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ON THE GENUS OF A QUOTIENT OF A NUMERICAL SEMIGROUP

AYOMIKUN ADENIRAN, STEVE BUTLER, COLIN DEFANT, YIBO GAO, PAMELA E. HARRIS,

CYRUS HETTLE, QINGZHONG LIANG, HAYAN NAM, AND ADAM VOLK

Abstra
t. We �nd a relation between the genus of a quotient of a numeri
al semigroup S and

the genus of S itself. We use this identity to 
ompute the genus of a quotient of S when S has

embedding dimension 2. We also exhibit identities relating the Frobenius numbers and the genus of

quotients of numeri
al semigroups that are generated by 
ertain types of arithmeti
 progressions.

1. Introdu
tion

Throughout this paper, let N denote the set of nonnegative integers. A numeri
al semigroup is

a subset of N that is 
losed under addition, 
ontains 0, and has �nite 
omplement in N. Given

positive integers a1, . . . , an satisfying gcd(a1, . . . , an) = 1, we write

〈a1 . . . , an〉 = {c1a1 + · · · + cnan : c1, c2, . . . , cn ∈ N}.

The set 〈a1 . . . , an〉 is a numeri
al semigroup 
alled the numeri
al semigroup generated by the set

{a1, . . . , an}. It is well known that every numeri
al semigroup is of this form [3, Theorem 2.7℄. That

is, every numeri
al semigroup is generated by a �nite set of positive integers. Furthermore, every

numeri
al semigroup has a unique set of generators that is minimal in the sense that no proper

subset of the generating set generates the same numeri
al semigroup.

When studying a numeri
al semigroup S, it is useful to 
onsider the Hilbert series

(1) HS(x) =
∑

s∈S

xs

and the semigroup polynomial

(2) PS(x) = (1 − x)HS(x) = 1 − (1 − x)
∑

s 6∈S

xs.

Note that PS(x) is a polynomial be
ause S has �nite 
omplement in N.

There are several fundamental invariants of a numeri
al semigroup S. The Frobenius number and

genus of S, denoted F (S) and g(S), respe
tively, are de�ned by

F (S) = max(N \ S) and g(S) = |N \ S|.

The size of the unique minimal generating set of S is 
alled the embedding dimension of S. We

say S is d-symmetri
 if n /∈ S implies F (S) − n ∈ S whenever n is a positive multiple of d. A

1-symmetri
 numeri
al semigroup is simply 
alled symmetri
.

It is di�
ult to give general formulas for the invariants of numeri
al semigroups. However, some

spe
ial types of numeri
al semigroups have re
eived a large amount of attention, and the invariants

of these numeri
al semigroups are often well-understood. This in
ludes numeri
al semigroups with

small embedding dimensions [2, 8, 16℄, numeri
al semigroups generated by arithmeti
 progressions
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[6, 10℄, and d-symmetri
 numeri
al semigroups [15℄. For example, the following very fundamental

result is due to Sylvester.

Theorem 1.1 ([16℄). If a and b are relatively prime positive integers, then

F (〈a, b〉) = ab − a − b and g(〈a, b〉) = (a − 1)(b − 1)/2.

The quotient of a numeri
al semigroup S by a positive integer d is the set

S/d = {x ∈ N : dx ∈ S}.

It is not di�
ult to see that S/d is also a numeri
al semigroup. Thus, we de�ne the Frobenius

number F (S/d) and the genus g(S/d) as above. Re
ently, there has been a �urry of investigation of

invariants of quotients of numeri
al semigroups by positive integers [4, 7, 9, 14, 13℄. For example,

the following result will prove parti
ularly useful for our purposes.

Theorem 1.2 ([15℄). For a d-symmetri
 numeri
al semigroup S, we have

F (S/d) =
F (S) − x

d
,

where x is the smallest positive element of S satisfying x ≡ F (S) (mod d).

One motivation for studying quotients of numeri
al semigroups 
omes from the study of pro-

portionally modular Diophantine inequalities, whi
h are Diophantine inequalities of the form ax
(mod b) ≤ cx for some �xed positive integers a, b, c. It turns out that the set of nonnegative in-

teger solutions to a proportionally modular Diophantine inequality form a numeri
al semigroup; a

numeri
al semigroup obtained in this way is 
alled a proportionally modular numeri
al semigroup.

