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ERRATUM TO “SPECTRAL THEORY FOR INTERACTING PARTICLE
SYSTEMS SOLVABLE BY COORDINATE BETHE ANSATZ”

ALEXEI BORODIN, IVAN CORWIN, LEONID PETROV, AND TOMOHIRO SASAMOTO

This is a correction to Theorems 7.3 and 8.12 in [1]. These statements claimed to deduce the
spatial Plancherel formula (spatial biorthogonality) of the ASEP and XXZ eigenfunctions from the
corresponding statements for the eigenfunctions of the q-Hahn system. Such a reduction is wrong. We
are grateful to Yier Lin for pointing this out to us.

We have updated the arXiv version of the paper with the necessary corrections [2]. Below is the sum-
mary of the issue and the steps we made to correct the presentation of the ASEP and XXZ applications
of our results about the q-Hahn eigenfunctions.

q-Hahn spatial biorthogonality. Recall that the q-Hahn left and right eigenfunctions are given by
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where ~n = (n1 ≥ . . . ≥ nk). (Here and below we bring only the essential notation from the original
paper [1].) Their spatial biorthogonality written in the small contour form reads [1, Corollary 3.13]
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with all integration contours being small positively oriented circles around 1, and where
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Here ~w = (w1, . . . , wℓ(λ)) ∈ Cℓ(λ), and mj is the number of components of λ equal to j (so that
λ = 1m12m2 . . .), and

~w ◦ λ := (w1, qw1, . . . , q
λ1−1w1, w2, qw2, . . . , q

λ2−1w2, . . . , wλℓ(λ) , qwλℓ(λ) , . . . , q
λℓ(λ)−1wλℓ(λ)) ∈ Ck.

ASEP spatial biorthogonality. To obtain the ASEP eigenfunctions from the q-Hahn ones we set
ν = 1/q = 1/τ , where τ ∈ (0, 1) is the ASEP asymmetry parameter:

ΨASEP
~z (x1, . . . , xk) = Ψℓ

−~z(xk, . . . , x1)|q=ν−1=τ ,

(RΨASEP
~z )(x1, . . . , xk) · 1x1<...<xk

= (τ−1 − 1)−kΨr
−~z(xk, . . . , x1)|q=ν−1=τ .

Here x1 < . . . < xk are the ASEP spatial coordinates. The spatial biorthogonality of the ASEP
eigenfunctions reads
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where the integration is performed over sufficiently small positively oriented circles around −1. This
biorthogonality of the ASEP eigenfunctions follows from the paper by Tracy and Widom [4], as we
explain in detail in [2, Proof of Theorem 7.3]. Next we discuss the gap in our original argument.

Why (2) does not follow from (1) as claimed. The “proof” of ASEP spatial biorthogonality given
in [1] claimed to deduce (2) by plugging ν = 1/q into (1) before performing the integration. Indeed,
identity (2) looks as if one takes the q-Hahn small contour formula (1), removes all terms corresponding
to partitions λ 6= (1k), and then plugs in ν = 1/q, q = τ . Formula (2) (following from [4]) a posteriori
implies that under this specialization, the contribution of all additional terms with λ 6= (1k) vanishes.

First, observe that the substitution ν = 1/q before the integration might change the value of the
integral because of the factors of the form 1

1−qνwi
in the integrand for λ 6= (1k). Before the substitution

ν = 1/q the residue at wi = (qν)−1 was not picked while after the substitution we have 1−qνwi = 1−wi,
so this factor adds an extra pole inside the integration contour.

With the agreement that the substitution ν = 1/q occures after the integration, the “proof” of (2)
presented in [1] asserted a stronger statement: For each individual λ 6= (1k) and any two permutations
σ, ω ∈ S(k) (coming from Ψℓ

~z and Ψr
~z, respectively) the corresponding term vanishes after setting

ν = 1/q. This assertion is wrong.
For example, take ~x = (10, 9, 8, 7, 6, 5) and ~y = (5, 4, 3, 2, 1, 0). The summand in the integrand in

(1) corresponding to λ = (3, 2, 1), and permutations σ = 321546 and ω = 645123 has the form (before
setting q = 1/ν = τ):

const · (1 − νqw1)7(1 − νqw2)3

(1 − w1)7(1 − w2)3(1 − w3)

× (qw1 − w2)
(
q2w1 − w2

)2 (
q3w1 − w2

) (
q2w1 − w3

) (
q3w1 − w3

)
(qw2 − w3)

(
q2w2 − w3

)

(w1 − w2)(w1 − w3)(w2 − w3)(qw2 − w1)2 (q2w2 − w1) (qw3 − w1)(qw3 − w2)
× f1(w1)f2(w2)f3(w3).

Here f1(w1) is independent of w2, w3 and has no zeroes or poles at w1 = 1 and w1 = 1/(qν), and
similarly for f2(w2) and f3(w3). One can check that the residue of this term at w3 = 1, w2 = 1,
and w1 = 1 does not vanish when setting q = 1/ν. (Note that the result of the integration depends
on the order of taking the residues for individual summands due to the presence of the factors of the
form wi − wj in the denominators. These factors cancel out after summing over all permutations σ, ω,
and each summand indexed by λ is independent of the order of integration because the result of the
summation is a function symmetric in the wi’s.)

Let us mention another (possibly related) subtlety in the spatial biorthogonality of the ASEP eigen-
functions as compared to the general q-Hahn case. Namely, in the q-Hahn situation the contribution of
individual permutations coming from the eigenfunctions vanishes, while in the ASEP case this is not
the case (see [2, Remark 7.6] for details). The proof of the ASEP statement in [4] employs nontrivial
combinatorics to determine cancellations of specific combinations of permutations.

Corrections we made in the new version [2] compared to the published version [1]. We have
replaced the incorrect “proof” of Theorem 7.3 (spatial biorthogonality of the ASEP eigenfunctions)
by its derivation from the earlier result of Tracy and Widom [4]. We have also removed Theorem
8.12 which claimed a spatial biorthogonality statement of the XXZ eigenfunctions based on a similar
incorrect direct substitution ν = θ.

The same gap in [3]. The claim similar to (1) but with more general ν = q−I , where I is an arbitrary
positive integer, is made in [3, Appendix A] (by a subset of the current authors). When I = 1, this
identity is correct, but does not follow from the general ν ∈ (0, 1) formulas (as explained above).
Moreover, for I ≥ 2 the claimed orthogonality does not seem to hold as stated. A separate erratum will
be prepared to address the issues in the work [3].
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