
MIT Open Access Articles

Simplified vehicle–bridge interaction for medium 
to long-span bridges subject to random traffic load

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: https://doi.org/10.1007/s13349-020-00413-4

Publisher: Springer Berlin Heidelberg

Persistent URL: https://hdl.handle.net/1721.1/131568

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/131568


Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature.

Simplified vehicle–bridge interaction for medium to long-span
bridges subject to random traffic load

Cite this article as: Soheil S. Eshkevari, Thomas J. Matarazzo and Shamim N. Pakzad,
Simplified vehicle–bridge interaction for medium to long-span bridges subject to random
traffic load, Journal of Civil Structural Health Monitoring https://doi.org/10.1007/s13349-
020-00413-4

This Author Accepted Manuscript is a PDF file of an unedited peer-reviewed manuscript that
has been accepted for publication but has not been copyedited or corrected. The official version
of record that is published in the journal is kept up to date and so may therefore differ from this
version.

Terms of use and reuse: academic research for non-commercial purposes, see here for full
terms. https://www.springer.com/aam-terms-v1

https://doi.org/10.1007/s13349-020-00413-4
https://doi.org/10.1007/s13349-020-00413-4
https://www.springer.com/aam-terms-v1


Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature.

Simplified Vehicle-Bridge Interaction for Medium to
Long-span Bridges Subject to Random Traffic Load

A Preprint

Soheil S. Eshkevari∗
Department of Civil and Environmental Engineering

Lehigh University
Bethlehem, PA 18015
ses516@lehigh.edu

Thomas J. Matarazzo†
Senseable City Lab

Massachusetts Institute of Technology
Cambridge, MA 02139
Information Science

Cornell Tech
New York, NY 10044
tomjmat@mit.edu

Shamim N. Pakzad
Department of Civil and Environmental Engineering

Lehigh University
Bethlehem, PA 18015
pakzad@lehigh.edu

May 26, 2020

Abstract

This study introduces a simplified model for bridge-vehicle interaction for medium- to long-span
bridges subject to random traffic loads. Previous studies have focused on calculating the exact
response of the vehicle or the bridge based on an interaction force derived from the compatibility
between two systems. This process requires multiple iterations per time step per vehicle until the
compatibility is reached. When a network of vehicles is considered, the compatibility equation turns
to a system of coupled equations which dramatically increases the complexity of the convergence
process. In this study, we simplify the problem into two sub-problems that are decoupled: (a) a
bridge subject to a random excitation, and (b) individual sensing agents that are subject to linear
superposition of the bridge response and the road profile roughness. The study provides sufficient
evidences to confirm that the simulation approach is valid with minimal error when the bridge span
is medium to long, and the spatio-temporal load pattern can be modeled as random white noise. The
latter assumption is verified using a comparative study on a random traffic network. Quantitatively,
the proposed approach is over 1,000 times more computationally efficient when compared to the
conventional approach for a 500 m long bridge, with response prediction errors below 0.1%.

1 Introduction

The problem of vehicle-bridge interaction (VBI) has been studied widely over recent years due to the broad applications
spanning from fatigue analysis and bridge mobile sensing [Chen and Cai, 2007, Zhu and Law, 2015, 2016, Yang and
Yang, 2018, Sadeghi Eshkevari et al., 2020a] to ride comfort and safety analysis [Zhou and Chen, 2016, Camara et al.,
2019]. The complexity of the problem has resulted in a reliance on numerical modeling to evaluate research hypotheses
[Yang et al., 2004a, Malekjafarian and OBrien, 2014, Sadeghi Eshkevari et al., 2020b]. Consequently, today various
numerical tools for VBI modeling are available, yet the majority are geared towards problems concerning individual
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vehicle dynamics, e.g., a single vehicle’s interaction with a simple bridge. Recent applications on vehicle fleets and
crowdsensing methods [O’Keeffe et al., 2019, Matarazzo et al., 2018] have provided insight into the wealth of SHM
information that can be produced by ubiquitous mobile sensors. Such large-scale analyses call for interaction methods
that can incorporate vehicular networks and everyday traffic scenarios, and are computationally efficient.

1.1 Crowdsensing the Built Environment with Mobile Sensors

The growing adaptation of internet of things technologies and connected devices in smart cities suggest a new sensing
paradigm in which new information is regularly gathered from the crowd, e.g., individual smartphones, vehicular sensor
networks, etc. Calabrese et al. [2010] proposed a real-time data aggregation solution for constructing a dynamic urban
map of large cities using crowdsourced smartphone data. Wang et al. [2012] quantified traffic patterns and proposed
management applications based on large-scale mobile phone data. Yu et al. [2015] successfully utilized smartphone
sensors for structural health monitoring application due to its availability and inexpensive data acquisition. Feng et al.
[2015], Ozer et al. [2015] also suggested novel applications in post-event bridge vibration analysis using stationary
smartphones as sensors.

a) Real-world scenario: a bridge subject
to traffic load is being sensed by one 
sensing agent.

b) Equivalent scenario: random traffic 
load produces a response which is 
equivalent to bridge under ambient
random load.

Sensing Agent

Sensing Agent

Applied Load:

Figure 1: Crowdsourcing framework. The sensing agent is one (or more) particular vehicle within a large pool of
crossing vehicles. The problem is equivalent to a case in which the bridge is subject to ambient random load while
being scanned by the sensing agent.

