
MIT Open Access Articles

Certifiably optimal sparse principal component analysis

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: https://doi.org/10.1007/s12532-018-0153-6

Publisher: Springer Berlin Heidelberg

Persistent URL: https://hdl.handle.net/1721.1/131566

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/131566
http://creativecommons.org/licenses/by-nc-sa/4.0/

Noname manuscript No.
(will be inserted by the editor)

Certifiably Optimal Sparse Principal Component Analysis

Lauren Berk · Dimitris Bertsimas

Received: date / Accepted: date

Abstract This paper addresses the sparse principal component analysis (SPCA) problem for
covariance matrices in dimension n aiming to find solutions with sparsity k using mixed integer
optimization. We propose a tailored branch-and-bound algorithm, Optimal-SPCA, that enables
us to solve SPCA to certifiable optimality in seconds for n = 100s, k = 10s. This same algorithm
can be applied to problems with n = 10,000s or higher to find high-quality feasible solutions
in seconds while taking several hours to prove optimality. We apply our methods to a number
of real data sets to demonstrate that our approach scales to the same problem sizes attempted
by other methods, while providing superior solutions compared to those methods, explaining a
higher portion of variance and permitting complete control over the desired sparsity.
The software that was reviewed as part of this submission has been given the D.O.I. (Digital
Object Identifier) 10.5281/zenodo.2027898.

Keywords: sparse principal component analysis, principal component analysis, mixed integer
optimization, sparse eigenvalues

Mathematics Subject Classification (2010) 62H25 Multivariate analysis–Factor analysis
and principal components; correspondence analysis · 65F15 Numerical linear algebra–Eigenvalues,
eigenvectors · 65K05 Numerical analysis–Mathematical programming methods · 90C06 Math-
ematical Programming–Large-scale problems · 90C26 Mathematical Programming–Nonconvex
programming, global optimization · 90C27 Mathematical Programming–Combinatorial optimiza-
tion

Lauren Berk, Dimitris Bertsimas
Operations Research Center
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
E-mail: lberk@mit.edu, dbertsim@mit.edu
ORCID: 0000-0002-6617-4447, 0000-0002-1985-1003

2 Lauren Berk, Dimitris Bertsimas

1 Introduction

Principal component analysis (PCA) is a statistical technique used to understand the orthogonal
directions that account for the majority of the variability in a data set [37]. Given an m × n
data matrix A, with m data points each with n dimensions, we can compute a sample covariance
matrix Q = A′A/(m−1). By construction, Q is symmetric and positive semi-definite. With this
sample covariance matrix, or in fact any positive semi-definite matrix Q, the first goal of PCA
is to find the first principal component:

max
x

x′Qx s.t. ||x||2 = 1. PCA (1)

The solution to Problem (1) is simply the first (eigenvalue-maximizing) eigenvector of Q,
which can be computed in a number of ways, including the simple power method [66].

Subsequent principal components are orthogonal to existing components, and are chosen
to maximize the remaining variance explained after subtracting the variance along the prior
components. For example, given a first component x1, we can create an adjusted covariance
matrix by projecting:

Q2 = (I − x1x′1)Q(I − x1x′1). (2)

The second principal component is found by maximizing:

max
x

x′Q2x s.t. ||x||2 = 1. (3)

This second component x2 will explain the optimal amount of remaining variance once x1 is
accounted for. Subsequent components are derived analogously.

PCA and closely-related techniques (“factor analysis” [15], canonical correlation analysis [30,
68]) are widely used in multivariate data analysis to identify a minority of dimensions (“compo-
nents” or “factors”) that can summarize the data. When these factors are interpretable, they can
lead to a deeper understanding of the underlying phenomena. Since PCA reduces dimensionality,
it can be used for data and image compression [23], as well as identifying separate components
in an image or sequence of images [13]. Reducing dimensionality can also be helpful as a pre-
processing step in machine learning models; resulting models are better able to avoid overfitting
and multicollinearity [22]. Applications are numerous, including medicine [21], horticulture [33],
and computer network science [42] among many others.

A disadvantage of PCA is that the identified components typically have non-zero loadings
on every variable. While PCA reduces dimensionality in the sense that the first few principal
components span a smaller space than the original data, it does not reduce the number of relevant
variables. In order to reproduce results or add additional data points to the model, researchers
still need to collect all the original variables. For example, PCA is often used in genetics research
for reducing the dimensionality of data sets that can contain 10,000 or more variables [58,31,44].
There is a real concern in this application that many of the loadings on the principal components
reflect noise in the data, and there is a desire for PCA to help with variable selection in addition
to dimensionality reduction. Traditional principal components are also difficult to interpret. By
1967, in a pivotal paper on PCA case studies, Jeffers [35] was already discussing the need for
methods that reduce the number of variables involved in components to improve interpretability.

These considerations inspired work to sparsify principal components without compromising
their explanatory power by solving the sparse principal component analysis (SPCA) problem.
Specifically, a constraint on the `0 “norm” of x, ‖x‖0 (that is, |{i|xi 6= 0}|) is added to Problem

Certifiably Optimal Sparse Principal Component Analysis 3

(1), limiting the number of non-zero loadings of x to some integer k. The SPCA problem is then,

max
x,y

x′Qx

s.t.
n∑

i=1

x2
i = 1 SPCA (4)

||x||0 ≤ k.

Subsequent components in this case are more complicated. It is no longer possible to find
components that are mutually orthogonal that also maximize variance explained. The main focus
of this paper is solving the first SPCA component problem in Problem (4), but we explore the
issue of multiple components further in Section 2.2.

Research into SPCA has been accelerating recently, due to the growing scale of research
problems. Generally, increasing the number of samples in a data set does not increase the com-
putational difficulty of the problem, since the size of the covariance matrix Q is only determined
by the number of variables in the data. However, modern applications such as genomic analysis
and physics involve high-dimensional data sets which drastically increase the size of Q and the
size of the solution space, pushing the limits of computational feasibility.

Despite decades of research, no existing method can solve Problem (4) to provable optimality
in practical time. In this paper, we develop an algorithm, based on principles from mixed integer
optimization (MIO), that solves this problem to optimality. In addition to advancing the state of
the art for SPCA, the present work also contributes to the growing literature [63] reconsidering
difficult problems in statistics and machine learning through the lens of modern optimization
techniques. Topics studied include belief propagation [69], support vector machines [71,52], clas-
sification and regression trees [8], graph clustering [17], parameter setting [62], subset selection
[53], factor analysis [7], k-means clustering [34] and many others. Collectively, these new methods
are aspiring to change machine learning from an art of heuristics into a science of optimality.

A set of problem definitions will assist our discussion of the literature. Broadly, formulations
of the SPCA problem fall into these categories (with γ < 0, k a positive integer, and Q an n×n
positive semi-definite matrix) [50,60]:

– `1-constrained: max x′Qx s.t. ‖x‖2 = 1, ‖x‖1 ≤ k;
– `0-constrained: max x′Qx s.t. ‖x‖2 = 1, ‖x‖0 ≤ k;
– `1-penalized: max x′Qx + γ‖x‖1 s.t. ‖x‖2 ≤ 1;
– `0-penalized: max x′Qx + γ‖x‖0 s.t. ‖x‖2 ≤ 1.

In particular, the `0-constrained formulation is exactly Problem (4). Additionally, there are
convex relaxations of these problems, and some papers [60] consider alternative primary objec-
tives to x′Qx. Our algorithm is designed to address the `0-constrained problem.

1.1 Review of Literature

Formulations and relaxations After Jeffers [35] identified the importance of interpretable and
sparse components, early work on sparse principal components focused on rotating the basis of
the first few principal components within the subspace they generated, to reduce the `0 norm
of each vector [59][36]. The varimax criterion, developed in 1957 by Kaiser [40], is the most
commonly used approach to rotation in both PCA and factor analysis. Today, it is common
practice to rotate principal components in the course of data analysis in many fields.

Another early thread of work on SPCA was inspired by the development of LASSO [64] for
variable selection and shrinkage. LASSO can be used as a method for solving the sparse regression

4 Lauren Berk, Dimitris Bertsimas

problem by adding an `1 penalty to the objective function, which forms the unconstrained,
continuous, convex problem [28]. Jolliffe et al. [38] developed SCoTLASS (Simplified Component
Technique - LASSO) from these ideas. SCoTLASS introduced the `1-penalized formulation of
SPCA and proposed using gradient ascent techniques to solve it. Later, additional computation
methods were developed for SCoTLASS, including [67].

Zou et al. [73] proposed a convex relaxation to the `1-penalized formulation, using the elastic
net (incorporating a `2 penalty on x in addition to the `1 penalty). Leng and Wang [46] also
built upon SCoTLASS by replacing the LASSO penalty with an “adaptive” penalty vector that
varies by index. A different approach to sparse PCA components was taken by Bair et al. [3], who
took into account the correlation of the variables with some outcome when selecting a support.
This supervised approach solves a different problem than SPCA, but is motivated by the same
objective.

The paper by d’Aspremont et al. [20] developed a convex relaxation of the `0-constrained for-
mulation called Direct SPCA (DSPCA) using semi-definite optimization. While often providing
solutions superior to earlier methods, DSPCA struggled to solve problems on the same scale as
other methods, hitting a limit around n = 100. Since the sparsity constraint is relaxed in this
formulation, solutions can have sparsity k′ greater than the target sparsity k. In this case, the
solutions are infeasible and super-optimal for the SPCA problem with the target sparsity k, and
are feasible (but likely sub-optimal) for the SPCA problem with the target sparsity k′. In a follow-
up paper, d’Aspremont et al. [19] developed a greedy approach to solve this formulation and a
polynomial time algorithm for providing a certificate of optimality (proving optimality for the
semi-definite relaxation, not the `0-constrained problem). Additionally, Amini and Wainwright
[1] explored semi-definite relaxations of the SPCA problem in higher dimensions.

First order methods Recently, a large number of gradient ascent and local search methods have
been proposed for solving SPCA problems.

Journée et al. [39] proposed a method called GPower for solving `0-penalized and `1-penalized
problems that involved combining the power method (that is, identifying the leading eigenvector
of a matrix by repeated iterations of xi+1 = Qxi until convergence) for computing the first
eigenvector of a matrix with thresholding and renormalizing steps. Hein and Bühler [29] derived
an approach based on the inverse power method with similar thresholding. Yuan and Zhang [70]
and Luss and Teboulle [50] proposed methods including one we will use in this paper, which
reduces sparsity of the solution to a fixed k at each step instead of truncating values that fall
below a fixed threshold. Ma et al. [51] expanded this work from individual vectors to sparse
subspaces. More recently, Chan et al. [16] proposed a simple, closed form solution that can be
applied to very large scale problems with bounded approximation error, and Beck and Vaisbourd
[4] developed new, stronger optimality conditions and designed algorithms to find points that
satisfy those conditions.

These methods are extremely fast, and are accompanied by results showing convergence to
stationary points, but all are susceptible to becoming trapped at local optima. These results are
usually compared, then, on their computational tractability, and the variance they explain in
numerical experiments. None of these methods provide a certificate of optimality, but are very
useful as warm starts for exact methods.

Preprocessing and parallelism Some recent papers on high-dimensional SPCA have incorporated
preprocessing stages into their algorithms to improve speed and tractability by reducing the di-
mensionality of the input data. The key idea is removing variables from the problem (eliminating
rows and columns from the Q matrix) if it can be proven that they cannot occur in an optimal

Certifiably Optimal Sparse Principal Component Analysis 5

sparse solution to the problem. Zhang and Ghaoui [72] showed that for the `1-penalized formula-
tion with penalty coefficient γ, any variable can be removed if its variance falls below γ (that is,
if Qii < γ). Lee et al. [45] developed a similar approach, removing variables whose variance falls
below a calculated threshold. More specialized preprocessing exists for individual algorithms [56].
Unfortunately, no such guarantee exists for the `0-constrained problem in which we are inter-
ested. We will use ideas related to these methods, of eliminating possible indices by considering
the variance of individual variables, when we develop our branch-and-bound approach.