Robles-Pérez and Rosales [12℄ have shown that a numeri
al semigroup is proportionally modular if

and only if it is of the form 〈a, a + 1〉/d for some positive integers a and d. Furthermore, Delgado,

Gar
ía-Sán
hez, and Rosales [3℄ have remarked that there is no known example of a numeri
al semi-

group that is not of the form 〈a, b, c〉/d. It is natural to study quotients of the spe
ial numeri
al

semigroups whose invariants are already well understood. The 
urrent paper is fo
used on prov-

ing the following theorem and then applying it to gain information about quotients of numeri
al

semigroups of the form 〈a, b〉, 〈a, a + k, a + 2k〉, or 〈a, a + k, . . . , a + (a − 1)k〉.

Theorem 1.3. Let S be a numeri
al semigroup, and let d be a positive integer. We have

g(S/d) =
1

d

[

g(S) +
d − 1

2
−

d−1
∑

i=1

HS(ζd
i)

]

,(3)

where ζd is a primitive dth

root of unity.

Re
all that q(x) = cd(x)xk + cd−1(x)xk−1 + · · · + c0(x) is a quasipolynomial of degree k in the

variable x if the 
oe�
ients ci(x) are periodi
 fun
tions of x. Strazzanti proved that F
(

〈a,b〉
2

)

and

F
(

〈a,a+1〉
5

)

are quasipolynomials in a of degree 2 (with periods 2 and 5, respe
tively) [15℄. By

spe
ializing Theorem 1.3 to the 
ase S = 〈a, a + k〉, where k is a �xed positive integer that is


oprime to a, we show that the genus of S/d is a quasipolynomial in a of degree 2 (see Corollary

2.3). This result generalizes the formulas for g(〈a, b〉/2) (when gcd(a, b) = 1) given in [4℄ to formulas

for g(〈a, b〉/d) for all d ≥ 2. The latter result answers an open problem listed in [3℄.

We prove Theorem 1.3 in the next se
tion. Se
tion 3 
ontains some results on invariants of

quotients of numeri
al semigroups generated by 
ertain arithmeti
 progressions, and we end the

se
tion by providing an open problem for the future study.
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2. The genus of a quotient of a numeri
al semigroup

We begin by proving Theorem 1.3. Fix a positive integer d, and let Ai = |{s ∈ N \ S : s ≡ i
(mod d)}|. In parti
ular, A0 = g(S/d). Letting ζd denote a primitive dth root of unity, we have

PS(ζd) = 1 − (1 − ζd)(A0 + ζdA1 + ζd
2A2 + · · · + ζd

d−1Ad−1)

PS(ζd
2) = 1 − (1 − ζd

2)(A0 + ζd
2A1 + ζd

4A2 + · · · + ζd
2(d−1)Ad−1)

.

.

.

PS(ζd
d−1) = 1 − (1 − ζd

d−1)(A0 + ζd
d−1A1 + ζd

2(d−1)A2 + · · · + ζd
(d−1)2Ad−1).

We also have the identity g(S) = A0 + A1 + · · · + Ad−1. By rewriting the above equations, we get

A0 + ζdA1 + ζd
2A2 + · · · + ζd

d−1Ad−1 =
1 − PS(ζd)

1 − ζd

A0 + ζ2
dA1 + ζd

4A2 + · · · + ζd
2(d−1)Ad−1 =

1 − PS(ζ2
d)

1 − ζ2
d

.

.

.

A0 + ζd−1
d A1 + ζd

2(d−1)A2 + · · · + ζd
(d−1)2Ad−1 =

1 − PS(ζd−1
d )

1 − ζd−1
d

A0 + A1 + · · · + Ad−1 = g(S).

Adding all of these together and using the fa
t that 1 + ζd + ζ2
d + · · · + ζd−1

d = 0 gives

(4) A0 =
1

d

(

g(S) +
d−1
∑

n=1

1 − PS(ζd
n)

1 − ζd
n

)

=
1

d

(

g(S) +
d−1
∑

n=1

1

1 − ζd
n −

d−1
∑

n=1

HS(ζd
n)

)

.

The desired result now follows from the identity

(5)

d−1
∑

n=1

1

1 − ζd
n =

d − 1

2
.

To prove (5), note that for 1 ≤ k ≤ d − 1, we have

1

1 − ζd
k

+
1

1 − ζd
d−k

=
1

1 − ζd
k

+
1

1 − ζd
−k

= 1.

This immediately implies (5) when d is odd. If d is even, then

d−1
∑

n=1

1

1 − ζn
d

=
d − 2

2
+

1

1 − ζd
d/2

=
d − 1

2

be
ause ζd
d/2 = −1. This 
ompletes the proof of Theorem 1.3.

