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Smart Recovery Decision-making of Used Industrial Equipment for Sustainable 

Manufacturing: Belt Lifter Case Study 

Abstract 

End-Of-Life (EOL) product recovery is proved to be an attractive way to achieve sustainable 

manufacturing while extending the producer’s responsibility to closed-loop product service. 

However, it is still a challenge to provide flexible and smart recovery plans for industrial 

equipment at different periods of product service. In this paper, we investigate the smart 

recovery decision-making problem. We propose a system framework for the implementation 

of smart EOL management based on product condition monitoring. Different product-level 

EOL business strategies and component-level recovery options are suggested in this recovery 

decision support system. Then, multi-objective optimization models are formulated to identify 

the age-dependent recovery roadmap that best matches the product condition and meets the 

business goals. In order to achieve environmentally friendly recovery, both recovery profits 

and energy performances are optimized in our models. We conduct a case study of belt lifter 

used in the automobile assembly line. The Non-dominated Sorting Genetic Algorithm II is 

used to solve the proposed model. Numerical experiments validate our models and provide 

practical insights into flexible recovery business.     

Keywords: Sustainable manufacturing; Product recovery; End-of-life management; Smart 

manufacturing; Multi-objective optimization.  

 

Highlights: 

 We aim to achieve flexible recovery planning while ensuring economic and 

environmental sustainability. 

 We propose an implementation framework for smart EOL management to enable 

age-based recovery decision-making. 

 We build multi-objective optimization models to identify the best EOL solution at both 

product- and component-level.  

 A case study of industrial lifter is elaborated to validate our model.  

  



Abbreviations 

AHP   Analytic Hierarchy Process 

BCD   Buy-back and Component Dismantling 

BOM    Bill of Material 

BOR   Buy-back and Overall Remanufacturing 

EOL   End-of-Life 

ERM   Early Retirement Mode 

IoT    Internet of Things 

OEM    Original Equipment Manufacturer 

PLM   Product Life-cycle Management 

MACBETH   Measuring Attractiveness by a Categorical Based Evaluation Technique 

MOIP   Multi-Objective Integer Programming 

MCDM   Multi-Criteria Decision-Making 

NRM   Normal Retirement Mode 

NSGA   Non-dominated Sorting Genetic Algorithm 

POS    Pareto Optimal Set 

PROMETHEE  Preference Ranking Organization METHod for Enrichment Evaluation 

RCS    Refurnishing for Clunkers Service 

RUL   Remaining Useful Life 

TOPSIS   Technique for Order Preference by Similarity to Ideal Solution 

 

Introduction 

Emerging changes in service-oriented sustainable manufacturing shift the managerial focus of 

the Original Equipment Manufacturers (OEMs) to sustainable business operation (Tao et al., 

2011; Ovchinnikov et al., 2014; Wang et al., 2014; Kuik et al., 2016; Ding et al., 2017). 

Sustainable operation requires a green Product Life-cycle Management (PLM) (Jayal et al., 

2010; Dekker et al., 2012). To cope with this challenge, the OEMs need to extend the 

producer responsibilities to the End-of-Life (EOL) stage of their products. Accordingly, used 

products are supposed to be properly collected and recovered to exploit the remaining values 

and provide a new service-life in an environmentally friendly way (Shokohyar et al., 2014). 

Such EOL business is driven by not only the incentive of cost recovery but also the increasing 

demand for smart PLM.    

In order to enable successful EOL business, recovery decision-making plays a crucial 

role. An efficient and effective recovery decision can avoid profit losses while achieving 



sustainability. Different from the electronic products such as cellphone and computer, an 

industrial equipment has a long life-span and a large-scale structure with high added-value. 

Commonly, it consists of a number of mechanical and electrical components such as shafts, 

motors, gearboxes, and other structure parts. Although the whole equipment may have failed 

when faced with retirement, its component might be still functional or even have a good 

quality (Go et al., 2012; Zhang et al., 2013). There are two common ways to extend its service 

life and enhance its residual useful value. One is to remanufacture the overall equipment to 

restore it into a nearly brand-new condition. The other strategy is to disassemble, refurnish 

and reuse its components (Guo et al., 2014; Johnson and McCarthy, 2014). EOL business 

practitioners need to identify the best recovery plan from a variety of alternatives to meet both 

economic and environmental goals.  

However, it has always been a challenge to handle this task due to the uncertainties 

associated with the equipment condition. Age-dependent degradation need to be considered to 

figure out the optimal recovery plan according to the real status of the used equipment 

(Ondemir and Gupta, 2014; Ng and Song, 2015). To this end, the OEMs need to gather more 

information throughout the product lifecycle to support recovery decision-making. Advanced 

smart technologies such as Internet of Things (IoT) and intelligent sensors have offered 

potential solutions by enhancing the information tracking, gathering and serving (Cao et al., 

2011; Yoon et al., 2012; Wang et al., 2014; Fang et al., 2015; Chen et al., 2017). 

