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Abstract A mixed-integer convex (MI-convex) optimization problem is one that
becomes convex when all integrality constraints are relaxed. We present a branch-
and-bound LP outer approximation algorithm for an MI-convex problem trans-
formed to MI-conic form. The polyhedral relaxations are refined with K∗ cuts

derived from conic certificates for continuous primal-dual conic subproblems. Un-
der the assumption that all subproblems are well-posed, the algorithm detects
infeasibility or unboundedness or returns an optimal solution in finite time. Us-
ing properties of the conic certificates, we show that the K∗ cuts imply certain
practically-relevant guarantees about the quality of the polyhedral relaxations, and
demonstrate how to maintain helpful guarantees when the LP solver uses a positive
feasibility tolerance. We discuss how to disaggregate K∗ cuts in order to tighten the
polyhedral relaxations and thereby improve the speed of convergence, and propose
fast heuristic methods of obtaining useful K∗ cuts. Our new open source MI-conic
solver Pajarito (github.com/JuliaOpt/Pajarito.jl) uses an external mixed-integer
linear (MILP) solver to manage the search tree and an external continuous conic
solver for subproblems. Benchmarking on a library of mixed-integer second-order
cone (MISOCP) problems, we find that Pajarito greatly outperforms Bonmin (the
leading open source alternative) and is competitive with CPLEX’s specialized MIS-
OCP algorithm. We demonstrate the robustness of Pajarito by solving diverse
MI-conic problems involving mixtures of positive semidefinite, second-order, and
exponential cones, and provide evidence for the practical value of our analyses and
enhancements of K∗ cuts.
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1 Mixed-Integer Convex Optimization

A mixed-integer convex (MI-convex) problem is a finite-dimensional optimization
problem that minimizes a convex objective function over convex constraints and in-
tegrality restrictions on a subset of the variables. Belotti et al. [2013] and Bonami et al.
[2012] review MI-convex applications and Lubin et al. [2017a] characterize which
nonconvex feasible regions are MI-convex-representable. Since an MI-convex prob-
lem without integrality restrictions is just a convex problem, MI-convex optimiza-
tion generalizes both mixed-integer linear optimization (MILP) and convex opti-
mization. This structure also leads to effective branch-and-bound (B&B) algo-
rithms, which recursively partition the possible values of the integer variables in
a search tree and obtain objective bounds and feasible solutions from efficiently-
solvable subproblems.

1.1 Branch-And-Bound Algorithms

A nonlinear B&B (B&B-NL) algorithm for a MI-convex problem solves a nonlinear
subproblem that includes all of the convex constraints at every node of the search
tree. The Bonmin solver package [Bonami et al., 2008] implements a B&B-NL
variant by calling the derivative-oracle-based nonlinear programming (NLP) solver
Ipopt to solve the subproblems. The relatively new SCIP-SDP [Gally et al., 2018]
B&B-NL implementation for mixed-integer semidefinite (MISDP) problems uses
a primal-dual conic interior-point solver for the SDP subproblems.

Typically, B&B-NL methods need to solve a large number of very similar non-
linear subproblems to near-global optimality and feasibility in order to obtain ac-
curate objective bounds. Linear optimization (LP) solvers based on the Simplex
algorithm are able to rapidly reoptimize after variable bounds are changed or linear
cuts are added, thus typically benefiting from warm-starting much more so than
state-of-the-art NLP or conic solvers. B&B LP outer approximation (B&B-OA)
algorithms take advantage of LP warm-starting by solving a polyhedral relaxation,
or LP outer approximation (LP OA), of the nonlinear subproblem at every node.
Implementations often take advantage of the speed and stability of advanced MILP
branch-and-cut solvers.

B&B-OA algorithms differ in how they refine the polyhedral relaxations of
the nonlinear constraints and how they obtain feasible solutions. In a separation-

based algorithm, no nonlinear solver is used. At each node the optimal point of
the LP OA is first checked for feasibility for the convex constraints; if the vi-
olation exceeds a positive tolerance, valid cuts separating the point are added
to the LP, otherwise the point may be accepted as a new incumbent if it is in-
tegral.1 Quesada and Grossmann [1992] and Leyffer [1993] describe subproblem-

based B&B-OA algorithms that solve smooth subproblems at a subset of the nodes.

1 Commercial mixed-integer second-order cone optimization (MISOCP) solvers use
separation-based algorithms, but also occasionally solve SOCP subproblems to obtain feasible
solutions and fathom nodes. SCIP-SDP offers both B&B-NL and separation-based B&B-OA
methods for mixed-integer semidefinite problems.
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4 Chris Coey1 et al.

The subproblems provide points at which cuts based on gradient inequalities can
be derived.2

Bonami et al. [2008] found that Bonmin’s B&B-OA method generally outper-
forms its B&B-NL method. Since both of these methods rely on NLP subproblems,
they frequently fail in the presence of nonsmoothness. Continuous conic solvers
are more numerically robust than derivative-oracle-based NLP solvers on nons-
mooth problems (such as SOCPs and SDPs). For the special case of MISOCP,
Drewes and Ulbrich [2012] propose a conic subproblem-based B&B-OA algorithm
that derives cuts from subgradients satisfying subproblem KKT optimality condi-
tions, and hence does not require smoothness assumptions.

Another advantage of conic solvers is that they return simple certificates prov-
ing primal or dual infeasibility or optimality of a primal-dual solution pair [Permenter et al.,
2015]. Using the theory of conic duality, it is possible to describe an elegant OA
algorithm for generic MI-conic problems that uses conic certificates returned by
primal-dual conic solvers, with no need to examine KKT conditions or solve a
second modified subproblem in the case of infeasibility (as in the algorithm by
Drewes and Ulbrich [2012]). Lubin et al. [2016, 2018] propose this idea in an iter-
ative OA algorithm. However a B&B algorithm using a single search tree, instead
of solving a sequence of MILP instances each with their own search tree, is more
flexible and likely to be significantly faster in practice. We fill this gap with the
first conic-certificate-based B&B-OA algorithm.

1.2 Mixed-Integer Conic Form

We use the following general form for a mixed-integer conic (MI-conic) problem:

M





inf
x∈RN

cT x :

b − Ax ∈ K ⊂ RM

xi ∈ Z ∀i ∈ JIK,

(2a)

(2b)

(2c)

where K is a closed convex cone, i.e. a closed subset of RM that contains all conic
(nonnegative) combinations of its points [Ben-Tal and Nemirovski, 2001a]:

α1y1 + α2y2 ∈ K ∀α1, α2 ≥ 0 ∀y1, y2 ∈ K. (3)

The decision variables in M are represented by the column vector x ∈ RN , so
the objective (2a) minimizes a linear function of x subject to (denoted by ‘:’) the
constraints (2b) and (2c). The index set of integer decision variables is JIK =
{1, . . . , I}, so the integrality constraints (2c) restrict only the first I variables
x1, . . . , xI to the set of integers Z. The conic constraint (2b), which restricts the
affine transformation b − Ax of x to K, is a convex constraint, so relaxing the
integrality constraints (2c) results in a convex conic optimization problem.

2 For a convex function f : Rn → R, the set X = {x ∈ Rn : f(x) ≤ 0} is convex. If f is
smooth, then given a point x̄ ∈ Rn, the following gradient cut yields a polyhedral relaxation
of X :

f(x̄) + (∇f(x̄))T (x − x̄) ≤ 0. (1)
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Any MI-convex problem can be expressed in MI-conic form, by homogenizing
the convex constraints, for example through perspective transformations [Boyd and Vandenberghe,
2004, Lubin et al., 2016]. Disciplined Convex Programming (DCP) modeling pack-
ages such as CVX [Grant and Boyd, 2014], CVXPy [Diamond and Boyd, 2016],
and Convex.jl [Udell et al., 2014] perform conic transformations automatically,
conveniently enabling modelers to access powerful conic solvers such as ECOS
[Domahidi et al., 2013], SCS [O’Donoghue et al., 2016], MOSEK [Mosek ApS, 2016],
and CSDP [Borchers, 1999].

Conic solvers recognize the cone K as a Cartesian product of standard primitive

cones [Friberg, 2016]. A primitive closed convex cone cannot be written as a Carte-
sian product of two or more lower-dimensional closed convex cones. Lubin et al.
[2018] claim that the following classes of standard primitive cones are extremely ver-
satile, encoding all of the problems in the Conic Benchmark Library (CBLIB) com-
piled by Friberg [2016], and all 333 MI-convex problems in MINLPLIB2 [Vigerske,
2018].

Linear cones naturally express affine constraints; any mixed-integer linear opti-
mization (MILP) problem can be written in M form using nonnegative, non-
positive, and zero cones.

Second-order cones (and rotated-second-order cones) are widely used to model
rational powers, norms, and geometric means, as well as convex quadratic
objectives and constraints [Ben-Tal and Nemirovski, 2001a].

Positive semidefinite cones can model robust norms and functions of eigenvalues
[Ben-Tal and Nemirovski, 2001a], and sum-of-squares constraints for polyno-
mial optimization problems [Parrilo, 2003].

Exponential cones can model exponentials, logarithms, entropy, and powers, as
well as log-sum-exp functions that arise from convex transformations of geo-
metric programs [Serrano, 2015].

We note that conic representations are useful for constructing tight formulations
for disjunctions or unions of convex sets [Lubin et al., 2017a,b, Vielma, 2018].

1.3 Overview And Contributions

In Section 2, we start by reviewing the relevant foundations of conic duality and
certificates. We then introduce the notion of K∗ cuts, and describe how to refine
LP OAs of conic constraints using certificate K∗ cuts obtained from certificates
returned by continuous primal-dual conic solvers. For a MI-conic problem M, we
propose the first B&B-OA algorithm based on conic certificates. We show that
our algorithm detects infeasibility or unboundedness or terminates with an optimal
solution in finite time under minimal assumptions.

In Section 3, we demonstrate that a K∗ cut from a conic certificate implies
useful guarantees about the infeasibility or optimal objective of an LP OA, sug-
gesting that our algorithm can often fathom a node immediately after solving the
LP rather than proceeding to the expensive conic subproblem solve. We consider
how these guarantees may be lost in the more realistic setting of an LP solver with
a positive feasibility tolerance, and propose a practical methodology for scaling a
certificate K∗ cut to recover similar guarantees.
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In Section 4, we describe how to strengthen the LP OAs by disaggregating K∗

cuts, and show that this methodology maintains the guarantees from Section 3. We
argue for initializing the LP OAs using initial fixed K∗ cuts, and offer a procedure
for cheaply obtaining separation K∗ cuts to cut off an infeasible LP OA solution.
These proposed techniques require minimal modifications to our algorithm and
are practical to implement. In Appendix A, we specialize these techniques for the
second-order, positive semidefinite, and exponential cones. We note that the ideas
from Sections 3 to 4 can be applied (with minor adjustments) to the iterative conic
OA method described by Lubin et al. [2016].

In Section 5, we describe the software architecture and algorithmic implemen-
tation of Pajarito, our open source MI-convex solver.3 This section may be of
particular interest to advanced users and developers of mathematical optimization
software. We emphasize that our implementations diverge from the idealized al-
gorithmic description in Section 2, because of our decision to leverage powerful
external mixed-integer linear (MILP) solvers through limited, solver-independent
interfaces. In Appendix B, we describe how Pajarito lifts K∗ cuts for the second-
order cone using an extended formulation, resulting in tighter LP OAs. In Ap-
pendix C, we show how Pajarito can optionally tighten OAs for PSD cone con-
straints by strengthening K∗ cuts to rotated second-order cone constraints, which
can be added to an MISOCP OA model.

In Section 6, we summarize computational experiments demonstrating the
speed and robustness of Pajarito. We benchmark Pajarito and several MISOCP
solver packages, and conclude that Pajarito is the fastest and most-reliable open
source solver for MISOCP. Finally, we compare the performance of several of
Pajarito’s algorithmic variants on MI-conic instances involving mixtures of pos-
itive semidefinite, second-order, and exponential cones, demonstrating practical
advantages of several methodological contributions from Sections 3 and 4 and Ap-
pendix A.

2 A Branch-And-Bound LP Outer Approximation Algorithm

For a MI-conic problem M, we propose a branch-and-bound LP outer approxima-
tion (B&B-OA) algorithm, the first such method based on conic certificates. In
Section 2.1, we describe the continuous conic subproblems that a nonlinear branch-
and-bound (B&B-NL) algorithm would solve at each node, and review the relevant
foundations of conic duality. In Section 2.2, we introduce the notion of K∗ cuts
and describe how to refine polyhedral relaxations of the conic subproblems using
information from conic certificates. Finally, we outline our B&B-OA algorithm in
Section 2.3, and discuss finiteness of convergence. For the sake of exposition and
analysis, this algorithm is quite minimal, and we postpone a description of optional
enhancements to Sections 3 to 4. As we discuss in Section 5, the methods in Pa-

3 The new version of Pajarito that we implemented for this paper is the first conic-certificate-
based OA solver. Although Pajarito solver was introduced in Lubin et al. [2016], this early
implementation used NLP solvers instead of primal-dual conic solvers for continuous subprob-
lems, and was built to assess the value of extended formulations by counting iterations before
convergence. To avoid confusing users, we recently moved this old NLP-based functionality
out of Pajarito and into Pavito solver at github.com/JuliaOpt/Pavito.jl.
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jarito solver deviate from this minimal algorithm due to limitations of the external
mixed-integer linear (MILP) solvers and interfaces we use in our implementations.

2.1 Continuous Subproblems And Conic Duality

Recall from M that the first I variables in x are constrained to be integer. Branch-
and-bound algorithms recursively partition the valid integer assignments, so for
convenience we assume known finite lower bounds l0 ∈ ZI and upper bounds
u0 ∈ ZI on the integer variables x1, . . . xI . At a node of the branch-and-bound
search tree with lower bounds l ∈ ZI and upper bounds u ∈ ZI on x1, . . . , xI , the
natural continuous conic subproblem is C(l, u):

C(l,u)





inf
x

cT x :

b − Ax ∈ K
li − xi ∈ R− ∀i ∈ JIK

ui − xi ∈ R+ ∀i ∈ JIK

x ∈ RN ,

(4a)

(4b)

(4c)

(4d)

(4e)

where the bound constraints (4c) and (4d) are expressed in conic form using the
nonpositive cone R− (the nonpositive reals) and the nonnegative cone R+ (the
nonnegative reals).

