is neither a square mod p
or q.

Definition A.1. The Quadratic Residuosity Assumption states that for all PPT adversaries A, if A is
given a composite RSA modulus N = pq, and an element a ∈ Z∗N such that

(
a
N

)
= 1, then

∣∣∣Pr
[A(N, a) = 1 : a ∈ QRN

] − Pr
[A(N, a) = 1 : a < QRN

]∣∣∣ < negl(|N |).

A.1.1 More Notation and the Ring of Ciphertexts

Linear function ciphertexts will be critical in proving that we can re-randomize Cocks’ ciphertexts as
well as get AddLayer and DelLayer functionality.

Within ZN , we let J1 denote elements with Jacobi symbol 1 and J−1 denote the elements with Jacobi
symbol −1. Squares mod N are QRN and squares mod p are QRp.

Linear Function Ciphertexts Recall from section 3.1.3 given a modulus N and public key R ∈ QRN ,
an encryption of a message m ∈ {0, 1} is choosing a random t ∈ ZN such that

(
t
N

)
= (−1)m and setting

the ciphertext c = t + Rt−1. Decryption is computing
(

2r+c
N

)
= (−1)m′ . Recall that the reason this worked

was because 2r + t + Rt−1 ≡ t−1(t + r)2 (mod x2 − R).
So, instead of having our ciphertext be represented by 2x + c (where we only need c to be the

ciphertext since 2x is assumed), we can actually have a ciphertext be any linear function ax + b such
that the decryption

(
ar+b

N

)
= (−1)m, which was done in the work of Clear, Hughes, and Tewari [10]. The

downside is that the ciphertexts have doubled in length, but the plus side is that we get an easy way to
compute homomorphisms. For two ciphertexts a1x + b1 and a2x + b2 encrypting m1 and m2 respectively,
a3x + b3 = (a1x + b1) · (a2x + b2) (mod x2 − R) is the homomorphic addition of the two ciphertexts
because when we decrypt, we have

(
a3r + b3

N

)
=

(
(a1r + b1)(a2r + b2) + h(r)(r2 − R)

N

)
=

(
a1r + b1

N

)
·
(
a2r + b2

N

)
= (−1)m1⊕m2 .

What we’ve just done is multiply two elements in the ring ZN[x]/(x2 − R), and we have shown that our
decryption algorithm respects this multiplication as homomorphic addition.

Rings of Ciphertexts As just shown, we will be working heavily in the ring ZN[x]/(x2 − R).
We will introduce some notation for this ring and its counterparts. Let RN = ZN[x]/(x2 − R), Rp =

Zp[x]/(x2 − R), and Rq = Zq[x]/(x2 − R). To denote the multiplicative groups of these rings, we write
R∗N , R∗p, and R∗q. Note that |R∗N | = |R∗p| · |R∗q| = (p2 − 2p + 1)(q2 − 2q + 1). So R∗N is the overwhelmingly
large fraction or RN , which has order p2q2; almost all elements in RN have multiplicative inverses, and
we can show that if ax + b does not have an inverse, then either a/b = r or a2R + b has a common factor
with N (so, either we violate the QR assumption, or we factor N).

A ciphertext ax + b decrypts to 1 if
(

ar+b
N

)
= 1 and to −1 if

(
ar+b

N

)
= −1. We denote the set of

ciphertexts in R∗N that decrypt to 1 as C1 and those that decrypt to −1 to be C−1. Note that when using
C1 and C−1, we are only referring to ciphertexts in the multiplicative group R∗N (since getting anything
without an inverse would imply breaking the QR assumption or factoring N).

Working Modulo a Prime p

In proving that we properly re-randomize a ciphertext, we will be relying on the Chinese Remainder
Theorem (CRT), and so understanding how Rp (and also Rq) behave is important.

Lemma A.2. If ar + b is a square mod a prime p, then we can write ax + b as (cx + d)2 in R∗p. If ar + b is
a non-square mod a prime p, then we can take any u < QRp and write ax+b as u(cx+d)2 (mod x2−R).
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Proof. Let u ∈ Z∗p, but u < QRp.
All squares in R∗p can be written as (cx + d)2. Notice that u(cx + d)2 cannot be a square in R∗p. Since

squares account for exactly half of R∗p, we can write all non-squares as u(cx + d)2 – u as a member of
the group is a bijection as a multiplicative map from Rp to itself, and thus u(cx + d)2 maps to a different
non-square for each square (cx + d)2.

