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Abstract As in many fields, in seismic imaging
the data in the field is collected over a relatively
large medium even though only a part of that
medium is truly of interest. This results in signifi-
cant waste in computation as a typical inversion al-
gorithm requires many solutions of the wave equa-
tion throughout the entire domain, even if only a
small part of the domain is being updated. One
way to mitigate this is to use a numerically ex-
act local wave-equation solver to perform wave-
form inversions in an area of interest, where the
idea is to compute accurate solutions of the wave
equation within a subdomain of interest. Although
such solvers exist, many require the computation
of Green’s function matrices in the background
domain. For large-scale seismic data acquisition,
the computation of the Green’s function matrices
is prohibitively expensive since it involves solv-
ing thousands of partial differential equations in
the background model. To mitigate this, in this
work, we propose to exploit the low-rank struc-
ture of the full subsurface Green’s function. Us-
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ing carefully selected 2D stylized models, we first
show that the full subsurface Green’s function ten-
sor organized as a matrix exhibits the low-rank
structure in a transform domain. We then propose
a randomized singular value decomposition based
framework to compute the low-rank approxima-
tion of the Green’s functions, where the cost of
wave equation solves depends on the rank of the
underlying Green’s function matrix instead of the
number of grid points at the surface of the back-
ground model and on the boundary of the local
domain. Next, we validate the proposed framework
by performing time-lapse waveform inversion using
the 2D Marmousi model. Finally, we demonstrate
a rank-minimization based framework to compute
the low-rank factorized form of the Green’s func-
tion matrices in large-scale 3D seismic data acqui-
sition.

Keywords Low-rank · Randomized SVD · Time-
lapse Inversion · Local-solver · Finite-Difference ·
wave-equation

1 Introduction

Full-waveform inversion (FWI) is a computation-
ally expensive process to predict the properties of
a medium of interest, such as the Earth. It is a non-
linear process of fitting the observed and simulated
data (see [56] for an overview of FWI). To do this,
we solve the following optimization problem in the
frequency domain

m = argmin
m

1
2

Nf
∑

j=1

Ns
∑

i=1

‖PrHj(m)−1qi − di‖
2
2,
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2 Rajiv Kumar et al.

(1)

where Hj = (ω2
j m +∇2) is a discretization of the

Helmholtz operator for constant-density, ωj repre-
sents the temporal frequency for frequency index
j, and m = v−2 is the gridded squared slowness
with v being the unknown spatially varying veloc-
ity. The operator Pr maps the computed wave-
field (H(m)−1qi) in the full subsurface domain
to the receiver locations, qi represents the i−th
source, and di is the observed data. Note that,
seismic data acquisition involves either placing the
receivers on the surface/seafloor of the Earth, or
towing behind a marine seismic vessel. The ac-
quisition also involves a source (dynamite, airgun,
vibroseis), which generates acoustic or elastic vi-
brations that pass through the complex geological
structures in the Earth, and return to the surface
to be recorded as seismic data [55].

The major computational cost in waveform
inversion is solving the Helmholtz equations (or
the wave equation in the time domain), which is
directly proportional to the number of sources
present in an acquisition. We typically solve this
optimization problem with some form of Newton
iteration. Calculating the necessary gradient
involves the computation of forward and adjoint
wavefields followed by the cross-correlation of
these wavefields for each experiment [45]. Thus,
at each iteration, we need to solve 2 partial
differential equations (PDEs) for each source to
determine the gradient update. There are several
ways to reduce the total computation time such
as reducing the number of wave solves via source
encoding [16, 31, 34], improving the Helmholtz
solver [32, 44]. Although these techniques can
greatly reduce the turn around time to produce
good quality inversion results, the experimental
demonstration in seismic literature exploits the
fact that we are interested in the full subsurface
domain to estimate the physical parameters. This
is especially not true for time-lapse or updating
salt boundaries using FWI, where our area of
interest is small (e.g., the reservoir). Note that,
updating the salt boundary in a velocity model is
labour intensive [14] imaging method in seismic
data processing, which involve months of manual
guidance. Hence, various automatic methods
for determining the correct salt geometry are
proposed in the seismic literature [22, 33, 58].
Moreover, in the time-lapse case [20, 28, 35] we
may have more than one monitor dataset, which
is acquired over different time intervals. Here,

time-lapse data refers to the seismic data acquired
at different times over the same area, where the
aim is to assess the subsurface changes, such as
fluid movement in the reservoir.

Another way to speedup FWI is to solve the
wave-equation in a subset of the entire domain.
This area of research is divided into two main cat-
egories. The first one is knows as redatuming [5,
6, 8, 12, 17, 24, 42, 43, 52, 54], where we propa-
gate the seismic survey in the region of interest.
One of the biggest disadvantage of the redatum-
ing formulation is that it modify the surface data
recordings in the region of interest. To overcome
this limitation, in the second approach, we com-
pute the wavefield exactly within the region of in-
terest, which is then used to update the velocity
model locally. This approach is known as numer-
ically exact local solver [37, 39, 50, 60] where the
idea is to use the local nature of the FWI prob-
lem to speed up the inversion process. Recently,
[40, 58] showed the advantages of numerically ex-
act local-solver for performing FWI in a small area
(subdomain) around the region of interest, while
still taking all of the data into account. The core
idea is to solve both the forward and adjoint wave-
equation exclusively in the area of interest, giving
exactly the same wavefield (on that subdomain)
as would be obtained when solving the full wave-
equation in the full subsurface domain. There are
two main aspects of this type of local solver. First,
we need to simulate the Green’s function in the
full domain of the background model at the sur-
face and on the boundary of the subdomain. We
only compute these Green’s functions once at the
start of the process. After finishing this stage we
no longer need to do full domain simulations any-
more during any of the subsequent inversions. Sec-
ond, we evaluate the forward and adjoint wave-
fields in the local domain at a significantly reduced
cost. [36] further illustrate the benefits of the lo-
cal solver for time-lapse FWI where changes in the
velocity around the reservoir are estimated in very
few iterations while controlling the computational
cost. Note that the underlying assumption of this
method is that the model is only changing in the
subdomain. When applied to the time-lapse prob-
lem this implies that everything is constant outside
the subdomain for all of the datasets.

Although waveform inversion using a local
solver is conceptually appealing, it requires the
computation of a substantial number of partial
differential equations (PDEs) at the beginning
of the inversion using the background smooth
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low-rank based local solver 3

velocity model for all the frequencies. These solu-
tions are then used to build the Green’s function
matrices for the local solver, which are required to
invert the local solver system of equations. This
process is prohibitively expensive for practical 3D
seismic surveys, since this requires many costly
full domain simulations. The required number of
full domain simulations is directly proportional
to the number of nodes around the local domain.
Therefore both the computational cost and mem-
ory requirements grow drastically when scaling up
the local solver from 2D to 3D.