Efforts to speed up SPCA methods also include work on parallel computing. Richtárik et
al. [60] considered all four main formulations we have discussed, along with several more, and
proposed solution methods using alternating maximization. A key contribution of Richtárik et
al. was the incorporation of parallel computing methods for matrix-vector products. This work
increased the maximum size of tractable problems for earlier methods developed by Richtárik
et al.. While we will not be using parallelized code in our work, research into parallel branch-
and-bound research has been active since the 1980s, and these ideas may be beneficial for future
work [41,47].

Mixed integer optimization and SPCA Traditionally, computational problems have been deemed
intractable if polynomial-time algorithms are unavailable or of high degree. The theory of com-
putational complexity developed in the 1970s characterized problems as NP-hard to indicate
that they are very unlikely (unless P=NP) to have polynomial time algorithms to solve them.
NP-hardness became synonymous with intractability.

Since the early 1990s, MIO solvers, including CPLEX [32] and Gurobi [26], have seen massive
gains in speed. In the period 1990–2016, MIO solvers became about 1,250,000 times faster [12,55,
25]. Coupled with hardware enhancements over the same period [65], a MIO problem in 2016 can
be solved 2 trillion times faster than in 1990. These speedups encourage us to rethink whether
NP-hardness should in fact be synonymous with intractability.

There have been some attempts to apply exact MIO methods to SPCA. Moghaddam et al. [54]
devised a branch-and-bound method by bounding eigenvalues of submatrices of the covariance
matrix—an idea that we build upon in this paper. However, the bounds in the paper were too
weak to provide the method with tractability, and the paper admitted the method takes over an
hour to run a case with n = 40, k = 20, whereas we will demonstrate that our algorithm can run
for n in the 1,000s. More recently, Carrizosa and Guerrero [14] proposed a novel MIO formulation
of SPCA that involves nonlinearities, but since solutions could only be identified using a local
search method, optimality could not be guaranteed. Asteris et al. [2] used a different combinatorial
approach, bipartite matchings, to find solutions to a multi-component version of SPCA with
disjoint supports. This paper will explore additional methods based on MIO principles.

The work in this paper is also inspired by the application of mixed integer methods to other
problems in statistics. In recent years, these techniques have been applied to classification [11]
[8], regression [9], support vector machines [57] and subset selection [10] among others. Many
more examples are presented in a survey by Bennett and Parrado-Hernández [5] of optimization
methods applied to machine learning problems.

1.2 Motivation for `0-Constrained SPCA Over Other Formulations

In our review of the literature, we encountered an array of proposed solutions to the sparse prin-
cipal component analysis problem. Some provided algorithms for solving `1-based formulations
and convex relaxations. Other algorithms approached the `0-constrained formulation, but only
provided local search methods without a guarantee of optimality. Some recent work has expanded

6 Lauren Berk, Dimitris Bertsimas

the size of the problems that can be attempted using these methods, but has not improved the
optimality of the resulting solutions. The exact methods that have been proposed have either
been too slow to be practical, or too difficult to be solved globally, again requiring local meth-
ods. No approach thus far has provided a provably optimal solution to the `0-constrained SPCA
problem, to which we now turn our attention.

Our work focuses on the `0-constrained SPCA formulation in Problem (4). We believe this
formulation is the most important of the four presented formulations to solve. The parameter k
is more interpretable than γ and makes it easier to generate solutions of a desired sparsity. In
addition, if a problem can be solved for all k, the `0-penalized problem is automatically solved
as a result: the objective max x′Qx + γ‖x‖0 could be computed at each sparsity level k, and
the minimum selected out of finitely many values. On the other hand, at least in practice, the
correspondence does not function in reverse. There may be values of k that correspond to no
values of γ, and so performing a binary search on the value of γ cannot turn an `0-penalized
algorithm into a `0-constrained algorithm.

The `1 variants of the problem are computationally simpler than the `0 variants, but at
a high cost. `1 penalties and constraints do not just promote sparsity—they simultaneously
penalize (“shrink”) the solution’s loadings. While this can add some robustness to the model [6],
it sacrifices the variance explained, even after post-processing by computing a PCA solution on
the final support. It will be clear from the computational experiments that `1-based solutions
will consistently explain less variance than `0-based solutions.

1.3 Our Approach

The approach taken in this paper is to develop a tailored branch-and-bound algorithm to address
the `0-constrained SPCA problem. This algorithm leverages fast first order methods to find
feasible solutions, and derives upper and lower bounds from linear algebra principles.

In numerical experiments involving real and generated data sets, we demonstrate that our
approach:

1. Finds near-optimal (often optimal) solutions in seconds (for n = 10, 000s, k = 10s).
2. Gives certifiably optimal solutions in seconds (for n = 100s, k = 10s).
3. Provides superior solutions compared to existing methods, by explaining a higher portion of

variance and permitting complete control over the desired sparsity.

1.4 Structure

The structure of the paper is as follows. In Section 2, we develop at a high level a branch-and-
bound approach to the `0-constrained SPCA problem and prove the correctness of the algorithm
for finding optimal solutions. In Section 3, we derive four upper bounds and three lower bounds
for the SPCA problem with partially-determined support using ideas from linear algebra. In
Section 4, we discuss parameters that affect the algorithm’s performance, strategies for improving
computational tractability, and experimental evidence for making principled parameter choices.
In Section 5, we perform a variety of computational tests on synthetic and real data sets to assess
the algorithmic and statistical performance of our approach, and compare our results to those of
other methods from the literature, demonstrating our claim that we are able to provide solutions
that explain greater variance than existing methods. In Section 6, we include some concluding
remarks.

Certifiably Optimal Sparse Principal Component Analysis 7

1.5 Notation

We will refer throughout the paper to a more explicit formulation of the `0-constrained SPCA
problem we will call SPCA-MIO:

max
x,y

x′Qx

s.t.
n∑

i=1

x2
i = 1

− yi ≤ xi ≤ yi i = 1, . . . , n SPCA-MIO (5)
n∑

i=1

yi = k

x ∈ [−1, 1]n

y ∈ {0, 1}n.

Here y is the support vector that captures which components of x are non-zero. Q is an
n× n positive semi-definite covariance matrix. We restrict

∑n
i=1 yi = k exactly instead of using

an inequality, since this does not restrict the feasibility of the x values we are interested in(since
any solution with ‖x‖0 ≤ k corresponds to at least one support y with ‖y‖0 = k), and helpfully
limits the feasible space of solutions from the perspective of algorithm design. That is, fixing∑n

i=1 yi = k allows us to say that when n − k components of y are fixed at 0, the remaining k
must be fixed at 1.

We use the notation ‖·‖p to denote the `p norm of x. That is, ‖x‖1 =
∑

i |xi|, ‖x‖2 =
√∑

i x
2
i ,

and ‖x‖0 = |{i : xi 6= 0}|, the `0 “pseudo-norm”. We use | · | to refer to the absolute values of
a number or vector, and the set cardinality when applied to a set. In general, we reserve capital
boldface letters like Q for matrices, boldface lowercase letters like x for vectors, non-bold lower
case letters like k for scalars, and script capital letters like N for sets.

2 A Branch-and-Bound Algorithm for SPCA

Since the SPCA-MIO is non-convex, it cannot be solved by any but the most flexible, non-convex
mixed integer nonlinear solvers, such as Baron, SCIP, and Couenne. A direct attempt was made
to use an existing solver (Couenne) to solve the problem, but Couenne was unable to solve even
the smallest problems n=13, k=10 within an hour. We report a full demonstration in Section 5.5,
concluding that a general branch-and-bound approach is not tractable for solving the SPCA-MIO
model on the scale of problems addressed by other existing SPCA algorithms.

In this section, we will develop a customized branch-and-bound framework to solve the SPCA-
MIO problem. We build an enumeration tree that branches on the components of the support
vector y that underlies x, and we develop bounds from closely studying the algebraic properties
of the tree’s subproblems.

To aid in the development of this algorithm, we will consider a family of problems derived
from the original SPCA-MIO problem that we call SPCA with Partially Determined Support
(SPCA-PDS). Each of these problems represents a subproblem of SPCA-MIO where we fix some
components of y.

To form these problems, we will use lower and upper bound vectors l,u ∈ {0, 1}n to bound
y. This captures decisions we have made about a particular yi. To enforce yi = 1 we set li = 1,

8 Lauren Berk, Dimitris Bertsimas

and to enforce yi = 0 we set ui = 0.

max
x,y

x′Qx

s.t.
n∑

i=1

x2
i = 1

− yi ≤ xi ≤ yi i = 1, . . . , n SPCA-PDS (6)
n∑

i=1

yi = k

x ∈ [−1, 1]n

y ∈ {0, 1}n

l ≤ y ≤ u, l,u ∈ {0, 1}n.

For ease of reference, we will use the notation X(l,u, k) to mean the set of feasible x vectors in
Problem (6), so we can write the SPCA problem with partially determined support (SPCA-PDS),
as simply:

max
x∈X(l,u,k)

x′Qx. (7)

We can form an SPCA-PDS problem by choosing any l,u ∈ {0, 1}n and 0 ≤ k ≤ n. The
problem will have a non-empty feasible set as long as l ≤ u,

∑
li ≤ k,

∑
ui ≥ k. In particular,

if we choose l = {0}n,u = {1}n then we have exactly Problem (5), SPCA-MIO. If instead
we make l = u, we have SPCA-MIO for a fixed support. In this case, the variable y becomes
a constant, and by eliminating the rows and columns of Q that correspond with yi = 0, the
problem reduces to Problem (1), PCA. For choices of l,u between these two extremes, we get an
SPCA problem with partially determined support.

This problem formulation gives us a vocabulary with which to discuss the SPCA branch-and-
bound tree. Each node of the tree is identified with a pair (l,u). At the root node we have the
original SPCA-MIO problem (l = {0}n,u = {1}n), and at each branch, the bounds are tightened
in one dimension.

If we were to enumerate the entire tree, every leaf would have l = u. However, some leaves
would represent empty feasible sets, because they would require

∑
yi 6= k. For example, consider

a problem with n = 4, k = 2. If (l,u) = ({1}4, {1}4) for example, there could be no x satisfying
‖x‖0 ≤ k in the feasible set. Instead of exploring parts of the tree with empty feasible sets, we
will stop when we reach a node that represents at most one feasible y vector. For example, the
bottom left node in Figure 1 is terminal for this problem, even though l 6= u, because

∑
li = k,

and so it corresponds to exactly one support vector, y = (1, 1, 0, 0).
To determine when we have arrived at a terminal node, we can use the following terminal

function for upper and lower bound vectors l,u and k > 0:

isTerminal(l,u, k) =


true, if

∑
li ≥ k,

true, if
∑
ui ≤ k,

false, otherwise.

(8)

At one of these terminal nodes, SPCA-PDS reduces to PCA restricted to that support, and
therefore the optimal solution at one of these terminal nodes is the first principal component of
Q restricted to the rows and columns where the support is non-zero. Since we will not branch

Certifiably Optimal Sparse Principal Component Analysis 9




0
0
0
0

 ,


1
1
1
1







1
0
0
0

 ,


1
1
1
1







1
1
0
0

 ,


1
1
1
1







1
0
0
0

 ,


1
0
1
1







0
0
0
0

 ,


0
1
1
1




Fig. 1 An example of two branching steps in an SPCA enumeration tree.

further on these nodes, we can discard them after checking to see if they improve upon the best
feasible solution.

The real benefit of branch-and-bound, however, is that we do not need to enumerate the
entire tree. We only have to explore subtrees further where superior solutions may potentially
exist—that is, we need only explore subtrees with upper bounds above the best feasible solution
found so far. To take advantage of this, we will build methods to compute upper and lower
bounds at each node for the subtree rooted at that node.

This algorithm relies on two key methods: lower(·) and upper(·), that calculate lower and
upper bounds for SPCA-PDS:

lower(l,u, k) = (x′Qx for some x ∈ X(l,u, k)) , (9)
upper(l,u, k) ≥ (x′Qx for all x ∈ X(l,u, k)) . (10)

For now, we will take for granted that we have ways of computing these bounds. In Section
3, we will make explicit how these bounds are computed.