Corollary 2.1. Let a, b, and d be relatively prime positive integers, and let a∗
be the unique integer

satisfying aa∗ ≡ 1 (mod d) and 1 ≤ a∗ ≤ d − 1. We have

g (〈a, b〉/d) =
(a − 1)(b + d − a∗ab)

2d
+

1

2

⌊

a − 1

d

⌋(

a∗b

⌊

a − 1

d

⌋

+ a∗b − 2

)

+

a−1
∑

j=1
d∤j

⌊

a∗bj

d

⌋

.
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Proof. Let S = 〈a, b〉. It is straightforward to 
he
k that

HS(x) =
1 − xab

(1 − xa)(1 − xb)
=

1

1 − xa

(a−1)b
∑

i=0

xi,

so we have

d−1
∑

i=1

HS(ζd
i) =

d−1
∑

i=1

1 + ζd
bi + ζd

2bi + · · · + ζd
(a−1)bi

1 − ζd
ai

=
d−1
∑

i=1

a−1
∑

j=0

ζd
bji

1 − ζd
ai

.

Let δd = ζa
d , whi
h is also a dth

root of unity. Then, we know that δa∗

d = ζaa∗

d = ζd. Now,

d−1
∑

i=1

HS(ζd
i) =

d−1
∑

i=1

a−1
∑

j=0

δd
a∗bji

1 − δd
i

=
d−1
∑

i=1

1

1 − δd
i
+

d−1
∑

i=1

a−1
∑

j=1

δd
a∗bji − 1 + 1

1 − δd
i

=
d − 1

2
+

d−1
∑

i=1

a−1
∑

j=1

(

−(1 + δi
d + δ2i

d + · · · + δ
(a∗bj−1)i
d ) +

1

1 − δi
d

)

=
a(d − 1)

2
−

a−1
∑

j=1

d−1
∑

i=1

(

1 + δi
d + δ2i

d + · · · + δ
(a∗bj−1)i
d

)

=
a(d − 1)

2
−

a−1
∑

j=1
d∤j

d−1
∑

i=1

(

δ

⌊

a∗bj

d

⌋

di

d + δ

(⌊

a∗bj

d

⌋

d+1
)

i

d + · · · + δ
(a∗bj−1)i
d

)

=
a(d − 1)

2
−

a−1
∑

j=1
d∤j

d−1
∑

i=1

(

1 + δi
d + · · · + δ

(

a∗bj−1−
⌊

a∗bj

d

⌋

d
)

i

d

)

=
a(d − 1)

2
−

a−1
∑

j=1
d∤j

{

(d − 1) +

d−1
∑

i=1

δi
d + · · · +

d−1
∑

i=1

δ

(

a∗bj−1−
⌊

a∗bj

d

⌋

d
)

i

d

}

=
a(d − 1)

2
−

a−1
∑

j=1
d∤j

{

(d − 1) + (−1)

(

a∗bj − 1 −

⌊

a∗bj

d

⌋

d

)}

=
a(d − 1)

2
− d

(

(a − 1) −

⌊

a − 1

d

⌋)

+ a∗b







a−1
∑

j=1

j −

⌊ a−1

d ⌋
∑

j=1

dj






−

a−1
∑

j=1
d∤j

⌊

a∗bj

d

⌋

d

=
a(d − 1)

2
− (a − 1)d +

⌊

a − 1

d

⌋

d +
a∗ba(a − 1)

2
−

a∗bd

2

⌊

a − 1

d

⌋(⌊

a − 1

d

⌋

+ 1

)

−

a−1
∑

j=1
d∤j

⌊

a∗bj

d

⌋

d
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Note that we have made use of the identity in (5) and the identity 1 + ζi
d + ζ2i

d + · · · + ζ
(d−1)i
d = 0

for 1 ≤ i ≤ d − 1. The desired result is now an immediate 
onsequen
e of Theorem 1.3. �

We now spe
ialize to numeri
al semigroups of embedding dimension 2.

Theorem 2.2. If a, b, d are relatively prime positive integers, then

g (〈a, b〉/d) =
1

2d
(a − 1)(b − 1) + Ca,b,d,

where Ca,b,d is a 
onstant dependent only on d and the residue 
lasses of a and b modulo d.

Proof. Let S = 〈a, b〉. Sylvester's theorem (Theorem 1.1) tells us that g(S) = (a − 1)(b − 1)/2.
Invoking (4) yields

g (S/d) = A0 =
1

d



g(S) +

d−1
∑

j=1

1 − PS(ζj
d)

1 − ζj
d



 =
1

2d
(a − 1)(b − 1) +

1

d

d−1
∑

j=1

1 − PS(ζj
d)

1 − ζj
d

. �

As mentioned in the introdu
tion, the following 
orollary generalizes a result of Strazzanti [15℄.