For a contradiction, assume ar + b ∈ QRp, but ax + b is not a square. This means ax + b = u(cx + d)2

(mod x2 − R) for some cx + d. But, when we evaluate at r, (ar + b) = u(cr + b)2,

(
u(cr + b)2

p

)
=

(
u
p

)
·
(
cr + b

p

)2

= −1 ,
(
ar + b

p

)
.

This is a contradiction, and so ar + b being a quadratic residue mod p implies ax + b is a sqaure in R∗p.
If we let ar + b < QRp. We get that ax + b = u(cx + d)2 for the same reason: if ax + b = (cx + d)2,

then evaluation at r results in a contradiction. �

Working In RN

Lemma A.3. All ax + b ∈ C1 are of the form (a′x + b′)2/t where
(

t
N

)
= 1. Similarly, all linear function

encryptions ax + b ∈ C−1 are of the form (a′x + b′)2/t where
(

t
N

)
= −1.

Proof. First, assume ax + b ∈ C1. We have two cases of decryption to deal with: one where ar + b is a
square in both Zp and Zq and the other where it is a square in neither.

• ar + b ∈ QRp and QRq. From lemma A.2, we know that ax + b is a square in both R∗p and R∗q.
This means that mod p, we can write ax + b = (cpx + dp)2 and mod q, ax + b = (cqx + dq)2. By
the Chinese Remainder Theorem (CRT) , we can thus write ax + b = (cx + d)2. Now let γ ∈ Z∗N ,

ax + b =
(γcx + γd)2

γ2 =
(a′x + b′)2

γ2 ,

and γ2 is guaranteed to have Jacobi symbol 1 because it is a square.

• ar + b < QRp or QRq. Again from lemma A.2, ax + b is neither a square in R∗p or R∗q. Again by
CRT and lemma A.2, ax + b = u(cx + d)2 where u ∈ J1 and u < QRN . Now, we can do the same
trick as before, to get

ax + b =
(γcx + γd)2

γ2/u
=

(a′x + b′)2

γ2/u
.

Notice that γ2/u is neither a square mod p or mod q and thus has Jacobi symbol 1 mod N.

The case where ax+b ∈ C−1 is similar. Now, without loss of generality, we can assume ar+b ∈ QRp
and ar+b < QRq. Lemma 3 tells us that mod p, ax+b = 1·(cpx+dp)2 mod p and ax+b = uq(cqx+dq)2

mod q. By the Chinese Remainder Theorem, we can find a t ∈ ZN so that t ≡ 1 mod p and t ≡ 1/uq

mod q, as well as a′ ≡ cp mod p and cq mod q and b′ ≡ dp mod p and dq mod q. We can rewrite

ax + b ≡N (a′x + b′)2/t (mod x2 − R).

Now we have
(

t
N

)
=

(
1
p

)
·
(uq

q

)
= −1 as desired. �

A.2 Re-randomization of Cocks’ Ciphertexts

We now have a method for getting the correct decryption of homomorphically added linear-function
ciphertexts using the linear-function representation (as in Clear, Hughes, and Tewari [10]). Now we
need to convert a linear-function ciphertext into a proper Cocks’ ciphertext.
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A.2.1 Converting a Linear-function Ciphertext to a Cocks’ Ciphertext

We define the following helper function, Convert, which takes in two elements a and b of Z∗N , a public
key R, and returns a proper Cocks ciphertext that will decrypt to the same message as

(
ar+b

N

)
.

function QR.Convert(a, b,R)
while

(
2/a
N

)
, 1 do

d, e
$← ZN and t

$← J1.
ax + b← t−1(dx + e)2 · (ax + b) (mod x2 − R).

end while
return c = 2b/a

end function

Claim A.4 ([27]). QR.Convert(a, b,R) outputs c such that
(

ar+b
N

)
=

(
2r+c

N

)
in polynomial time.

Proof. There are two things to prove: first that Convert is correct and second that it terminates in
polynomial time.

Correctness of QR.Convert Correctness is easy. Notice from our computation in the previous section,
ax+b decrypts to the same element after each loop. Now, once

(
2/a
N

)
= 1, then when we return c = 2a/b,

we are really computing (2/a)(ax+b) = 2x+2b/a and returning the constant term. So, when we decrypt
c like a Cocks ciphertext, we get

(
2r + c

N

)
=

(
2r + 2a/b

N

)
=

(
2/a
N

)
·
(
ar + b

N

)
=

(
ar + b

N

)
,

which is exactly the decryption of the linear function ciphertext.