2.1 Introduction to Algorithm 1: Optimal-SPCA

We now present Algorithm 1 and the accompanying Theorem 1 to make these ideas explicit,
and prove the validity of the approach. The goal of Algorithm 1 is to find ε−optimal solutions
to SPCA-MIO, for any ε ≥ 0. This means Optimal-SPCA will find a solution x̂ with objective
value within ε of the optimal objective value. Since SPCA-MIO is a special case of SPCA-PDS
with l = 0,u = 1 we can write the feasibility set of SPCA-MIO as X(0,1, k), so that we can
write the definition of an ε−optimal solution as some x̂ that satisfies:

x̂′Qx̂ ≥ x′Qx− ε ∀x ∈ X(0,1, k).

We do allow the choice of ε = 0 here. Since there are finitely many nodes in the enumeration
tree, the algorithm can find the provably optimal solution with ε = 0. In practice, choosing a
small ε > 0 reduces run-time without significantly sacrificing solution quality.

10 Lauren Berk, Dimitris Bertsimas

Algorithm 1 considers a tree consisting of pairs (l,u) of lower and upper bounds on the
support y. A list of unexplored nodes is maintained, and at each iteration of the algorithm, an
unexplored node is selected and split into two complementary nodes by choosing an index that
is not fixed and setting it to li = 1 and ui = 0 in the two child nodes, respectively. If the new
nodes are terminal, the SPCA-PDS problem is equivalent to PCA, and so the exact solution is
returned. If the node is not terminal, the algorithm continues by computing additional bounds.
Segments of the tree are removed as their upper bounds fall below the best known solution, until
the highest upper bound is within ε of the best feasible solution, guaranteeing ε-tolerance.

Algorithm 1: Optimal-SPCA
Input : Covariance matrix Q, target sparsity k, optimality tolerance ε ≥ 0
Output: Sparse vector x̂ with ‖x̂‖0 = k and ‖x̂‖2 ≤ 1 that maximizes x̂′Qx̂ within the optimality

tolerance ε
1 initialize n0 = (l,u) = ({0}n, {1}n) as the root node
2 initialize node set N = {n0}
3 initialize x̂ = {0}n
4 initialize lower bound lb = 0, upper bound ub = the largest eigenvalue of Q, λmax(Q)
5 while ub− lb > ε; do
6 select (l,u) ∈ N
7 select some index i where li = 0, ui = 1
8 for val = 0, 1 do
9 newnode = ((`1, . . . , `i−1, val, `i+1, . . . , `n), (u1, . . . , ui−1, val, ui+1, . . . , un)

10 if isTerminal(newnode) then
11 compute the optimal solution x to the problem at newnode,
12 set upper = lower = x′Qx

13 else
14 compute lower = lower(newnode), with corresponding feasible point x ∈ X(l,u, k)
15 compute upper = upper(newnode)

16 if lower > lb then
17 update lb = lower
18 update x̂ = x
19 remove any node ∈ N with upper ≤ lb
20 if upper > lb then
21 add newnode to N

22 remove (l,u) from N
23 update ub to be the greatest value of upper over N
24 return x̂

Theorem 1 (Correctness of Optimal-SPCA) Optimal-SPCA terminates in finitely many
iterations at an ε−optimal solution for SPCA-MIO.

Proof The validity of Optimal-SPCA relies primarily on the validity of the branch-and-bound
approach for discrete optimization problems [43]. We outline here a few key points involved in
the application of this method to our problem.

The maximum number of iterations of the algorithm is capped at the number of possible
nodes (which are distinct elements of {0, 1}2n), ensuring the algorithm will terminate in finitely
many iterations. Nodes are only removed in Steps 19 and 22, if they are dominated by the
best feasible solution so far, or because they have been partitioned into pairs of complementary
nodes. Therefore no optimal solution will be removed before termination. The algorithm will not
terminate until ub− lb ≤ ε so that some feasible solution has been identified that is ε-optimal.

Certifiably Optimal Sparse Principal Component Analysis 11

We conclude that Optimal-SPCA is an exact algorithm for computing an ε−optimal solution
to the SPCA problem, and is guaranteed to terminate in finite time, given valid methods upper
and lower computable at every node (l,u).

2.2 A Note on Subsequent Components

The intended purpose of Optimal-SPCA is to find the optimal first sparse principal component,
but it can also be used to find subsequent sparse components. Given a first component x1, we
can project the matrix Q into the space perpendicular to x1 as in Equation 2:

Q2 = (I − x1x′1)Q(I − x1x′1).

A second sparse principal component can then be found by applying Optimal-SPCA to the
new matrix Q2. This second component x2 will explain the optimal amount of remaining variance
once x1 is accounted for.

In traditional PCA, this process of repeated projections of the matrix Q and the choice of
the principal eigenvector of Q results in a sequence of orthogonal components. Moreover, for all
p, the first p components jointly explain the greatest variance of all possible sets of p vectors.

Our SPCA algorithm returns subsequent components that differ in two respects. Subsequent
components are not guaranteed to be orthogonal (though they may be), and since the compo-
nents are computed consecutively, they may not be jointly optimal for the multivariate problem.
However, the computational performance of this approach, demonstrated in Section 5.3, is strong
compared to other methods that do not take an iterative approach to multiple components.

It is conceivable to adapt Optimal-SPCA to maximize the total variance explained over
multiple sparse principal components at once. The branch-and-bound formulation extends easily
to multiple components by allowing nodes to represent lower and upper bounds on the supports
of multiple components at once. The computational difficulty arises in calculating bounds and
in exploring the exponentially larger tree of possible supports. While this would be possible to
formulate, it would only be able to solve the smallest of SPCA problems.

3 Linear Algebra Bounds for SPCA with Partially-Determined Support

We turn now to constructing

lower(l,u, k) = (x′Qx for some x ∈ X(l,u, k)) ,
upper(l,u, k) ≥ (x′Qx for all x ∈ X(l,u, k)) ,

which are upper and lower bounds to the optimal value of the problem SPCA-PDS:

max
x∈X(l,u,k)

x′Qx.

We start by considering trivial constructions:

lb0 = 0, (11)
ub0 = λmax(Q). (12)

These are trivially valid lower and upper bounds. Optimal-SPCA will eventually arrive at the
optimal solution of SPCA-MIO by using lb0 and ub0. However, by providing tighter bounds, we
can improve the performance of Optimal-SPCA and reduce the number of nodes that must be
explored in order to prove optimality.

12 Lauren Berk, Dimitris Bertsimas

In this section, we propose several methods for computing tighter bounds that will enable
us to solve the SPCA problem while exploring a much smaller subset of the branch-and-bound
tree. First, we introduce a subroutine that will be useful throughout the development of these
bounds.

3.1 A Useful Truncation Routine

Many of the bounds we develop involve a step that takes an arbitrary length n vector x as
input and outputs a vector x̂ in the feasible set X(l,u, k). We will want to make this selection
to minimize ‖x− x̂‖2 over x̂ ∈ X(l,u, k).

It can be shown that this problem is solved by preserving the largest loadings subject to
feasibility constraints. That is, x̂ contains the largest k elements of x subject to two restrictions:
that the elements must include those with li = 1 and must not include those with ui = 0. A
routine that makes this procedure explicit will be useful for the work ahead. We provide this
routine explicitly in Algorithm 2.

Algorithm 2: Trunc(·, l,u, k)
Input : Vector x, target sparsity k, lower support bound l, upper support bound u
Output: Sparse vector x̂ ∈ X(l,u, k) that minimizes ‖x− x̂‖2

1 Form the set I1 = {i|li = 1}
2 Form the set I2 = arg maxI⊂{1,...,n}

∑
|xi| s.t. li = 0, ui = 1∀i ∈ I, |I| = k −

∑
li. Ties are broken by

choosing the smallest index.

3 x̂i =

{
xi i ∈ I1 ∪ I2,
0, otherwise.

4 return x̂

The function Trunc will be used in two ways. It will be used in Sections 3.5 and 3.6 for
projecting an arbitrary vector onto a vector that is feasible for the SPCA-PDS problem (after
normalization). Trunc can also be thought of as solving the maximization Problem (13), which
makes Trunc useful for computing the worst case eigenvalue bounds over all feasible supports in
Sections 3.3 and 3.4.

min
y

∑
i

x2
i (1− yi)

s.t. l ≤ y ≤ u,
∑

yi = k.

(13)

3.2 An Upper Bound from Eigenvalues

First, we consider how simple eigenvalues can provide a tighter upper bound than ub0 for the
problem SPCA-PDS. Note that a feasible x ∈ X(l,u, k) is also feasible for the problem with the
sparsity constraint lifted. That is, x is feasible for the problem:

max
x

x′Qx

s.t.
n∑

i=1

x2
i = 1

xi = 0 ∀i ∈ {i|ui = 0}.

(14)

Certifiably Optimal Sparse Principal Component Analysis 13

But since xi = 0 for all i with ui = 0, we can rewrite the objective using a different covariance
matrix,

x′Qx =
∑

i,j s.t.
ui,uj=1

qijxixj = x′Qux, (15)

where we define Qu as:

(Qu)ij =

{
qij , ui = uj = 1,
0, otherwise.

(16)

Problem (14) thus simplifies to:

max
x

x′Qux

s.t. ‖x‖2 = 1.
(17)

This is now a non-sparse PCA problem with optimal solution value λmax(Qu). Since Problem
(14) is a relaxation of Problem (5), λmax(Qu) provides an upper bound to Problem (5). This
gives us an upper bound for SPCA-PDS as well, which we will write as:

ub1(l,u, k) = λmax(Qu). (18)

3.3 An Upper Bound from the Matrix Trace

Linear algebra gives the fact that the sum of the eigenvalues of a matrix is the trace of that matrix.
Since our matrix Q is positive semi-definite, its eigenvalues are non-negative, and therefore the
trace of Q provides an upper bound on each of the eigenvalues of Q. From this fact, we can
derive another upper bound for the SPCA problem with partially determined support.

Consider any x ∈ X(l,u, k), and again let y be the corresponding support vector of x (yi =
0 if and only if xi = 0). Then x is feasible for the problem where the support is restricted to y.
That is, we know x ∈ X(y,y, k).

We can use the same trick as in Equation (15) to equate,

x′Qx = x′Qyx (19)

where Qy is formed as Qu was formed, by zeroing out rows and columns of Q where yi = 0.
Then as before, x′Qx ≤ λmax(Qy), and this time we apply the new bound of the trace:

x′Qx ≤ λmax(Qy) ≤ trace(Qy). (20)

We can compute an upper bound like this for all points x ∈ X(l,u, k) by considering the
maximum possible value of trace(Qy) over all feasible y satisfying l ≤ y ≤ u,

∑
yi = k. In this

case, we take Trunc(diag(Q), l,u, k) and sum the components. This gives an upper bound on
trace(Qy) over all feasible y, and therefore an upper bound ub2 for the entire problem.

ub2(l,u, k) =
∑

i

Trunc(diag(Q), l,u, k)i. (21)

14 Lauren Berk, Dimitris Bertsimas

3.4 An Upper Bound from the Gershgorin Circle Theorem

The Gershgorin Circle Theorem [61] states that the eigenvalues of a positive semi-definite matrix
Q are bounded by the largest absolute column sum of Q. We define the Gershgorin operator as:

Gersh(Q) = max
j

∑
i

|Qij |. (22)

Then we can state the Gershgorin Circle Theorem as:

Gersh(Q) ≥ λmax(Q). (23)
This theorem inspires an additional upper bound for SPCA-PDS.
Again, we start by considering a point x ∈ X(l,u, k). Let y be the corresponding support

vector of x. Then x is feasible for the problem where the support is restricted to y. That is, we
know x ∈ X(y,y, k), and we have as before

x′Qx = x′Qyx ≤ λmax(Qy). (24)

Now we can bound λmax(Qy) from above using the Gershgorin Circle Theorem:

x′Qx ≤ λmax(Qy) ≤ Gersh(Qy). (25)
Since this is true for any feasible x ∈ X(l,u, k) the problem is overall bounded by the maxi-

mum value of Gersh(Qy) over all feasible supports y. Explicitly,

max
x∈X(l,u,k)

x′Qx ≤ max
l≤y≤u∑

yi=k

Gersh(Qy)

= max
l≤y≤u∑

yi=k

(
max

j

∑
i

|(Qy)ij |

)

= max
j

 max
l≤y≤u∑

yi=k

∑
i

|(Qy)ij |


= max

j, uj=1

(∑
i

Trunc(|Qj |, l,u, k)i

)
.