Crowdsensing inherently relies onmobile sensor networks, which is an emerging data acquisition technique in structural
healthmonitoring (SHM). Historically, observations of structural dynamics have been based onmeasurements collected
by fixed sensor networks. Alternatively, Figure 1 illustrates how a vehicle can act as a sensing agent amongst bridge
traffic. Matarazzo and Pakzad [2016] presented the STRIDE modal identification algorithm and verified that mobile
sensor datawas suitable for a comprehensivemodal identification (frequencies, damping ratios, andmode shapes). They
proposed the truncated physical state-space model as an efficient approach for representing time-space observations
from a mobile sensor network. Later, Matarazzo and Pakzad [2018] presented an identification algorithm called
STRIDEX to identify truncated physical model parameters, which enabled efficient and scalable modal identification
using mobile sensors; the study showed that in an experimental case, one mobile sensor provided a mode shape density
comparable to 120 fixed sensors. As a versatile alternative for STRIDEX, Sadeghi Eshkevari et al. [Sadeghi Eshkevari
et al., 2020b, Eshkevari and Pakzad, 2020] proposed a method called MIMC to consider vibration data collected
by multiple mobile sensors with uncontrolled motions which successfully identified comprehensive bridge modal
properties in different simulated applications.

The idea of smartphone data crowdsourcing for bridge system identification has been recently tested on real bridges.
Matarazzo et al. [2018] presented a real-world application of mobile sensors, in the form of smartphones in moving
vehicles. Significant indicators of the first three modal frequencies of the Harvard Bridge were found by aggregating
data from about forty bridge trips. This study shows promising results for the use of crowdsensing in bridge health
monitoring. Yet further development is needed, in particular, analytical and experimental studies on mobile sensing
using data crowdsourcing, to attain the sophistication and robustness of the traditional modal identification methods
based on fixed sensor data.

1.2 Vehicle-Bridge Interaction Modeling

More practical approaches for bridge health monitoring such as crowdsensing require a computationally scalable
numerical framework. A comprehensive literature review of common VBI simulation approaches is provided by
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González [2010]. Initially, the vehicle-bridge interaction was modeled using 1D continuous beam models subject
to simple moving loads [Frỳba, 2013] which is solvable in closed-form. By further development of computers and
increasing use of the finite element method, the problem was reframed as a multi degrees of freedom (MDOF) system
for the bridge interacting with simplified dynamical models of the vehicle. This approach has been broadly adopted
for VBI modeling, mostly for short to mid-span bridges subject to a very limited number of vehicles with controlled
motions. In this approach, once the models for the vehicle and the bridge are selected (based on required accuracy and
fidelity), the dynamic equations of each component are separately built, in which the interaction forces between the
vehicle and the bridge are coupled to the both sets of equations. Therefore, a numerical solver is required to solve the
problem either iteratively or as a coupled system of equations.

The underlying principle of the approach, that is the interactive dynamic force acting between the vehicle and the
bridge, has remained consistent throughout the literature. The uncoupled iterative algorithm is the most common
method for VBI problems [Lin and Yang, 2005, Kim and Kawatani, 2008, OBrien et al., 2010, González et al., 2012,
Yang and Yang, 2018]. Various versions of the algorithm have been developed based on the problem requirements, e.g.,
different vehicle models, single DOF, quarter-car, or half-car models as well as different bridge models with different
fidelity levels (such as 2D, 3D, with or without material or geometrical nonlinearities). However, in the majority of
these studies, a short- to mid-span bridge has been considered. As mentioned in González [2010], when the vehicle
mass is negligible compared to the bridge mass (which is the case for medium to long bridges) and a smooth pavement
is assumed, the dynamic model of the vehicle can be replaced with a moving mass model that simplifies the simulation
process. Road irregularities increase the contribution of vehicle dynamics to the interaction force, which emphasize
on the importance of a fully coupled model.

In the uncoupled iterative approach, the bridge model is analyzed multiple times (once at the beginning, and at least
once for each time step inside the compatibility convergence loop). In addition, as the bridge dimension grows, an
accurate bridge model requires more degrees of freedom, which increases the computational costs. A limited number
of studies have considered long-span bridges along with a dense vehicle network for the simulation purpose. Camara
et al. [2019] recently modeled wind-bridge-vehicle interaction using the uncoupled iterative approach. The study could
accurately model the system by adopting complex models for each component. The complexity of the approach implies
that it requires great efforts to built such a high fidelity model, which may neither be a feasible nor cost effective
solution for crowdsensing or other crude vehicle-bridge interacting scenarios. Moreover, bridge standards recommend
lower dynamic factors for live loads in medium to long bridges compared to short bridges [AASHTO, 2008]; which
means that the VBI interaction force is less dynamic and more similar to a constant moving load. These challenges
and specifications suggest that it may not be required to use rigorous iterative solutions for VBI simulation of medium
to long bridges subject to high traffic loads. This study intends to demonstrate that a simplified simulation approach
inspired by the conventional uncoupled iterative algorithm [González, 2010] is able to simulate VBI problems with
high accuracy and dramatically less computational effort.

Figure 1 shows how the same notion is applicable in the VBI simulation. This figure demonstrates a scenario of interest
in which the bridge is subject to a random traffic network. The objective is to simulate the system and finally calculate
the collected response of the sensing agent. In a brute-force approach, the spatial coordinates andmechanical properties
of every single vehicle in the network are required to fully determine the complex model. Such an accurate information
setting is quite impractical and unnecessary. Alternatively, one can simulate the collective loading effect of the vehicle
network (the sensing agent excluded) by ambient random load (as shown in Figure 1 - b). If the spatio-temporal ambient
random load is represented as a matrix F0, the conventional algorithm for simulating the VBI problem is as shown in
Algorithm 1.