Runtime of QR.Convert. Time is a bit less straightforward, but as long as ax + b has an inverse in
the RN , we can prove that with with constant probability, we will find d, e such that the resulting a has(

2/a
N

)
= 1. Recall that only a negligible fraction of elements ax + b ∈ RN do not have inverses (and

finding non-invertible elements breaks the cryptosystem), and so we can expect Convert never to deal
with that case. We will show that if ax + b ∈ RN has a multiplicative inverse, then

Pr
c,d

$←Z∗N ,t
$←J1

[(
a′

N

)
= 1 where a′x + b′ = (ax + b)(dx + e)2t−1

]
=

1
2
.

And therefore Pr[
(

a/2
N

)
= 1] = 1

2 after each loop. So, we are only expected to loop two times.
We will be using the machinery and notation from section A.1.1, re-writing ax + b in terms of being

a square in Rp and Rq or not, and then going through the cases.
First, we know that we can rewrite ax + b = (a′x + b′)2t′−1 where

(
t′
N

)
=

(
ar+b

N

)
by lemma A.3. Now,

the term in our probability (ax + b)
(
(cx + d)2t−1

)
becomes ((a′x + b′)(dx + e))2(tt′)−1. Since a′x + b′ will

also have an inverse in RN , and we are choosing dx + e at random, we are just as likely to choose c, d as
we are to choose c′, d′ where (c′x + d′) = (a′x + b′)(dx + e) (mod x2 − R). The term we are trying to
bound the probability on is (dx+e)

t where
(

t′
N

)
=

(
ar+b

N

)
.

Let m =
(

ar+b
N

)
, the decryption of our ciphertext. We now have that the probability we are looking at

is

Pr
c,d

$←Z∗N ,t
$←J1

[( e
N

)
= 1 where ex + f = (ax + b)

(dx + e)2

t

]

= Pr
c,d

$←Z∗N ,t
$←Jm

[( e
N

)
= 1 where ex + f =

(dx + e)2

t

]
.
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Now, we expand 1
t · (dx + e)2 (mod x2 − R), our linear term is just 2

t cd. We can analyze

Pr
c,d

$←Z∗N ,t
$←Jm

[(
2cd/t

N

)
= 1

]
=

∑

γ∈J1
Pr

c,d
$←Z∗N ,t

$←Jm

[
2cd

t
= γ

]

=
∑

γ∈J1

∑

T∈Jm
Pr

t∈Jm
[t = T ]

∑

C∈Z∗N
Pr

c∈Z∗N
[c = C] · Pr

d∈Z∗N

[
d =

Tγ
2C

]

=
∑

γ∈J1

∑

T∈Jm

2
φ(N)

∑

A∈Z∗N

1
φ(N)

· 1
φ(N)

=
φ(N)

2
·
(
φ(N)

2
2

φ(N)

) (
φ(N) · 1

φ(N)

)
· 1
φ(N)

=
1
2
.

�

A.2.2 Using Convert to re-randomize

Now that we have QR.Convert, we can define the three algorithms for PKCR: randomization, adding
a layer, and removing a layer. First, given any ciphertext and public key, the re-randomizing algorithm
will produce a ciphertext computationally indistinguishable from a randomly generated fresh ciphertext
of the same message.

function QR.Rand(c,R)
d, e

$← ZN

Let t
$← ZN so that

(
t
N

)
= 1

Compute a′x + b′ = (ax + b)(dx + e)2t−1 (mod x2 − R)
return QR.Convert(a, b,R)

end function

Lemma A.5 ([27]). QR.Rand(c,R) for an encryption c of a message m outputs a c′ statistically (and
therefore computationally) indistinguishable from a fresh encryption of m.

Proof. We will show that choosing d, e, and t statistically randomizes 2x+c as a ciphertext ax+b in Cm.
Once we have this, QR.Convert turns ax + b into a random ciphertext in Cm where

(
a/2
N

)
= 1, meaning

the resulting Cocks ciphertext will be random in the space of Cm of the form 2x + c′.
So, let’s show that choosing d, e, t results in statistically randomizing 2x + cin Cm. First, let’s define

the distributionDax+b for an element ax + b in RN ,

Dax+b :=
{

(ax + b)
(dx + e)2

t
: dx + e

$← R∗N , t
$← J1

}
,

which is statistically close to the output from the third line in QR.Rand (when we compute a′x + b′).
We say statistically close because d and e are chosen randomly from ZN . When it is obvious what ax + b
is (it will be 2x + c, the linear function version of the Cocks’ ciphertext we start with unless otherwise
specified), we will drop the subscript, writingD.

