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ABSTRACT

Prior research shows that decision making effectiveness varies widely from situtation to
situation. In dynamic decision making research, in particular, some experiments suggest
human performance is close to optimal, while others show dramatic, persistent
dysfunction. There has been no theoretical framework to explain differences in dynamic
decision making performance as a function of the task environment.

I propose that feedback theory can provide a taxonomy that is able to relate complexity of
decision situations to the likelihood of dysfunctionality of human decision strategies. The
research challenge is to determine what particular characteristics in feedback structures
lead people to perform poorly or well.

An experimental study was carried out to determine subjects' performance in a
stock-adjustment task. Subjects were asked to be production managers and to control a
stock of inventory in the face of varying sales. A Latin Square design was used with two
treatment conditions: varying delay in production and varying side effect of production
on sales. Simulations of two benchmark decision rules were performed to compare
subjects’ performance against: no-control case and optimum-control case.

Subjects performed worse than the optimum-control case across conditions. Subjects
outperformed the no-control case in the low delay, low side effect condition. With
increasing delay and side effect, the performance difference decreased. In the high delay,
high side effect condition, the majority of subjects was outperformed by the naive
no-control rule.

Subjects persistently undercontrolled the system and did not exert as much control as
suggested by the optimum-control rule. Undercontrol increased with increasing delay and
increasing side effects; showing that subjects' understanding of complex feedback settings
declines as delays between cause and effect increase, and as actions have stronger side
effects. Performance did not improve after the third trial. Little indications were found of
active experimentation: the need to control seemed to override the ability to learn.
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1. INTRODUCTION

1.1. Motivation

Relating the complexity of decision situations to the
likelihood of dysfunction in human decision strategies is a
major research challenge in behavioral decision theory
(Hogarth, 1981; Kleinmuntz, 1985). The potential rewards for
meeting the challenge are large. The media remind us on a
daily basis about the severe consequences of human
malfunction under complex decision situations. Despite our
best intentions, inner cities decline, national economies
experience severe cycles of recession, and nuclear reactors

come close to melt-down.

Most of the time, flaws in our decision making play out
on an individual level and do not make national headlines,
yet their persistence and severity is no less troubling.
Behavioral decision theorists have documented numerous,
persistent shortcomings in the way we make decisions. The
list of recognized decision biases is long and still growing;
some common traps are that we tend to make predictive
judgmentg based on variables that we believe to co-vary when
in fact they do not (Chapman, 1967), we do not appreciate the
influence of chance factors and misinterpret events in favor
of our particular view (Brehmer, 1980), planning or
forecasting activities give us an illusion of control over
future events (Langer, 1975), and we put undue emphasis on
memorable events and tend to ignore statistical facts (Bar-

Hillel, 1980; Tversky, and Kahneman, 1973).
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Visitors from outer space, with beru.vioral decision
literature as their only travel guide, might be inclined to
ignoce humans and look for a second race on Earth. "Where
is the race," they might ponder, "that built the pyramids,
made important medical discoveries, designed elaborate social
systems, and put a man on the moon?" The apparent
ciscrepancy between positive and negative achievements has
puzzled some natives of earth as well (Toda, 1962). The
apparent dichotomy between adequate and inadequate decision
abilities must be understood better to prevent the
undesirable consequences of our decision biases. While we
know many potential biases that can lead to bad decisions, we
do not know how to recognize a potentially troublesome

decision situation when we encounter one.

Although scientists have studied human decision making
in such different application domains as fire fighting
(Brehmer, 1589), medical diagnostics (Kleinmuntz, and Thomas,
1987), management of welfare agencies (Mackinnon, and
Wearing, 1980), and inventory management {(Sterman, 1989%a),
comparisons across domains are difficult and extrapolations
to new situations are questionable as long as w2 have not
developed a framework that will allow for comparisons and

theory over the entire range of human decision activities.

1.2. A taxonomy for unifying dynamic decision tasks

Enumeration and description of phenomena without a

theory that incorporates how task characteristics affect

information processing may merely lead to stock piles of data
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(Fleishman, Quaintance, and Broedling, 1984). Or as George
Miller once described scientific journals, "...catalogs of
spare parts for a machine they never build" (Miller, 1956, p.
252). It becomes increasingly more important as more
research is generated to connect the various facts through
theory. However, a suitable theory can only come about as
better descriptions of the task environment evolve.
Additionally, there is a need to characterize tasks such that
researchers and technologists may compare, communicate, and
apply the research findings of the various disciplines
(Fleishman et al., 1984). Fleishman (1984, pp. 1-3), in his
book on taxonomic development for behavioral scientists,

states,

"There is a need to conceptualize tasks and
their characteristics to resolve central
problems in the study of human behavior. If
we are going to generalize about conditions
affecting human performance, it is necessary
to consider the properties of tasks as
impertant constructs in psychological research
and theory as well as in our conceptions of
human work and achievement. Such constructs
will help to address many common concerns in
basic and applied psychology and to integrate
concepts and research in a number of seemingly
diverse fields....Lacking an organizing
framework, experimentalist and technologist
alike find generalization, communication, and
application of research findings to be
difficult. Both behavioral technologist and
scientist struggle to relate their results to
those from previous studies, similar
situations with which she or he has yet to
deal, or to the findings of researcher and
technologists working on allied problems."
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He further relates that some benefits for the taxonomic

development. of tasks for scientists include:

1) conducting literature reviews

2) establishing better bases for conducting
and reporting research studies to facilitate
their comparison

3) standardizing laboratory methods for
studying human performance

4) generalizing research to new tasks
5) exposing gaps in knowledge

6) assisting in theory development.
(Fleishman et al., 1984, pp.5-6)

Hence, the development of a taxonomy of tasks, including
dynamic decision tasks, would provide the force for greater
scientific development and increase our undexstanding of

sequential decision making.

I believe that feedback theory can provide such a
taxonomy that is able to relate complexity of decision
situations tn the likelihood of dysfunctionality of human
decision strategies (Sterman, 1989a). The research challenge
as stated at the beginning of this thesis can then be
reformulated: to determine what particular characteristics

in feedback structures lead people to perform poorly or well.

A closed-locp view of the world lies at the heart of
feedback theory. An open-loop view assumes a linear
relationship between cause and effect, in which behavioral
effects depend on causeé but not vice versa. Feedback theory
closes the loop (Powers, 1973). It argues that whenever

effects persist in time (and it is hard to think of any
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effect that does not meet the persistency criteria), the
distinction between effect and cause becomes meaningless:
time-persistent effects become the "cause" for further

behavioral effects.

Feedback theory views the decision maker as a controller
integral to the loop. Decision-making is viewed as goal-
directed behavior where the decision maker rezcts to
disturbances by choosing appropriate actions to bring the
system back to a desired state. Figure 1.1. illustrates the
concept. The figure reveals the essential control loop which
contains five main components. Beginning with the goal, the
task environment produces some gap between an a prlori
desired behavior and actual system behavior. The dacision
maker must take actions to reduce the discrepancy. Between
the action and the resulting outcomes, the task environment
intervenes with a varying amount of complexity that must be
captured in a framework that will facilitate a greater
understanding of the interaction of both the decision maker
and the envircnment. Action faeed-out and outcome feed-in

link the decision maker and the task environment.
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Task
Environment
Action feed-out (Q, Qutcome feed-in
Deois
Maker Goal

Figure 1.1 The essaential control 1loop

The essence of everyday life and certainly of dynamic
decision tasks manifests itself within this framework of
closed-lcop control. As Powers (1973, p.351) puts it:

“"Feedback is such an all-pervasive and
fundamental aspect of behavior that it is as
invisible as the air that we breathe. Quite
literally it is behavior - we know nothing of
our own behavior but the feedback effects of

our own outputs. To behave is to control
perception."

Given the breadth and importance of the research
challenge at hand it comes as no surprise that practitioners
in different fields have investigated function and
dysfunction of human decision strategies. I will concentrate
on four fields from which my research draws: 1) Supervisory
contrel, an application area that is aimed at understanding
how humans function as part of human-machine systems and how

complex machinery such as nuclear reactors should be



constructed to suit human controlling capabilities, 2)
Experimental economics, an area that has developed a well-
defined experimental protocol and has succeeded in mapping
out function and dysfunction of humans in the narrow but
important domain of humans as traders in economic markets,
3) Behavioral decision theory, a field concerned with humans
as problem solvers and decision makers, and finally 4)
Dynamic decision theory, an area concerned with sequential

decision making in complex environments.

Where possible, I will link the literature to the
essential control-loop framework proposed in this thesis. In
particular, I will discuss to what extent the researchers
cited are cognizant of the underlying control loop and/or how
their research concentrates on and illuminates single
elements within the control loop such as the outcome feed-in

link or learning processes within the decision maker.

We will see that the need for a taxonomy of tasks is
recognized in almost all the research cited; very often the
struggle for a taxonomy is phrased as the need to
characterize the "complexity" of the task environment. We
will conclude the literature review with a summary that lists
the dimensions of complexity which have been studied in the
different fields and relates them to the feedback framework

proposed in this thesis.
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1.3. Literature Review
1.3.1 Supervisory control

Understanding and managing the behavior of dynamic
systems is the classic domain of controi theory. The
objective of the theory in general terms is to find a control
rule so that the actual behavior of the task to be controlled
is close to a desired behavior. Once determined, the control
rule is usually implemented in physical form (as an automatic
controller). As a result, control theory is strictly
normative. Whenever possible, it determines what is the

optimal control rule.

While the main focus of control theory is automatic
control, there exists a small but important literature that
focuses on human control. Early work was motivated by the
need to understand the human operator's characteristics in
order to integrate him effectively into a man-machine system
(Crossman, and Cooke, 1974; Sheridan, and Ferrell, 1974).
More recent research reflects the fact that humans have
increasingly become supervisors of compler- automated
machinery instead of being operators (Raémﬁssen, and Rousuy,
1981) . Automatic control rules typically work only in a range
of normal conditions. Human supervisors are still needed to
regulate unusual cases and unexpected failures. To understand
how humans perform this control is understandably of great
interest in such applications as the supervision of nuclear

power plants (Lees, 1974; McLeod, 1976).
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In designing an automatic control the only bounds
considered are whether it is physically feasible to construct
a controller with the required specifications. For ensuring
optimal human process control and supervisory control, bounds
on human decision making have to be considered in addition.
Coming from an engineering background the authors in the
field address the bounds on human decision making typically

in a solution-oriented manner.

Topics that have received particular attention include
the effects of information display on performance (Attwood,
1974; Sheridan, and Johannsen, 1976; West, and Clark, 1974),
the effects of training on performance (Kragt, and
Landeweerd, 1974; Mann, and Hammer, 1986; Moray, and Pam
Pajak, 1986; Morris, and Rouse, 1985; Sheperd, Marshall,
Turner, and Duncan, 1977) and the performance difference of
nuvices and experts (Bainbridge, Beishon, Hemming, and
Splaine, 1974; Mann et al., 1986; McLeod, 1976). Different
types of information displays influence the quality of the
outcome feed-in link of the feedback control loop, while
differences in training and skill levels affect the extent to
which goals are learned and information is transformed into

action that results in outcomes close to desired goals.

Results of experiments in process contrcl and
supervisory control are published in Exgonomics, Human

Factors and IEEE Transactions on Systems, Man and
Cyberneticga. Many studies in the field are difficult to

access or remain unpublished, however. See Edwards and Lees
(1972) and Lees (1974) for an overview and Edwards and Lees

(1974) for a collection of some better known studies.
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1.3.2 Experimental Economics

While studies in supervisory control investigate how
subjects attempt to control machinery, experimental economics
is interested in learning more about humans as traders of
goods and services. In this domain, experimental economics
has been able to shed light on the role that the task
environment (namely different trading institutions) has on
the function or dysfunction of decision makers (namely the
speed of markets' convergence toward equilibrium and the

nature of the equilibrium reached).

Chamberlin (1948) and Smith (1962, 1965, and 1967)
pioneered the field of experimental economics. Smith's point
of departure is the idea put forward by Walras (1954) that
for equilibrium theory to be a useful concept, one needs to
be able to imagine at least one reasonable mechanism that
would enable ordinary economic players to achieve equilibrium
in actual economic settings. Walras put forward the notion of
an auctioneer who calls out prices in an attempt to clear the
market. The auctioneer collects all bids and cffers for a
posted price. No trade takes place until the auctioneer has
hit on the equilibrium price where the number of bids equals
the number of offers. Instead of Walras' auctioneer
mechanism, where trades take place only at the equilibrium
price, Smith used experimental settings where individual
market participants are allowed to trade at any price they
agree on. Smith thus replaced Walras' impersonal market
mechanism, where an auctioneer steers the market to the

"right" point, with a mechanism where adaptation is done
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exclusively by market participants making decisions to
influence resulting outcomes to their desired goals. In doing
so, Smith has expanded the scope of traditional economic
equilibrium theory which is mute on the issue of how

equilibria might actually be achieved.

Of particular interest for the current study are Smith's
more recent papers (Plott, and Smith, 1978; 1976, and 1982),
where the authors explain the experimental method and its
justification in great detail. The bulk of experimental
economics is aimed at testing and exploring the domain of
economic theories. Experimenters try to insure external
validity or "parallelism" as Smith (1982) calls it by giving
particular care to (a) incorporating the essential features
of actual economic institutions into the laboratory
experiment and (b) inducing predictable preferences by
rewarding subjects according to a payoff schedule (Smith,

1976, p. 275).

Investigating the effects of different trading rules, or
trading institutions, is a continuing motivation for much of
the experimental work. Having early on demonstrated that real
markets exist that lead to prices and quantities exchanged as
predicted by economic theory (Smith, 1962, and 1965),
researchers subsequently started to focus on the question:
"How efficient are different trading mechanisms in leading
the market to an equilibrium?" (Holt, 1980; Plott et al.,
1978; Smith, Williams, Bratton, and Vannoni, 1982; Williams,

1973).
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The results indicate that the convergence toward an
equilibrium is seasitive to the trading mechanism assumed.
The double oral auction institution provides for the most
rapid path toward convergence. In a double oral auction
market, both buyers and sellers are allowed to cry out bids
and offers. By contrast if the rules are changed to a system
of posted price, where only buyers or sellers can post prices
and prices stay in effect for the entire trading period,
convergence to an equilibrium is markedly delayed. If sellers
can post "take it or leave it" bids, prices tend to stay
above equilibrium for long times; if buyers are the only ones
who can post bids, prices stay below equilibrium for many
periods (Plott et al., 1978,pp. 146-47; Williams, 1973, p.
110). Constraints on the action feed-out link, such as who
can post prices and how frequently prices can be posted,
influence decision makers to misinterpret their task

environment, resulting in slower movement to equilibrium.

While much of the early work was primarily interested in
static efficiency and convergence properties, researchers
have only recently begun to focus specifically on the nature
of dynamic behavior exhibited in the experiments. (Garner,
1982; Plott, 1982). Or, as Shubik (1979, p. 354) notes:

"Many different institutions may have the same
static efficiency properties, but it is
possible that they manifest considerably
different dynamic properties. The questions
concerning the selection of optimal ...
institutions in a fully dynamic context have

hardly been asked in a precise form, let alone
answered."

We have reviewed two fields which were very concerned

with research and conclusions for their particular
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application domain, namely humans as controllers of machinery
and humans as traders of goods and services. In contrast,
behavioral decision theorists are interested in how humans

perform consistently across applications.

1.3.3 Behavioral decision theory

The goal of behavioral decision theory is to describe
the processes and the limitations and strengths of human
decision making. People make decisions based on their
individual understanding of the world. Cognitive
psychologists (Best, 1986) and behavioral decision theorists
(Hogarth, 1987) characterize people's thinking processes in
terms of their ability to process information. This research
paradigm has revealed that decision makers are severely
limited information processors with respect to the amount of
information available (i.e., outcome feed-in) from their task
environment. In order to deal with this amount of
information, decision makers adapt by selecting and
simplifying whenever possible. This selection and
simplification process takes place in four areas of
information processing: acquisition, virtually sequential

processing, processing capacity, and memory.

The effects of limited information processing have been

described by Hogarth (1987,pp. 4-7):

1) Percepticn of information is not

comprehensive but selective. We utilize
scripts with which to encode or acquire
information. We perceive as we believe.
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2) Information is processed almost exclusively
in a sequential manner. We are limited in the
amount of information that we can integrate at

one time, but we can integrate information,
and usually do, over time. This affords us
the opportunity to learn causal relations that
are stable and constant and relatively close
together in time and space, but in an unstable

setting, this type of processing proves

faulty, especially with delays in feedback of

actions taken.

.3) People have limited processing capacity.
Instead, they use simple heuristics or rules

of thumb to reduce mental effort.

4) We have limited memory capacity. Our

memory reconstructs information instead of

retaining exact details.

Hence, our ability to cope with a world that is abundant

in information is limited, yet we have evolved in such a way

that has proved quite efficient. Modern task environments

demand that people make decisions in which their limitations

prove to be inefficient or costly. For example, a nuclear

power plant operator's actions are subject to extreme delays

that make controlling the power plant very difficult.

The information processing stages give rise to
dysfunctions we see in decision making. Many of the
biases were mentioned in the introduction, but they

repeated here along with the information processing

the many
important
will be

stage

from which they emanate and the component of the feedback

loop that they affect. Hogarth (1987, pp. 209-215) describes:

a) Acquisition [Outcome feed-in] - These

biases involve if and in what way information

from memory or the environment becomes

salient. We selectively perceive what we are

expecting to see even though objective reality
is different. The ease of recall of
information from memory affects determinations
of frequency which is called the availability
bias. Availability of cues in environment
guides decision making, i.e. the way a problem



28

is set-up can steer the availability and
representativeness of information.

b) Processing [Decision maker] - Our ability
to process large quantities of information
becomes simplified by using an inappropriate
strategy, and we are inconsistent appliers of
that decision strategy even if situations are
identical. For instance, in the face of many
pieces of data with which to make a predictive
choice, we anchor on a particularly salient
one and adjust our decisions from that anchor.
Likewise, we ignore statistical facts and base
our predictive classifications on qualities of
how representative an instance is of a group.

c) Output [Action feed-out] - The manner in
which responses are asked to be made
influences judgements. We estimate
probabilities of occurrence of an event
differently under varying experimental and
everyday conditions. Another example would be
that we have an illusion of control over
future events if we merely engage in
activities such as planning or forecasting.

d) Feedback- Feedback influences the extent
to which we learn the success of our
judgements and choices. As feedback is
distorted or delayed, learning becomes more
difficult. For example, we seek to confirm
our hypotheses instead of seeking information
that would disconfirm them thereby reenforcing
erroneous beliefs. Or we have unwarranted
overconfidence in our decisions even if we
have only sketchy information. Furthermore,
we do not appreciate the influence of chance
factors and misinterpret events in favor of
our particular view.

e) Interactions of the above biases - All of
the above information processing stages may
interact and influence one another. For
instance, the requirement to make a pz-ticular
response can direct attention to select
information from memory or the environme:t,
perhaps causing the wrong information to be
selected or attended to.

The biases of the various information processing stages
were mostly discovered in static decision making research.
In the early 60's Edwards (1962) and Toda (1962), and
recently Hogarth (1981) have all advocated the study of
decision making within a more dynamic, but still controlled,

setting. These researchers boint out that decision making
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normally takes place in a dynamic context as opposed to a
stacic one. It i3, therefore, importa.:t to understand to what
extent the previously discovered biases need to be modified

with respect to dynamic settings.

Edwards (1962) relates that early work in decision
making focused on static decision tasks in which a person is
confronted by an environment he is supposed to evaluate and
come to a possible course of action with the goal of
maximizing a payoff. He does this by deciding what payoffs
will be associated with various courses of action. However,
upon taking a course of action, the person receives his
payoff and the world ends. The decision maker is never aware
of the consequences of his actions upon the environment
(i.e., action feed-out) and, therefore, he neither is
required nor needs to learn from the consequences of his
actions (i.e., outcome feed-in). This represents a rare
decision situation. Many decision situations which confront
people in life cdo provide feedback about consequences, afford
learning, and even require learning. While behavioral
decision theory provided initial explanations of the basic
processes of decision making, dynamic decision theory

extended those results to dynamic contexts.

1.3.4 Dynamic decision theory

Maintaining performance in an uncertain and ever
changing environment is a task that confronts individuals as
well as organizations. Decision makers conscantly adjust
their actions to cope with changes in the state of a system.

The new state of the system influences their next decision.
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Hopefully, decision making goes on continually refining
itself. Sequential decision making provides the opportunity
for the decision maker to utilize outcome feed-in making his
or her next decision. Nonetheless, sequential decision
making may be subject to the same biases as static decision
making. Therefore, one goal of dynamic decision theory is to
determine how findings about information processing biases

need to be modified in sequential decision making tasks.

Hogarth (1981) makes a convincing argument that the
heuristics operating in a static decision task, which lead to
errors and biases, may be quite functional in a dynamic
situation if the decision maker is considered to be a
learning organism whose goal is to learn about the
environment and apply creativity in order to induce control
over the system. Thus, what we normally see as a deficiency
in discrete tasks might be relatively functional in a dynamic
setting. Hogarth describes this problem quite well by
pointing out the fact that a person's commitment to any one
choice can be reduced if the environment allows for

correction of errors or learning along the way.

It is important to note that although people may seem
more functional in dynamic settings versus discrete ones,
they remain limited information processors with fallible
mental representations, and they make errors. Often, people
are called upon to make decisions in situations more complex
than their models afford without much opportunity for
learning or exploration. Hogarth (1987, p. 226) relates,

"In short, the efficacy of feedback depends on
the ability to interpret it, and-unless one
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has a well developed causal schema for a given
task- use of cues-to-causality... such as co-

variation and contiguity in time and space may
be quite misleading in complex situations."

The point is that decision making over time may help by
allowing learning, but it may hurt because of additional

complexity to be managed. Tversky (1986, pp. 274-5) adds:

"Effective learning takes place only under
certain conditicns: it requires accurate and
immediate feedback about the relation between
the situational conditions and the appropriate
response. The necessary feedback is often
lacking for the decisions made by managers,
entrepreneurs, and politicians because (i)
outcomes are commonly delayed and not easily
attributable to a particular action; (ii)
variability in the environment degrades the
reliability of the feedback, especially where
outcomes of low probability are involved;

(1ii) there is often no information about what
the outcome would have been if another
decision had been taken; and (iv) most
important decisions are unique and therefore
provide little opportunity for learning (see
(Einhorn, and Hogarth, 1978)). The conditions
for organizational learning are hardly better.
Learning surely occurs, for both individuals
and organizations, but any claim that a
particular error will be eliminated by
experience must be supported by demonstrating
that the conditions for effective learning are
satisfied.”

Because of the nature of the feedback structures, often
people do not receive timely or appropriate outcome feedback:;

therefore, learning does not occur.

Rasmussen et al. (1981, pp. 150-51) describe research on
human errors suggesting that many errors can be seen as
"unsuccessful experiments in an unkind environment." They
state:

"Human variability is an important ingredient
in adaptation and learning, and the ability to

adapt to peculiarities in system performance
and optimize interaction is the very reason
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for having people in a system. To optimize
performance, to develop smooth and efficient
skills, it is very important to have
opportunities to "cut corners", to perform
trial and error experiments, and in a way
human errors can be considered as unsuccessful
experiments with unacceptable consequences.
Typically they are only classified as human
errors because they are performed in an
"unkind" work environment. An unkind work
environment is then defined by the fact that
it is not possible for a person to correct the
effects of inappropriate variations in
performance before they lead to unacceptable
consequences."

Regarding adaptation, Rasmussen states,

*...in general, the only information available
to the person to judge the proper limits of
adaptation will be occasional mismatches of
behavior and environment. In this way,
conscious as well as subconscious experiments
are part of the adaptation mechanisms at all
levels of cognitive control."

Hence, on all levels of behavior -- skilled, rule-based,
and knowledge-based -- people will attempt to ascertain how
systems will behave under varying conditions. 1In fact,
without this information, people cannot know fully how to
control the system because their mental models will be

incomplete.

Dynamic situations may provide the opportunity for
learning and error correction, but they do not guarantee it.
Decision appropriate feedback, outcome feed-in, may be
delayed or degraded such that learning will not occur or may
be inaccurate. Therefore, in order to understand human
decision making it is necessary to recognize that human
adaptability and learning affect the basic feedback control
loop and that system characteristics influence the human's

ability to learn about systems.
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Considering the importance of the sequential nature of
decision making, it is surprising that only a few behavioral
decision theorists have recently begun to study judgment and
choice as a continuous process. As noted earlier, the
majority of theorists have focused on decisions as discrete
incidents. Few researchers have questioned whether their
findings can be applied to continuous processes (Hogarth,
1981). Those researchers fall into two groups: the pioneers
working in the 60's and early 70's and the contemporaries
aided by readily accessible and more powerful computer

technology giving the field a new surge in the 80's.

The Pioneers

Rapoport (1972, and 1975) provide an overview of the
early literature. =dwards (1962) and Toda (1962) are widely
credited as the pioneers in this tradition, and Rapoport
(1966a) and Ebert (1972) represent the major experimental
contributors to the field. The early dynamic decision
theorists viewed dynamic decision making through the

framework of multi-stage control problems.

Edwards (1962, p. 60) describes the framework of multi-

stage control problems:

*...decision makers are conceived of as making
sequences of decisions. Earlier decisions, in
general, produce both payoffs and information;
the information may or may not be relevant to
the improvement of later decisions. The
objective of the decision maker may be taken
to be maximization of total profit over the
long run. But it is quite likely to be
desirable to give up short-run profit in ordsr
to increase long-run profit. The most common
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instance of such a conflict would arise in
situations where some courses of action lead
to more information and less profit, while
others lead to less information and more
profit."”

Rapoport (1975) relates Nemhauser's (1966), more
specific description of multi-stage control systems as those
that can be characterized as several single stage decision
systems linked together in a series in which output of
previous stages may affect subsequent stages. A single stage
decision system is a time slice of a system that can contain
six factors:

1) an input state

2) a possible external event
3) a derision variable

4) an output state

5) a stage return (or payoff)

6) a hidden sixth factor, the stage
transformation

The decision maker chooses a course of action, the
decision variable, and receives some payoff after the stage
transformation occurs. In the dynamic situation, previous
stages provide the input state to the new stage. Therefore,
previous decisions affect subsequent stages. Rapoport (1975,
P. 349),.concurring with Edwards (1962), summarizes the
paradigm as follows:

"...decisions are made sequentially in time;
the task specifications may change over time,
either probabalistically or deterministically,
and either independently or as a result of
previous decisicns; information available for
later decisions may be contingent upon the

outcomes of earlier decisions; and implication
of any decision may reach into the future."
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The pioneers, (Ebert, 1872; Rapoport, 1966a, 1%66b, and
1967) all share a common view of the decision maker as a
"constraint optimizer." Through various manipulations to
the task environment, these investigators seek to describe
differences between optimal performance and actual
performance, attempting to ascertain the boundaries of the
decision maker's capabilities. This approach is in sharp
contrast to that of more recent researchers who seek to
understand the heuristics and biases of the decision maker
(Hogarth, 1987). The early approach, therefore, sought to
describe human performance by comparison to optimal
solutions. The tradition was based on subjective expected
utility theory which deemed the decision maker as one who

always attempts to maximize some gain.

The factors investigated in these studies included:

1) levels of uncertainty (stochastic input vs.
deterministic input) (Ebert, 1972; Rapoport,
1966a)

2) effects of varying horizons or stages that
the models utilized in calculating their next
choice of inputs Rapoport (1966a, and 1966B)

3) whether or not performance can be described
by a Bayesian type decision rule (Rapoport,
1966b)

4) realism (use of a more realistic task, i.e.
a stock-adjustment task), thereby increasing
external validity (Rapoport, 1967)

5) effects of levels of information about the
distribution of stochastic external inputs
(Rapoport, 1967)

6) effects of stochastic variables in the
presence of multiple control choices (Ebert,
1972)
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The early research in dynamic decision making focused
primarily upon the outcome feed-in link as they deal with the
effects of uncertainty of information within that link

(Factors 1,5,6 above).

Of particular interest are the studies of Rapoport
(1966a, & b). He examines how people perform control on an
unstable process of the kind x(t+l) = a*x(t) where a>0.
Rapoport compares the decision maker's performance with a
normative mcdel developed from dynamic programming techniques
and later with another normative model, the Bayesian adaptive

model. Both studies investigate the effects of uncertainty.

In both studies, subjects are asked to pretend that they
are businessmen responsible for purchasing and sc<lling a
number of shares of stock per month for their corporation.
Costs accrue for decisions made and stocks that remain on the
market after decisions are made; in other words, costs accrue
for control actions and deviations of x from its set-~point.

People are told to minimize total costs.

Rapoport (1966a) investigates the effects of
uncertainty: a deterministic case versus a stochastic case.
The deterministic case implies that all of the variables are
specified to the subject and there is no uncertainty about
external influences on the system. The stochastic case
involves a random external input to the system in the form of
demand; therefore, the subject is unable to predict the
subsequent state of the system. Rapoport (1975,

p. 359) explains,
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*...that the effectiveness of subjects'
decision behavior was reduced by half when a
stochastic variable was introduced into
control task."

Analysis reveals that people do not perform optimally
under the model's assumption that the subjects consider all
of the stages the system will go through; therefcre, he
changes the constraints on the model, namely the number of
stages taken into account when determining the number of
shares of stock to buy or sell. With the change to the
model, he finds that a 3 stage horizon fits a small portion
of the data: 3 subjects of seventeen. He speculates,
however, that the horizon of 3 would vary across decision
maker's and would increase to an upper bound with increased

experience.

Rapoport (1966b) explores the descriptive validity of
another normative model: an adaptive, Bayesian model. The
adaptive model assumes that subjects utilize a Bayesian
approach to learning the probability distribution of the
random external inputs to the system. In addition, he
assumes that the decision maker does not consider all of the
stages when formulating a particular decision; Rapoport
(1966a) reveals that subjects were probably utilizing a low
horizon in determining their control choices. Therefore, the
model is builf with an unknown stage duration in which to
calculate optimal solutions. He finds that subjects' median
decision behavior can be described well with the Bayesian
(adaptive) optimal model. Analysis of the subject's data

reveal that a horizon of j=7 stages provides a good fit to
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the data, but that varying values of j are needed to model

people's behavior. He concludes,

"It seems that human multistage decision
making behavior may be characterized as
constrained optimal, provided the structure of
the task is fully understood and provided the
experimenter knows the perceptual and
intellectual constraints operating in the
situation and imposed upon decision makers
(Shuford, 1964). Within the realm of research
on decision making such constraints will be
concerned with short-term and long-term
memory, information processing, overestimation
and underestimation of probabilities, future
implications of present decisions, etc."
(Rapoport, 1966b, p.60)

He adds that the then current knowledge of constraints
was limited to average constraints. While the model used has
the advantage of being analytically tractable, this type of
unstable process, x(t+l)= a*x(t) where a>0, has no real-world

counterpart.