Recently, [2, 23, 25, 53] showed that seismic
data generated during 2D and 3D acquisitions
exhibit low-rank structure when organized in a
transform domain where sources and receivers
are sorted appropriately. They then exploit this
structure for the compression and/or reconstruc-
tion of missing data. [61] show the advantages of
using the low-rank representation of the seismic
data in full-waveform inversion. In [21], authors
used the low-rank representation of the surface
Green’s function to reduce the matrix-matrix
multiplication cost in the estimation of primaries
by sparse inversion framework. Following similar
ideas, we propose to exploit the low-rank structure
of the full subsurface Green’s function to overcome
the computational bottleneck of the local solver
where we simulate a large number of PDEs in the
background velocity model. We present a com-
putationally cost-effective and memory-efficient
framework, where we reconstruct the densely
sampled Green’s function matrices of the local
solver with a small percentage of the standard
number of simulations. Using the complex 2D
Marmousi model [7], we illustrate the efficacy of
the proposed approach to perform subdomain
time-lapse inversion. We further present a way
to exploit the low-rank structure of the Green’s
function for 3D seismic data acquisition and
evaluate it using a synthetic dataset generated on
the 3D SEG/EAGE Overthrust model.

2 Numerically exact local solver

We begin by explaining the mathematical formu-
lation of using the numerically exact local solver
to solve the wave-equation in the subdomain of in-
terest. For simplicity, we explain the numerically
exact local solver formulation in 2D. We can fol-
low the same analogy to extend this in to 3D. Let
Ω represent the interior of the subdomain of in-
terest and Ωc its exterior. The exterior domain
along with the initial guess of the velocity model in
the interior of the truncated domain represent the
background velocity model m0. The model per-
turbation is denoted by δm inside Ω and is zero
in Ωc. Thus, the perturbed model m ∈ R

Nx×Nz in
the full domain is defined as m = m0 + δm, where
Nx and Nz are the number of gridpoints in the x
and z directions. .

To achieve the objective of solving FWI in-
side Ω as would be solved in the full subsurface
domain, we need a numerically exact expression
of the scattered wavefield δus(x). Here, we define
the scattered wavefield as: δus(x) = u(x)−u0(x),
where u(x) represents the wavefield in the per-
turbed model m, and u0(x) is the wavefield in
the background model m0. To obtain an accurate
wavefield within the truncated domain Ω, we can
simply solve equation 1 inside Ω. However, to make
sure that the predicted solution inside Ω exactly
matches the global wavefield solution computed
using m, we need to determine the exact condi-
tions on the boundary nodes of the truncated do-
main.

Fortunately, we can use the representation the-
orem [15], which states that the scattered field out-
side a domain can be uniquely and completely de-
termined by the field on the boundary. [38, 58]
show that for the local solver, the representation
theorem corresponds to relating the scattered field
δus(x) to the field and its normal derivate on the
boundary nodes of the truncated domain. They
also show that the estimated scattered field in-
cludes all orders of multiple scattering between the
interior and exterior of the truncated domain with-
out any loss of accuracy in the local computation.
Mathematically, we write the representation theo-
rem for the local solver in the discrete form as

δu(y, ω) = −
∑

x∈δΩ
1

h2

(

uδΩ(x, ω)GδΩ+1

0 (x, y, ω)− uδΩ+1(x, ω)GδΩ
0 (x, y, ω)

)

, (2)

where h is the distance between adjacent
gridpoints, δΩ is the boundary between Ω and

© 2019 Springer Nature Switzerland AG



4 Rajiv Kumar et al.

Ωc, δΩ+1 is the gridpoints one layer to the inside
of δΩ , uδΩ(x, ω) and uδΩ+1(x, ω) represent the
wavefields on the boundary nodes and on the
nodes sitting at δΩ+1, respectively. The matrices
GδΩ

0 (x, y, ω) and G
δΩ+1

0 (x, y, ω) represent the
background Green’s functions between the node
y where the scattered field is evaluated and the
node x on δΩ and δΩ+1, respectively. Appendix
A describes a process for extracting the Green’s
function matrices from the full subsurface Green’s
functions simulated using the sources placed on
the boundaries of the truncated domain. For a
detailed derivation of equation 2, we refer the
interested reader to [58]. Using equations 1 and 2,
we define a modified system for the wave-equation
within the local domain,













−I I 0
I G

δΩ+1

0 −GδΩ
0

0 −ω2
j mΩ −∇2



























δuδΩ

uδΩ

uδΩ+1

uδΩ+2

...















=















u0
δΩ

0

0

0
...















,

(3)

which we use to estimate the exact wavefields in
the truncated domain of the perturbed model m.
Here, u0

δΩ is the forward (adjoint) wavefields,
which we compute by convolving the Green’s
function with the source wavelet (data residual),
where the Green’s function is recorded at the
receivers placed on the boundary of the truncated
domain for the sources placed at the surface of
the full domain. We want to emphasize again
that the model mΩ = δmΩ + mΩ

0 in equation 3
where δmΩ represents the perturbation of the
true model from the background model (mΩ

0 )
restricted to the local domain δΩ. Here, the size
of mΩ , δmΩ , and mΩ

0 are Nxsub
×Nzsub

. To form
equation 3, we follow the same node numbering
scheme inside the truncated domain as proposed
in [58] on which we give more details in Appendix
A. We also provides details in Appendix A on
computing the necessary components to perform
the FWI (i.e. the forward and adjoint fields [56])
in the truncated domain using the local solver.

We clearly see that the equation 3 is much
smaller than solving the Helmholtz equation in
the full domain because (Nxsub

×Nzsub
) ≤ (Nx ×

Nz). Because of these rapid wavefield computa-
tions, FWI in the truncated domain can greatly re-
duce the turn around time necessary to predict ve-
locity changes around the reservoir. As mentioned

above, equation 3 depends on the computation of
a collection of Green’s functions in the full domain
once. This is a computationally expensive process
since we need to solve Ns +N δΩ

b PDEs for 2D seis-
mic acquisition, where N δΩ

b is the number of grid-
points at δΩ and Ns is the number of sources ac-
quired in the field. For 3D seismic acquisition, the
number of gridpoints both at the surface and the
boundary of the truncated domain will increase by
an order of magnitude. To overcome this computa-
tional burden, we propose to exploit the low-rank
structure of the full subsurface Green’s function
to reduce the simulation costs. In the next section,
we explain in detail the concept of low-rank and
its application to reduce the number of PDEs to
extend the local solver for large-scale FWI.

3 Low-rank approximation of the Green’s

Function

The objective of this work is to build an accurate
low-rank representation of the Green’s function for
efficient memory storage and computational time.
To do so, we first visualize the structure of the
full subsurface Green’s function and then study
its low-rank structure. Low-rank structure refers
to the small number of nonzero singular values or
quickly decaying singular values of the underlying
matrix. For 2D seismic data acquisition, the full
subsurface Green’s functions at a single frequency
for the sources placed at the surface and on the
boundary of the local domain will be a 3D tensor
with dimensions Nz, Nx and (Ns + N δΩ

b ). Since
the full subsurface Green’s function is a tensor, one
way to visualize the decay of its singular values is
by matricizing the underlying tensor. Matriciza-
tion is the process of unfolding an nD tensor into
a 2D matrix. In this work, we matricize the 3D
tensor by combining the Nz and Nx dimensions
along the rows while keeping (Ns + N δΩ

b ) along
the columns. Although there are other matriciza-
tions for this 3D tensor, we choose this particular
one because it naturally comes from the solution of
the wave-equation, i.e., each column of this matrix
represents a new source experiment.