There exist primal-dual conic algorithms for C(l,u) that are powerful in both
theory and practice. The foundation for these methods and for much of this paper is
the elegant theory of conic duality, described by Ben-Tal and Nemirovski [2001a],
Boyd and Vandenberghe [2004]. Recall that the cone K in C(l, u) is a closed
convex cone; we let K∗ denote the dual cone of K, i.e. the set of points that have
nonnegative inner product with all points in K:

K∗ = {z ∈ RM : yT z ≥ 0, ∀y ∈ K}. (5)

K∗ is also a closed convex cone [Boyd and Vandenberghe, 2004]. The standard
conic dual of C(l, u) can be written as C∗(l,u):

C∗(l,u)





sup
z,µ,ν

−bT z − lT µ − uT ν :

z ∈ K∗

µ ∈ RI
−

ν ∈ RI
+

c + AT z + µ′ + ν′ ∈ {0}N ,

(6a)

(6b)

(6c)

(6d)

(6e)

where for ease of exposition we let µ′ = (µ1, . . . , µI , 0, . . . , 0) ∈ RN and similarly
for ν′. Note that the nonnegative and nonpositive cones are both self-dual, i.e.
R∗

− = R− and R∗
+ = R+. The zero cone {0} (containing only the origin) is dual

to the free cone R. The variables z in the dual constraint (6b) are associated with
the primal constraint (4b), and similarly for (6c) and (4c), (6d) and (4d), and (4e)
and (6e).
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If the conic primal-dual pair C(l,u)–C∗(l, u) is well-posed, then conic duality
can be thought of as a simple generalization of LP duality.4 In particular, the
inf and sup can be replaced with min and max, and the possible status combina-
tions for C(l,u) and C∗(l,u) are: both infeasible, one unbounded and the other
infeasible, or both feasible and bounded with equal objective values attained by
optimal solutions. The conditions for well-posedness in conic duality are described
by Friberg [2016], and are outside the scope of this paper, so we assume that any
primal-dual subproblem we encounter has the well-posed property.

Friberg [2016] discusses certificates that provide easily-verifiable proofs of un-
boundedness or infeasibility of the primal or dual problems or of optimality of a
given pair of primal and dual points. In terms of the primal subproblem C(l,u),
the three possible mutually-exclusive cases and their interpretations are as follows.

A dual improving ray certifies that C(l,u) is infeasible, via the conic general-
ization of Farkas’ lemma. The improving ray (z̄, µ̄, ν̄) ∈ RM+2I of C∗(l, u)
is a feasible direction for C∗(l,u) along which the objective value of any fea-
sible point of C∗(l,u) can be improved indefinitely. It satisfies the following
conditions:

−bT z̄ − lT µ̄ − uT ν̄ > 0 (7a)

z̄ ∈ K∗ (7b)

µ̄ ≤ 0 (7c)

ν̄ ≥ 0 (7d)

AT z̄ + µ̄′ + ν̄′ = 0. (7e)

Clearly, if C∗(l, u) itself has a feasible point, then it is unbounded, otherwise
it is infeasible. We note that conditions (7b) to (7e) imply that (z̄, µ̄, ν̄) is
feasible for a modified C∗(l,u) problem in which c = 0.

A primal improving ray and a primal feasible point together certify unbounded-
ness of C(l, u), because the improving ray is a feasible direction along which
the objective value of the feasible point can be improved indefinitely. The im-
proving ray x̄ ∈ RN of C(l,u) also implies infeasibility of C∗(l,u) and satisfies
the following conditions:

cT x̄ < 0 (8a)

−Ax̄ ∈ K (8b)

x̄i = 0 ∀i ∈ JIK, (8c)

and the feasible point x̂ ∈ RN of C(l, u) simply satisfies the primal feasibility
conditions (4b) to (4e). Note that if the objective coefficients of the continuous
variables are all zero (cI+1 = . . . = cN = 0), then conditions (8a) and (8c) can
never be satisfied, so there cannot be a primal improving ray. This matches
intuition because if the continuous variables have zero objective coefficients
and the integer variables are bounded, M cannot be unbounded.

A complementary solution pair implies conic strong duality holds and certifies op-
timality for C(l,u) of the primal feasible point x̂ ∈ RN in the pair (x̂, (ẑ, µ̂, ν̂)).

4 If K is polyhedral, then K∗ is polyhedral, and hence C(l, u) and C∗(l, u) are both LPs.
All LPs are well-posed.
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The dual feasible point (ẑ, µ̂, ν̂) ∈ RM+2I is also optimal for C∗(l,u), and the
pair have equal primal and dual objective values:

cT x̂ = −bT ẑ − lT µ̂ − uT ν̂. (9)

2.2 Dynamic Polyhedral Relaxations

Recall from equation (5) that y ∈ K if and only if zT y ≥ 0, ∀z ∈ K∗. This implies
that a nonpolyhedral conic constraint b − Ax ∈ K has the following equivalent
semi-infinite linear representation:

zT (b − Ax) ≥ 0 ∀z ∈ K∗. (10)

We refer to a point z ∈ K∗ as a K∗ point, and call the corresponding linear
constraint zT (b − Ax) ≥ 0 a K∗ cut. A K∗ cut cannot exclude any point x
that satisfies b − Ax ∈ K, so any finite set of K∗ cuts defines a valid polyhedral
relaxation of the conic constraint (4b).

Given a finite set Z ⊂ K∗ of K∗ points, consider modifying the subproblem
C(l,u) by relaxing the conic constraint and instead imposing the finite number
of K∗ cuts implied by Z. We refer to the resulting LP as P(Z, l, u), which we
choose to write in inequality form rather than conic form:

P(Z, l, u)





min
x

cT x :

xi ≥ li ∀i ∈ JIK

xi ≤ ui ∀i ∈ JIK

zT (b − Ax) ≥ 0 ∀z ∈ Z.

(11a)

(11b)

(11c)

(11d)

Since P(Z, l, u) and C(l,u) have the same objective function, and the feasible
set of P(Z, l, u) is a polyhedral relaxation of the feasible set of C(l,u), solving
P(Z, l,u) with an LP solver may give us useful information about C(l,u). If
P(Z, l,u) is infeasible, then C(l, u) must be infeasible. If P(Z, l, u) has an
optimal objective value of L, then C(l,u) is either infeasible or has an optimal
objective no smaller than L. In these cases, we may be able to immediately fathom
the node by infeasibility or by bound, or even use a fractional optimal solution
for P(Z, l, u) to make a branching decision, without needing to solve C(l,u).
However, if P(Z, l, u) is unbounded, it does not provide useful information about
the status or optimal value of C(l,u).

After every infeasible or bounded conic subproblem solve, we add a new K∗ cut
obtained from the conic certificate found by the conic subproblem solver. Suppose
that at some node, a primal-dual conic subproblem solver yields a dual improving
ray (z̄, µ̄, ν̄): from condition (7b), z̄ ∈ K∗, so z̄ is a K∗ point. Now suppose that
the subproblem solver yields a complementary solution (x̂, (ẑ, µ̂, ν̂)): by the dual
feasibility condition (6b), ẑ ∈ K∗, so ẑ is a K∗ point. In both cases, a subvector of
the ray or solution for the dual subproblem C∗(l,u) allows us to augment Z ⊂ K∗,
refining our LP outer approximation (LP OA) model P(Z, l, u). In Section 3,
we use conic duality theory to show that these certificate K∗ cuts derived from
conic subproblems encode important information about the subproblems into the
subsequent polyhedral relaxations.
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2.3 The Conic-Certificate-Based Algorithm

Our conic-certificate-based B&B-OA algorithm for the MI-conic problem M is
outlined in Algorithm 1. Recall that M is in minimization form. Algorithm 1
maintains an upper bound U (initially ∞), a corresponding best feasible solution
set X (initially empty), and a set of active nodes N of the search tree. A node
(l,u, L) is characterized by the finite variable bound vectors l and u and a lower
bound value L. The node’s lower bound L signifies that all feasible solutions for
M that satisfy the node’s bounds on integer variables have an objective value of at
least L. The node set N is initialized to contain only the root node (l0, u0, −∞),
where l0, u0 ∈ RI are the finite initial global bounds on the integer variables.

Algorithm 1: Conic-certificate-based branch-and-bound LP outer ap-
proximation for M.

1 initialize incumbent solution set X to ∅, upper bound U to ∞
2 initialize K∗ point set Z to ∅
3 initialize node list N with root node (l0, u0, −∞)
4 while N contains nodes do

5 remove a node (l, u, L) from N
6 if lower bound L ≥ U then

7 continue ⊲ fathomed by bound

8 call LP solver on P(Z, l, u)
9 if get an infeasibility proof then

10 continue ⊲ fathomed by infeasibility
11 else if get an optimal solution x̂ then

12 update L to cT x̂
13 if L ≥ U then

14 continue ⊲ fathomed by bound
15 else if x̂ is fractional then

16 add branch nodes to N using x̂ and L
17 continue ⊲ branched

18 call primal-dual continuous conic solver on C(l, u)
19 if get a dual improving ray (z̄, µ̄, ν̄) then

20 add K∗ point z̄ to Z
21 continue ⊲ fathomed by infeasibility
22 else if get a primal improving ray x̄ and feasible point x̂ then

23 if x̂ is integral then

24 update U to −∞
25 break ⊲ proven unbounded

26 else if get a complementary solution (x̂, (ẑ, µ̂, ν̂)) then

27 add K∗ point ẑ to Z
28 update L to cT x̂
29 if L ≥ U then

30 continue ⊲ fathomed by bound
31 else if x̂ is integral then

32 update X to {x̂} and U to cT x̂
33 continue ⊲ fathomed by integrality

34 add branch nodes to N using x̂ (fractional) and L

35 return X , U



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Outer Approximation With Conic Certificates For Mixed-Integer Convex Problems 11

On Line 5, the main loop removes a node (l, u, L) from N . If the node’s lower
bound L is no smaller than the current global best upper bound U , Line 7 fathoms
the node by bound as it cannot yield a better incumbent. Otherwise, Line 8 solves
the node’s LP OA model P(Z, l, u), taking advantage of an LP warm-start from
a previous node.

If P(Z, l, u) is infeasible, Line 10 immediately fathoms the node by infeasibil-
ity. If P(Z, l, u) has an optimal solution x̂, then its optimal objective value is the
tightest lower bound known for C(l,u) (in Section 3.1.2, we prove cT x̂ ≥ L is a
consequence of the K∗ cuts), so Line 12 updates L to cT x̂. Line 14 fathoms the
node by bound if L is no better than the incumbent value U , otherwise if x̂ is frac-
tional (i.e. it violates an integrality constraint (2c)), Line 17 branches on it.5 The
branch procedure strictly partitions the node’s integer bounds l and u by picking
an i ∈ JIK : x̂i /∈ Z and adding two child nodes to N : (l, (u1, . . . , ⌊x̂i⌋, . . . , uN ), L)
and ((l1, . . . , ⌈x̂i⌉, . . . , lN ), u, L).

If the node is not fathomed or branched on immediately after the LP solve
(before Line 18), then P(Z, l, u) is either unbounded or has an optimal solution
x̂ that is integral (i.e. x̂i ∈ Z, ∀i ∈ JIK) with optimal value cT x̂ < U . Then
Line 18 solves the conic subproblem C(l,u) with the primal-dual continuous conic
solver. Recall from Section 2.1 our assumption that the primal-dual subproblem
pair C(l,u)–C∗(l, u) is well-posed, so the conic solver returns one of the three
possible certificates, which we handle as follows.

A dual improving ray on Line 19 provides a K∗ point, which Line 20 adds to Z
(as described in Section 2.2). This certificate proves that C(l,u) is infeasible,
so Line 21 fathoms the node by infeasibility.

A primal improving ray and feasible point on Line 22 certifies that C(l, u) is
unbounded. Since the primal improving ray conditions (8a) to (8c) are the
same for any conic subproblem, every subproblem is infeasible or unbounded,
so M is either infeasible or unbounded. The incumbent solution set must be
empty and U = ∞. Line 23 checks whether the feasible point x̂ is integral. If
so, it is a feasible solution for M, so M is unbounded and Line 25 terminates
the main loop.

A complementary solution on Line 26 provides a K∗ point that Line 27 adds to
Z (as described in Section 2.2) and an optimal solution x̂ for C(l,u). The
optimal objective value gives the tightest lower bound known for the node, so
Line 28 updates L to cT x̂, and Line 30 fathoms by bound if this value is no
better than U . Line 31 checks if x̂ is integral, in which case it becomes the new
incumbent solution for M on Line 32, and the node is fathomed by integrality
on Line 33.

If the node is not fathomed immediately after the conic solve (before Line 34),
then x̂ is a feasible solution for C(l,u) that is fractional. L is either ∞ (in the
primal improving ray case) or finite (in the complementary solution case), and is
the best known lower bound for the node. Line 34 branches on x̂ using the same
branch procedure we describe above for Line 17.

Since the initial bounds on the integer variables are finite, and the main loop
of Algorithm 1 either fathoms each node or strictly partitions its integer bounds or

5 We could instead remove lines 15-17 and solve the conic subproblem even if the LP solution
is fractional, rather than branching. This variation may perform better if the conic subproblem
solves are quite fast in practice.
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terminates the algorithm, it follows that Algorithm 1 terminates finitely. From the
fact that P(Z, l, u) is a valid polyhedral relaxation of C(l,u), and from the cor-
rectness of our inferences from the subproblem certificates, it is clear Algorithm 1
terminates correctly, under the assumption of well-posed conic subproblems. On
Line 35, if U = ∞, then M is proven infeasible, otherwise if U is finite, then X con-
tains an optimal solution for M, otherwise U = −∞ and M is proven unbounded.