In this algorithm, Mbrg,Cbrg, Kbrg and Mvcl,Cvcl, Kvcl characterize mechanical properties of the bridge and the
vehicle, respectively. rgh is a vector of roughness profile elevations at bridge DOFs. The algorithm performs the
following steps:

1. The bridge is subjected to random ambient load F0 at different physical locations.

2. A vehicle starts moving from one side of the bridge and at each time instance, the bridge response (displace-
ment) from the previous step in addition to the local roughness intensity (i.e., rgh(t)) is input to the vehicle
system.

3. The vehicle response to the applied force from the previous step is then analyzed using a Matlab ordinary
differential equation (ODE) solver to calculate its displacement response (line 9 in Algorithm 1). Based
on this response, the interacting force between the sensing vehicle and the bridge is calculated as: Ft =
−Kvcl[2](yvcl(t) − wv) − Cvcl[2](y′vcl(t) − wv′) (where [2] stands for the 2nd DOF of the vehicle, i.e., the
tire). Note that if Ft < 0, it is replaced with zero since it means that the vehicle lost its contact.
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Algorithm 1 Conventional iterative VBI simulation.
1: Input: Mbrg,Cbrg, Kbrg,Mvcl,Cvcl, Kvcl, F0, rgh
2: Ybrg = Newmarkβ(Mbrg,Cbrg, Kbrg, F0)
3: for t = 1, · · · , T do
4: Initiate r := 0, rn := some large value
5: while abs(r − rn) < threshold do
6: r = Ybrg(t)
7: wv = rgh(t) + r
8: wv′ = rgh′(t) + Y ′

brg
(t)

9: yvcl(t) = ODE45(Mvcl,Cvcl, Kvcl,wv,wv
′)

10: Ft = −Kvcl[2] ∗ (yvcl(t) − wv) − Cvcl[2] ∗ (y′vcl(t) − wv′)
11: R = −Mvclg − Ft
12: F = F0
13: F(t) = R
14: Ybrg = Newmarkβ(Mbrg,Cbrg, Kbrg, F)
15: rn = Ybrg(t)
16: F0 = F
17: Return Ybrg, yvcl

4. The interaction force from the vehicle to the bridge Ft upgrades the original loading matrix F0 to produce F.
At this location, the bridge is required to be analyzed again with the updated force matrix. Here, Newmark-β
method is used for bridge dynamics analysis [Newmark et al., 1959].

5. If the difference between the updated bridge displacement and the one that was applied in Step 2 is higher than
a predefined threshold, the process should be repeated from Step 2 onward by the updated bridge response.
Otherwise, the vehicle moves to the next DOF on the bridge.

Step 5 in this process (i.e., the while loop in Algorithm 1) is expensive since it results in multiple full bridge analysis
iterations within a time step. This is quite significant when the bridge is discretized with a large number of DOFs or
is modeled with nonlinear elements. Figure 2 summarizes the approaches one can take for calculation of the sensing
vehicle’s measurement. In case (a), the brute-force approach is shown in which all the vehicles are coupled with the
bridge.

1.3 Simplified Model

This study proposes a fast and accurate simulation approach for VBI problems in which: (1) the bridge span is medium
to long and it is flexible, and (2) the vehicle network load is modeled as a random spatio-temporal load over the bridge
span. The second condition refers to the ambient vibrations caused by a network of moving vehicles [De Roeck et al.,
2000, Ren et al., 2004, Ren and Zong, 2004, Pakzad et al., 2008].

Figure 2b shows a simplified representation of Figure 1a, in which the traffic network (the sensing agent excluded)
is replaced with an applied ambient white noise load while the sensing agent is still interacting with the bridge in a
coupled fashion. While this approach is significantly computationally less expensive, the coupled system still requires
iterations to reach the compatibility between the vehicle and the bridge at each time step. In this paper, we present an
approach in which the compatibility calculations between two interacting components are not iterative, as shown in
Figure 2c. In this approach, we posit that the dynamical effect of an individual sensing agent on a bridge response is
negligible when the bridge is medium to long and the cumulative effect of other loads (the individual vehicle excluded)
is significantly greater than a single vehicle. The approach is presented in Algorithm 2:

Algorithm 2 Simplified non-iterative VBI simulation.
1: Input: Mbrg,Cbrg, Kbrg,Mvcl,Cvcl, Kvcl, F0, rgh
2: Ybrg = Newmarkβ(Mbrg,Cbrg, Kbrg, F0)
3: for t = 1, · · · , T do
4: r = Ybrg(t)
5: wv = rgh(t) + r
6: wv′ = rgh′(t) + Y ′

brg
(t)

7: yvcl(t) = ODE45(Mvcl,Cvcl, Kvcl,wv,wv
′)

8: Return Ybrg, yvcl

4



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature.

A preprint - May 26, 2020

In this algorithm, the bridge is only analyzed once at the beginning under F0. The bridge response is then linearly
superimposed with rgh and then, applied to the vehicle dynamical model. In fact, the approach is similar to the
constant force method proposed in González [2010]. However, in our approach the vehicle dynamics is incorporated
in the vehicle response, which was not the case in a moving mass model. The approach has not been proposed or
utilized previously; yet needs to be fully justified and evaluated. In the rest of this paper, we first propose a theoretical
proof on a simplified case of the coupled VBI problem. This part intends to demonstrate that bridge to vehicle mass
and stiffness ratios are the keys to determine the coupling degree. In the next step, VBI responses of multiple bridges
with different characteristics and vehicles are numerically simulated using coupled (i.e., conventional) and uncoupled
(i.e., simplified) procedures and results are compared. Discussions and comparison of the numerical results are also
supplemented in the last sections.

a) Simulation approach 1:
consider a fully coupled system consisting
of multiple vehicles interacting with bridge.

b) Simulation approach 2:
consider a fully coupled system consisting 
of a single vehicle (sensing agent) interact-
-ing with bridge.

c) Simulation approach 3:
consider a decoupled system consisting of 
a bridge subject to ambient load. The bri-
-ge response is then input to the sensing 
agent system.