We find that the full subsurface Green’s func-
tion exhibits a low-rank structure when organized
in the proposed matrix form. To understand the
low-rank behavior of the full subsurface Green’s
function in 2-D, we simulate a dataset in the Mar-
mousi model (Figure 1) by placing the sources at
the surface and on the boundary δΩ of the local-
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low-rank based local solver 5

domain represented by the black-box in Figure 1.
We simulate the dataset at 5 Hz using a Ricker
wavelet with a central frequency of 12 Hz. We place
Ns = 1361 sources at the surface and N δΩ

b = 340
sources on the boundary of the local-domain sam-
pled at 10 m. Given Ns and N δΩ

b , we need to sim-
ulate Ns +N δΩ

b PDEs in the background model to
form the Green’s function matrices in conventional
local solver implementations for each monochro-
matic frequency.

Fig. 1: Marmousi baseline model. We use this
model to demonstrate the low-rank representation
of the Green’s function. The black-box represents
the local domain Ω.

From the simulated data, we extract two sets
of full subsurface Green’s function. The first set
corresponds to the sources at the surface and the
second set represents the sources placed on the
boundary of the local domain. We then matricize
these tensors where the size of the matricized ten-
sors are NzNx×Ns and NzNx×N δΩ

b , respectively.
Here, rows of these matrices represent the solu-
tion of the wave-equation at each grid point in
the subsurface and each column represents a single
source experiment with the source either placed

at the surface or on the boundary of the local
domain. Figures 2 (a-c) show the matricized full
subsurface Green’s function at 5 Hz, whereas, Fig-
ures 2 (d-f) show a column from the full subsurface
Green’s function. Figure 2 (g) displays the decay
of the singular values of the full subsurface Green’s
function. We see that the matricized Green’s func-
tion exhibits low-rank structure, i.e, its singular
values decay rapidly. Therefore, we can approx-
imate the full subsurface Green’s function using
very few singular vectors. To verify this, we recon-
struct the full subsurface Green’s function keep-
ing only the largest 20% of the singular vectors
as shown in Figure 2 (b, e). We see that we are
able to capture all the coherent energy, which is
also validated by the residual plot (Figures 2 (c,
f)). Also, the signal-to-noise ratio (SNR) of the
approximated Green’s function is 27 dB, where
SNR = −20 log10

‖true−approximated‖2
2

‖true‖2
2

.
Above, we show a low-rank approximation

computed with singular value decomposition
(SVD). This is a relatively naive way to compute
the low-rank structure as one has to simulate all
the required Green’s functions in the background
model followed by partial singular value decom-
position. Unfortunately, this is not a practical
solution since computing the SVD can be ex-
tremely time-consuming on large-scale models. To
overcome this, we propose to test a randomized
singular value decomposition approach to approx-
imate the full subsurface Green’s function, which
offers significant speedups and memory saving
over classical SVD methods. Algorithm 1 summa-
rizes the process to compute the full subsurface
background Green’s function in its low-rank SVD
form, which is merely the randomized SVD from
[18].

3.1 Algorithm 1: Randomized SVD of the full subsurface Green’s function [18]

1. Input: rank (k) of the monochromatic Green’s function, Gaussian random matrix W ∈ C
Ns×k, a

function that evaluates F(m)
2. Compute

a. Y = F(m)W, the computational cost is that of k PDE solves
b. [N, M] = qr(Y), where Y ∈ C

NxNz×k

c. Z = (F(m)N)∗, extra k PDEs solves
d. [T, S, B] = svd(Z) (Z ∈ C

NxNz×k is a small matrix)
e. T← NT, approximated left singular vectors

3. Output: compressed representation of the full subsurface Green’s Function for the sources at the
surface, T ∈ C

NxNz×k, B ∈ C
Ns×k, and S ∈ C

k×k
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 2: Green’s function simulated on the surface of the local domain. We matricized the 3D Green’s
function to analyze its singular value decay. (a) True Green’s function, (b) approximated Green’s function,
where we keep the largest 20% of the singular values, and (c) residual. It is evident from the residual
that we are able to recover most of the coherent energy with signal-to-noise ratio of 27 dB. (d,e,f) A
single column extracted from (a,b,c). For display purposes, we display only every second source in the full
subsurface Green’s function matrices in Figure 2. (g) Singular value decay of the true Green’s function
in (a). We clearly see that singular values decay fast, hence, the underlying Green’s function exhibits a
low-rank structure.

© 2019 Springer Nature Switzerland AG



low-rank based local solver 7

4. repeat steps 1-3 for the sources on the boundary of the local domain with W ∈ C
NδΩ

b ×k

Here, F(m) = H(m)−1PT
s I represents the full

subsurface Green’s function for sources placed at
the surface or on the boundary of the local domain,
which is the solution of the Helmholtz equation.
The restriction matrix PT

s ∈ R
NxNz×Ns injects the

source wavefields into the grid at the source loca-
tions. The matrix I ∈ R

Ns×Ns is the identity ma-
trix. Note that, for the sources on the boundary of
the local domain Ω, the size of matrices PT

s , I are
NxNz ×N δΩ

b and N δΩ
b ×N δΩ

b , respectively. Each
column of W ∈ C

Ns×k represents a Gaussian ran-
dom vector, where k is the rank of the underlying
full subsurface Green’s function. We choose each
of the column vectors of W in such a way that
E(wiwi

T ) equals the identity matrix. Note that,
the first step of Algorithm 1 represents a simul-
taneous source experiment where, for each simul-
taneous source experiment, Ns sources are fired
simultaneously with different weights. In total, we
perform k simultaneous source experiments each
at stage 2a and 2c of the Algorithm 1. For large-
scale problems, randomized SVD based low-rank
approximation is significantly cheaper than com-
puting an SVD of the full matrix. The overall com-
putational cost of the randomized SVD is of the
order O(N2

x × k). As we see in Algorithm 1, in-
stead of solving (Ns +N δΩ

b ) PDEs using in the full
domain as for the classical local solver, we now
solve 2ks + 2kb PDEs to approximate the full sub-
surface Green’s function. Here, ks and kb represent
the number of simultaneous source experiments to
approximate the Green’s function at the surface
and on the boundary of the local domain, respec-
tively. As long as (ks + kb) is significantly smaller
than (Ns + N δΩ

b ), we significantly reduce the re-
quired number of full subsurface Green’s function
in the background model. In addition to the solu-
tion of PDEs, we also perform a QR decomposi-
tion in step two and singular value decomposition
in step four. We want to emphasize that both Y

and Z in step 2a and 2c are tall and thin matrices
of size (Nx × k), hence, these steps are computa-
tionally cheap to evaluate. Thus, the randomized
SVD based approach is computationally feasible
for evaluating the Green’s function in the back-
ground model for large-scale 2D seismic data prob-
lems, where the underlying model dimension in
both the vertical and horizontal directions are of
the order O(102 − 103).