(26)

Note that we only have to take the maximum over columns j with uj = 1, since any column
with uj = 0 will be zeroed out in the matrix Qy in the previous step. This maximum is then a
new upper bound ub3 for the SPCA problem with partially-determined support (l,u):

ub3(l,u, k) = max
j,uj=1

(∑
i

Trunc(|Qj |, l,u, k)i

)
. (27)

3.5 A Lower Bound from Eigenvalues

Any element x ∈ X(l,u, k) will suffice to establish a lower bound. A principled way of choosing
x is to select some feasible support vector y, and take x as the principal eigenvector of Qy.

One fast method of finding a promising y is to take the principal eigenvector of Qu, that is,
vmax(Qu), feed it to the truncation function Trunc(·, l,u, k) and let y be the support of this
vector. Then we simply take x to be the principal eigenvector of Qy. The lower bound is then,

lb1(l,u, k) = λmax(Qy) s.t. y = supp(Trunc(vmax(Qu), l,u, k)). (28)

Certifiably Optimal Sparse Principal Component Analysis 15

3.6 A Lower Bound from Yuan and Zhang (2013)

Yuan and Zhang [70] created an iterative truncation algorithm that inspires an additional lower
bound on our SPCA-PDS problem. The algorithm in [70] begins with a k-sparse vector x and
alternates between a power method step (x = Qx) and a truncation step, limiting the support
to the dimensions with the k largest absolute loadings.

We can adapt this algorithm to accommodate the partially determined support (l,u) by
making a change to the truncation step. Instead of simply preserving the k components with the
largest absolute value, we must include components where li = 1, and we are forbidden from
including components where ui = 0. That is, we involve our truncation routine Trunc(·, l,u, k)
The complete algorithm is then:

Algorithm 3: A lower bound for SPCA with partially-determined support from thresh-
olding

Input : Covariance matrix Q, target sparsity k, lower support bound l, upper support bound u,
optimality tolerance ε ≥ 0

Output: Sparse vector x ∈ X(l,u, k)
1 initialize x0 = {0}n, x1 ∈ X(l,u, k),x1 6= x0 (for instance, let x1 = Trunc(vmax(Q), l,u, k))
2 while ‖xm+1 − xm‖2 ≥ ε; do
3 xm = Qxm−1

4 xm = Trunc(xm, l,u, k)
5 xm = xm/‖xm‖2
6 return xm

The bound lb2 takes longer to compute than lb1, but tends to dominate lb1 in value. This is
especially important if the algorithm is terminated early, to provide the best chance at finding
an optimal, or a near-optimal solution.

lb2(l,u, k) = Alg3(l,u, k,Q, ε). (29)

3.7 Collecting Upper and Lower Bounds

In Section 3.2-3.6, we constructed three upper bounds and two lower bounds. In practice, we can
derive overall bounds by combining all these methods, which we will run at every node:

ub = min(ub1, ub2, ub3) (30)
lb = max(lb1, lb2). (31)

Note that we do not need to include lb0, ub0 in the comparisons because in all cases lb1 ≥
lb0 = 0 and ub1 ≤ ub0 = λmax(Q), making the trivial bounds redundant.

The remaining bounds, however, are critically not redundant. In particular, ub2 and ub3
dominate one another depending on other characteristics of the covariance matrix Q. Consider
the following matrices with k = 2.

M1 =

 1 0 0
0 1 0
0 0 1

 M2 =

 13 8 0
8 5 0
0 0 1

 (32)

16 Lauren Berk, Dimitris Bertsimas

For the matrix M1, we have ub2 = 2, the sum of the largest two diagonal elements, while
ub3 = 1, the largest absolute column sum of two elements, which corresponds to the true largest
eigenvalue of the matrix. In the matrix M2, we have ub2 = 18 while ub3 = 21, this time ub2
dominating and coming close to the true largest 2-sparse eigenvalue of 17.9. In both cases, ub1
dominates ub2 and ub3, but this is due to the third dimension in the constructed examples being
uncorrelated with the first two; ub1 is often the weakest bound. Since it is difficult to know a
priori but not difficult to calculate which bound will be dominant, it benefits the algorithm to
calculate all three and choose the smallest value for an overall upper bound.

4 Computational Tactics

So far, we have presented Optimal-SPCA at a high level. We have discussed how lower and
upper bounds for the SCPA problem with partially determined support allow us to explore the
space of support vectors in order to find a provably optimal solution more efficiently than by
brute force enumeration. We have suggested a number of lower and upper bounds which, taken
in combination, provide overall bounds on the problems at each node.

These discussions have not fully determined the details of Optimal-SPCA, however. In im-
plementation, we must consider a number of parameters that affect how we make branching,
bounding, and other decisions. First we will look at the choice between exploring the breadth
or the depth of the tree, controlling the maximum number of unexplored nodes at any point in
time. We consider several approaches to choosing which dimension of x to branch on, controlling
the strategy and the number of steps to take in searching for the branching dimension. Finally
we consider emphasizing lower or upper bounds, controlling the number of local search steps to
use when establishing a lower bound at each node.

In this section, we discuss in detail the choice of these parameters, providing numerical exper-
iments on the effects of the parameters on run-times, and recommended values that we will use
in the discussion in Section 5 of Optimal-SPCAs accuracy and scalability. For each parameter
set, we performed 500 iterations of sampling 80 out of the 101 variables in the Communities
data set from the UCI database [48]. We ran Optimal-SPCA on each reduced problem, with a
target sparsity k = 10. We report the average values of time in seconds for the algorithm to
prove optimality (“time to upper bound”), and with hindsight, the time at which the algorithm
identified as a feasible solution what would prove to be the optimal solution (“time to lower
bound”). We also report the total number of nodes explored in the enumeration tree. We use
these results to provide recommended parameter values. While testing each parameter, we held
the others constant at default values: a maximum number of nodes of 10, 000, two local search
steps at each node, and ten steps for selecting a branching dimension at each node.

4.1 Choosing Nodes: Best-First vs. Depth-First

The two node selection heuristics we focus on are best-first and depth-first search. In best-first
search, at each iteration we choose the node with the highest remaining upper bound. This
ensures that the overall upper bound decreases at most iterations (as long as there are not ties).
In depth-first search, we continue to develop the most recently added node until it either reaches
termination or its upper bound falls below the best feasible solution and the subtree at that node
can be eliminated. Depth-first search keeps the number of remaining nodes small, but spends
less time tightening the overall upper bound.

An algorithm running best-first search alone would quickly grow the number of remaining
nodes, continually replacing a single node with the largest upper bound by two child nodes, only

Certifiably Optimal Sparse Principal Component Analysis 17

reducing the number of nodes in the tree as the upper bound begins to converge to the lower
bound and the algorithm nears completion. The size of the tree could scale like

(
n
k

)
. On the other

hand, a depth-first search algorithm would keep the number of nodes exceedingly small, keeping
the size of the tree on the order of nk. While the methods differ in the order of nodes explored
and how many nodes are kept in memory, they typically result in the same number of total nodes
explored by the end of the algorithm.

To trade-off between these approaches, we consider the maximum number of nodes that we
keep in a queue in memory at a given time. When the remaining nodes are fewer than this cutoff,
the algorithm branches on nodes with the highest upper bound (best-first search). When the
number of nodes crosses over the cutoff, the algorithm turns to depth-first search, starting with
the most recently added nodes, until the number of active nodes is reduced.

Table 1 Effects of best- vs depth-first search (controlled by the maximum size of the branch-and-
bound tree) on run-times and tree size in Optimal-SPCA. A combination of the two approaches
leads to the lowest running times.

Maximum Time (seconds) to Time (seconds) to Number of
Number of Nodes Lower Bound Upper Bound Nodes Explored

10 0.1734 6.7330 22,804
100 0.1011 6.5560 22,801

1,000 0.1028 6.5482 22,803
10,000 0.1034 6.9058 22,805

100,000 0.1033 7.8298 22,801

In Table 1 we see minor effects of the maximum queue size on the computational speed of the
algorithm. Generally, higher values of the limit result in longer times to prove optimality, with
no significant difference in the number of nodes explored. This indicates that the algorithm is
spending more time at each branching step when the limit is higher, since the algorithm needs to
search over all the remaining nodes to choose one to branch on and to update the overall upper
bound. (In turn, this was faster than maintaining a list of nodes sorted by upper bound value.)

We do not recommend choosing the smallest possible limit, however. While low limits do not
significantly hinder time to convergence, they mask the progress of the algorithm by making slow
progress on the reduction of the upper bound until the algorithm has nearly terminated. In Figure
2 we ran Optimal-SPCA 100 times with a range of queue limits on the original Communities
problem. We plotted the average upper bound at each time point, with the lines terminating
when optimality is proven. In Table 2 we report in detail the time until optimality is proven in
this set of experiments.

The results from Figure 2 and Table 2 lead us to two conclusions. First, emphasizing best-
first search (allowing the maximum number of nodes in the queue to grow large) results in the
best upper bound achievable at each time point. Second, emphasizing depth-first search (keeping
the number of nodes in the queue small) results in the fastest termination of the algorithm. The
relative importance of these priorities depends on the application, scale, and goals of the modeler,
and so the final parameter value is largely a matter of taste.

4.2 Choosing Dimensions: Random, Fixed, and Adaptive

Once a leaf node has been selected for branching, the algorithm must decide which as-yet-
undetermined index to fix in the child nodes. This corresponds to Step 7 of Optimal-SPCA. The

18 Lauren Berk, Dimitris Bertsimas

Fig. 2 Optimal-SPCA’s rate of convergence of upper bound on Communities data set depends
on the maximum number of nodes allowed in the queue. The larger the queue is allowed to grow,
the tighter the upper bound at each point in time, but at the expense of taking longer overall to
converge.

Table 2 Optimal-SPCA’s time to prove optimality on the Communities dataset depends on the
maximum number of nodes allowed in the queue. Generally, larger queues result in longer times
to converge, but overly restricting the size of the queue also impedes run time.

Maximum Time (seconds) to
Number of Nodes prove optimality

10 9.28
20 8.48
50 8.11

100 10.13
200 10.08
500 12.88

1,000 14.23
2,000 14.17
5,000 13.99

10,000 14.17
20,000 14.06

careful selection of a branching dimension has a significant impact on the bounds we can achieve
down the tree. By encouraging the algorithm to select dimensions that explain large portions of
the as-yet-unexplained variance, we can better partition the solution space.

A naive approach is to use a completely random selection of dimensions. However, this wastes
significant time partitioning the solution space into very similar looking subspaces with similar
upper and lower bounds, making little progress.

One simple prioritization is to branch on the dimension of those available (i with li = 0, ui =
1) that has the largest possible absolute component of the principal eigenvector of Q, that is,
i = arg maxli=0,ui=1 |λmax(Q)i|. At the root node, this is in fact the dimension that explains

Certifiably Optimal Sparse Principal Component Analysis 19

the greatest possible variance. Lower in the tree, this dimension may not necessarily explain the
most variance, but the heuristic continues to function better than random selection.

Another possible approach is to prioritize the dimensions not by loadings of the first eigen-
vector but by the eigenvalues of the standard basis vectors (i = arg maxi e′iQei = arg maxiQii).
This approach performs well when there is a significant spread in the values Qii, but the approach
degenerates when Q is a correlation matrix (so that all Qii = 1).