With overwhelming probability, dx + e will have a multiplicative inverse in R∗N . So, we will prove
that D randomizes ciphertexts that have inverses, and because the distribution from D is statistically
close to the actual output of Rand and the set of ciphertexts that have inverses is statistically close to the
set of all ciphertexts, Rand statistically re-randomizes a ciphertext.

Recall that our goal is to show that if 2x + c ∈ C1, then

D ≡
{

f x + g where f x + g
$← C1

}
,

and if 2x + c ∈ C−1, then
D ≡

{
f x + g where f x + g

$← C−1

}
.
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We will define an alternative distribution. Let m =
(

ar+b
N

)
, and letD′ be

D′ :=
{
(dx + e)2/t : dx + e

$← C1, t
$← Jm

}
.

We will first show that D ≡ D′. We can rewrite 2x + c = (a′x + b′)2t′−1 for some t with Jacobi
symbol 1 using lemma A.3. So, expanding our output from D, (2x + c) = ((âx + b̂)(dx + e))2(tt′)−1.
Since we are choosing (dx + e) from the multiplicative group R∗N at random and âx + b̂ is also in R∗N , the
probability ofD chooses (dx + e) for its output is the same as the probabilityD chooses (âx + b̂)(dx + e)
(mod x2 − R). Since

(
tt′
N

)
=

(
t
N

)
, the probability D outputs a specific (dx+e)2

t with
(

t
N

)
= m is equivalent

to the probabilityD′ outputs that element in R∗N .
Our goal now is to show that D′ outputs, uniformly, a ciphertext that decrypts to m. Note that, by

counting, |C1| = |R∗N |/2, since exactly half of the elements in R∗N are squares divided by elements of
Jacobi symbol 1 and the other half are squares divided by elements of Jacobi symbol −1. This means
the probability that a uniform distribution on C1 outputs f x + g is 2

|R∗N | .

Let f x+g ∈ C1. We will analyze the probabilityD′ outputs f x+g. By lemma A.3, f x+g =
(e′x+ f ′)2

γ

where γ ∈ J1. We have two cases, γ ∈ QRN and γ < QRN :

• γ ∈ QRN . The probability that D′ outputs f x + g is the probability that (dx+e)2

t =
( f ′x+g′)2

γ when
we randomly choose dx + e ∈ R∗N and t ∈ J1:

Pr
dx+e

$←R∗N ,t
$←J1

[
(dx + e)2

t
=

( f ′x + g′)2

γ

]

=
∑

T∈J1
Pr

t
$←J1

[t = T ] · Pr
dx+e

$←R∗N

[
(dx + e)2 =

T
γ

( f ′x + g′)2
]
.

Notice that this equation only has a solution in dx + e if t ∈ QRN . Otherwise, we are trying to
solve (dx + e)2 = t

γ (e′x + f ′)2 (mod x2 − R) when (dx + e)2 is a square, but t
γ ( f ′x + g′)2 is not.

Now, assuming that T/γ ∈ QRN , we can let k2 = T/γ and rewrite k2( f ′x + g′2) = (k f ′x + kg′)2 =

( f̂ x+ĝ)2. We are looking for the probability that a random dx+e is a solution to (dx+e)2 = ( f̂ x+ĝ)2

(mod x2 − R). We need to know how many solutions there are to this. We will use CRT.

Mod p, there are exactly two solutions dx + e ∈ R∗p to ( f̂ x + ĝ)2: at least two because ±( f̂ x + ĝ)
are both solutions, and no more than two because the size of squares is exactly half of R∗p. Mod
q there are also exactly two solutions. This means, mod N there are 4 total solutions. Now, when
we continue to analyze this probability, we have

∑

T∈J1
Pr

t
$←J1

[t = T ] · Pr
dx+e

$←R∗N

[
(dx + e)2 = (T/γ)( f ′x + g′)2

]

=
∑

T∈QRN

2
φ(N)

· 4
|R∗N |

=

(
φ(N)

4
· 2
φ(N)

)
· 4
|R∗N |

=
2
|R∗N |

.

So, in this case, the distributionD′ is the same as uniform.

• γ < QRN . We can use the same analysis tricks, except T must also not be in QRN , but still must
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have Jacobi symbol 1. So,

Pr
dx+e

$←R∗N ,t
$←J−1

[
(dx + e)2/t = ( f ′x + g′)2/γ

]

=
∑

T<QRN

2
φ(N)

· 4
|R∗N |

=

(
φ(N)

4
· 2
φ(N)

)
· 4
|R∗N |

=
2
|R∗N |

.