3.2 Verification of the local solver using low-rank
approximation

Now that we have the low-rank approximation of
the Green’s function, the next step is to estimate
the accuracy of the local solver with the approx-
imate Green’s functions from algorithm 1. To do
this, we compare the forward and adjoint wave-
fields and the gradient in the full domain Ωc + Ω

using the conventional full domain solver and the
local domain Ω using the approximate local solver.
Figure 3 shows the true baseline Marmousi model,
used as the background model m0, and the per-
turbation δm in the local domain, which we use to
verify the exactness of the local solver. We perform
the comparison at 5 Hz, where we use a Ricker
wavelet with a central frequency of 12 Hz. We gen-
erate the wavefields and gradients in the full do-
main using the classical method, where we use a
finite difference solution of Helmholtz equation in
the entire domain Ω.

monitor zoomed-section around
perturbation

Fig. 3: Monitor model and perturbation for testing
the low-rank approximation of Green’s function in
local solver settings.

To compute the forward and adjoint wavefields
in the truncated domain, we first approximate the
full subsurface Green’s function using Algorithm
1. For this example, we choose ks = 0.1Ns = 130
for the sources at the surface, and kb = 0.1N δΩ

b =
40 for the sources on the boundary of the local
domain. From the approximated full subsurface
Green’s function, we extract four sets of fully sam-
pled Green’s functions, i.e., u

(s,r)
0 , uδΩ

0 , GδΩ
0 , and

G
δΩ+1

0 . Appendix A demonstrates the process of
forming these matrices from the full subsurface
Green’s function. These four matrices are of size
Nx × Nx, N δΩ

b × Ns, N δΩ
b × N δΩ

b and N δΩ
b ×

© 2019 Springer Nature Switzerland AG



8 Rajiv Kumar et al.

(N δΩ
b − 8). Next, we compute the forward and ad-

joint wavefields in the truncated domain as per
equation 3 where we insert the randomized SVD
based approximated Green’s function. Note that,
in classical settings of the local solver [58], we need
to solve 1701 PDEs using the finite difference solu-
tion of wave-equation to compute the Green’s func-
tions, whereas, we only solve 340, i.e., 2(0.1Ns +
0.1N δΩ

b ) PDEs using the proposed framework.
Figures 4 and 5 compare the real component

of the forward and adjoint wavefield simulated in
the full domain and the local domain, and Figure 6
shows the gradient computed via cross-correlating
the forward and adjoint wavefields. As pointed out
by [58], equation 3 preserves all orders of scattering
without loss of accuracy between the model per-
turbation δm and the background model m0. In
our randomized SVD formulation, we see from the
residual plot in Figure 5 that even though we lose
some coherent energy, this does not significantly
impact the gradient as can be seen in Figure 6.
Hence, the approximate local solver is acceptable
to perform the full-waveform inversion in the area
of interest.

4 Time-lapse inversion

Having illustrated the computationally efficient
randomized SVDs process of reducing the number
of PDEs to form the full subsurface Green’s
function, and the accuracy of the approximate
local solver using the inexact Green’s function, we
now move on to perform a time-lapse waveform
inversion. We follow the double-difference full
waveform-inversion (DDFWI) strategy [11, 36, 59]
and focus only on estimating the time-lapse
change in the truncated domain Ω. Figure 7
shows the baseline and the time-lapse model we
use for the waveform-inversion. For this example,
we use the full Marmousi velocity model, which
is 2 km deep and 12 km wide, sampled at 10 m.
The synthetic data contains 600 sources and 600
receivers sampled at 20 m. We use frequencies
from 3 to 10 Hz, where the source-signature is
a Ricker wavelet with a central frequency of 20
Hz. We use a frequency domain finite difference
code [10] to simulate the synthetic data.

To generate the background model for the
local-solver, we first perform standard full domain
FWI over the baseline velocity model, with the
same acquisition and inversion setting described
above. We use 20 iterations of the LBFGS [51]

solver to perform the waveform-inversion. We
invert for seven frequency batches sequentially;
Each batch consists of six frequencies sampled at
0.2 Hz. We then use this inverted baseline model
to perform the time-lapse waveform-inversion in
the local-domain. To do this, we first approximate
the Green’s function over the full domain using
Algorithm 1, where ks = 0.125Ns for the sources
at the surface and kb = 0.125N δΩ

b for the sources
on the boundary of the local domain. We then
use this approximate Green’s function to compute
the forward and adjoint wavefields followed by the
cross-correlation to compute the gradient updates.
Figure 8 shows the inverted time-lapse model
using the numerically-exact local solver [58], and
the approximated local-solver proposed in this
paper. We use 10 iterations for each frequency
batch to perform the waveform-inversion in the
local-domain. We see that the proposed method
is able to recover the time-lapse change fairly
well and the results are comparable to those of
the numerically exact-local solver. Moreover, the
computational cost of evaluating the Green’s
function in the proposed approach is four times
smaller than the exact local-solver approach.
This shows that the randomized SVD approach
enables the computation of the Green’s function
cheaply in the full domain, thus, mitigating the
computational bottleneck of the numerically exact
local-solver to perform waveform-inversion in the
local-domain.

Although we reduce the computational cost of
the local solver drastically, the inverted time-lapse
result shows more artifacts, which we believe is due
to the fact that we are using the LBFGS solver
with an inexact gradient information at each it-
eration. If the gradients are approximated at ev-
ery iteration, then the LBFGS solver might break
down faster, thus resulting in inaccurate update
directions. We believe conjugate-gradient (and es-
pecially gradient descent) might be more stable for
this kind of scenario. We could also mitigate these
problems by adding a regularization term in the
approximated local-solver to further stabilize the
inversion process. Both of these topics are subjects
of future research.

5 Extension to 3D FWI

Motivated by the success of 2D target-oriented
inversion using the approximated local solver,
the next step is to extend it to 3D full-waveform
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(a) (b) (c)

Fig. 4: Real part of forward wavefield in the local-domain. (a) True, (b) Approximation using randomized
SVD, and (c) Residual.

(a) (b) (c)

Fig. 5: Real part of adjoint wavefield computed in the local-domain. (a) True, (b) Approximation using
randomized SVD, and (c) Residual.

inversion, where the computation of back-
ground Green’s functions becomes prohibitively
expensive. Again, one way to circumvent this com-
putational bottleneck is by using the randomized
SVD approach of algorithm 1 to approximate the
Green’s function in 3D. Although a randomized
SVD based framework is computationally efficient
to estimate the Green’s function, one needs to
solve 2k PDEs as shown in Algorithm 1, where
for large-scale 3D problems, k can easily be in the
range of tens of thousand. Note that, we need to
solve an additional 2k PDEs to approximate the
Green’s function for the sources on the boundary
of the local domain. Thus, the randomized SVD
based framework will also be computationally
demanding for performing 3D time-lapse FWI in
the local-domain, even if k is much smaller than
the number of sources (Nxsrc

Nysrc
+ N δΩ

b ).

If we look carefully at the step 2a of Algorithm
1, then we immediately see that we are simulat-
ing k simultaneous source experiments, where we
multiply source matrix I ∈ R

Ns×Ns with the Gaus-
sian random matrix W ∈ R

Ns×k. This will create

blended coherent noise in each shot experiment.
Given the simultaneous sources at the first step
of Algorithm 1, we design a computationally effi-
cient source-separation framework, where the cost
of source-separation is a fraction of the cost of
solving the extra k PDEs at step 2c in algorithm
1. Hence, for 3D local waveform-inversion, we use
a rank-minimization based source-separation tech-
nique to remove the coherent interference to re-
cover the fully sampled Green’s function in the
background model. This reduces the number of
PDE solves from 2(ks + kb) to (ks + kb) for ap-
proximating the Green’s function matrices for the
sources at the surface and on the boundary of the
local domain.