For finite convergence, it is not necessary to solve conic subproblems for which
l 6= u. However, Algorithm 1 solves a conic subproblem whenever the LP solution
is integral (which can happen when l 6= u), because this may reduce the size
of the branch and bound tree (an idea that has been exploited in the MINLP
setting in Bonmin solver’s hybrid algorithm [Bonami et al., 2008]).6 We note that
without using the LP P(Z, l, u) (i.e. removing Lines 8 to 17 and not creating and
augmenting Z on Lines 2, 20 and 27), we get a simple conic-certificate-based B&B-
NL algorithm for C(l, u), for which finite termination guarantees and correctness
follow from the same assumptions and arguments. We have omitted any discussion
of node selection or fractional variable selection for branching. MILP solvers can
use LP certificates to make intelligent selections, and we expect that some of these
LP-based criteria are generalizeable to the conic case, as conic duality theory is a
simple extension of LP duality under the well-posed assumption.

3 Polyhedral Relaxation Guarantees From Conic Certificates

Recall from Section 2.2 that K∗ cuts yield valid polyhedral relaxations of the
conic constraint b − Ax ∈ K, and a certificate K∗ cut can be obtained directly
from the conic certificate for an infeasible or bounded and feasible subproblem
C(l,u). We demonstrate in Section 3.1 that a certificate K∗ cut implies useful
guarantees about the infeasibility or optimal objective of the LP OAs, suggesting
that Algorithm 1 can often fathom a node immediately after solving the LP OA
rather than proceeding to the expensive conic subproblem solve.7 In Section 3.2,
we consider how these guarantees may be lost in the more realistic setting of an LP
solver with a positive feasibility tolerance, and propose a practical methodology
for scaling a certificate K∗ cut to recover similar guarantees.

3.1 Under An Exact LP Solver

We continue to assume well-posedness of every conic subproblem at every node.
We consider what a certificate K∗ cut from the conic subproblem C(l,u) at a node
with bounds l, u on the integer variables implies about the LP OA P(Z,

˜
l,

˜
u) at

a different node with bounds
˜
l,

˜
u.

6 From personal communications with Zonghao Gu of Gurobi Optimization and Felipe Ser-
rano of ZIB in 2017, we learned that both the Gurobi and SCIP MISOCP implementations
solve SOCP restrictions where l 6= u as heuristics to find feasible solutions. However, the dual
information from these conic subproblem solves is discarded.

7 By similar arguments, we expect that the certificate K∗ cut may be useful at nearby nodes
for duality-based preprocessing such as reduced cost fixing [Gally et al., 2018, sec. 7] or conflict
analysis [Witzig et al., 2017].
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3.1.1 Certificate Cuts From Dual Improving Rays

Suppose (z̄, µ̄, ν̄) is an improving ray of the dual subproblem C∗(l,u), certifying
infeasibility of C(l, u). Using properties (7a) to (7e) of this certificate, any point
x ∈ RN satisfying the bounds

˜
li ≤ xi ≤

˜
ui, ∀i ∈ JIK at the new node also satisfies:

z̄T (b − Ax) = bT z̄ − xT AT z̄ (12a)

= bT z̄ + xT µ̄′ + xT ν̄′ (12b)

≤ bT z̄ + xT µ̄′ + xT ν̄′ +
∑

i∈JIK

((
˜
li − xi)µ̄i + (

˜
ui − xi)ν̄i) (12c)

= bT z̄ +
˜
lT µ̄ +

˜
uT ν̄ (12d)

= (bT z̄ + lT µ̄ + uT ν̄) − (l −
˜
l)T µ̄ − (u −

˜
u)T ν̄. (12e)

From property (7a) of the certificate, bT z̄ + lT µ̄ + uT ν̄ < 0. If li ≤
˜
li ≤

˜
ui ≤ ui, ∀i ∈ JIK, then (l −

˜
l)T µ̄ ≥ 0 and (u −

˜
u)T ν̄ ≥ 0. In this case, the value

(12e) is negative, so from (12a) to (12e), the certificate K∗ cut z̄T (b − Ax) ≥ 0 is
violated. Therefore, the certificate K∗ cut from the infeasible subproblem C(l, u)
guarantees infeasibility of any LP OA P(Z,

˜
l,

˜
u) in the subtree of the node with

bounds l, u.

More importantly for Algorithm 1, the certificate K∗ cut is likely to remain vio-
lated at ‘nearby’ nodes outside of this subtree, as the conditions (12a) to (12e) have
a natural interpretation from global sensitivity analysis. Perturbing the bounds
on the integer variables from l, u to

˜
l,

˜
u changes the upper bound on z̄T (b−Ax)

through a linear dependence on the values µ ≤ 0 and ν ≥ 0 of the dual variables
in the improving ray of C∗(l, u).

3.1.2 Certificate Cuts From Dual Optimal Solutions

Suppose (x̂, (ẑ, µ̂, ν̂)) is a complementary solution pair for the subproblem C(l,u),
certifying optimality of the solution pair. Using the strong duality conditions
(property (9) and feasibility for C(l, u) and C∗(l,u)), any point x ∈ RN satisfying
the bounds

˜
li ≤ xi ≤

˜
ui, ∀i ∈ JIK at the new node and the certificate K∗ cut

ẑT (b − Ax) ≥ 0 has objective value:

cT x = −(AT ẑ + µ̂′ + ν̂′)T x (13a)

= −ẑT Ax − xT (µ̂′ + ν̂′) (13b)

= −bT ẑ + ẑT (b − Ax)T − xT (µ̂′ + ν̂′) (13c)

≥ −bT ẑ − xT (µ̂′ + ν̂′) (13d)

≥ −bT ẑ − xT (µ̂′ + ν̂′) −
∑

i∈JIK

((
˜
li − xi)µ̂i + (

˜
ui − xi)ν̂i) (13e)

= −bT ẑ −
˜
lT µ̂ −

˜
uT ν̂ (13f)

= (−bT ẑ − lT µ̂ − uT ν̂) + (l −
˜
l)T µ̂ + (u −

˜
u)T ν̂ (13g)

= cT x̂ + (l −
˜
l)T µ̂ + (u −

˜
u)T ν̂. (13h)
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If li ≤
˜
li ≤

˜
ui ≤ ui, ∀i ∈ JIK, then (l −

˜
l)T µ̂ ≥ 0 and (u −

˜
u)T ν̂ ≥ 0.

In this case, the value (13h) is no smaller than cT x̂, the lower bound from the
subproblem C(l,u). Therefore, the certificate K∗ cut from the feasible subproblem
C(l,u) guarantees that the optimal value of any LP OA P(Z,

˜
l,

˜
u) in the subtree

of the node with bounds l,u on the integer variables does not decrease, but may
actually improve.8

More importantly for Algorithm 1, at ‘nearby’ nodes outside of this subtree,
the objective bounds implied by the certificate K∗ cut in the LP OA model are
likely to remain fairly tight. Perturbing the bounds on the integer variables from
l, u to

˜
l,

˜
u changes the lower bound on cT x through a linear dependence on the

values µ ≤ 0 and ν ≥ 0 of the dual variables in the complementary solution pair
for C(l,u).

3.2 Under An LP Solver With A Feasibility Tolerance

So far, we have been assuming that the LP solver computes a solution that satisfies
all the K∗ cuts in the LP OAs exactly. In practice, LP solvers based on the
Simplex method (except those that use rational arithmetic) enforce constraints up
to an absolute constraint-wise violation tolerance δ > 0 (typically set by the user).
Therefore, a more realistic assumption is that any solution returned by the LP
solver does not violate any K∗ cut by more than δ, i.e. a K∗ point z effectively
yields a ‘relaxed K∗ cut’ zT (b−Ax) ≥ −δ. Under this relaxed condition, we may
lose the ‘within-subtree’ guarantees described in Section 3.1. However, noting that
any positive scaling of a K∗ point is still a K∗ point, we demonstrate how to recover
the infeasibility guarantee from Section 3.1.1 exactly, and the objective bound
guarantee from Section 3.1.2 to within a given relative objective gap tolerance.
Such an analysis appears to be novel in the MI-convex literature.

3.2.1 Certificate Cuts From Dual Improving Rays

Suppose (z̄, µ̄, ν̄) is an improving ray of the dual subproblem C∗(l,u). From
the property (7a) of the certificate and the conditions (12a) to (12e), any point
x ∈ RN satisfying the bounds li ≤ xi ≤ ui, ∀i ∈ JIK and the relaxed certificate K∗

cut condition z̄T (b − Ax) ≥ −δ must satisfy:

0 > bT z̄ + lT µ̄ + uT ν̄ ≥ z̄T (b − Ax) ≥ −δ. (14)

Therefore, if δ > 0 is sufficiently large, the relaxed certificate K∗ cut condition
fails to enforce the infeasibility guarantee from Section 3.1.1.

However, for a positive multiplier γ̄ > 0 satisfying:

γ̄ >
δ

−bT z̄ − lT µ̄ − uT ν̄
> 0, (15)

we have γ̄(bT z̄ + lT µ̄ + uT ν̄) < −δ. Therefore, the relaxed scaled certificate K∗

cut condition γ̄z̄T (b − Ax) ≥ −δ recovers the infeasibility guarantee within the

8 If Algorithm 1 branches on Line 34 after solving a bounded and feasible conic subproblem
to get the tightest lower bound, then when examining a child node, this objective guarantee
ensures the node’s lower bound L does not decrease when we update it to the optimal value
of the LP OA on Line 12.
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subtree of the node from which the certificate is obtained. Note that the scaling
factor (15) depends only on δ, problem data, and the certificate for the infeasible
subproblem C(l,u). We can modify Algorithm 1 on Line 20 to add the scaled K∗

point γ̄z̄ to Z.

3.2.2 Certificate Cuts From Dual Optimal Solutions

Suppose (x̂, (ẑ, µ̂, ν̂)) is a complementary solution pair for the subproblem C(l,u).
From the conditions (13a) to (13h), any point x ∈ RN satisfying the bounds li ≤
xi ≤ ui, ∀i ∈ JIK and the relaxed certificate K∗ cut condition ẑT (b − Ax) ≥ −δ
has objective value:

cT x ≥ −bT ẑ + ẑT (b − Ax) − lT µ̂ − uT ν̂ ≥ L − δ. (16)

Recall L = cT x̂ = −bT ẑ − lT µ̂ − uT ν̂ is the optimal objective value of C(l, u)
and C∗(l, u). Therefore, the relaxed certificate K∗ cut condition only enforces the
objective guarantee from Section 3.1.2 to an absolute tolerance of δ. In general,
it makes little sense for an objective guarantee to depend on the the LP solver’s
feasibility tolerance.

Instead, for a relative optimality gap tolerance ǫ > 0, we can easily motivate a
relative objective gap condition such as:

L − cT x

|L| + θ
≤ ǫ, (17)

where θ is a small positive value (e.g. 10−5) that is used to avoid division by zero.
Consider a positive multiplier γ̂ > 0 satisfying:

γ̂ ≥ δ

ǫ(|L| + θ)
> 0. (18)

Modifying the conditions (16) for the relaxed scaled certificate K∗ cut condition
γ̂ẑT (b − Ax) ≥ −δ, we get cT x ≥ L − δ/γ̂. Rearranging, this implies:

L − cT x

|L| + θ
≤ δ

γ̂(|L| + θ)
≤ ǫ, (19)

so by scaling the certificate K∗ cut by γ̂, we achieve the relative objective gap
guarantee (17) within the subtree of the node from which the certificate is ob-
tained. Note that the scaling factor (18) depends only on ǫ, δ, problem data, and
the certificate for the bounded and feasible subproblem C(l,u). We can modify
Algorithm 1 on Line 27 to add the scaled K∗ point γ̂ẑ to Z.

4 Tightening Polyhedral Relaxations

In Section 4.1, we outline a two-stage procedure for disaggregating K∗ cuts to get
stronger polyhedral relaxations, and show how to maintain the certificate K∗ cut
guarantees from Section 3. In Section 4.2, we argue for initializing the polyhedral
relaxations using initial fixed K∗ cuts, and in Section 4.3, we describe a procedure
for cheaply obtaining separation K∗ cuts to cut off an infeasible LP OA solution.
All of our proposed techniques for tightening the LP OAs require minimal modifi-
cations to Algorithm 1 and are practical to implement.
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4.1 Extreme Ray Disaggregation

Consider a set of K∗ points Z = {z1, . . . , zJ} ⊂ K∗. By aggregating the corre-
sponding K∗ cuts, we see they imply infinitely many K∗ cuts:

zT (b − Ax) ≥ 0 ∀z ∈ cone(Z), (20)

where cone(Z) is the conic hull of Z, i.e. the set of conic (nonnegative) combina-
tions of z1, . . . , zJ :

cone(Z) = {α1z1 + · · · αJzJ : α1, . . . , αj ≥ 0} ⊂ K∗. (21)

Thus for a redundant K∗ point zJ+1 ∈ cone(Z), the polyhedral relaxation of the
conic constraint b−Ax ∈ K implied by Z∪{zJ+1} is no stronger than that implied
by Z alone. An extreme ray of K∗ is a point z ∈ K∗ that cannot be written as a
nontrivial conic combination of other points in K∗ that are not positive rescalings
of z. To maximize the efficiency of our polyhedral relaxations, we propose adding
only extreme rays of K∗ to the K∗ point set Z maintained by Algorithm 1.

Recall from Section 1.2 that our closed convex cone K is encoded as a Carte-
sian product K = K1 × · · · × KK of standard primitive cones K1, . . . , KK (e.g.
nonnegative, second-order, exponential, and positive semidefinite cones). A prim-
itive closed convex cone cannot be written as a Cartesian product of two or more
lower-dimensional closed convex cones [Friberg, 2016]. If K is separable, then its
dual cone K∗ is also separable:

K∗ = (K1 × · · · × KK)∗ = K∗
1 × · · · × K∗

K . (22)

We exploit this separability and our understanding of the structure of the standard
primitive cones to disaggregate a K∗ point z into extreme rays of K∗.