Sensor-embedded products can alleviate the uncertainties through product status sensing, 

which leads to a more efficient disassembly and recovery (Huang et al., 2008; Parlikad and 

McFarlane, 2010; Ilgin and Gupta, 2011; Ondemir et al., 2012; Kumar et al., 2013; Kumar et 

al., 2015; Dulman and Gupta, 2018). Further, a green closed-loop management can be 

implemented based on their own data platform (Li et al., 2015; Iijima and Takata, 2016).  

In such a context, recovery decision-making has increasingly gained attention. After a 

thorough literature review (as summarized in Table 1), we can find that most studies focus on 

the product-level or component-level decision-making, separately. Johnson and McCarthy 

(2014) investigated the tradeoff between remanufacturing and de-manufacturing. Component 

recovery decisions were also considered. However, environmental performances are not fully 

examined in their profit-maximization model. Also, few of the previous researches considered 



different business strategies and recovery plans for EOL products with different service ages. 

Product service age was mostly qualitatively considered rather than quantitatively 

incorporated into the decision model. Actually, the potential recovery value can be quite 

different at different service ages. It’s critical and feasible to draw an age-based recovery 

roadmap with the help of smart sensing and analysis techniques. However, there is still a lack 

of decision-making model to provide such flexible recovery plans for used industrial 

equipment. 

The purpose of this paper is to fill these gaps while exemplifying a case study of 

industrial belt lifter. The contributions lie in the following aspects: first, a condition-based 

EOL management framework was proposed to provide an overall concept model for smart 

recovery decision-making; Second, we developed multi-objective optimization models to 

identify the age-based recovery decisions at both product- and component-level. Also, 

economic and environmental performances were balanced to ensure sustainability. The 

Non-dominated Sorting Genetic Algorithm II (NSGA-II) was applied to solve the models and 

thus obtain the Pareto optimal solutions. In addition, we suggested different recovery business 

strategies according to different service/retirement periods.  

The remainder of this article is organized as follows. Section 2 reviews the related studies. 

A framework of smart EOL management is built in Section 3. Then, Section 4 presents the 

recovery decision-making optimization model and approach. Case study and scenario 

experiments are discussed in Section 5. Finally, Section 6 concludes our work and discusses 

the future work.  

Table 1. Comparison of the existing studies on recovery decision-making    

Research work 
Decision level/depth Objectives/Criteria Age  

Factor Product Component Economic Environmental 

Bufardi et al. (2004) √  √ √  

Chan (2008) √  √ √  

Xing and Luong (2009) √  (Product characteristics)  

Du et al. (2012) √  √ √  

Remery et al. (2012) √  √ √ √ 

Goodall et al. (2014) √  √ √  

Ondemir and Gupta (2014) √  √ √ √ 

Ovchinnikov et al. (2014) √  √ √  

Ziout et al. (2014) √  √ √ √ 



Dhouib (2014) √  √ √  

Ng and Song (2015) √  √ √ √ 

Dehghanbaghi et al. (2016) √  √ √  

Jun et al. (2007)   √ √   

Lee et al. (2010)  √ √ √ 

Zhou et al. (2012)  √ (Product characteristics)  

Shokohyar et al. (2014)  √ √ √ √ 

Yang et al. (2015)  √ √ √ √ 

Ma and Okudan Kremer 

(2015) 

 √ √ √  

Johnson and McCarthy 

(2014) 

√ √ √   

Our work √ √ √ √ √ 

 

Literature Review  

Most researches focused on the product-level recovery decision problem. A variety of 

Multi-Criteria Decision-Making (MCDM) approaches have been developed to assess the 

comprehensive reusability or remanufacturability of EOL products (Bufardi et al., 2004; Chan, 

2008; Xing and Luong, 2009; Subramoniam et al., 2010; Du et al., 2012; Zhou et al., 2012; 

Goodall et al., 2014). Remery et al. (2012) established a multi-criteria evaluation system to 

select the best recovery option in terms of income, cost, compliance with regulation and 

environmental performance. A fuzzy TOPSIS (Technique for Order Preference by Similarity 

to Ideal Solution) method was used to incorporate the designer’s knowledge. Ziout et al. 