In a later study, Rapoport (1967, p. 195) thus

investigates inventory=-control problems and thereby extends
the previous studies by,

", ..treating a class of decision problems

which are more meaningful to DM [decision

maker]; because they attempt to mirror the key
features of certain concrete situations, they

are presumably of greater interest to the
behavioral scientist."

This class of problems represents what system
dynamicists know as stock-adjustment problems (Sterman,
1989a, and 1989b). These problems involve a decision maker
controlling a level of stock such as inventory, water, or
virtually any quantity, in the face of either a constant or

varying demand. Costs may accrue for production changes,
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storage, and shortages. Rapoport (1967) hypothesizes two
models of ordering policies under two treatment levels of

information:

hypothesis 1) an ordering policy that
minimizes total expected costs over the
future

hypothesis 2) an ordering policy that
minimizes immediate expected costs

treatment 1) complete information about the
distribution of demand values

treatment 2) no information about demand

Subjects' performance is invariant with respect to the
two treatment levels of information. 1In addition, he finds
that neither ordering policy is supported by the results, and
the data suggest that subjects ordering policies are not
constant over trials; stock orders slightly decrease over
trials and are strongly related to the previously observed
demand, despite the fact that subjects are told that demand

is independent on each stage.

Because previous research had indicated inconclusive
results regarding the effects of stochastic wvariables in
multi~stage problems, Ebert (1972) 1looxs at the effects of
uncertainty and multiple control choices in the "aggregate
scheduling problem"”, a stock-management task with multiple
control choices. Previous work had not investigated multiple
control choices. The task is similar to the above stock-
adjustment task, but it employs two control inpute: workforce

and production rate. Subjects' goal is to minimize total
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costs in a dynamic situation in the face of varying demand.
Ebert (1972, p. 237) found:
"...the results indicated that the presence of
uncertainty in the two-variable, control task
does not impair decision performance to the

extent that has been suggested in one-variable
decision studies."

This contradicts the results of previous studies that
noted a 50% decrement in performance at the introduction of a
stochastic variable (Répoport, 1966a). Since Ebert's study
is focused upon the uncertainty issue, no specific hypotheses
are made concerning the multiple decision variables
themselves. However, more variables may imply greater system
complexity, and Ebert relates that Peterson and Beach (1967)
showed that more complex tasks may afford increased

performance as compared to simpler tasks.

Several observations can be made from the previous
empirical studies:
1) findings concerning uncertainty are
inconclusive

2) people utilize varying horizons when
formulating their strategies

3) viewing the decision subject as a
"constraint optimizer" has proved of limited
use with unclear results

4) people's strategies in stock-adjustment
tasks varies from the behavior as prescribed
by optimal ordering policies

5) information about the demand distribution

does not always increase performznce in a
stock~-adjustment task.

It remains unclear as to what strategies people are

actually using. The insistence of early work on viewing the
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subject as a "constraint optimizer" leaves iittle room for
explaining the processes of decision behavior. Rapoport
(1975, p. 361) himself expresses his doubts but tries to

rescue the approach by stating:

“"The research methodology proposed above calls
for employing the optimal solution as a base
line, then modifying it by placing
psychologically interpretable constraints on
DM's [decision maker's] perceptual or
cognitive processes. The time horizon
.discussed above is one constraint, but there
are many others. But even before attempting
to constrain the optimal model the
investigator should realize that there are as
many optimal models as there are objective
criteria. Moreover, even if the objective
criterion is explicitly stated by the
experimenter there is no assurance that a
normal subject will understand it or attempt
to maximize it if he understands it, nor is
there a simple procedure for determining which
criterion or criteria the subject adopts or
whether or not he shifts criteria during the
task....It seems advisable, therefore, to
assume various reasonable objective criteria,
derive, if possible, the optimal decision
policy under each of these assumptions, and
whether or not the optimal policies are
further constrained, test DM's behavior
against each of the resulting models."

In addition to these criticisms, one may question the
generality of the results. It is not easy to relate the
findings at this point in the tradition to how people perform

decision making in everyday settings.

Although interest in dynamic decision theory has
continued from the 60's through the end of the 70's
(Broadbent, and Aston, 1978; Mackinnon et al., 1980;
Rapoport, 1975), dynamic decision theory has not been a very
active research area until lately. This quiet period in the

research could be attributed to the above meniioned
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limitations and to five other possible causes outlined by

Rapoport (1975, and 1972):

1) The mathematical sophistication of dynamic
decision problems and the need for time
consuming computer programs have contributed
to the lack of research in the area.

2) "Analyses of human and animal behavior have
been mostly predicated on the assumption of a
one way dependence of responses upon stimuli,
ignering the equally important dependence of
stimuli upon responses according to the
organization of the environment in which
responses are emitted. But without explicitly
considering this latter dependence dynamic
decision problems cannot be solved and goal-
directed behavior cannot be properly
explained."”

3) The tools of feedback theory and control
theory were not well known to behavioral
scientists; therefore, they could not explore
the dependence of stimuli upon responses.

4) Designing and implementing experiments in
wnich the task characteristics change as a
function of the subject's decisions without
the availability cf a small on-line computer
are difficult to construct.

5) "...Characterizing the concepts of dynamic
decision theory, control theory, or system
theory, so as to successfully delineate
segments of the environment plus a sequence of

decisions as a dynamic decision task," is
difficult.

The Contemporaries

Partly in response to the ready availability of computer
technology there has been a new surge in the field in the
1980's. While addressing some of the limitations faced by
the forerunners in the area, psychologists and behavioral
decision theorists have recently begun to re-—-examine dynamic

decision making.
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Dérner (1975) pioneered the investigation of human
problem-solving and decision making in complex, dynamic
computer simulations with his3 original simulation, TANALAND.
His work represented the first of the attempts to look at
human performance in more "real life" circumstances. His
initial studies led to a wave of explorations into the
influence of various personality characteristics, situational

factors, and the like on performance in computer simulations.

Dérner himself looked at the extent to which different
levels of IQ influenced prcoblem solving behavior. TANALAND
simulates an African landscape including two groups of people
and contains over 50 variables which are interconnected by a
series of positive and negative feedback loops. Subjects'
goal was to improve the living conditions of the population
through various agricultural decisions. It was found that
subjects' cognitive ability to cope with complex systems was
inadequate. The main deficits Dérner found in the subjects'
behavior were their inability to deal adequately with
exponential growth and the interdependencies between

variables. He furthermore found that subjects tended to focus

narrowly on just a few variables and did not wish to deviate

from their set course of action. As a consequence, subjects
destroyed the originally stable eco-system. Dodrner describes
as due to “"linear thinking" and suggested more emphasis on

thinking in causal networks.

Dorner, Kreuzig, Reither, and Stdudel's (1983) work
culminated in LOHHAUSEN, which contained over 2000 variables,
multiple positive and negative feedback loops, and

substantial delays. In these efforts, they explored how
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people, playing the role of mayor, perform in controlling
this simulation of a small town. Subjects had difficulty
balancing short-term goals with long range goals. They found
a lack of cognitive perseverance, i.e. high performers test
one causal hypothesis completely, while low performers tend
to jump from one hypothesis to another. Ddrner called this
jumping phenomenon "thematic vagabonding," or generating new
hypotheses without testing them appropriately. 1In the
presence of delays, much time can pass between control
actions and system responses. Disconfirmation of incorrect
hypctheses can only be achieved by waiting for the feedback
of those control actions; most people do not incorporate
these delays into their search for appropriate control

policies.

Following these pioneering studies and continuing in the
psychologist's tradition, Reichart (1986), who was interested
in the effects of personality characteristics on the ability
to control complex processes, devised COLD STORAGE DEPOT.
Subjects were asked to control the temperature of a system
with a steering wheel. Subjects had difficulty with the
time-delay of the nonlinear function driving the steering
controls; some subjects planned for it, while others only

changed their strategy immediately after feedback.

DAGU, devised by Reither (1981), consisted of a climate
and population simulation of an African area who required
aid. 1In this study, novices were compared to experts that
were trained in how to administer aid in these types of
situations. It was found that novices thought more in causal

chains than in causal webs, meaning that they did not take
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side effects into account, but only thought of main effects.
Experts out-performed the novices by considering the
consequences of the actions beforehand and applying their
strategies consistently. However, even the experts were not
able to stabilize the variable "population size," one prime

example of an exponential growth process (Funke, 1988).

Funke (1988) reviewed these and similar studies
motivated by Dérner's work; the basic findings of much of his
review can be summarized as follows:

1) subjects have problems predicting and
controlling variables that grow exponentially
2) subjects exhibit problems incorporating
delays into predictions of outcome of control

actions

3) subjects have problems with complex
connectivity of variables

4) subjects remain focused on only salient
variables

5) subjects do not recognize the consequences
of their actions.

Kluwe, Misiak, and Haider (1989) explore the processes
of information utilization in dynamic decision making thereby
bridging the gap between psychologists interested in
personality characteristics and researchers focusing on the

effects of different task characteristics.

They postulate three stages of learning: 1) information
orientation, 2) exploration of alternatives, and 3) system
control. Information orientation is concerned with learning
what variables are present and initial classification of

information. Exploration of alternatives is an extension of
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the first stage with more detailed exploration of the ways
variables interact or influence one another and the effects
of control inputs. The third stage, system control, is
characterized by the subject's ability to integrate many
system variables and generate effective strategies for
controlling unstable processes. Heuristics in the three

stages are distinct.

Parallel to the renewed interest among psychologists,
behavioral decision theory experienced a similar surge in
interest for dynamic decision making. While the early
picture of the decision maker was as a constraint optimizer,
Tversky and Kahneman's (1974) new paradigm, shifting from a
normative field towards a descriptive field, began viewing
the decision maker as a limited information processor using

heuristics.

Motivated by Hogarth's (1981) appeal to apply Tversky,
et al.'s concepts to dynamic decision making, Kleinmuntz
(1985) tested the performance of models of cognitive
heuristics including a production system under varying task
characteristics. He used a medical diagnosis and treatment
task in which subjects test, treat, and try to cure patients.
Some of the results indicate that informational aspects of
the task, (symptom diagnosticity, disease base-rates), do not
influence performance of the heuristics as much as feed-back
characteristics of the task. He concludes:

"The ability to select relevant variables
seems to be more important than procedural

sophistication in the processing of that
information.” (Kleinmuntz, 1985, p. 696)
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Hence, the important ingredient is the
"conceptualization" of the task rather than the computational

effectiveness of the subject.

In a later study using the same task Kleinmuntz, et al.
(1987, p. 342) investigated the cognitive effort/accuracy
tradeoff: the ways in which the task demands influence the
choice of decision strategies. They note:

"...in many situations, a decision maker can
dispense with judgment and simply act. Not
only is the ccgnitive effort that would
normally be expended upon judgment conserved,
but, because of the opportunity to catch and

correct poor choices, the outcome is
acceptable."

Viewed from the closed-loop framework proposed in this
thesis, Kleinmuntz's studies shed light on the action feed-
out link. As Hogarth (1981) had earlier explained, the level
of commitment to any one choice is reduced because there
will be opportunities for the person to cerrect the choice
later. Results of this study indicated that people were
typically relying upon judgement-oriented strategies instead

of action-oriented strategies.

Judgement-oriented strategies were indicated by the
extensive use of diagnostic tests prior to actions. Action-
oriented strategies, conversely, imply little to no testing
before action is taken, and these were not extensively used
even though they would.have produced better performance in
some situations. There are several possible explanations for
their results, so one cannot consider this conclusive

evidence for any particular explanation for the strategies
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used by subjects. However,one possible explanation of the
results lies in the use of the "doctor script" which dictates
the use of testing before treating: subjects might show a
tendency to act according to what they think is "“appropriate"

physician practice in a task for which they are unfamiliar.

Huber (1986, p. 68) views both the system to be
controlled and the controller as open systems and advocates
the need to combine the two into one overall system. He,
thus, proposes a systematic treatment of both the task and
the decision maker. Huber relates his motivations as
follows:

"The problem with the decision theoretical
approach in research on multistage decision
problems is that it does not reveal
information about the process of decision
making and about the interaction between the
decision maker and the components of the task.
This is a very unsatisfactory situation
because in other areas of decision theory

process models are getting more and more
important."

Specifically, Huber investigates the extent to which
mental representations,; which may be described in terms of
completeness and adequateness, and other factors, such as
"locus of control," influence dynamic decision making. He
explores the role of the mental representation and

personality characteristics in a multi-stage betting game.

A multi-stage betting game is analytically similar to
the multi-stage decision theory paradigm, with the exception
that the decision maker begins with some amount of capital

and gambles a certain portion, a stake, in each stage under
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varying task characteristics, such as probability of winning

or losing.

Using an ecological cover story and a treatment variable
of increasing probability of winning, Huber found that
subjects characterized as having an "internal locus of
contreol"” perform better than subjects characterized by an
"external locus of control."” Locus of control gives some
indication of the belief subjects have in their control over
system variables. In addition, he found evidence that the
mental representations of the subjects are closely related to
the generation of goals for controlling target variables

within the system.

Brehmer (1989, and 1991) investigated how people control
self-reinforcing processes with the introduction of delays in
control and outcome feedback. Delays can arise from several
sources in the feedback loop: from control action to
implementation and from implementation to the final outcome.
In a simulated fire-fighting task, people were asked to
allocate fire-fighting units to simulated forest fires that
expanded exponentially. Delays were introduced in the control
structure and in the reporting of fire-fighting units'
progress on the fires. In order to perform the task
efficiently, Brehmer states that it is important for people
to adopt a feed-forward strategy in controlling the system.
In other words, people must incorporate the delays into their
mental representation and appropriately utilize observed
feedback, which lags behind the actual or current state of

the system.
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Another factor investigated in Brehmer's study was the
effect of observable delays versus hidden delays. Observable
delays are those that can be seen as a natural consequence of
the system; people expect some delay in the mobilization of
fire-fighting units. Hidden delays, those in the reporting
of the progress of fire-fighting units, are not necessarily
expected; people expect that a unit's position and progress
will be reported in a timely fashion. The results suggested
that people had the most difficulty with delays of the second
type: hidden. Their performance suggested that they did not
compensate for the delayed reporting of the fire-fighting
units; they treated the displayed information as if it were
indicative of the current state of the system. Thus, the
results imply that "all delays are not created equal"”

(Brehmer, verbal communication with the author).

Sterman (1989a, and 1989b), consistent with the newer
dynamic decision paradigm exemplified in Kleinmuntz (1985)
and Brehmer (1989) brings into sharp focus the importance of
the feedback structure of the task. Sterman's overriding
concern rests in how people perceive the consequences of
their own actions in a feedback context. He finds that
people typically misjudge the influence of their own actions.
Take, for instance, supply-line, phenomena caused by the
existence of delays. If a retailer places an order for some
commodity, the supplier takes some time to fill the orxder and
to ship it; therefore, there is a delay built into the
ordering system. In experimental settings, people typically
tend to ignore this information, resulting in instability.
Sterman provides an operational theory of feedback that can

readily be tested.
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He performed two experiments that are similar and

produce similar conclusions. Sterman (1989a) investigated a

.

simulation of an aggregate capital-producing sector of the
economy in which one player is asked to manage a stock-
adjustment task. Sterman (1989b) explored a one-sector goods
producing economy in which multiple players act as teams to
meet a one-time increase in demand. The findings can be

summarized as follows:

1) People tend to ignore the supply-line;
subjects don't sufficiently account for orders
already placed with their suppliers. Large
oscillations are the consequence. Once the
double ordered goods arrive, subjects are
faced with large inventories and need to cut
their orders well below the equilibrium rate.

2) People have difficulty controlling
exponential growth or self-reinforcing loops:
they don't recognize the fact that they must
respond rapidly and massively to a demand
surge.

3) Subjects misjudge the effects of non-
linearity; people don't recognize that the
possibility for control and the effects of
control can vary significantly once the system
is perturbed from its “normal" state.

4) People utilize open-loop mental

representation and blame exogenous factors for
their performance.

These findings are similar to those of the studies
mentioned earlier (Brehmer, 1989; Dérner et al., 1983; K;uwe
et al., 1989). Rather than seeing people's dysfunctional
behavior as isolated errors, Sterman (158%a) interprets his
findings within his framework of "misperceptions of
feedback". He views his'findings as examples of:

"_..a failure on the part of the decision

maker to assess correctly the nature and
significance of the causal structure of the
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system, particularly the linkages between
their decisions and the environment." p. 18

Sterman encourages a more systematic exploration of the
misperceptions and calls for a better understanding of the
interactions between subjects' intendedly rational decision
rules and the feedback structure of the task to be

controlled.

1.3.5. Summary

In different ways, practitioners in each of the four
fields discussed have contributed to an improved and‘more
comprehensive understanding of decision makers' effects on,
and influences from, their task environments. Supervisory
control investigates feedback perceptions and decision making
in a specific task environment, that of controlling
machinery. Experimental economics examines the effect of
action feed-out in the form of trading mechanisms from the
marketplace on attaining the goal of market equilibrium.
Behavioral decision theory examines decision makers'
perceptions of outcome feed-in from their task environments
and their ability to interpret and act upon information.
Dynamic decision theory helps explain the consequences of
decision feedback on the task environment and the decision
maker over time. In all of these fields, the need for a
taxonomy of tasks that defines and categorizes decision
making, the task environment, outcome and actions has been
recognized. Very often the struggle for a taxonomy has been

phrased as the need to characterize the "complexity" of the
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task environment. Rapoport concurs with Shuford (1964, p.
60) who concluded,
"It seems that human multistage decision
making behavior may be characterized as
constrained optimal, provided the structure of
the task is fully understood and provided the
experimenter knows the perceptual and

intellectual constraints operating in the
situation and imposed upon DMs."

However, researchers at that time only had limited
knowledge of the constraints of the task environment and the
person; consequently, they viewed the decision maker as a
"constraint optimizer" which limited the number of
alternative explanations of behavior. The paradigm, however,

did elucidate the general nature of the decision environment.

Funke (1988), in his review of the psychological
simulation studies, describes the ambiguity of the concept of
complexity as he groups the simulation experiments into three
categories: up to ten variables, up to 100 variables, and
over 100 variables. He explains that complexity cannot
merely be considered on the basis of the number of variables
alone within a simulation. For instance, is a system with 24
variables more complex than a system with only 12? Or a
system with over 100 variables 10 times more complex than a
system with only 10? He argues that complexity needs a more

rigorous definition.

Mackinnon (1980), early advocates of characterizing the
task environment more systematically, study the effect of
three "complexifying" factors: (i) number of elements in the

svstem, (ii) connections between them and (iii) the presence
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or absence of random variation. To their surprise, the three
"complexifying" factors demonstrate either incignificant
differences, or significant differences in the direction
opposite to that predicted. They reject the notion that
increases in the number of connections necessarily increases
complexity by pointing out potentially beneficial effects:

"Connections between elements of a system, and

the indirect connections formed over time, may

be a source of stability, or produce

correction from subsystem to subsystem uader a

range of conditions." (Mackinnon et al., 1980,
p. 29%4)

Since more complex systems, as measured by their
"complexifying" factors, did sometimes attain better
performance than simpler systems, they suggest rethinking
the effects of complexity. Bakken (1990) gives a nice example
illuminating the discussion of complexity:

*...imagine an old wood stove and a modern
thermostat controlled oven. An oven
controlled by a thermostat is more complex
than a manually operated one, yet it is easier
to control and improves cooking for most
novice and medium level chefs. 1In other
words, system complexity will of course

improve performance if "complexity" means well
designed control process."

Thus system complexity can take many different forms and
influence decision makers, their goals, their actions, the
task environment, and the resulting outcomes in different
ways. In a later study, Mackinnon, et al. (1985, p. 160-1)
criticize both the dynamic d=cision tradition and the
psychological-simulation tradition similarly:

"Thus whilst DDM {dynamic decision making}

would appear to be a relevant area of inquiry
in a world in which many significant decisions
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are sequential and dependent, research in the
area has been confined to a small number of
specific tasks, each of unknown
generalizability and exploring a limited
sector of the universe of task systems."

They describe a preferable approach that:

1) Enables and encourages a systematic
exploration of the universe of dynamic task
systems.

2) Permits a precise and formal description of
the degree of difficulty or complexity of the
task.

3) Allows tasks to be compared.

4) Is capable of providing "base-line"
information of human ability in these tasks.

The dimensions of complexity as defined by the fields
that examine decision making can be generalized and
categorized according to their effect on the five elements of
the decision making system, namely the decision maker, the
desired goal, the action feed-out, the task environment, and
the outcome feed-in. The issues discussed in the various

studies can be categorized by the following dimensions.

Time pressures can directly influence the tasks of the
decision maker because all tasks occur within the context of
time. For example, the decision maker may not have enough
time to both perceive goal discrepancies, to formulate a
strategy, and tc take an action. Further, the action feed-out
link and the outcome feed-in links may contain delays that
will make the relationship between decisions and resulting

outcomes more complex.
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The number of cues or amount of information reaching the
decision maker affects complexity. At any given time there
may be multiple cues from which the decision maker can infer
system behavior. The number of cues available is a function
of the quality of the outcome feed-in link. For example, the
total number of cues available, the number of cues sampled,
the information display of cues, and the amount of time
available for sampling and display all influence the quality

of the outcome feed-in link.

Discrepancies among cues or information may challenge
the decision maker. At any given time, the decision maker
must attend to multiple variables that must be maintained in
order to achieve system goals. Discrepancies in outcome
feed-in cues will force the decision maker to make trade-offs
in expected outcomes for some goals in order to more closely
approach desired outcomes for other goals. For example,
operation of a nuclear power plant requires management of

myriad sub-goals which may have discrepancies that must be
| maintained within appropriate boundaries in order for the
overall power plant to achieve optimal capacity-cost-safety

benefit trade-offs.

The number of action feed-outs within a system will
influenée feedback characteristics. Most real systems
require several choices to be made in order to achieve
stability. For example, businesses managers must decide upon
appropriate production rates, personnel levels, marketing
expenditures and quality goals in order to achieve a desired

goal of increased cumulative profits.
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Uncertainty can affect both the outcome feed-in and
action feed-out links. Usually, not .all outcome feeq-in/féom
the task environment will be caused by the decision maké;.
However, the decision maker may be unable to separate causal
outcome feed-in from randomness. The task environment can be
influenced by elements other than the decision maker and not
all outcome feed-in to the decision maker is produced by the
task environment. The outcome feed-in link may contain
randomness that would require a systematic bias in output.
Decision makers must realize that there are multiple agents
interactihg with the system. In order to produce high
quality of overall system performance, eachﬂagent must take
into account the actions and effects produced by other
agents. Furthermore, -the way that the individual agents
exert control and the way that action feed-in from a given
agent becomes outcome feed-out for another agent determines

effective organizational stiucture.

Incentives can influence the desired outcome, relative
importance of some goal-discrepancies over others, preference
for particular actions, and perceptions of particular
.environmental cues. For instance, a politician may give more
weight to issues that affect a major contributor to his
canpaign, and he would in turn be more cognizant of
literature pertaining to those issues and may be more likely

to vote in the major contributor's interests.

The structure of the organizational context of dynamic
decision making may be important. Organizational structure
may constrain or impede the decision maker's actions. The

freedom of relating outcomes to actions, i.e., the number of
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rules that are imposed on the decision maker, can influence

the decision feedback loop greatly.

The training and éxperience of decision makers teaches
them how to perceive outcomes, to understand consequences of
actions, to understand how the environment transforms actions
to outcomes, and to know how to best map actions into
outcomes. Training and experience can influence the
decision maker's ability to make decisions that approach his

desired ocutcome.

Numerous other dimensions of complexity exist that have
received less attention in the literature; they include:
number of states present, degree of non-linearity, system
stability, and eigenvalues and eigenvectors of the system. In
addition to the dimensions that are a part of the complexity
of the physical system, people's information acquisition and
use add additional dimensions of complexity along the lines

of saliency, observability, and measurability.

Sterman (1989a, and 1989b) suggests that the consistent
findings of the "misperceptions of feedback," for instance,
the misperception of delays, exponential growth processes,
and non-linearity, provide a beginning}for a classification
system of dynamic decision task characteristics. A
comprehensive approach, for other researchers, would
ascertain the effects of other dimensions of the task
environment and determine their precise effects upon
performance in systems of varying degrees of complexity.
Currently, comparison of results of dynamic decision tasks

across the‘various research domains are difficult since many
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researchers select their task variables without wide regard
for how their study will aid the development of a theory.
Researchers, additionally, utilize a task system that is
operationalized to suit their unique purposes. Therefore,
our understanding of dynamic decision making is limited by

our unsystematic treatment of the task environment.

For obvious reasons, we cannot investigate all of these
dimensions of complexity in this thesis, though all of the
above dimensions could be fruitfully investigated within the
essential control loop framework. One of the dimensions of
complexity our research will examine is the effect of delay
on achieving goals. Many of the researchers cited include
some dimensions of delay. The effects of delay have been
documented in many of the previous studies; however, no
studies have systematically varied the effect of varying
delay lengths and shown the specific influences of delay on

the self-regulating feedback loop.

Another very important but widely ignored dimension of
complexity is the effect of side-effect feedback in the task
environment. Gain determines the strength of unintended
outcome . feed-in resulting from the decision maker's action
feed-out. Decisions may be made that influence aspects of
the task environment other than those intended resulting in

unexpected outcome feed-in to the decision maker.

Further exploration of these two dimensions provides an
opportunity to test the effectiveness of the framework

through verification and clarification of previous findings



and an opportunity to provide baseline data of human

performance in the framework of complexity proposed.

60
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2. Experimental Design

2.1 Design considerations

The investigation of people's information use may take
two forms: examining decision rules under relatively simple
task demands and examining decision rules under very complex
task demands. Dérner, Kreuzig, Reither, and Stdudel's (1983)
work represents the latter approach that has shown some
success in describing decision biases under various complex
settings. Unfortunately, relating their findings to novel
situations can be done in only'a rough sense, since we do not
have a means to effectively compare situations of varying

complexity.

Considering the vast variety of physical systems in
existence, it is a daunting task to develop a general theory
of people's information use. We may find comfort, however,
in the findings reported in the system dynamics literature
that there are certain generic structures that seem to govern
a vast majority of the decision tasks with which subjects are
confronted. It is my presupposition that once we understand
how decision makers go about their decision tasks in "simple”
systems, we have laid the foundation that we can expand upon
to understand decision makers in systems that consist of a
combination of one or more of those structures. One generic
structure that is of particular importance is the broad class

of stock-adjustment tasks.
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2.2 The importance of stock-adjustment tasks

A vast number of human activities can be characterized
as attempts to control a stock and maintain its value close
to a target value (Sterman, 1989b). Stock adjustment problems
are prevalent on different levels of aggregation. Individuals
change their car's velocity to drive at a desired speed,
regulate the water's temperature to shower comfortakly, and
try to eat in such a way as to maintain a desired weight.
Companies borrow money to manage their cash balance, increase
production to keep enough goods in inventory, and hire

émployees to meet their labor needs.

In all of these examples, the objective is to maintain a
stock at its targeted value in the presence of disturbances
such as losses, usage and decay. Indeed, stock-adjustment,
goal seeking is so prevalent that people attempt to control
using this principle even when it is inappropriate to do so.

Consider an example from health psychology:

"One straightforward problem steme from the
fact that certain physical disorders (e.q.,
hypertension) have no known symptoms. Despite
this, people with the disorder persist in
attempting to ascertain their present
condition by means of easily monitored
(internal) perceptual events. In effect, they
define for themselves some symptoms to
observe. Of greater importance, they then
proceed to regulate their behavior on the
basis of the presence or absence of that
symptom (Leventhal, Meyer, and Nerenz, 1980).
This tendency leads to either of two
kinds of problems. If the symptom goes away,
people may stop taking their medication,
believing that their blood pressure s down
when it is not. If the symptom persists, on
the other hand, people may become despondent,
believing (incorrectly) that their blood
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pressure is remaining elevated despite their
faithful following of the doctor's orders."
(Carver, and Scheier, 1982, p.127 author's
parentheses)

- Since stock-adjustment problems are so widespread and
virtually ingrained in people's heuristics, they represent a
good starting point for developing a data-base of performance

in dynamic systems.

2.3 The task

Having motivated the importance of stock-adjustment
tasks and delay and gain as treatment conditions, we now
describe the particular instantiation we have chosen for our

study.

The cover story chosen for the stock~adjustment task is
that subjects are to manage an inventory production system,
in which the stock to be controlled is inventory. The

following instructions are given to subjects:

INSTRUCTIONS

1. Objective

You are the inventory manager of a company. Your
responsibility is to minimize the total costs your
department will accrue during the game described in this set
of instructions. The inventory you have to manage is
decreased by sales and increased by production. You know
only partially what your sales volume will be but yocu have
full control over your production. Coordinating production
with sales while avoiding inventory gaps is the central
problem you face in this game.
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2. Coat structuze

Costs zrise from two sources: production changes and
inventory gaps. To minimize the total costs, you need to
know the exact nature of these costs:

. You try to maintain an inventory of 0 units. If the
actual inventory is larger, too many units are held in stock
and cause unnecessary inventory holding costs. If the
actual inventory is smaller, goods are not in stock when the
customer demands them. This causes irritation for the
customer and losses for the company. In the game, it is
assumed that these costs are quadratic: Large changes cost
considerably more than small changes.

. Production changes in a real company imply such costs
as hiring, training, or firing people. Again, it is assumed
that the costs of production changes are quadratic. A
change in production is twice as expensive as an inventory

gap.

3. Information on sales

Unanticipated changes in sales will cause an unwanted
positive or negative inventory gap. You are facing two
kinds of sales: sales independent of your actions and sales
dependent on your own actions.

Independent sales follow a randcem path. Yocur best
bet is to expoct that independent sales in the noxt
period will be the sams as they are in this period.
Actual sales in the next period, however, may differ
anywhere from plus 15 units to minus 15 units from what they
are in the current period. ’

Dependent sales are influenced by your own production
decision. Production can influence sales in two opposite
ways:

. As you increase production, you implicitly increase
your workforce and pay a higher wage sum. A higher wage sum
increases demand and leads to higher sales for yourself.

. As you increase production, competitors become aware
of the increased opportunities and increase their own sales
efforts: Increased ccmpetitor activity causes some of your
customers to cancel some of their orders that they had
placed with yecu.

In any particular game, you will only encounter one of the
two sales effects.

4. How you participate in the game

A game consists of 30-40 decision periods. 1In each
period you have to decide by how much you want to increase
or decrease production. The time it takes for a change in
production to take efiect can vary from game to game. In the
course of the 4 sessions, you will play 15 different games
altogether.
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Figure 2.1. illustrates the task and the two treatments:

delay and gain.