First, we note that z = (z̃1, . . . , z̃K) ∈ K∗, where z̃k ∈ K∗
k, ∀k ∈ JKK. Sec-

ond, for each k ∈ JKK, we disaggregate z̃k into extreme rays of the primitive
standard dual cone K∗

k. This step is trivial for linear cones. For second-order,
positive semidefinite, and exponential cones, we describe practical computational
procedures for dual disaggregation in Appendix A.9 We have z̃k =

∑
j∈JJkK z̃k,j ,

where z̃k,j 6= 0 is an extreme ray of K∗
k, for all j ∈ JJkK. We choose these extreme

rays so that none is a positive scaling of another, and Jk does not exceed dim(K∗
k).

Note that Jk = 0 if z̃k = 0.
For some k ∈ JKK and j ∈ JJkK, consider a point zk,j = (0, . . . , 0, z̃k,j , 0, . . . , 0),

which is nonzero only on the elements corresponding to the kth primitive dual cone.
Since any cone contains the origin 0, and z̃k,j ∈ K∗

k, zk,j ∈ K∗ by equation (22).
Furthermore, since z̃k,j is an extreme ray of K∗

k, it cannot be written as a nontrivial
sum of extreme rays of K∗

k, and so zk,j cannot be written as a nontrivial sum of
extreme rays of K∗. Thus zk,j is an extreme ray of K∗.

Our two-stage disaggregation procedure for z ∈ K∗ yields
∑

k∈JKK Jk ≤ dim(K)
extreme rays of K∗:

z =
∑

k∈JKK

∑

j∈JJkK

zk,j . (23)

9 For example, if Kk is a positive semidefinite cone, we disaggregate z̃k ∈ K∗
k by performing

an eigendecomposition on it; see Appendix A.3.2.



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Outer Approximation With Conic Certificates For Mixed-Integer Convex Problems 17

Besides adding potentially multiple K∗ points to Z, no modifications are needed
to the description of Algorithm 1. Since z is clearly contained in the conic hull
of these K∗ points, there is no loss of strength in the polyhedral relaxations, so
the certificate K∗ guarantees from Section 3.1 are maintained. The polyhedral
relaxations are potentially much tighter, improving the power of the LP OA for
fathoming a node by infeasibility or objective bound without proceeding to an
expensive conic subproblem solve.10

We can also recover the guarantees from Section 3.2 for an LP solver with
a feasibility tolerance δ > 0. We assume z is a certificate K∗ point that has
already been scaled according to Section 3.2. After disaggregating z, we scale
each extreme ray up by J =

∑
k∈JKK Jk before adding it to Z. The J relaxed

scaled disaggregated K∗ cut conditions are:

(Jzk,j)T (b − Ax) ≥ −δ ∀k ∈ JKK, j ∈ JJkK. (24)

Summing and using equation (23), and dividing by J , we see that these conditions
imply the relaxed scaled original K∗ cut condition zT (b − Ax) ≥ −δ.

4.2 Initial Fixed Polyhedral Relaxations

We can modify Algorithm 1 on Line 2 to initialize a nonempty set Z of initial fixed

K∗ extreme rays that are not derived from subproblem certificates, but depend only
on the geometry of K∗. If K is a separable product of standard primitive cones, we
can obtain initial fixed K∗ extreme rays by treating each primitive cone constraint
separately. In particular, a linear cone constraint need not be relaxed at all, since
it is equivalent to one K∗ cut (for a nonnegative or nonpositive cone) or two K∗

cuts (for the zero cone). In Appendix A, we describe simple sets of initial fixed
K∗ extreme rays for second-order, positive semidefinite, or exponential primitive
cones.11 We show in Appendix A how knowledge of the initial fixed K∗ extreme rays
allows us to tailor our extreme ray disaggregation procedures from Section 4.1 for
certificate K∗ points to further increase the strength of the polyhedral relaxations
and reduce redundancy in Z.12

4.3 Separation Of Infeasible Points

Inspired by separation-based OA algorithms, we can modify Algorithm 1 on Line 16
to add separation K∗ points to Z that cut off a fractional optimal LP solution x̂
that violates the conic constraint, right before branching on x̂. We show that a
separation K∗ point exists when b− Ax̂ /∈ K. Since K is closed and convex, there

10 The LP solver may need to deal with more cuts at nodes visited early in the search tree,
but is ultimately likely to need to examine fewer nodes overall and solve fewer expensive conic
subproblems, so the tradeoff can be worthwhile.
11 For example, for a positive semidefinite cone, we use the extreme rays of the polyhedral

cone of diagonally dominant symmetric matrices as initial fixed K∗ extreme rays; see Ap-
pendix A.3.1.
12 However, to be able to recover the guarantees from Section 3.2 under an LP solver with

a feasibility tolerance, we would need the ability to dynamically scale up the initial fixed K∗

points.
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exists a hyperplane (z, θ) that separates ŷ = b − Ax̂ from K, i.e. zT ŷ < θ and
zT y ≥ θ, ∀y ∈ K. Since the problem infy∈K zT y is homogeneous (as K is a cone)
and the optimal value is bounded below by finite θ, the optimal value must equal
zero. So θ ≤ 0, implying zT ŷ < 0 and zT y ≥ 0,∀y ∈ K. Thus z ∈ K∗ (by
definition (5) of K∗), and it implies a K∗ cut that separates x̂ from the feasible
set of the conic constraint.

A separation K∗ point may fail to improve the objective lower bound from the
LP OA, and does not in general possess the sort of guarantees from Section 3 that
a certificate K∗ point implies. However, deriving a separation K∗ point can be
much cheaper than solving a continuous conic subproblem. If K is a separable
product of standard primitive cones, we can obtain separation K∗ extreme rays
easily by treating each primitive cone constraint separately. In Appendix A, we
describe practical computational methods for obtaining separation K∗ extreme
rays for primitive conic constraints involving second-order, positive semidefinite,
or exponential cones.13

5 Pajarito Solver And Related Software

We describe the software architecture and algorithmic implementation of Pajarito,
our open source MI-convex solver. This section may be of particular interest to ad-
vanced users and developers of mathematical optimization software. In Pajarito’s
readme file (github.com/JuliaOpt/Pajarito.jl) we provide more guidance on the
recommended ways of using the solver, as well as default options and tolerances.
We emphasize that our implementations diverge from the idealized description of
Algorithm 1 in Section 2.3, because of our decision to leverage powerful external
mixed-integer linear (MILP/MIP) solvers through limited, solver-independent in-
terfaces. Developers of MI-conic software with low-level control of the MIP search
tree are able to implement features of Algorithm 1 that we are not capable of in
Pajarito.

5.1 Julia And MathProgBase

Pajarito is the first MI-convex solver written in the relatively young Julia language
[Bezanson et al., 2017]. MI-convex solvers such as α-ECP, Artelys Knitro, Bonmin,
DICOPT, FilMINT, MINLP_BB, and SBB, which are reviewed by Bonami et al.
[2012], are to our knowledge written in C, C++, or Fortran. Julia is a high-level
programming language that can match the performance of these lower-level lan-
guages for writing solvers with much less boilerplate code [Lubin and Dunning,
2015]. Pajarito’s compact codebase is thoroughly commented, and conveniently
reusable and extensible by other researchers. We implement an extensive testing
infrastructure with hundreds of unit tests. Since Pajarito’s first release, several
other MINLP solvers have been written in Julia and are available through Math-

13 For example, we obtain separation K∗ extreme rays for a point that violates a positive
semidefinite cone constraint by performing an eigendecomposition on it; see Appendix A.3.3.
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ProgBase, such as POD [Nagarajan et al., 2017], Juniper [Kröger et al., 2018], and
Katana.14

Pajarito is integrated with the powerful MathProgBase abstraction layer. Math-
ProgBase is a standardized API in Julia for interacting with optimization solvers,
designed in part to allow the user to write solver-independent code.15 The breadth
of problem classes covered by MathProgBase is described at juliaopt.org and dis-
tinguishes it from similar abstraction layers such as OSI [Saltzman et al., 2004],
a COIN-OR library in C++. It includes specifications for continuous and mixed-
integer solvers that use linear/quadratic, conic, or oracle-based NLP (nonlinear
programming) forms.

In Section 5.2, we describe accessing Pajarito through MathProgBase’s conic
interface (see top of Figure 1). The user specifies external MIP and continuous
primal-dual conic solvers (including solver options) from the available solvers (i.e.,
those accessible though MathProgBase) and passes each solver object as an option
into a function that creates a Pajarito solver object. In Section 5.3, we summarize
Pajarito’s main algorithmic implementations. Pajarito uses the modeling package
JuMP to conveniently build and manage the external MIP solver’s OA model.
JuMP itself interacts with the MIP solver via MathProgBase’s linear/quadratic
interface (see bottom right of Figure 1). To solve a continuous conic subproblem
for a conic certificate, Pajarito calls the external primal-dual conic solver through
the conic interface (see bottom left of Figure 1).16

MI-convex model:

CBF, Convex.jl, CVXPY, JuMP

MI-conic solver:

Pajarito

Continuous solver:

CSDP, ECOS,
MOSEK, SCS, SDPA

MILP solver:

CBC, CPLEX, GLPK,
Gurobi, MOSEK, SCIP

conic interface

conic interface
linear/quadratic interface

(through JuMP)

Fig. 1: Pajarito’s integration with MathProgBase.

14 See github.com/lanl-ansi/POD.jl, github.com/lanl-ansi/Juniper.jl, and
github.com/lanl-ansi/Katana.jl.
15 MathProgBase is being replaced by a redesigned API, MathOptInterface. The process of

building Pajarito has motivated many of the planned improvements in MathOptInterface.
16 MathProgBase documents the conic and linear/quadratic interfaces at

mathprogbasejl.readthedocs.io/en/latest. JuMP is documented at juliaopt.org/JuMP.jl/0.18/.
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5.2 Accessing Pajarito

Pajarito’s use of conic form is a significant architectural difference from most ex-
isting MI-convex solvers, which interact with a MI-convex instance almost exclu-
sively through oracles to query values and derivatives of the constraint and ob-
jective functions. MathProgBase conic form can be described compactly from a
constraint matrix in sparse or dense format, right-hand side and objective coeffi-
cient vectors, variable and constraint cones expressed as lists of standard primitive
cones (1-dimensional vector sets) with corresponding ordered row indices, and a
vector of variable types (each continuous, binary, or general integer). In addition
to the basic linear cones (nonnegative, nonpositive, zero, and free cones), Pajarito
recognizes three standard primitive nonpolyhedral cones introduced in Section 1.2:
exponential cones (see Appendix A.1), second-order cones (see Appendix A.2), and
positive semidefinite cones (see Appendix A.3).17

Friberg [2016] designed the Conic Benchmark Format (CBF) as a file format
originally to support mixed-integer second-order cone (SOCP) and positive semidef-
inite cone (SDP) instances. In collaboration with Henrik Friberg, we extended the
format to support exponential cones in Version 2, and developed a Julia interface
ConicBenchmarkUtilities.jl to provide utilities for translating between CBF and
MathProgBase conic format. One may use Pajarito to solve any instance in the
Conic Benchmark Library (CBLIB), which contains thousands of benchmark prob-
lems from a wide variety of sources. Pajarito’s extensive unit tests rely on small
example instances loaded from CBF files.

Lubin et al. [2016] demonstrate that all 333 known MI-convex instances in
MINLPLib2 [Vigerske, 2018] are representable with linear, second-order, expo-
nential, and power cones. Since a power cone constraint is representable with
linear and exponential cone constraints, Pajarito can be used to solve any of
the MI-convex instances in MINLPLib2. We translated 115 instances from the
MINLPLIB2 library to CBF and contributed them to CBLIB.18 Many of the
MINLPLIB2 instances have tiny values artificially-introduced in order to work
around potential numerical issues with smooth derivative-based NLP solvers [Günlük and Linderoth,
2012], which we manually removed before converting to conic form. For example,
the instance ‘rsyn0805h’ has a constraint:

(
x289

10−6 + b306
− 6

5
log

(
1 +

x285

10−6 + b306

))
(10−6 + b306) ≤ 0, (25)

where b306, x285, x289 are scalar variables. Without the artificial 10−6 values, a
conic encoding of the NLP constraint (25) in terms of the exponential cone E is:

(b306 + x285, b306, 5/6 x289) ∈ E . (26)

Within Julia, the modeling packages JuMP [Dunning et al., 2017] and Con-
vex.jl [Udell et al., 2014] each provide a convenient way for users to specify MI-
convex problems, call Pajarito solver, and interpret solutions. JuMP is particularly

17 As we note in Appendix A.2, Pajarito also recognizes rotated second-order cones, but for
simplicity converts them to second-order cones during preprocessing.
18 Lubin et al. [2016] first translated these instances from the MINLPLIB2 library into Con-

vex.jl models. We used ConicBenchmarkUtilities.jl to translate these to CBF. The instances,
available at github.com/mlubin/MICPExperiments, are 48 ‘rsyn’ instances, 48 ‘syn’ instances,
6 ‘tls’ instances, 12 ‘clay’ instances, and the challenging ‘gams01’ instance.
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useful for a large, sparse problem involving complex indexing schemes for variables,
expressions, or constraints. It efficiently builds a MathProgBase conic form repre-
sentation of a problem involving second-order or positive semidefinite cones, but
currently does not recognize exponential cones.

Convex.jl, unlike JuMP, is a Disciplined Convex Programming (DCP) model-
ing package. It defines a list of atoms for the user to model a MI-convex problem
with and performs automatic verification of convexity of the continuous relaxation
by applying simple composition rules described by Grant et al. [2006]. It con-
verts the problem into a MI-conic instance in MathProgBase conic form through
epigraph and perspective transformations that introduce additional variables and
constraints in conic form using only the standard primitive cones recognized by
Pajarito. CVXPY [Diamond and Boyd, 2016] is a Python-based DCP modeling
package analogous to Convex.jl. In collaboration with Steven Diamond and Baris
Ungun, we developed cmpb.jl (github.com/mlubin/cmpb), a prototype C API to
MathProgBase that enables Pajarito to be called on a problem modeled with
CVXPY.