A more sophisticated approach is to prioritize by the loadings of the principal eigenvector of
Qu, which captures the changes in variance-explaining power that take place as we descend the
tree.

In Table 3 we compare the four methods of prioritizing branching dimensions: random, by
|vmax(Q)i|, by Qii, and by |vmax(Qu)i|. In the case of ties, the branching dimension is chosen
randomly from among the top-ranking indices. We considered both the covariance matrix and the
correlation matrix of the communities data set. To keep run-time reasonable for the covariance
matrix test, we reduced the problem to select 50 out of the 101 variables, and we used k = 5.
For the correlation matrix, we selected 80 of the 101 variables and used k = 5.

The results show that choosing branching dimensions according to Qii and |vmax(Qu)i| dom-
inate overall, with Qii offering some advantage when eigenvalues are widely distributed, and
|vmax(Qu)i| outperforming Qii when data is normalized. Our general recommendation is to pri-
oritize branching dimensions according to |vmax(Qu)i|, since this method performs well for finding
principal components of both covariance and correlation matrices. We included prioritization by
Qii as a secondary option in the algorithm.

Table 3 Effects of dimension selection methodology on run-times and tree size in Optimal-SPCA.
Prioritizing the dimensions with large loadings on the eigenvector of the reduced matrix Qu

performs consistently across problem structures, with other methods performing well in more
limited contexts.

Method for Time (seconds) to Time (seconds) to Number of
Data set Dimension Selection Lower Bound Upper Bound Nodes Explored

communities random 0.0679 8.3950 20,092
communities |vmax(Q)i| 0.0694 1.6149 3,365
communities Qii 0.0649 0.0771 9
communities |vmax(Qu)i| 0.0659 0.1624 109

normCommunities random 0.1016 0.3590 184
normCommunities |vmax(Q)i| 0.0975 0.2808 85
normCommunities Qii 0.0994 0.3399 148
normCommunities |vmax(Qu)i| 0.1024 0.2663 69

Computing the first eigenvector of Qu for every node, however, is computationally expensive.
As a middle ground, we consider taking several power-method steps from the principal eigenvalue
of Q to that of Qu. The more steps we take, the more confident we are in our choice of branching
dimension, but the more we will pay in computational time per node.

In Table 4 we see the trade-off between run-time per node and number of nodes explored
as we compute more iterations of the power method at each node to help us select a branching
dimension. The trade-off in this case is beneficial up to about 20 iterations. In larger problems,
the time cost of computing these iterations will be higher, and in order to provide a default that
will work for a range of problem sizes, we recommend a smaller value of 10 iterations. In some
cases, this value can be increased to improve performance.

20 Lauren Berk, Dimitris Bertsimas

Table 4 Effects of dimension selection steps on run-times and tree size in Optimal-SPCA. More
time spent selecting the dimension to branch on results in fewer nodes explored in the tree, and
overall smaller run-times.

Iterations for Time (seconds) to Time (seconds) to Number of
Dimension Selection Lower Bound Upper Bound Nodes Explored

0 0.1020 183.5768 694,490
1 0.0987 32.8741 118,874
2 0.0993 20.9729 73,563
3 0.0982 15.4463 52,784
4 0.0965 12.9729 44,201
5 0.0969 11.1544 37,810
6 0.0961 10.6936 36,225
7 0.0951 10.0357 34,059
8 0.0954 8.1165 27,381
9 0.0943 7.2210 23,848

10 0.0953 6.8468 22,805
15 0.0956 4.5605 14,958
20 0.0947 4.2638 13,809
30 0.0962 3.1453 9,955
40 0.0962 4.1013 13,654
50 0.0974 3.0518 9,727

4.3 Feasibility vs. Optimality: De-emphasizing Lower Bounds

We must also consider how much effort should be expended to work to find the best lower bounds
at each node. The parameter that controls the effort put into the calculation of lower bounds is
the number of local search steps we take at each node using Algorithm 3. If we take zero steps,
we trivially use as a lower bound the support formed by prioritizing the dimensions with largest
absolute loadings in the first eigenvector of Q. As we take more steps, we come closer to running
the entirety of Yuan and Zhang’s algorithm at each node, improving the quality of the bounds,
but drastically increasing the work per node.

In Table 5 we see little benefit from more than a couple iterations of Algorithm 3. In this
experiment, dedicating more time to improving lower bounds saves at most 0.005 seconds off
the convergence of the lower bound, but adds significantly to the time it takes for the algorithm
to converge, since it requires more computation at each node. In most cases, only one or two
iterations of Algorithm 3 are necessary to achieve strong lower bounds.

4.4 Computing Eigenvalues and Eigenvectors

Many steps of the algorithm involve computing the principal eigenvalue of a matrix Qy. In each
case we used a power method approach with some adaptations.

Two of the upper bounds (ub2, ub3) do not require an eigenvalue computation. Since our final
upper bound will be the minimum of all three upper bounds, and because the power method’s
process of determining the largest eigenvalue is monotonically increasing, we can run the eigen-
value upper bound ub1 last, and terminate the power method early if the norm of x crosses above
the lesser of ub2 and ub3.

If the problem is very high dimensional, with the matrix A ∈ Rm×n having many more
dimensions than samples (n � m), then we can save some additional time in computing eigen-
values. In this case, the data matrix A is actually much smaller than the covariance matrix
Q = A′A/(m − 1) ∈ Rn×n. We can avoid repeated multiplication by the large matrix Q by

Certifiably Optimal Sparse Principal Component Analysis 21

Table 5 Effects of local search effort for lower bounds on run-times and tree size in Optimal-
SPCA. Additional maximum allowed local search steps slightly improve the time to identify the
optimal solution, but significantly increase the time to prove optimality.

Maximum Time (seconds) to Time (seconds) to Number of
Steps Lower Bound Upper Bound Nodes Explored

0 0.0999 5.3822 22,804
1 0.0989 6.1295 22,802
2 0.0989 6.8352 22,803
3 0.0975 7.5748 22,802
4 0.0973 8.3241 22,801
5 0.0969 9.0840 22,802
6 0.0958 9.7792 22,800
7 0.0963 10.5060 22,801
8 0.0947 11.2302 22,804
9 0.0956 11.9454 22,806

10 0.0956 12.6792 22,805
15 0.0962 16.2266 22,793
20 0.0969 19.8704 22,805
30 0.0970 26.9684 22,802
40 0.0988 34.0215 22,802
50 0.1000 41.3359 22,802

noting the equivalence::

Qp =
(A′A)p

(m− 1)p

=
(A′)(AA′)p−1(A)

(m− 1)p
.

Thus, instead of repeatedly multiplying a vector by Q ∈ Rn×n, we can first multiply it by
A, then multiply the result repeatedly by the much smaller matrix AA′ ∈ Rm×m, finishing by
multiplying the result of that step by A′. For data sets from applications like genomics, where n
far outstrips m, this will save significant computational time.

Another trick that helps in high dimensions is running computations not in the original space,
but in the space of the components involved. For example, when computing the eigenvalue of
some Qy, instead of repeatedly multiplying the zero values in Qy by a vector, it is preferable to
form a new Q̃y that only has height and width equal to

∑
yi, find its principal eigenvalue, and

map those loadings back to the support vector y. This dimension reduction is also important for
the local search for lower bounds.

5 Computational Results

In this section, we implement Optimal-SPCA on a number of real data sets and compare the
performance (solution quality and run-time) of our method against the state of the art. We
compare Optimal-SPCA to those by d’Aspremont et al. [19], Hein and Bühler [29], Richtárik et
al. [60], Zou et al. [73], Jolliffe et al. [38], Journée et al. [39], and Yuan and Zhang [70]. Since
Yuan and Zhang’s method is adapted for use as a primal heuristic within Optimal-SPCA, Yuan
and Zhang and Optimal-SPCA often arrive at the same solution in these experiments, with
Optimal-SPCA taking additional time and providing a certificate of optimality.

22 Lauren Berk, Dimitris Bertsimas

Experiments for Tables 6-11 were performed on a four-core 2.4 GHz processor with 16 GB
of RAM. Experiments for Tables 12 and 13 were limited to a single core on MIT’s Engaging
cluster, with a 2.0 GHz processor and 32 GB of RAM. The methods by d’Aspremont et al.,
Hein and Bühler, and Richtárik et al. were run with the authors’ published packages in Matlab.
The methods by Zou et al. and Jolliffe et al. were run with their published packages in R. The
methods by Journée et al., Yuan and Zhang, and Optimal-SPCA were written for use in this
paper in Julia 0.6 without the use of mathematical programming solvers. The experiments in
Couenne for Table 10 used Couenne version 0.5 with AmplNLWriter in Julia. For all experiments,
the default parameters were used for Optimal-SPCA: a maximum number of nodes of 10, 000,
two local search steps at each node, and ten steps for selecting a branching dimension at each
node. For experiments where computational time is included, the results reported are the average
times across all the experimental runs.

5.1 Description of Data Sources

We performed experiments on five data sets: the frequently used Pitprops set, three sets from
the UCI database, and a gene expression data set used to study breast cancer. The Pitprops
data set was used in four of the seven papers we compare to (Zou et al. [73], Jolliffe et al. [38],
Journée et al. [39], and Yuan and Zhang [70]). Five of the methods used gene expression data
from various sources (d’Aspremont et al. [19], Hein and Bühler [29], Zou et al. [73], Journée et
al. [39], and Yuan and Zhang [70]). A few additional data sets have been studied in these papers,
including sets from the UCI data base, and a number of synthetically generated data sets.

Pitprops The Pitprops data set consists of a 13× 13 covariance matrix formed from 180 obser-
vations of “pit props made of Corsican pine grown in East Anglia” [27]. The variables included
measurements such as the diameter and length of the prop, the number of rings and number of
knots. Jeffers [35] attempted to interpret the first six principal components of this covariance
matrix, highlighting the difficulty in such interpretation, since each component had significant
loadings in each dimension. Since then, a number of papers have performed PCA and variations
like SPCA on the data to create more interpretable results, primarily by generating sparser so-
lutions. Below, we will compare our results to the results from [35] and other SPCA papers to
see how the principal components compare in sparsity and variance explained.

Wine The Wine data set from the UCI database [48] consists of 178 measurements of 13 chemical
attributes of wines, with the objective of classifying the wines by origin. For our work, we
ignore the origin categorical variable and just consider the others, which include variables like
alcohol level, color intensity, and acidity. The data set has been studied primarily for classification
problems with redundancy analysis (RDA).

MiniBooNE The MiniBooNE data set from UCI [48] has 130,065 observations of 50 variables,
measuring attributes of neutrinos in an experiment meant to distinguish electron neutrinos from
muon neutrinos. As with the Wine data set, we have ignored the classification variable, and
created both raw and normalized versions of the problem.

Communities The Communities and Crime data set from UCI [48] originally contained 1994 ob-
servations of 128 variables, containing socio-economic data, law enforcement data, and crime data
from 1990 and 1995 across the United States. Categorical variables and variables not available
for the entire data set were removed to produce a set with 101 numeric variables.

Certifiably Optimal Sparse Principal Component Analysis 23

Cancer The breast cancer gene expression dataset, originated in papers by Wang et al. in 2005
and Minn et al. in 2007. The set contains 344 measurements of 22,283 variables.

Since our method assumes centered (mean zero) data, we pre-processed these datasets by
subtracting the empirical mean of each variable from each measurement. Moreover, we created
additional data sets by normalizing the data (so that each variable has unit variance) to see
how the algorithms perform on correlation matrices. The normalized problems are referred to
in the reports that follow by prefixing “norm” to the problem name. Since the Pitprops data is
presented as a correlation matrix and the original data is lost, this distinction is only relevant
for the remaining data sets.

5.2 Comparison of Solution Quality Across Methods

In Tables 6 and 7, we report the variance explained by the components discovered by each
method, for each problem, with a fixed target sparsity of k = 5 and k = 10, respectively. The
values marked by an asterisk represent values that were not dominated by another method.
Where the method by Journée et al. [39] is marked n/a, there was no parameter choice that
resulted in the target sparsity.