Sensing Agent

Sensing Agent

Applied Load:

Sensing Agent:

Applied Load:

Bridge Response (ubrg):

Vehicle Response

ubrg

Figure 2: Simulation approaches: a) a complex and coupled system of a vehicle network interacting with a bridge; b) a
coupled system of the sensing vehicle interacting with the bridge. The bridge is separately subject to an ambient load
to capture the vehicle network’s load; c) the proposed approach in which the bridge is only subject to the ambient load.
The response is then applied to an uncoupled model of the sensing vehicle to produce the vehicle output.

2 Theoretical Approach

In this section, a closed-form theoretical proof for validity of the simplified model is presented. Generally, vehicle-
bridge interaction is a complex model to be solved in closed-form, however, simplified models can be used for proof of
concept [Frỳba, 2013, Yang et al., 2004a]. The objective here is to show that a coupled VBI system subject to external
stochastic excitations produces bridge and vehicle responses that are very close to the responses of an uncoupled
system, especially if the bridge is long and heavy. For this purpose, the mass and spring system shown in Figure 3
is considered in which the vehicle is located at the mid-span of the beam with no motion and in full interaction (no
damping is considered for simplicity). The random spatio-temporal load of the bridge is also lumped into an effective
point load that is applied to the bridge mass. In particular, the proof intends to show that the coupling of the bridge
response xb to the vehicle interaction decays as the bridge dimensions grow.

From Figure 3, the beam is modeled as a unidirectional spring, while the vehicle is a single DOF system. The bridge
spring represents the first modal stiffness of the beam. The bridge mass is lumped at the contact point of the two
components. The setup constitutes a 2 DOF coupled system with the equation of motion shown in Equation 1. Using
this simplified setup, both responses are calculated in closed-form:

5
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f(t)
kv

kb

mb

mv

Figure 3: schematic of the coupled setup

[
mb 0
0 mv

] [ Üxb
Üxv

]
+

[
kb + kv −kv
−kv kv

] [
xb
xv

]
=

[
f (t)
0

]
(1)

wheremb andmv are the bridge and vehiclemasses, respectively; Also, kb and kv are the stiffnesses for two components.
For further calculations, it is assumed that mb = αmv = αm and kb = βkv = βk in which α and β are bridge to vehicle
mass and stiffness ratios, respectively, and α > β. Therefore, using relative mass and stiffness ratios, Equation 1 can
be states as:

[
αm 0
0 m

]
ÜX +

[(1 + β)k −k
−k k

]
X =

[
f (t)
0

]
(2)

in which X = [xb; xv] contains the bridge and vehicle responses, respectively. In order to solve this equation for X, the
first step is to decouple it by using modal transformation using eigenvalue analysis shown in Equation 3.

det
((β + 1)k − αmω2 −k

−k k − mω2

)
= ((β + 1)k − αmω2)(k − mω2) − k2 = 0 (3)

By assuming mω2

k = λ and dividing both sides by k2 we have:

(β + 1) − (β + 1)λ − αλ + αλ2 − 1 = 0

λ =
α + β ±

√
(α + β + 1)2 − 4αβ

2α
(4)

One can simply assume that α + β + 1 ≈ α + β since ratios are significantly large (especially the mass ratio α)
when considering commercial vehicles and mid- to long-span bridges. This helps further simplifications as shown in
Equation 5:

λ =
α + β ±

√
(α + β)2 − 4αβ
2α

=
α + β ± (α − β)

2α

λ1 = 1⇒ ω1 =

√
k
m
= ωv

λ2 =
β

α
⇒ ω2 =

√
β

α
ωv (5)

It is worth noting that from Equation 5, one of the natural frequencies is equal to the vehicle’s fundamental frequency.
Once the eigenvalues are found, eigenvectors can be derived to allow for modal superposition. For brevity, this
calculation is summarized and the final mode shapes are presented in Equation 6.

Φ =

[
1

β−α+1
α−β
α

1 1

]
=

[
φ11 φ12
φ21 φ22

]
(6)
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In Equation 1, f (t) is the applied load function, which is ultimately assumed as an ambient white noise for a random
traffic network (i.e., Gaussian white noise ∼ N(0, σ2)). In order to calculate the response of the system to such loads,
one approach is to convert it to a sum of sinusoidal waves using Fourier transform. For a white noise, the spectral density
function is a continuous function of a constant value (the value equals σ2). Therefore, for simplicity, the response
of the system subject to a single sinusoidal load is found in closed-form and then, the effect of different frequencies
is evaluated by parametric study to determine whether the same conclusion is valid over the entire frequency band.
Therefore, f (t) = Aesin(ωet) is defined, in which Ae and ωe are the sinusoidal amplitude and frequency, respectively.
To convert the equation of motion shown in Equation 1 to modal coordinates, we premultiply both sides by ΦT . The
modal force vector and modal stiffness are then calculated as shown in Equation 7:

ΦT F(t) =
[

1
β−α+1 1 − β

α

1 1

]T [
Aesin(wet)