We illustrate Convex.jl and JuMP modeling using a simple MI-convex exam-
ple described by Boyd and Vandenberghe [2004, ch. 7.5]: ‘E-optimal experiment
design’.19 While we can solve E-optimal experiment design exactly using Pajarito,
Boyd and Vandenberghe [2004, ch. 7.5] choose to relax the integrality constraints
in order to use a continuous convex solver before rounding the fractional solu-
tion heuristically. To begin, we set up the Pajarito solver object my_solver using
a GLPK MILP solver object and a SCS conic solver object, each with internal
options set.✞ ☎
using Pajarito, GLPKMathProgInterface, SCS #load packages

my_solver = PajaritoSolver(log_level = 3, #use verbose output

mip_solver = GLPKSolverMIP(msg_lev = GLPK.MSG_OFF), #set MIP solver

cont_solver = SCSSolver(eps = 1e-6, verbose = 0)) #set conic solver✝ ✆
Pajarito performs a sanity check on the combination of options and solvers spec-
ified.20 Next, we model and solve the problem using Convex.jl as follows, where
p, m, n ∈ R and V ∈ Rn×p are problem data.✞ ☎
using Convex

mp = Variable(p, Positive(), :Int) #create p nonneg. integer variables

eOpt = maximize(lambdamin(V * diagm(mp./m) * V'), #max. min. eigenvalue

sum(mp) <= m) #add linear constraint

solve!(eOpt, my_solver) #solve model using Pajarito solver
@show eOpt.status, eOpt.optval, mp.value #show solve status and results✝ ✆

Alternatively, we model and solve the problem using JuMP as follows.

19 More Pajarito examples are at github.com/JuliaOpt/Pajarito.jl/blob/master/examples.
20 MathProgBase does not attempt to provide an abstraction for solver parameters like con-

vergence tolerances. In cases where we need certain tolerances on the continuous conic and
MIP solvers in order for Pajarito to converge to a requested tolerance, it is the user’s respon-
sibility to set these tolerances. For example, we ask users to manually adjust the MIP solver’s
linear feasibility tolerance and integer feasibility tolerance for improved convergence behavior.
These cases are documented in Pajarito’s readme file.



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

22 Chris Coey1 et al.

✞ ☎
using JuMP

eOpt = Model(solver = my_solver) #initialize model using Pajarito solver

@variable(eOpt, mp[1:p] >= 0, Int) #create p nonneg. integer variables

@constraint(eOpt, sum(mp) <= m) #add linear constraint
@variable(eOpt, t) #create auxiliary variable

FI = V * diagm(mp./m) * V' #create linear expression matrix

@SDconstraint(eOpt, FI - t * eye(n) >= 0) #add PSD constraint on matrix

@objective(eOpt, Max, t) #maximize linear objective

@show solve(eOpt) #solve model and show status
@show getobjectivevalue(eOpt), getvalue(mp) #show solve results✝ ✆

Pajarito manipulates the conic data and performs sanity checks. We refer to
the resulting preprocessed representation of the instance as M. After Pajarito
executes one of the OA algorithms described in Section 5.3 on M, the user can
use Convex.jl or JuMP to conveniently query information such as Pajarito’s solve
status, objective bound, objective value, and solution.

5.3 Basic Algorithmic Implementations

We discuss the main conic-certificate-based methods Pajarito uses to solve the
preprocessed MI-conic model M. We omit many options, enhancements, and
numerical details that can be understood from the Pajarito readme file and from
browsing the high-level Julia code and comments. Note that for explaining our
computational experiments, Section 6.3 briefly introduces several other algorithmic
variants that we do not discuss here, such as separation-based methods that do
not utilize conic certificates. In Section 5.3.1, we summarize the initialization
procedure for the OA model, an MILP relaxation of M that Pajarito constructs
and later refines (with extreme ray K∗ cuts) using JuMP. In Section 5.3.2, we
describe the ‘iterative’ method, an extension of the simple sequential OA algorithm
by Lubin et al. [2018]. In Section 5.3.3, we describe the ‘MIP-solver-driven’ (MSD)
method, so-called because it relies on the power of the branch-and-cut MIP solver
to manage convergence in a single tree. Since MathProgBase’s solver-independent
abstraction for MIP solver callbacks is designed primarily around shared behavior
between CPLEX and Gurobi, Pajarito is limited to interacting with the MIP solver
through a lazy cut callback function and a heuristic callback function. Although
the MSD method is generally much faster than the iterative method, the latter
may be used with MILP solvers for which callback functionality is unavailable or
unreliable.

5.3.1 Initializing The MIP OA Model

We first solve the continuous relaxation of M (in which only the integrality con-
straints are relaxed), using the primal-dual conic solver (see top of Figure 2). This
conic problem is analogous to the first node subproblem in Algorithm 1, but with-
out finite bounds on the integer variables. Note that we preprocess this conic
model slightly to tighten any non-integral bounds on the integer variables. If the
conic solver indicates this relaxation is infeasible, then M must be infeasible, so we
terminate with an ‘infeasible’ status. If the conic solver returns a complementary
solution pair, the optimal value gives an objective lower bound L > −∞ for M.
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Otherwise, we set L = −∞. We initialize the objective upper bound U for M to
∞.

Using JuMP, we build the initial OA model, adding the variables and integrality
constraints and setting the objective (see bottom of Figure 2). We then add
initial fixed cuts for each primitive cone, as we describe in Section 4.2. Primitive
linear cone constraints are imposed entirely (as equivalent LP equality or inequality
constraints), and for each primitive nonpolyhedral cone, we add a small number
of initial fixed cuts (defined in Appendix A).

A complementary solution pair from the conic relaxation solve yields a K∗

point, so we perform an extreme ray disaggregation from Section 4.1 and add
certificate cuts for each primitive nonpolyhedral cone (using the procedures in
Appendix A). These continuous relaxation certificate cuts technically guarantee
that the root node of the OA model has an optimal value no smaller than L.21

This is important because we cannot handle unboundedness of the OA model.

solve continuous relaxation infeasible

let U = ∞, L = relaxation objective value

build MILP OA model, add initial fixed cuts,
add relaxation certificate cuts

Fig. 2: Pajarito’s OA model initialization.

5.3.2 Iterative Method

The iterative method, following initialization in Figure 2, is outlined in Figure 3.
At each iteration of the main loop, Pajarito solves the current OA model using the
MIP solver.22 If the OA model is infeasible, M must be infeasible, so we terminate
with an ‘infeasible’ status. If it is unbounded, Pajarito fails with an ‘OA fail’ error
status, as we are unable to handle unbounded rays. If the MIP solver returns
an optimal solution to the OA model, this OA solution satisfies the integrality
constraints and initial fixed cuts, but in general not all of nonpolyhedral primitive
cone constraints. The MIP solver’s objective bound provides a lower bound for
M, so we update L. Pajarito terminates with an ‘optimal’ status if the relative
optimality gap condition (17) on L, U is satisfied.23

If after solving the OA model we have an optimal OA solution and the objective
bounds haven’t converged, we check whether the OA sub-solution on the integer

21 This can be seen from a simple modification of the complementary solution case polyhedral
relaxation guarantee we prove in Section 3.1.2, with trivial bounds on the integer variables.
22 We suggest the user set the MIP solver’s relative optimality gap tolerance to its smallest

possible value.
23 Pajarito uses θ = 10−5, to avoid division by zero. The gap tolerance ǫ > 0 is specified by

the user, but defaults to ǫ = 10−5.
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variables has been encountered before. If not, then we solve a continuous conic
subproblem in which the integer variables are fixed to their values in the new
integer sub-solution. This subproblem is analogous to C(l,u) from Section 2.1,
with l = u, and it has not been solved during any previous iteration. Note that
in preprocessing, we remove any subproblem equality constraints that effectively
have no variables when an integer sub-solution is fixed. For efficient loading of the
subproblem data at each iteration, we only change the constant vector b of the pre-
processed conic subproblem, as this is the only data that changes. Since it is more
constrained than the OA model, the conic subproblem is bounded or infeasible. If
the conic subproblem solver fails to return a certificate, we backtrack and perform
the separation procedure (as if the integer sub-solution repeated). Otherwise, we
scale the certificate’s dual solution or dual ray according to Section 3.2 (using the
tolerance values set as Pajarito options), then disaggregate the scaled K∗ point
and add extreme ray certificate cuts to the OA model (as we described for the
continuous relaxation certificate in Section 5.3.1). In the case of a complementary
solution pair, the primal solution yields a feasible point for M, since it satisfies
both the integrality and conic constraints. If it has an objective value better than
U , we update U and the incumbent solution and check the relative optimality gap
condition again.24

If instead the integer sub-solution has been encountered at a previous iteration,
then we have already solved the corresponding conic subproblem, and doing so
again would only yield redundant information and lead to cycling. In this case, we
check the conic feasibility of the OA solution by calculating the absolute violation
on each primitive nonpolyhedral cone constraint as the violation of the appropriate
separation cut (defined in Appendix A). If the worst absolute violation does not
exceed Pajarito’s feasibility tolerance (set by the user), then the OA solution is
considered feasible. In this case, since the solution is optimal for the OA model,
we can consider it optimal for M, so we update the incumbent and upper bound
and terminate the solve immediately. If the OA solution is not considered feasible,
we add all of the separation cuts that are (significantly) violated to the OA model.

After adding separation or certificate cuts, we warm-start the MIP solver with
our incumbent and re-execute the main loop. The procedure in Figure 3 is iterated
until L and U converge or the MIP solver detects infeasibility.25 Note that since we
only add cuts to the OA model on every loop, if the first OA model is bounded, then
all subsequent (refined) OA models are bounded or infeasible, and the sequence
of lower bounds L is nondecreasing. If we assume that all subproblems are solved
exactly, our iterative method converges correctly and finitely, provided that there
are no ill-posed conic subproblems. If ill-posedness occurs, Pajarito may fail to
converge, as there exists no finite set of cuts that can tighten the lower bound
sufficiently to meet the upper bound (see Lubin et al. [2016] for a discussion of
strong duality in OA).

24 Conic solvers typically do not use an absolute primitive constraint-wise feasibility tolerance,
as Pajarito does for checking feasibility of OA solutions for the conic constraint. Our incumbent
may not satisfy this notion of feasibility, since we do not perform a feasibility check on the
conic solver’s primal subproblem solutions.
25 If the user sets a time limit, Pajarito may terminate with the status ‘user limit’. Pajarito

sets the time limit on each MIP or conic solve to the remaining time. Note that the vast
majority of Pajarito execution time is spent in MIP or conic solves.
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solve OA model

let L = objective bound;
L, U converged?

optimal

OA fail

infeasible

integer sub-solution repeated?

solve subproblem; feasible?

update U and incumbent

add certificate cuts

solution conic feasible?

update U and incumbent

add separation cuts

warm-start OA model with incumbent

yes

no

no yes

noyes no yes

Fig. 3: Pajarito’s iterative method, following initialization.

5.3.3 MIP-Solver-Driven Method

The MSD method, following initialization in Figure 2, is outlined in Figure 4. As in
the iterative method, Pajarito returns an ‘OA fail’ status if the MIP solver detects
unboundedness (as we are unable to handle unbounded rays), or an ‘infeasible’
status in the case of infeasibility.26 The MIP-solver-independent callback interface
allows us to pass in lazy cuts during a lazy callback and feasible solutions during a
heuristic callback, however we cannot exert any control over branching decisions,
node selection, fathoming, or node lower bound updating.

The MIP solver calls the lazy callback function whenever it finds an integer-
feasible OA solution at a node. During a lazy callback, we first check whether the
integral OA solution from the MIP solver is repeated. If so, we derive separation
cuts to add as lazy constraints; if none can be added, the MIP solver considers the
solution feasible and may update its incumbent. If the integer sub-solution has not
been encountered before, we solve a new (bounded or infeasible) conic subproblem.
Since we lack the ability to query the node’s bounds on the integer variables, we
only solve subproblems with fixed integer sub-solutions, as in the iterative method.
If the conic solver returns a certificate, we scale and disaggregate the K∗ point (as
we described for the iterative method in Section 5.3.2), and add extreme ray cuts
as lazy constraints.27 In the case of a complementary solution pair, the primal

26 If the user sets a time limit, Pajarito sets a time limit on the MIP solver, and terminates
with a ‘user limit’ status if this limit is reached.
27 The MIP solver is not guaranteed to respect the cuts that we add, and we may need to

re-add the same cuts during multiple lazy callbacks (unlike in the iterative method, where cuts
previously added are respected). We actually store a dictionary from the integer sub-solution
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solution yields a feasible point for M, which we store. During a heuristic callback,
if there is a stored feasible solution to M that has never been added as a heuristic
solution, we add it.