For 3D seismic data, we only do ks + kb si-
multaneous source simulations at step 2a of Algo-
rithm 1 to generate the full subsurface simultane-
ous Green’s function for the sources at the surface
and on the boundary of the local domain. From
this full subsurface simultaneous Green’s function
matrix, we then extract two sub-matrices, one for
source locations on the surface and one for source
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(a) (b) (c)

Fig. 6: Gradient comparison in the local-domain. a) True, (b) Approximation using randomized SVD,
and (c) Residual.

(a) (b) (c)

Fig. 7: Time-lapse inversion. (a) baseline, and (b) time-lapse section. Orange box in (a) represents the
time-lapse region. (c) Local domain around time-lapse change (black box in (c)), which is used to illustrate
the advantages of the proposed approach.

(a) (b)

Fig. 8: Time-lapse waveform inversion results using the double-difference approach [11, 59]. (a) Using
the numericaly exact local solver [58]. (b) Using the proposed randomized SVD based local-solver.
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locations on the boundary. Finally, we perform the
source-separation on each of these sub-matrices in-
dependently. Thus, we only need to solve (ks + kb)
PDEs to approximate the Green’s function matri-
ces to solve the local-domain wave-equation system
defined in equation 3.

Various methodologies have been proposed
to extract the seismic data from the blended
data [1, 3, 41, 49, 57]. Here, we rely on the
compressed sensing (CS) framework [9, 13] that
offers three fundamental principles for successful
reconstruction of the original signal sampled at
the sub-Nyquist rate. Specifically, we use the
rank-minimization based framework to approxi-
mate Green’s function matrices, which is a natural
extension of CS ideas for data volumes organized
as matrices. Interested readers can look into
[19, 27] for extensive details on these principles
and its usage for seismic data interpolation
and/or deblending. In the next section, we briefly
describe the three fundamental principles for
successful reconstruction of the Green’s function
from relatively few simultaneous sources using the
rank-minimization based framework.

5.1 Low-rank structure of Green’s Function

The first principle utilizes the prior knowledge
that the underlying fully sampled signal of interest
should exhibit a fast decay of its singular values
and can thus be well approximated by a low-rank
matrix. To understand the first principle, we
visualize the low-rank structure of the Green’s
function organized as a matrix for the sources
placed at both the surface and on the boundary
of the local-domain, i.e, δΩ. To demonstrate the
low-rank behavior, we simulate the fully sam-
pled sequential source Green’s function using the
SEG/EAGE 3D Overthrust model (Figure 9). The
dimension of the model is 5 km × 20 km × 20 km
and is discretized on a 25 m × 25 m × 25 m grid.
Here, we analyze the low-rank properties of the
Green’s function for two scenarios. In the first
scenario, we place the sources and receivers at the
surface spaced by 100 m and 50 m, respectively,
along inline and crossline directions. In the second
scenario, we place sources and receivers on the
boundary of the local domain. For both scenarios,
we use a Ricker wavelet with peak frequency of
10 Hz and simulate the data using a finite differ-
ence time-domain modeling code [29]. We then
apply a temporal-Fourier transform to extract

the Green’s function matrices in the frequency
domain.

Fig. 9: SEG/EAGE Overthrust model.

From the simulated data, we extract three sets
of fully sampled Green’s functions, i.e., u

(s,r)
0 , GδΩ

0

and G
δΩ+1

0 at 5 Hz. Here, each monochromatic
Green’s function restricted to the surface and the
boundary of the local domain will be a 4D ten-
sor of size Nxsrc

, Nysrc
, Nxrec

, Nyrec
. As mentioned

before, to analyze the low-rank behavior of a ten-
sor we need to unfold it into a matrix, since the
concept of singular value decomposition (SVD) is
for matrices only. For these 4D Green’s functions,
we follow the matricization strategy proposed by
[25, 53] which show that grouping Nxsrc

, Nysrc
,

i.e., placing both the source coordinates along the
columns (Figure 10 a), results in a higher-rank or
slow-decay of singular values as shown in Figure 10
c. However, grouping the Nxsrc

, Nxrec
along the

rows and Nysrc
, Nyrec

along the columns (Figure 10
b) results in a matrix with fast decay of the singu-
lar values (Figure 10 c).

5.2 Effect of blending on the low-rank structure

The second principle of the compressed sensing
based source-separation framework is based upon
a sampling scheme that breaks the underlying
structure—i.e., increases the rank or slows down
the decay of the singular values of the original
signal. In our case, this translates to finding
a simultaneous source scheme, which increases
the rank of the underlying fully sampled matrix
in the transform domain. To understand this,
we analyze the effect of blending on the low-
rank properties of the Green’s function in the
transform domain. To mimic the simultaneous
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(a) (b)

(c) (d)

(e)

Fig. 10: Matricized Green’s function simulated using the SEG/EAGE overthrust model at 5 Hz for
sources placed at surface. (a) Nxsrc

, Nysrc
, and (b) Nxsrc

, Nxrec
matricization. (c, d) Zoom sections of (a)

and (b) at the upper left corner, respectively. (e) Singular value decay. The red and blue curves represent
the Nxsrc

, Nysrc
and the Nxsrc

, Nxrec
matricizations, respectively. We see that singular values of the fully

sampled Green’s function decay faster for matricization (b) compared to (a).
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source experiment, we multiply the Nxsrc
, Nysrc

matricized Green’s function (Figure 10 a) with the
Gaussian random matrix W of size Nxsrc

Nysrc
×k,

where k represents the number of simultaneous
source experiments. In this example, we choose
k = 0.1 ∗ Nxsrc

Nysrc
≈ 1000. Since we want to

analyze the effect of blending on the decay of the
singular values in the transform domain, we create
a pseudo deblended Green’s function (Figure 11)
in the Nxsrc

, Nysrc
and Nxsrc

, Nxrec
matricization,

respectively.
We further plot the decay of the singular val-

ues after pseudo deblending in the Nxsrc
, Nysrc

and
Nxsrc

, Nxrec
matricization as shown in Figure 11 .

We see that blending destroys the continuity of
the waveforms in both matricizations, which re-
sults in slower decay of the singular values, thus
the rank increases dramatically. It is clear that
although for both parameterizations the decay of
singular values is slower than without the simulta-
neous sources, the decay of singular values is sig-
nificantly faster for the Nxsrc

, Nysrc
matricization

than it is for the Nxsrc
, Nxrec

matricization, in any
case we would use the later matricization because
this is the matricization in which the underlying
data are sparse.

5.3 Rank-minimization framework

To reconstruct the Green’s function matrix
from blended measurements, we use the rank-
minimization framework for simultaneous source
separation proposed by [26], where the underlying
assumption is that the fully sampled Green’s func-
tion matrix exhibits low-rank structure and the
blending process increases the rank of the Green’s
function matrix in some transform domain. Under
this assumption, the source separation problem
is to find the fully sampled Green’s function
matrix of lowest possible rank that agrees with
the simultaneous source experiment observations.