Corollary 2.3. Fix a positive integer d. For relatively prime positive integers a and k, the genus

g (〈a, a + k〉/d) is a quasipolynomial in a of degree 2 with leading 
oe�
ient

1
2d .

3. Numeri
al Semigroups Generated by Arithmeti
 Progressions

Two well-studied types of numeri
al semigroups are those of the form 〈a, a + k, a + 2k〉 and

〈a, a+k, . . . , a+(a−1)k〉, where a and k are relatively prime positive integers. Note that the latter

numeri
al semigroup is, in fa
t, the numeri
al semigroup generated by the terms of the in�nite

arithmeti
 progression a, a + k, a + 2k, . . .. We will make use of the following spe
ial 
ase of [10,

Corollary 3.2℄.

Proposition 3.1 ([10℄). If a and k are relatively prime positive integers, then the numeri
al semi-

group 〈a, a + k, a + 2k〉 is symmetri
 if and only if a is even.

Theorem 3.2. Let d ≥ 3 be an integer. Let a and k be relatively prime positive integers. If a = sd
is a positive even multiple of d, then 〈a, a + k, a + 2k〉/d is symmetri
.

Proof. Let S = 〈a, a + k, a + 2k〉. We know that gcd(d, k) = 1 be
ause a and k are relatively prime.

An element of S has the form ax+(a+k)y+(a+2k)z for nonnegative integers x, y, z. In order for this
element to be a multiple of d, we need d | (y+2z). It follows that S/d is generated by s, a+k, a+2k

and all integers of the form

(a+k)y+(a+2k)z
d su
h that d | (y + 2z) and y, z ∈ {0, 1, . . . , d − 1}.

First, assume d is odd, say d = 2t + 1. By hypothesis, s is even. The pairs (y, z) su
h that

d | (y + 2z) and y, z ∈ {0, 1, . . . , d − 1} are

(d − 2, 1), (d − 4, 2), . . . , (1, t), (d − 1, t + 1), . . . , (2, 2t).

The 
orresponding values of

(a+k)y+(a+2k)z
d are

a + k − s, a + k − 2s, . . . , a + k − ts, a + 2k + ts, . . . , a + 2k + s.

As a result, S/d = 〈s, a+k− ts, a+2k〉. But a = sd = (2t+1)s, so S/d = 〈s, s+k+ ts, s+2k+2ts〉.
By Proposition 3.1, S/d is symmetri
.
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Next, assume d is even, say d = 2t. The pairs (y, z) su
h that d | (y +2z) and y, z ∈ {0, 1, . . . , d−
1} are (d − 2, 1), (d − 4, 2), . . . , (0, t), (d − 2, t + 1), . . . , (2, 2t − 1). The 
orresponding values of

(a+k)y+(a+2k)z
d are

a + k − s, a + k − 2s, . . . , a + k − ts, a + 2k + (t − 1)s, . . . , a + 2k + s.

It follows that S/d = 〈s, a+ k − st, a+ 2k〉 = 〈s, k + st, 2k + 2st〉 = 〈s, k + st〉. It is well-known that

every numeri
al semigroup with embedding dimension 2 is symmetri
, so the proof is 
omplete. �

Corollary 3.3. Let d ≥ 4 be an even integer. Let a and k be relatively prime positive integers.

If a = sd, then F (〈a, a + k, a + 2k〉/d) = (s − 1)(a + 2k)/2 − s and g(〈a, a + k, a + 2k〉/d) =
(s − 1)(a + 2k − 2)/4.

Proof. Write d = 2t. We know from the proof of Theorem 3.2 that 〈a, a+ k, a+ 2k〉/d = 〈s, k + st〉.
In general, it is known that F (〈x, y〉) = xy − x − y and g(〈x, y〉) = (x − 1)(y − 1)/2. Setting x = s
and y = k + st gives the desired result. �

Let n be a nonzero element of a numeri
al semigroup S. The Apéry set of n in S is the set

Ap(S, n) = {s ∈ S : s − n /∈ S}.

The following fundamental results whi
h we will need in the proof of Theorem 3.5, are known as

Selmer's formulas.

Theorem 3.4 ([1℄, Proposition 12). If S is a numeri
al semigroup, then

(1) F (S) = max(Ap(S,m)) − m.

(2) g(S) = 1
m

∑

w∈Ap(S,m)

w − m−1
2 .

Theorem 3.5. Let S = 〈a, a + k, a + 2k〉, where a and k are relatively prime positive integers.