The case where 2x + c, f x + g ∈ C−1 is proved in exactly the same manner. �

A.3 Adding and Deleting layers from a Cocks’ ciphertext

The strategy here is taken from LaVigne’s work in proxy-reencryption [27]. At a high level, c is a valid
ciphertext for a message m encrypted under a public key pk if

(
csk+2

N

)
= (−1)m. So, if we want to decrypt

c (encryption of m under pk) with a combined secret key sk ·sk′ (corresponding to public key (sk ·sk′)2)
instead of sk, we let c′ = c/sk′, and then decryption is guaranteed to produce the same output. Of course
c′ is not a random-looking ciphertext, so then we apply QR.Rand to get our output.

function QR.AddLayer(c, k′, sk)
c′ ← c(sk)−1, and R′ ← k′ · (sk2)2.
return QR.Rand(c′,R′)

end function
function QR.DelLayer(c, k′, sk)

c′ ← c(sk) and R′ = k′/(sk2)2.
return QR.Rand(c′,R′)

end function

Lemma A.6. For any public key k′ and (pk, sk) in Cocks, and c = QR.Enc(k,m), the following are
equivalent distributions:

{QR.AddLayer(c, sk)} ≡s {QR.Enc(k′ · pk,m)}
and for c′ = Enc(k′ · pk,m),

{QR.DelLayer(c′, sk)} ≡s {QR.Enc(k′,m)}
Proof. First, we will analyize QR.AddLayer. The combined public key for adding a layer is k′ · pk =

(sk′ · sk)2, with corresponding combined secret key sk′ · sk; and we define a ciphertext c as a valid
encryption of m under public key pk if decryption results in (−1)m, i.e.

(
csk+2

N

)
= (−1)m.

The input to QR.Rand is the ciphertext c′ under public key R′ = k′ · (sk)2 ∈ QRN . Let the secret key
for k′ be sk′ (the square-root of k′). Notice that decryption of the ciphertext c is just taking the symbol
of csk′ + 2. Now, if we plug in the combined secret key sk′ · sk, we get that c′sk′ · sk + 2 = csk′ + 2, and
so the decryption is the same:

(
c′sk′·sk+2

N

)
=

(
csk′+2

N

)
. Thus, c′ is a valid ciphertext encrypting the same

message as c under the combined public key k′ · (sk)2 = k′ · pk = R′. Then, when we apply QR.Rand to
c′, the output is a ciphertext statistically indistinguishable from a fresh encryption of that message under
the key R′.

We can go through the same logic for QR.DelLayer. The un-combined public and secret keys are
k, and sk The input to QR.Rand is the ciphertext c′ = c · sk2, and so the decryption of c′ under the
un-combined key is

(
c′sk′+2

N

)
=

(
csk′·sk+2

N

)
. This makes c′ a valid encryption of the same message of c

under public key k′. Since QR.Rand produces a ciphertext that is statistically indistinguishable from a
fresh encryption of the same message, the output from DelLayer is a ciphertext indistinguishable from a
fresh encryption of the message under the public key k′. �
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B Compiling Broadcast to Secure Multiparty Computation

Our method for proving that topology-hiding computation (THC) is possible involves compiling general
MPC protocols using UC-secure topology-hiding broadcast (THB) and public-key cryptography. In this
section, we will go into detail about the model of MPC we realize (semi-honest adversaries statically
corrupting any subset of nodes with synchronous communication). Then, we will formally prove that
UC-secure THB along with public key cryptography can compile any MPC protocol in this model into
a topology-hiding MPC using our security definition, detailed in section 4.

B.1 The MPC and THB models

In this section, we go over our exact security models of what we need to achieve THC. First, we will
describe the standard MPC model which is synchronous and secure against semi-honest adversaries.
Then, we will adapt our definition for what UC-secure THB is, mainly so that it works well with the
proof that our compilation of THB to THC works. Finally, we note that we need CPA-secure public key
encryption (secure against only chosen plaintext attacks), and provide a definition for it.

B.1.1 MPC model: Semi-honest adversaries

The material in this section is referenced one of the MPC models described by Goldreich in [14].
First we will explain some of our notation. The goal will be to compute an n-ary function f :

({0, 1}∗)n → ({0, 1}∗)n, where each of the n inputs correspond to an input from one of the parties taking
part in the computation, and the outputs will correspond to the output a party receives.