For a low-rank matrix X in C
n×m and a linear

measurement operator A that maps from C
n×m →

C
p with p ≪ n×m, the rank-minimization prob-

lem involves solving the following problem for A,
up to a given tolerance ǫ:

minimize
X

rank(X) subject to ‖A(X)−b‖2 ≤ ǫ,

(4)

where b is a set of blended measurements.
Note that, for a 3D seismic data acquisition,

A represents the Gaussian random matrix W,
m = Nxsrc

× Nyrec
, n = Nysrc

× Nxrec
, b is the

simultaneous source Green’s function matrix ex-
tracted from Y, which corresponds to the sources
at the surface or on the boundary of the local
domain, and p = Nysrc

× Nxrec
× k. Appendix B

explains a computationally efficient framework to
solve equation 4 efficiently for large-scale seismic
data acquisition.

Finally, we propose a two-step strategy to
efficiently compute the Green’s function in the
background model to enable the numerically
exact local solver for the large-scale 3D seismic
data problems. The first step involves solving the
partial differential wave-equation (PDEs) k times
using the simultaneous sources placed at the
surface of the domain, i.e., step 2a of Algorithm
1. The second step involves the source-separation
procedure, i.e., deblending, where we recover the
fully sampled Green’s function, which corresponds
to the sources placed at the surface, from the
simultaneous source experiment using the rank-
minimization framework of equation 4. Now, we
only need to simulate k << Nxsrc

Nysrc
PDEs

followed by the source-separation framework,
thus, avoiding the extra k PDE solves in step
2c of Algorithm 1 to approximate the Green’s
function. Note that, we need to repeat the
above mentioned strategy for the simultaneous
sources on the boundary of the local domain to
approximate GδΩ

0 and G
δΩ+1

0 matrices, which
will incur the cost of solving an extra k PDEs.
Algorithm 2 outlines the rank-minimization based
source-separation framework to approximate the
Green’s function to allow for the extension of the
local-solver to large-scale 3D problems.

To further demonstrate the effectiveness
of the rank-minimization based framework to
approximate the Green’s function, we perform
the source-separation on the blended Green’s
function matrices as shown in Figure 11. The fully
sampled Green’s function at the surface consists
of 102× 102 sources and 202× 202 receivers. Since
k = 1000, the number of PDEs solve is 10-times
smaller than the method as in [58], where we need
to solve 10404 PDEs conventionally to form the
Green’s function matrices at the surface. Note
that, in the conventional method, we also need to
solve thousands of extra PDEs for evaluating the
Green’s function matrices on the boundary of the
local domain. However, in our framework, we only
need to solve extra k PDEs. Figures 12, 13 show
the reconstructed fully sampled Green’s function
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(a) (b)

(c) (d)

(e)

Fig. 11: Pseudo deblended Green’s function matrices for sources placed at surface in the (a) Nxsrc
, Nysrc

,
and (b) Nxsrc

, Nxrec
matricizations. (c, d) Zoom sections of (a) and (b) at the upper left corner, respec-

tively. (e) Singular value decay. The red and blue curves represent the Nxsrc
, Nysrc

and the Nxsrc
, Nxrec

matricizations, respectively. We see that the simultaneous source acquisition slows down the decay of the
singular values of Nxsrc

, Nysrc
matricization compared to Nxsrc

, Nyrec
matricization.
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after source-separation. We are able to deblend
all the Green’s function with signal-to-noise
ratio (SNR) of ≈ 27 dB and recover most of
the coherent energy, which is further supported
by the difference plots (Figures 12(c,d), 13
(c,d)). This shows that, using the ideas from
the compressed sensing and a rank-minimization
based interpolation framework, we can mitigate

the computational bottleneck of the local solver
to perform 3D target-oriented full-waveform
inversion. Finally, in Table 1, we compare the
computational cost (in terms of the number of
PDEs solve) of full domain FWI, numerically
exact local solver, Algorithm 1 and Algorithm 2,
respectively.

5.3.1 Algorithm 2: rank-minimization based source-separation framework

1. Input: W ∈ C
Nxsrc Nysrc ×k, F(m) (as explained in Algorithm 1)

2. Compute
a. Y = F(m)W, the computational cost is k PDEs, and Y ∈ C

NxNyNz×k

b. extract simultaneous source Green’s function matrices from Y corresponding to sources at the
surface.

c. organize this matrix as a vector b.
d. solve minL,R ‖A(LR′)− b‖2 s.t. 1

2‖L; R‖2
F ≤ τ , Appendix B gives details.

3. Output: Low-rank factorized form of the compressed full subsurface Green’s Function,
L ∈ C

Nxsrc Nxrec ×k, R ∈ C
Nysrc Nyrec ×k

4. repeat steps 1-3 for the sources placed on the boundary of the local domain to get the corresponding
approximated Green’s function matrices.

6 Discussion

The main computational bottleneck of the numer-
ically exact local solver is to simulate the Green’s
function at the surface and on the boundary
of the local-domain in the background velocity
model. Once we simulate all the Green’s functions,
performing waveform inversion is computationally
cheap to invert for the subsurface parameters of
interest. The obvious drawback of this approach
is that the required number of wave-equation
solves to simulate the Green’s function grows
linearly with the number of grid points, thus the
framework quickly becomes prohibitively expen-
sive for any realistically sized models. To address
this, we propose to exploit the low-rank structure
of the full subsurface Green’s function by using
techniques from randomized linear algebra. We
show that the simulation cost for monochromatic
Green’s function is dominated by the rank instead
of by the grid points at the surface and on the
boundary of the local domain. This observation
makes the local-solver a computationally feasi-
ble and scalable framework for performing the
target-oriented waveform inversion. As long as
the rank is smaller, which is the case for low- to
mid-range frequencies, our approach outperforms

the conventional numerically exact local solver in
terms of computational speed.

Although the low-rank factorization scheme
circumvents the computational bottleneck, the
obvious question is how to choose the rank for the
different monochromatic Green’s function. One
possible solution is to estimate the rank at the
lower and higher end of the spectrum of interest,
perform linear interpolation between these two
values, and assign rank values to the intermediate
frequencies. Estimating the rank value for the
lower end of the spectrum is computationally
feasible since we can reduce the grid density for
the lower frequency and analyze the singular value
decay. However, for the higher end of the spec-
trum, analyzing the decay of the singular values
will again become computationally demanding.
This is still an open avenue of research.

7 Conclusions

The numerically exact local-solver opens new av-
enues to perform target-oriented full waveform in-
version for time-lapse seismic data acquisition as
well as other situations in which only a part of the
model is of interest. The central idea is to restrict
the computation of partial differential equations to
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Full domain FWI Exact local solver Algorithm 2 Algorithm 2

number of PDE solves 2Ns Ns + N
δΩ

b 2ks + 2kb ks + kb

Table 1: Comparison of the computational cost (in terms of the number of PDEs solve) of full domain
FWI, numerically exact local solver, Algorithm 1 and Algorithm 2, respectively. Here, Ns represents the
number of sources at the surface, N δΩ

b is the number of points at the boundary of the local domain δΩ,
and ks, kb are the number of simultaneous source experiments at the surface and on the boundary of the
local domain, respectively.

