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ON THE GENUS OF A QUOTIENT OF A NUMERICAL SEMIGROUP

AYOMIKUN ADENIRAN, STEVE BUTLER, COLIN DEFANT, YIBO GAO, PAMELA E. HARRIS,

CYRUS HETTLE, QINGZHONG LIANG, HAYAN NAM, AND ADAM VOLK

Abstrat. We �nd a relation between the genus of a quotient of a numerial semigroup S and

the genus of S itself. We use this identity to ompute the genus of a quotient of S when S has

embedding dimension 2. We also exhibit identities relating the Frobenius numbers and the genus of

quotients of numerial semigroups that are generated by ertain types of arithmeti progressions.

1. Introdution

Throughout this paper, let N denote the set of nonnegative integers. A numerial semigroup is

a subset of N that is losed under addition, ontains 0, and has �nite omplement in N. Given

positive integers a1, . . . , an satisfying gcd(a1, . . . , an) = 1, we write

〈a1 . . . , an〉 = {c1a1 + · · · + cnan : c1, c2, . . . , cn ∈ N}.

The set 〈a1 . . . , an〉 is a numerial semigroup alled the numerial semigroup generated by the set

{a1, . . . , an}. It is well known that every numerial semigroup is of this form [3, Theorem 2.7℄. That

is, every numerial semigroup is generated by a �nite set of positive integers. Furthermore, every

numerial semigroup has a unique set of generators that is minimal in the sense that no proper

subset of the generating set generates the same numerial semigroup.

When studying a numerial semigroup S, it is useful to onsider the Hilbert series

(1) HS(x) =
∑

s∈S

xs

and the semigroup polynomial

(2) PS(x) = (1 − x)HS(x) = 1 − (1 − x)
∑

s 6∈S

xs.

Note that PS(x) is a polynomial beause S has �nite omplement in N.

There are several fundamental invariants of a numerial semigroup S. The Frobenius number and

genus of S, denoted F (S) and g(S), respetively, are de�ned by

F (S) = max(N \ S) and g(S) = |N \ S|.

The size of the unique minimal generating set of S is alled the embedding dimension of S. We

say S is d-symmetri if n /∈ S implies F (S) − n ∈ S whenever n is a positive multiple of d. A

1-symmetri numerial semigroup is simply alled symmetri.

It is di�ult to give general formulas for the invariants of numerial semigroups. However, some

speial types of numerial semigroups have reeived a large amount of attention, and the invariants

of these numerial semigroups are often well-understood. This inludes numerial semigroups with

small embedding dimensions [2, 8, 16℄, numerial semigroups generated by arithmeti progressions
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[6, 10℄, and d-symmetri numerial semigroups [15℄. For example, the following very fundamental

result is due to Sylvester.

Theorem 1.1 ([16℄). If a and b are relatively prime positive integers, then

F (〈a, b〉) = ab − a − b and g(〈a, b〉) = (a − 1)(b − 1)/2.

The quotient of a numerial semigroup S by a positive integer d is the set

S/d = {x ∈ N : dx ∈ S}.

It is not di�ult to see that S/d is also a numerial semigroup. Thus, we de�ne the Frobenius

number F (S/d) and the genus g(S/d) as above. Reently, there has been a �urry of investigation of

invariants of quotients of numerial semigroups by positive integers [4, 7, 9, 14, 13℄. For example,

the following result will prove partiularly useful for our purposes.

Theorem 1.2 ([15℄). For a d-symmetri numerial semigroup S, we have

F (S/d) =
F (S) − x

d
,

where x is the smallest positive element of S satisfying x ≡ F (S) (mod d).

One motivation for studying quotients of numerial semigroups omes from the study of pro-

portionally modular Diophantine inequalities, whih are Diophantine inequalities of the form ax
(mod b) ≤ cx for some �xed positive integers a, b, c. It turns out that the set of nonnegative in-

teger solutions to a proportionally modular Diophantine inequality form a numerial semigroup; a

numerial semigroup obtained in this way is alled a proportionally modular numerial semigroup.

Robles-Pérez and Rosales [12℄ have shown that a numerial semigroup is proportionally modular if

and only if it is of the form 〈a, a + 1〉/d for some positive integers a and d. Furthermore, Delgado,

Garía-Sánhez, and Rosales [3℄ have remarked that there is no known example of a numerial semi-

group that is not of the form 〈a, b, c〉/d. It is natural to study quotients of the speial numerial

semigroups whose invariants are already well understood. The urrent paper is foused on prov-

ing the following theorem and then applying it to gain information about quotients of numerial

semigroups of the form 〈a, b〉, 〈a, a + k, a + 2k〉, or 〈a, a + k, . . . , a + (a − 1)k〉.