Table 6 Variance of real-world data sets explained by solutions with sparsity k = 5. Asterisks in-
dicate optimal values. Optimal-SPCA finds the optimal solution in all cases, while other methods
only sometimes identify this solution.

Data set Dimensions O
pt

im
al
-S

P
C
A

d’
A
sp

re
m

on
t
et

al
. [1

9]

H
ei
n

an
d

B
üh

le
r
[2
9]

Jo
lli

ffe
et

al
. [3

8]

Jo
ur

né
e
et

al
. [3

9]

R
ic
ht

ár
ik

et
al
. [6

0]

Yua
n

an
d

Zha
ng

[7
0]

Zou
et

al
. [7

3]

Pitprops 13 *3.40615 *3.40615 *3.40615 *3.40615 *3.40615 2.72258 *3.40615 *3.40615
Wine 13 *99201.31 *99201.31 *99201.31 *99201.31 *99201.31 *99201.31 99199.39 *99201.28
normWine 13 *3.43978 *3.43978 2.40834 3.43663 n/a 3.43663 3.43663 3.31752
miniBooNE 50 *1.96827e9 *1.96827e9 *1.96827e9 *1.96827e9 *1.96827e9 *1.96827e9 *1.96827e9 *1.96827e9
normMiniBooNE 50 *5.00000 4.99971 4.99998 *5.00000 n/a *5.00000 *5.00000 4.28611
Communities 101 *0.27689 0.27315 0.27292 0.41344 n/a *0.27689 *0.27689 0.20588
normCommunities 101 *4.86051 4.62919 4.62919 4.51048 n/a 4.45186 *4.86051 4.13879

The key insight from this analysis is that each of the existing methods fails to find the optimal
solution on at least one data set. Some data sets, like the miniBooNE set, are easy for all of the
methods to solve, while others, like the normalized Wine problem, and both the original and
normalized Communities problem, are not solved to optimality by most of the methods.

Of the methods considered in this analysis, those by d’Aspremont et al. and Yuan and Zhang
are most successful in finding solutions to difficult problems, and one of these two methods was
able to solve every problem.

Additionally, we ran each method on the Pitprops data set for every sparsity level k =
1, . . . , 13. The variances explained by the results are reported in Table 8 and Figure 3. Optimal-
SPCA, d’Aspremont et al., and Yuan and Zhang found the optimal solution at every sparsity
level, and Hein and Bühler succeeded in all but one. The other methods were far less consistent
over the range of sparsity levels.

24 Lauren Berk, Dimitris Bertsimas

Table 7 Variance explained by SPCA methods on real-world data sets with k = 10. Asterisks in-
dicate optimal values. Optimal-SPCA finds the optimal solution in all cases, while other methods
only sometimes identify this solution.

Data set Dimensions O
pt

im
al
-S

P
C
A

d’
A
sp

re
m

on
t
et

al
. [1

9]

H
ei
n

an
d

B
üh

le
r
[2
9]

Jo
lli

ffe
et

al
. [3

8]

Jo
ur

né
e
et

al
. [3

9]

R
ic
ht

ár
ik

et
al
. [6

0]

Yua
n

an
d

Zha
ng

[7
0]

Zou
et

al
. [7

3]

Pitprops 13 *4.17264 *4.17264 *4.17264 4.15996 4.14411 4.15996 3.40615 4.11101
Wine 13 *99201.78 *99201.78 *99201.78 *99201.78 *99201.78 *99201.78 99199.58 *99201.78
normWine 13 *4.59429 *4.59429 *4.59429 *4.59429 n/a *4.59429 3.92632 4.58251
miniBooNE 50 *1.96827e9 *1.96827e9 *1.96827e9 *1.96827e9 *1.96827e9 *1.96827e9 *1.96827e9 *1.96827e9
normMiniBooNE 50 *9.99999 9.99965 9.03575 *9.99999 n/a *9.99999 *9.99999 7.55189
Communities 101 *0.44491 *0.44491 0.26666 *0.44491 n/a *0.44491 0.44312 0.35353
normCommunities 101 *8.82313 7.18684 *8.82313 8.39797 n/a 6.18039 *8.82313 7.66345

Table 8 Variance of Pitprops explained by SPCA methods for various k. Asterisks indicate
optimal values. Several methods, including Optimal-SPCA, obtain the optimal solution at each
sparsity level.

k O
pt

im
al
-S

P
C
A

d’
A
sp

re
m

on
t
et

al
. [1

9]

H
ei
n

an
d

B
üh

le
r
[2
9]

Jo
lli

ffe
et

al
. [3

8]

Jo
ur

né
e
et

al
. [3

9]

R
ic
ht

ár
ik

et
al
. [6

0]

Y
ua

n
an

d
Zha

ng
[7
0]

Zou
et

al
. [7

3]

1 *1.000 *1.000 *1.000 NA *1.000 *1.000 *1.000 *1.000
2 *1.954 *1.954 *1.954 1.679 1.813 1.081 *1.954 *1.954
3 *2.475 *2.475 *2.475 1.884 2.204 2.077 *2.475 2.329
4 *2.937 *2.937 *2.937 *2.937 *2.937 2.549 *2.937 2.883
5 *3.406 *3.406 *3.406 *3.406 *3.406 2.895 *3.406 *3.406
6 *3.771 *3.771 *3.771 *3.771 *3.771 *3.771 *3.771 *3.771
7 *3.996 *3.996 *3.996 3.840 *3.996 *3.996 *3.996 3.822
8 *4.069 *4.069 *4.069 4.054 *4.069 4.054 *4.069 *4.069
9 *4.139 *4.139 4.116 4.060 *4.139 4.116 *4.139 4.116

10 *4.173 *4.173 *4.173 4.111 4.160 4.160 *4.173 4.160
11 *4.208 *4.208 *4.208 4.113 *4.208 *4.208 *4.208 *4.208
12 *4.218 *4.218 *4.218 4.130 *4.218 *4.218 *4.218 *4.218
13 *4.219 *4.219 *4.219 *4.219 *4.219 *4.219 *4.219 *4.219

5.3 Method performance on the computation of multiple sparse principal components

In the series of experiments reported in Table 9, we observed the performance on SPCA methods
that computed multiple components at once and compared these to the outcome of applying
Optimal-SPCA sequentially. We did not include the methods by d’Aspremont et al., Journée et
al., or Yuan and Zhang since they did not provide methods for computing multiple principal
components at once, and the implementation of Hein and Bühler’s method in Mathlab failed to
run on the large normMiniBoo problem. While Optimal-SPCA is guaranteed to maximize the
variance explained by PC1, it does not have a statistical guarantee over multiple components.
Nonetheless, we found that the approach of maximizing total variance explained for one compo-

Certifiably Optimal Sparse Principal Component Analysis 25

Fig. 3 Variance of Pitprops explained by SPCA methods for various k. Optimal-SPCA,
d’Aspremont et al., Hein and Bühler, and Yuan and Zhang are combined into “4 methods”
in this plot.

nent at a time (see Section 2.2) was also effective in maximizing total variance explained across
multiple components.

Since the principal components in SPCA are not necessarily orthogonal, the computation
of marginal variance explained by subsequent components, as well as total variance explained,
must be computed carefully. Following the approach of Zou et al. [73], we compute the variance
explained by subsequent components by projecting the components into the subspace of the data
perpendicular to preceding components.

5.4 Comparison of run times across methods

On each of the datasets used for testing in Section 5.2, we also ran timed tests of each algorithm,
five times each. In Table 10 we report the average run time in seconds of each method on each
dataset. It should be noted that the run-times are impacted both by the algorithmic complexity
of the methods and by the underlying performance of the coding languages. We wrote Optimal-
SPCA in the Julia language, which has a run-time advantage over R (Jolliffe et al., Zou et al.)
and Matlab (d’Aspremont et al., Hein and Bühler, Richtárik et al.) [18].

Two findings are notable. First, Optimal-SPCA identifies the optimal solution to the SPCA
problem within the time frame of the existing algorithms. Second, Optimal-SPCA proves op-
timality for small k in seconds, and slightly larger k in minutes. For problems with small k,
Optimal-SPCA scales similarly to Yuan and Zhang, which lies within it. For more complex prob-
lems, Optimal-SPCA spends significantly more time refining upper bounds on the large space of
supports in order to prove optimality. While the time to provable optimality does not scale as
well with k, the time until the optimal solution is found as a feasible solution remains competitive
with other algorithms. This suggests Optimal-SPCA can be beneficial for higher k problems with
early termination.

26 Lauren Berk, Dimitris Bertsimas

Table 9 Variance of Pitprops explained by SPCA methods across the first three components for
k = 5. In each case, Optimal-SPCA obtains the highest total variance explained.

Data set Adj Variance of: O
pt

im
al
-S

P
C
A

H
ei
n

an
d

B
üh

le
r
[2
9]

Jo
lli

ffe
et

al
. [3

8]

R
ic
ht

ár
ik

et
al
. [6

0]

Zou
et

al
. [7

3]

Pitprops PC1 3.40615 3.40615 2.66602 3.40615 3.27020
Pitprops PC2 2.15779 1.94730 2.02014 1.23414 1.97907
Pitprops PC3 1.90637 2.07497 1.94153 0.00176 2.11999
Pitprops Total 7.47032 7.42842 6.62769 4.64205 7.36925

normWine PC1 3.43978 3.43663 3.01445 3.43978 3.01516
normWine PC2 2.38627 2.37488 2.23001 0.00000 2.23558
normWine PC3 2.09970 1.80185 1.84457 0.01496 1.82003
normWine Total 7.92575 7.61336 7.08904 3.45473 7.07077

normMiniBoo PC1 5.00000 N/A* 1.48050 5.00000 3.97389
normMiniBoo PC2 5.00000 N/A* 1.37906 0.00000 2.27701
normMiniBoo PC3 4.99999 N/A* 1.28584 1.75260 1.29458
normMiniBoo Total 15.00000 N/A* 4.14540 6.75260 7.54549

Table 10 Run-times (in seconds) of SPCA methods on real-world datasets. Optimal-SPCA finds
the best feasible solution in a time competitive with other methods. Although proving optimality
takes significantly longer, the times are still tractable for the largest problems.

Dataset Dimensions k O
pt

im
al
-S

P
C
A

-
op

ti
m

al

O
pt

im
al
-S

P
C
A

-
fe
as

ib
le

d’
A
sp

re
m

on
t
et

al
. [1

9]

H
ei
n

an
d

B
üh

le
r
[2
9]

Jo
lli

ffe
et

al
. [3

8]

Jo
ur

né
e
et

al
. [3

9]

R
ic
ht

ár
ik

et
al
. [6

0]

Yua
n

an
d

Zha
ng

[7
0]

Zou
et

al
. [7

3]

pitprops 13 5 0.158 0.121 0.250 0.042 0.222 5.507 0.786 0.051 0.103
pitprops 13 10 0.136 0.051 0.233 0.046 0.303 5.510 0.791 0.047 0.104

wine 13 5 0.056 0.053 0.255 0.051 0.097 5.508 0.853 0.052 0.102
wine 13 10 0.043 0.042 0.248 0.051 0.085 5.510 0.818 0.044 0.094

normWine 13 5 0.067 0.056 0.240 0.062 0.188 5.509 0.804 0.048 0.105
normWine 13 10 0.075 0.050 0.236 0.049 0.114 5.510 0.802 0.047 0.098

miniBoo 50 5 0.062 0.061 0.332 0.800 10.204 5.808 105.672 0.078 0.112
miniBoo 50 10 0.064 0.064 0.320 0.906 53.000 5.762 106.200 0.077 0.114

normMiniBoo 50 5 0.076 0.073 0.317 1.993 32.899 6.225 107.263 0.082 0.120
normMiniBoo 50 10 0.071 0.069 0.313 2.000 13.200 6.090 105.800 0.081 0.127

communities 101 5 8.179 0.768 0.378 0.062 3.510 5.656 5.927 0.164 0.125
communities 101 10 167.000 0.101 0.374 0.098 1.244 5.510 6.156 0.114 0.137

normCommunities 101 5 0.393 0.105 0.365 0.075 1.146 5.521 5.893 0.096 0.126
normCommunities 101 10 3.244 0.103 0.379 0.080 3.994 5.520 5.890 0.095 0.127

Certifiably Optimal Sparse Principal Component Analysis 27

5.5 Tractability of Optimal-SPCA Compared to Exact Solutions From Non-Convex Solvers

Optimal-SPCA is not the only way to compute exact solutions to SPCA-MIO. We could also
send the problem to a solver designed to handle non-convex mixed integer nonlinear programs.
We chose to work with Couenne[49] (which stands for Convex Over and Under ENvelopes for
Nonlinear Estimation), an open-source solver published by the COIN-OR community. Couenne
reformulates problems in order to identify upper bounds, and uses a combination of branch-
and-bound, heuristic, and branching techniques that can be customized and augmented. For
our experiment, we formulated SPCA-MIO using Julia and JuMP [24] and called Couenne with
the AmplNLWriter package in Julia. We used the default options for heuristics and branching
procedures in the software.