(2014) provided an AHP (Analytic Hierarchy Process)-based holistic and flexible 

decision-making model considering all the interests of stakeholders involved in the reverse 

logistics. Dhouib (2014) developed a fuzzy MACBETH (Measuring Attractiveness by a 

Categorical Based Evaluation Technique) approach, which is a well-established interactive 

multi-criteria decision-making technique, to assess and rank the recovery options. Ondemir 

and Gupta (2014) built a mixed integer goal programming model to determine whether a 

product need to be remanufactured, disassembled, repaired or recycled to meet different 

market demands. In their study, remaining useful life was utilized to represent the quality 

state of an EOL product. Ovchinnikov et al. (2014) presented an analytical model to assess 



the economic and environmental performances of product remanufacturing strategies in 

service-oriented sustainable manufacturing. Ng and Song (2015) proposed a hierarchical 

multi-criteria recovery decision-making framework based on product condition evaluation 

and life cycle analysis. Dehghanbaghi et al. (2016) developed a combined approach of fuzzy 

rule-based reasoning system and fuzzy AHP to determine the best recovery strategy. A 

two-phase comprehensive evaluation system was established to assess both product properties 

(i.e. technical, commercial and ecological properties) and process properties (i.e. economic 

return, simplicity, service and environmental impacts).  

Some other studies took component recovery into account. Yang et al. (2015) proposed 

an EOL decision-making method to assess the remanufacturability of multiple EOL 

components while balancing economic revenue and environmental impact. An overall index 

that considered component quality was formulated and used as an indicator of 

remanufacturability. Ma and Okudan Kremer (2015) designed a fuzzy-logic based assessment 

framework for recovery decision-making from the perspective of sustainability and designer’s 

preferences. Economic, environmental and societal criteria were considered to recognize the 

best recovery option. Dulman and Gupta (2018) utilized the discrete event simulation method 

to evaluate the performances of maintenance and EOL treatment with the purpose of 

investigating the value of sensor-embedded disassembly system. Mathematical programming 

models were also wildly utilized to deal with the component-level recovery decision-making 

problem. Jun et al. (2007) proposed a multi-objective mixed integer programming model to 

address the problem of recovery optimization. A heuristic evolutionary algorithm was 

designed to solve this problem. Lee et al. (2010) modeled the profit-maximization problem as 

an integer programming model. A bottom-up decision approach was proposed to handle the 

hierarchical structure. In each layer, the branch and bound technique was used to search for 

the best option for each part. Niknejad and Petrovic (2014) proposed a two-phase mixed 

integer programming model to optimize the integrated reverse logistics network. Two 

component recovery routes, remanufacturing and repair, were considered in this model. 

Johnson and McCarthy (2014) presented a 0-1 integer programming model to identify the 

optimal recovery plan of remanufacturing versus de-manufacturing. To deal with conflicting 

goals and a vast number of candidate combinational solutions, several studies developed 



meta-heuristic algorithms to solve the multi-objective recovery optimization problem. 

Shokohyar et al. (2014) developed a multi-objective mixed integer non-linear programming 

model to make a tradeoff between economic and environmental effects. Optimal EOL 

recovery options were determined by the NSGA-II. Kuik et al. (2016) proposed a 

profit-maximization model to identify the optimal recovery option under various practical 

constraints such as manufacturing lead-time, waste proportion and product reliability. They 

designed a GA to solve their model.  

The abovementioned studies provided valuable models and methodologies for recovery 

decision-making. Nevertheless, few of them can help achieve age-based recovery planning at 

both product- and component- level while considering economic and environmental effects. 

To address this problem, this work aims to develop a flexible recovery planning mechanism to 

assist the practitioners in making efficient EOL decisions at different service-life periods. 

Smart EOL management framework 

We examine the recovery decision-making problem by a case study on industrial belt lifter 

used in the automobile assembly line. The belt lifter considered is used as a conveying 

equipment to transfer the car bodies between the underslung conveying system and the mobile 

skillet system. It consists of six major components (subassemblies): spindle, bearing, bearing 

base, motor, gear reducer and main belt, as shown in Fig.1. 

 

Fig.1 Belt lifter used in the automobile assembly line 

 In order to achieve closed-loop recovery service, we establish an EOL management 

javascript:void(0);


framework to aid the EOL practitioners in understanding a more smart and profitable path to 

environmentally friendly recovery. The system is built upon an existing remote 

condition-monitoring platform. Fig.2 depicts the proposed framework. The primary function 

modules are discussed as below. 

 

Fig. 2 Smart EOL management framework  

 (1) Advanced information infrastructure. This is the key to enable condition 

monitoring and information sharing. Real-time condition data of the belt lifters distributed in 

different factories can be gathered automatically. The condition data includes various I/O data 

and sensor data acquired from the controllers. Vibrating sensors are used to monitor the status 

of the spindle, bearings and reducers. Displacement sensors are deployed to detect the 



elongation of the main belt. 