Lolay
Change in
Production A
(Decision) 4 _ Total_Sales

Dependent Independent
Sales Sales

Figura 2.1. Stock-adjustment task with two dimensions
of complexity: delay and gain

At the center of Figure 2.1. is a rectangle which
represents inventory. Inventory may be an accumulation of
auy quantity. The pervasive accumulator concept is central to
the stock-adjustment task and may take various forms, such as
any structure that accumulates in-flows and out-fiows. For
instance, body temperature is an accumulation of all of the
temperature loss and energy gained within the human body, or
a bathtub is an accumulation of the water in-flowed and cut-
flowed. In the surface structure we have chosen, the
accumulation to be controlled is inventory -- the
accumulation of goods that have been produced minus all of

the goods that are sold.

Examining the in-flow to inventory on the left of Figure

. 2.1., we see a production chain. The user is in charge of
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determining the total production amount through changes in
production. Until produced goods are finally added to the
inventory, they may go through different stages; those
different stages are actually one of our treatment
conditioris: delay. Once we commit ourselves to taking
delivery from a supplier, we initiated an event which will
change our inventory even though the inventory has not yet
physically increased. If we lived in Europe, we would receive
our oil in perhaps weeks, while if we lived in the United
States, we would receive our o0il later, in perhaps a month or
two. The whole process taken together we would call a
production chain or supply-line. By contrast, if we happened
to live in the Middle East we would suppose that our shipment

of 0il could be delivered virtually within the same day.

The outflow of inventory is sales, located on the right
side of Figure 2.1. We have split sales into two components:
independent and dependent sales. Sales may be independent of
the actions o0f the decision maker, and may be dependent upon
the actions of the decision maker. What is typical of a
system is £hat a control action might have unintended side
effects in addition to the intended control action. For
example, the more goods you produce in an economy the more
salaries and wages you pay out, and in turn, the additional
salaries and wages may be used to purchase your own goods.
Thus as you increase production, you increase your own sales,
an effect on which the Keynesian multiplier system depends.
Similarly, one could imagine that as you increase your
production you give signals to your competitor of lucrative
sales opportunities. Your competitors, at the same time,

increase their marketing activities and draw some of the
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sales away from ycu. Gain, then, is the sign and strength of

those unintended side effects.

Determining the exogenous input to the task requires
particular care. Many previous experiments, particularly the
ones coming from the control engineering pq;spective, assume
a one-time shock impinging on the system. It is the
subject's task to react to the shock and to bring the system
back into equilibrium. These tasks can be divided into two
experimental conditions: 1. The initial state of the system
is in disequilibrium without any further exogenous inputs
impinging on the system. 2. The system is in an initial
eguilibrium and disturbed by a one-time pulse or step change.
Both designs frame the decision task to he solved in a
special way. The subject is focussed on an end state of the
system and the problem is to figure out how {0 attain the end

state as quickly and as smoothly as possible.

The final state fccus is well suited for emergency and
rescue control tasks. Diagnosing a sick patient and saving
her life with adequate surgery would be one example. Bringing
a spreading forest fire or an overheating nuclear reactor

under control are other examples.

Most stock-adjustment tasks are characterized by an on-
going process of control in the face of fluctuating
disturbances. Disturbances in the inventory-control problem
studied in this thesis .are portrayed as independent sales and
modeled as random-walk exogenous input. I fully inform
subjects as to the nature of the disturbance on the system

before the experiment begins and tell them: " your best guess
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for independent sales is the previous week's independent

sales."”

To prevent memorizing particular random-walk patterns,
15 different random walk patterns were generated and used.
Every subject received the same sequence of random-walk
patterns. The objective of preventing memorizing patterns
was judged to be of sufficient value to justify one negative
side effect of the design decision: Associating a particular
random-walk pattern to a trial position leads to a
confounding of the practice effect with a possible sequence

effect generated by the random-walk patterxrns.

Every self-regulating feedback control loop operates
within a set of objectives. We framed the task as a cost-
minimizing task and associated cost with discrepancies of
inventory from its set-point and with the amount of control
exerted to regulate inventory. The level of deviation of the
system from its given set-point is of considerable
importance. For example, if body temperature were raised by
only a few degrees to 100° Fahrenheit for a short period, the
result would not be too detrimental; by contrast, if body
temperature were raised to 102° Fahrenheit, the result would
be far more damaging. Temperature deviations for different
systems from their set-point vary in cost to humans. For
instance, it would not be conducive to life if the global
temperature of the Earth were raised more than a few degrees.
Similar to the varying degree of significance that
temperature plays in different systems, our task system
implements non-linear cost for deviations from equilibrium.

For analytical convenience and to parallel the existing
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literature, we have chosen a quadratic cost function.
Subjects' task is to choose production to minimize:
t end
Min Y (a*Inventory? + b* AProduction?)
t=0

(a=1; b=2)

2.4. Design and Procedure

It was to be expected that the general competence of the
subjects to solve the task might vary considerabiy, favoring
a within-subject design rather than a between-subject design.
Since feedback strength and delay length might very well
interact, a two-factorial experimenfal design seemed to best
serve the purpose of the study. A Latin-Square design was
chosen. We designed the experiment in a way that each subject
would receive all the treatment conditions. Rather than to
implement a mere delay / no delay treatment we wanted to be
able to distinguish between moderate and severe delay.
Similarly we wanted to investigate the effects of moderate
/severe positive gain and moderate/severe negative gain. A
3(delay) *5(gain) treatment matrix resulted. We implemented
delay length of 0,2, and 4 rounds and gain of -0.6,-
0.3,0,+0.3, and +0.6. Figure 2.2. illustrates how the two
treatments 'Delay Length' and 'Gain' were mapped into one
condition and how the condition was in turn allocated to the
subjects and trials. Note that each row and each column

contains one and only one condition instance.
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2.5. Subjects and Incentives

Seventeen MIT students, fourteen undergraduates and
three graduate students, enrolled to participate in the
study. Two subjects, for undetermined reasons, did not
complete the study: one terminated after the first session
and the other terminated after the second session. Their
data were examined and no extreme differences from other
subjects' data were apparent. Participation required, on
average, six hours spread over four sessions in a two to

three week period.

Subjects were paid for their participation in the study.
Subjects' total pay consisted of a fixed amount of $20 and a
performance -based amount. Actual performance-based pay varied
between $5 and $45. On average, subjects received a total of

$40.

2.6. Protocol

A stock-adjustment system, in the context of a business
game and written by the author, was presented on an Apple

Macintosh computer.

Subjects were told that they would play the role of an
inventory manager of a company. Their task was to minimize
total cost of their department, which would accrue during the
game. Subjects were told that the inventory to be managed
would decrease by sales and increase by production. They
were informed that sales could only be partially controlled,

since some of the total sales were determined randomly, while
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they had complete control over production. They were asked
to coordinate sales and production, while avoiding inventory

gaps (see instruction sheet earlier in this chapter).

Subjects were given complete information about the
system. This meant that subjects were informed as to the
stochastic nature of independent sales and how all variables

were related and calculated.

Wesk 59 60 61 62 63
Change in Production 0 of i (Enter pecision)
Production 600 600 600 600
Sales (dependeny) 180 180
Sajes (independeny) 420 |qz3
Seles (total) 0 603
Change in Inventory 0 -3
Inventory 0 -3
Cost(Prod. Change) o) 0 = 2*(0*0)
Cost (Invenwory) 0 9 = 1%(-3*3)
Cost(Totl) 0 9
Accumulatwed Cost 0 9

Conditions for curentgame: = 10 broduction units cause 3 sales unks.
= Production is delayed by 2 weeks.

Figure 2.3. Computer screen display

Two emulated screen practice rounds were given in order to
familiarize the subject with the system and their task. Each
practice round allowed for one production decision. The

practice rounds consisted of an actual screen shot on paper,
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(see Figure 2.3.), and two hypothetical examples. Each
subject was informed that in the real experiment the computer
would compute the consequences of the decision, but that for
practice purposes the subject would perform the computations.
Then, the subject was encouraged to make a decision for
production and compute the consequences of the decision in
long hand. When they had reached the line exogenous sales,
the experimenter provided the subject with the number for
exogenous sales. This number was the same for all subjects
and determined in advance. At that time, the instructor took
the opportunity to explain the nature of the random process
that the computer used to generate exogenocus sales. The
subject then proceeded to compute the rest of the variables.

A wrongly computed variable was immediately corrected and an

explanacion provided. NOSt Of the Subjects did not need aiy
correction when computing the second practice task. This
training process was utilized in order to provide subjects
with the maximum amcunt of learning that could be attained,

prior to turning on the system.

After the practice task, the instructor repeated the
rules of the experiment. Subjects were informed that they
would play 15 games altogether of an unspecified length. They
were told that the conditions regarding delay of feedback, as
indicated by delay of changes in production, and strength of
'feedback, as indicated in dependent sales, might vary from
game to game. They were further informed that some conditions
were intrinsically more difficult than others and were told
to not be discouraged by what they might consider extremely
bad scores. Specifics about what a bad score might be were

not provided.
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Subjects were informed that for the computation of their
reward only the 12 best games would count, with the worst 3
discarded. However, all data were utilized in statistical
analysis. Subjects were informed that the games would be
played in four sessions altogether, three in the first

session and four in the sessions to follow.

The computer was then turned on and the subject was
asked if he or she had ever used a Macintosh computer before;
if not, these mechanics were explained. The mechanics of the
game were explained. In prepared note-pads, subjects were
asked to write down their production decisions for each round

of play on the sheet corresponding to the current round and

any catculaticns-that—they needed-te-make. In this way, it

was possible to monitor subjects' written decision processes
unobtrusively and still provide the su:ject with a medium for

calculations.

At the end of the session, the subject handed the note-
pad back to the instructor and arranged an appointment for
the next session. The subjects took about two to three weeks
to complete all four sessions. To re-familiarize the subjects
with the task, the instructor started each follow-up session
with a quick summary of the objective of the task and the
rules of the game including the random nature of exogenous

sales.
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2.7. Hypotheses

Both delay and gain modify and add coﬁplexity to the
essential control loop as depicted in Figure 1.1 (and within
the dashed line of Figures 2.4 and 2.5). Delay as implemented
in the experiment modifies the action feed-out link by
introducing a delay between 'Corrective action initiated' and
'Corrective action' (Figure 2.4). Gain as implemented in the
experiment modifies the action feed-out link by linking
unintended side effects to the initiated corrective action
(Figure 2.5). How well decision-makers perceive the effects
of the two complexifying factors and how well they adjust
their corrective action to take them into account is the

subject of this study.
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Decision models proposed in the literature can be
characterized in terms of the assumptions they make about the
number of links considered by the decision maker and the way
that information is processed. Three rival models will be
tested with that goal in mind: the rational model and two
heuristic based models. Rational decision rules assume that
the decision maker incorporates all of the relevant available
information into his or her decision strategies. Heuristic
decision rules assume that the decision maker utilizes a

subset of the information upon which to base their strategy.
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The rational model

Many researchers in the field of economics deem the
optimal solutions to decision problems to be end-products of
a long process of adaptation and market-induced selection in
which the optimal Solution is that decision rule that has
evolved or survived over time and is now in a permanent state
so long as the market or environment is at equilibrium.

Lucas (1986,p. 402) explains:

"I think of economics as studying decision
rules that are steady states of some adaptive
process, decision rules that are found to work
over a range of situations and hence are no
longer to be revised appreciably as more
experience accumulates. From this point of
view, the question whether people are in
general ‘'rational' or ‘'adaptive' does not seem
to be worth arguing over. Which of these
answers is most useful will depend on the
situations in which we are trying to predict
behavior and on the experiences the people in
question have had with such situations. It
would be useful, though, if we could say
something in a general way about the
characteristics of social science prediction
problems where models emphasizing adaptive
aspects of behavior are likely to be
successful versus those where the nonadaptive
or equilibrium models of economic theory are
more promising."

Hence, rational models may provide some useful
information, but must be regarded only as a decision rule
that people may aspire to after considerable experience, at
best. Although normative models may indicate the end product
of adaptation, they provide little understanding of decision
rules used while systems are in disequilibrium or while

agents are still learning and adapting.
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The heuristic models

Behavioral decision theory, on the other hand, suggests
that decision makers select the decision heuristices they use
with respect to their perception of the requirements of the
task to be solved. With regard to adaptation and heuristics,
Tversky and Kahneman (1974) and Hogarth (198l1) provide the
impetus for the exploration of how people do in fact process

the information in a dynamic task.

Previous studies on dynamic decision making suggest that
subjects have the cognitive resources necessary to perform
effective control; however, subjects fail to adapt to the
presence of critical environmental factors, notably quality
of feedback as measured in length of delay, certainty, etc.
(Kleinmuntz, and Thomas, 1987; Payne, 1982; Simon, 1982;

Tversky, and Kahneman, 1986).

Two heuristic models can be distinguished from one
another in the amount of information they assume enters the
decision process. The first model, the weight adjustment
only model, assumes that people only examine information
regarding the specific system variable to be controlled, for
i~ ;tance, the inventory gap, which they know should remain at
zero. Weight adjusters therefore would ignore supply-line
information and focus only on immediately decreasing the
discrep;ncy between the desired goal state and the actual
goal state of the system variable to be controlled. The
weight and cue adjustment model, on the other hand, assumes
that decision makers do incorporate supply-line information

as well as goal discrepancy information. In contrast to the
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rational model, however, the weight and cue adjustment model
does not utilize the complete information set, nor need it

imply the optimal cue weights.

In this thesis, I will test which of these models most
closely describes decision making as actually done by
subjects. In addition, since each model leads to different
predictions with regard to (a) decision time spent at the
beginning of each trial for the :.rst decision and (b)
decision time spent during each trial for later decisions and
(c) score, I will use these data in order to distinguish

between the three models.

Rational model- predictions !

The optimal rule utilizes all of the information cues
available and minimizes expected costs in the stock-
adjustment task at any given point in the decision sequence.
As delay increases, additional information states are
introduced which require additional calculation of weight
coefficients. Feedback strength modifies the value of

information by entering into the calculations of the weight

1 Different possibilities exist in how pecple might make decisions consistent with the rational model. The
predictions depend on the assumed path that decision makers take to arrive at optimum. For purposes of
sharp contrast, predictions in this section are based on the extreme assumption that people derive the
optimal decision by salving the appropriate mathematical equation system. The predictions have to be
qualified accordingly if one takes a less extreme approach (Lucas, 1986).
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coefficients, but dces not add additional information states.

The optimal solution has the form:

Control action= XWiSy i= state 1,2,3,...n

Each period of delay adds a state variable and a cue to
the task. The optimal values of the parameters Wi are
computed by solving the Riccatti equation (D'Azzo, and
Houpis, 1981). The complexity of the Riccatti solution
roughly increases with the square of the number of states.
Thus, the computational complexity of the solution is merely
a function of the delay length, not of the feedback strength.
Therefore, the rational model would suggest that decision
time should not vary with respect to feedback strength, but
should increase quadratically with increases in delay length.
Because the model incorporates all of the information,
performance would be optimal under all conditions. The
predictions for the optimal solution, compared to the zero

delay and zero feedback strength condition, include:

1) Time spent on first decision:

a) Subjects will spend a substantial
amount of time for the first decision,
solving a complex, multi-order Riccatti
equation. Time spent on the first
decision will increase quadratically as
delay length increases, since the matrix
to be solved requires additional states.

b) Feedback strength, on the other hand,
does not have an influence on time spent
on the first decision, because it does
not change the order of the matrix of the
Riccatti solution; however, a feedback
strength of zero might be the possible
exception, since some of the calculations

simplify.



2) Time spent on later decisions:

a) The optimal rule requires subjects to
multiply each information cue by a weight
computed at the beginning of the trial
and add the results together. The
computational effort required is
obviously significantly less than solving
a complex, high-order matrix equation.
Thus, time spent on later decisions will
be significantly less than for the first
decision. The more delay states present
require more multiplications to be
executed by the subjects. Thus we would
expect to see more time spent on longer
delay conditions.

b) Feedback strength, on the other hand,

will not change the computational effort

needed to derive a decision, thus no

effect of feedback strength is expected.
3) Scores:

All scores will be optimal.

Weight adjustment only model- predictions

This model suggests that subjects focus solely on the
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quantity to be controlled, i.e. inventory gaps. Inventory is

the variable which generates performance, thus the most
salient. Furthermore, it is the only one for which a
reference value can easily be obtained. The inventory gap
should be 0. In contrast, it is uncertain as to what the
appropriate values for production or sales should be at any

moment in time.

The 'Weight Adjustment Only' model would suggest that
decision time does neither vary with delay time nor with
feedback strength. Hence, performance is best in a no-
feedback situation and gets worse with increased feedback
strength and increased delay time. Specific predictions for

this model include:
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1) Time spent on the first decision:
a) Since calculations are presumed to be
done intuitively, time spent on initial
decisions is shorter than the rational
model.
b)Feedback strength has nc effect.

2) Time spent on later decisions:
a) Delay has no effect.
b) Feedback strength as well has no
effect.

3) Scores:
a) Increasing delays cause significantly
increased costs relative to optimal,
since this model neglects all the
information that additional delay states
introduce.
b) Increasing feedback strength also
increases costs relative to optimal,
since it is assumed that weights are not

sufficiently adjusted in response to
increases in gain.

Weight and cue adjustment model- predictions

This model suggests that subjects take additional
information into account besides observing the variable to be
controlled. The "Weight and Cue Adjustment" model provides
for the possibility that subjects consider additional
information that is generated as a consequence of increasing
the number of delay states. However, they do not take all of
the information into account as the rational model assumes.
The way the information is combined and processed is based on
implicit heuristics rather than the notion of an optimizer

strategy.

The 'Weight and Cue Adjustment' model would suggest that

decision time varies linearly with delay and is invariant



with respect to feedback strength. Relative performance is

best under a no-feedback situation and gets worse with both
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increased positive feedback strength and delay, assuming sub-

optimal weights. The weight and cue model compared to the

weight only model makes the same predictions about increasing

feedback strengths, but their differences are apparent with

increasing delay. Specific predictions include:

1)Time spent on the first decision:

a) Longer discrete delays imply a longer
first decision time because subjects must
deal with additional information.

b)Feedback strength, conversely, does not
influence time spent.

2) Time spent on later decisions:

a) Should increase with increasing delay
as additional multiplications have to be
performed. .

' b) Feedback strength has no effect

3) Scores:

a) With increasing delays, score worsens,
but not as severely as the "weights only
model," since this model incorporates
increasing delays to a degree.

b) Increasing feedback strength causes
score to worsen but not significantly
compared to delay conditions and Weights
only model.

Figures 2.7.a, b, & c summarize the predictions made by

each model over all of the levels of each variable. While

some models make the same predictions, there are distinct

differences in several of the conditions.

I will use those

differences in the results section to distinguish between the

models.
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Weight Adjustment Only Model

Increasing Increasing
Delay Gain
Score relative
to optimal worsens
worsens
Time Spent
on First
Decisions ) remains the same
remains the same
Time Spent
on Later .
- . remains the same
Decisions remains the same

Figure 2.Cb Walight adjustment only model:
treatment praedictions



Weight and Cue Adjustment Model
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Increasing Increasing
Delay Gain
Score relative worsens worsens
to optimal
Time Spent
on First
Decisions increases remains the same
Time Spent
on Later . .
Decisions increases remains the same

Figure 2.6c

Waight and cue adjustment model:

treatment predictions
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3. Results

3.1 Overvievx

Throughout the analysis section, results will be
repeatedly reported within the framework of a standard
presentation "toolkit." Therefore, it is useful to fully
understand the elements of that toolkit. We provide an
introduction in the “>llowing. At the core of this section
is the analysis of variance. All of the results are
presented in the following order: 1) a mean table to provide
the reader with a brief orientation as to what happened in
the various conditions, 2) results of the ANOVA are presented
along with the significance level of the treatment, practice,
and subject effects, 3) each of these effects will be further

illuminated with a figure showing the effects.

In the three results figures a "box and whiskers"
template chows the median, longest, shortest, third longest,
and third shortest dependent measure, as in Figure 3.1. The
outlying horizontal tick marks represent the extreme scores
for a subject, treatment, or sequence, while the rectangle
defines the third largest and third smallest scores, and the
median is shown as the horizontal tick mark located between

the upper and lower ends of the rectangle.
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———p——  largest value

third largest value

median

third smallest value
-J— smallest value

Figure 3.1 Box and whiskars template

Using the toolkit, we will investigate four different
series of data: 1) analytical benchmarks to provide an
understanding of the task itself and the ranges of possible
performance, 2) scores actually achieved by subjects and
their comparison against the various benchmarks, 3) time
spent by subjects which is one indication of the heuristics
used by the subjects, and at that time, we will start to
complement the ANOVA's of the subject's effect with a
regression analysis in which we attempt to investigate to
what extent differences between "high" and "low" performance
can be attributed to differences in the amount of time spent
to make a decision, and 4) an analysis of control effort as
measured by the amount of control exerted by the subjects
over the system. Control effort analysis concludes the
analysis of directly observable data supplied in chapter 3,
then, in chapters 4 and 5, we will provide notebook and
regression measures thaﬁ allow further insight into the

heuristics employed by subjects.
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Each of the four sections will be presented within the
same outline template: 1) introducing the measures utilized
and the motivation for using them, 2) analyzing the data with
the toolkit previously described, and 3) an overall summary

for each subsection.

3.2 Benchmarks

In the following section, we will discuss the
performance of the optimal rule, no-control rule, and the
differences in performance between the two rules in order to
provide an illumination of the controllability of the task as

further described in subsection 3.2.3.

In describing the performance of subjects in the stock-
adjustment task, it makes sense to provide an understanding
of the possible range of performance. We need benchmarks to
assess subjects' behavior. The benchmarks that I have chosen
differ with respect to the level of information and
processing that they utilize: the optimal control rule,
defining the "ceiling" of performance, and the zero-control
rule, providing a measure of the "floor." There are an
infinite number of rules that fall between these two

benchmarks, including subjects' rules.

A simulation analysis was conducted in parallel with the
actual analysis. Fifteen "computer subjects" played through
all of the trials in the same order and with the same
exogenous sales as the fifteen actual subjects. Thus, there
are 225 runs for the "optimal rule subjects” and 225 runs for

the "no-control rule subjects."”
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3.2.1 2Analysis of "ceiling"

As described in the experimental design section, the
optimal control rule utilizes all of the information cues
available and combines them in the best possible manner, i.e.
the Ricatti solution. The optimal rule discards any
information.that is redundant and unnecessary. For example,
the optimal rule ignores all "history" in the sense that past
values of any state carry no information for the current
value of the state. As far as the optimal rule is concerned,
it does not matter what path the variables, such as
inventory, took to reach their current state. The optimal
rule utilizes information about the current state of the
system in the form of current inventory, production, sales,

and the various stages of supply-line production.

The optimal rule strives to bring the system towards a
State of equilibrium. 1In equilibrium, inventory is zero and
production equals sales. In equilibrium, no further
production changes are indicated resulting in expected costs
per round of zero, thus achieving minimum expected costs. It
is important to note that the optimal rule dces not have any
more information than subjects co, and it must respond to the
same exogenous randem walk throughout a game. Following the
optimal expectation for demand, the rule acts or the
prediction that independent séles in the future will be the

same as they were in the previous round.
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Figure 3.2 illustrates the weights that the optimal
rule associates with each variable under the treatment
conditions of delay and gain. The optimum solution is not
contingent on the particular random walk. Rather, it is
general for any input (any random walk or any stationary
input). The weights were derived numerically by using Matrix
¥ as installed on the Athena computer system at MIT.
Inventory® , sales®, and production® indicate the current
value of these variables. Production-1 to 4 indicates that
these variables are future production states. The weights
associated with each variable indicate the relative
importance that the optimal rule attaches to that piece of

information.
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Weights Assigned to Information Cues
by the Optimal Rule

Gain
-0.6 -0.3 O +0.3 +0.6
Inventory® | -0.3233 | -0.3508 | -0.3840 | -0.4258 | -0.4834

Sales® 0.4943 { 0.5799 | ©.7051 0.9105 1.3316
Production® -0.4943 -0.5799 -0.7051 -0.9105 -1.3316
Productionl 0 0 0 0 0
Production2 0 0 0 0 0
Production3 0 0 0 0 0
Productiond 0 0 0 0 0

Inventory® | -0.3551 | -0.3703 | -0.3840 | -0.3956 | -0.4051

> Sales® 0.8640 1.0963 1.4731 2.1788 3.9512

= Production” 0 - 0 0 0 ]

7 2 Productionl -0.3551 -0.3703 -0.3840 -0.3956 -0.4051

A Production2 -0.5090 -0.7260 -1.0891 -1.7832 -3.5461
Production3 0 0 0 0 0
Productiond 0 0 0 0 0

lnvemory° -0.3759 -0.3823 -0.3840 -0.3823 -0.3782

Sales® 1.3121 | 1.5420 | 2.2410 | 3.5341 | 6.7349
Production® 0 0 o 0 0

4 Productionl -0.3759 -0.3823 -0.3840 -0.3823 -0.3782

Production2 -0.2911 -0.23384 -0.3840 -0.4262 -0.4640

Production3 -0.2166 -0.2990 -0.3840 -0.4663 -0.5428

Productiond -0.2285 -0.5223 -1.0891 -2.2593 -5.3499

° Denotes current state of the variable

# Denotes future states of the variable

Figure 3.2 Optimal cue weights

Under zero delai, you will note that the weights for
sales and production are identical. The optimal rule makes
intuitive sense in that it strives for what would be an
overall decrease in costs and, thereby, system equilibrium.
In a zero cost equilibrium, two conditions need'to be
satisfied simultaneously. Inventory needs to be zero and
production needs to equal sales. If only the first condition
were fulfilled, production and sales would not balance out;
inventory would begin to accumulate to the difference between

the two rates leading to an inventory gap. Only when the
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weights on production and sales are exactly equal will the
computed result for production change be zero, the only value
that does not change production, and thus does not disturb

equilibrium.

In terms of increasing delay, notice that the optimal
rule does not place any significance upon current production
when production delays exist, since current production does
not hold information value in the presence of predetermined
future production values. As seen in the weights, the
importance of inventory remains relatively constant across
gains, while the emphasis on sales and production increases

quite dramatically across gain and delay conditions.

Negative gain aids in the control of the system while
positive gain, a self-reinforcing loop, makes control more
difficult. The optimal rule, concurring with our intuition,
adjusts the weights given to sales and production in positive
feedback conditions more dramatically. Likewise, comparing
the ratio between inventory and the discrepancy between
production and sales, the optimal rule puts more and more
attention on the discrepancy as opposed to inventory. The
relative importance of a rate discrepancy increases with
increasing gain. Hence, the optimal rule shifts to a more

"aggressive" derivative control.

Additionally, notice the weights associated with current
inventory and production delayed by one round, Pl; they are
the same. The reason for this is that the optimal rule deems
the one-round, delayed production as merely an indicator of

the level of current inventory. For instance. if we were
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faced with ordering heating oil that would be shipped two
weeks from now and if we had ordered heating oil previously
that would arrive by truck shortly, then we count the oil in
our tank and the oil on the truck in assessing our current
inventory. Thus, it makes sense that the inventory in the
tank and arriving by truck should be weighted equally when

making further ordering decisions.

Overall performance

Costs diffe. widely among treatments. As gain and delay
increase, so do optimal costs, indicating a dramatic
difference in objective difficulty. In the most difficult
task, gain +0.6, delay 4, costs are on average more than five
hundred times as high as in the easiest conditions, gain
-0.6, delay 0. In order to facilitate analysis and
comparisons of subjects' costs and optimal costs, the logp of
the costs was used for further analysis. Figure 3.3 provides

the mean log;(costs) per condition.
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h 13.22 13.61 | 414.19 15.16

19.5

15.1 17.4
21.9

16.31 19.2
7
03 ' 0 ' +03 ' 406

Figure 3.3 Optimal rule: mean costs im logz($)
across treatments

Analysis
_Source af F probability
Overall treatment 14,182 2432.55 p<.01

Delay 2,182 8449.03 p<.01

Gain 4,182 3708.37 p<.01

Delay x Gain 8,182 290.52 p<.01
Suhject 14,182 1.08  —==--
Practice 14,182 60.96 p<.01

-- not significant

Figure 3.4 Optimal rule: costs in log2($) -
statistics
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In order to familiarize the reader with the standardized
toolkit, used throughout the thesis, the computerized
subjects' data will be analyzed with ANOVA in the same way
the actual subjects' data are analyzed. We use the log; of
the costs instead of the actual costs as the dependent
variable. As Figure 3.4 shows, not surprisingly there is no
subject effect, since, after all, the "Macintosh subjects"
are identical. Surprisingly, there is apparent evidence for a
practice effect. However, the practice effect should be
understood as a sequence effect arising from the 15 different
random walks used across trials.!

Treatment effects

As we see in Figure 3.5, there are strong treatment
effects with respect to delay and gain. Notice that the "box
and whiskers" rise from the left corner to the upper right,
indicating that the costs due to treatments increases
steadily under increasing delay and gain. In addition, under
increasing delay and gain there is an increase in

variability.

1 See the discussion in chapter 2 for a more detailed exploration of the relationship between the practice
effect and rardom-walk patiemns,



97

30 1
28 7
26 7

247

20 é é é
18: . E E
14 7 5 E E E E E E E

12 7

Log ) €))

10 T Y T T T T T T T T T T T T 1

-0.6 -0.3 0 +03 +0.6 -0.6 -0.3 0 +0.3 +0.6 -0.6 -0.3 0 +0.3 +0.6
Delay: 0 Delay: 2 Delay: 4

Condition (ranked in order of increasing gain in each delay condition)

Figure 3.5 Optimal rule: costs in logz2($)- treatment
effects

For a complete presentation of the toolkit, we provide
the additional two figures, 3.6 and 3.7, showing practice and
subject effects. The reader may peruse the figures in order
to become familiar with the standard presentation toclkit.
The subjects are listed with the numbers they were randomly
assigned before the experiment, thus the label "pre-
determined order." The trial numbers are presented with the

session and game, e.g. 1.1 is session 1, game 1.
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Practice effects
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42 43 44

Trial number (ranked in order of occurance per sessica)

Optimal rule: costs in log,($)-
sequenca eaffects
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Subject effects
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Subjects (ranked in pre-determined order)

Figure 3.7 Optimal rule: costs in log,($) -
"subject” effacts -~ due to variations in random
walkz across sequances

3.2.2 Avalysis of "Floor"

At the other extreme, the no—ccatrol rule, which serves
as a "floor™ for possible scores, operates by not performing
any control whatsoever. Thus, changes in production are
always zero amxd inventory is driven by exogenous sales alape.
While the rule is extremely simple, it pneeds to be noted that
the no—comtral rule is by no means the worst decision rule
that subj=cts could follow. For example, overzealous control
or poorly formulated control rule might very well de-

stabilize the system rather than stabilize it and would do

1

15
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far more harm than simply refraining from any intervention at

all.