Theorem 1.3. Let S be a numerial semigroup, and let d be a positive integer. We have

g(S/d) =
1

d

[

g(S) +
d − 1

2
−

d−1
∑

i=1

HS(ζd
i)

]

,(3)

where ζd is a primitive dth

root of unity.

Reall that q(x) = cd(x)xk + cd−1(x)xk−1 + · · · + c0(x) is a quasipolynomial of degree k in the

variable x if the oe�ients ci(x) are periodi funtions of x. Strazzanti proved that F
(

〈a,b〉
2

)

and

F
(

〈a,a+1〉
5

)

are quasipolynomials in a of degree 2 (with periods 2 and 5, respetively) [15℄. By

speializing Theorem 1.3 to the ase S = 〈a, a + k〉, where k is a �xed positive integer that is

oprime to a, we show that the genus of S/d is a quasipolynomial in a of degree 2 (see Corollary

2.3). This result generalizes the formulas for g(〈a, b〉/2) (when gcd(a, b) = 1) given in [4℄ to formulas

for g(〈a, b〉/d) for all d ≥ 2. The latter result answers an open problem listed in [3℄.

We prove Theorem 1.3 in the next setion. Setion 3 ontains some results on invariants of

quotients of numerial semigroups generated by ertain arithmeti progressions, and we end the

setion by providing an open problem for the future study.
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2. The genus of a quotient of a numerial semigroup

We begin by proving Theorem 1.3. Fix a positive integer d, and let Ai = |{s ∈ N \ S : s ≡ i
(mod d)}|. In partiular, A0 = g(S/d). Letting ζd denote a primitive dth root of unity, we have

PS(ζd) = 1 − (1 − ζd)(A0 + ζdA1 + ζd
2A2 + · · · + ζd

d−1Ad−1)

PS(ζd
2) = 1 − (1 − ζd

2)(A0 + ζd
2A1 + ζd

4A2 + · · · + ζd
2(d−1)Ad−1)

.

.

.

PS(ζd
d−1) = 1 − (1 − ζd

d−1)(A0 + ζd
d−1A1 + ζd

2(d−1)A2 + · · · + ζd
(d−1)2Ad−1).

We also have the identity g(S) = A0 + A1 + · · · + Ad−1. By rewriting the above equations, we get

A0 + ζdA1 + ζd
2A2 + · · · + ζd

d−1Ad−1 =
1 − PS(ζd)

1 − ζd

A0 + ζ2
dA1 + ζd

4A2 + · · · + ζd
2(d−1)Ad−1 =

1 − PS(ζ2
d)

1 − ζ2
d

.

.

.

A0 + ζd−1
d A1 + ζd

2(d−1)A2 + · · · + ζd
(d−1)2Ad−1 =

1 − PS(ζd−1
d )

1 − ζd−1
d

A0 + A1 + · · · + Ad−1 = g(S).

Adding all of these together and using the fat that 1 + ζd + ζ2
d + · · · + ζd−1

d = 0 gives

(4) A0 =
1

d

(

g(S) +
d−1
∑

n=1

1 − PS(ζd
n)

1 − ζd
n

)

=
1

d

(

g(S) +
d−1
∑

n=1

1

1 − ζd
n −

d−1
∑

n=1

HS(ζd
n)

)

.

The desired result now follows from the identity

(5)

d−1
∑

n=1

1

1 − ζd
n =

d − 1

2
.

To prove (5), note that for 1 ≤ k ≤ d − 1, we have

1

1 − ζd
k

+
1

1 − ζd
d−k

=
1

1 − ζd
k

+
1

1 − ζd
−k

= 1.

This immediately implies (5) when d is odd. If d is even, then

d−1
∑

n=1

1

1 − ζn
d

=
d − 2

2
+

1

1 − ζd
d/2

=
d − 1

2

beause ζd
d/2 = −1. This ompletes the proof of Theorem 1.3.