(2) Cloud-based data support. Product life-cycle data is required for EOL 

decision-making, including but not limited to product BOM (Bill of Material), structure 

model, life-cycle analysis list, manufacturing/remanufacturing process data, forward/reverse 

logistics records, and market data. Data collection relies on the information tracking and 

sharing mechanism among the OEM, suppliers and EOL business partners based on a public 

or community cloud platform. These data can be considered as decision input for smart 

analysis. More available information can contribute to a more effective EOL management.   

  (3) EOL knowledge management system. This system aims to exploit the decision rules 

and EOL knowledge from historical cases to support smart analysis and recovery 

decision-making, such as providing the empirical operation parameters for algorithms, 

estimating the priori distribution parameters of mean useful life, improving the model via 

sample training and learning.  

(4) Smart analysis tools. Original condition data needs to be processed to extract valuable 

information to enable subsequent recovery planning. Remaining useful life (RUL) is 

considered as a measure of product/component quality status in this study. RUL can be 

estimated by the hybrid analysis of historical condition data, current service age and 

reliability characteristics (Zhang et al., 2013; Meng et al., 2017a). For tactical recovery 

planning, RUL is assumed dependent on the natural degradation process. It can be calculated 

by subtracting current service age from the estimated service life. When implementing 

real-time planning for individual lifter, RUL can be obtained by competing failure prediction 

techniques, RUL=min (rul1, rul2), where rul1 and rul2 are the RUL estimations based on 

natural deterioration process and sudden failure probability, respectively. Then, age-based 

component recovery value and cost can be assessed and further an appropriate pricing 

strategy can be determined for each reused or refurnished component. 

(5) Recovery strategies set. Both product- and component- level recovery strategies are 

suggested in this system. For component recovery, according to the OEM’s recovery 

capabilities, different recovery options are recommended as follows. a) Spindle. It’s a high 

added-value and self-made component. The OEM intends to renovate it unless it completely 

and physically fails. If the spindle is still in a good quality, it can be directly reused as a spare 



component or resold for degraded usage. However, if a complete failure occurs, the spindle is 

supposed to be recycled to reclaim the materials. b) Bearing. This purchased component has 

relatively low replacement cost. We consider material recycling for its recovery. c) Bearing 

base. The OEM will remanufacture, reuse or recycle this self-made component according to 

its service age and EOL status. d) Motor. It’s a purchased component with a long service-life. 

Reusing and recycling are considered in this study. e) Gear reducer. It has a high replacement 

cost but also a high recovery value. The OEM plans to implement a remanufacturing 

outsource strategy by cooperating with a third-party reducer remanufacturer. f) Main belt. 

This is a high-value purchased component but hard to remanufacture. Reusing and recycling 

are suggested according to its service age and performance status. 

Two different retirement modes are considered for product-level recovery strategies. One 

is the Early Retirement Mode (ERM), referring to the lifters that are still in a normal 

condition but retired due to some special circumstances such as production line updating. 

Otherwise, Normal Retirement Mode (NRM) is considered to deal with the EOL lifters. 

System degradation and RUL can be recognized by the smart analysis tools. Here, an 

empirical critical retirement age based on the maintenance history, 10000 hours, is suggested 

by the OEM for tactical recovery planning. For the ERM, the OEM intends to choose one of 

the following strategies: Buy-back and Overall Remanufacturing (BOR) or Buy-back and 

Component Dismantling (BCD). BOR means remanufacturing the whole equipment while 

BCD suggests to disassemble the equipment into components for reusing or recycling. For the 

NRM, the OEM offers Refurnishing for Clunkers Service (RCS) to the customers. The used 

lifter can be refurnished to a quality “as good as new” for their original user.  

 (6) Smart decision-making and planning engine. This module provides the 

decision-making models and methodologies to find the best recovery solutions. We will 

elaborate the details of this aspect in the next section.  

Recovery decision-making model and approach 

Economic profits and energy performance are considered as two optimization goals in the 

decision-making model. Energy performance, including the energy consumptions and savings, 



is a good measure of environmental effects. It is also considered as an indirect indicator of 

cost saving when recovering a used lifter instead of fabricating a new one. In addition, we 

suppose that the used lifter should be completely disassembled in all the three strategies. To 

simplify our models, all the common cost items. i.e. disassembly cost, cleaning cost, test cost, 

management cost, etc., are included in the miscellaneous cost. The nomenclatures used in our 

models are as follows. 