In Table 11, we report on the run-times of Couenne compared to Optimal-SPCA on our sample
of real-world problems, running each algorithm until the optimality gap (upper bound divided by
lower bound) was less than 0.01, or until an hour had passed. For larger problems, Couenne did
not prove optimality in under an hour, and in these cases we reported the remaining optimality
gap. Optimal-SPCA, on the other hand, proved optimality in under an hour in every case, while
Couenne took considerably longer, and often did not prove optimality in an hour. When Couenne
did prove optimality, it needed to explore more nodes in the problem tree, and did so with more
time spent exploring each node. Because of these differences, we do not consider solving SPCA-
MIO with a general purpose solver to be tractable, while Optimal-SPCA is tractable even for
large problems.

We believe the significant differences here are due to the inability for Couenne to identify
reasonable feasible solutions and tight upper bounds. The advantages of SPCA-MIO are that we
use a powerful heuristic to generate lower bounds (inspired by Yuan and Zhang [70]), and take
advantage of algebraic structure for upper bounds that are not considered as part of Couenne’s
process of setting bounds.

Table 11 Performance of Optimal-SPCA and Couenne on SPCA-MIO. Despite solving the same
formulation of the problem, the solver Couenne takes hundreds of times longer than Optimal-
SPCA to converge and explores much more of the enumeration tree to identify the optimal
solution.

Optimal-SPCA Couenne
Dataset k Explored Time Gap Explored Time Gap

pitprops 5 6 0.079 - 993,683 1,528.020 -
pitprops 10 17 0.141 - 1,562,100 >1 hour 323%
wine 5 2 0.054 - 204 1.420 -
wine 10 2 0.047 - 18,738 44.220 -
normWine 5 4 0.049 - 612,615 951.300 -
normWine 10 6 0.049 - 512,639 >1 hour 294%
miniBoo 5 2 0.060 - 128 9.390 -
miniBoo 10 2 0.060 - 1,600 32.120 -
normMiniBoo 5 2 0.063 - 89,000 >1 hour 31,771%
normMiniBoo 10 2 0.079 - 75,900 >1 hour 18,559%
communities 5 23,779 12.870 - 13,800 >1 hour 485%
communities 10 498,309 338.950 - 12,500 >1 hour 44,522%
normCommunities 5 39 0.180 - 23,300 >1 hour 211,018%
normCommunities 10 593 0.726 - 23,100 >1 hour ∞

28 Lauren Berk, Dimitris Bertsimas

5.6 Scaling of Optimal-SPCA for large scale datasets

In this set of experiments, we generated problems of various sizes by selecting random sets of
various dimensions from the Cancer dataset and the Micromass dataset, and running Optimal-
SPCA with k = 5 on each problem. We terminated the algorithm after five hours if it had
not completed. In Table 12, we report average results over 100 experiments performed for each
problem size. The columns “Portion Proved in 1h” and “Portion Proved in 5h” document the
percent of experiments in which Optimal-SPCA was able to prove optimality within 1 hour and
5 hours respectively.

Table 12 Optimal-SPCA is able to find optimal solutions and prove optimality in several hours
for the largest real-world problems, and on some data sets converges in even less time.

Time (sec) Time (sec) Portion Portion
to Best to Prove Proved Proved

Dataset Dimensions Solution Optimality in 1h in 5h

cancer 50 1.52 1.57 1.00 1.00
cancer 100 4.25 4.75 1.00 1.00
cancer 250 5.92 41.80 1.00 1.00
cancer 500 7.97 61.27 0.97 0.97
cancer 750 10.29 126.91 0.96 0.96
cancer 1000 15.21 429.44 0.96 0.99
cancer 2500 105.17 751.24 0.91 0.96
cancer 5000 353.47 424.83 0.94 0.94
cancer 10000 1448.80 1595.40 1.00 1.00
micromass 50 0.30 0.32 1.00 1.00
micromass 100 0.09 0.09 1.00 1.00
micromass 250 0.21 0.22 1.00 1.00
micromass 500 0.49 0.58 1.00 1.00
micromass 750 0.85 0.97 1.00 1.00
micromass 1000 1.94 2.11 1.00 1.00

These experiments show that Optimal-SPCA can be used to solve problems and prove op-
timality in most cases for up to 10, 000 dimensions. We also conclude that Optimal-SPCA can
return optimal solutions reliably, even when the algorithm does not have enough time to prove
optimality. This suggests that Optimal-SPCA can be used to great effect even on the largest
problems, generating optimal solutions in short periods of time, even if it cannot quickly pro-
vide a certificate of optimality. In the next section we further explore the quality of solutions
achievable by Optimal-SPCA under short time limits.

5.7 Quality of Feasible Solutions with Early Termination in High Dimensions

As we have seen, Optimal-SPCA typically establishes the correct lower bound long before the
upper bound is tightened. That is, it discovers the optimal solution in much less time than it
takes to prove optimality. Because of this, we have confidence that this algorithm can be used on
even larger data sets, or in more time-constrained applications, simply by setting a time limit and
taking the best solution at the end of that period, instead of running to optimality. Alternatively,
the acceptable optimality gap (the difference between upper and lower bounds) can be widened
to save run-time without sacrificing the quality of the final solution.

As problem sizes scale, many of the methods we have discussed will fail to finish in 1 or even
10 minutes, even with the fewest number of iterations. We will focus our attention on comparing

Certifiably Optimal Sparse Principal Component Analysis 29

our method to Yuan and Zhang [70], which is the fastest of the existing methods and most reliable
at high dimensions. In these experiments, we selected a subset of the variables in the Cancer
data set and ran both Yuan and Zhang and Optimal-SPCA with a time limits of one minute, ten
minutes, and one hour. We reported the algorithms as having tied if they resulted in variances
explained within 0.001% of one another, otherwise we reported which algorithm dominated.

Table 13 Yuan and Zhang and Optimal-SPCA are competitive for finding feasible solutions on
high-dimensional subsets of the Cancer dataset.

Experiments dominated by

Yuan and
dim time (s) Optimal-SPCA Zhang Tie

50 60 0.5% 1.0% 98.5%
100 60 2.5% 2.0% 95.5%
250 60 2.3% 1.0% 96.7%
500 60 1.0% 1.0% 98.0%
750 60 0.8% 0.3% 99.0%

1000 60 0.5% 1.0% 98.5%

50 600 2.0% 1.3% 96.7%
100 600 0.5% 1.0% 98.5%
250 600 1.3% 0.8% 98.0%
500 600 1.0% 0.8% 98.2%
750 600 1.3% 0.5% 98.2%

1000 600 1.3% 0.8% 98.0%

50 3600 1.3% 1.0% 97.7%
100 3600 2.5% 3.0% 94.5%
250 3600 1.5% 0.8% 97.7%
500 3600 1.5% 0.5% 98.0%
750 3600 1.8% 0.8% 97.5%

1000 3600 1.5% 0.8% 97.8%

We see in Table 13 that both methods returned the same result in most cases. The portion of
the time that each algorithm outperformed the another was comparable. This demonstrates that
Optimal-SPCA, in addition to providing provable optimality in the long-run, provides results
through the early stopping heuristic that are competitive with even the fastest algorithms at
large scale.

5.8 Conclusions for Computation

In these experiments, we have shown that Optimal-SPCA, uniquely among SPCA algorithms,
provides the provably optimal solution to the problem in finite time. By tuning the algorithm’s
parameters to suit the problem and experimental priorities, Optimal-SPCA is competitive with
existing algorithms in run-time. For large-scale problems where many methods fail to find a
solution in tractable time, an early-terminated Optimal-SPCA offers solutions typically of equal
or higher quality than the most scalable methods.

We believe these experiments demonstrate that Optimal-SPCA is suitable for general use on
both small and large scale problems, produces similar or superior solutions to other methods,
and is the only method guaranteed to return optimal solutions in finite time.

30 Lauren Berk, Dimitris Bertsimas

6 Conclusions

In this paper, we have derived an algorithm, or rather a class of algorithms, for solving the sparse
principal component analysis problem to optimality. The algorithm proves optimality and allows
direct control of sparsity, while remaining computationally tractable for large problems. There are
many possibilities for computational improvements to these algorithms. It is possible that more
careful storage and accounting of existing nodes, reuse of eigenvalues found in the tree as warm
starts for lower nodes, and other ideas can continue to reduce run-times and make a branch-and-
bound approach even more appealing for solving SPCA. Generally, this work demonstrates the
applicability of discrete optimization techniques to problems in statistics and machine learning
that have historically and primarily been tackled using continuous optimization techniques. This
paper adds to a growing number of works that provide tractable discrete optimization approaches
to machine learning problems and improve solution quality over existing methods.

Certifiably Optimal Sparse Principal Component Analysis 31

References

1. Amini, A.A., Wainwright, M.J.: High-dimensional analysis of semidefinite relaxations for sparse principal
components. In: IEEE International Symposium on Information Theory, pp. 2454–2458. IEEE (2008)

2. Asteris, M., Papailiopoulos, D., Kyrillidis, A., Dimakis, A.G.: Sparse PCA via bipartite matchings. In:
Advances in Neural Information Processing Systems, pp. 766–774 (2015)

3. Bair, E., Hastie, T., Paul, D., Tibshirani, R.: Prediction by supervised principal components. Journal of the
American Statistical Association 101(473), 119–137 (2006)

4. Beck, A., Vaisbourd, Y.: The sparse principal component analysis problem: Optimality conditions and algo-
rithms. Journal of Optimization Theory and Applications 170(1), 119–143 (2016)

5. Bennett, K.P., Parrado-Hernández, E.: The interplay of optimization and machine learning research. Journal
of Machine Learning Research 7(Jul), 1265–1281 (2006)

6. Bertsimas, D., Copenhaver, M.S.: Characterization of the equivalence of robustification and regularization in
linear and matrix regression. European Journal of Operational Research (2017)

7. Bertsimas, D., Copenhaver, M.S., Mazumder, R.: Certifiably optimal low rank factor analysis. Journal of
Machine Learning Research 18(29), 1–53 (2017)

8. Bertsimas, D., Dunn, J.: Optimal classification trees. Machine Learning pp. 1–44 (2017)
9. Bertsimas, D., King, A.: An algorithmic approach to linear regression. Operations Research 64(1), 2–16

(2016)
10. Bertsimas, D., King, A., Mazumder, R., et al.: Best subset selection via a modern optimization lens. The

Annals of Statistics 44(2), 813–852 (2016)
11. Bertsimas, D., Shioda, R.: Classification and regression via integer optimization. Operations Research 55(2),

252–271 (2007)
12. Bixby, R.E.: A brief history of linear and mixed-integer programming computation. Documenta Mathematica

pp. 107–121 (2012)
13. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? Journal of the ACM (JACM)

58(3), 11 (2011)
14. Carrizosa, E., Guerrero, V.: rs-Sparse principal component analysis: A mixed integer nonlinear programming

approach with VNS. Computers & Operations Research 52, 349–354 (2014)
15. Chamberlain, G., Rothschild, M.: Arbitrage, factor structure, and mean-variance analysis on large asset

markets (1982)
16. Chan, S.O., Papailiopoulos, D., Rubinstein, A.: On the worst-case approximability of sparse PCA. arXiv

preprint arXiv:1507.05950 (2015)
17. Chen, Y., Jalali, A., Sanghavi, S., Xu, H.: Clustering partially observed graphs via convex optimization.