Suppose d is a positive divisor of a, say a = sd. If a is odd, then

F (S/d) =

(

(s − 1)t +
s − 1

2

)

s + (s − 1)k − s,

and

g(S/d) =
1

2

(

s(s − 1)t +
s2 − 1

2
+ (s − 1)k − (s − 1)

)

.

Proof. From the proof of Theorem 3.2, we have S/d = 〈s, s + k + ts, s + 2k + 2ts〉 = 〈s, (t + 1)s +
k, (2t + 1)s + 2k〉, where d = 2t + 1. Now,

Ap(S, s) = {0, (t + 1)s + k, (2t + 1)s + 2k, (3t + 2)s + 3k, (4t + 2)s + 4k, . . . ,
(

(s − 2)t + s−1
2

)

s + (s − 2)k,
(

(s − 1)t + s−1
2

)

s + (s − 1)k}

sin
e gcd(s, k) = 1. The desired result is now immediate by Theorem 3.4. �

Corollary 3.6. Let S = 〈a, a + k, a + 2k〉, where a and k are relatively prime positive integers.

Suppose d is a positive divisor of a, say a = sd. If a is odd, then 2g(S/d) − F (S/d) =
s + 1

2
.

We now 
onsider the numeri
al semigroup generated by the terms of an in�nite arithmeti
 pro-

gression a, a + k, a + 2k, . . ., where a and k are relatively prime positive integers. Equivalently, this

is the numeri
al semigroup

S = 〈a, a + k, a + 2k, . . . , a + (a − 1)k〉.
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Proposition 3.7. Let S = 〈a, a + k, a + 2k, . . . , a + (a − 1)k〉, where a and k are relatively prime

positive integers. Let d be a positive divisor of a, say a = sd. We have g(S/d) =
F (S/d) + s − 1

2
.

Proof. We �rst redu
e to the 
ase d = 1. Let xi,a denote the unique element of the set {0, 1, . . . , a−1}
su
h that xi,ak ≡ i (mod a) (the uniqueness 
omes from the assumption that gcd(a, k) = 1). We


laim that the elements of S that are 
ongruent to i modulo a are pre
isely the integers of the

form ta + xi,ak for positive integers t. To see this, noti
e that every nonnegative integer linear


ombination of generators of S has the form ta + mk; in order to have ta + mk ≡ i (mod a), we
need m ≡ xi,a (mod a). Now, every element in S/d is of the form (ta+xdi,a)/d for i ∈ {0, 1, . . . , s}.
Sin
e xdi,a/d = xi,s, we have S/d = 〈s, s + k, s + 2k, . . . , s + (s − 1)k〉. This shows that it su�
es

to prove the desired result in the 
ase in whi
h d = 1 and s = a. However, this follows immediately

from Selmer's formula for the genus (Theorem 3.4) along with Proposition 2.6 and Theorem 2.8 in

[11℄. Spe
i�
ally, with d = 1 and s = a, we have

g(S/d) = g(S) =
(k + 1)(a − 1)

2
and F (S/d) = F (S) = k(a − 1). �

Some useful fa
ts 
on
erning the numeri
al semigroup S follow from the Proposition 3.7. It is

easy to see that

S = {as + kt : s ≥ 1, t ≥ 0} = 〈a, k〉 \ {k, 2k, . . . , (a − 1)k}.

Suppose d | (a − 1)k. Sin
e F (〈a, k〉) = ak − a − k < (a − 1)k, we know that F (S/d) = (a −
1)k/d. Furthermore, g(S/d) is equal to the sum of g(〈a, k〉/d) and the number of multiples of d in

{k, 2k, . . . , (a − 1)k}. Thus, we obtain the following result.

Proposition 3.8. Let S = 〈a, a + k, a + 2k, . . . , a + (a − 1)k〉, where a and k are relatively prime

positive integers. If d | k, then g(S/d) =
F (S/d) + a − 1

2
.

Proof. This follows from the above analysis. Spe
i�
ally, when d | k, we have F (S/d) = (a − 1)k/d.
It is also straightforward to 
he
k that 〈a, k〉/d = 〈a, k/d〉. Thus,

g(S/d) = g(〈a, k〉/d) + (a − 1) = g(〈a, k/d〉) + (a − 1) =
(a − 1)(k/d + 1)

2

=
F (S/d) + a − 1

2
. �

The results in this se
tion lead naturally to the following problem.

Problem. Let S = 〈a, a+k, a+2k, . . . , a+ ℓk〉, where a and k are relatively prime positive integers

and 3 ≤ ℓ ≤ a − 2. Find g(S/d) and F (S/d), as well as relationships between these quantities, for

positive integers d.
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