Indexes 

i  Index for component, i=1, 2, …, 6 

o  Index for component recovery option, 1 for remanufacturing, 2 for reusing, 3  

for material recycling 

s      Index for equipment recovery strategy, 1 for BOR, 2 for BCD, 3 for RCS 

Parameters  

Ns  Net profits gained by implementing recovery strategy s 

Es  Energy savings gained by implementing recovery strategy s 

Iio  Recovery income of component i if recovery option o is assigned 

Cio  Recovery cost of component i if recovery option o is assigned 

Ciu  Maximum remanufacturing cost of component i 

Cil  Minimum remanufacturing cost of component i 

Cos  Other miscellaneous cost when implementing recovery strategy s 

αi  Reuse depreciation factor of component i  

εio  Shape factor of the cost or revenue curves for component i with recovery option o 

Pr  Suggested price for the remanufactured lifter 

Pb  Buy-back price of the used lifter 

Pi  Procurement/replacement cost of component i 

ESio  Energy saving of component i with recovery option o 

ECio  Energy consumption of component i with recovery option o 

ECiu  Maximum energy consumption for remanufacturing component i 

ECil  Minimum energy consumption for remanufacturing component i 

ti   Actual service age of component i  

ruli(ti) Remaining useful life of component i at service age ti  



Ui  Minimal requirement on the remaining useful life for reusing component i 

Decision variable 

rs,io Decision variable for component recovery option, 1 if component i is assigned with 

recovery option o in strategy s, otherwise 0 

 

The models for BOR, BCD and RCS are formulated respectively. In the BOR strategy, 

recovery revenues come from reselling the remanufactured product and its recovered 

components. The costs for BOR mainly involves buy-back, remanufacturing, component 

replacement, and other miscellaneous costs. the net-profit is defined as below:    

6 3 6

1 1, 1, 1 1 1

1 2 1

( )r io io io i b i i o

i o i

N P r R C P P r C C
  

              (1) 

 Energy effects refer to the energy saving via component recovery compared to 

component fabrication. However, recovery processing also needs energy consumption. The 

energy consumption associated with component replacement is supposed to be as same as the 

energy required for fabricating a new one. Net energy saving is calculated by formula (2).   

6 3 6 3

1 1, 1, 1

1 2 1 2

( )io io io io i

i o i o

E r ES EC r ES
   

             (2) 

For the BCD strategy, all the revenues are obtained by component recovery. No 

component needs to be replaced. The calculations of recovery revenue and energy savings are 

given below:  

6 3

2 2, 2

1 1

( )io io io b o

i o

N r N C P C
 

              (3) 

6 3

2 2,

1 1

( )io io io

i o

E r ES EC
 

              (4) 

The RCS strategy is similar with the BOR strategy whilst RCS remanufactures the used 

lifter for its original user rather than resells it. Thus, the buy-back cost is no longer 

considered:  

6 3 6

3 3, 3, 1 1 3

1 2 1

( )r io io io i i i o

i o i

N P r R C P r C C
  

              (5) 



6 3 6 3

3 3, 3, 1

1 2 1 2

( )io io io io i

i o i o

E r ES EC r ES
   

             (6) 

 Both remanufacturing costs and reusing revenues depend on the quality state of the used 

component. By using the RUL indicator, service-age dependent economic functions are 

constructed in the formula (7)-(9). Here, remanufacturing cost is empirically estimated based 

on its service age and RUL (Ferguson et al., 2009). Different form the other components, 

remanufacturing cost of the gear reducer (C51) depends on the negotiated price for 

remanufacturing outsourcing service, given in formula (8). Reuse value is determined by its 

age-based resale revenue (formula (9)). In addition, it should be noted that component 

service-age is not absolutely as same as system service-age due to the maintenance and 

replacement operations.  

1

1

( )
( ) ( )( ) 1,3
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            (9) 

Then, we can formulize the optimization problem for the ERM and NRM decisions as 

below:  

ERM: 1 1 2 2max(max( , ),max( , ))N E N E           (10) 

NRM: 3 3max( , )N E               (11) 

s.t. 

3

,

1

1 ,s io

o

r s i


                (12) 

, 2 ,s i i ir U rul s i                (13) 

, {0,1}s ior                  (14) 

Where, constraint (12) ensures that each component is assigned only one recovery option in 

each strategy, constraint (13) describes the minimal RUL requirement for component reusing, 

and constraint (14) refers to the decision variable attributes. 



The proposed models (formula (1)-(11)) include three different Multi-Objective Integer 

Programming (MOIP) problems. They are also typical multi-objective discrete combinational 

optimization problems. Exact enumeration method can be applicable for handling simple 

cases. However, in order to make our approach capable of efficiently dealing with various 

complex scenarios, a meta-heuristic algorithm is suggested to be incorporated into our 

decision-making engine. Since Pareto optimal solutions can aid the decision-makers in better 

understanding and evaluating the solutions on multi-objective performances, we choose the 

classic NSGA-II to solve the proposed models. The NSGA-II has been proved to be an 

efficient tool for obtaining the Pareto Optimal Set (POS) (Deb et al., 2000; Chaube et al., 

2012; Shokohyar et al., 2014; Zhou et al., 2016; Torabi et al., 2017; Zhou et al., 2017).  