Overall performance

Figure 3.8 shows the performance of the no-control rule.
Average logp(costs) are the same for all conditions,
remaining, on average, at 22.16 which is $9,174,292. Costs
for all conditions are attributable to costs associated with
inventory gaps that are driven by the random walk exogenous
inputs. Also, with no changes in production, the side
effects feedback loop is never active - gain makes no
difference. Since the no-contrcl rule does not make any
production changes, it does not incur costs for changes in
production. Thus, the costs are solely a function of the
exogenous sales input to the system as they are accumlated
into inventory. A random walk which does not wander far from
its initial value will result in a smaller inventory
discrepancy, and thus lower costsg, while a random walk that
wanders farther away from its initial value causes in each
round huge accumulatioas in inventory. In fact, the most
"difficult” random—walk input yielded costs 86 times as great

as the “easiest™ random—walk input.
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122.16 F 22.16

22.1 22.1

03 V0
Gain
Figure 3.8 No-control rule: mean costs in logz2($)
across treatments

Analysis

As shown in figure 3.9, there are neither treatment
effects nor subject effects, as evplained above. There are
strong sequence effects. It is important to note, as we
mentioned in chapter 2, that the practice effect is a
combination of two things. Performance, as it chanygyes over
trials, is confounded with a particular instance of a random

walk. These two effects cannot be distinguished from each

other statistically.
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Source af F probability
Overall treatment 14,182 0.00 = ===
Delay 2,182 0.00 = —--—-
Gain 4,182 0.00 = ————o
Delay x Gain 8,182 0.00 @ ————
Subject 14,182 0.00  —meem
Practice 14,182 infinite p<.01

-- not significant

Figure 3.9

Ro-control rule:
statisztics

costs in loga($) -

The practice effect here, is dependent on the

variability of a perticular rzndom walk.

For completeness,

Figures 3.10, 3.11, and 3.12 show what has just been

described.
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Treatment effects
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Figure 3.10 No-control xule: cozts in logz($§) -~
treatment effeacts
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Practice effects
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Trial number (ranked in order of occurance per sessioa)

Figure 3.11 Ko-control rulae: costs im logz ($)-
practica affect:e
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Subjec. effects
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Figure 3.12 MNo-control rule: costs in log2($)-
subjects effects



3.2.3. Analysis of "Ceiling"™ vs. "Floor"

Overall performance

The objective difficulty of the task is determined by
the performance of the optimal rule, while the no-control
rule determines a lower boundary of performance. Tocether,
the two control rules define the region of controllability.
As can be seen in Figure 3.13, the controllability region
narrows considerably as difficulty increases. For instance,
in the easiest condition, the optimal rule bas costs 100
times lower than the no-control rule, and in the most
difficult condition the no-control rule has only 20% higher
costs than optimm. It is p:iedicted that subjects'
heuristics will produce performance somewhere within the
region of controllability. However, the no—control rule may
outperforma a subject who uses a poorly formulated heuristic.
Likewise, the optimm rule produces minimum expected costs
conditional on the optimal expectation that future exogenous
sales will equal their current value. However, a subject may
get lucky in guessing which way sales will in fact move and
may then outperform the optimal rule in any trial of finite

duration.
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rigure 3.13 Controllability of thae stock-adjusment
task under increasing delay and gain

This phenomenon is illustrated even by the no-control
rule. Compared to the optimmm rule, the no—-control rule gets
“lucky™ sometimes. Not only does the average of the no-
control rule get close to the performance of the optimal
rule, but the best of the no-control performances was better
than optimum in the most difficult condition. &s a matter of
fact, the no—control rule achieves lower costs than optimmm
in five out of fifteen trials in the most difficult
condition. The optimal rule expects exogenous sales to be
exactly what they were in the previous round, and acts upon
this belief with appropriate changes in production. The no-
control rule, on the other hand, makes no production changes
despite the varying random—walk patterns, and it therefore
incurs only costs for inventory discrepancies and not for

changes in production.
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Whenever exogenous sales take a turn opposite in sign to
the current inventory discrepancy, the no-control rule gets
“lucky, " as it sees the inventory discrepancy diminish. By
contrast, the optimal rule is "caught by surprise" and is
stuck with the consequences of unwarranted control actions.
Obviously, by definition, the optimum rule is always better

than the no-control rule on average.

3.2.4 Discussion of benchmark results

The result of dramatic differences between treatment
conditions under optimal rule conditions underscores the need
for explicit benchmarks. If we were to look at subjects'
scores alone, we would confound objective difficulty of the
task across treatment conditions with subjects' ability to

deal with the different treatment effects.

The small gap between optimal and no-control performance
for hard conditions seems to mean that the relative
performance measure alone will not tell us how well subjects
did. We will have to consider subjects' cue-weights and

other data to determine how they behaved and not just what

o-he-. A A
caey GIG.
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3.3. Subjects' Scores

3.3.1 Subjects vs. Benchmarks

To reiterate, the optimal control rule cambines the
necessary information in the best possible manner, while the
no-control rule makes no control actions on the system, thus
incurring larger costs. In terms of information cues
combined, subjects' decision rules should fall somewhere
between optimal and no-control. One could hypothesize that
subjects operate as if they were in a no-delay, no-gain
situation. In the presence of delay and gain, subjects
adjust tke weights that they attach to cues slightly to
account for the presence of these factors. Subjects‘® scores,
therefore, should on average fall somewhere between the upper
and lower benchmarks.

Plotting subjects' average costs against average
optimam and no-control rule's costs reveals a surprising
result, shown in Figure 3.14. The subjects' average
performance lies roughly parallel to the optimm performance,
remaining approximately 4 times higher than optimm across
the 15 conditions. The subjects' average costs even rise
above the no-control rule's costs in the most difficult
conditioa. Contrary to what one might have expected,
subjects' costs are not an average of the two benchmarks,
ratber, they remain parallel but consistently higher than
optimal.



110
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Figure 3.14 Controllability in logz($):

average optimom & averaga no-control ws. average
subjects' costs

The guestion of whether to use the absolute difference
between scores or the ratio remains open. I previously
stressed the importance of benchmarks for comparing against
subjects' performance and choose (he optimem and no-control
rules as a "ceiling™ and “floor," but I have not yet
addressed the issue of which manner of numerical compariscn
is most meaningful. Should we compare distances or ratios?
Arguments can be made for both. Consider the following
example. One subject achieves costs of $20,000 ia a condition
in which the optimca rule results in $10,000 and another
subject receives costs of $1,010,000 in a condition in which
the optimm rule yields $1,000,000. Did the subjects
perform equally well, or did one perform better? Both
subjects have $10,000 higher costs than optimal. and after

all, 2 dcljar is a dgllar. The first subjscc had costs twice
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as high as optimum, while subject 2 had costs of only 1%
higher than optimum. It seems to us that the percentage
differences give a stronger indication of performance. Thus,
the majority of the analyses that follow were made on a

percentage basis, but we provide the distance comparisons in

section 3.3.3.

For the detailed presentation of subjects' performance,
we will structure the discussion around five areas: 1) mean
costs, 2) analysis of subjects' logy(costs), 3) absolute
differences between subjects' scores and optimal scores,

4) ratios of subjects versus optimal, 5) ratios of subjects

versus no—-control.

The final costs achieved for each trial are used to
evaluate overall performance for each subject. In accord with
the rules set out in the methodology section, the three worst
trials were discarded for each subject in order to determine
just compensation for the experiment, but the results of all
fifteen trials were used for the purpose of analysis as

described in the rest of this section.
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3.3.2 Analysis of subjects' logz(costs)

Overall performance

As shown in Figqure 3.15, subjects' mean logz(cost) was
18.28. Costs range from 12.46 to 29.74. BAgain, we see
differences due to treatments, suggesting that subjects were
influenced by the presence of delay and gain. As expected,

we see the worst performance under the most difficult

conditions.
Ovesall
Mcan 24 .00
1828 P.18.00
12.00_\
6.00 3 14.92
0.00
6.9
>
=
A 8.98

——

03 ' o ' w3 ' 406

Gain

Figare 3.15 Subjects: costs in loga($) across
treat=ments
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Analysis
Source df F probability
Overall treatment 14,182 24.65 p<.01

Delay 2,182 98.52 p<.01

Gain 4,182 32.53 p<.0l

Delay x Gain 8,182 2.24 p<.05
Subject 14,182 5.57 p<.01
Practice 14,182 2.50 p<.01

Figure 3.16 Subjects: in log2($)- statistics

As Figure 3.1f reveals, there are significant effects of

delay and gain (p<.01) and their interaction (p<.0S5).

Likewise, subject and practice effects are significant

(p<.01).
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Treatment effects

Figure 3.17 shows subjects' logz(costs) for each of the
15 conditions. A strong effect of delay length and of gain
is readily discernable. &s both delay and gain increases,

performance deteriorates.

Log (%)

10 T ™ T T | ¥ T T T T T T T 1

06 €03 0 +03 406 06 03 0 +03 +06 06 03 0 +03 +06
Delxy: 0 Deixy: 2 Delay: 4
Condition (rankod ifs orGer of increasing gzim m cach deday condition)

Figura 3.17 Subjects: costs in logz($) -
treatment affects
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Practice effects

ANOVA Figure 3.16 shows that there were differences
between trials (p<.0l). Figure 3.18 shows the subjects' score
for each of the 15 trials of the experiment. Although the
ANOVA revealed a significant effect of sequence, a clear
pattern is difficult to see from the figure; however, it
appears that performance in the first two trials contains

greater variance and more poor performers.

30 1

24 7

Log,, (%)
3
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18 7 1 8 N
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lo ) L3 L3 L} L1 L] L] LS L] L] 1 L4 ¥ T L] L]
11 1.2 13 21 22 23 24 31 32 33 34 41 42 43 4.4
Trial nmnber (ranked in order of occurance per session)

Figure 3.18 Subjects: costs in logp($) -
practice effects
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There were significant differences between different

subjects (p<.0l), as Figure 3.16 reveals. Figure 3.189 gives

an >verview of subjects' performance. While the grand mean

is 18.28, two subjects, (1 and 13), reach the grand mean only

in their best trials,

approximately 20.

Log ($)

and their mean fo: all trials is

30 4 —
-
28 - T
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T I
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20 - ] I
18 - B
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Subgects (rmnked m pre-determined asdex)
Figure 3.19 Subjects: costs in loga($)-

subject effects
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3.3.3 Absolute difference between subjects' scores and

optimal

In order to show the difference between comparing
absolute differences of performance and logz differences of
performance, the subjects’' absolute differences in costs from
optimum are supplied in Figure 3.20. The cost differences
range from -2,858,306 to 893,364,685, while the overall mean
is $10.7 million. Subjects show large increases in costs in
the most difficult conditions, peaking in the 2 delay, +0.6
gain condition with a mean score of $68.24 million. The
scores show an increased distance from optimum across
conditions, except for the 0 delay, -0.6 gain condition. 2

Thus, we can see that there appears to be an effect of

treatments.

2 Thee mean in this condithon is caused by sm cotlior of 51979418 wisich is coxsivieschily higher then e
scooed highent scose i Seat condition of 432,201,
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Overall 22.50w
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Figure 3.20 Subjacts vz. optimum: absolute
differences i $

So far we have mainly looked at subjects' absolute costs
as distance from optimun., What we've established lwas that
subjects' performance deteriorates as the objective
difficulty of the task increases. The following description
provides a more detailed analysis of the logz differences of

subjects' performance campared to optimum and no-control

rules.
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3.3.4 Subjects vs. optimal

Overall pérformance

Figure 3.21 shows the average log; difference scores for
the comparison of subjects to optimal. On average, subjects
have costs a little greater than four times as high as

optimal, as indicated by the average difference of 2.12.

Overall
M
212
)’ 1.50
Q.75 2.28
0.060
0g2.53
=
= 2F3.04
Q
4
}
-0.6

Figure 3.21 Sabject va. optimom costs: averaga log:z
difference acrosz treatmants

It should be reiterated that applying the optimm rule
is not an absolute gquarantee for achieving the lowest costs
possible for the reason that in computing the rule, the only
knowledge used about exogenous sales is that they can be
described as following a random walk. Being lucky and
correctly anticipating the next values for exogenocus sales
would thus be one possible way to cutperform the optimal
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rule. Even the no-control rule, for instance, achieves lower
costs than optimum in five out of fifteen rounds in one

condition, as mentioned in subsection 3.2.3.

Analysis

Figure 3.22 shows no significant influence of
treatments, while subiject and practice effects are

significant (p<.01).

Source daf F probability
Overall treatment 14,182 1.3 -—---

Delay 2,182 1.02 -———

Gain 4,182 1,22 -

Delay x Gain 8,182 1.43 2 ————-
Subject 14,182 5.55 p<.01
Practice 14,182 2.36 p<.01

-- not significant

Figure 3.22 Subject vs. optimmm costs:
logz differenca -~ statistics
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Treatment effects

2As the figure 3.22 revealed, there is no effect of

treatments using the logz differences.

Log, (%)
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Condition (ranked in order of increasing gain in each delay condition)

Figure 3.23 Subject wvs. optimom costs:
log2 differcnce - tresatment effects
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Practice effects

ANCVA Figure 3.22 shows a practice effect (p<.01l), Lut
Figure 3.24 shows that a clear pattern is difficult to
discern. It seems, however, that the score is highest during
the first two trials and continues to improve slightly during
the rest of the trials. This trend is punctuated by several

exceptions, however (Trial 2.3, 4.1).

Log, ¢)]

'3 R L T L2 L] L3 T T T L3 T T T v 1

1.1 1.2 13 21 22 23 24 31 32 33 34 41 42 43 44

Tral number (ranked in order of occurance per session)

Pigore 3.24 Subject vs. optimum costs:
log2 difference - practica effects
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Subject effects

Figure 3.22 reveals distinct difference among subjects
(p<.01) . Figure 3.25 reveals that, on average, the subjects
end up with costs four times as high as those achieved by
applying the optimal control rule. Subjects' performance
varies considerably. While the lowest-performing subjects'
median trial shows costs more than sixteen times higher than
optimal (S1,S13), the highest-performing subjects produce
costs less than twice as high as optimum in their median

trial (S4,511,S512).

Logz($)

L

'3 L] L] 1 ¥ LB § L] L] 1 L] L] 1 & t

1 2 3 4 S5 6 T & 9 10 11 12 13 14
Subjects (ranked in pre-determined order)

Figure 3.25 Subject wvs. optimum costs:
log2 differance - subject effects
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3.3.5 Subjects vs. no-cor.trol

To compare subjects' performance against the benchmark
set by the no-control rule, we employ the same logz

differences used in the previous sections.

Overall performance

Figure 3.26 sh.ws the overall performance of subjects'
costs versus no-control rule costs. Negative differences
imply that the subjects achieved lower costs than the no-
control rule. Overall, subjects achieve costs almost sixteen
times lower than no-control. The difference of performance
ranges from -10.705 to a maximum of 9.485, which implies that

in some instances subjects perform more than 500 times worse

than the no-control rule.

1.00
Mean 'Loo*‘
-3.88 )~3.00 \
-5.%
-7.00

o 6.95 -7.24

Figure 3.26 Subject va. no-coantrol costs:
avarage logz differsnce acxoss treatments
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Analysis
Source df F prcbability
Overall treatment 14,182 2%.65 p<.01

Delay 2,182 98¢52 p<.01

Gain 4,182 32.53 p<.01

Delay x Gain 8,182 2.2&\ p<.05
Subject 14,182 5.57 p<.01
Practice 14,182 12.88 p<.01
-- not significant \

\
Figure 3.27 Subject va. no-control costs:
logz difference - statiastica °

Treatment effects

ANOVA Figure 3.27 shows that the overall effects of
delay and gain were significant (p<.0l), and the cross-
treatment effect of delay length and gain is significant
(p<.05). Figure 3.28 shows that performance differs widely

for the different conditions.

While the majority of the subjects cutperform the no-
control ;rule on average by more than 123 times in the three
most favorable conditions (Delay Length: 0; Feedback
Strength: 0.6, 0.3, & 0), the no—ccatrol rule produoces
lower costs cn average in the two least favorable conditions
(Delay lLength: 2 and 4; Gain: +0.6) k» 1.3 times less than
subjects. While the best subject outpecforms the no-coatrol
sule in the most favorable conditicn (Delay Length: 0; Gain:

-0.6) by more than 1000 times, the best subject in the least
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favorable condition (Delay Length: 4; Gain: +0.6) outperforms

the no-co.trol barely more than four times.
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Condition (ranked in order of increasing gain in each delay condition)

Figure 3.28 Subject we. no-comtrol costs:
logz difference - treatmsnt effocts

Two trends are readily apparent from the figure: 1.
Relative to the no—control rule, performance deteriorates
with increasing delay and 2. Performance decreases with
increasing gain. In addition, it appears that performance is
effected by the particolar cowmbination of delay length and
gain: Long delay times and high positive gains ~cause a

particularly steep decrease in performance.




Practice effects

ANOVA Figure 3.27 shows that the practice effect was

significant (p<.01).

control rule outperforms many of the subjects in their first
trial. Subjects' performance in the rest of the trials is
clearly improved. However, performance does not follow a

recognizable trend, but is characterized by considerabae

variation. For example, subjects' performance falls

unexpectedly in trial 3.3 and 3.4.

Figure 3.29 displays that the no-
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logz difference

practice aeatfects

The main cause for the obsarved variation seems to be

the outcome of the no-conrtrol rule,

rather than the outcome

of the subjects' decision-making. Remesmber that exogenous
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Figura 3.29 Subject wva. no-control costs:
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sales are random and are different from trial to trial.
Without the presence of any control at all and thus without
the presence of correcting negative feedback, differences in
exogenous sales are directly translatable into differences in

costs. As exogenous sales vary from trial to trial, so do

costs.

In contrast, random differences in exogenous sales
should have a much smaller impact on sales in the presence of
a control policy. Thus, we can assume that the control
applied by the subjects smooths out the random differences in

exogenous sales.
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Subject effects

ANOVA Figure 3.27 shows that the subject effect was
significant, (p<.01). Fig:re 3.30 gives an overview of
subjects' performance. Ail subjects outperform the no-control
rule in most of their trials; two subjects outperform the no-

control rule in all of their trials (S12,S15).
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Subjects (ranked in pre-determined order)

FPigure 3.30 Subject vs. no-control costs:
logz differemce -subject effects

Performance varies comsiderably between subjects. While
the lowest ranked subjects (S1,513) outperformed the no-
control rule by 4 times at their median, the highest ranked
subjects (53,58) outperformed the benchmark by more than 64
times at their median. While some subjects show a high
consistency in outperforming the no—countral rule (S11,512)

others show considerable variance (S4,S5,56,510).
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3.3.6 Discussion of subjects' performance vs. Lenchmarks

Treatment effects

The results so fav show a clear effect of delay and gain
on the cost achieved. That effect is mainly due to the
objective difficulty of the task. As the objective

difficulty of the tacsk increases, so do subjects' costs.

The question of which models subjects are using must
await a detailed analysis of their notebooks and linear
regression analysis. The convergence of the three analyses
will provide a better picture of subjects' heuristics than
one of the analytical methods alone. Hence, it seems

premature tc discuss the hypotheses based solely on the score

Gata.

Practice effects

As discussed in sectiomn 3.2.3, on the no-control rule,

the practice effect is attributable to two parts: learning
and random walk effects.

learning effects are difficult to assess because of the
noise caused by the random—walk patterns of exogencuas sales.
It seems clear, however, that the first two trials show worse
performance, and a plateau is reached from which we see only
a slight increase in performance, if any, over the trials,
showing that the initial training given to subjects prior to
the experiment did have the desired effect of moving the=a
guickly through the orientation stage.
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Subiject effects

Under increasing delay and gain, there seems to be a
particularly strong deterioration in performance among those
subjects who performed worst. Subjects who do poorly in the
easier trials do especially badly in the most difficult
trials as evidenced by the increased variance in the more
difficult conditions. Hence, there seem to be differing
plateaus for different skill levels. Rapoport and Ebert also
struggled with the differences between subjects. For
instance, Rapoport (1964b) modified his adaptive decision
model in order to accommodate differences in the horizon with
which subjects assessed the costs for various choices. His
regression models suggested that subjects utilized various

horizons for maximizing their payoffs.

As shown in Figure 3.30, these comparisons show
substantial differences between different subjects which were
expected; however, it will be one of the tasks in this thesis
to illuminate why those differences arise. A more detailed
discussion will await the notebook and regression analysis.
The form of this analysis will assess the extent to which
subjects utilize different frameworks, based on the cues th#t
they consider and the weights givem to them, and will combine
the framoworks with different theories of how the frameworks
exhibit dysfunctiomality.

Various heuristic biases could also be responsible for
the subject differences. Since the training did seem to have

the effect of familiarizing the subjects with the task
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sufficiently such that littlce learning was needed with which
to begin control, we can assume that the biases probably are
not arising from an acquisition phase of information
collection. 1In fact, this was an area that was controlled
for in the design of the study. The biases are probably
arising, then, from the processing of the information, which
suggests that further analysis should focus on the manner in
which people are combining the cues to formulate their
decisions. The notebook analysis seems particularly well
suited for determining, among those subjects that wrote

calculations, what type of strategy they were employing.
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3.4. Time data

We will use time spent on initial decisions and time
spent on later decisions to distinguish between the competing
hypotheses. Time spent on initial decisions is the average
time per decision subjects spend in making their first
decision in all games. Later time spent on decisions is the
average time spent per round following the first decision of
all games. In the discussion section, we will discuss the
different hypotheses in light of the time data. Beyond the
basic treatment, practice, and subject analyses, we will
perform a regression analysis in orger to determine the
correlation between good and bad performance relative to the

time spent per decisicn.

3.4.1. Time spent on later decisions

Overall performance

Figure 3.31 shows the mean time spent on later decisions
by treatment conditions. The minimamm time spent on a later
decision was .22 minutes, and 1.6 minutes was spent as the

longest time. The average t'me spent on later decisions was

.54 minutes.
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Figure 3.31 Avarage time spent on lazter decisions:
minutes spent across treatments

Analysis
Source df F probability
Overall treatment 14,182 1.88 p<.0S
Delay 2,182 1,11 -----
Gain 4,182 0.720 = --=--
Delay x Gain 8,182 2.67 p<.01
Subject 14,182 15.90 p<.01
Practice 14,182 28.60 p<.01

-- not significant

Figure 3.32 Average time spent on later decisions:
minutes spent- statistics

Figur- 3.32 reveals a treatment effect attributable to
the interaction of delay and gain (p<.01). Both subject and

practice effects are significant (p<.01).
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Treatment effects

From Figure 3.33, there does not appear to be large

differences in the average time spent per condition; however,

ANOVA Figure 3.32 reveals an overall treatment effect,
attributable to the interaction of delay and gain, but it is
not clear how to interpret this interaction. The minimem time
spent on a later decision was .22 minutes, and 1.6 minutes
were spent as the longest time. Subjects spent .54 minutes

on average on later decisions.
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Tigure 3.33 Avarzgs tisa spent oa later dacisions:
ndoutes spent—- tresatmsnt effects
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Practice effects

As Figure 3.32 shows, significant differences between
trials exist (p<.0l). Figure 3.34 shows time spent on the

later decisions for the 15 consecutive trials.
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Trial Nember (ranked in order of occurrence)

Average minutes spent per round (excluding first round)

Figure 3.34 Averzga time spent on later decisioans:
minutes gspent- practice effects

The median time, being slightly abowve 1 minute for the
first trial, falls to .4 minutes for the second game in the
second session (5th trial). In the fourth session it varies
between .3 and .4 minutes. The minioum time falls from .5
minutes for the first trial to .23 minutes in the fifth trial

and stays at this lewel for the remainder of the trials. The
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maximum time spent in each trial falls from 1.53 minutes for
the first trial to .67 minutes for last two trials, with some
spikes interrupting the broad pattern. The third longest time
shows a similar pattern falling from 1.23 minutes in the

first trial to .4 minutes in the last one.

In summary, a strong practice effect is observed during
the first four trials. After that, the minimum time does fall
further and the median time shortens only slightly. However,
the spread between minimum and maximum time continues to

narrow until the last trials, as the maximum time continues

to decrease.
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Subject effects

ANOVA Figure 3.32 shows significant differences between
subjects (p<.01), and Figure 3.35 shows the time each subject

spent on the later decisions of each trial.
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Figure 3.35 Average time szpent on later decisgiomns:
mainctes spent~ subject effects

The subjects are shown in pre—determined order.
Differences between subjects are apparent. The median time
spent ranges from .27 minutes (sobject 15) to .77 minutes
{subject 10). The miniuum time spent on a trial ranges from
.23 minutes (subject 8,15) to .53 minutes (subject 10). While
the difference between the 3rd shortest and the 3rd longest

trial is below .17 minutes for some subjects (subject

15
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1,7,9,15), it is more than .5 minutes for others {subject

4,6,8,10).

Regression Analysis

To determine the correlation of time spent and score
achieved, subjects were rankeil according to the log:
difference between subjects' costs and a combined benchmark

of the average of optimum and no-coantrol rules' costs. 3

As time spent increases, we would have expected that
score would have increased, but this assumption is not
supported. See Figure 3.36, which shows that there are no
clear differences between subject's performance attributable

to effort in later decision time spent.

3 The log; differences ranged from -2.399 to +1.652. Refer to the
notehook analysis, page 211, for the exact formula used to determine the
logy; di/ference and a complete list of the ranked acores for ail 15
subjects.
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Figure 3.36
regression against cost par subject

Averaga time spent on latar deciszions:

3.4.2. Time spent on the first decision

The time that is spent on the first decision in each

game deserves to be treated separately. This data point could

conceivably provide insight into the guestion of to what

extent subjects develop a strategy at the beginning of each

game that they apply throughout the rest of the game. It can

be argued that the time spent on the first decision is spent

on three separate activities: (1) Reviewing the new delay

length and gain that will be in effect during the trial, (2)

formlating a strategy in response to these conditions and

(3) applying the strategy to compute the first decision.
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Overall performance

Figure 3.37 shows the mean time spent on the first
decision by treatments. The time spent on the first
decisgion ranged from a minimm of .19 minutes to a high of
17.90 minutes. On average, 1.62 minutes were spent on the
f-rst decision. From the figure, we can see an increased
time spent on the first decision in the 0 delay, -0.6 gain
condition, which probably represents a familiarization
effect. In addition, average time spent does not seem to

vary considerably across conditions.

rigure 3.37 Tima spent on first decizion:
minutes spent across treatmants
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Analysis
Source df F _probability
Overall treatment 14,182 0.93  -—---
Delay 2,182 0.93 = ———e=
Gain 4,182 0.68  ————
Delay x Gain 8,182 1.05 = -
Subject 14,182 3.02 p<.01
Practice 14,182 10.69 p<.01

-- not significant

Figure 3.38
miontes

Tima spant on first decision:

statistics

From ANOVA Figure 3.38, no treatment effects are

present, bnt subject and practice effects are significant

(p<.01).
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Treatment effects

As ANOVA Figure 3.38 shows, neither a treatment effect
of delay length nor of gain can be detected from the data.
From Figure 3.39, subjects seem to take the same amount of
time for their first decision no matter which condition they

face.

Minutes spent on first decision
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Condfition (ranked in order of increasing gain in cach delay condition)

Tigare 3.39 Time spent on first decisioa:
minutes spent- treatmsat effects
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Practice effects

ANOVA figure 3.38 shows significant differences between
trials (p<.0l). Figure 3.40 shows time spent for the first

decision as a function of the trial sequence.

Minutes spent on first decision
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Figure 3.40 Time spent omn first dacigion:
minutes spemt- practice effects

Median time spent on the first decisicn decreases from S
minutes in the first trial to 40 seconds im 6th trial. It
roughly remains at this level throughout the rest of the
trials. A "beginning-of-session effect”™ overlays the general
practice effect. Subjects spend more time at the beginning of

the first trial in each session (1.1, 2.1, 3.1, 4.1) than at
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other trials. This effect is not unexpected, since subjects

need socme time to reorient themselves.

Subject effects

Figure 3.38 reveals significant differences between

subjects (p<.91). Figure 3.41 shows subjects' differences.

While some subjects spend a median time of only 20 seconds

(S1,5195) on their first decision, the median for other

subjects is almost six times higher (S4,S13).

Minutes spent on first decision

Figure

o § grgly

1 2 3 4 5 6 7 8 9 1011 12 13 14 15
Sabjects (ranked in pre-detemmined order)

3.41 Tima spent on first decisgiom: =i zates
spaat- subject eaffacts
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Some subjects show a variance of more than four minutes
for the bulk of their first decisions (SS,S6,S11), while
others show a variance of less than one minute (S1,S2).

Again, the observed significant difference between subjects'

behavior is not unexpected.

Regression Analysis

A regression analysis of time spent on first decisions
against differences in scores achieved revealed no
significant correlation between these two measures. As time
increases, we would have expected that score would have

increased; this assumption was not supported. See figure
3.42.
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Figuzre 3.42 Tiae spent oan first decision:
rogression against cost par subject



S RAR ey T T T DT A

147

3.4.3 Discussion of Time Data

Treatment effects

As shown in Figure 3.37, the mean for the subjects' time
spent on the first decisions is about one and a half minutes,
while the mean time spent in the later decisions, from Figure
3.31, is approximately one half minute. Given the short
decision times and given that subjects need some time to
orient on each screen, the time data suggest that subjects

carnot be performing very sophisticated calculations.

The lack of treatment effects speaks in favor of
decision rules which do not take additional information into
account. with increasing delay and gain. Furthermore, these
results support a mathematical model that takes the same
awount of effort. Surprisingly, this is not the pattern of
results that were expected. Score data suggest that more
difficult decision situations, based on the objective
difficulty found in the optimal rule simmlation amalysis,
would require more time spent on a decision. In fact, we see
that slightly less time is spent on the more difficult
decisicn conditions.

An offsetting hypothesis, however, could be that as the
difficulty of the task increases, the time spent on the
decisions decreases; in essence, in easy conditions subjects
spend more time because. they can, with reasonable wmental
effort, "figure the system out”, while in more diffimlt
conditions subjects may simply give up. We caanot
distinguish between either of these two views, nor can we
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rule oct other possible explanations, until the more detailed

notebook analysis.

Time spent on later decisions provides an opportunity to

test the three central hypotheses of this thesis.

The rational hypcthesis would predict that time spent
per trial increases with length of delay but is independent
of gain. The complexity of the optimal solution and thus the
amount of basic mathematical operations to be solved
increases as the square of the number of states in the
system. In contrast, the form of the solution is independent
of the value of the matrix coefficients. (A value of 0 might
be an exception, since it could simplify the overall
solution.) In any case, a multiplication by 0.3 should be
only slightly less or more difficult than a mmltiplication by
0.6. The data are mot in accordance with the hypothesis: BAs

delay increases, time spent per trial does not increase.