Corollary 2.1. Let a, b, and d be relatively prime positive integers, and let a∗
be the unique integer

satisfying aa∗ ≡ 1 (mod d) and 1 ≤ a∗ ≤ d − 1. We have

g (〈a, b〉/d) =
(a − 1)(b + d − a∗ab)

2d
+

1

2

⌊

a − 1

d

⌋(

a∗b

⌊

a − 1

d

⌋

+ a∗b − 2

)

+

a−1
∑

j=1
d∤j

⌊

a∗bj

d

⌋

.
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Proof. Let S = 〈a, b〉. It is straightforward to hek that

HS(x) =
1 − xab

(1 − xa)(1 − xb)
=

1

1 − xa

(a−1)b
∑

i=0

xi,

so we have

d−1
∑

i=1

HS(ζd
i) =

d−1
∑

i=1

1 + ζd
bi + ζd

2bi + · · · + ζd
(a−1)bi

1 − ζd
ai

=
d−1
∑

i=1

a−1
∑

j=0

ζd
bji

1 − ζd
ai

.

Let δd = ζa
d , whih is also a dth

root of unity. Then, we know that δa∗

d = ζaa∗

d = ζd. Now,

d−1
∑

i=1

HS(ζd
i) =

d−1
∑

i=1

a−1
∑

j=0

δd
a∗bji

1 − δd
i

=
d−1
∑

i=1

1

1 − δd
i
+

d−1
∑

i=1

a−1
∑

j=1

δd
a∗bji − 1 + 1

1 − δd
i

=
d − 1

2
+

d−1
∑

i=1

a−1
∑

j=1

(

−(1 + δi
d + δ2i

d + · · · + δ
(a∗bj−1)i
d ) +

1

1 − δi
d

)

=
a(d − 1)

2
−

a−1
∑

j=1

d−1
∑

i=1

(

1 + δi
d + δ2i

d + · · · + δ
(a∗bj−1)i
d

)

=
a(d − 1)

2
−

a−1
∑

j=1
d∤j

d−1
∑

i=1

(

δ

⌊

a∗bj

d

⌋

di

d + δ

(⌊

a∗bj

d

⌋

d+1
)

i

d + · · · + δ
(a∗bj−1)i
d

)

=
a(d − 1)

2
−

a−1
∑

j=1
d∤j

d−1
∑

i=1

(

1 + δi
d + · · · + δ

(

a∗bj−1−
⌊

a∗bj

d

⌋

d
)

i

d

)

=
a(d − 1)

2
−

a−1
∑

j=1
d∤j

{

(d − 1) +

d−1
∑

i=1

δi
d + · · · +

d−1
∑

i=1

δ

(

a∗bj−1−
⌊

a∗bj

d

⌋

d
)

i

d

}

=
a(d − 1)

2
−

a−1
∑

j=1
d∤j

{

(d − 1) + (−1)

(

a∗bj − 1 −

⌊

a∗bj

d

⌋

d

)}

=
a(d − 1)

2
− d

(

(a − 1) −

⌊

a − 1

d

⌋)

+ a∗b







a−1
∑

j=1

j −

⌊ a−1

d ⌋
∑

j=1

dj






−

a−1
∑

j=1
d∤j

⌊

a∗bj

d

⌋

d

=
a(d − 1)

2
− (a − 1)d +

⌊

a − 1

d

⌋

d +
a∗ba(a − 1)

2
−

a∗bd

2

⌊

a − 1

d

⌋(⌊

a − 1

d

⌋

+ 1

)

−

a−1
∑

j=1
d∤j

⌊

a∗bj

d

⌋

d
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Note that we have made use of the identity in (5) and the identity 1 + ζi
d + ζ2i

d + · · · + ζ
(d−1)i
d = 0

for 1 ≤ i ≤ d − 1. The desired result is now an immediate onsequene of Theorem 1.3. �

We now speialize to numerial semigroups of embedding dimension 2.

Theorem 2.2. If a, b, d are relatively prime positive integers, then

g (〈a, b〉/d) =
1

2d
(a − 1)(b − 1) + Ca,b,d,

where Ca,b,d is a onstant dependent only on d and the residue lasses of a and b modulo d.

Proof. Let S = 〈a, b〉. Sylvester's theorem (Theorem 1.1) tells us that g(S) = (a − 1)(b − 1)/2.
Invoking (4) yields

g (S/d) = A0 =
1

d



g(S) +

d−1
∑

j=1

1 − PS(ζj
d)

1 − ζj
d



 =
1

2d
(a − 1)(b − 1) +

1

d

d−1
∑

j=1

1 − PS(ζj
d)

1 − ζj
d

. �

As mentioned in the introdution, the following orollary generalizes a result of Strazzanti [15℄.