In this study, each chromosome individual has six genes to represent the recovery options 

for the corresponding six components. Integer coding is adopted to represent the options, 

where 1 for remanufacturing, 2 for reusing and 0 for material recycling. The non-dominated 

sorting technique is used to rank the individuals by comparing their economic and energy 

performances (formula (1)-(4) or (5)-(6)). One-point crossover and gene swap operations are 

applied respectively to generate child individuals and maintain the population diversity. In 

each iteration, the parent and child populations are combined and sorted to form a new 

population by truncation. Also, the individuals with no dominators, termed as Pareto optimal 

solutions, are recorded and updated. For more operational details, please refer to (Deb et al., 

2000; Shokohyar et al., 2014; Meng et al., 2017b). Finally, the decision maker can select the 

best solution from the limited number of Pareto optimal solutions by making the tradeoffs 

between recovery profits and energy savings. Since there are finite solutions in the final 

optimization frontier, a lot of conventional MCDM techniques can be used, such as AHP, 

TOPSIS and Preference ranking organization method for enrichment evaluation 

(PROMETHEE). Here, a simple weight-based aggregate method suggested by Shokohyar et 

al. (2014) is utilized for our case, as shown in equation (15). Noted that various MCDM tools 

can be offered in the decision-making engine from which the decision-makers can choose 

their preferred approach. 

(max ) (max )
arg min( )

max max

s s s s

N E
S s s

N N E E
B

N E

  
                        (15) 



where 
sN and

sE  are recovery net-profits and energy savings of the S
th

 Pareto solution, 
N  

and 
E  are the preference weights, and 

SB is the best solution obtained by minimizing the 

weighted sum of objective value deviations. 

In summary, the major procedures of our approach are described as shown in Fig. 3.  

Step 1: Obtain various product life-cycle information from the cloud-based EOL 

management platform. 

Step 2: Select the decision-making model according to the system service-age and 

degradation condition. If the lifter is at the stage of ERM, model (10) is applied for 

subsequent recovery planning. Otherwise, model (11) is suggested.   

Step 3: Model solving. The NSGA-II is utilized to search for the POS. For the ERM, 

both BOR and BCD models need to be solved for the subsequent comparison analysis while 

only RCS model needs to be addressed for the NRM. 

Step 4: Recovery decision-making to meet the economic and environmental criteria. For 

the NRM, the Pareto optimal solutions of BOR and BCD are combined and then they are 

sorted to generate a new POS. For the NRM, RCS is the unique recovery strategy. Afterwards, 

a final decision is made by applying the formula (15) into the obtained POS to identify both 

product-level recovery strategy and component-level recovery options.  



 

Fig. 3. Major procedures of smart recovery decision-making



 

Tactical recovery planning and discussion 

A tactical recovery planning is performed to attain a recovery roadmap for both ERM and 

NRM. The range of service-age is from 2000 hours to 24000 hours. An empirical threshold 

(10000h) is considered as a critical age between ERM and NRM. All the basic information of 

the lifter and its estimated economic and energy performances are listed in Table 1, where the 

mean life of each component is estimated by the OEM based on the failure event records. For 

tactical decision-making, we suppose that the RUL of a component is the difference between 

the mean life and its actual service age. According to the failure records provided by the 

condition monitoring platform, sudden failure occasionally occurs to the spindle. Taking this 

situation into account, we consider two operation circumstances: one, all the components run 

under the normal maintenance operations. No component except the main belt needs to be 

replaced until the whole system fails. The main belt is supposed to be replaced at every 7530 

hours. In the other circumstance, a sudden failure of the spindle occurs at the age of 9000h. 

Thus, there are two components that need to be replaced during the service life. In practice, a 

more exact estimation of the sudden failure can be obtained through online conditional RUL 

prediction based on the smart EOL management platform.  

In order to examine the impacts of decision preferences on the tactical decisions, we 

consider two types of decision weights for the two objectives, profit-maximization weights (1, 

0) and balanced weights (0.5, 0.5). Therefore, four decision scenarios are studied in this case: 

(1) normal operation and profit-maximization preference, (2) normal operation and balanced 

preference, (3) sudden failure and profit-maximization preference, and (4) sudden failure and 

balanced preference. 