(a) (b)

(c) (d)

Fig. 12: Recovered fully sampled Green’s function using rank-minimization based framework for sources
placed at surface. (a,c) after source-separation and difference. (b,d) zoom sections from the upper left
corner from (a,c). Note that, we subtract (a) and Figure 10(b) to generate (c).

be inside the local-domain of interest. Even though
the experimental demonstration in seismic litera-
ture has shown the benefits of an exact local-solver,
it requires the computation of Green’s function
in the background velocity model. Moreover, the
number of wave-equation solves for the Green’s
function depends upon the number of grid points

at the surface and on the boundary of the local
domain. This aspect of local-solver makes it com-
putationally demanding to perform target-oriented
FWI, especially for large-scale 3D full waveform
inversion.

In this work, by exploiting the low-rank struc-
ture of the full subsurface Green’s function, we
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(a) (b)

(c) (d)

Fig. 13: Recovered fully sampled Green’s function using the rank-minimization based framework for
sources placed on the boundary of the local-domain. (a,c) after source-separation and difference. (b,d)
zoom sections from the upper left corner from (a,c).

circumvent the major computational cost involved
in the local-solver. Our approach uses the prob-
ing techniques from the randomized linear alge-
bra to obtain the full subsurface Green’s function
in a low-rank factorized form. The computational
cost of approximating the Green’s function using
probing techniques depends upon the rank of the
Green’s function and not on the grid points at the
surface and on the boundary of the local domain.
As long as this rank is small, which is usually the
case for low-to-mid range frequencies, the probing
techniques enable the application of the approxi-
mate local-solver for large-scale seismic data acqui-
sition. Time-lapse inversion results on the 2D Mar-
mousi model demonstrate that we gain a factor of
four in the computational time with little to no

compromise in accuracy using the proposed low-
rank factorization approach to approximate the
Green’s function.

To extend this framework to 3D full waveform
inversion, we further proposed to combine rank-
minimization based source-separation framework
with the randomized SVD to eliminate the need
to solve extra PDEs at step 2c in Algorithm 1.
This new framework exploits the fact that blending
increases the rank of the underlying seismic data,
which is low-rank in it’s deblended form. Using
stylized example from the 3D Overthrust model,
we demonstrate that we gain a factor of ten in
computation time compared to the conventional
exact local solver by approximating the Green’s
function.
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9 Appendix A

To perform FWI in the truncated domain,
we need to compute the forward and adjoint
wavefields. In order to do so, we need to first
simulate the Green’s function at the surface
and on the boundary nodes in the background
model. In this section, we explain the process of
extracting the Green’s function matrices in the
background model to efficiently solve the PDEs,
i.e., equation 3 in the local-domain. For a 2D
background velocity model, the dimension of the
full subsurface Green’s function responses are
NzNx × Ns and NzNx × N δΩ

b from which we
extract the four desired sets of Green’s function
matrices, i.e., u

(s,r)
0 , uδΩ

0 , G
δΩ+1

0 and GδΩ
0 . The

matrix u
(s,r)
0 represents the Green’s function

matrix computed in the background model be-
tween the sources and receivers at the surface,
which we convolve with the source-wavelet while
computing the data residual during the inversion
process. Moreover, we convolve uδΩ

0 with the
source wavelet (data residual) while computing
the forward (adjoint) wavefields using equation 3.
The matrices u

(s,r)
0 and uδΩ

0 are easy to extract
from the full subsurface Green’s function matrix
via taking out the rows corresponding to the

locations of the receivers at the surface and the
location of the nodes on the boundary of the local
domain, respectively. To form the other Green’s
function matrices, we follow a node numbering
scheme in the truncated domain where the nodes
are numbered in a counter-clockwise inward
spiralling fashion as shown in Figure 14a.

Under this numbering scheme, we obtain the
matrix uδΩ

0 from the full subsurface Green’s func-
tion simulated using the sources at the surface of
the model. Again, we select the rows corresponding
to the locations of the boundary nodes δΩ for each
source experiment. We illustrate the matrix struc-
ture of the Green’s function matrices GδΩ

0 and
G

δΩ+1

0 used in the second block row of equation 3
by using the 5× 5 node example from Figure 14a.

The foundation of the local solver is the equa-
tion for the scattered field. It is an essential compo-
nent of the local solver in equation 3 (i.e. it forms
the second block row) and also gives the ability
to propagate the local wavefield solution to the
receiver locations. This scattered field equation is
derived in Appendix A of the work of [58] and the
final result is restated here for convenience

∑ 1
h2

(

uδΩ
(

G
δΩ+1

0 −GδΩ
0

)

−GδΩ
0

(

uδΩ+1 − uδΩ
)

)

= −δu(i, ω), i ∈ δΩ ∪Ωc,

(5)

where all the quantities are scalars, h is the grid
spacing and the summation goes all around the
boundary but does not include the corner nodes
as we will illustrate below. Equation 5 closely re-
sembles a discretization of Green’s third identity.
We simplify equation 5 by removing the common
term uδΩGδΩ

0 to get

∑ 1
h2

(

uδΩG
δΩ+1

0 −GδΩ
0 uδΩ+1

)

= −δu(i, ω), i ∈ δΩ ∪Ωc. (6)

(a) (b)

Fig. 14: A 5 × 5 nodel representation of the lo-
cal domain Ω. This truncated domain is used to
demonstrate the computation of Green’s function
matrices GδΩ

0 and G
δΩ+1

0 used in equation 3 to
evaluate the modified wave-equation.

The second block row of equation 3 evaluates
equation 6 for each boundary node i on δΩ, with
i ∈ {1, ..., 16} in this 5× 5 example. The matrices
G

δΩ+1

0 and GδΩ
0 therefore have 16 rows in this ex-

ample. Figure 14b illustrates which Green’s func-
tion combinations are required when the boundary
summation equation 6 is evaluated around δΩ for
the case when i = 1. Evaluating equation 6 gives
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[u(2)G(i, 17)− u(17)G(i, 2)] + [u(3)G(i, 18)− u(18)G(i, 3)] + [u(4)G(i, 19)− u(19)G(i, 4)] +

[u(6)G(i, 19)− u(19)G(i, 6)] + [u(7)G(i, 20)− u(20)G(i, 7)] + [u(8)G(i, 21)− u(21)G(i, 8)] +

[u(10)G(i, 21)− u(21)G(i, 10)] + [u(11)G(i, 22)− u(22)G(i, 11)] + [u(12)G(i, 23)− u(23)G(i, 12)] +

[u(14)G(i, 23)− u(23)G(i, 14)] + [u(15)G(i, 24)− u(24)G(i, 15)] + [u(16)G(i, 17)− u(17)G(i, 16)]

= −δu(i), (7)

where each term in square brackets represents
a contribution from a single box in Figure 14b.
Equation 7 is the multiplication of vectors uδΩ and
uδΩ+1 with the first row of matrices G