0

]
=

[
Ae

β−α+1 sin(wet)
Ae (α−β)

α sin(wet)

]

K̂ = ΦT KΦ =
[
k̂1 0
0 k̂2

]
=


[

α
(β−α+1)2 +

α−β−2
β−α+1

]
k 0

0
[
β3+(1−2α)β2+βα2

α2

]
k


xb = φ11q1 + φ21q2

m̂1 Üq1 + k̂1q1 =
Ae

β − α + 1
sin(wet)

m̂2 Üq2 + k̂2q2 =
Ae(α − β)

α
sin(wet) (7)

The steady-state responses of the single-degree of freedom systems subject to a harmonic load have the following form
shown in Equation 8:

q1(t) =
Ae

β−α+1

k̂1

1
1 − γ2 .sin(ωet)

q2(t) =
Ae (α−β)

α

k̂2

1
1 − α

β γ
2 .sin(ωet) (8)

in which γ = ωe/ωv . For a unit amplitude of the external load (i.e., Ae = 1) and by substitution of stiffness from
Equation 7 to Equations 8, the harmonic amplitudes are calculated as follows:

amp(q1) = β − α + 1
(γ2 − 1)(α2 − 2αβ − 4α + β2 + 3β + 2)k

amp(q2) = α(α − β)
(β − αγ2)(α2 − 2αβ + β2 + β)k (9)

Finally, by modal superposition of two modal responses, the amplitude of the total harmonic vibration of the bridge is
calculated as shown in Equation 10:

amp(xb) = φ11 × amp(q1) + φ21 × amp(q2) =
1
k

[
1

(γ2 − 1)(α2 − 2αβ − 4α + β2 + 3β + 2) +
(α − β)2

(β − αγ2)(α2 − 2αβ + β2 + β)

]
(10)

So far, the bridge response from the fully coupled setup is derived. In order to find the bridge response using the
second approach (i.e., the simplified model), the setup shown in Figure 4 is assumed. The bridge model is individually
subject to the external load and responds to it. The response is then applied to an isolated vehicle model to produce
the vehicle response. The closed-form solution for the bridge response in such an uncoupled setup is trivial and shown
in Equation 11.

7
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f(t)

kb

mb

kv

mv

step 1 step 2

xb(t)

Figure 4: schematic of the uncoupled setup

mb Üxb + kbxb = Aesin(ωet)
xb =

Ae

kb
.

1

1 − ωe

ωb

2 .sin(ωet)

amp(xb) = 1
k(β + αγ2) (11)

Once Equations 10 and 11 are derived, the parametric study can take place. Both equations are functions of α, β, and
γ. By plotting the response error between these two solutions for different ranges of these three parameters, the extent
of the error in the simplified decoupled model can be investigated. Intuitively, as the bridge size increases, the stiffness
of the structure decreases (i.e., longer bridges are more flexible), and the mass increases, resulting lower fundamental
frequencies. Themain objective is to observe the sensitivity of the error to the bridge size. Therefore, different mass and
stiffness ratio pairs are plugged into both equations and errors are calculated. In addition, different loading frequencies
are also examined. The mass and stiffness ratios (α and β) used for this purpose range [50 : 10, 000] and [500 : 10],
respectively, modeling short (stiff) bridges to long (flexible) ones. Loading frequencies spread exponentially from
10−3Hz to 103Hz to envelope a sufficiently wide range of loading frequencies. Figure 5 summarizes the outcomes of
the parametric study. Note that the x axis corresponds to different mass and stiffness ratio pairs, which is normalized
to better convey the qualitative aspect of the plot (i.e., 0 is the stiffest bridge while 1 stands for the most flexible one).

Figure 5 demonstrates that based on the closed-form solutions, what would be the extent of error in the simplified
simulation method for different types of bridges. As the bridge size increases, the error between two methods decays
substantially (e.g., below 0.1% error for long bridges). This supports the idea that an uncoupled simplified solution
is accurate enough when the bridge length increases. The figure also shows that there is a range of bridges in which
the error is not negligible (for relatively short bridges the error can be up to 50% when the loading frequency resonate
with the natural frequency of the vehicle). Also notice that the same trend occurs for different loading frequencies,
with maximum error near the vehicle resonance frequency.

In this part, using our simplified model we showed that the uncoupled simulation approach yields accurate results when
compared to the fully coupled approach, especially when the bridge size grows. In the next section, the results from a
more detailed numerical simulation of the vehicle-bridge interaction are presented in order to incorporate other aspects
of the VBI problems, such as vehicle motions and road roughness profile.

3 Numerical Analysis

In this section, the VBI problem is modeled numerically in Matlab and the results are compared with the signals from
the simplified simulation approach. In this numerical case study, six bridges with different span lengths are modeled
in SAP2000 and two simulation approaches are implemented. The exact numerical approach for modeling the bridge
response interacting with a moving vehicle (roughness included) is adopted from González et al. [2012] as presented
in Algorithm 1.