Let Π denote some protocol for n parties. Π assumes synchronous communication and point-to-
point channels between each party. Every round, parties send and receive messages from each other
along these channels, and then perform some computations on them. For a function f with inputs
x = (x1, . . . , xn) respectively from parties P1, . . . , Pn, Π realizes the functionality of f if by the end of
the protocol, each party i gets the output f (x)i.

Definition B.1. For a protocol Π for n parties, the view of a party is

viewΠ
i (x) = (xi, r,m1,mT )

and the view of any subsets of parties I ⊂ [n] is

viewΠ
I (x) = (I, (viewΠ

i (x))i∈I).

The outputs our defined similarly:

outputΠi (x) = fi(x), and outputΠI (x) = ( fi(x))i∈I

Definition B.2. For a protocol Π realizing a functionality f , we say Π privately computes f if there
exists a PPT algorithm S (a simulator), such that for all subsets I ⊂ [n],

{S(I, (xi)i∈I , fI(x)), f (x)} c≈ {viewΠ
I (x), outputΠ}

This notion of being private computatable states exactly that if a PPT adversary corrupting some
subset I of the parties, but follows the protocol Π (is semihonest), then she has a negligible chance of
distinguishing between the world where she is interacting with other parties and in the world where she
interacts with the simulator S. This is equivalent to our notion of secure MPC throughout this work.
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B.1.2 Topoloyg-Hiding Computation Model

Here we will review what it takes for a protocol to be topology hiding. The formal definition, from
definition 4.1, states that we need a protocol that UC-realizes (FgraphInfo||F ) in the Fgraph-hybrid model.
Let FgraphInfo(I) represent the local graph information of parties in I in accordance with the functionality
of Fgraph. So, we say that for a protocol to be a topology-hiding realization of a function f , there
exists a PPT simulator S that only has access to the local graph information and local computation
information to produce views computationally indistinguishable from views in the real protocol. That
is, against a static, semi-honest adversary, we just need the following distributions to be computationally
indistinguishable in order for a protocol to be topology hiding: for any subset of parties I ⊂ [n],

{S(I,FgraphInfo(I), (xi)i∈I , f(x)), f (x)}x∈({0,1}∗)n
c≈ {viewΠ

I (x), outputΠ(x)}x∈({0,1}∗)n

For an in-depth description of the UC-model and for why this definition is UC, we refer the reader
to Canettti’s work on universal-composability [7].

B.1.3 CPA-Secure Public Key Encryption

We will need one more element to go from THB to THC: a public key encryption scheme secure against
plaintext attacks (CPA-secure PKE). For completeness, we have included a definition here.

Definition B.3. A public key encryption scheme (KeyGen, Enc, Dec) is CPA secure if any PPT adver-
saryA cannot win the IND-CPA security game with probability greater than 1/2 + negl(κ).

Now we define this security game:

Definition B.4. The IND-CPA security game works as follows:

1. Setup. The challenger C gets public and secret keys (pk, sk)← KeyGen(κ) and sends pk toA.

2. Challenge phase. The adversary performs as many encryptions as she wants using pk and then
sends challenge messages M0 and M1. C chooses a random bit b and sends the ciphertext
Enc(pk,Mb) toA.

3. Output phase. A outputs b′ and wins if b = b′.

B.2 Compiling MPC to Topology hiding MPC with Broadcast and Public Key Encryp-
tion

In this section we will prove that with THB and CPA-secure PKE, we get a topology-hiding realization
of any MPC protocol Π. Since there exist MPC protocols against static, semi-honest adversaries for all
efficiently computable functions, it follows that we get topology-hiding computation for all efficiently
computable functions.

Theorem B.5 (Compiling THC from THB and PKE). Assume UC-secure THB and CPA-secure PKE
exist. Then, for any PPT protocol Π that privately computes a function f : ({0, 1}∗)n → ({0, 1}∗)n, there
exists a PPT protocol Π′ that is a topology-hiding realization of the functionality of f .

Proof. Π is a PPT multiparty protocol: instructions are either to run a local computation or, at each
round, to send some messages from one party to another along a point-to-point channel. Π′ will operate
as Π except there will be a setup phase and point-to-point communication will be handled with broadcast
and public-key encryption.

Let φ be the topology-hiding broadcast protocol. Π′ works as follows:

• Setup phase. Every party creates a public-secret key pair (pki, ski). Then, every party broadcasts
their public key pki via φ.
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• Point-to-point communication. If party i needs to send a message m to party j in protocol Π, Π′

dictates the following. First, party i computes ci ← Enc(pk j,m). Then, party i broadcasts ci using
φ under a session ID corresponding to that channel. Finally, party j, upon receiving ci, decrypts
mi ← Dec(ski, ci).