Since there are no guarantees on when or how frequently the MIP solver calls
the heuristic callback function, we may not be able to indirectly update the MIP
solver’s incumbent and upper bound when we are able to. Partly for this reason,
Pajarito maintains its own upper bound and incumbent, not illustrated in Figure 4,
which we update during lazy callbacks. During each lazy callback, we ask the MIP
solver for its lower bound and check our relative optimality gap condition (as we
described for the iterative method). If the condition is met, we force the MIP
solver to terminate early. In this case, or if the MIP solver terminates with an op-
timal solution and we verify that the relative optimality gap condition is met, we
return our incumbent solution with an ‘optimal’ status.28 Even if we assume that
all subproblems are solved exactly and ill-posed subproblems are not encountered,
our MSD method may not behave as expected. Across different MIP solvers we
encountered variability on whether all lazy cuts we add are respected. Also, the
potential inconsistency between Pajarito’s incumbent and the MIP solver’s incum-
bent creates opportunities for undefined behavior, e.g., the MIP solver may have
no branching candidates and be unable to fathom a node by bound if it does not
have the latest incumbent, although we did not observe this occurring in practice.

call branch-and-cut
solver on OA model

OA fail

infeasible

optimal

integer sub-solution repeated?

solve subproblem; feasible?

add certificate cutsstore solution

solution conic feasible?

add separation cuts

add stored solution

heuristic callback

lazy callback

integral
solution

no yes

noyes no

Fig. 4: Pajarito’s MIP-solver-driven (MSD) method, following initialization.

to the cuts. For each repeated integer sub-solution, we re-add these saved certificate cuts, in
addition to the new separation cuts.
28 Note the user is responsible for setting the desired relative optimality gap tolerance on

both the MIP solver and on Pajarito directly.
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5.4 Some Advanced Algorithmic Enhancements

We conclude with several key optional OA enhancements we implemented in Pajar-
ito. First, Pajarito by default uses an extended formulation for each second-order
cone constraint. Vielma et al. [2017] demonstrate on a testset of mixed-integer
second-order cone (MISOCP) problems that OA algorithms tend to converge much
faster when using this extended representation for each second-order cone con-
straint.29 In Appendix B, we describe how to lift a K∗ cut for the second-order
cone into K∗ cuts for the extended formulation. This technique also allows us to
describe a much more economical set of initial fixed K∗ cuts for the second-order
cone.

Second, Pajarito can optionally use a MISOCP OA model instead of a MILP
OA model. There exist several powerful MISOCP solvers that can be used, or
Pajarito itself may be used. Since a second-order cone constraint can imply an
infinite number of K∗ cuts, Pajarito can achieve tighter relaxations of the conic
constraint in the OA model. Of course, this can only make practical sense for cer-
tain types of problems that aren’t pure MISOCP. One potential use case is where
the MI-conic problem has second-order cones as well as exponential and/or posi-
tive semidefinite cones, but the only stable and efficient continuous conic solvers
we have access to are for SOCP problems. In this case, we can use Pajarito with
the SOCP solver as an MISOCP solver, and pass this into a second Pajarito solver
that uses a conic solver for mixed-cone problems. This arrangement helps mini-
mize the number of calls to the less-effective conic solver. Another use case is for
problems involving positive semidefinite cone constraints. We demonstrate in Ap-
pendix C how to strengthen K∗ cuts for PSD constraints to rotated-second-order
cone constraints.30

6 Computational Experiments

Our computational experiments demonstrate the speed and robustness of our open
source MI-conic solver Pajarito. As we emphasize in Section 5.3, our algorithmic
implementations differ from the description of Algorithm 1, because of our practical
decision to use branch-and-cut MILP solvers through a limited, solver-independent
interface. In Section 6.1, we summarize our metrics for comparing the practical per-
formance of different MI-conic solvers and describe our presentation of tables and
performance profile plots. In Section 6.2, we benchmark Pajarito (version 0.5.1)
and several open source and commercial mixed-integer second-order cone (MIS-
OCP) solver packages accessible through MathProgBase on a MISOCP library,
and conclude that Pajarito is the fastest and most-reliable open source solver for
MISOCP. In Section 6.3, we compare the performance of several of Pajarito’s algo-
rithmic variants on MI-conic instances involving mixtures of positive semidefinite,
second-order, and exponential cones, demonstrating practical advantages of the

29 DCP modeling software implementations such as Convex.jl do not perform this transfor-
mation because they are simply designed to access conic solvers. Pajarito keeps the original
second-order cone formulation in the conic subproblems because conic solvers are likely to per-
form better with this representation than with the higher-dimensional extended formulation.
30 For the MSD method, since most MISOCP solvers don’t currently allow adding lazy

quadratic constraints, only the initial fixed cuts can be strengthened in this way.



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

28 Chris Coey1 et al.

methodological extensions we describe in Sections 3 and 4 and Appendix A. The
scripts and data we use to run our experiments are available in the supplement
github.com/chriscoey/PajaritoSupplement.

6.1 Presentation Of Results

We define a ‘solver’ as a MathProgBase solver object given a particular complete
set of algorithmic options. Each solver we test is deterministic, i.e. it performs
consistently across different runs on a particular dedicated system. We define an
‘instance’ as a particular MI-conic problem (stored in CBF format; see Section 5.2)
that is known to be feasible and bounded (but an optimal solution or the optimal
objective value is not necessarily known). For a particular instance, a solver may
return a ‘solution’, which is a vector of real floating point numbers representing
an assignment of the variables of the instance (not necessarily feasible for the
constraints).

First, we compare the performances of a group of MI-conic solvers on a partic-
ular testset of instances by counting the number of instances for which each solver
returns and apparently proves ‘approximate optimality’ of a solution. To be more
precise, we use the following four categories to characterize a solver’s apparent
success or failure on an instance.

ex (exclude) means either the solver incorrectly claims the instance is infeasible or
unbounded, or the solver returns a solution it claims is approximately-optimal
but we detect one of the following inconsistencies.
– The solution significantly violates at least one primitive cone constraint

or integrality constraint. We calculate the absolute violation of a primi-
tive cone constraint as the worst violation of the inequalities defining the
standard cone (see Appendix A), and our tolerances are 10−6 for linear
cones, 10−5 for second-order and exponential cones, and 10−4 for positive
semidefinite cones. We calculate the variable-wise integrality violation as
the distance to the nearest integer, and our tolerance is 10−6.

– The relative objective gap condition (equation (17)) for optimality is signif-
icantly violated. Our optimality condition (17) matches that used by most
MIP solvers. We set the constant θ = 10−5 (to avoid division by zero) and
use the tolerance ǫ = 10−5. We ensure we do not exclude in the case that
the gap we calculate is sensitive to a solver’s different value of θ.

– The objective value or objective bound significantly differs from that of
a preponderance of other solvers (we assess this semi-manually from the
output of our scripts).

co (converge) means the solver returns a solution that it claims is (approximately)
optimal (and it is not excluded for the reasons above).

li (reach limit) means the solver does not terminate before the time limit, or
(rarely) the solver reaches a memory limit and is forced to terminate.

er (error) means the solver crashes or terminates with an error message.

Second, we compare aggregate quantitative measures of solver performance.
We define the shifted geometric mean g̃ of L positive values p1, . . . , pL as:

g̃(p, q) =
∏

l∈JLK

(pl + q)
1
L − q, (27)
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where q > 0 is the shift [Achterberg, 2009]. Unlike the standard geometric mean
g̃(p, 0), the shifted geometric mean decreases the relative influence of smaller values
in p, thus giving less weight to very ‘easy’ instances (small values are preferable for
all of our metrics). We shift by q = 10 seconds for execution times, q = 1 iterations
for iteration counts, and q = 10 nodes for MIP-solver-reported node counts. For
comparing a particular group of solvers S1, . . . , Sn on a particular performance
metric (such as execution time), we calculate for each solver Si the following three
shifted geomeans, each over a different subset of the testset.

aco (all solvers converge) is calculated over the instances for which S1, . . . , Sn all
have a ‘co’ status.

tco (this solver converges) is calculated over the instances for which Si has a ‘co’
status.

all (all instances) is calculated over all instances. Missing execution times are set
to the time limit, and missing iteration/node counts are ignored.

Finally, we employ ‘performance profiles’, described by Dolan and Moré [2002],
Gould and Scott [2016], to visually compare the relative execution times and iter-
ation or node counts of pairs of solvers. Again, we decrease the relative influence
of very easy instances by shifting the metrics by the same shift values q we use
for shifted geomeans. A performance profile is a plot that should be interpreted
as follows: for a fixed factor F on the horizontal axis (a linear scale from 1 to the
value at the bottom right of the plot), the level of solver Si on the vertical axis
(a linear scale from 0 to 1) represents the proportion Pi of instances (out of the
instances for which at least one of the pair of solvers has a ‘co’ status) for which
Si has a ‘co’ status and a (shifted) performance metric that is within a factor of
F of per-instance best achieved by either solver. So, at F = 1 (i.e. on the left
vertical axis), Pi is the fraction of solved instances on which solver Si has the
best performance. As F increases, we can infer that solver Si has reliably better
performance than solver Sj if Pi remains above Pj .

6.2 MISOCP Solver Performance Comparisons

Our open source Pajarito solvers, ‘Iter-GLPK’ and ‘Iter-CBC’, use the iterative
method (see Section 5.3.2) with ECOS [Domahidi et al., 2013] for continuous conic
subproblems and CBC or GLPK for MILPs.31 Our two restricted-license Pajar-
ito solvers, ‘Iter-CPLEX’ (using the iterative method) and ‘MSD-CPLEX’ (using
the MIP-solver-driven method; see Section 5.3.3), call MOSEK’s continuous conic
solver and CPLEX’s MILP solver.

The open source Bonmin solver package is described in detail by Bonami et al.
[2008] and uses CBC to manage branching and Ipopt to solve continuous NLP
(derivative-based nonlinear programming) subproblems.32 Our ‘Bonmin-BB’ solver
uses the nonlinear B&B method (no polyhedral approximation), ‘Bonmin-OA’ uses
the B&B OA method, and ‘Bonmin-OA-D’ is equivalent to the ‘Bonmin-OA’ solver

31 We do not test the Pajarito’s MIP-solver-driven method with CBC or GLPK MIP solvers
because their support for MathProgBase callbacks is limited.
32 We are unaware of any mainstream open source solvers designed for MISOCP. The func-

tional representation of the second-order cone has points of nondifferentiability that may cause
Bonmin to crash or suffer numerical issues.
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but applied to transformed instances that use the second-order cone extended
formulation we describe in Section 5.4. Our two restricted-license MISOCP solvers
are ‘SCIP’ and ‘CPLEX’. Unlike Bonmin, these MISOCP solvers use the second-
order cone extended formulation internally.33

These nine MISOCP solvers are each given a relative optimality gap tolerance
of 10−5. The ‘SCIP’ and ‘CPLEX’ solvers are given an absolute linear-constraint-
wise feasibility tolerance of 10−8, and ‘CPLEX’ is given an integrality tolerance of
10−9. The MILP solvers used by Pajarito are given an absolute linear-constraint-
wise feasibility tolerance of 10−8, an integrality tolerance of 10−9, and a relative
optimality gap tolerance of 0 for ‘Iter-GLPK’, ‘Iter-CBC’, and ‘Iter-CPLEX’ and
10−5 for ‘MSD-CPLEX’. Due to limited resources, we set a one hour time limit
for each run of a solver on an instance, and run all solvers (including the MILP
and conic solvers called by Pajarito) in single-threaded mode.

We use a testset of 120 MISOCP instances drawn from the larger CBLIB
library, recently compiled by Friberg [2016]. The testset contains randomly selected
subsets of most of the major families of models in CBLIB. We exclude instances
that are not bounded and feasible, or are solved in under 5 seconds by all solvers,
or are unable to be solved by all solvers in under an hour. Our computations
are performed on the Amazon EC2 cloud computing platform with ‘m4.xlarge’
computing nodes having 16GB of RAM.34 As the computing nodes are virtual
machines, timing results on EC2 are subject to random variability. However, by
repeatedly running some of the experiments, we verified that this variability is
sufficiently small to avoid impacting our conclusions. The nodes run Ubuntu 16.04
with Julia version 0.6.0. Version information for the Julia packages can be obtained
from the supplement.

Table 1 summarizes the status counts and shifted geomeans of performance
metrics on instance subsets (explained in Section 6.1) for the nine MISOCP solvers
on the 120 MISOCP instances. The Bonmin solvers fail on most instances, and
overall solve significantly fewer instances than the open source Pajarito solvers.
Pajarito tends perform faster using CBC rather than GLPK.35 Figure 5a is a
performance profile (explained in Section 6.1) comparing the execution times of
the open source Pajarito (with CBC) solver and the instance-wise best of the three
Bonmin solvers. From these results, we claim that Pajarito with ECOS and CBC
is the fastest and most reliable open source MISOCP solver.

Using CPLEX, Pajarito’s MSD method is significantly faster and more reli-
able than its iterative method.36 The performance profile Figure 5b compares the
execution times of Pajarito’s MSD method using CPLEX’s MILP solver against
CPLEX’s specialized MISOCP solver. The execution time comparisons between
‘CPLEX’ and ‘MSD-CPLEX’ are ambiguous, however we argue that, at least by

33 CPLEX is available under an academic or commercial licence, and SCIP is an academic
solver that is not released under an OSI-approved open source license. We use CPLEX version
12.7.0 and SCIP version 4.0.0.
34 See aws.amazon.com/ec2/instance-types.
35 However, for most of the 9 excluded instances from ‘Iter-CBC’, we verify that CBC is

responsible for the significant integrality violations that result in exclusion.
36 For ‘MSD-CPLEX’, the two errors occur where Pajarito claims a solution is suboptimal

and has an objective gap no worse than 1.04 × 10−5, and the one exclusion occurs where
Pajarito’s solution violates a linear constraint by 9.78 × 10−6.
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our metrics, Pajarito is a more reliable MISOCP solver. This may be due largely
to Pajarito’s use of conic certificate K∗ cuts.

statuses time (s)

solver co li er ex aco tco all
o
p
en

so
u
rc

e Bonmin-BB 34 44 11 31 38.0 83.8 463
Bonmin-OA 25 53 29 13 64.2 64.5 726
Bonmin-OA-D 30 48 29 13 15.1 61.6 610
Iter-GLPK 56 60 3 1 2.0 29.7 377
Iter-CBC 78 30 3 9 1.6 50.3 163

re
st

ri
ct

ed

SCIP 74 35 8 3 3.2 41.5 160
CPLEX 90 16 5 9 0.9 16.1 50
Iter-CPLEX 86 26 0 8 0.4 37.0 106
MSD-CPLEX 97 20 2 1 0.4 18.2 56

Table 1: MISOCP solver performance summary.

8

Bonmin best

Iter-CBC

(a) Open source Bonmin (instance-wise best
of 3) and Pajarito iterative solvers.

8

CPLEX
MSD-CPLEX

(b) CPLEX MISOCP and Pajarito MSD
solvers.

Fig. 5: MISOCP solver execution time performance profiles.