 

  

 



Table 2. Basic information of the lifter used in the automobile assembly line 

Component Spindle Bearing Bearing case Motor Gear reducer Main belt 

Mass /kg 45.0 6.9 12.5 189.0 111.0 29.3 

Material Alloy steel Bearing steel Cast steel Cast steel,  

alloy steel,  

carbon steel,  

silicon steel, copper  

alloy steel,  

carbon steel 

High-strength steel wire  

composite polyurethane 

Ri1 /104 RMB 1.25 N/A 0.8 N/A 2 N/A 

Ri2 /104 RMB 41
12 0.8 (1 )

25100

t
R     N/A 43

32 0.48 (1 )
25100

t
R     44

42 0.9 (1 )
50200

t
R     45

52 2.5 (1 )
25100

t
R     46

62 3 (1 )
7530

t
R     

Ri3 /104 RMB 0.3060 0.0020 0.0016 0.1366 0.0311 0.0498 

Ci1 /104 RMB 41
11 1 0.8 (1 )

25100

t
C      N/A 43

31 0.6 0.5 (1 )
25100

t
C      N/A 0.55

51 2 ( )
25100

t
C    N/A 

Pi /104 RMB 1.5  0.3  0.8 1.5  4.0  4.8 

ESi1(i2) /MJ 3555 541.15 711.25 10593.45 5938.5 3398.8 

ESi3/MJ 2295.0  349.4  361.3  5301.5  2830.5  2900.7 

ECiu /MJ 315.0  48.0  87.5  1323.0  777.0  117.2 

ECil /MJ 25.2  3.8  7.0  105.8  62.2  9.4 

ECi3 /MJ 113.4  17.3  31.5  476.3  279.7  73.8 

Ui /hour 12850 N/A 12850 12550 10040 2510 

 

 



Through applying the proposed approach, a recovery roadmap for the four scenarios are 

obtained as given in Appendix 1. The NSGA-II is coded by MATLAB R2017b. It should be 

noted that the algorithm parameter setting should be adjusted according to the product 

complexity. Considering there are only 6 components in the lifter, a small population is 

sufficient and efficient to achieve global combinational optimization for such simple case. 

Accordingly, we set the size of the population as same as the number of components N=6. A 

relatively high crossover rate (0.5) and a low mutation rate (0.2) are adopted to maintain the 

population diversity without any damage to the convergence process. Numerical experiments 

show that the NSGA-II performs a good convergence for this case. Fig.4(a)~4(d) give several 

examples of the convergence curves in the BCD optimization at the service-age of 4000h and 

8000h. The corresponding Pareto optimal solutions are also shown in Fig.4(e)~(f). It can be 

found that the solutions are relatively uniformly distributed on the Pareto frontier. Moreover, 

Fig.5 depicts how the optimal recovery net-profits and energy savings change as the system 

service-age increases in different decision scenarios.  

From the results, we can obtain several interesting observations and provide practical 

insights into recovery decisions of the industrial lifter. 

First, decision preference plays a critical role in the selection of product-level recovery 

strategy for the early retired lifter (ERM) before 8000 hours. If the firm pursues 

profit-maximization, remanufacturing the whole lifter (BOR) is the absolute dominating 

strategy (Scenario 1). In contrast, the BCD strategy appears better if balanced sustainable 

performances are expected (Scenario 2). The reason for why the BCD strategy brings more 

environmental benefits than the BOR strategy in the ERM lies in the facts that no component 

needs to be replaced in the BCD strategy as well as components with good quality require less 

refurbishment efforts and thus less energy consumptions. However, the situation changes 

when the system service-age reaches 10000 hours under the normal maintenance operations. 

The best strategy in Scenario 2 turns into the BOR strategy. This is mainly because the 

increasing deterioration of EOL components causes more cost and energy consumption in the 

BCD strategy compared to BOR. This observation can also be partially proved by the results 

of Scenario 4. In addition, if the spindle is replaced due to sudden failure, BCD is the first 

choice for all the ERM lifters. 



 

Fig. 4 Convergence curves and Pareto solutions  

(BCD strategy at 4000h (a, b, e) and 8000h (c, d, f)) 

 

Second, an interesting finding for the normal retired lifters is that component recovery 

options, expect for the motor, appear to be insensitive to either product-level strategy or 

decision preference in all the four scenarios. This is good news for the lifter OEM since it can 

support more stable designs for recovery processing schemes, routes and facilities. For the 

motors over 20000h, recycling is the most profitable choice. However, it can be found from 

Fig.5(b) that motor recycling leads to a significant drop of energy savings compared to 

reusing. Therefore, direct or degraded reusing is still suggested if the working efficiency of 



the motor is acceptable for the customer.    

 

(a) Recovery net-profit 

 

(b) Energy saving 

Fig.5 Economic and energy performance  

Further, the best component-level recovery options are suggested as follows: if 

technically feasible, remanufacturing is recommended for the spindle no matter which 

product-level strategy is chosen. From the perspective of balanced sustainable benefits, the 

bearing case can be reused when its age is less than 4000h, otherwise, remanufacturing is a 

better option. It would be better to reuse the motors in most scenarios as mentioned above. As 

for the main belt, the results suggest it to be recycled when its service-age is over 6000h. In 



addition, material recycling is recommended for the bearings and the severely degraded 

motors. 