Corollary 2.3. Fix a positive integer d. For relatively prime positive integers a and k, the genus

g (〈a, a + k〉/d) is a quasipolynomial in a of degree 2 with leading oe�ient

1
2d .

3. Numerial Semigroups Generated by Arithmeti Progressions

Two well-studied types of numerial semigroups are those of the form 〈a, a + k, a + 2k〉 and

〈a, a+k, . . . , a+(a−1)k〉, where a and k are relatively prime positive integers. Note that the latter

numerial semigroup is, in fat, the numerial semigroup generated by the terms of the in�nite

arithmeti progression a, a + k, a + 2k, . . .. We will make use of the following speial ase of [10,

Corollary 3.2℄.

Proposition 3.1 ([10℄). If a and k are relatively prime positive integers, then the numerial semi-

group 〈a, a + k, a + 2k〉 is symmetri if and only if a is even.

Theorem 3.2. Let d ≥ 3 be an integer. Let a and k be relatively prime positive integers. If a = sd
is a positive even multiple of d, then 〈a, a + k, a + 2k〉/d is symmetri.

Proof. Let S = 〈a, a + k, a + 2k〉. We know that gcd(d, k) = 1 beause a and k are relatively prime.

An element of S has the form ax+(a+k)y+(a+2k)z for nonnegative integers x, y, z. In order for this
element to be a multiple of d, we need d | (y+2z). It follows that S/d is generated by s, a+k, a+2k

and all integers of the form

(a+k)y+(a+2k)z
d suh that d | (y + 2z) and y, z ∈ {0, 1, . . . , d − 1}.

First, assume d is odd, say d = 2t + 1. By hypothesis, s is even. The pairs (y, z) suh that

d | (y + 2z) and y, z ∈ {0, 1, . . . , d − 1} are

(d − 2, 1), (d − 4, 2), . . . , (1, t), (d − 1, t + 1), . . . , (2, 2t).

The orresponding values of

(a+k)y+(a+2k)z
d are

a + k − s, a + k − 2s, . . . , a + k − ts, a + 2k + ts, . . . , a + 2k + s.

As a result, S/d = 〈s, a+k− ts, a+2k〉. But a = sd = (2t+1)s, so S/d = 〈s, s+k+ ts, s+2k+2ts〉.
By Proposition 3.1, S/d is symmetri.
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Next, assume d is even, say d = 2t. The pairs (y, z) suh that d | (y +2z) and y, z ∈ {0, 1, . . . , d−
1} are (d − 2, 1), (d − 4, 2), . . . , (0, t), (d − 2, t + 1), . . . , (2, 2t − 1). The orresponding values of

(a+k)y+(a+2k)z
d are

a + k − s, a + k − 2s, . . . , a + k − ts, a + 2k + (t − 1)s, . . . , a + 2k + s.

It follows that S/d = 〈s, a+ k − st, a+ 2k〉 = 〈s, k + st, 2k + 2st〉 = 〈s, k + st〉. It is well-known that

every numerial semigroup with embedding dimension 2 is symmetri, so the proof is omplete. �

Corollary 3.3. Let d ≥ 4 be an even integer. Let a and k be relatively prime positive integers.

If a = sd, then F (〈a, a + k, a + 2k〉/d) = (s − 1)(a + 2k)/2 − s and g(〈a, a + k, a + 2k〉/d) =
(s − 1)(a + 2k − 2)/4.

Proof. Write d = 2t. We know from the proof of Theorem 3.2 that 〈a, a+ k, a+ 2k〉/d = 〈s, k + st〉.
In general, it is known that F (〈x, y〉) = xy − x − y and g(〈x, y〉) = (x − 1)(y − 1)/2. Setting x = s
and y = k + st gives the desired result. �

Let n be a nonzero element of a numerial semigroup S. The Apéry set of n in S is the set

Ap(S, n) = {s ∈ S : s − n /∈ S}.

The following fundamental results whih we will need in the proof of Theorem 3.5, are known as

Selmer's formulas.

Theorem 3.4 ([1℄, Proposition 12). If S is a numerial semigroup, then

(1) F (S) = max(Ap(S,m)) − m.

(2) g(S) = 1
m

∑

w∈Ap(S,m)

w − m−1
2 .

Theorem 3.5. Let S = 〈a, a + k, a + 2k〉, where a and k are relatively prime positive integers.