• Internal computation. Any internal computation run on information gathered from other parties
or from randomness is carried out exactly as in Π.

Now we have to prove that Π′ realizes the ideal, topology-hiding functionality of Π. First, Π′ is
correct. This follows from correctness of Π in computing the functionality and from the correctness of
encryption and decryption.

Proving that this is topology-hiding is more involved. Since Π privately computes f , there exists
a simulator S so that for any adversary controlling I ⊂ [n] parties, S can simulate the views of the
adversary without any knowledge of the other parties’ inputs. We will show that there exists a simulator
S′ simulating an adversary’s view of Π′ and furthermore that S′ requires no knowledge of other parties’
inputs or the structure of the graph beyond the adversary’s local neighborhood. This will prove that Π′

is a topology-hiding MPC.
First, let’s examine the view of any subset I of parties, comparing the view of Π and the view of Π′:

viewΠ
I (x) = ((xi)i∈I , r,m1, . . . ,mT )

viewΠ′
I (x) = ((x)i∈I , r, r′,R1, . . .RT )

where each Ri is actually a collection of messages representing the communication at round i in the
original protocol Π. So, we can split Ri into the communication for each point-to-point channel using the
session ID’s. We will show, with a series of hybrids, that we can create a simulated view computationally
indistinguishable from the actual view of Π′.

• Hybrid 0. The simulator S′ emulates the real-world view exactly. S requires all party inputs and
the structure of the graph G. Here we will write S′0 as the simulator that emulates the real-world
view exactly, so

{(S′0(I,FgraphInfo([n]), x, f (x), f (x)} ≡ {viewΠ
I (x), outputΠI (x)}

• Hybrid 1.1 to 1.n. In these hybrids, we examine the setup phase and, instead of having our
simulator use G to compute the topology hiding broadcast for each key pki for party i ∈ [n], we
replace it with a simulated broadcast from ST HB(I,FgraphInfo(I), (xi)i∈I ,

f (x) = pk j), which does not require knowing the graph structure beyond FgraphInfo(I).
Formally, the simulator in hybrid 1. j is identical to the simulator in hybrid 1.( j − 1) except that it
simulates communication in the topology-hiding broadcast for broadcasting key pk j with ST HB.

• Hybrids 2.1 to 2.n. We still need to account for the keys broadcast during the setup phase: S′ still
needs to know what public and secret keys each each party has. S′ now replaces the public keys
generated by other parties with public keys that S′ generates with KeyGen and ignores the secret
keys of all parties j < [I]. More explicitly, for each j ∈ [n], j < I, S′ replaces the input pk j to
the setup phase key broadcast with a key from KeyGen. Each hybrid in this part corresponds to
j ∈ [n] (notice if j ∈ I, hybrid 2.( j − 1) is equivalent to hybrid 2. j).

Notice now that for the setup phase of our compiled algorithm, S′ does not need any information
outside of FgraphInfo(I) and the inputs from parties in I.

• Hybrids 3.1 to 3.n2. In these hybrids, S′ replaces the real-world communication dictated by the
topology-hiding broadcast protocol φ with simulated messages using the topology-hiding broad-
cast simulator ST HB. That is, for each of the n2 possible channels representing communica-
tion between i and j, we replace the perfectly simulated broadcast with messages from ST HB(I,
FgraphInfo(I), (xi)i∈I , fi→ j(x) = mi→ j).
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So, S′ no longer requires knowing any of the topological information of the graph (all information
was communicated via broadcast, and now all broadcasts have been replaced with messages from a
simulator that does not need extra topological information). So, S′ takes as input I,FgraphInfo(I), x,
and f (x) (notice that S′ still depends on inputs from parties not in I).

• Hybrids 4.1 to 4.T . Notice that our simulator in hybrid 3.n2 still requires knowing each of the
messages that every party sends to every other party, so that it can give the correct input to the
broadcast subroutines. For each t ∈ [T ], hybrid 4.t will look exactly like 4.(t − 1) except if mt is
encrypted under pk j for some j < I, we replace it with an encryption of 0.