The ‘Beight and Cue Adjustment.' hypothesis is similar in
its time data predictions to the rational hypothesis: As
delay increases, the number of cues available increases.
Thus, the time required to evaluate those cues and the time
required to process them should increase. According to the
sama argumentation, strength of feedback should not have an
impact on time spent since it does not affect the nmmber of
coes to be considered and to be processed. As in the
rational hypothesis, the data are not in accordance with the
hypothesis: As delay increases, time spent per trial does

not increase.
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The 'Weight Only Adjustment' hypothesis predicts that
subjects concentrate on the most salient cues ard ignore less
salient ones. According to this hypothesis, subjects will
ignore information on the additional states that are a result
of an increase in delay time. The computational effort (and
the time needed to execute these computations) will remain
the same in all delay conditions. Similarly, gain will not
change the computational effort involved in solving the task.

The time data presented so far do not refute this hypothesis.

Time spent on first decisions also affords discussion of

these hypotheses, as well.

The ratignal hypothesis would require considerable
computational effort at the beginning of each new trial. To
derive the adequete decision rule for each condition, a quite
complex optimization problem has to be solved. The complexity
of the problem increases.réughly quadratically with the
number of states. With the possible exception of a gain of
zero, gain does not affect the complexity of the decision
rule. The rational hypothesis predicts long average
reflection time at the beginning of each trial and predicts
that the reflection time increases with delay length. Both

predictions are not supported by the data.

Both the 'Baight Ooly Adjustment'’ and 'Weight and Coe
Adiustment' have the same predictions as far as time spent at
the beginning of each trial is concerned and can be discussed
together. The hypothesis posits that at the begimning of each
trial suvbjects adijust their overall decision rule in reaction

to the new delay length and gain. While the hypothesis is not
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explicit about the mental effort required by the adjustment
process, it can be assumed that the effort is far lower than
what the rational hypothesis would predict. Assuming that a
delay length of 0 and a2 gain of 0 would serve as the anchor,
we would expect to find minimum reflection times under these
conditions, sinc: no adjustment would be required from the
subjects. The data bear out this prediction to a limited
degree only, if at all. Since neither a treatment effect of
delay length nor of gain could be detected, a more detailed
statistical analysis was not warranted. A visual inspection
of the data reveals that the median of the 0 delay length, 0
gain condition is the lowest overall and the 0 gain
conditions in general seem to be require less initial time
than other gain conditions. Rgainst expectations, initial
time spent in the 0 delay length conditions was not lower

than time spent in the longer delay length conditions.

In summary, the data do not contradict the heuristic
hypotheses under the assumption that the mental effort
required for the adjustment process is low compared with the

mental effort required to compute decisions that follow from
the rule derived.

Practice effects

As we would have expected from the literature, there is
a strong practice effect for both later and initial decision
times, shown in Figures 3.34 and 3.40. There seems to be a
continning time decrease until trial seven which is

contrasted with the limited practice effect seen in the score



151

data that decreased substantially for only the first two
trials, after which performance levels off. While scores do
not improve much after the first trials, time data are
different, leading us to the belief that while subjects might
not change their strategy after the first or second trial,
they might increase the efficiency with which they apply

whatever rule they use.

The time spent on the first decision which reflect
practice effects is overlaid by a beginning of session
effect, shown in Figure 3.40. The time spent on the first
trial of each session is longer than the time spent on first
decisions of trials later in the session. Beginning session
times indicate an orientation phase, while later times reveal

an application phase.

Regression analysis: time spent coampared to score

A regression analysis was performed in order to
determine the extent to which differences in time spent are
correlated with differences in scores achieved. As time
increases, we would have expected that scores would have
increased, but this assumption is not supported. Increased
time does not translate into better scores, nor is the
reverse truve, that better scores are attributed to those
subjects that spent more time. Figures 3.36 and 3.42 show
that there are no clear differences between subject's

performance.
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Although there are differences in effort spent, as
evidenced by a decrease in variability in the later decision
times, we cannot find a relation to subject‘'s performance.

This result is somewhat surprising.

Thus, we conclude that the time spent per decision is
not sufficient to support an optimal strateqy which requires
substantial mathematical calculations. Since there were no
treatment effects with respect to time spent as more
information cues become available, the subjects' processing
time is unaffected, suggesting that subjects spend the same
computational effort across treatment effects, speaking in
favor of single to two cue constant hypotheses, and speaking

against both the rational and multiple cue hypotheses.

3.5. Control Effort Spent

A first strategy to analyze what causes the score
results is to look 2t how much control effort is spent by the
subjects. From a control effort point of view,
underperformance can be caused by either exerting too much or
too little effort. The cost structure of the task provides us
with a ready measure for control effort spent. As explained
in chapter 2, the overall costs are camposed of cost
associated with a change in production {control effort) and
cost associated with deviations of inventory from its
setpoint (goal discrepancy). By computing the ratio of

control effort cost versus goal discrepancy cost relative to
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optimm for all 225 trials we get a measure of how

aggressively subjects control the system.

As we did in section 3.3.4, we can caompare the subjects'

results to results suggested by the no-control rule and the
optimal rule.

A comparison with the no-control rule is trivial for the
purposes of this section. By definition, control costs
associated with the no-control rule are 0. All costs observed
result from goal discrepancies. Thus, as long as subjects
perform any control at all, their relative control effort

ratio is infinitely higher than the one computed according to

the no-control rule.

The comparison with the optimal rule, by contrast, can
provide meaningful insight. For the analysis below, the
following ratio is computed for each trial and subject:

(Subjects' cost of control effort / subjects' cost of goal

discrepancy} / ( Optimal rule's cost of comtrol offort / optimal rule's
cost of goal discrepancy )
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Overall performance

Control effort in Figure 3.43 shows the average for each
of the 15 conditions. Values under 1 indicate undercontrol,
and values above 1 indicate overcontrol. On average, the
ratio (0.38) is ¢ t three times lower than 1, indicating
distinct undercontrol. Undercontrol is prevalent in all 15
conditions, and undercontrol seems to be most prevalent in

the presence of longer delays.
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Figure 3.43 Ratio of subjacta' wvs. optismom control
affort: ratio of cost acrosz trsztmonts
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Analysis

Source daf F probability

Overall treatment 14,182 1.85 p<.05
Delay 2,182 4.20 p<.05
Gain 4,182 1.13 ———
Delay x Gain 8,182 1.63 ~e---

Subject 14,182 6.99 p<.01

Practice 14,182 1.00 @ -----

~- pnot significant

Figure 3.44 Ratio of subjects' wvs. optimom control
effort: ratio of cost- statistics

ANOVA Figure 3.44 reveals an overall treatment effect

attributable to delay (p<.05), and significant differences

between subjects {(p<.0l), while trials do not show

differences in control effort.

R PATT YR




156

Treatment effects

ANOVA Figure 3.44 shows a significant overall treatment
effect (mostly attributable to the treatment effect of
delay). Control effort Figure 3.4S shows the results in more
detail. It appears that the median is highest in the "easy”
conditions: Subjects ~nntrol more aggressively in the absence
of delays. In the presence of delays, subjects contrecl more
aggressively when there is no negative or positive feedback.
It seems that subjects follow a common-sense heuristic: "Do

noct act, if you do not know what you are doing”
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Practice effects

Figure 3.44 shows that practice effects are not
significant. Control effort Figure 3.46 shows the control-
ratio for the 15 consecutive trials. Undercontrol is most
prevalent in the first trial, lending support to the
hypothesis that undercontrol can be seen as a function of
subjects' understanding of the task. Although a clear trend
cannot be seen, it seems that control is higher in the latter
trials than in the first five trials, lending further support

to the hypothesis.
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Figure 3.46 Ratio of subjacts' vs. optimmm coantreol
effort: ratio of cost—- practica effects
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Figure 3.44 shows that the subject effect is highly

significant (p<.01). Control effort Figure 3.47 shows the

control ratio for the 15 subjects in pre-determined order.

Distinct differences are readily apparent: Four of the

subjects (#1, #7, #13, #15) exert almost no control compared

to the rest of their peers. According to the newly developed

hypothesis, we would expect that these subjects are the low

performers in the group. Regression analysis, chapter S5, will

address this issue.

With the exception of subject #8 and the

four subjects mentioned above, all subjects overcontrol the

system at least once.
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Although we might fall into the trap of explaining
randomness, the result could be seen as a sign that most
subjects are willing to experiment with aggressive strategies
at least once. The notebook analysis will help us shed more

light on this tentative conclusion.

Regression Analysis

Subjects' performance was compared with the amount of
control effort spent, as shown in Figure 3.48. We can see
that there is definitely a relationship between score
achieved and control effort spent (p<.08, RZ = .21),
indicating that greater control effort resulted in lower
scores. If we treat subject 10 as an outlier; the

relationship is much stronger (p<.0l, RZ = _42).
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Figure 3.48 Ratio of subjocts' ws. optimom control
effort: regression agaimgt cost per subject
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Discussion of Control Effort

The analysis of control effort gives us an explanation
for subjects' underperformance that will be pursued further
in the notebook and regression analyses. The very
significant and surprising undercontrol throughout the
conditions suggests an overly cautious approach, which
worsens with increasing delay. The evidence suggests a clear
refutation of the optimum rule hypothesis and a systematic
bias in subjects' rules. It is somewhat puzzling, however,
that despite the clear difference between subjects' and
optimal control strategies, we do not see more of a
difference in sccres. We will revisit this paradox when we

compare subjects' and optimal models and elaborate on them.

Figure 3.46 suggests that part of the learning that is
achieved over the first two or three trials could be
attributable to the fact that subjects gain greater
confidence, albeit only slightly so. Further analysis

suggests that this finding is tentative at best.

While none of the time data correlated with subjects’
scores, undercontrol seems to be clearly correlated with
scores, giving us a first insight into differences between
"low and high performers. We mmst await further analysis to

determine the exact causes of undercontrol.
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4.1 Introduction

Recall that subjects received a notebtook in which they
wrote their decisions in the upper right hand corner, while
other calculations could be made on the rest of the page,
thus providing some data about what calculations, if any,
were made. The purpose of the notebook analysisg, therefore,
was to examine subjects' writtem calculations and comments in
an effort to discern their strategies for performing the
task. At the same time, the notebook analysis was intended
to inform the regression analysis as described in chapter
five. Extensive a.naly.;is of the notebooks consisted of
reviewing subjects' round by round decisions, while relating
the written calculations and comments to each decision.
Since round by round analysis is a very tixe intensive task,
we chose to perform the analysis on only one half of the

subjects, selecting seven of them randomly.

The analysis was guided by the attempt to recreate the
decision maker*s problem space. In recreating the decision
situation as it evolved over time, particular attention was
given to all those situations where the different hypotheses
that were introduced in section 2.7 and motivate the thesis
lead to differences in their predictions. For example, in
the presence of 1) a positive inventory gap,

2) overproduction relative to sales, and 3) large positive
supply lime all three hypotheses would predict a decrease in
production. Yet, whenever some of the cues suggest increases
in production while other ocnres suggest decreases, the
hypotheses differ in tbeir predictions of the decision
maker's actioa.

A
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Each subjects' data consists of 15 games of 32 rounds
each. The analysis consisted of examining the initial games,
1 through 3, to see how subjects approached the task. The
strategies of the initial games were compared with select
games of sessions three and four with particular emphasis on
long delay and positive gain, in order to determine how
strategies formulated early on held up over time and under
the difficult conditions. All games with long delays and high
gains were investigated, since they reveal the most insight

into the kind of understanding that subjects had achieved.

The analysis was guided by a behavioral check-list that
had been constructed in advance. The list was motivated by
previous research on misperceptions of feedback (Sterman,
198%a). Items on the list included:

1) average time overall and per game,
including time differences within a game
2) many/few calculations

3) ignores gain

4) ignores delay

5) miscalculates gain

€) miscalculates delay

7) over/under emphasizes inventory

8) over/under emphasirzes change in inventory
8) calculates gain appropriately

10) calculates delay appropriately

11) uses change in inventory appropriately

12) miscellaneocus category: including an
external /exogenous focus
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In parallel with the notebook analysis, a more detailed
examinatinn of the time data was conducted. Time profiles for
each game were analyzed in conjunction with notebooks to
determine whether longer decision times, denoted by spikes in
a time profile, related to changes in strategies. For
example, subject 8's time profile for game 3 of session 1
shows (Figure 4.1) that he spent approximately .7 minutes on
most decisions in that game; however, in rounds 10 and 28,
the subject spert approximately 1.50 minutes per decision.
Unexpectedly, these times did not correlate with any changes
in strategy, as reflected in the decisions of the subject. It
was necessary to check these types of effort outliers in
order to understand each subjects' strategy for performing
the task, since the increased times may have indicated

changes in strategy.

2.0
15
g
—g 1.0 —
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S
0
e TN OO DO OB
Decision Round

Figure 4.1 Exaaple timm profile
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A note of caution seems appropriate. Despite the efforts
made to code the notebooks objectively and to document
‘accurately the extent to which the various cues are
considered by the decision maker, the notebook analysis still
might contain a certain amount of subjective inference.
Throughout this analysis we try to guard against this
tendency by supplying the readers with sufficiently detailed
data about the decision situation to check the inferences we

have drawn.

While we feel that the notebook analysis is a valuable
addition to the researcher's toolkit of process methods
(Carroll, and Johnson, 1990, pp.71-90)V, it has its inberent
limitations. In particular, writing down calculations and
performing them are two different processes. Just because
nothing is in the notebook does not necessarily mean that

subjects did not perform calculations in their heads.

Our analysis revealed three major lewvels of

sophistication of control. Those three levels are:

1) attention to inventory oanly: subjects
attempt to control the system by focusing
solely on the inventory discrepancy.

2) attentiom to invemtory and change in
inventory: suabjects understand the
relationships between production and sales
discrepancies and their importance.

3) attention given to inventory and expscted

change in inventory: subjects attempt to
control the suppiy-line.

At the end of the following subsections, we will expand
the summarized findings and place the different levels in the
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context of the prior hypotheses about control heuristics and

our feedback framework.

4.2 Detailed analysis

Throughout the detailed analysis section we will discuss

the subjects' decision situaticns with the help of a stylized

display table, as shown in Figures 4.2 and 4.3.

round 60 61 62 63
change in production 0 ?
production 600 600 600
dependent sales -180
independent sales 770
total sales 590
change in inventory 19
inventory 10
Delay = 2, Gaia = -0.3
Sobject 12, Trial 1.2
Figore 4.2 Stylized display table:
Before deciziom in roand 61
round 60 6; 62 63
change in prodection 0 -11
prodact ion 600 600 600 539

dependent sales
indopendent sales

total salss
change in invemtory
inventory

-180 -177
T0 7166
590 589

10 11
10 21

Delay = 2, Gain ~ -0.3
Subject 12, Trial 1.2

Figere 4.3
Aftar

Stylized displzy tabla:
decizgica ia roumd 61

1
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We present the delay and gain conditions along with the
subject and trial numbers at the bottom of each table.

Within each table eight pieces of information are readily

observable:

1) decision round

2) change in production

3) production and supply line
4) value for dependent sales

S) valuve for independent sales
6) total sales

7) change in inventory
8) inventory (surpluses or backlogs)

Refer to chapter 2, section 2.3 for a detailed

description of the task.

1) In the stylized data tables, the decision round row
shows the current decision round, denoted by "+*" as well as
any future decision rournds in games that coatain delayed
production. In Figure 4.3, which has a delay of 2, decision
rounds are shown for the current round of 61 and the future
rounds of 62 and 63.

2) A decision, change in produnction, has an immediate
effect on dependeni: sales but may have a delayed effect on
production. For instance, the subject in our example table
made a decision to decrease production by -11 in round 61.
Since this game has a delay of 2 the decision will not affect
production until round 63 where production can be seen to
drop to 588.

3) Values for production are displayed to the extent

that they were visible to subjects on the actual game screen.
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For instance, under a delay condition of two, subjects could
view values for production two rounds ahead, as shown in
figure 4.2. Throughout this section we will refer to future
values of production either as the supply line or expected

production.

4, S, & 6) Dependent sales are determined by
multiplying production with the gain factor. For example, in
Figure 4.3 in round 61, dependent sales are detemmined by
multiplying -0.3 by 589, which is the result of a change in
production of -11 delayed two rounds. Independent sales are
determined from the random—walk pattern for a given round.
Total sales is the sum of dependent and independent sales.
The change in inventory is the difference between current
production and current total sales. The results of the

subject's ~11 production change can be seen in Figure 4.3.

7 & 8) Inventcery, itself, is determined by adding the
current change in inventory to the previous rounds'
inventery. For example, 11 + 10 = 21, the value for inventory
after round 61's production change, see Figure 4.3. Inventory
is shown as either positive, negative or zero. A positive
inventory implies a surplus in inventory, a negative

inventory implies a backlog in inventory.



4.2.1 Subject 2

Early games

In game 1 (delay of 4 and gain of -0.6), subject 2
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spends only about 5 rounds in an orientation phase in which

he neither understands the calculation of gain nor the

influence of delay. Quickly after the above start subject 2

develops a clearer understanding of the task.

Be notes the

ranges, in round 66, of independent sales, " 969-999 range

of sales,™ and he makes aporopriate production changes that

reflect an appreciaticn of all three information cues:

inventory, change in inventory and supply line.

round 78
change in production 0
prodoction 575
dependent sales -351
independent sales 952
total sales 601
change in imventory -26€
inventory -2

20

5718

-357
940

80

585

-357
s38

581
4

-6

81

585

-357
852

595

-10

~-16

585

-357
943

586
-1

-17

* = curremnt declsion

Delay = 4, Gain = -0.6

Subject 2, Trial 1.1

83

595

-357
945

£1:1:)

For instance, at decision round 79, he saw from round 78 that

inventory was -2 and that the change in inventory was -26.

In the supply lins, he determined that the difference betwesn

production and sales for the upcoming rounds could possibly
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become negative, further swelling the backlog. So, he
writes, ™ 1 see problems ahead of low production.” Thus, he
increasesg production slightly which indicates consideration
of the supply line. The next round reveals an increase in
the backlog but a decrease in the change in inventory. As a
consequence, he decides not to increase production further,

indicating an appreciation of the future change in inventory.

Although subject 2 learns to control the system fairly
well in the first game, in round 85 he shows some tendency to
rely, unrealistically, on exogenous factors to came to his
aid. There is some indication that the subject does not only
take independent sales into account, but also that he hopes

and relies in his strategy that independent sales will come

to his aid.
round 84 85 86 87 88 89
change in produoction 0 0 -10 -10 -25 0
production 595 595 595 595 525 595
dependent sales ~-357 -357 -351 -345 -330 -330
independent sales $37 $27 %13 911 923 932
total sales 580 570 562 566 593 602
change in inventory 15 28 33 29 2 -7
inventory 5 30 63 92 94 87

Delay = 4, Gain = -0.6
Subject 2, Trial 1.1

For example he writes in round 85, " Hope that independent
sales will go up." The subject states that he hopes
independent sales will increase in order for the difference

between production and total sales to decrease which would,



PUVURpT N

-

in turn, stabilize or decrease inventory. His production
cutback is very cautious, thereby indicating his hope that
the environment will come to his aid, so that he does not
have to incur the high cost associated with changes in
production. Trhe environment, however, disappoints him;
independent sales drop from 927 to 913, and the subject

states, " uh oh! Sales went down."
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Games two (delay of 0 and gain of +0.3) and three (delay

of 2 and gain of -0.3) reveal that subject 2 carries on with

strategies 2 and 3, incorporating change in inventory and, to

a lesser extent, expected change in inventory.
round 76 1 78 79 80 81 82
change in production -10 -10 ~5 0 20 20 10
production 540 530 520 510 505 505 525
dependent sales -156 ~-153 -152 -152 -158 -164 -167
independent sales 690 698 706 711 698 707 699
total sales 534 545 555 560 541 544 533
change in inventory 6 -15 -35 -50 -36 -39 -8
inventory 120 105 70 21 -15 -54 -61

Delay = 2, Gain = -0.3
Subject 2, Trial 1.3

For example,'in round 72 through 78 of game 3, the subject

decreases production in response to a positive increase in

inventory; however, his decreases continue too long causing a

larger negative oscillation than necessary. Thus, he
exhibits some tendencies to "ignore the supply line"

(Sterman, 1989a).
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Later games

By game 3 of session 4 (delay of 4 and gain of +0.3),
subject 2 shows signs of supply line control, stage 3
strategy, either by attempting to compensate for oscillations
in inventory before they occur or by attempting to correct

perceived past mistakes.

round 71 72 73 74 75 76
change in production 0 -20 -30 -10 20 20
production 525 525 575 580 580 560
dependent sales 174 168 159 156 162 168
independent sales 391 397 400 414 412 397
total sales 565 565 559 570 574 565
change in inventory -40 -40 16 10 6 -5
inventory 92 52 68 78 84 79

Delay = 4, Gain = +0.3
Subject 2, Trial 4.3

For instance, after having cut production in response to
increases in inventory in rounds 72-74, subject 2 increases
production for two rounds in order to keep a backlog from
occurring. Even though the magnitude of his decision was too
aggressive, leaving a positive inventory discrepancy of
approximately 80, the behavior showed that he was attempting .

to control for previous production decisions.



172

Effort

In general, subject two does not write many calculations
throughout the experiment. Regarding time spent on
decisions, subject 2 generally spent more time on later
decisions than on first decisions. On average, he spent
approximately .50 minutes per choice. His decision times per
game are punctuated by several spikes in later rounds,
lasting approximately 1 minute, that may have indicated re-~

rientation phases or strategy evaluation followed by
plateaus of decision times, indicating application phases of

strateqgy.

4.2.2 Subject 4

Early games

In game one (delay of 0 and gain of -0.3), subject 4

starts off with stage 2 focus, revealing a brief orientation

rFhase.
round 64 65 66
change in production -20 0 10
prodoction 600 600 610
dependent sales -18¢ -183 -183
indepepdent sales 791 BOA 790
total sales 611 624 607
change in inventory -11 -24 3
inventory 17 -7 -4

Delay = 0, Gain = -0.3
Sobject 4, Trial 1.1
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Not only does the subject increase production in response to
a backlog, but considers change in inventory as well. For
example, after inventory is moved into a surplus of +17 in
round 64, and the change in inventory is -11, the subject
makes a production change in round 65 of zero, indicating
that he understands that the next round's change in inventory
will decrease the surplus. Furthermore, in round 66, he can
see from the previous round that inventory is -7 and change
in inventory is -24 both of which indicate a larger
production change than merely, say, +7. Be increases
production by +10, a value larger than inventory gap alone,
possibly indicating an influence of change in inventory.
Thus, subject 4 exhibits knowledge cf the relatioaships
between production and sales and their influence upon

inventory, i.e. stage 1 and 2 strategies.
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In game two (delay of 2 and gain of -0.6), subject 4

considers the supply.line and makes

"what

obtain inventory values for two rounds in

example,

round

change in production
production

dependent sales
independent sales

total sales

change in inventory

inventory

72

S75

-354
919

565

10

5%0

-348
918

570

20

24

~-10
590

-342
909

567

23

32

if" calculations to

advance. For

75

580

-333
908

575

37

570

-330
897

567

40

77

555

~324
889

565

-10

30

e = current decision round

Delay = 2, Gain = -0.6

Subject 4,

Trial 1.2

In determining the production decision for round 73, he

writes:

590 — 565 = 25 => (implies Inv. of)

590 - 565 = 25 => 39

Lower

14

H: . calculations indicate that bhe is incorporating the supply

line, albeit incorrectly, by subtracting the total sales of

the previous round from the production of the current round

and next rounds. Be decides to lower production because he

predicts that inventory will be 39 in two xounds.
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In a later decision, he continues the same strategy. For

example,
“
round 79 80 81 82
change in production 00 15 5 o
production 540 545 835 550
dependent sales -321 -330 -333 -333
independent sales 890 881 879 877
total sales Ség 551 546 S44
change in inventory -29 -6 -11 6
inventory 2 -4 -15 -9

* = current decision round

Delay = 2, Gain = -0.6
Subject 4, Trial 1.2

For decision round 80, he writes:

545 - 569 = -24 + 2 => -22
535 - 569 = -34 - 22 => -56

Although subject 4 is being very specific about determining
what inventory will be two rounds in the future if the
current conditions remain the same, his changes in production
are not directly related to his calculations. Because he
does not make “what if,™ predictive, calculation3s based on
production changes of particular values, but rather makes
predictive calculations based on coanstant sales and other
factors, he acts as if his o decizions do not have an
influence on sales. His predictive calculaticons do not
contain the idea that dependent sales are determined by his
prodactica chianges; therefore, his strategy is always

reactive.
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In game 3 (delay of 2 and gain of +0.6), subject 4

utilizes the same strateqy. In a negative gain situation the

previous strategy was adequate: however,

in this game, his

miscalculations of dependent sales and delay cause large

oscillations and substantial cost,

reinforcing. For instance,

round 76
change in production 200
production S0
dependent sales 174
independent sales 156G
total sales 324
change in inventory -234
inventory -516

500

S0

474
158

632
~-542

-1058

since the

78

500

290

T4
166

940
-650

-1708

gain is self-

79
500
790

1074
171

1245
~455

~-2163

* = current decision round

Delay = 2, Gain = +0.6

Subject 4,

Trial 1.3

Be expresses his surprise that his strategy is not working by

writing in rovd 77, "I can't believe this is happening!”

At this point in the game, when backlog is increasing

‘drastically, the subject abandons the previous strategy and

adopts strategy 1. He ignores change in inventory as

evidenced by large oscillations in inventory. In addition,

he's no longer writing down any calculations, and his

decision times are averaging approximately .5 minuotes,

thereby indicating a relatively quick, reactive strategy.

In session two, game two (delay of 4 and gain of +0.3),

sabject 4 exhibits a similar delay-gain strategy to the
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he calculates current production decisions as if the
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production changes were based solely on the production value

delayed four rounds, while he continues to use the total

sales from the round previous to the current round.

early strategy is shown below:

round
change in production
production

dependent sales
independent sales

total sales

change in inventory

inventory

70

602

181
407

S5gs

14

-14
590

17¢
396

572

18

25

12

-18

601

n
404

Z75

25

51

73

609

173
382

565

45

96

74

€02

170
391

561
42

137

The

75

588

168
391

559
29

166

* = curremt decision round

Delay = 4, Gain = +G.3

Subject 4, Trial 2.2

The subject only writes:

602 ~ 588 = +14
Be then makes a change in production

but opposite in sign, as illustrated above.

of the same magnitude

By round 76,

inventory is showing a large surplus of 187, at which time be

decides to abandon his strategy and begins making larger

decreases in production in -25 increments.
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This later strategy is illustrated below:

round s 7€ 77 18 79 80
change in production -5 -5 -25 -28 0 20
product ian 588 570 S75 565 560 555
dependent sales 168 167 159 152 152 157
independent sales 391 383 374 388 386 393
total sales 559 550 533 540 538 551
change in inventory 29 21 42 26 23 5
inventory 166 187 229 254 277 281

Dalay = 4, Gain = +0.3
Spbject 4, Trial 2.2

Before his changes have time to take effect, he begins to
increase production again, as if he were trying to avoid the
large oscillations seen in previous games; see decision in
round 80. Throughout the rest of the game, inventory remains
in a surplus state of approximately 60 units, which he does

not rigorously attempt to control.

Later games

Throughout the later games, subject 4 ignores the supply
line, which casses him great difficulties. The last rounds
of the subject's last trial provide vs with a unigue
opportunity to sumsarize the level of understanding the
subject has attained.
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round 86 87 88 89 90 Y1
change in production -500 -5000 1000 1000 10C0 1000
production 700 200 0 0 -500 -5500
dependent sales -300 -3300 -2700 -2100 -1500 -900
independent sales 191 206 200 194 185 170
total sales -1v9  -3094 -2500 -1906 -1315 -730
change in inventory 809 3294 2500 1906 815 -4770
inventory 254 3548 6048 7954 8769 3999

* = current decizion round

Delay = 4, Gain = +0.6
Subject 4, Trial 4.4

In round 87, he enters -5000 intending to enter -500, which
would have been equivalent to his previous decrease in
production. Up to this point, the subject bas learned that
he should be cautious, since he.gets into trouble with large
production changes, and he has gained minimal understanding
of the importance of future change in inventory. Yet, he
feels so uncomfortable with the system that he suspends
control until the system is returned to a state in which he
does feel comfortable. Again, he “suspends reality” in a
sense, by attempting to make fi:ve consecutive increases in
prodncti'on of +1000 in order to make up for the typing error
of -5000 before he can initiate comtrol upon the system
again. Thus, he applies his "insights™ in the wrong sense.
In this particular situation, it would have been much better
to have compensated for the -5000 error right away and then

reswmee control again.

‘_:?.r)"“,ui o oy
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Effort

In terms of time spent on decisions, subject 4 spends on
average approximately .72 minutes per decision. His decision
times are punctuated by spikes of longer times followed by

quicker decision times.

4.2.3 Subject 8

Early games

In game one (delay of 2 and gain of +0.6), subject 8
exhibits a weak strategy 2, and weaker appreciation for
supply line, strategy 3. As noted above, his performance is
characterized by cautiousness and weak attention to change in
inventory. His cauctiousness takes the form of a "act and

wait” strateqgy, i.e. reactive to inventory. For example:

round 65 66 67 68 69
change in prodoction 0 S S 5 150
prodoction 615 615 €15 620 625
dependent sales 369 372 375 378 468
independent sales 264 250 252 260 273
total sales 633 622 627 638 741
change in inventory ~-18 -7 -i2 -18 -116
inventory -69 -76 -88 -106 -222

* = current decision roand

Delay = 2, Gain = +0.6
Subject 8, Trial 1.1
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Prior to round 69's increase in production, the subject has
practically ignored the change in inventory, as evidenced by
the substantial backlog, the negative change in inventory,
and the magnitude of his decisions. In round 69 he attempts
to control mcre aggressively, but his later decisions reflect
that he merely continues with the cautious bias and an "act

and wait"” strategy.

In rounds 84 through 87 of game one, for example,
subject 8 makes small production changes in response to large
surplus inventory and waits to see the effects of . .s changes

before initiating further decreases.

round 82 83 84 85 86 87
change in production 0 -40 (1} ] 0o -20
production 600 500 506 460 460 460
dependent sales 300 276 276 276 276 264
independent sales 223 225 2117 207 193 191
total sales 523 501 493 483 469 455
change in inventory 17 -1 7 -23 -39 5
inventory 427 426 433 410 401 406

Delay = 2, Gain = +0.6

Subject 8, Trial 1.1
Immediately following round 87, the subject performs two
larger increases in production in order to coapensate for any

oscillations caused by his previous decreases im production.