The bridge setup is shown in Figure 6. The span varies from 15 m (very short and stiff bridge) to 500 m (long
and flexible bridge), with mechanical properties shown in Table 1. The bridge is 3D modeled in SAP2000 using
prismatic beams with box cross-sections. Note that the considered single span simply-supported bridge is the use case
for the majority of numerical studies in the VBI community [Yang et al., 2004b, OBrien et al., 2010]. Since one of
the objectives of our paper is to propose a simplified numerical approach for VBI analysis, the same geometry and
boundary condition are considered in the first numerical case study. The reason for a 3D model of the bridge is to have
a physical sense of the dimensions of the deck section and better visualization. The modeling process is as follows:
The bridge geometry and material are defined in the SAP model. The stiffness and mass matrices of the SAP model
are then exported to a MATLAB script within which bridge dynamic analyses as well as vehicle-bridge interactions
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Figure 5: Results of the theoretical approach: parametric study shows the extent of the error for different bridge types
and loading frequencies when using the simplified bridge-vehicle simulation approach.
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Figure 6: Schematic of simulated model - roughness profile is also included

are held. The accuracy of the bridge models is verified by examining bridge natural frequencies. The fundamental
modes in shorter bridges are vertical (longitudinal) while for very long spans, torsional modes dominate. Note that
the torsional modes are not within the scope of this study and are excluded from modal analyses. In this case study,
bridges are all simply-supported; however, a different geometry is evaluated in Section 5. The structural behavior is
assumed linear elastic for consistency with operational modal analysis. The study does not take large deformations
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and nonlinearities into account based on the fact that the method is being proposed for numerical simulation of bridges
under operational mode. In particular, no material nonlinearity is expected here. In terms of geometry nonlinearity,
we expect that it may be effective for very long bridges.

In this study, bridge models are deterministic and no uncertainty for material and geometry is included. In fact, the
study is focused on studying the extent of bridge-vehicle interaction with respect to bridge dimensions and traffic level.
Ni et al. [2019] showed that by incorporating uncertainties in bridge modeling, the modal properties are changed,
however, this variation is dramatically lower for the fundamental modes compared to higher ones. In addition, Yang
and Lin [2005] showed that in a vehicle-bridge interaction scenario, the bridge response is highly dominated by the
first natural mode. Considering these, uncertainty propagation analysis is neglected in this study. The road roughness
profile is adapted according to ISO standard for a road class ’A’ [de Normalización , Ginebra] which is the case for
a well maintained highway road condition. At each time instance, the bridge model is analyzed dynamically using
Newmark-β method using matrices imported from SAP2000. For the vehicle, first a quarter-car model is adopted
with the properties shown in Table 2. This vehicle simulates suspension properties of a commercial vehicle with
high damping and low natural frequency (which are critical factors for a comfortable ride [Milliken et al., 2002]).
The second vehicle is a quarter-car model of a heavy truck adopted from [Harris et al., 2007, Elhattab et al., 2016]
with properties shown in Table 3. The second vehicle is selected to investigate the approximation error of using the
simplified method for heavy sensing agents when the weight is not negligible.

Table 1: Bridge spans and cross-section dimensions
Span length [m] 15m 30m 50m 100m 200m 500m

Outside depth [m] 0.60 1.10 1.60 2.40 3.00 5.00
Outside width [m] 0.3 0.50 1.30 2.00 2.50 4.00
Flange thickness [m] 0.04 0.05 0.10 0.15 0.15 0.50
Web thickness [m] 0.02 0.03 0.05 0.10 0.10 0.25
Fundamental freq. [Hz] 8.03 3.63 2.05 0.75 0.24 0.06

Table 2: Commercial vehicle properties
Property Name Value Units

Unsprung Mass 69.9 Kg
Sprung Mass 466.0 Kg
Tire Damping 0.0 Ns/m
Suspension Damping 2796.0 Ns/m
Tire Stiffness 3043.0 N/m
Suspension Stiffness 290.3 N/m
Fundamental Frequency 1.2 Hz

Table 3: Heavy truck properties
Property Name Value Units

Unsprung Mass 700.0 Kg
Sprung Mass 17,300.0 Kg
Tire Damping 0.0 Ns/m
Suspension Damping 1.0 × 104 Ns/m
Tire Stiffness 1.75 × 106 N/m
Suspension Stiffness 4.0 × 105 N/m
Fundamental Frequency 0.69 Hz

For a fair comparison, the vehicle’s speed is kept constant among all bridge spans (10m/sec). Finally, the traffic
load is modeled as a random ambient load uniformly applied over the span with the amplitude proportional to the
number of vehicles. In particular, for n vehicles, a random and sparse matrix is generated in which the sum of forces
in each row (i.e., for each time instance) is equal to n × 2, 000 × g N, assuming 2, 000 kg for the average weight of
a commercial vehicle and g is the gravity acceleration. Four traffic levels are considered for each span length with
n = 0, 10, 20, 50 (n = 0 models an isolated bridge while n = 50 models a bridge with 50 vehicles moving while being
scanned by the sensing agent). The bridge is modeled as a MDF system with 0.1m spatial discretization (e.g., 15 m
long bridge is modeled with 150 DOFs). The 0.1m discretization is selected based on a trade-off between computation
time and maximum avoidance for displacement interpolation when the vehicle’s location falls inside a bridge segment.
0.1m-long bridge segmentation yields exact vehicle displacement calculation when vehicles’ speed is set to 10m/sec.
For vehicles moving faster than this speed, discretization of vehicle’s time and space coordinates causes some gaps in
locations of consecutive time steps. This gap causes a simplification in the vehicle’s initial condition (particularly the
initial speed) calculation. However, in this study the damping of the unsprung mass is set to zero which disconnects
the vehicle’s dynamic analysis to its initial speed. For simulating responses using the decoupled model, Algorithm 2
is adopted: the random traffic load is firstly applied to the bridge with no consideration for the sensing vehicle. The
bridge responses at the vehicle locations are then aligned in space and applied to the model of the sensing vehicle. The
vehicle processes the input through its dynamical model (shown in Tables 2 and 3) and produce the vehicle response.
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Figure 7: Bridge displacement simulation results for the commercial vehicle
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Figure 8: Bridge displacement simulation results for the heavy truck

The performance of the simplified model is evaluated in terms of the bridge response as well as the vehicle response.
From Section 2 it is expected that the simplified model yield more accurate response estimations as the length of the
bridge span increases. For the conventional simulation approach, the acceptance threshold for the bridge response is
set to 1.5 × 10−12 m. For each bridge span and traffic level pairs, bridge and vehicle response signals are simulated
using two approaches (in total 24 runs for each vehicle); and the errors between two signals are measured in time
and frequency domains using the mean squared error (MSE). For more consistency, the responses are scaled by the
absolute maximum values of the displacement signals found from the conventional method.