6.3 Comparative Testing Of Algorithmic Variants

To compare the performance of several of Pajarito’s algorithmic variants, we use a
testset of 95 MI-conic instances involving mixtures of positive semidefinite (PSD),
second-order, and exponential cones. Formulations for the instances we generated
can be found at github.com/JuliaOpt/Pajarito.jl/tree/master/examples. These
instances are all bounded and feasible and come from the following four sources.

Discrete experiment design (14 instances). Recall from Section 5.2 that Boyd and Vandenberghe
[2004, Ch. 7.5] describes MI-convex experiment design problems. We generate
‘A-optimal’ and ‘E-optimal’ instances that include PSD cones, and ‘D-optimal’
instances that include PSD and exponential cones.



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

32 Chris Coey1 et al.

Portfolios with mixed risk constraints (16 instances). We formulate a portfo-
lio problem that maximizes expected returns subject to some combinatorial
constraints on stocks and three types of convex risk constraints on subsets of
stocks with known covariances. Each instance includes multiple exponential
cones from entropy risk constraints, second-order cones from norm risk con-
straints, and PSD cones from robust norm risk constraints.

Retrofit-synthesis of process networks (32 instances). We select a representative
subset of the two CBLIB families ‘syn’ and ‘rsyn’. Each instance includes
exponential cones.

A subset of the MISOCP testset (33 instances). We select a representative subset
of the CBLIB families ‘estein’, ‘ccknapsack’, ‘sssd’, ‘uflquad’, and ‘portfolio-
card’.

We use Pajarito with Gurobi (version 7.5.2) as the MILP solver and MOSEK
(version 9.0.0.29-alpha) as the continuous conic solver.37 Pajarito is given a relative
optimality gap tolerance of 10−5. Gurobi is given an absolute linear-constraint-
wise feasibility tolerance of 10−8, an integrality tolerance of 10−9, and a relative
optimality gap tolerance of 0 when the iterative method is used and 10−5 when the
MSD method is used. We set a one hour time limit for each run of a solver on an
instance, and limit Gurobi and MOSEK to 8 threads. We run the computations
on dedicated hardware with two Intel Xeon E5-2650 CPUs and 64GB of RAM.
The machine runs Ubuntu 17.10 and Julia 0.6.2. Version information for the Julia
packages can be obtained from the supplement. By repeatedly running some of the
experiments, we again verified that, as expected, any random variability of timings
within these experiments is sufficiently small to avoid impacting our conclusions.

6.3.1 Initial Fixed Cuts, Certificate Cuts, And Separation Cuts

Recall from Section 5.3 that Pajarito by default uses three different types of K∗

cuts: initial fixed cuts, certificate cuts, and separation cuts. For both the iterative
and MSD methods, we compare the following four important algorithmic variants
of OA that use different combinations of these three cut types.

c means initial fixed cuts on linear primitive cones only, and certificate cuts on
nonpolyhedral primitive cones.

cs means initial fixed cuts on linear primitive cones only, and certificate cuts on
nonpolyhedral primitive cones, and separation cuts when apparently needed
for convergence. The separation cuts allow us to cut off significantly infeasible
OA solutions, so Pajarito can also obtain (approximately) feasible solutions
from OA solutions found by the MILP solver.

ics means initial fixed cuts on all primitive cones, certificate cuts on nonpolyhedral
primitive cones, and separation cuts when apparently needed for convergence.
This is Pajarito’s default approach, as described in Section 5.3.

is means initial fixed cuts on all primitive cones, and separation cuts only. No
conic solver is used, hence all (approximately) feasible solutions found are OA
solutions.

Table 2 summarizes the status counts and shifted geomeans of performance
metrics on instance subsets. Although the MSD method is significantly faster

37 MOSEK 9 is the first version to recognize exponential cones.
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than the iterative method, we see similar relative performances for the four types
of cuts under iterative versus MSD. When using certificate cuts only (‘c’), Pa-
jarito often failed to converge to the desired optimality gap (though it typically
came very close), likely due to the inexactness of the certificates from the numer-
ical continuous conic solver. By also using separation cuts on repeated integer
sub-solutions and accepting (approximately) conic feasible OA solutions as incum-
bents, Pajarito is able to converge on many more instances. Starting with initial
fixed cuts (‘ics’) further increases Pajarito’s robustness, particularly for the MSD
method. Comparing the ‘ics’ variant with the separation-based variant with initial
fixed cuts (‘is’), we see significantly faster overall performance and fewer iterations
or nodes when using the continuous conic solver and adding certificate cuts. The
performance profiles Figures 6a to 6d compare the execution times or iteration/n-
ode counts for the ‘ics’ and ‘is’ solvers, unambiguously demonstrating superiority
of Pajarito’s default ‘ics’ method.

statuses time (s) subproblems iters or nodes

cu
ts

co li er ex aco tco all aco tco all aco tco all

It
er

c 72 1 21 1 5.59 6.47 7.17 5.31 5.36 4.23 5.48 5.53 4.46
cs 88 1 3 3 5.56 12.72 14.38 5.31 6.97 6.36 5.48 7.22 6.84
ics 89 2 0 4 4.73 11.57 14.77 4.17 5.93 6.03 4.32 6.15 6.32
is 84 1 0 10 8.35 14.53 22.08 - - - 13.41 16.52 18.07

M
S
D

c 76 0 18 1 2.37 3.40 3.50 12.63 15.80 12.70 223 438 348
cs 88 0 5 2 3.33 6.47 7.76 18.96 26.77 24.87 295 843 815
ics 92 0 1 2 2.20 6.31 6.52 15.62 24.58 24.95 273 796 857
is 84 1 0 10 3.12 5.29 7.49 - - - 522 932 1345

Table 2: K∗ cut types performance summary.

6.3.2 Extreme Ray Disaggregation

To test the efficacy of the K∗ extreme ray disaggregation technique we describe in
Section 4.1 and Appendix A, we run Pajarito using only certificate cuts (the ‘c’
variant described in Section 6.3.1), with and without disaggregation. We do not run
the default ‘ics’ variant because disabling disaggregation disables use of the second-
order cone extended formulation (which has no benefit without disaggregation),
making it impossible to use a polynomial number of initial cuts to achieve the same
initial fixed outer approximation for the second-order cone (see Appendix A.2.1).

Table 3 summarizes the status counts and shifted geomeans of performance met-
rics on instance subsets, and the performance profiles Figures 7a to 7d compare
the execution times or iteration/node counts. For both the iterative and MSD
methods, disaggregation improves performance on nearly every solved instance.
For the iterative method, it enables the pure-certificate-based variant to converge
on more than double the number of instances, and it more than halves the execu-
tion time and iteration count. Without disaggregation, the MSD method manages
to converge on many more instances than the iterative method. Disaggregation
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greatly improves the performance of the MSD method, though the comparison is
not quite as striking as for the iterative method.

statuses time (s) subproblems iters or nodes

d
is

a
g

co li er ex aco tco all aco tco all aco tco all

It
er off 33 10 52 0 10.95 11.11 17.20 11.63 12.41 11.82 11.95 12.74 12.51

on 72 1 21 1 4.47 6.47 7.17 4.04 5.36 4.23 4.25 5.53 4.46

M
S
D off 51 3 41 0 1.74 6.18 6.71 15.51 50.51 27.98 70 613 261

on 76 0 18 1 1.06 3.40 3.50 7.57 15.80 12.70 36 438 348

Table 3: K∗ cut disaggregation performance summary.

6.3.3 Certificate-Based Scaling

To test the efficacy of the K∗ certificate cut scaling technique for an LP solver
with a feasibility tolerance we describe in Section 3.2, we run Pajarito using only
certificate cuts (the ‘c’ variant described in Section 6.3.1), with and without scaling.
We do not run the default ‘ics’ variant because certificate cut scaling does not
apply to initial fixed cuts and separation cuts; we want to isolate the effect of the
scaling methodology on the reliability of convergence, and the certificate cuts are
the only types of cuts yielding convergence guarantees. The results were similar
for ‘ics’ though slightly less pronounced, as initial and separation cuts enable us
to converge on nearly all problems, at the cost of more cuts needed. We set a
larger feasibility tolerance on these four Pajarito solvers (δ = 10−6 instead of
10−8, which we used for all other tests), to reduce the chance that any observed
effects are caused by numerical issues near machine epsilon.

Table 4 summarizes the status counts and shifted geomeans of performance
metrics on instance subsets, and the performance profiles Figures 8a to 8d com-
pare the execution times or iteration/node counts. For both the iterative and
MSD methods, using scaling improves the robustness of the pure-certificate-based
variant, allowing us to converge on 6 or 7 additional instances. On the subset of in-
stances solved by all four solvers (the ‘aco’ columns), scaling slightly reduces conic
subproblem counts and iteration or node counts, but has small and ambiguous
effects on the execution times.

statuses time (s) subproblems iters or nodes

sc
a
le

co li er ex aco tco all aco tco all aco tco all

It
er off 63 1 28 3 4.54 4.41 6.59 5.15 5.03 4.23 5.18 5.06 4.40

on 69 1 22 3 4.35 5.20 6.73 4.90 4.92 3.88 4.99 4.99 4.04

M
S
D off 60 0 30 5 2.68 2.77 3.15 12.44 14.48 12.78 193 240 366

on 67 0 26 2 2.92 4.02 3.86 11.88 15.77 12.07 188 392 393

Table 4: K∗ certificate cut scaling performance summary (larger δ).
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6

is

ics

(a) Iter - execution time.

4

is

ics

(b) MSD - execution time.

6

is

ics

(c) Iter - iteration count.

12

is

ics

(d) MSD - node count.

Fig. 6: K∗ cut types performance profiles.
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3

off

on

(a) Iter - execution time.

8

off

on

(b) MSD - execution time.

12

off

on

(c) Iter - iteration count.

80

off

on

(d) MSD - node count.

Fig. 7: K∗ cut disaggregation performance profiles.
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(a) Iter - execution time.
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off
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(b) MSD - execution time.
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(c) Iter - iteration count.
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(d) MSD - node count.

Fig. 8: K∗ certificate cut scaling performance profiles.
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A The Standard Primitive Nonpolyhedral Cones

As we discussed in Section 5.2, Pajarito recognizes three standard primitive nonpolyhedral
cones defined by MathProgBase: exponential, second-order, and positive semidefinite cones.
Here, we tailor the general techniques for tightening OAs from Section 4 to a primitive cone
constraint involving one of these three cones. In particular, we describe the initial fixed OAs
(see Section 4.2), extreme ray disaggregations (see Section 4.1), and separation procedures (see
Section 4.3) implemented in Pajarito.

These ideas could be adapted to other primitive nonpolyhedral cones if the user desires.
For example, consider a convex constraint (in NLP form) f(t) ≤ r, where f : Rn → R is a
non-homogeneous convex function. If we define a closed convex cone using the closure of the
epigraph of the perspective of f :

Kf = cl{(r, s, t) ∈ R2+n : s > 0, r ≥ sf(t/s)}, (28)

then the equivalent conic constraint is (r, 1, t) ∈ Kf . From Zhang [2014], the dual cone of
Kf is the closure of the perspective of the epigraph of the convex conjugate of f , f∗(w) =
sup{−wT t − f(t) : t ∈ dom f}:

K∗
f = cl{(u, v, w) ∈ R2+n : u > 0, v ≥ uf∗(w/u)}. (29)

Note K∗
f 6= Kf∗ because of the permuting of the first two indices.

A.1 Exponential Cone

The exponential cone E is defined from the convex univariate exponential function f(t) = exp(t)
in equation (28):

E = cl{(r, s, t) ∈ R3 : s > 0, r ≥ s exp(t/s)} (30)

= {(r, 0, t) : r ≥ 0, t ≤ 0} ∪ {(r, s, t) : s > 0, r ≥ s exp(t/s)}.

The convex conjugate is f∗(w) = w − w log(−w), so by equation (29), the dual cone of the
exponential cone is:

E∗ = cl{(u, v, w) ∈ R3 : u > 0, w < 0, v ≥ w − w log(−w/u)} (31)

= {(u, v, 0) : u, v ≥ 0} ∪ {(u, v, w) : u > 0, w < 0, v ≥ w − w log(−w/u)}.

A.1.1 Initial Fixed Polyhedral Relaxation

Suppose we have a primitive cone constraint (r, s, t) ∈ E. We use the two E∗ extreme rays
(1, 0, 0), (0, 1, 0) to impose the simple bound constraints r, s ≥ 0. We use more E∗ extreme
rays of the form (1, w − w log(−w), w) by picking several different values w < 0. Note the
corresponding cuts separate any point (0, 0, t) satisfying t > 0.

A.1.2 Extreme Ray Disaggregation

Suppose we have the E∗ point (u, v, w). If w = 0, the point is already a nonnegative combi-
nation of the initial fixed E∗ points from Appendix A.1.1, so we discard it. If w < 0, we use
the E∗ extreme ray (u, w − w log(−w/u), w), which when added to some nonnegative multiple
of (0, 1, 0), gives (u, v, w).38

A.1.3 Separation Of An Infeasible Point

Suppose we want to separate a point (r, s, t) /∈ E that satisfies the initial fixed cuts. Then
r, s ≥ 0 and if r = s = 0 then t ≤ 0. If s = 0, then t > 0 and r > 0, and we use the E∗ extreme
ray (t/r, −2 + 2 log(2r/t), −2). If s > 0, then r < s exp(t/s), and we use the E∗ extreme ray
(1, (t/s − 1) exp(t/s), − exp(t/s)).