For instance,

round 88 89 90 91
change in prcduction 80 80 -20 -40
production 460 440 520 600
dependent sales 312 360 348 324
independent sales 203 212 213 214
total sales 515 572 561 538
change in inventory -55 -132 -41 62
inventory 351 219 178 240

. Delay = 2, Gain = +0.6
Subject 8, Trial 1.1

Thus, he shows greater appreciation for inventory control,
and the supply line, but his emphasis on change in inventory
is weak. He does, in round 90, show a quicker effort to
control for previous decisions in that his control for
oscillations comes immediately after the increases in

inventory instead of waiting for several rounds.

In game two (delay of 0 and gain of +0.6), subject 8
again graphically keeps track of production, inventory, and
cost of inventory. His control strategy overall is level 2,
and he maintains a cautious approach to decreasing surplus or
backlogs. In rounds €9 through 72, he starts to show a

stronger appreciation for change in inventory, seen below.
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round 69 70 71 72
change in production -10 0 10 L3
production 490 480 500 505
dependent sal-:e 294 294 300 303
independent sales 203 212 203 199
total sales 497 506 503 502
change in inventory -7 -1¢ -3 3
inventory 28 13 10 13

Delay = G, Gain = +0.6
Subject 8, Trial 1.2

In round 70, he sees that change in inventory in the previous
round was -7 and inventory is 29, thus he makes no production
change so that inventory will decrease. In round 71, he
notes that change in production is larger than inventory ancd
in the next round likely to cause a backlog, so he makes

another increase in production of 10.

In game three (delay of 0 and gain of 0), subject 8
continues to make graphs of production, sales, and cost nf
inventory. He continues to exhibit strategy Zz and, similar
to the previous game, he utilizes change in inventory

effectively.

Later games

In game 3 of session 4 (delay of 4 and gain of +0.3),
subject 8 has stopped making the previous graphs. He

exhibits strategy 2 and maintains the cautious "act and wait”
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control style. In rounds 65 through 68, the subiject shows

the continuing non-aggressive control.

round 64 65 66 67 68 69
change in production 20 o o 0 (] -20
production 600 615 645 685 705 705
dependent sales 212 212 212 212 212 205
independent sales 450 440 449 464 452 437
total sales 662 652 661 676 664 643
change in inventory -62 -37 -16 10 42 63
inventory -189 -226 -241 -232 -19%90 -128

Delay = 4, Gain =~ +0.3
Subject 8, Trial 4.3

In rounds 61 through 64, the subject has increased production
by 105 in response to an increasing backlog. In rounds 65

through 68, the subject waits for his previous production

increase to take effect.

Throughout the rest of this game, with small exceptions,
the subject maintains the same pattern of waiting for his
production changes to take effect before he takes actions.
From round 71 until the end of the game, inventory remains in
a large surplus; his production changes never are'aggressive
enough to decrease inventory. The subject displays
strategies 2 and a weaker 3 and maintains the non-aggressive

control posture that causes larger costs in inventory:
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round 87 88 89 90 91
change ir production 20 (] 0 0 S0
p.oa. ‘on 530 530 530 530 550
dependent sales 165 165 165 165 180
independent sales 393 393 387 373 372
total sales 558 558 552 538 552
change in inventory -28 -28 -22 -8 -2
inventory 223 195 173 16% 163

Delay = 4, Gain = +0.3
Subject 8, Trial 4.3

Effort

Subject 8 notes few calculations in writing, only
graphically keeping track of production, inventory, and cost
of inventory. His time profiles do not correlate w..h any
peculiarities within his decision rounds. Overall, subject 8
spends approximately 1.25 minutes per choice. #is later
spikes are approximately 2 to 3 minutes long and did not
correlate with any changes in strategy as evidenced by

consistent decision behavior.
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4.2.4 Subject 10

Early games

In game one (delay of 4 and gain of 0), subject 10 makes
virtually no calculations and only writes costs of change in
production and invent.ory throughout. She ignores the supply
line and change in inventory, revealing a reactive control
style, which leads to large inventory build ups. For
instance, she begins the game with a small backlog of -3
which increases to -41 by the fourth round, meanwvhile the

subject has been increasing production up to 58.

At this point, she has put enough in the supply line to
cover the backlog; however, she waits only one round, e.g.
cbange in production = 0, and begins to increase production
again. Like a person who has forgotten what speed she is
already going and pushing the accelerator even further in
order to keep up with traffic, subject two appears to want
her production changes to take effect immcdiately, and when
they do not increase inventory quickly enough, she increases
production even further, causing later oscillations in
inventory in the opposite direction, similar to results

observed in the "Beer game”™ experiment (Sterman, 1988b).



round 63 64
change in production 28 30
production €00 600
dependent sales (o] 0
independent sales 600 611
total sales 600 611
change in inventory 0 -11
inventory -30 -41

Delay = 4, Ga.n =0

Subject 10, Trial 1.1

65

603

624

624

-21

-52

66

20

613

610

610

-59

67

b

638

612z

612

26

-33
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In addition, she does not place enough emphasis on the role

of change in inventory. In round 63, for
a production change of 0 despite the fact

revealed that there was a positive change

positive inventory.

round €8 69
change in production 12 0
production 668 668
dependent sales 0 0
independent sales 620 633
total sales 620 633
change in inventory 43 35
inventory 15 50

Delay = 4, Gain =0
Subject 10, Trial 1.1

70
-25

688

628

628

60

110

615

87
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example,
that round 68

in inventory and

she makes

Sluggish control actions and ignoring the supply line result

in large inventory discrepancies.
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In game two (delay of 2 and gain of +0.3), subject 10
gives more attention to the change in inventory. Fcr
example, in round 72 she makes a zero change in production,
noting from round 71 that change in inventory was negative.
In addition, having realized that the supply line would wipe
out the surplus inventory, she increases production in round

73 to compensate for oscillation.

round 68 69 70 n 72 73
change in production -70 -60 -70 -80 6 100
production 578 528 458 398 328 248
dependent sales 137 119 98 74 74 104
independent sales 379 383 392 383 379 378
total sales 516 502 490 457 453 482
change in inventory 62 26 -32 -59 -128% -234
inventory 308 334 301 242 117 118

Delay =~ 2, Gain = +0.3
Subject 10, Trial 1.2

In game three (delay of 2 and gain of 0), subject 10
exhibits the same pattern of beuavior as in the previous game
emphasizing change in inventory. For instance, she begins
game three witn a surplus inventory and starts cutting

production in fairly large increments.
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round 62 63 64 65 66 67
change in production -30 -30 -850 50 80 100
productior 600 595 S65 515 465 515
dependent sales 0 0 0 0 0 0
independert sales 569 562 561 561 574 571
total sales 569 562 561 561 574 577
change in inventory 31 33 4 -46 -109 -62
inventory 12 105 109 63 -46 -108

Delay = 2, Gain = 0
Subject 10, Trial 1.3

Her large decreases in production cause cscillations later
(see inventory in rounds 66-67), forcing her to make large
positive chances in production, thereby indicating weak

supply line ccntrol.

Later games

In game cne of session four (delay of 2 and gain of
+0.6), we can see that she has not learned sufficiently the
mechanics of delay nor gain. At first, she makes small
decreases in production to decrease the growing surplus in

inventory.
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round 66 67 68 69 70 71 72
change in producticn -4 -4 -4 -4 -20 -20 -3¢0
production 596 596 592 588 584 580 560
dependent sales . 355 353 350 348 336 324 294
independent sales 227 219 222 224 239 225 224
total sales 582 572 572 572 57S 549 518
change in inventory 14 24 20 16 ] 31 42
inventory 2¢ 50 70 86 95 126 168

Delay = 2, Gain = +0.6
Subject 10, Trial 4.1

when her decisions do nct take effect right away, she
increases the magnitude of changes and sets herself up with
an osciilation situation, similar to other games, to which

she must make large changes in production.

Effort

In terms of time spent on decisions, on average, subject
10 spends approximately 1.0 minutes per decision and shows
several spikes of approximately 4 minutes in later rounds of
each game. The later spikes did not correlate with strategy

changes.

4.2.5 Subject 11

Early games

In game one (delay of 2 and gain of +-0.3), subject 11
exhibits staga 3 strategy. Be shows not only an appreciation
of change in inventcry but also a tacit understanding of the

future change in inventory. For example, vhen both inventory




and change in inventory are currently negative in round 62,

he makes zeroc production change in round 63 insteacd of a

positive change, indicating an appreciation of change in

inventory. In the next round,

negative, he reacts with a decrease in production, showing

that he understands that

surplus.

round
change in production
production

dependent sales
independent sales

total sales
change in inventory

inventory

Delay = 2, Gain
Subject 11,

Subject 11 remains attentive towards the supply line

following rounds will increase in

60 61 €2
0 3 20
600 600 600
-180 -182 -18.
783 796 791
602 614 603
-3 -14 -3
-3 -17 -20

= -0.3

Trial 1.1

606

-188
780

592

14

-7

although inventory is

64

626

-187
781

604

22

15

65

-10

626

-184
804

620

21
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throughout the game. Despite an inventory surplus of 139 in

round 89, he increases production by 40 controlling for the

insufficient level of production in the supply line.

round
change in production
production

dependent sales
independent sales

total sales
change in inventory

inventory

88
-30
599

-162
743

581
18

169

89

-30

569

-153
152

599

-30

139

90

40

539

-165
753

588

90

Delay = 2, Gain = -0.3

Subject 11,

Trial 1.1

91

20

509

-171
754

583

~-74
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In game two (delay of 0 and gain of 0), subject 11
focuses on inventory and change in inventory, and he exhibits
a cautiousness bias. Because of the zero delay, attention to
future change in inventory cannot be evaluated. It seems from
his earlier game, with delay of 2, he has carried over his
bias to remain cautious in his production control; therefore,
he makes production changes with an "act and wait” style of
heuristic. For example, in round 75 he waits until inventory
is +40 before he initiates a significant control action to

decrease production.

round 72 73 74 75 76 77
change in production o 0 -3 ¢ -20 -20
productaon 565 56S 562 562 542 522
dependent sales [¢] 0 o] V] o} 0
independent -sales 559 558 549 548 537 529
total sales $59 £58 549 548 537 529
change in inventory 6 7 13 14 s -7
inventory 6 13 26 40 45 38

pelay = 0, Galn = 0
Subject i1, Trial 1.2

In game three (celay of 0 and gain of -0.3), subject 11
shows a similar pattern to the one used in game two: sluggish
control actions maintaining higher inventcries. For
instance, in round 68 to 73 he allows inventory to swell to
+43, which in the 0 delay condition is unnecessary. The
pattern of waitirng for production changes to take effect
possibly suggests that thco subject learned in the first game
to be cautious with production changes, and inappropriately

transfers that strategy. This behavior might suggest that
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subjects develop cookbook rules and hold only fuzzy

understanding for what situations to apply them.

round 68 59 70 71 72 13 74
change in production [¢] 0 -8 -2 -18 -10 -20
productton ‘ 585 58 580 578 560 550 530
dependent sales -176 -176 -174 -173 -)168 =165 =-159
independent sales 747 753 753 738 723 709 712
total sales 572 578 579 564 555 544 553
change in inventory 14 8 1 13 5 6 -23
inventory 10 18 19 32 37 43 20

Delay = 0, Gain = -0.3
Subject 11, Trial 1.3

Later games

In game three of session four (delay of 2 and gain of
+0.6), his previous strategy which included a non-aggressive
control of inventory combines with his delay control to cause
inventory to remain in surplus throughout the game. For
example, the game begins with inventory backlogged and swells
to -13.0. He increases production to compensate, but
inventory incr-eases positively in the next round to +17.0,
mostly dwe to a decrease in independent sales. Bere, he
begins to decrease production in response to a rapidly
increasing inventory surplus. Be continues to decrease
prrduction until he notices that change in inventory becomes

smalier and then slightly negative. See below.
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round 63 64 65 66 67 68 €9
change in production -15 -2¢ -20 o -30 -10 0
production 600 €15 600 580 560 560 530
dependent sales 360 348 336 336 318 312 312
independent sales 223 211 223 210 221 236 229
total sales 583 559 559 546 539 548 541
change in inventory 17 56 41 34 21 12 -11
inventory 4 60 161 135 15¢ 168 157

Delay = 2, Gain = +0.6
Subject 11, Trial 4.3

The next rounds show a decrease in inventory, but he
decides that the decrease is sufficient in magnitude and
rate, as evidenced by five 0 production decisions in a row.
Although inventory does decrease to 54, later it steadily
increases in surplus until the end of the game. He never

controls inventory aggressively enough.

Effort

Subject 11 makes almost no calculations throughout,

while he does keep written track of independent sales.

Subject 11's times on decisions average approximately .S
minutes per choice. His decision times throughout were

fairly ccnsistent, indicating that he did not take much time

to re-think strategies.
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4.2.6 Subject 12

Early games

Game one (delay of 0 and gain of +0.3) reveals that
subject 12 is very reflective of her strategy. She begins
with one round of decreasing production, even though
inventory begins backlogged. She then corrects this error,
culminating her orientation phase, and makes small increases
in production to decrease a growing backlog. It takes until
round 72, about mid-game, before her increases in production
bring backlog to near zero. In round 73, her decision of -4
shows some appreciation of the previous round's change in
inventory that was positive 20 and larger than inventory.

For example, see velow:

round 69 70 7 72 73 74
change in production 2 5 3 4 -4 -10
production 631 63 639 643 639 629
dependent sales 189 191 192 193 192 189
independent sales 453 448 439 430 418 431
total sales 642 639 631 623 610 620
change in inventory -11 -3 8 20 29 9
inventory -27 -30 -22 -2 28 37

Delay = 0, Gain = +0.3
Subject 12, Trial 1.1

In round 69 she states, "I'm hanging even, but I'we got to
kill the backlog,” indicating that she understands that her

production increases need to be more effective at reducing
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the backlog. At round 71 she states, "Gradual changes seem
the best since independent is so random that big changes cost
a lot and have a high probability of over- or under-shoot."”
At round 74, whern inventory has begun to show a surplus of
+37, she says of her changes in production, " tryving an
experiment with high changes.” At round 75 she says, "not

good enough."

In round 89, despite the small magnitude of the
production change, subject 12 shows further emphasis on
change in inventcry. She says, " I don't want to overshoot,”

indicating some cautiousness.

round 87 88 89 90
change in production -17 -17 2 [
production 543 526 528 534
dependent sales 162 158 158 160
independent sales 3711 383 392 393
total sales 534 541 550 553
change in inventory 9 -~-15 -22 -19
inventory 32 18 -5 -24

Delay = 0, Gain = +0.3
Subject 12, Trial 1.1

By the end of game one, this subject shows that she has

learned to place greater emphasis on change in inventory. Shke
reveals an ability to be reflectiwve about her heuristics, but
she concludes with a bias for smaller changes. She is one of

the few subjects wno indicates a willingness to explore

alternative control actions.
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In game two (delay of 2 and gain of -0.3), she
continues the previous conservaiive changes in production and
exhibits greater emphasis on change in inventory and future
change in inventory. 1In rounds B0 and 81, for instance, she
increases production in response to a negative change in
inventory and previous decreases in production, i.e. future

change in inventory, thereby exhibiting strateqy 3. See

below.
round 77 78 79 80 81
change in production -8 -10 -20 20 11
production 556 549 541 531 511
dependent sales -162 -159 -153 -1S59 -162
independent sales 709 696 710 701 699
total sales 547 537 557 542 536
change in inventory 9 12 -16 -11 -25
inventory 39 51 36 25 0

Delay = 2, Gain = -0.3
Subject 12, Trial 1.2

In game three (delay of 4 and gain of -0.3), subject 12
maintains the previous strategy 3. She begins by making more

aggressive changes in production to compensate for a surplus

inventory.



round
change in production
production

dependent sales
independent sales

total sales
change in inventory

inventory

64

600

-166
741

575

25

103

65
-7
570

-164
741

577
-7

96

66

565

-166
754

588
=23

73

Delay = 4, Gain = -0.3

Subject 12,

Trial 1.3
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Therefore, she is showing greater attention to the inflection

points of inventory and change in inventory.

In later

rounds, she decreases production in order tc compensate for

earlier increases, thereby showing an appreciation for delay;

see below.

round
change in production
production

dependent sales
independent sales

total sales

change in inventory

inventory

67
12
560

-170
757

587

=27

46

Delay =~ 4, Gain = -0.3

Subject 12,

Later games

68 69
13 15
553 S46
~17¢ -178
417 753
573 575
-20 -29
26 -3
Trial 1.3

20
-10
554

-175
753

578

71

-3

566

-174
738

S64

72

579

-171
723

551

28

73

-30

594

-163
709

546

48

s1

In game 2 of session 4 (delay of 4 and gain of +0.3),

subject 12 demonstrates a high level of sophistication and an

appreciation for the effects of gain. Guessing that the game
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will end at round 92, subject 12 makes an increase in
production of 400 to decrease surplus inventory, relying on

the negative side effects of gain to bring inventory down.

round 88 8¢ 90 91
change in production 0 400 0 0
production 463 413 413 413
dependent sales 124 244 244 244
independent sales 295 284 297 299
total sales 413 528 541 543
change in inventory 44 -115 -128 -130
inventory 516 401 274 144

Delay = 4, Gain = +0.3
Subject 12, Trial 4.2

The subject's ability to handle positive gain and delay have
limitations, however. Just prior to the previous decision,
she shows a reluctance to control inventory aggressively,
indicating that her strategy is not adequate to deal

appropriately with delayed, positive gain.
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round 82 83 84 85 86 87
change in production -50 0 0 -~50 o] 0
production <09 500 500 513 463 463
dependent sales 13% 139 139 124 124 124
independent sales 346 333 320 305 297 293
total sales 485 472 458 428 421 417
change in inventory 15 28 41 84 42 46
inventory 231 259 300 384 426 472

Delay = 4, Gain = +0.3
Subject 12, Trial 4.2

Effort

In terms of time spent on decisions, on average, subject
12 had times of approximately .5 minutes. Ber games
generally showed lower times in the beginning rounds and a
spike of approximately 1 -2 minutes : later rounds at
roughly the middle of the game, which 3id not correlate with
changes in strategy.

Game 4 of session 2 shows an increase in time over the
other games of approximately 1 minute per choice. There were
large spikes at rounds 80, of 10 minutes, and 82 and 83, of

approximately 6 minutes, which did not correspond to changes
in strategy.
4.2.7 Subject 13

Early Games

In game 1 (delay of 0 and gain of -0.6), subject 13

shows a focus on inventory and ignores change in inventory.
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He begins by producing a surplus of 98 in response to an
initial backlog of -35. There is no delay in this game, Lut
the subject sets up large oscillations for which he must
later respond. For instance, in rocund 68 he has an inventory
of +13 and change in inventory of -268, which was produced by

a change in production of -100 previously made. See below.

round 66 67 68 69 70
change in production ~5 ~100 -100 -10 10
production 645 545 445 43S 445
dependent sales -387 -327 -267 -261 -267
independent sales 8970 972 380 993 988
total sales 583 645 763 732 721
changs in inventory 62 -100 -~-268 -297 -27¢
inventory 381 281 13 -284 -560

Delay = 0, Gain = -0.6
Subject 13, Trial 1.1

In rounds 83 ard 84 of game or:: subject i3 makes soxe
interesting changes in production. Rather than doing
experiments with dramatic changes in production, i.e. whole
numbers or hundreds, the subject makes changes in the
bundredths and only expects consequences in the hundredths.
Upon determining the effects of the hundredths change in
production, the subject makes another extremely small change
to further increase his knowledge of the system while
incurring small cost, but the system, although it calculates
at the thousandths precision, only shows the results in
hundredths. The subject seems to design a rather creative
no-risk experiment. It is reminiscent of small signal

analysis and is a way to see effects without disturbing the

system.
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round 81 82 83 84
change in production -20 -20 -.01 -.0001
production 180 160 159.99 159.99
dependent sales -108 -96 -95.99 -95.99
independent sales 8952 943 945 937
total sales 844 847 84..01 841.01
change in inventory -664 -687 -689 -681.02
inventory 1098 411 -278.02 -9%59.04

Delay = 0, Gain = -D.6
Subject 13, Trial 1.1

Throughout game one, subject 13 remains in the orientation

phase and does not show attention to change in inventory.

In game two (delay of 4 and gain of +0.3), subject 13's
orientation phase continuves for the initial rounds. For
round 62 the subject writes parallel calculations:

Inv. 10 want to reduce inv.
prod = 600 x .3 => sales
590 * .3 = 177 (Gep) + 410 = S87 total

change = 13
599.90 - 585.97 = 14

59.5 * 3 = 178.5 (dep) + 410.0 = 588.5 total
change 595.0 - 588.5 = 6.5
After two rounds of this type of experimentation, he abandons
it for an inventory focus, making only changes that appear to
be related to the magnitudes of inventory and change in

inventory; shown below.
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round 61 62 63 64 65 66
change in production -0.1 -~0.3 -10 -40 -60 -100
production 600 600 600 600 599.9 599
cependent sales 180 180 177 165 147 117
independent sales 406 410 402 397 389 388
total sales 586 590 579 562 536 505
change in inveatory 14 10 21 38 64 94
iuventory 24 34 56 94 158 252

Delay = 4, Gain = +0.3
Subject 13, Trial 1.2

Thus, through the above calculations, the subject reveals a
focus on the difference between production and sales as being
important. His subsequent control actions attempt to reduce
the inventory gap to zero; however, he is still struggling
with how to get inventory and change in inventory combined,
at the same time remaining far away from understanding the

supply line.

In game 3 (delay of 0 and gain of +0.3), he begins with
the same experimentation with small production changes, but
he immediately abandons this strategy and makes control
changes in response to surplus inveatory. By the end of
the gams, he is making smaller changes in production, and he

is focusing more on change in invertory. For example:
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round 86 87 88 89
change in preduction -5 5 -1 S
production 523 528 527 532
dependent sales 156 158 158 160
independent sales 370 364 374 364
total sales 527 522 532 524
change in inventory -4 [ -5 8
inventory -7 -2 -7 2

Daelay = 0, Gain =~ +0.3
Subject 13, Trial 1.3

Later games

The beginning of game 2 of session 2 (delay of 2 and
gain of 0) reveals that subject 13 continves with his
previous naive strategy of small production changes and has
not learned from previous games how to control the system but
only to be cautious. He starts the game with the same
experimentation with extremely small production changes of +
.5 wnits. By round 64, the subject has stopped making his
previous “what if™ calculations and notes, for the first
time, " change in inventory = production - salesg total.” 1In
round 67 he states, "sales independent unpredictable, cut
cost by keeping production constant,” but he draws the wrong
conclusion from this observation, as indicated by his later
decisions tbat are overly cautious changes in production to

large surplus inventory. The early behavior is depicted
below.
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round 62 63 64 65 66 67
change in production .5 -~-.5 0 ] .5 -.5
production 600 600 600.5 600 €00 600
dependent sales 0 0 0 0 0 0
independent sales 598 606 593 603 590 604
total sales 598 606 593 603 590 €04
change in inventory 2 -6 7.5 -3 10 -4
inventory 3 -3 4.5 1.5 11.5 1.5

Delay = 2, Gain = 0
Subject 13, Trial 2.2

Latexr rounds of the same game show the subject's
cautious heuristic. For example, in rounds 80 through 82, he
makes very small changes in production despite large

surpluses in inventory; he continues this behavior for the

rest of the game.

round 80 81 82 83
change in production -5 -5 -7 -2
production 570 565 560 555
dapendent sales 0 0 c 0
independent sales 573 586 586 578
total sales 573 586 555 578
change in inventory -3 -21 -26 -23
inventory 226 205 17% 15¢

Delay = 2, Gain = 0
Sobject 13, Trial 2.2
By game 3 of session 4 (delay of 4 and gain of +0.6),
subject 13 remains overly cautious in his production changes
and assumes a "no-control® posture by the end of the game.

His control behavior in this game indicates that he believes



that the best th
very small chang
example, in roun
in -2 increments

235. See below:

round
change in pr
production

dependent sa
independent

total sales
change in in

inventory

By the end
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dat he can do to cont:i>l the system is to make

es in production co control cost.

For

ds 69 through 73, he makes production changes

to a swelling surplus ranging from 135 to

69 70 71
oduction -2 -2 -2
599 598 5896

les 355 254 353
sales 229 224 211

584 578 564
ventory 15 20 32
135 155 188

Delay = 4, Gain = +0.6
Subject 13, Trial 4.3

of the game, subject 13 has neither

72

-2

594

352
217

569

25

213

3s0
220

570

22

23S

decreased inventory to zero nor risked having a backlog. By

round 85, he makes a one time relatively large decrease in

inventory, which does not decrease inventory significantly.

He then makes no production changes and allows inventory to

increase in surp

rourd

change in pr

lus.

85 86 87

oduction -50 0 1]

production 507 497 487
dependent sales 256 256 256
independent sales 191 183 175

total sales
change in in

inventory

447 439 431
ventory 60 58 56
770 828 8384

Delay = 4, Gain = +0.6
Subject 13, Trial 4.3

88

477

256
161

417

6C

944

89

427

256
161

417

10

953

90

427

256
150

406

874

91

427

256
141

397

30

1004
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Effort

Subject 13 makes a fair amount of "what if™ calculations
during the first five games. His early strategy,
characterized by experiments with small production changes,
does not prove to control the system sufficiently. In game 2
of session 2, he abandons his early strategy for cautious
production changes to surpluses or backlogs. He continues the
cautious, exogenous focus into the later games such that he

assumes a no-control strategy.

With regard to time spent, subject 13 spends
approximately .8 minutes per choice. His spikes are mixed
between initial times of approximately 1.5 minutes and mid-
game spikes of approximately 1.5 minutes. Thus, his times

fit the pattern of having an initial strategy and then

reevaluating ic later.
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4.3. Summary

Findings per subject

Subject 2 exhibits stage 3 strategy very early im the

experiment and is to a large extent consistent thrcughout the

experiment.

Although subject 4 attains a sophistication between
strategy levels 2 and 3, he does not maintain a consistent
strateyy throughout the experiment. For instance, in several
games, he develops a unique strategy for dealing with delay
whaich results in undercontrol and requires him to switch
strategies mid-game to strategies 1 and 2. His mathematical
procedure miscalculates gain which results in large costs in
the self-reinforcing conditiomrs. Once the system is
sufficiently perturbed by his mathematical procedure, he
abandons his strategy and exhibits a mere inventory focus
with control actions related to the magnitude of inventory:

sophistication level 1.

Subject 8 exhibits strategy 3 by game three. His
approach consists of minimal to no written calculations, and
he is unique in keeping track of past values of production,
inventory, and costs by graphing them. The extent to which
he utilizes the graphs is not known; however, his strategy
for dealing with the task is fairly good. Games 1 through 3
show a shift in emphasis on change in inventory and future
change in inventory. Throughout there is a cautious
approach, and the appreciation of delay is met with a

cautious "act and wait”™ style.
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Overall, subject 10 ignoves delay in all of the games
sampled and incorporates gain minimally. Subject 10 exhibits

stage 2 strategy overall.

Subject 11 begins with and maintains a good
understanding of how to control inventory uncer delay and
gain conditions through monitoring change in inventory and
future change in inventory closely, thereby exhibiting

strategy 3 early on. His games show a cautious control bias.

Subject 12 exhibits stage 3 strategy and demonstrates
incorporation of gain. However, she exhibits somewhat

sluggish control changes to compensate for excesses or

backlogs.

Subject 13 exhibits weak attention to change in
inventory, but later games indicate a break down in his
heuristics. Generally, he under—controls the system by
ignoring gain and delay and making too small changes in
production at the beginning of games which cause him problems
and force him to make large changes in preduction later. In
the final game, he remains cautious in his changes and

assumes a "no-control” posture by the end of the gane.
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Group findings

Based on the above findings, the notebock analysis may

be summarized as follows:

1. For almost all of the subjects, there is
little orientation phase.

2. Most of the learning occurs within the
first two games.

3. ¥Most subjects seem not only to recognize
the importance of inventory right away but
also the importance of change in inventory.

4. Second games, for most subjects, reveal
more emphasis placed on the change in
inventory than initial games.

5. Increasing attention given tc the change in
inventory accounts for most of the performance
improvement. that occurs within the first three
games.

6. Only some subjects show evidence of supply
line control.

7. There seems to be a correlation between
sophistication of strategy and scores
achieved. Those subjects that attain stage 3
strategy, subjects 2, 8, 11, and 12, have
better scores compared with subjects who
attain only strategy levels 1 and 2, subjects
10 and 13. See figure 4.4
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Subject Logz Difference: Rank
Subject - Benchmark
12 -2.399 1
11 -2.124 2
8 -2.049 3
2 -2.025 4
3 -1.729 5
9 -1.534 6
4 -1.445 7
S -1.003 8
7 -0.663 9
14 -0.483 10
10 -0.338 11
15 -0.048 12
6 +0.087 13
1 +0.909 14
13 +1.652 15

Figure 4.4 Subjects ranked according to 1logz
difference of costs from average of the optimmm
and no-control rules

In Figure 4.4 we provide subjects' ranked scores.!

There are differences in the attention given to supply
line and gain, but it is difficult to assess the extent of
the differences fram this type of amalysis. Subjects are able
to adjust their heuristics only minimally according to
varying conditions. All subjects exhibit a bias toward
cautiousness as evidenced by 0 or small production changes
and persistence of high inventcory backlogs or surpluses under
high delay and high gain situvations.

The above firdings help us to illuminate the three
heuristic hypotheses proposed at the beginning of the tbhesis.

Subjects appear to utilize more cues than the single—cue

IScore for sebject = Logp(cost of smbject) - [Loga(cost of optimmm rale) +
Leoga(cost of mo-comtrl rale)] /2  averaged over 15 wials (the goomeiric mesn
of the two bemchmarks).
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model would suggest. Rather subjects appear to select caes
oriented toward expected change in inventory, which suggests
a model more similar to the weight and cues adjustment
heuristic. The rational model, on the other hand, does not
appear to bz supported from the findings, since subjects
hardly ever consider all of the cues available, and theyv
underweight the cues they do rely upon since their heuristics

undercontrol the system under high delay and high gain.

Effort

Although not writing calculations does not necessarily
mean not doing calculations, it seems that the number of
calculations that the subjects write makes little difference
in terms of scores. It is just as easy to perform many
computations with little understanding as it is to perform
the correct calculations. Most of the mental effort goes
into the thoroughness with which subjects apply their
strategy. For example, one of the subjects who writes the
most in the notebooks, subject 13, performs many parallel
"what if" computations and spends more time in performing
these calculations than most subjects. However, he is also

one of the worst subjects in terms of scores.