The last but not the least, an obvious periodic fluctuation in the total net-profits can be 

observed as illustrated in Fig. 5(a). The profit fluctuation over time is primarily caused by the 

periodic replacement of the main belt, which is a high-value critical component. Fortunately, 

the deterioration progress of the main belt elongation presents a good approximate linearity. 

Nevertheless, considering its significant impacts on recovery profits, an online RUL 

estimation is expected to be more helpful to avoid profit loss. Based on the availability of the 

real-time estimation, our model can help achieve a more exact decision-making. 

 

Conclusion 

This work focused on the recovery decision-making problem for EOL industrial equipment, 

aiming to help the OEMs to make an age-dependent recovery plan at both product- and 

component-level. With the help of cloud-based service platform and advanced condition 

monitoring, we proposed a framework for smart EOL management to enable flexible recovery 

planning. Different product-level EOL businesses strategies and component-level recovery 

process options were considered. In order to identify the best recovery solution, we built 

multi-objective optimization models to take both economic and environmental sustainability 

into account. We used the NSGA-II to get the Pareto optimal solutions of the proposed 

models and investigated the impacts of decision preference on the final decisions. A case of 

industrial belt lifter was studied to validate our model.  

Numerical experiments show that our approach performs as an effective decision support 

tool for recovery decision-making under various scenarios. However, when putting the 

proposed framework and approach into large-scale practices, two potential limitations need to 

be further addressed: one, reliable and creditable condition monitoring is the footstone on 

which the proposed framework is established. Data unavailability or condition misestimation 

can lead to wrong recovery decisions. The other limit lies in the fact that the parameter setting 

of metaheuristic algorithm is scenario-sensitive. In order to search for the global optima, the 



algorithm parameters need to be finely adjusted for different scenarios, especially when 

handling complicated industrial products. More intelligent rules or interactive optimization 

mechanisms can be expected to solve this problem.  

 In addition to the aforementioned challenges, there are several other interesting 

directions for the future research: first, online real-time recovery decision-making can be 

further studied. Online RUL prediction models need to be designed. Condition monitoring 

platform can provide strong data basis for using information fusion and machine learning to 

address this problem. However, it remains challenging to extract useful information from the 

“big data” of equipment condition and then make precise estimation for degradation progress, 

especially for those non-linear degradation processes. Second, more market-related factors, i.e. 

customer perceived value, price fluctuation of the recycled items, and policy subsidies, can be 

incorporated in the model to better describe the relationship between recovery economic 

performance and second-hand market. Finally, the joint decision-making of predictive 

maintenance service and product recovery can be studied to extend the equipment service life 

and determine the best time point for recovery without any sacrifice of sustainability.  
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Appendix 1.   

Recovery roadmap of the lifter used in the automobile assembly line*  

 
*The symbol ● denotes remanufacturing, ■ for reusing, and ◇ for recycling. 

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000

BOR √ √ √ √ √
BCD

RCS √ √ √ √ √ √ √

1 ● ● ● ● ● ● ● ● ● ● ● ●

2 ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇

3 ● ● ● ● ● ● ● ● ● ● ● ●

4 ■ ■ ■ ■ ■ ■ ■ ■ ■ ◇ ◇ ◇

5 ● ● ● ● ● ● ● ● ● ● ● ●

6 ■ ■ ◇ ■ ■ ■ ◇ ■ ■ ■ ◇ ■
BOR √

BCD √ √ √ √

RCS √ √ √ √ √ √ √

1 ● ● ● ● ● ● ● ● ● ● ● ●

2 ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇

3 ● ● ● ● ● ● ● ● ● ● ● ●

4 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

5 ■ ■ ● ● ● ● ● ● ● ● ● ●

6 ■ ■ ◇ ■ ■ ■ ◇ ■ ■ ■ ◇ ■
BOR √ √ √ √ √

BCD

RCS √ √ √ √ √ √ √

1 ● ● ● ● ● ● ● ● ● ● ● ●

2 ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇

3 ● ● ● ● ● ● ● ● ● ● ● ●

4 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ◇ ◇

5 ● ● ● ● ● ● ● ● ● ● ● ●

6 ■ ■ ◇ ■ ■ ■ ◇ ■ ■ ■ ◇ ■
BOR

BCD √ √ √ √ √

RCS √ √ √ √ √ √ √

1 ● ● ● ● ● ● ● ● ● ● ● ●

2 ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇

3 ● ● ● ● ● ● ● ● ● ● ● ●

4 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

5 ■ ■ ● ● ● ● ● ● ● ● ● ●

6 ■ ■ ◇ ■ ■ ■ ◇ ■ ■ ■ ◇ ■
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