38 This also projects (u, v, w) /∈ E∗ with u > 0, w < 0 onto E∗.
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A.2 Second-Order Cone

For n ≥ 2, the second-order cone is the epigraph of the ℓ2-norm, which is convex and homoge-
neous:

L1+n = {(r, t) ∈ R1+n : r ≥ ‖t‖2}. (32)

We sometimes drop the dimension 1 + n when implied by context. This cone is self-dual
(L∗ = L). We also define the (self-dual) rotated second-order cone:

V2+n = {(r, s, t) ∈ R2+n : r, s ≥ 0, 2rs ≥ ‖t‖2
2}. (33)

Note that V is an invertible linear transformation of L, since (r, s, t) ∈ V2+n if and only if

(r + s, r − s,
√

2t1, . . . ,
√

2tn) ∈ L2+n, so for simplicity we restrict attention to L.39

A.2.1 Initial Fixed Polyhedral Relaxation

Suppose we have a primitive cone constraint (r, t) ∈ L1+n. First, we note that the ℓ∞-norm
lower-bounds the ℓ2-norm, since for any t ∈ Rn we have:

‖t‖∞ = max
i∈JnK

|ti| ≤ ‖t‖2. (34)

Let e(i) ∈ Rn be the ith unit vector in n dimensions. We use the 2n L∗ extreme rays
(1, ±e(i)), ∀i ∈ JnK, which imply the conditions r ≥ |ti|, ∀i ∈ JnK, equivalent to the homogenized
box relaxation r ≥ ‖t‖∞. Second, we note that the ℓ1-norm also provides a lower bound for
the ℓ2-norm, since for any t ∈ Rn we have:

‖t‖1 =
∑

i∈JnK

|ti| ≤ √
n‖t‖2. (35)

We use the 2n L∗ extreme rays (1, σ/√
n), ∀σ ∈ {−1, 1}n, which imply the homogenized dia-

mond relaxation r ≥ ‖t‖1/√
n. Although the number of initial fixed cuts is exponential in the

dimension n, in Appendix B we describe how to use an extended formulation introduced by
Vielma et al. [2017] with n auxiliary variables to imply an initial fixed OA that is no weaker
but uses only a polynomial number of cuts. Note that the L∗ point (1, 0), which corresponds
to the simple variable bound r ≥ 0, is a nontrivial conic combination of these initial fixed L∗

extreme rays.

A.2.2 Extreme Ray Disaggregation

Suppose we have the L∗ point (u, w). If w = 0, the point is already a nonnegative multiple of
the L∗ point (1, 0), so we discard it. Otherwise, we use the L∗ extreme ray (‖w‖2, w), which
when added to some nonnegative multiple of (1, 0), gives the original point (u, w).40

A.2.3 Separation Of An Infeasible Point

Suppose we want to separate a point (r, t) /∈ L that satisfies the initial fixed cuts. Then r ≥ 0
and so t 6= 0, and we use the L∗ extreme ray (1, −t/‖t‖2).

39 As noted in Section 5.2, Pajarito transforms any V constraints to equivalent L constraints
during preprocessing.
40 This also projects (u, w) /∈ L∗ with u < ‖w‖2 onto L∗.
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A.3 Positive Semidefinite Cone

For n ≥ 2, we define the n × n-dimensional positive semidefinite (PSD) matrix cone Sn
+ as a

subset of the symmetric matrices Sn = {T ∈ Rn×n : T = T T }, avoiding the need to enforce
symmetry constraints. From the minimum eigenvalue function λmin : Sn → R, we have:

Sn
+ = {T ∈ Sn : λmin(T ) ≥ 0}. (36)

For W , T ∈ Sn, we use the trace inner product 〈W , T 〉 =
∑

i,j∈JnK Wi,jTi,j . Sn
+ is self-dual

and its extreme rays are the rank-1 PSD matrices [Ben-Tal and Nemirovski, 2001a], i.e. any
ωωT for ω ∈ Rn. An extreme ray (Sn

+)∗ cut has the form:

〈ωωT , T 〉 = ωT T ω ≥ 0. (37)

In Appendix C, we describe how to strengthen extreme ray S∗
+ cuts to rotated second-order

cone constraints (for MISOCP OA; see Section 5.4).
Recall that our MI-conic form M uses vector cone definitions, as does MathProgBase.

Mosek ApS [2016] refers to the matrix cone Sn
+ ⊂ Sn as the smat PSD cone, and to its

equivalent vectorized definition Sn(n+1)/2 ⊂ Rn(n+1)/2 as the svec PSD cone. In svec space, we
use the usual vector inner product, and S is also self-dual. The invertible linear transformations
for an smat-space point T ∈ Sn and an svec-space point t ∈ Rn(n+1)/2 are:

svec(T ) = (T1,1,
√

2T2,1, . . . ,
√

2Tn,1, T2,2,
√

2T3,2, . . . , Tn,n), (38a)

smat(t) =




t1 t1/
√

2 · · · tn/
√

2

t2/
√

2 tn+1 · · · t2n−1/
√

2

...
...

. . .
...

tn/
√

2 tn−1/
√

2 · · · tn(n+1)/2




. (38b)

A.3.1 Initial Fixed Polyhedral Relaxation

Suppose we have a primitive cone constraint T ∈ Sn
+. Let e(i) ∈ Rn be the ith unit vector in

n dimensions. For each i ∈ JnK, we let ω = e(i) in the extreme ray S∗
+ cut (37), which imposes

the diagonal nonnegativity condition Ti,i ≥ 0 necessary for PSDness. For each i, j ∈ JnK : i > j,
we let ω = e(i) ± e(j) in (37), which enforces the condition Ti,i + Tj,j ≥ 2|Ti,j | necessary for
PSDness. Ahmadi and Hall [2015] discuss an LP inner approximation of the PSD cone called
the cone of diagonally dominant (DD) matrices. Our initial fixed S∗

+ points ωωT are exactly
the extreme rays of the DD cone, so our initial fixed OA is the dual cone of the DD cone.

A.3.2 Extreme Ray Disaggregation

Suppose we have the S∗
+ point W , not necessarily and extreme ray of S∗

+. We perform an

eigendecomposition W =
∑

i∈JnK λiω̃iω̃
T
i , where for all i ∈ JnK, λi is the ith eigenvalue and

ω̃i is its corresponding eigenvector.41 Since W is PSD, every eigenvalue is nonnegative, and
there are rank(W ) ≤ n positive eigenvalues. For each i ∈ JnK : λi > 0, we let ω =

√
λiω̃i in

(37).42 These extreme ray S∗
+ cuts aggregate to imply the original S∗

+ cut 〈W , T 〉 ≥ 0.

A.3.3 Separation Of An Infeasible Point

Suppose we want to separate a point T ∈ Sn\Sn
+. We perform an eigendecomposition T =∑

i∈JnK λiτiτT
i , for which at least one eigenvalue is negative. For each i ∈ JnK : λi < 0, we let

ω = τi in (37) (note 〈τiτT
i , T 〉 = τT

i T τi = λi < 0).

41 Note that for real symmetric matrices, all eigenvalues are real. We select the eigenvectors
to be orthonormal.
42 By dropping any i ∈ JnK : λi < 0, this projects W ∈ S\S∗

+ onto S∗
+.
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B The Second-Order Cone Extended Formulation

Recall the definitions of the second-order cone L and the rotated-second-order cone V in Ap-
pendix A.2. Both L and V are self-dual. As discussed in Section 5.4, Pajarito can optionally
use an extended formulation (EF) for second-order cone constraints, leading to tighter polyhe-
dral relaxations. Vielma et al. [2017] show that the constraint (r, t) ∈ L1+n is equivalent to
the following 1 + n constraints on r, t, and the auxiliary variables π ∈ Rn:

∑

i∈JnK

2πi ≤ r (39a)

(r, πi, ti) ∈ V3 ∀i ∈ JnK. (39b)

By projecting out the π variables, the equivalence is obvious. Constraints (39b) imply r ≥ 0
and πi ≥ 0 and 2rπi ≥ t2i for all i ∈ JnK. Aggregating the latter conditions and using the
linear inequality (39a), we see r2 ≥ ∑

i∈JnK 2rπi ≥ ∑
i∈JnK t2i , which is equivalent to the

original constraint (for r ≥ 0). We only use L1+n and V3 here, so for convenience we drop the
dimensions.43

Suppose (u, w) is a L∗ extreme ray, so from Appendix A.2.2, we have w 6= 0 and u =
‖w‖2 > 0. Then ur + wT t ≥ 0 is a L∗ cut. Note that the linear constraint (39a) in the EF
implies:

ur + wT t ≥ ur

2
+ u

∑

i∈JnK

πi + wT t =
∑

i∈JnK

(
w2

i r

2u
+ uπi + witi

)
. (40)

For each i ∈ JnK, consider the V∗ extreme ray (w2
i/2u, u, wi), which implies a V∗ cut for the

ith constraint (39b) in the EF. The RHS of (40) is an aggregation of these n V∗ cuts, which
means the V∗ cuts imply the L∗ cut condition ur + wT t ≥ 0. Therefore, there is no loss of
strength in the polyhedral relaxations, and we maintain the certificate K∗ cut guarantees from
Section 3.1.44

We apply this lifting procedure to the initial fixed L∗ points described in Appendix A.2.1.
The L∗ points for the ℓ∞-norm relaxation are (1, ±e(i)), ∀i ∈ JnK; for each i ∈ JnK, we get
three unique V∗ extreme rays (0, 1, 0) (for wi = 0) and (1/2, 1, ±1) (for wi = ±1). The L∗

points for the ℓ1-norm relaxation are (1, σ/√
n), ∀σ ∈ {−1, 1}n; for each i ∈ JnK, we get two

unique V∗ extreme rays (1/2n, 1, ±1/√
n) (for wi = ±1/√

n). The polyhedral relaxation implied
by these 5n V∗ points in the EF (39a) and (39b) is at least as strong as that implied by the
2n + 2n L∗ points from Appendix A.2.1, so our initial fixed OA can be imposed much more
economically with the EF.

C SOCP Outer Approximation For PSD Cones

Recall the definitions of the self-dual smat-space PSD cone S+ in Appendix A.3 and the self-
dual rotated-second-order cone V in Appendix A.2.45 For a primitive cone constraint T ∈
Sn
+, we demonstrate how to strengthen an (Sn

+)∗ extreme ray cut 〈ωωT , T 〉 ≥ 0 to up to n

different V3 constraints. As discussed in Section 5.4, Pajarito can optionally solve an MISOCP
OA model including these V3 constraints, leading to tighter relaxations of a challenging Sn

+
constraint.

Fix the index i ∈ JnK. Let
¯
ω = ωi be the ith element of ω, and

¯
ω = (ωj)j∈JnK\{i} ∈ Rn−1

be the (column) subvector of ω with the ith element removed. Similarly, let
¯
t = Ti,i and

¯
t = (Ti,j)j∈JnK\{i} ∈ Rn−1, and let

¯
T = (Tk,j)k,j∈JnK\{i} ∈ Sn−1 be the submatrix of T

43 Ben-Tal and Nemirovski [2001b] introduced an alternative extended formulation for the
L1+n. See Vielma et al. [2017] for a discussion and computational comparison of various L1+n

extended formulations in the context of a separation-based B&B-OA algorithm for MISOCP.
44 Without the ability to rescale the linear constraint (39a), we cannot recover the guarantees

under an LP solver with a feasibility tolerance from Section 3.2. However, Pajarito heuristically
scales up each V∗ point by a factor n.
45 V3 is in fact a simple linear transformation of S2

+.
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with the ith column and row removed. Kim et al. [2003] prove a variant of the standard
Schur-complement result that T ∈ Sn

+ if and only if
¯
t ≥ 0 and:

¯
T ∈ Sn−1

+ (41a)

¯
t
¯
T −

¯
t
¯
tT ∈ Sn−1

+ . (41b)

Consider the 3-dimensional rotated second-order cone constraint:

(
¯
t,

¯
ωT

¯
T

¯
ω,

√
2
¯
ωT

¯
t) ∈ V3. (42)

By the definition of V , constraint (42) is equivalent to the conditions
¯
t ≥ 0 and:

¯
ωT

¯
T

¯
ω ≥ 0 (43a)

¯
ωT (

¯
t
¯
T )

¯
ω ≥ (

¯
ωT

¯
t)2. (43b)

Condition (41a) implies condition (43a), by the dual cone definition (5). Since (
¯
ωT

¯
t)2 =

¯
ωT

¯
t
¯
tT

¯
ω, condition (43b) is equivalent to

¯
ωT (

¯
t
¯
T −

¯
t
¯
tT )

¯
ω ≥ 0. Thus, by the dual cone

definition again, condition (41b) implies condition (43b). Therefore, constraint (42) is a valid
relaxation of the PSD constraint T ∈ Sn

+. Furthermore, from Theorem 3.3 of Kim et al. [2003],
constraint (42) holds if and only if:

〈W , T 〉 ≥ 0 ∀W ∈ Sn
+ : (Wk,j = ωkωj , ∀k, j ∈ JnK\{i}). (44)

Thus constraint (42) potentially implies an infinite family of (Sn
+)∗ cuts, including the original

(Sn
+)∗ cut 〈ωωT , T 〉 ≥ 0.46 Note that the choice of i ∈ JnK is arbitrary, so we can derive n

different V constraints of the form (42).47

We now apply this strengthening procedure to the initial fixed (Sn
+)∗ extreme rays described

in Appendix A.3.1. Letting ω = e(i) ± e(j) for each i, j ∈ JnK : j > i in constraint (42), we
get the n(n−1)/2 initial fixed V constraints:

(Ti,i, Tj,j ,
√

2Ti,j) ∈ V3 ∀i, j ∈ JnK : j > i. (45)

These constraints enforce that every 2 × 2 principal matrix of T is PSD, a necessary but insuf-
ficient condition for T ∈ Sn

+. Ahmadi and Hall [2015] discuss an SOCP inner approximation
of the PSD cone called the cone of scaled diagonally dominant (SDD) matrices. Our initial
fixed SOCP OA is the dual SDD matrix cone, a strict subset of the polyhedral dual DD matrix
cone that corresponds to our initial fixed LP OA from Appendix A.3.1.

46 We do not explore how to scale these V constraints to recover the guarantees from Sec-
tion 3.2 for an SOCP solver with an absolute feasibility tolerance.
47 For strengthening separation or certificate K∗ cuts, Pajarito heuristically picks one of the

n possible V constraints by choosing i as the coordinate of the largest absolute value in ω.
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