The sophistication and understanding of the system has
almost nothing to do with the time spent; there are other
factors that contribute to success. All of the effort spent
in calculations will not help the subject if be or she has

misperceived the fundamentals of the systea (see subject 13).
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Similarly, we may explain the practice effect described
in the results section. The practice effect showed that
subjects spent less time as the experiment progressed, even
though their scores relative to optimal remained the same.
The practice effect may be attributed to the subjects’
understanding of the task, since after game three performance
remains the same, and subjects merely get more efficient at

executing their strategy.

The notebook results reveal that subjects' mental models
do not contain sufficient consideration of high delay and
high gain conditions. W®While not totally ignoring the supply
line, it appears that subjects pay less than full attention

to expected changes in inventory.

Informed by the previous analysis, the regression
analysis will consist of building several increasingly
sophisticated models, such as inventory only, inventory +
change in inventory, inventory + expected change in
inventory, and the rational (full state) model. Our notebook
analysis would lead us to believe that most of the subjects
fall into the two groups of inventory + change in inventory
and inventory + expected change in inventory. The regression
analysis should allow us to come to 2 more formalized
understanding of the weight adjustment that subjects make to

different information cues under different conditions.
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S. Using adjusted R? to determine subjects' model

Introduction

The notebook analysis revealed that subjects went
through a very brief orientation phase and that subjects'
heuristics were fairly consistent acrosgss trials. While
subjects' rules lead to satisfying results in the easier
conditions, the same ru.es, under high delay and gain
conditions, resulted in huge costs and eventually in an
abandonment of the strategy employed. Without precise
measurement of the changes in attention given to the various
information cues in the task, it was difficult to assess from
the notebooks the exact nature of the heuristics employed by
the subjects. Thus, the potebook analysis provided
qualitative insight into the cues and processing of subjects®
heuristics. It was felt that the data required a more
quantitative analysis, i.e. regression, that would measure
cue weights and changes in weights over time, across
conditions, and between different subjects. 1In addition, a
regression analysis can provide a better indication of the
extent to which high and low performers differ with respect

to the emphasis given to particular cues.

S.1.1 Model specifications

In performing the linear regression analysis, four
models of increasing sophistication were coastructed which
were informed both by the notebook analysis and the

hypotheses that were stated at the outset of this thesis.



The models range from the least sophistication to the

greatest sophistication.

Model 1: AProduction = al * Inventory

Model 1 predicts that subjects' heuristics are based
solely upon inventory values. Model 1 was not supported by
the notebook analysis, but has been included to test the one
cue adjustment hypothesis and as a benchmark for comparison

with other rules.

Model 2: AProduction = al * Inventory +

a2 * (Production-Sales)

Model 2 consists of two cues, inventory and change in
inventory, implying that subjects look at both values of
inventory and of the change in inventory, i.e. production -
sales, in formulating their decisions. Subjects would use
the change in inventory from the round previous to the
current decision round combired with the value of inventory
to determine an appropriate change in production. The
notebook analysis revealed that some, altkovegh not the
majority of the subjects might have followed this rule and it
is used to test the weights only hypotbesis.

Model 3: AProduction = al * Inventory +

a2 * (Production[future]}-Sales)

Model 3 is composed of inventory and future change in
inventory, i.e. future production - sales, which includes
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whatever delay is present. Model 3 would predict that
subjects make production changes that are based upon the
values of inventory and consideration of the supply line
through future changes in inventory. For instance, in a 2
delay situation, the subject would consider inventory and
change in inventory two rounds into the future to arrive at

the production decision.

Model 3, arising from the notebook analysis, would fall
under the weight and cue adjustment heuristic, despite the
fact that the number of cues remains the same. AaAs delay |
increases, subjects' consideration of cues that reach into
the future widens. While we did not anticipate this, we can

subsume it under the weight and cue adjustment.

Full information model: AProduction = al * Inventory +
a2 * Sales +
a3 * Production +
a4 * Production[one round ahead] +

a5 * Production[two rounds ahead} +

Although the notebook analysis did not support the full
information model, previous research has proposed this model
as viable and, therefore, it was included in this regression
analysis. The full information model is the most
sophisticated heuristic which includes all of the production

states in addition to the previous cues (inventory, sales,
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and future production-sales). This model assumes that

subjects consider all of the possible information cues.

It is important to mention that the models were tested
both with and without the constant term ( a of the equation y
= a + bx). In neither case were the fits significar‘ly
better, i.e. the t-values for the constant terms were not
significant. This is expected since there should not be a

bias towards a positive or negative inventory.

Adjusted R? and the number of sign reversals were used
as indicators of the fit of a p-rticular model. Several of
the models tested resulted in signs of coefficients that
would be counterintuitive. For instance, it makes no sense
at all to increase production in response to a positive
inventory. Thus, a positive weight on inventory would be
judged an artifactual sign reversal. In no case did the
notebook analysis even hint slightly that subjects would
perform this way. Thus, we categorized a regression that
showed one or more wrong signs on the cues considered as a
case of sign reversal. Figure 5.1 shows the average adjusted
R? and number of sign reversals. Information cues considered
are presented in the rows, model specifications at the bottoa
of the columns. The average adjusted R? and number of sign
reversals for the fifteen conditions can be found at the top
of each column above the model name. These results will be

discussed further in the following section.




M1|M2iM3|M4

Average adjusted B | .26|.51 }.58 | .62]
Number of sign reversals | 24| 59§ 24 {136
Inventory | X xii X| X

Production(t)-Sales X
Production(farthest)-Sales X

Producnon(t) X
Producton(t+1) X
Production(t+2) X
Production(t+3) f X
Production(t+4) X

Sales(t) i X

Information cues considered

Figure 5.1

Average adjusted R2
for alternative modals

and zign reversals
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5.1.2 Detailed sign reversal analysis

Model 1
Figures 5.2 - 5.5 show the number of correct signs per

condition and the total number of sign reversals overall out

of the possible 225 correct signs.

Overall
Mean
13.40 15.00
11.25
7.50 15 15 15
3.75
]
15
13 13
>
=
A 12
8 9
\ ¥
P"oe 'V w03 ' o VYV owsz T we !
Gain

Total pumber of regressions with ar least
one sign reveysal: 24 (11%)

Figure 5.2 Model 1: Numbar of instances where no
coafficient of f£it of the model has a wrong sigm

Figure 5.2 shows that model 1 had 24 sign reversals of
the total 225. Sign reversal frequency remains relatively
constant across comlitions, but decreases with increasing

delay and gain.
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Model 2

14

11

—6
06 ' 03 ' o T 403 T +0.st

Total nember of regressioms with at lesst
one sign reversal: 59 (26%)

Figure 5.3 Model 2: Rumber of instances whera no
coafficient of f£fit of tha model has a wrong sign

Figure 5.3 shows that, compared with model 1, model 2
has increased sign reversals to 59. Sign reversals increase

with increasing difficuity.
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Model 3
Overall
Mean
13.40 )15.00 \
11.25
7.50 13 14 1S
3.75
0.00
15 15 15
0
:‘ i5 5
g 2 & 12 o 1
4
AT [] 1 [} 1 A
-0.6 -0.3 0 +0.3 +0.6
Gain

Total mumber of regressions with at least
onc sign reversal: 24 (11%)

Noeabar of instances where no

Figure 5.4 Model 3:
coafficient of fit of tha modael has a wrong sign

Figure 5.4 shows that model 3 bad 24 sign reversals
which is lower than model 2 and equal to model 1.



Full Information Model

+0.3

Total number of rcgressions with at least
one «ign reversal: 136 (60%)

Figure 5.5 Full information model: Rumber of
instances whare no ccoefficient of fit
of tke model has a wrong zign

Figure 5.5 shows that the full information model had
136 sign reversals which is extraordinarily high comparec
with the other models.

Besides the four models discussed in this section, seven
models ranging in sopbistication between models 3 and 4 were
also tested. These models consiste of adding various states
intermediate between model 3 and the complete state model in
order to test whether subjects' behavior might fall in
soplistication somewhere between model 3 and the full-state
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model. All of the alternative models fell :n the close range
of R? of .58 and .62; also, all of these models produced sign
reversals substantially higher than model 3. While we can
clearly distinguish between models 1, 2, and 3, R? alone is
unable to differentiate between models 3 and 4. We judged
the number of sign reversals for the full information model
extremely high, and we felt that the use of more
sophisticated statistical techniques, such as restricting the
signs on coefficients, would not help us with the basic

dilemma of sharply distinguishing between models 3 and 4.

Rleinmuntz (1390, p.9) points out that at some point
regression analysis is not a fine enough procedure to

distinguish varying models of subjects' heuristics.

"...the linear model can be viewed primarily as a
description of the information combination process,
and does not address the process of information
search and acquisition (Einhorn, Kleimmuntz, &
Kleinmuntz, 1979). Observing that the supply line
coefficient (aSL) is too small does not tell us
what the decision maker was actuwally thirking
about. For instance, did the decision maker simply
think the supply line was irrelevant, or was the
problea that the decision maker had difficulty
remembering or reconstructing what was in the
supply line? Linear models do mot provide any way
tc distinguish between these two possibilities.

Thus, the linear model provides a very limited
amount of ingight into just what is going on in the
decision maker's mind. One way to characterize the
situaticn is that inferences from the linear model
are useful in identifying the phencmenon of
misperception of feedback, but they do not provide
an entirely satisfactory explanation of why or how
the phenemenon arises.®



We find the regression analysis useful to clearly reject
models 1 and 2; in the notebook analysis we found that the
majority of the subjects learned to attend to future changes
in inventory. However, regression becomes misty as more cues
are considered, and we mast rely primarily on the notebook

analysis to judge model 3 as the most appropriate model to

describe subjects' behavior.

224




225

5.1.3 Detailed R? Analysis

We not orly examined the overall means but, suspecting
that different subjects might have used different models and
that there may have been variable fit across trials, we also
analyzed subject and trial differences. Thus, the standard

ANOVA toolkit used earlier was applied.

Previous research suggests that performance in decision
tasks depends on the adequacy of the decision maker's mental
model. High-performers and low-performers might not only
differ in the weight they assign to different information
cues, but also in the selection of those cues. If the latter
is true, we would expect to see differences in model fit
across subjects. Once we have identified the most likely
model used by the subjects, the next section will explore the

weights applied to cues.

To test the adjusted R? for treatment, practice and
subject effects, an ANOVA was performed. The results for each
of the 4 models are documented in 5 tables using the standard
toolkit as introduced in previous sections: (1) Average
adjusted R? across conditions; (2) Adjusted RZ across
conditions showing variability:; (3) Adjusted RZ across
trials; (4) Adjusted R2 across subjects in predetermined
order; and (5) the results of the ANOVA.




Overall performarce

0.00-4 - 0.50 0.46

Figuore 5.6 Model 1: Average adjusted R2
across treatments

Model 1, which consists of oaly one coe, inveatory,
produced an average RZ of .26. See Figure 5.6 which shows
the average R? across conditions and overall. Under zero
delay, model 1 provides a fit of approximutely .50. The fact
cthat fit decreases as delay increases can be taken as an
indication that people are considering more cues than

inventory alcne.
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Analysis
Source a< F probability
Overall treatment 14,182 17.40 p<.01
Delay 2,182 114.05 p<.01
Gain 4,182 1.9 @ -ee—-
Delay x Gain 8,182 0.99 = ------
Subject 14,182 2.86 p<.01
Practice 14,182 1.26  ------

-- not significant

Figaore 5.7 Model 1: AROVA susmary table

ANOVA Figure 5.7 provides the statistical analysis of R?
and reveals that the differences in fit across treatments is

attributable to delay (which reflects the number of relevant

cues) .
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Treatment effects

Figure 5.8 shows RZ across treatments with variances.
Variance remains fairly high across conditions, but decreases
slightly &s gain and delay increase. The cause for the high
variance is due to differences between subjects who

themselves differed in performance across conditions.

b

0.9 - T
0.8 - -+ -
0.7 - I

"
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0.1 4 T
0 T T T T T l T Y . T l T T E- T =
-0.6 0.3 0 403 +06-06 -03 06 03 +0.6 -0.6 -03 0 +03 0.6
Delay: 0 Delay: 2 Delay: 4

Condition (ranked in order of increasing gain in each delay condition)

FTigure 5.8 Dlodel 1: Adjusted R? variance
across treatmsnts




Practice effects
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Trigure 5.9

Modal 1:

’crose trials

Adjusted R? variance

Fram ANOVA Figure 5.7, practice effects are not

significant and can be seen in Figure 5.9.




Subject effects

RZ for subjects did vary significantly and can be seen
in Figure 5.10. Model 1 explains subjects 6, 10, 7, and 13
best with an average RZ of approximately .30. This result is
expected for subject 10, since the notebook analysis revealed
that she attained a shaky sophistication level 2, attention
to inventory and change in inventory because her attention to
change in inventory was weaker than many other subjects.
Subject 13's beuristics followed a similar pattern as subject
10, thus model 1 is consistent with these subjects'

abilities.
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Figure 5.10 iodel 1: Adjusted R? variance
across subjects
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Overall performance

Figure 5.11 1Iodel 2: Awvwrage adjusted R2
*Cross tTreatments

Model 2 assumes that subjects consider change in
inventory (production -sales) in addition to inventory
discrepancy. As Figure 5.11 shows, this model accounts for
.51 of the variance of subjects' decisions. Under zero
delay, model 2 accounts very well for subjects' decisions
with an average R? of approximately .75. With incr;easing
delay, the relative fit decreases as hard conditions produce
more variance. Nevertheless model 2 accounts for more

variance than model 1, as indicated by higher RZ.
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Analysis
Source daf F _probability
Overall treatment 14,182 15.21 p<.01

Delay 2,182 100.56 p<.01

Gain 4,182 1.87  —---—-

Delay x Gain 8,182 0.5 = e—m——
Subject 14,182 1.75 p<.05
Practice 14,182 0.26 -————-
-- pnot significant

Figure 5.12 Model 2: ANOVA susmary table

ANOVA Figure 5.12 indicates that there were differences

in fit across treatments.

attributable to delay.

The fit across treatments is
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Treatment effects

Figure 5.13 reveals the above in more detail and shows
that across treatments, the variance remains roughly the

same. Variability is explained as differences between

subjects.

027_ i I 0 T 1 |
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Adjusted R®

1

-0.6 -03 0 +03 +06 06 -03 0 +03 406 -0.6 -6.3 0 +03 +0.6
Delay: 0 Delxy: 2 Delay: 4
Condition (ranked in order of increasing gain in each delay condition)

Figure 5.13 Model 2: Adjusted R? wariance
across treatments
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Practice effects
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Trial number (ranked in order of occurance per session)

Figure 5.14 Model 2: Adjusted R2 varianca
across trials

ANOVA Figure 5.12 shows no effect duve to sequence of

trials, see Figure 5.14.




Subject effects

Subjects difrfer with respect to fit by model 2. As

Fig .re 5.15 shows, overall, subjects' decisions are accounted
for with an average of approximately .40. Subjects 2, 7, and
10 show the highest fit for model 2 with an average of

approximately .60,
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Subjects (ranked in pre-determined order)

Pigure 5.15 Model 2: Adjusted R? variance

across subjects

The fact that this model accounts better for subjects'
performance is not surprising, since the notebook analysis
revealed that most subjects attained sophistication level 2.
The fit to subject 10's data, in particalar, is approximately
.70, since she remained at a weak level 2 consistently

L

14

-

15



236

throughout the experiment. The .3 fit for subject 13, on the
other hand, is surprising, since he too attained only ~
strategy level 2. We will see that iﬁcreasing sophistication‘
of models does not previde a better fit for subject 13,

indicating that he rem:ined at a sophistication level between

inventory and change in inventory and was inconsistent.

Model 3

Like model 2, Model 3 consists of two cues. However,
where model 2 considers current change in production, model 3
is more sophisticated in that it looks to future change in_
production as future productions appear on the horizon.
Recall from the notebook analysis it appeared that most
subjects not ole considered current change in inventory but
also anticipated future changes in inventory as it would

change two and four weeks into the future.



Overall performance

Figure 5.16 livdel 3: Average adjusted R2
across tresatments

Figure 5.16 shows the average R? per condition and
overall. The average is .58. Model 3 and 2 are identical in
fit under the zero delay case, since there are no future
production states to be considered. Both delay 2 and delay 4
cases are better accounted for with model 3 than model 2. In
addition, recall from the sign reversal analysis that model 3
holds fewer sign reversals than model 2, e.g. 24 sign
reversals versus 59, respectively. Thus, the overall
judgement is that for most of the subjects model 3 isg a
better description than model 2.
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Analysis

ANOVA Figure 5.17 shows that treatments are

significantly different for the R? and mostly attributable to

delay, although an effect of gain and an interaction is

present. Subjects differ as well.

Source df F

probability
Overall treatment 14,182 16.36 p<.01
Delay 2,182 89.97 p<.01
Gain 4,182 8.22 p<.01
Delay x Gain 8,182 2.02 p<.05S
Subject 14,182 2.66 p<.01
Practice 14,182 0.48  --——--

-- not significant

Figure 5.17 Model 3: ANOVA susmarxy table

238




Treatment effects
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Figure 5.18 Model 3: Adjusted R? wariance
across LCreatments

Figure 5.18 provides a loock at variance across
conditicons. Variance increases beyond the easiest condition,
but does not increase much afterward. As described above,
RZ does decrease with increasing delay ard gain. It is
evideat that subjects' heuristics break down under more
difficult conditions; the reasons behind the decreased R2
could be that subjects apply their rules with less
consistency or they may simply abandon their initial
strategies that worked well in easier conditions. The
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breakdown in heuristics is corrcborated by the notebook

analysis.

Practice effects
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Figure 5.19 Model 3: Adjusted R? variance
across trials

ANOVA Figure 5.17, again, shows no differences in fit

dve to the sequence of trials, revealed in Figure 5.17.




Subject effects

Subject differences are apparent. Figure 5.20 shows
that model 3 accounts for most subjects' heuristics extremely
well.

Subject 1 and 13 are exceptions. Subject 1 was not

examined in the notebook analysis; subject 13 showed a
relatively low consistency of strategy across games. In
fact, at the end of the later game of high delay and gain, he
assumed the "no-control” posture. The lack of a consistent
strategy and the generally low level of sophistication would
explain a low R? for this particular subject. Furthermore,

model 1, R2 approximately .3, did not attain a better fit for

subject 13 than model 3, RZ of roughly .3 also.
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Summary of analysis

We have seen a significant increase in RZ in model 3. We
feel comfortable in having demonstrated for the majority of
the subjects that they achieved model 3 sophistication. Most
of the subjects were sophisticated enough tc take change in
inventory into account and sophisticated enough to look into
the future instead of just the present. These regression
analyses corroborate nicely with the notebook analysis. The
regression analysis does not support a further sophistication
level in subjects, such as considering all of the states.

The regression tool was not sharp enough. We were faced with
a situation in which additional states placed in the model
increased adjusted RZ only minimally, but at the same time

produced artificial sign reversal results.

Since we did not find any indications for higher
sophistication from the notebook analysis, the rest of this
analysis will use model 3. At the same time, we feel a
little uneasy about how adequately model 3 fully captures the
delay 4 case under most difficult conditions.
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5.2. Weights attached to Cues

In the previous section we attempted to identify the
cues that subjects consider in their decision making process.
Having identified those cues as inventory and future change
in inventory, we will use the current section to analyze what
weights subjects associate with those cues. While we already
know from section 3.3 that subjects systematically
undercontrol the system, we do not yet know if they
underweight all cues equally or if there are particular
biases to be discovered. With this perspective in mind we
will analyze Model 3 that the notebook analysis and section
4.2., the R? analysis, filtered out as the most likely
decision model. Recall from the R? analysis that the constant
term was determined to be not significant in describing
subjects' performance. We will discuss model 3 with respect
to both the coefficients that subjects attached to cues and
the t-values that these cues attained in order to show how
particular cues are esphasized and whether weights on those

cues are significantly different from zero.



$.2.1 Inventory

Overall performance

1.00 \

075
Mean 0.50 \ ﬂ
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Figure 5.21 Average inventory weights:
across treatmants
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P S,

Figure 5.21 shows the average weights assigned to
inventory across treatment conditions. On average, subjects
assign a weight of 0.15 to inventory. Across treatments, the
weight assigned to inventory decreases as delay increases.
Under zero delay, the average weight is approximately .25;
under 2 delay, the average weight drops to approximately .1¢
and shows greater variability across gain conditions. Under
4 delay, the average weight drops lower tc approxismately .0S
and shows a decrease across gain conditions. Subjects'
performance will be contrasted with the weights assigned by
the optimal rule in the following section.
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Figure 5.22 T-values for inventory weights:
across treatmaents

The average t-values for inventory are presented in
Figure 5.22. T-values above 2.06 are significant (p<.05).
Fit decreases with difficulty. It seems that subjects might
be operating with different rules in these cases. However,
as we saw from the control effort section, subjects
significantly undercontrol the system under increased delay
and gain compared with the optimal rule. The decreased fit
here for the high gain and delay corroborates that story and
shows that subjects might abandon their own rule when faced

with difficult circumstances.



246

Treatment effects
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Figere 5.23 Varianca of inventory weights:
across treatasnats

Coefficients

In Figure 5.23, we see the same pattern from abowve:
subjects' weights assigned to inventory decrease as delay
increases. Optimom weights for inveatory are shown as the
thick, black bars. While the optimm rule associates roughly
the sama weights to inventory as delay increases, subjects'
decrease that weight.

Notice that variability decreases with increasing delay.
It seems that the weights assigned to inventory decrease in
particular for those subjects who in easier conditions
utilized relative bigh weights.
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Figurae 5.24 T-values for invemntory weights:
across treatments

Figure 5.24 shows the variance of t-valves for the
different conditions. T-values above 2.06 are siognificant,
{p<.05) . Fit decreases as delay increases, and variance of
fit increases with increasing positive gain. In the 4 gelay,
positive gain cases, the estimated coefficients do not prove

significant for ths majority of the cases.
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Figure 5.25 Variance of inventory weights:

across trials

The sequence of trials does not have an effect on the

weights assigned to inventory as Figure 5.25 and 5.26 shows.
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Figure 5.26 T-values for inventory waights:
across trials
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Subject effects
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¥igure 5.27 Variance of inventory weights:
across subjects

Figure 5.27 reveals that different subjects weight
inventory differently. In particular, subjects 1, 7, 13, and
15 place very little emphasis on inventory and do so
consistently as indicated by the small variability, while the

rest of the subjects weight inventory around .2 but do so
with moch variability.
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Figure 5.28 T-valvex for inventory waights:
across subjects

Figure 5.28 shows the t-values for the subjects. Note
that the majority of the t-values are significant for all
subjects. This holds true also for those subjects who placed

very low weight on inventory.
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5.2.2 Future change in inventory

Overall performance

The weights associated with the future change in
inventory stay roughly the same across coaditions except for
the 4 delay condition. The difference between the highest
and lowest weight is approximately 250%, while the difference

in the inventory case was much greater.
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¥igura 5.29 Avarage (future prodoctioca - salea)
waights: across conditions

Figure $.29 shows the awverage coefficieuts applied to
future change in inventory across treatments. The mean is
.43. Figure 5.30 reveals that for —ost of the conditions,
excloding the most difficult, the weights determined for
future change in inventory are significent at least at the
(p<.05) lewel. Fit decreases for increasing delay and gain,
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implying perhaps that subjects apply less weight tc this cue
as difficulty increases. From the notebook analysis, we saw
that indeed subjects' heuristics broke down under increasing
difficulty, and that effect can be described more precisely

as a decrease in attention given to important cues.

7.54 7.35 6.70
7.55 7.78
¥ 5 59
351 4.16
o
03 ' o ' w03 'V 406
Gain

Figure 5.30 T-values for (future production - salas)
weights: across conditions
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Treatment effects
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Figure 5.31 Variance of (future production - sgiles)
walights: across conditions

Figure 5.31 shows the variance of coefficients assigned
to future change in inventory. Optimumm weights are shown as
thick, blac.k bars. While subjects stay relatively the same,
optimmm coantrol suggests a very differemt behavior. Subjects'
weights increase in the appropriate direction as long as
complexity does not become too great. Once the difficulty:
complexity of the task increases doe to the combination of
high delay and high gain, the task becomes too difficult and
subjects' weights fall toward zero, possibly indicating a
"hands off™ contrel postiure. In the difficult conditioas,
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subjects' weights approach 0 instead of being more
aggressive. These results support the notion that subjects'
weights for this cue decrease with increasing difficulty, and

especially for high delay and gain.
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Pigure 5.32 T-valoes for (future production - salesxj
waights: across treatments

With regard to fit of the weights, Figure 5.32 shows
the t-values across conditioas. Fit is significant for
easier conditions, while increasing delay and high positive
gains cause fit to decrease. Subjects' apparently decrease
their importance of future change in inventory when the task
becames more difficult, unlike the optimal rule which

increases attention given to future changes in inventory as

difficulty increases.
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Practice effects
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Figure 5.33 Varlance of (future production - sales)
waights: across trials

Effects due to the seguence of trials are blurred
somewhat by the variability, but there appears to be a slight
increase in weight given to future change in inventory after
the first two trials, as Figure 5.33 shows. This effect is
corroborated by the notebook analysis where it was seen that
subjects® attertion to change in inventory increased through
the first two trials and leveled off thereafter. Most of the

e
o

learming that occurs during the first two trials can be
attributed to the increased weights attached to future change

in inventory.
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Pigure 5.34 T-values for (future production - sales)
waights: across trials

Figrre 5.34 shows the same pattern in t-values,
increasing fit after the first two trials and not much change
in later trials. Although the variability is large, the
slight increase at the beginning of the experiment and the
consistency afterward indicate that the weights given to
future change in inventory do not change much throughout the
experiment .
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Subject effects
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Figure 5.35 Variance for (future production - sales)
waights: across subjacts

Figure 5.35 shows that subjects do differ with respect
to the attention paid to future change in inwventory.
Subjects 1 and 13 pat very little attemtion on the supply-
line which, in part, explains their low performance. The
other subjects' median weights range from .3 to .6, which are
more consistent with the optimom ruole but are still less than
conditions change varies for different subjects. Subjects 13

R B L T R

and 15 remain within a very close range, while other
subjects, such as subject 4, have a gquite wide range of
adjustments throughout the experiment. Thus, there appear to ~
be some differences in the willingness of subjects to
e:pedm;vithaltenativewights.
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Figare 5.36 T-~values for (future production - sales)
veights: acrozs subjects

Figure 5.36 shows the t-values for the subjects. T-
values are consisteat with the weight analysis: subjects 1
and 13 show decreased fit; barely half of tte weights are
significant. Subject 4's inconsistency is revealed again by
large variability in the t-values, despite the high median t-~
valoe. All other subjects show significant fit The
implications of the subject effects are that subjects differ
with respect to the attention that they place on future
changes in inventory. Low performers and high performers can
be distinguished by the emphasis given to the supply line,
which was also found in the notebook analysis.




5.3. Causes of Underperformance

We have identified a two cue rule that subjects employ

and have analyzed the weights that they attach to those cues.

On average, compared to optimm, subjects' scores are higher
by a factor of four. What remains is an explanation for the

discrepancy between optimum and actual behavior.

Underperformance can be the result of three principal
causes: (1) Subjects consistently employ the wrong decision
model; (2) Subjects employ the right model but apply it
inconsistently or (3) Subjects employ the wrong model and
apply it inconsistently. To understand the deep causes for
dysfunctional decision making, we need to be able to

distinguish to what extent underperformance is caused by

employing the wrong model and to what extent underperformance

is attributable to inconsistencies. We will see that the
greatest cause for subjects' performance is a faulty mental

model, indicated mainly by insufficient weights.

Figure 5.37 shows these relationships graphically and
the different sources of variation that each comparison

explains.
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Wrong model Inconsistency
! Subjects’ ! .
Subjects’
Optimum model bootstrapped

2.12
\ v /N /
1.62 Logzdifferenccs 0.50

74.27 25.73
Percentage of variance due to partiion

Figure 5.37 Partitioning subjects' variance asg
a function of logz differe.ce from optimum and

subjects' bootstrapped rule: wrong model wvexsus noise

In the following we will describe the results in more

detail and explain the techniques used.

Bootstrap

We will use the technique of 'bootstrapping' to
determine to what extent the observed underperformance can be
contributed to random error in the subjects' judgment. Bowman
(1963) was the first to demonstrate in a business context
that management's own average behavior might yield better
results than the behavior itself. Re reasoned that
bootstrapping works because people respond to irrelevant cues
in the enviromment (like the last telephone call). Decision

rules incorporating coefficients derived from management's




own recurrent behavior eliminate these random and

particularistic components. As Dawes (1971, p. 182) states,
"A mathematical model, by its very nature, is
an abstraction of the process itself; hence,
if the decision maker's behavior involves
following valid principles but following them
poorly, these valid principles will be
abstracted by the model - as long as the
deviations from these principles are not

systematically related to the variables the
decision maker is considering.”

To determine the bootstrapping effect we compare two
models: subjects' actual performance and subjects' two-cue
rule. Using the weights we estimated for each of the 225
trials, we rerun the experiment with the same random
conditions for sales but substituting the estimated rule for

subjects® decisions.

Model 3: Docisicn= aitInveatory + a2%(Future Production-Sales)

Analysis

Since we were expecting that the results of the
bootstrapping would differ across treatments and that the
variance would be partially explained by practice and subject
effects, we choose to use the standard toolkit, based on the

ANOVA of the various effects.

Overall performance

Figure 5.38 shows the average bootstrap effect in logz
differences of costs between subjects®’ actual performance and

the subjects' bootstrapped rule for the 15 conditions.
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Overall, the estimated model outperforms subjects in most
conditions; the exceptions can be seen wherever a negative
difference is found. Negative differences imply that subjects
outperform the estimated rule in those conditions. The
bootstrap effect is most pronounced in the no-delay
condition. Based on the regression analysis, we are not
surprised to find smaller differences in the more difficult
conditions. As we can see from ANKWA Figure 5.49, the
treatment effects are significant and mainly attributable to

differences in delay.

Delay

Flgure 5.38 Bootstrap effects: logz differences of
costs between subjects' actual performance and
subjects' bootstrapped <zule

The overall mean of .50 logz differences, indicating

that the score for the bootstrapped model is roughly 30%
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lower than subjects' scores. 1In some conditions, we see log:
differences of greater than 1, implying that subjects had
over two times greater costs than the 2-cue, bootstrapped

rule. Thus, there is a rather large impact of ncise.

It seems important to note that a large bootstrap effect
exists despite the fact that we have less confidence that the
2-cue model accurately describes subjects behavior under

increasing delay.