δΩ+1

0 and

GδΩ
0 in equation 3. We now show the first five rows

of these matrices to show how equation 7 continues
for i = 1, 2, 3, 4, 5

G
δΩ+1

0 =













0 G(1, 17) G(1, 18) G(1, 19) 0 G(1, 19) G(1, 20) G(1, 21) 0 G(1, 21) G(1, 22) G(1, 23) 0 G(1, 23) G(1, 24) G(1, 17)
0 G(2, 17) G(2, 18) G(2, 19) 0 G(2, 19) G(2, 20) G(2, 21) 0 G(2, 21) G(2, 22) G(2, 23) 0 G(2, 23) G(2, 24) G(2, 17)
0 G(3, 17) G(3, 18) G(3, 19) 0 G(3, 19) G(3, 20) G(3, 21) 0 G(3, 21) G(3, 22) G(3, 23) 0 G(3, 23) G(3, 24) G(3, 17)
0 G(4, 17) G(4, 18) G(4, 19) 0 G(4, 19) G(4, 20) G(4, 21) 0 G(4, 21) G(4, 22) G(4, 23) 0 G(4, 23) G(4, 24) G(4, 17)
0 G(5, 17) G(5, 18) G(5, 19) 0 G(5, 19) G(5, 20) G(5, 21) 0 G(5, 21) G(5, 22) G(5, 23) 0 G(5, 23) G(5, 24) G(5, 17)













,

(8)

GδΩ
0 =

















G(1, 2) + G(1, 16) G(1, 3) G(1, 4) + G(1, 6) G(1, 7) G(1, 8) + G(1, 10) G(1, 11) G(1, 12) + G(1, 14) G(1, 15)

G(2, 2) + G(2, 16) G(2, 3) G(2, 4) + G(2, 6) G(2, 7) G(2, 8) + G(2, 10) G(2, 11) G(2, 12) + G(2, 14) G(2, 15)

G(3, 2) + G(3, 16) G(3, 3) G(3, 4) + G(3, 6) G(3, 7) G(3, 8) + G(3, 10) G(3, 11) G(3, 12) + G(3, 14) G(3, 15)

G(4, 2) + G(4, 16) G(4, 3) G(4, 4) + G(4, 6) G(4, 7) G(4, 8) + G(4, 10) G(4, 11) G(4, 12) + G(4, 14) G(4, 15)

G(5, 2) + G(5, 16) G(5, 3) G(5, 4) + G(5, 6) G(5, 7) G(5, 8) + G(5, 10) G(5, 11) G(5, 12) + G(5, 14) G(5, 15)

















.

(9)

In Figure 14b we see that the corner nodes
on Ω+1 are involved twice while the corner nodes
on Ω are never evaluated. This explains the zero
columns in equation 8 and the columns with sums
in equation 9.

As mentioned before, once we form these four
sets of Green’s function matrices, we solve equa-
tion 3, where we compute the forward wavefield
in the following three steps: (i) Evaluate the vec-
tor of unknowns by solving equation 3, (ii) extract
the scattered field on the boundary of the local do-
main and one layer to the interior, (iii) project the
scattered wavefield δu on the receiver locations in
the seismic acquisition using equation 2, (iv) add
the precomputed background Green’s function ma-
trix u

(s,r)
0 and the projected scattered wavefield to

compute the forward wavefield at the receiver loca-

tions. We thus compute the data residual and the
objective function for the locally perturbed model
using the local solver exclusively. To compute the
adjoint wavefield, we now propagate the residual
back to the truncated domain. We do this by us-
ing the same sets of Green’s functions that we used
to project the scattered wavefield to the surface of
the full domain. This is simply achieved by multi-
plying the Green’s function matrix uδΩ

0 with the
data residual. We again solve equation 3 using the
modified source function on the boundary of the
truncated domain to compute the adjoint wave-
field. Just like the forward wavefield, this adjoint
wavefield is numerically exactly the same as would
have been generated by a full domain solver on the
perturbed model. Finally, we use the numerically
exact forward and adjoint wavefields to compute
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the numerically exact gradients in the truncated
domain, which is exactly the same FWI gradient
as a full domain Helmholtz solver would have re-
turned.

10 Appendix B

Here, we illustrate a computationally efficient
rank-minimization based framework to solve the
source-separation problem in Algoirthm 5.3.1,
which is an important step to make the numeri-
cally exact local solver feasible for the large-scale
3D seismic data acquisition. Rank-minimization
based formulations are based upon the following
three-fundamental principles: (i) the under-
lying target matrix should exhibit low-rank
structure in some transform domain, (ii) the
subsampling-blending operator should increase
the rank or slow down the decay of the singular
values in some transform domain, (iii) a scalable
and computationally efficient rank-minimization
framework to handle large-scale data matrices.
Under assumptions (i) and (ii), the goal of the
rank-minimization problem is to find the matrix
of lowest possible rank that agrees with the
experimental observations. This is written as the
following optimization problem:

minimize
X

rank(X) subject to ‖A(X)−b‖2 ≤ ǫ,

where rank is defined as the maximum number of
linearly independent rows or column of a matrix,
b is a set of blended measurements and A repre-
sents the sampling-blending operator. Since rank-
minimization problems are NP hard and therefore
computationally intractable, [46] showed that solu-
tions to rank-minimization problems can be found
by solving the following nuclear-norm minimiza-
tion problem:

minimize
X

‖X‖∗ subject to ‖A(X)− b‖2 ≤ ǫ,

(10)

where ‖.‖∗ = ‖σ‖1 and σ is the vector of singular
values for each monochromatic data matricization.
To efficiently solve equation 10 for large-scale seis-
mic data, we used an extension of SPGℓ1 solver [4]
developed for basis-pursuit denoising (BPDNσ) in
[2]. The resulting algorithm, which is dubbed SPG-
LR by [2] finds the solution to the BPDNσ by solv-
ing a sequence of robust LASSO (least absolute
shrinkage and selection operator) subproblems:

minimize
X

‖A(X)− b‖2 subject to ‖X‖∗ ≤ τ.

(11)

where τ is updated by traversing the Pareto
curve. The LASSO is a regularized regression
formulation that seeks to do variable selection
using a sparsity penalty, whereas the Pareto
curve describes the tradeoff between the data
fit and the nuclear-norm of the solution vector.
Interested readers can find a detailed explanation
of the Pareto curve in [4]. Solving each robust
LASSO subproblem requires a projection onto the
nuclear norm ball ‖X‖∗ ≤ τ in every iteration
by performing a singular value decomposition
and then thresholding the singular values. In the
case of large scale seismic problems, it becomes
prohibitive to carry out such a large number of
SVDs. Therefore, we avoid the direct approach
to the nuclear-norm minimization problem and
follow a factorization-based approach [30, 47, 48].
The factorization-based approach parametrizes
each monochromatic data matrix X as a product
of two low-rank factors L ∈ C

n×k and R ∈ C
m×k

such that, X = LRH , where k represents the rank
of the underlying matrix and H represents the
Hermitian transpose. The optimization scheme
can then be carried out using the matrices L, R

instead of X, thereby significantly reducing the
size of the decision variable from n × m to
k × (n + m) when k ≤ (n, m). [48] show that the
nuclear norm obeys the relationship

‖X‖∗ ≤
1
2
‖L; R‖2

F ,

where ‖ · ‖2
F is the Frobenius norm of the matrix

(sum of the squared entries). Consequently, the
LASSO subproblem can be replaced by

min
L,R

‖A(X)− b‖2 s.t.
1
2
‖L; R‖2

F ≤ τ .

where the projection onto 1
2‖L; R‖2

F ≤ τ is easily
achieved by multiplying each factor L and R by
the scalar 2τ/( 1

2‖L; R‖2
F ) .
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