Simulated displacement signals for two spans (15 m and 200 m) are shown in Figures 7 and 8. For both vehicle
types, the bridge response differs noticeably between the conventional and simplified VBI simulations for the 15 m
bridge. However, as expected from Section 2, as the bridge length increases, the discrepancy between two simulation
approaches shrinks in bridge response estimation. The MSE values versus bridge length are also presented in Figures
9 and 10 for the commercial vehicle and Figures 11 and 12 for the heavy truck to further quantify this observation.
Figures 9 and 11 (error in the bridge response simulations) show a strictly decreasing MSE value as the bridge length
increases. In addition, in both cases, as the traffic level increases (i.e., from n = 0 to n = 50), the estimation error
reduces. This is more evident for the commercial vehicle. Note that the same patterns are deduced from the frequency
representation plots.

Figures 9 and 11 show the extent of error for simulating stationary sensors’ data that are attached to the bridge.
However, what a mobile sensing agent records while scanning the bridge, is not the bridge pure vibrations, but the
vehicle response to it. Therefore, Figures 10 and 12 show the accuracy of the vehicle response subject to the bridge
motion when comparing the simplified model with the conventional approach. In this case, two sensing agents (i.e., the
commercial vehicle versus the heavy truck) react differently. For the commercial vehicle, the responses are relatively
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Figure 9: Bridge response comparison for the commercial vehicle in terms of the MSE: The trends show more accurate
simulation results as bridge span or traffic volume increases.
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Figure 10: Vehicle response comparison for the commercial vehicle in terms of the MSE: The trends show invariance
to the span and the traffic level.

insensitive to the span and traffic level and the errors are consistently low for all cases. However, from Figure 12, the
truck response is simulated less accurately when the bridge span grows from 15 m to 100 m (for longer bridges, a
decaying error trend is observed again). In particular, the frequency estimation error for the heavy vehicle crossing a
100 m long bridge is quite noticeable when using the simplified model. From Table 3, the fundamental frequency of
the truck is 0.69Hz which is near resonance for the 100 m long bridge (from Table 1, f = 0.75Hz). Moreover, the
vehicle weight is significant, which results in higher interaction forces applied to the bridge and the vehicle itself. In
fact, this case highlights that when the bridge and the vehicle have near resonance frequencies, the simplified model
works more accurately when the vehicle is lightweight. To validate this, the properties from Table 3 are downscaled
by a factor of 5 (i.e., the same natural frequency while being lighter) and simulation for 100 m long bridge is repeated.
The MSE value for n = 50 from 1.19 × 10−4 reduced to 5.46 × 10−6.

4 Computational Cost Evaluation

The main objective of the simplified model is to improve the computational performance of simulations while having
a minimal impact on the accuracy of the results. In Figure 13 the computational runtimes for the commercial vehicle
simulation case are compared between two methods (the heavy vehicle yields a very similar plot as well). The figure
elaborates that while the runtime increases linearly in the simplified model, it grows exponentially when using the
conventional approach for longer bridges. For instance, using a single Intel Core i5 CPU, the entire VBI simulation
process for the 500 m long bridge takes 1.8 sec using the simplified model, while the same process takes nearly 2, 250.0
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Figure 11: Bridge response comparison for the heavy truck in terms of the MSE: The trends show more accurate
simulation results as the bridge span or the traffic volume increases.
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Figure 12: Vehicle response comparison for the heavy truck in terms of the MSE: The trends show that the error peaks
when the bridge and the vehicle have close fundamental frequency values.

sec using the conventional method (more than 1, 000x slower). This dramatic runtime difference is resulted by the inner
iterations of the conventional approach (see Algorithm 1) that guarantee the compatibility. Within this iteration, the
entire bridge model has to be analyzed repeatedly for the modified interaction force as long as the stopping criterion is
not met, which is computationally very expensive. This is a bottleneck for the numerical computation, especially when
the bridge length increases or models with higher fidelity is of interest (i.e., MDF model grows in size). Alternatively,
the simplifiedmodel fully decouples the bridge model from the vehicle systems, which yields a one-time bridge analysis
(see Algorithm 2). This significant speedup enables to perform VBI simulations for medium- to long-span bridges
with fine spatial discretization, which is required for numerical studies on crowdsensing-based health monitoring.

5 Fully Coupled Vehicle Network Simulation

In this section, a fully coupled network of vehicles is analyzed to verify the followings: (1) the premise of ambient
white noise on behalf of a random traffic load is valid and (2) the simplified method yields accurate results for bridges
with different geometries. Regarding that, a continuous bridge with four 50m-long spans with elastic steel material is
modeled and shown in Figure 14 (beam cross-section is shown as well). The bridge length is discretized with 0.1m
grids, resulting a 2,001 DOF system. The roughness profile is introduced with the same setup as before. In this case,
instead of applying a spatio-temporal random load to model random traffic loads, the bridge is subjected to different
levels of traffic caused by deterministic vehicle trajectories (as shown in Figure 2a). All vehicles are interacting with

13



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature.