Analysis
Source af F _probability
Overall treatment 14,182 1.09 p<.0S
Delay 2,182 1.80 p<.05
Gain 4,182 0.22 = ——=—- —_—
Delay x Gain 8,182 1.35 —————
Subject 14,182 '1.20 e -
Practice 14,182 1.52 —————

—-- not significant

Figure 5.39 Bootstrap ANKOVA summaary: subjects’
decliszions vg. estimated 2-coe sutbjects® rule
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Treatment effects

ANOVA Figqure 5.39 reveals that there is a treatment
effect of delay (p<.05). Figure 5.40 provides a more detailed
view of the bootstrap effect across the fifteen conditions by

depicting the variance of log; differences across conditions.
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Figure 5.40 Bootstrap effects: logy diffarences of
coste batwean subjects' actuval performsance and
subjects' bootstrapped rule- treatment effects

Higher bootstrap effect exists in the 0 and 2 delay
conditions. 1In the 4 delay and 2 delay, +0.6 gain cases
substantial number of cases show reverse bootstrap effect in
which bootstrapping decreases performance ratber than

increasing it. We take this as another indication that model
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3 might not capture subjects' rules completely, as we would
have expected from the notebook analysis where we saw a large

breakdown in heuristics under high difficulty.

Practice effects
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Figure 5.41 Bootstrap effects: logz; differences of
costs between subjects' actual performance
and subjects' bootstrapped rule-
practice effects

Although the practice effect is insignificant, it
appears from Figure 5.41 that the bootstrap effect is highest
during the first two trials. This result would confirm
expectations. It can be assumed tha£ inconsistency is highest

in a phase when subjects are still in the process of

2€6
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familiarizing themselves with the task. During the first two
trials, inconsistency might be attributable to deliberate

experimentation.

Subject effects
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Figure 5.42 Bootstrap affects: logz differences of
costs between subjects' actual performance and
subjects' bootstrapped rule- subject effects

Figure 5.42 shows the detailed effects for the 15
subjects; the ANOVA revealed no subject effects. Still, we
can draw some conclusions from the figure. Subject 12's
performance for more than half of the cases shows a reverse
bootstrap effect, indicating that his mental model is

somewhat more sophisticated than model 3 alone. Subjects 4,
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10, 2and 13 on the other hand, do not appear to adhere to the

two cue rule consistently, as corroborated by the notebooks.

Wrong model

In order to shed more light on the nature of subjects'
mental models, it might be useful to distinguish between the
effects of choosing certain cues versus placing improper

emphagis on the cues considered.

Model 3 is not the full information model; how much of a
difference in performance is accounted for by not utilizing
the full state model vs. using model 3?2 To answer this, we
Cosigpale Ll true opllmum and Uik optims weights for a two
cue model. The costs for both rules are calculated through
225 simulation runs under the same conditions as the

experiment.

The weights for the two—coe optimum were derived via
grid search. In order to find tbhe minimum costs per
condition, each condition is simnlated repeatedly with the
weight on inventory varying systematically from 0 to 1 with a
grain size of 0.01, and the weight on future change in
inventory varied from 0 to -6 with a grain size of 0.01. To
determine the optimm weights for a 2-cue model, the system
is imitialized with an inventory imbalance; no exogencus
inputs were used. 1 Upon reaching equilibrium, invemtory
costs were recorded. At the end of the simnlation runs, tbhe

1 Sco also page 252 fer & marc detailed look at fac rowuils of the grid scerch.




weights corresponding to the minimum costs were recorded as

they are displayed in figure 5.43.

o |at=0.32 0.35 0.39 0.43 0.48
22=0.49 0.58 0.71 0.92 1.32

=
= 0.32 0.33 0.34 0.35 0.35
o 2 0.74 0.94 1.27 1.89 3.38
4 0.28 0.27 0.25 - 0.24 0.22
0.85 1.11 1.50 2.28 3.97
-0.6 -0.3 0 +.3 +0.6

Gan

Figure 5.43 Optimal weights of 2-cuve "optimms™ model

The weights derived were then uosed to simmlate the
experiment once more. Using the weights, we conducted a
simulation experiment very similar to the one that we used to
determine optimnm scores. The only difference being that our
15 computer subjects would use only inventory and (future
production - sales)} in computing a decisioa.
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Figure 5.44 Optimal model vs. 2 cue optimma model:
average logz difference in costs per condition

Figure 5.44 shows the average logs; difference in costs
between the optimum rule and an optimum 2-cue rule. The two
models are identical for the no delay case, thus the
difference is 0. We did expect the difference to increase as
delay increased as more and more cues are ignored by the two-
cue model. It is surprising, though, to find an apparent gain
and del.ay interaction. The consequences for an insufficient
cue model are higher under negative than under positive gain

conditions. Overall, the effect of ignoring cues seems to be

moderate.

In the first phase of the analysis, we calculated the
variance accounted for by using insufficient cues. We may
now calculate the effects of using insufficient weights by
taking the logz differences between the performance of an

optimum 2-cue rule and subjects' bootstrapped rule. The
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resulting logz score will reflect the variance associated
with utilizing incorrect weights, and requires a more

detailed examination, which is provided in the section that

follows.

Figure 5.45a shows the logz differences of variance
accounted for by insufficient cues, weights, and noise. The
overall difference between optimumm and subjects' performance
was determined to be roughly four times. Examination of
Figure 5.45 a reveals that the solid black bars, signifying
the difference between 2-cue optimum and the bootstrap
subjects' rule, accounts for most of the variance in
performance. The second largest contribution in variance
arises from the variance caused by noise. Noise plays a more
prominent role in the easier conditions, in part, because by
definition there is no difference in optimm versus optimum
2-cue rule for 0 delay. The third and smallest contributor
shows the variance accounted for by insufficient cues, which
has relatively little influence. The negative camponents
represent those cases when subjects' actu2l rules outperform
the bootstrap rule which results in a negative log;

difference between subjects' and bootstrap rules.
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Figure 5.45b shows the three variance components
normalized to 100%. Noise accounts for 26% of the difference
between subjects and optimum. Insufficient cues account for
approximately 8% of performance, while insufficient weights

account for roughly 66% of underperformance. By far, the fact
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that subjects hold incorrect models accounts for most of

their underperformance.

We will now examine more closely the underperformance
caused by insufficient weights. Figure 5.46 shows 15
vignettes arranged in four dimensions. Weight adjustment for
subjects and optimal 2-cue rules are shown in the standard
3x5 matrix of conditions in which rows show the 3 delay
conditions, and columns show the 5 gain conditions. Within
each vignette, inventory weight adjustment is shown along the
"y" axis ranging from O to 1, and future change in inventory
is shown along the "x" axis, ranging from 0 to 2. Note that
the units of inventory and expected change in inventory are
the same, (since expected change in inventory is per period
where period = 1), so the magnitudes of the cue weights for
inventory and change in inventory are comparable. Subjects®
weights are shown as "x's”, and optimmm weights are shown as

a "+,

¥ o
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Comparing subjects and optimum weight adjustment across
conditions reveals that nearly all of the subjects' weights
lie to the lower left of optimum, corroborating the earlier
result of significant undercontrol, reformulated as
insufficient weights applied to cues. The figure reveals two

major points:

1. Under increasing complexzity, the optimm
weight for inventory stays roughly the same,
but subjects' weights for inventory decrease
dramatically.

2. Under increasing complexity, the optimum
rule places greater and greater weight on

future change in inventory, but subjects’
weights remain the same.

It appears from inspection that the distance between the
subjects' model and the optimum model increases with
complexity. In order to verify these findings, an ANROVA was
performed on the Euclidean distance of subjects' weights from
optimum weights for inventory and future change in inventory,
as depicted in figure 5.42. The Euclidean distance is
calculated with the following formula for each subjects'

weights:

2
Distaace from opteanm weight =‘J6nwnﬁxy‘c%h02+ @szzﬂckaq;ininzvcahﬂz




Overall performance

FPigure 5.47 Euclidsan distance of subjects' weights
from optimom weights applied to inventory and
future change in inventory - across conditions

Figure 5.47 shows that the Buclidean distance from
optimum increases as difficulty increases. The average
distance from optimm weights is 1.08. Since most of the
subjects’ weights fell to the lower left of cptimm weights
in Figure 5.46, them we may interpret ihe increasing
distances from optimom weights as an additional indication
that subjects undercontrol the syster., especially under

increasing task difficuity .
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Analysis
Source df F probability
Overall treatment 14,182 214.61 p<.01

Delay 2,182 361.25 p<.01

Gain 4,182 454.07 p<.01

Delay x Gain 8,182 58.22 p<.01
Subject 14,182 5.83 p<.01
Practice 14,182 0.78 —--——

-- not significant

Figure 5.48 AROVA for FRuclidean distaznce of subjects'
waights from optimam for in-eatory and

future change in inventory

ANOVA Figure 5.48 shows main effects of delay and gain

as well as an interaction (p<.0l).

In addition, subject

differences are significant (p<.0l), but practice effects are

not significant.
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Treatment effects

Buclidean distance
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Figume 5.49 Euclidean distance of subjects' weights
from optimom welghts applied to inventory and future
change in inventory- treatment effects

From figure 5.49 we see clear increases in distance
from optiwom weights as conditions increase in difficulty.
As the AWOVA revealed, treatment effects of delay, gain, and
their interaction are apparent. The interaction effect shown
as steeper rise in distance across treatments reveals that as
difficulty increases, subjects' weights move further away
from tl optimm weights, indicating greater and greater
wnGorcontrol an the part of subjects.
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Practice effects
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Figuore 5.50 Euclidaan digtanca of subjects’' weights
from optimum welghts applied to inventory and futura
change in inventory- practice effacts

Figure 5.50 shows that Euclidean distances remain fairly

constant across trials as ANOVA figure 5.48 showed.
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Subject effects
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Figure 5.51 Euclidean digstance of subjects' weights
from optimmm weightz apriied to inventory and future
change 3ia inventory- subject effects

Figure 5.51 confirms that the best performers, such as
S11 and S12, in the majority of their trials stay closer to

optimum than low performers, suvch as S1 and Si3.

Given the vast discrepancies between optimm and subject
weightg, we are surprised that there were not greater
increases in subjects' costs versus optimum. Refer to Figure
5.52 which shows the optimum weights for the fifteen
conditions. Fifteen vignettes are arranged according to
conditions, reflecting 3 delay and 5 gain cases. Within each

vignette, the x-axis reflects the weight associated with the




cue of future change in inventory, while the y-axis reflects
the costs associated with the weight given to inventcry. The
scale on the x-axis ranges from 0 to 2, while the scale on

the y-axis ranges from 0 to 1.
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2

s
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Figure 5.52 Optimum weight adjustment across conditions:
revealing flat bottom costs




The black spot in the center of each vignette represents
minimum costs. While the minimum costs achieved vary widely
with the objective difficulty of the task, we have normalized
the figures in such a way that each successive band around
the center symbolizes a 50% increase in costs. Note that for
conditions 2 delay, +0.6 gain, and 4 delay, +0.3 and +0.6

gain, the minimum cost is off the scale.

Notice that the slope of the objective difficulty does
not increase linearly from the optimum performance to
decreasing performance, rather, the slope of objective
difficulty increases very slowly at first and then very
rapidly. The area of low degradation is relatively large, and
it just so happens that as difficulty increases, the area of
low degradation narrows and stretches out toward the (0,0)
point representing the strategy of "no-control,* thus
explaining that despite the huge differences in undercontrol,

we do not see huge differences in costs. 2

2 A zimilar phcnomenon has beecm reported im earlier studies (Rapoport, 1975).
While not at the cemter of this thesis, the technique used in figare 5.52,
showing sysiematically how the performance valley changes with delay and

gain should provide impetns for further examination of the flat optimum
phenomenon.
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6. Conclusions

Summary of Analyses

The findings of the research presented thus far may be

summarized as follows:
Benchmark analysis results

1. Objective difficulty of “ha task increases
quite dramatically as measu:ed by the optimum
rule performance.

2. As objective difficulty of the task
increases, controllability of the task
decreases, as measured by the camparison of
the no-control and the optimum rule.

3. Experimental research needs to consider
that benchmark behavior may differ across
treatment conditions rather than to assume
that it is invariant with treatments.

Score analysis results

4. Subjects' raw scores increase dramatically
with increasing task difficulty.

S. Subjects perform better than the no-control
rule in most conditions but perform worse in
the most difficult conditions.

6. Absolute differences between optimum and
subject 3cores increase with increasing
difficulty, while the ratio of subjects' to
optimum scores remains roughly the same across
conditions.
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Time analysis results

6. Subjects spend the same amount of time in
all conditions, despite large variations in
task difficulty and number of available cues.

7. Subjects spend less time in the later

trials.

8. Subjects differ greatly with respect to the
amount of time spent, yet performance and time
spent on decisions are not correlated.

9. Time spent on initial decisions is only
slightly larger than time spent on later
decisions within trials.

Control Effort results

10. Costs resulting from changes in production
are far less than indicated by optimum, thus
indicating undercontrol as further
corroborated in later sections.

11. Undercontrcl is correlated with score.

High-performers exert less undercontrol than
low-performers.

Notebook analysis results

12. Subjects spend little time in an
orientation phase.

13. Most of the learning, measured as
improvement in performance compared to
optimum, occurs within the first two games for
most of the subjects.

14. Increasing attention given to the change
in inventory accounts for most of the

performance improvement that occurs within the
first three games.

15. Only some of the subjects show evidence of
supply line control.

17. Subjects do not tend to vary their
heuristics as treatment conditions vary unless
forced to in a crisis situation. They then
revert to a no-control approach.

18. Subjects show some signs of attributing
system parformance to exogenous factors.



Regress.. 2nalysis results

19. Subjects do not utilize all cf the cues
available to them, but rather rely upon a
subset that includes only inventory and
expected future change in inventory.

20. Subjects place less weight on both of the
cues than suggested by optimum.

21. While the optimum rule increases the
weight on future change in inventory as gain
increases, subjects' weight remains constant.

22. While the optimum rule places a constant
weight on inventory as delay increases,
subjects reduce the weight given to inventory.

23. Attention given to weights is the single
most important factor in explaining the
difference in performance betweer high and low
performers.

24. Attention given to future states increases
slightly as trials progress.

25. Faulty mental models account for 75% of
subjects' performance, while inconsistency
accounts for 25%.

26. Insufficient weight given to the twc cues
accounts for the greatest portion of the
difference between subjects' and optimum
performance: roughly 66%.

27. Despite large differences in the weights
attached to cues, suhjects do not show larger
differences in scores ciarered to optimm,
which is the result of "fla. OHottom”
characteristics of the task, that allows for a
wide range of near-optimal performance.
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We can condense our findings into two major conclusions:

1. People maintain the same limited-cue
adjustment heuristics in response to
situations with varying complexity. These
heuristics break down under increasing task
difficulty.

2. People learn the limited-cue adjustment

heuristic quickly and are reluctant to modify
it.

These conclusicns will now be discussed in light of the

current study's findings and previous research.

1. People maintain the same limited-cue, adjustment
heuristics in response to situations with varying complexity.

These heuristics break down under increasing task difficulty.

We see substantial misperceptions in subjects' mental
models with respect to delzy and gain. Based on the
preceding findangs, we hold the hypothesis that people do not
use a full information model, but rather employ a simple,
two-cue, adjustment heuristic, as evidenced by the time,

control effort, notebook, regression, and weights analyses.



Three main explanations for the development of subjects'

heuristics have been offered in the literature.

a. People consciously make a cost-benefit
trade-off of limited cognitive resources
(Payne, 1982).

b. People generate and decide between
alternative decision rules, which they test by
experimentation (Wallsten, 1980).

c. People rely upon faulty mental models that
do not capture the dynamic nature of the task.
In particular, people misattribute endogenous
system behavior to exogenous factors (Sterman,
1989Db) .

a.) Previous research has cited the mental effort
required to perform the task as a possible cause for the
development of subjects' heuristics (Payne, 1982). While
subjects may have the mental resources to perform in quite
complex tasks, it may be that people make a necessary cost-

benefit trade-off of cognitive effort (Kleinmuntz, 1990):

In the stock management task, there are a number of
factors that may increase the effort required to
incorporate the supply line into the decision. For
instance, while the current sales figure and the
current inventory level are directly visible to the
decision maker, the supply line may have to be
reconstructed from memory (e.g. recalling the
previous order quantities and aggregating those
numbers to arrive at an overall estimate). If the
supply line is harder to use than the other
information, the decision maker may decide to do
without it. If the costs associated with decreased
performance are not severe, then this may lead to a
satisfactory compromise: 2 lot of effort is saved

and little is sacrificed.
However, in this task, supply line information is always
available to subjects and is presented in the same display as
other cues such as inventory and sales. 1In this task failure

to utilize supply line information cannot be attributed to

costs of acquiring the irnformation.
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Brehmer (1389), in addition, pointed out that people do
not treat all delays as equal, but rather have greater
difficulty with those components of the system that must be
inferred from system structure. In our task, all information
was made transparent. Nonetheless, subjects performed wor:ze
under increasing delay and gain. The severe underperformance
and limited-cue models suggest that subjects cannot mentally
utilize a rule of any great complexity, (findings 10, 14, 15,
17, 19, 20, 21, 22, 23, 25). Reduction of mental effort alone
seems not to be a sufficient explanation for subjects'
performance, since there is a possibility that subjects’
limited-cue models may be caused by their inability to

generate competing hypotheses.

b.) One strategy for performing the task is to generate
multiple decision rules and decide, based on score, in favor
of the most promising rule. However, in our study, people
did not seem to generate competing hypotheses to perform the
task, but rather maintained one rule and modified it only
when it failed. Kleinmuntz (1990) likewise proposed that
people may not entertain alternative decision rules, but
choose to use an initial rule until it fails. Once the rule
fails, the person may modify it by trial and error in order

to develop a rew, more effective rule.

We find that high performers developed and maintained a
heuristic that includes influences of delay quickly. Low
performers generate poorer guality heuristics, which do rot
attend to delay, early and must abandon them sooner than high

performers. Even high performers' heuristics failed under
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high delay. Thus, we saw both groups of subjects develop one
rule and utilize it until it failed. Although our subiects
did show signs of modifying their rules upon breakdown, the
majority of subjects' heuristics break down and are
substituted by an emergency "hands off" apprcach, rather than
generating alternative hypotheses. Once the crisis situation
is over, subjects tend to revert to their original heuristics
only slightly modified (findings 13, 14, 15, 17, 19). There
seems to be a difference between heuristic breakdown in
crisis and deliberate generation of alternative decision
strategies. Previous researchers, (Kleinmuntz, 1990; Sterman,

1989b), have investigated the generation of subjects' initial

rule.

c.) Sterman's (1989a) research revealed several
misperceptions of feedback. Sterman prcposed that subjects'
heuristics are locally rational, implying that their decision

rules did not capture the dynamic relationships within the

task:

If the decision rule is locally rational, the
explanation for the poor performance of the
gibjects must be sought in the interaction between

the decision rule and the feedback structure of the
simulated economy.

Our consistent finding of lack of attention to the supply
1ine seems to confirm Sterman's hypothesis. While rules that
ignore the supply line are consistent with no-delay
situations, they become dysfunctional once delay or strong

positive feedback side effects are introduced (findings 14,

15, 17, 19, 21, 24, 26).



Kleinmuntz (1990) agrees with Sterman that subjects'
initial rule may be locally rational:
"An interesting question is how the initial rule is
generated. The rule may be one that is "locally
rational”™ in the sense that it is a very general
strategy that provides effective performance in
simple static tasks that resemble the dynamic task
at hand. For example, the anchor and adjustment
rule is very effective in stock management problems

that do not have lagged feedback structures."
Sterman, 1989b, pp.323-324)

From this perspective, the problem of which rule
subjects decide upon becomes a framing issue. What mental
models do subjects generate in response to the training and

task characteristics?

The notebooks and regression analyses reveal that
subjects' rules are fairly established by the second trial.
There are no dramatic changes in the number of cues
considered. For instance, there is a predictable progression
from inventory to change in inventory to future change in
inventory within the first two to three trials for most
subjects. Under moderate task difficulty, 0-2 delay and
negative gain, subjects' heuristics perform fairly well, but
under increased difficulty, high delay and high gain,
subjects' heuristics fail. In addition we found that the
weights that subjects place on all cues are less than

indicated by the optimum rule, leading to underperformance.

Sterman’'s subjects misattribute system performance to
exogenous factors. Likewise, our subjects seem to be
incapable of generating appropriate closed-loop models, as

evidenced by ignoring vast parts of the supply line, and our
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subjects did show signs of attributing system behavior to
exogencus factors (finding 18). At the same time, however,
we hesitate to label subjects' models as open- loop models.
The fact that subjects are inclined to take a hands-off
approach in the most difficult decisions might very well
indicate that subjects are acutely aware both that they are
part of the system and that their insufficient understanding
of the system could be a cause of system instability.
Subjects might want to close the loop but do not know how to

do so effectively.

2. People learn the limited-cue adjustment heuristic quickly

and are reluctant to modify it.

The following section will explore the processes
underlying the development and persistence of the two-cue

hypothesis.

Most learning occurs in the first two trials. The two-
cue model fits subjects' data fairly well under most
conditions, with high delay and high gain being exceptions.
Subjects' heuristics were developed early in the experiment
and only modified, if at all, when those heuristics broke
down. We did find changes in strategy during those games. We
think that we can attribute those changes neither to
deliberate generation of alternative strategies as discussed
in paragraph 1) above, nor to thematic vagabonding (Dérner,

Kreuzig, Reither, and Stdudel, 1983), as argued below.
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Dérner, et al.'s (1983) work with LOHHAUSEN, which was
described in the literature review, showed that the subjects
exhibited "thematic vagabonding," or generating new
hypotheses without testing them appropriately. High
performers tested one causal hypothesis completely, while low
performers tended to jump from one hypothesis to another. 1In
delay situations, much time can pass between control actions
and system responses. Disproving incorrect hypotheses can
only be achieved by waiting for the feedback of those control
actions; most people do not incorporate these delays into
their search for appropriate control policies. Contrary to
Dérner, we found that few subjects were willing to experiment
with varied control strategies, and subjects generally held
onto their initial strategies until they proved ineffective
to the task, perhaps due to difficulty of benchmarking one's

self.

It seems to us that we can characterize the observed
changes in strategy best as a temporary abandonment of
initial strategy. The human factors literature similarly
reports that people revert to previously learned responses in

emergency situations (Singleton, 1978).

An important corollary to heuristic change is the amount
of effort spent in processing those changes. Interestingly,
more effort spent does not correspond with increased
learning. Time data show that time spent on the task and
scores achieved are not correlated. From the control effort
results, we know that subjects undercontrol compared to
optimum. From the weights analysis, we learned that

subjects' performance could mainly be attributed to
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insufficient weights given to certain cues. Thus, subjects’
heuristics show a faulty development and little improvement
over trials, despite instances of increased time spent per
decisions. Decreased performance despite increased decision
times suggests three hypotheses:

1) The extra time is spent in irrelevant

thought, calculation, rest, or distraction.

2) People vary in intrinsic processing speed

independent of intelligence in this task.

Since optimal is flat, low effort is not much

penalized in this task.

3) The people who understand the task less

think harder compensating for their poor
understanding.

The fact that few subjects experiment with the system
despite ample opportunity and that heuristics are developed-
quickly and do not change much might be taken as an
indication that the learning process was terminated
prematurely. It appears that a useful representation of the
task including a full understanding of the consequences of

differing values for delay and gain is not reached.



The first major conclusion discussed subjects as
controllers and the second discissed subjects as learners. To
fully understand dysfunction in decision making, we need to
understand the inherent trade-off of control and learning as

it is influenced by tasi complexity.

Subjects face the challenge of controlling the system
while learning about it at the same time. Task complexity
affects both processes: the ease with which the system can
be controlled and the ease with which the underlying
relations within the system can be learned. To explore the
relationship between control and learning we propose a
framework as illustrated in Figure 6.1. We can identify three
major loops: 1. a control loop, 2. a passive learning loop,

and 3. an active learning loop.
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Figure 6.1 Learning and control loops contained
in a dynamic decision task:

Control loop
Passive learning loop

1
2
3. Active learning loop

In this framework the distinction between learning and
control depends on the way in which outcome feed-in enters
the decision process. Comparing outcomes with expected
outcomes is central to learning, while comparing outcomes

with desired outcomes is central to control.

In order to control the system, the decision maker needs
only to compare selected outcomes to desired outcomes. In the
task at hand the desired outcome for inventory is 0; any
discrepancy between actual inventory and desired inventory is
acted upon depending upon the decision maker's current

understanding and mental model of how his actions can reduce
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the goal discrepancy. Understanding of the system develops,
apart from the a-priori instructions received, either through

the passive or active learning loops.

The two learning loops differ in the degree of
intervention the decision maker uses to produce the outcomes.
In the active learning loop, the decision maker chooses
actions to test assumptions he might have about the system.
This is very much in line with Rasmussen (1986). Some of
decision maker's tests might be extreme condition tests in
which the task, as such, is simplified through testing its
response to extreme inputs (Rasmussen, 1986). The passive
learning loop does not contain learning motivated actions,
but rather relies solely upon control motivated actions,
which are initiated to reduce goal discrepancies. In the
passive learning mode, learning is a by-product of control.
These two different motivations comprise the two links of

action feed-out.

Having developed this framework, we are now in a
position to discuss how both active-loop learning and passive
loop learning are affected by the need for control and how

task complexity affects the trade-off.

Active learning loop

Even in situations with the lowest task complexity, we
did not find many signs of active-loop learning. We are not
surprised, since even in low complexity situations, learning-
motivated actions may increase, rather than decrease, goal

discrepancies. Active-loop learning may be effective in the
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long run but is costly in the short term. More often than
not learning-motivated actions are discouraged in real
systems, and understandably so. Should a nuclear reactor
melt down or a plane crash, people would not be comforted by
knowing that the operator was simply attempting to learn the

system by experimenting with alternative control actions.

We did find some limited examples of active learning. As
observed in the notebook analysis, one subject attempted a
risk-free experiment by making production decisions in the
hundredths and thousandths decimals, so as to produce
consequences in hundredths and thousandths decimals. This
innovative attempt lasted for only a few rounds of play,
suggesting that even experimentation does not lead to

learning, since the outcomes were to hard to understand.

One interpretation of the persistent finding of
undercontrol is that subjects never become confident enough
with their mental models to act decisively. Since the system
deters the use of the active learning loop through the
consequences of increased costs, subjects may not reach a
confidence level necessary for good control which would be an
indication of active generation of alternative control
strategies. Related to this speculation is the idea that
although people possess knowledge, they are unwilling to use
it until a certain subjective criterion confidence level is
reached (Hunt, 1989). Thus, subjects may have hypotheses
regarding a better model than is suggested by the notebook,
regression, and weight analyses, but they are simply
unwilling to test them for fear of driving costs too high by

making a "mistake." The active learning loop, therefore,



becomes secondary to the goal of keeping costs low. In a
sense, learning in the experiment is determined by subjects'

willingness to experiment despite consequences.

Passive learning loop

What we label "passive learning" in this study is very
similar to the concept of outcome-feedback as generally used
in the behavioral decision literature. (In the following we
will use the term outcome "feed-in" to refer to this concept
in order to reserve the label "feed-back" to circumstances
where a loop is closed.) The similarity becomes especially
apparent in the most difficult task conditions where action
feed-out is dramatically reduced and subjects turn almost
into observers of an open-loop system. We know from static
outcome feed-in experiments that outcome feed-in is not very
effective (Brehmer, 1980). Since demands on memory become
more stringent in a dynamic outcome feed-in experiment,
because measurements cannot be taken at one point in time but
must be obtained repeatedly, we should expect outcome feed-in
to become even less effective. The addition of control-
motivated action feed-out does not seem to alter the
conclusion: Out.come feed-in stays ineffective even when it is

part of an outcome feedback loop.

People, although provided with complete information on
structure and parameter relationships, do not completely
infer the dynamic nature of the system and do not know what
to expect. More precisely, people try but err in inferring

dynamics from structure, and people do not use all the
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information and fall back on prior notions. Or, as Hogarth
(1987, p.121) argues:
"...aven when such information is available, people
do not necessarily use it. In particular, they
have a tendency to seek information that confirms

existing notions rather than to seek information
that could disconfirm their hypotheses."

We can interpret the fact that learning seemed to stop
after the second to third trial as a sign that the passive
learning loop lost its effectiveness at this point. Subjects
mainly develop their heuristics, albeit limited-cue
heuristics, within the first 2-3 trials, indicating that the
training received before the experiment was successful in
providing a tentative mental model with which to continue the
learning process. After trial 3, however, learning virtually
plateaus suggesting that subjects do not continue to

increase their understanding of the system.

The ability to learn ultimately depends upon the
capability to form expectations, be it pro-actively or retro-
actively. It could be that the main difference between high-
performers and low-performers is their differing ability to
generate satisfying expectations that can be tested. As delay
and gain increase, low-performers reach an earlier point
where their expectations fail and where they seem to be

unable to replace failed expectations with better ones.

Both the active and the passive learning loop are at
their weakest when they are needed the most: in difficult

situations. Decision makers in dynamic tasks seem to be
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caught in a dilemma: The need to control overrides the

ability to learn.

Implications

How, then can we equip the decision maker to better cope
with complex dynamic tasks? How can we design systems that

strengthen at least one of the learning loops, if not both?

In many real systems, the penalties for error are great
and built-in punishments discourage experimentation and
active learning. Decision makers may become conditioned over
time to use only passive learning and only to the extent
necessary to produce a sufficiently good heuristic.

Moreover, the dynamics of actual decisions are considerably
slower than in a simulation and decision makers may not be
able to observe, much less infer the long-term consequences
of decisions. These factors, combined with the bias to
attribute bad events to exogenous factors, severely limit the

effectiveness of both learning loops.

The creation of "practice fields" for professionals has
been advocated as a possible way out of the learning dilemma
(Diehl, 1992; Schén, 1983; Senge, 1990). Practice fields are
artificial "microworlds" that share many task characteristics
with the real "macroworld". At the same time, they are
designed to eliminate all those obstacles to learning that
are typically present in the real world. Typically, (1)
actions are reversible; (2) time is speeded up to allow the

experience of consequences that otherwise might not show for
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months or years; (3) mistakes are not punished but seen as
possible learning opportunities; and (4) complexity is
simplified to allow better understanding of the decision

dynamics.

While newer developments in software technology have
considerably eased the development of sophisticated
microworlds (Diehl, 1990), research on the effectiveness of
those practice fields has only started. We still do not have
the answers to such essential questions as: (1) How
transferable to the macroworld are insights gained within the
microworld? (2) Do microworlds provide for a more effective
learning than traditional methods such as seminars or books?
and (3) What pedagogical theories and design principles

should guide the development and use of microworlds?

As long as we do not have the answers to these basic
questions it is too early to tell if microworlds can live up
to the expectations of their proponents: helping decision

makers learn both how to learn and how to control.
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