• Hybrid 5. In hybrid 4.T , we require knowing all parties’ messages so that we can compute the
correct messages for parties in I. In this hybrid, we change all messages received by parties
in I to simulated messages using the simulator S for the multiparty protocol Π, which takes as
input S(I, (xi)i∈I , ( fi(x))i∈I)). This completes the task of eliminating the simulator’s need to see
real messages or inputs from parties not in I. Now, the simulator only needs to take as input
S(I,FgraphInfo(I), (xi)i∈I , ( fi(x))i∈I).

So, by the end of these hybrids, our simulator only needs local information about the corrupted
parties I. Now we will prove that each hybrid is indistinguishable from its neighboring hybrids, which
will finish the proof that Π′ is topology-hiding.

• Hybrid 0 is computationally indistinguishable from hybrid 1. For any subset of parties I, ST HB

produces a set of messages simulating the broadcast of pk1. The set of simulated messages will
be computationally indistinguishable from the parties of I interacting with the real world from the
definition of topology-hiding.

• Hybrid 1.i is computationally indistinguishable from hybrid 1.(i + 1). This is for the same reason
as before. Replacing the broadcast of public key pki+1 with simulated messages from ST HB is
computationally indistinguishable from the real-world communication for any subset of parties I.

• Hybrid 1.n is indistinguishable from hybrid 2.1. We’re just replacing a public key generated by a
party’s own randomness with the simulator’s randomness. The distribution of public keys will be
identical.

• Hybrid 2.i is indistinguishable from hybrid 2.(i + 1). This is true for the same reason as above.

• Hybrid 2.n is computationally indistinguishable from hybrid 3.1. Here we replace one message
channel with simulated messages from ST HB. Since the message channel was represented by a
broadcast, we get the same functionality, and the output from simulator ST HB will be computa-
tionally indistinguishable from the real-world views by the definition of topology hiding. It is
important to note that we are running many of these broadcasts, one after another, but since we
have a broadcast secure in the UC model against a passive adversary, running multiple of them
simultaneously keeps the topology-hiding and privacy properties.

• Hybrid 3.i is indistinguishable from hybrid 3.(i + 1). This is true for the same reason as above:
changing a channel from real-world communication to the simulated communication from ST HB

is computationally indistinguishable to any PPT adversary controlling parties in I.

• Hybrid 3.n2 is computationally indistinguishable from hybrid 4.1. Here we may replace an en-
cryption of an actual message with an encryption of 0. If m1 in the original protocol Π is sent to
j ∈ I, then there is no change between the hybrids, so they will be indistinguishable to an adver-
sary controlling parties in I. However, if m1 is sent to j < I, then c1 becomes an encryption of 0.
The broadcast means that viewI includes c1. However, because no parties in I have a secret key
associated with c1, even an adversary controlling all parties in I could not distinguish between the
two hybrids without breaking the IND-CPA security of the encryption.
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• Hybrid 4.i is computationally indistinguishable from hybrid 4.(i + 1). This is true for the same
reason as above. Either mi+1 is sent to a party in I, so there is no change between these hybrids, or
mi+1 is sent to a party not in I, and the IND-CPA security of the encryption allows us to get away
with encrypting 0 instead of the actual message.

• Hybrid 4.T is computationally indistinguishable from hybrid 5. This is because Π privately com-
putes f , so there exists a simulator S for Π. The purpose for S is to simulate views for every
party in I during the computation so that the corrupted parties in I cannot distinguish if they are
interacting with a simulator or with other parties. So, when we change the perfectly simulated
messages for parties to messages from the simulated views for I using S, we still get that no PPT
adversary can distinguish these two worlds without breaking the privacy-preserving property of
Π.

So, our simulator S′(I,FgraphInfo(I), (xi)i∈I , fI(x)), only requires local knowledge for any subset of
parties and is indistinguishable from the 0 hybrid, where S′ was identical to the real world:

{S′(I,Fgraph(I), (xi)i∈I , fI(x)), f (x)} c≈ {(S′0(I,FgraphInfo([n]), x, f (x), f (x)}
≡ {viewΠ

I (x), outputΠ(x)}

Therefore Π′ is a topology-hiding realization of f . �

The following corollary is just a formal statement that we can get topology-hiding computation for
all efficiently computable functions from THB and CPA-secure PKE.

Corollary B.6. Assume UC-secure THB and CPA-secure PKE exist. Then, for any efficiently computable
function f : ({0, 1}∗)n → ({0, 1}∗)n, there exists a PPT protocol Π′ that is a topology-hiding realization
of the functionality of f .

Proof. For every efficiently computable function f , there exists an MPC protocol Π [36, 16, 15]. From
theorem B.5, this means there exists a protocol Π′ which is the topology-hiding realization of Π. �
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