A preprint - May 26, 2020

0 50 100 150 200 250 300 350 400 450 500

Bridge span [m]

10-2

10-1

100

101

102

103

104

R
un

tim
e

[s
ec

]

fully coupled
simplified

Figure 13: Runtime comparison between the conventional and simplified models: the conventional approach is
computationally >1,000x slower than the simplified model for the 500 m bridge with no significant gain in the accuracy
of response estimations.

the bridge in the same fashion as given in Algorithm 1. In summary, the convergence loop continues until all vehicles
have reached acceptable displacement errors.

50m 50m 50m 50m

2m

4m

tw=0.25m

tf=0.4m

A-A A-A

Figure 14: Geometry of four-span continuous bridge and cross-section.

In these analyses, each vehicle in the network has certain speed and mechanical properties. The mechanical properties
are randomly selected with a lognormal distribution. The mean values for each property is set to the values given in
Table 2 for the commercial vehicle. Standard deviation σ is also set to 0.35 for all components of the property table.
The map of vehicle network trajectories for two levels of traffic is shown in Figure 15. In this figure, each column
contains momentary response of the bridge at all DOFs. Each trajectory is represented by a line in the spatio-temporal
response matrix. Different slopes show different directions and speeds (close to horizontal shows very low speed
vehicles while nearly vertical ones show very fast bridge crossings). The random trajectory generator allows for fixed
vehicles as well.

The first objective is to show the spatio-temporal load determined by the vehicle network and bridge interaction has
statistical characteristics of a 2D white noise. The resulted loading matrix for a random traffic case (with 200 random
vehicle trajectories) is derived from the coupled dynamic analysis and the Fourier transform is shown in Figure 16
along with the same representation of a white noise loading matrix. By comparison, both plots show uniform content
everywhere with no coherent frequency peaks. This implies that a realistic loading scenario with deterministic vehicle
motions has the similar effect to a random white noise.

In the next step, a mobile sensing agent is added to the traffic networks and the bridge interaction is considered with
(1) conventional (Algorithm 1) and (2) simplified (Algorithm 2) approaches and results are compared. Three different
speeds for the sensing agent are considered: 10m/sec, 20m/sec, and 30m/sec. The MSE error between vehicle and
bridge response estimations of the simplified and conventional approach is calculated and plotted in Figure 17. In
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Figure 15: Random vehicles trajectory in the time-space matrix. Each solid line represents a single vehicle’s motion
over the bridge. Vehicles have different speeds and directions and all are fully interacting with the bridge. Two levels
of traffic are shown.

a) white noise b) random traffic

Figure 16: Frequency representation of spatio-temporal load applied to the bridge. (a) white noise spatio-temporal
load considered in analyses in Section 3. (b) actual load resulted from a traffic network of random vehicles with full
consideration for the vehicle-bridge interaction. Similarity between two representations confirm the random nature of
traffic load.

all three speed cases, the error significantly drops when the network includes higher number of vehicles. This figure
confirms that even in a realistic simulation of the traffic network, the simplified approach yields accurate estimations for
the majority of cases (i.e., when the network is sufficiently crowded). As for the sensing agent’s speed effect, except for
a slightly higher errors for higher speeds, other variations are not conclusive. By comparing these plots with Figures 9
and 10, the trends are consistent. The variations in the magnitude of the MSEs can be explained due to different bridge
boundary conditions and more realistic loading pattern.
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Figure 17: Bridge and vehicle response comparison for a commercial sensing vehicle in terms of the MSE: the plots
confirm that as the number of traffic fleet increases, the error in simplified approach reduces. In general, once the
number of fleet tops 50, the accuracy of the proposed method is very high.

6 Conclusions

In this paper, a modified simulation algorithm was proposed for vehicle-bridge interaction (VBI) problems concerning
medium- to long-span bridges with random traffic excitation. The primary deliverable of this study to the SHM
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community is to enable a fast and accurate numerical analysis method that can be used in different bridge infrastructure
management levels, such as (1) evaluation of crowdsensing-based methods for bridge modal identification and (2)
probabilistic and life-cycle analysis of bridges subjected to vehicle networks under various uncertainties (e.g., road
profile, vehicle dynamics, traffic level, and environmental variations). Our main contribution is the result that as the
bridge flexibility increases (longer spans), the degree of coupling between the vehicle and the bridge reduces notably.
Conventional VBI simulation algorithms require iterations within each time step in order to reach a desired level of
compatibility between the vehicle and the bridge, which is computationally expensive. We show that the proposed
simple, decoupled model is efficient for simulations of the vehicle-bridge interacting systems in such cases, with
an accuracy that increases with bridge flexibility. In particular, the theoretical analysis showed that the response of
a coupled continuous beam and vehicle setup subject to a random load becomes more independent to the vehicle
dynamics as the bridge mass grows and the stiffness reduces. Therefore, for longer or flexible bridges, the dynamics
are practically independent. Moreover, the numerical simulation validated that the bridge size and traffic load intensity
both affect the accuracy of the bridge vibration estimations using the simplified model. For commercial vehicles, the
simplified method yields accurate response estimations. In the case of a heavy vehicle with a natural frequency near
the bridge’s fundamental frequency, e.g., heavy vehicles and flexible bridges, the error associated with the simplified
model is noticeable. In terms of the computational cost, a comparative study showed that the cost of the conventional
model behaves exponentially while the cost of the simplified model is linear.
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