Journal of Machine Learning Research 15(1), 2213–2238 (2014)
18. Computing, J.: Julia micro-benchmarks (2018). URL https://julialang.org/benchmarks/

19. d’Aspremont, A., Bach, F., Ghaoui, L.E.: Optimal solutions for sparse principal component analysis. Journal
of Machine Learning Research 9(Jul), 1269–1294 (2008)

20. d’Aspremont, A., El Ghaoui, L., Jordan, M.I., Lanckriet, G.R.: A direct formulation for sparse PCA using
semidefinite programming. SIAM Review 49(3), 434–448 (2007)

21. Deluzio, K., Astephen, J.: Biomechanical features of gait waveform data associated with knee osteoarthritis:
an application of principal component analysis. Gait & posture 25(1), 86–93 (2007)

22. Ding, C., He, X.: K-means clustering via principal component analysis. In: Proceedings of the twenty-first
international conference on Machine learning, p. 29. ACM (2004)

23. Du, Q., Fowler, J.E.: Hyperspectral image compression using jpeg2000 and principal component analysis.
IEEE Geoscience and Remote sensing letters 4(2), 201–205 (2007)

24. Dunning, I., Huchette, J., Lubin, M.: JuMP: A modeling language for mathematical optimization. SIAM
Review 59(2), 295–320 (2017). DOI 10.1137/15M1020575

25. Gurobi Optimization Inc.: Gurobi 7.0 performance benchmarks. http://www.gurobi.com/pdfs/benchmarks.

pdf (2015). Accessed 17 December 2016
26. Gurobi Optimization Inc.: Gurobi optimizer reference manual (2017). URL http://www.gurobi.com

27. Hand, D.J., Daly, F., McConway, K., Lunn, D., Ostrowski, E.: A handbook of small data sets, vol. 1. CRC
Press (1993)

28. Hastie, T., Tibshirani, R., Wainwright, M.: Statistical learning with sparsity: the lasso and generalizations.
CRC press (2015)

29. Hein, M., Bühler, T.: An inverse power method for nonlinear eigenproblems with applications in 1-spectral
clustering and sparse PCA. In: Advances in Neural Information Processing Systems, pp. 847–855 (2010)

30. Hotelling, H.: Relations between two sets of variates. Biometrika 28(3/4), 321–377 (1936)
31. Hsu, Y.L., Huang, P.Y., Chen, D.T.: Sparse principal component analysis in cancer research. Translational

cancer research 3(3), 182 (2014)
32. IBM: IBM ILOG CPLEX User’s manual (2017). URL https://www-01.ibm.com/software/commerce/

optimization/cplex-optimizer/

https://julialang.org/benchmarks/
http://www.gurobi.com/pdfs/benchmarks.pdf
http://www.gurobi.com/pdfs/benchmarks.pdf
http://www.gurobi.com
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

32 Lauren Berk, Dimitris Bertsimas

33. Iezzoni, A.F., Pritts, M.P.: Applications of principal component analysis to horticultural research. HortScience
26(4), 334–338 (1991)

34. Iguchi, T., Mixon, D.G., Peterson, J., Villar, S.: Probably certifiably correct k-means clustering. Mathematical
Programming 165(2), 605–642 (2017)

35. Jeffers, J.N.: Two case studies in the application of principal component analysis. Applied Statistics pp.
225–236 (1967)

36. Jolliffe, I.T.: Rotation of principal components: choice of normalization constraints. Journal of Applied
Statistics 22(1), 29–35 (1995)

37. Jolliffe, I.T.: Principal component analysis. Wiley Online Library (2002)
38. Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component technique based on the LASSO.

Journal of Computational and Graphical Statistics 12(3), 531–547 (2003)
39. Journée, M., Nesterov, Y., Richtárik, P., Sepulchre, R.: Generalized power method for sparse principal com-

ponent analysis. The Journal of Machine Learning Research 11, 517–553 (2010)
40. Kaiser, H.F.: The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3), 187–200

(1958)
41. Kumar, V., Kanal, L.N.: Parallel branch-and-bound formulations for and/or tree search. IEEE transactions

on pattern analysis and machine intelligence 42(6), 768–778 (1984)
42. Labib, K., Vemuri, V.R.: An application of principal component analysis to the detection and visualization of

computer network attacks. Annales des Telecommunications/Annals of Telecommunications 61(1-2), 218–234
(2006)

43. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica:
Journal of the Econometric Society pp. 497–520 (1960)

44. Lee, S., Epstein, M.P., Duncan, R., Lin, X.: Sparse principal component analysis for identifying ancestry-
informative markers in genome-wide association studies. Genetic epidemiology 36(4), 293–302 (2012)

45. Lee, Y.K., Lee, E.R., Park, B.U.: Principal component analysis in very high-dimensional spaces. Statistica
Sinica pp. 933–956 (2012)

46. Leng, C., Wang, H.: On general adaptive sparse principal component analysis. Journal of Computational and
Graphical Statistics 18(1), 201–215 (2009)

47. Li, G.J., Wah, B.W.: Coping with anomalies in parallel branch-and-bound algorithms. IEEE Transactions on
Computers 100(6), 568–573 (1986)

48. Lichman, M.: UCI machine learning repository (2013). URL http://archive.ics.uci.edu/ml

49. Lougee-Heimer, R.: The common optimization interface for operations research. IBM Journal of Research
and Development 47(1), 57–66 (2003)

50. Luss, R., Teboulle, M.: Conditional gradient algorithms for rank-one matrix approximations with a sparsity
constraint. SIAM Review 55(1), 65–98 (2013)

51. Ma, Z., et al.: Sparse principal component analysis and iterative thresholding. The Annals of Statistics 41(2),
772–801 (2013)

52. Mangasarian, O.L.: Exact 1-norm support vector machines via unconstrained convex differentiable minimiza-
tion. Journal of Machine Learning Research 7(Jul), 1517–1530 (2006)

53. Mazumder, R., Radchenko, P., Dedieu, A.: Subset selection with shrinkage: Sparse linear modeling when the
snr is low. arXiv preprint arXiv:1708.03288 (2017)

54. Moghaddam, B., Weiss, Y., Avidan, S.: Spectral bounds for sparse PCA: Exact and greedy algorithms. In:
Advances in neural information processing systems, pp. 915–922 (2005)

55. Nemhauser, G.L.: Integer Programming: the Global Impact. Presented at EURO, INFORMS, Rome,
Italy, 2013. http://euro-informs2013.org/data/http_/euro2013.org/wp-content/uploads/nemhauser.pdf
(2013). Accessed 9 September 2015

56. Papailiopoulos, D.S., Dimakis, A.G., Korokythakis, S.: Sparse PCA through low-rank approximations. In:
ICML (3), pp. 747–755 (2013)

57. Platt, J.C.: 12 fast training of support vector machines using sequential minimal optimization. Advances in
kernel methods pp. 185–208 (1999)

58. Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., Reich, D.: Principal components
analysis corrects for stratification in genome-wide association studies. Nature genetics 38(8), 904–909 (2006)

59. Richman, M.B.: Rotation of principal components. Journal of climatology 6(3), 293–335 (1986)
60. Richtárik, P., Takáč, M., Ahipaşaoğlu, S.D.: Alternating maximization: unifying framework for 8 sparse PCA

formulations and efficient parallel codes. arXiv preprint arXiv:1212.4137 (2012)
61. Scott, D.S.: On the accuracy of the Gerschgorin circle theorem for bounding the spread of a real symmetric

matrix. Linear algebra and its applications 65, 147–155 (1985)
62. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In:

Advances in neural information processing systems, pp. 2951–2959 (2012)
63. Sra, S., Nowozin, S., Wright, S.J.: Optimization for machine learning. Mit Press (2012)
64. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.

Series B (Methodological) pp. 267–288 (1996)

http://archive.ics.uci.edu/ml
http://euro-informs2013.org/data/http_/euro2013.org/wp-content/uploads/nemhauser.pdf

Certifiably Optimal Sparse Principal Component Analysis 33

65. Top500 Supercomputer Sites: Performance development. http://www.top500.org/statistics/perfdevel/

(2016). Accessed 17 December 2016
66. Wilkinson, J.H.: The algebraic eigenvalue problem, vol. 87. Clarendon Press Oxford (1965)
67. Witten, D., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with applications to sparse principal

components and canonical correlation analysis. Biostatistics 10(3), 515–534 (2009)
68. Witten, D.M., Tibshirani, R.J.: Extensions of sparse canonical correlation analysis with applications to ge-

nomic data. Statistical applications in genetics and molecular biology 8(1), 1–27 (2009)
69. Yanover, C., Meltzer, T., Weiss, Y.: Linear programming relaxations and belief propagation–an empirical

study. Journal of Machine Learning Research 7(Sep), 1887–1907 (2006)
70. Yuan, X.T., Zhang, T.: Truncated power method for sparse eigenvalue problems. Journal of Machine Learning

Research 14(Apr), 899–925 (2013)
71. Zeng, Z.Q., Yu, H.B., Xu, H.R., Xie, Y.Q., Gao, J.: Fast training support vector machines using parallel

sequential minimal optimization. In: Intelligent System and Knowledge Engineering, 2008. ISKE 2008. 3rd
International Conference on, vol. 1, pp. 997–1001. IEEE (2008)

72. Zhang, Y., Ghaoui, L.E.: Large-scale sparse principal component analysis with application to text data. In:
Advances in Neural Information Processing Systems, pp. 532–539 (2011)

73. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. Journal of Computational and
Graphical Statistics 15(2), 265–286 (2006)

A Overview of the Optimal-SPCA implementation in Julia

The linked repository contains an implementation of Optimal-SPCA written in Julia 0.6.0. The latest version of
this software is available on GitHub at https://github.com/lauren897/Optimal-SPCA. The Algorithm directory
contains the Julia files that comprise the algorithm, and the Data directory contains an example dataset.

In order to run this software, you must install a recent version of Julia from http://julialang.org/downloads/.
The most recent version of Julia at the time this code was last tested before publication was Julia 0.6.0.

Two packages must be installed in Julia before the code can be run. These packages are DataFrames, and
StatsBase. They can be added by running Pkg.add("DataFrames") and Pkg.add("StatsBase") respectively.

At this point, the file test.jl should run successfully. To run the script, navigate to the Algorithm directory,
and run include("test.jl"). The script will run Optimal-SPCA on the Pitprops dataset, and then generate
an additional random problem and run the algorithm on that problem. It will then identify the first few sparse
principal components using Optimal-SPCA sequentially and reporting the cumulative variance explained.

The key method used in the algorithm is is branchAndBound. It takes two required arguments: prob, and k.
The variable prob uses a custom type that holds the original data as well as the covariance matrix associated
with the problem. (If data is not available, the Cholesky factorization of the covariance matrix will suffice.) The
data is presented in an m × n array, with m data points in n dimensions. The corresponding covariance matrix
is n× n . The parameter k is a positive integer less than n and represents the desired sparsity.

By default, branchAndBound solves the problem and returns the objective function value, solution vector, and
a few performance metrics, including time elapsed and the number of nodes explored. There are many optional
parameters, some of which are discussed in detail in our paper. Other parameters have to do with technical
aspects of the algorithm, like convergence criteria and resizing arrays. These are commented on in detail in the
branchAndBound.jl file where the function is defined.

http://www.top500.org/statistics/perfdevel/
https://github.com/lauren897/Optimal-SPCA
http://julialang.org/downloads/

	Introduction
	A Branch-and-Bound Algorithm for SPCA
	Linear Algebra Bounds for SPCA with Partially-Determined Support
	Computational Tactics
	Computational Results
	Conclusions
	Overview of the Optimal-SPCA implementation in Julia