Suppose d is a positive divisor of a, say a = sd. If a is odd, then

F (S/d) =

(

(s − 1)t +
s − 1

2

)

s + (s − 1)k − s,

and

g(S/d) =
1

2

(

s(s − 1)t +
s2 − 1

2
+ (s − 1)k − (s − 1)

)

.

Proof. From the proof of Theorem 3.2, we have S/d = 〈s, s + k + ts, s + 2k + 2ts〉 = 〈s, (t + 1)s +
k, (2t + 1)s + 2k〉, where d = 2t + 1. Now,

Ap(S, s) = {0, (t + 1)s + k, (2t + 1)s + 2k, (3t + 2)s + 3k, (4t + 2)s + 4k, . . . ,
(

(s − 2)t + s−1
2

)

s + (s − 2)k,
(

(s − 1)t + s−1
2

)

s + (s − 1)k}

sine gcd(s, k) = 1. The desired result is now immediate by Theorem 3.4. �

Corollary 3.6. Let S = 〈a, a + k, a + 2k〉, where a and k are relatively prime positive integers.

Suppose d is a positive divisor of a, say a = sd. If a is odd, then 2g(S/d) − F (S/d) =
s + 1

2
.

We now onsider the numerial semigroup generated by the terms of an in�nite arithmeti pro-

gression a, a + k, a + 2k, . . ., where a and k are relatively prime positive integers. Equivalently, this

is the numerial semigroup

S = 〈a, a + k, a + 2k, . . . , a + (a − 1)k〉.
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Proposition 3.7. Let S = 〈a, a + k, a + 2k, . . . , a + (a − 1)k〉, where a and k are relatively prime

positive integers. Let d be a positive divisor of a, say a = sd. We have g(S/d) =
F (S/d) + s − 1

2
.

Proof. We �rst redue to the ase d = 1. Let xi,a denote the unique element of the set {0, 1, . . . , a−1}
suh that xi,ak ≡ i (mod a) (the uniqueness omes from the assumption that gcd(a, k) = 1). We

laim that the elements of S that are ongruent to i modulo a are preisely the integers of the

form ta + xi,ak for positive integers t. To see this, notie that every nonnegative integer linear

ombination of generators of S has the form ta + mk; in order to have ta + mk ≡ i (mod a), we
need m ≡ xi,a (mod a). Now, every element in S/d is of the form (ta+xdi,a)/d for i ∈ {0, 1, . . . , s}.
Sine xdi,a/d = xi,s, we have S/d = 〈s, s + k, s + 2k, . . . , s + (s − 1)k〉. This shows that it su�es

to prove the desired result in the ase in whih d = 1 and s = a. However, this follows immediately

from Selmer's formula for the genus (Theorem 3.4) along with Proposition 2.6 and Theorem 2.8 in

[11℄. Spei�ally, with d = 1 and s = a, we have

g(S/d) = g(S) =
(k + 1)(a − 1)

2
and F (S/d) = F (S) = k(a − 1). �

Some useful fats onerning the numerial semigroup S follow from the Proposition 3.7. It is

easy to see that

S = {as + kt : s ≥ 1, t ≥ 0} = 〈a, k〉 \ {k, 2k, . . . , (a − 1)k}.

Suppose d | (a − 1)k. Sine F (〈a, k〉) = ak − a − k < (a − 1)k, we know that F (S/d) = (a −
1)k/d. Furthermore, g(S/d) is equal to the sum of g(〈a, k〉/d) and the number of multiples of d in

{k, 2k, . . . , (a − 1)k}. Thus, we obtain the following result.

Proposition 3.8. Let S = 〈a, a + k, a + 2k, . . . , a + (a − 1)k〉, where a and k are relatively prime

positive integers. If d | k, then g(S/d) =
F (S/d) + a − 1

2
.

Proof. This follows from the above analysis. Spei�ally, when d | k, we have F (S/d) = (a − 1)k/d.
It is also straightforward to hek that 〈a, k〉/d = 〈a, k/d〉. Thus,

g(S/d) = g(〈a, k〉/d) + (a − 1) = g(〈a, k/d〉) + (a − 1) =
(a − 1)(k/d + 1)

2

=
F (S/d) + a − 1

2
. �

The results in this setion lead naturally to the following problem.

Problem. Let S = 〈a, a+k, a+2k, . . . , a+ ℓk〉, where a and k are relatively prime positive integers

and 3 ≤ ℓ ≤ a − 2. Find g(S/d) and F (S/d), as well as relationships between these quantities, for

positive integers d.
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