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data, respectively. The results are presented for photons with 25 < Eγ

T < 200 GeV in the

pseudorapidity range |η| < 1.44, and for different centrality intervals for PbPb collisions.

Photon production in PbPb collisions is consistent with that in pp collisions scaled by the

number of binary nucleon-nucleon collisions, demonstrating that photons do not interact

with the quark-gluon plasma. Therefore, isolated photons can provide information about

the initial energy of the associated parton in photon+jet measurements. The results are

compared with predictions from the next-to-leading-order jetphox generator for different

parton distribution functions (PDFs) and nuclear PDFs (nPDFs). The comparisons can

help to constrain the nPDFs global fits.
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1 Introduction

One of the most important reasons for studying relativistic heavy ion collisions is under-

standing the deconfined state of matter, so called quark-gluon plasma (QGP), which is

predicted by the theory of strong interactions, quantum chromodynamics (QCD), to exist

at high temperatures and energy density [1–4]. In heavy ion collisions, the expectation

is that high transverse momentum (pT) photons do not strongly interact with the QGP

and thus provide a direct way to test perturbative QCD (pQCD). Comparing photon

production in proton-proton (pp) and heavy ion collisions is important to both establish

that we understand the production of photons in collisions of nuclei and that the photons

are not affected by the medium through which they pass. In contrast to photons, partons

lose energy in the medium and their production is significantly modified compared to pp

collisions [5–7]. The production of photons paired back-to-back with jets from fragmented

partons has been studied at the CERN LHC [8–11] to test energy loss in the strongly

interacting medium produced in heavy ion collisions.

Prompt photons are defined to be those produced directly from the hard scattering of

two partons, or fragmented collinearly from final-state partons at high-pT [12]. At leading

order (LO), partons produce photons through two hard scattering subprocesses: Compton

scattering qg → qγ and quark-antiquark annihilation qq → gγ , of which Compton scatter-

ing is dominant [12]. To identify photons from parton scattering requires that the photons
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be isolated from other particles in order to reduce a large background of decay photons

coming from neutral mesons (mostly π
0 → γ γ). This isolation requirement also suppresses

the contribution from fragmentation processes [12]. As a result, isolated photon production

is sensitive to the gluon parton distribution functions (PDFs).

The scaled ratio of the production cross sections in pp and heavy ion collisions is

known as the nuclear modification factor,

RAA(pT) =
1

TAA

1

NMB

dNAA/dpT
dσpp/dpT

, (1.1)

where NMB is the number of sampled minimum-bias (MB) events in nucleus-nucleus (AA)

collisions, and TAA is the nuclear overlap function [13], which is given by the number of

binary nucleon-nucleon (NN) collisions divided by the inelastic NN cross section. This TAA

can be interpreted as the NN-equivalent integrated luminosity per heavy ion collision. Here,

dNAA/dpT is the yield in AA collisions in a pT interval and dσpp/dpT is the differential

cross section in inelastic pp collisions. A value of RAA = 1 indicates that PbPb collision

data are compatible with a superposition of pp collisions, while a deviation from unity

indicates either enhancement or suppression of isolated photon production. The RAA of

isolated photons allows an estimation of possible modification of the PDFs in a nucleus

compared to a simple incoherent superposition of nucleon PDFs [14, 15]. A typical form

of such modifications is to have suppression at low Bjorken x . 10−2 (shadowing), and

enhancement at x ∼ 10−1 (anti-shadowing) [16].

The differential cross section for isolated photons was extensively studied at the LHC in

pp collisions at various collision energies [17–22]. In heavy ion collisions, measurements of

RAA for isolated photons were performed in lead-lead (PbPb) collisions at a center-of-mass

energy per nucleon pair
√
s
NN

= 2.76 TeV with the CMS [23] and ATLAS [24] detectors,

and in proton-lead (pPb) collisions at
√
s
NN

= 8.16 TeV with the ATLAS detector [25].

The ALICE Collaboration reported similar measurements in PbPb collisions at
√
s
NN

=

2.76 TeV [26] at a lower pT range than that used in the CMS and ATLAS measurements.

In the pPb and PbPb LHC measurements, it was found that the production of high-pT
prompt photons is not significantly modified by the medium and is compatible with the

pQCD calculations.

In this paper, measurements of the differential cross sections for isolated photons in

pp and PbPb collisions, as well as the nuclear modification factors of isolated photons,

are reported at
√
s
NN

= 5.02 TeV, using data taken in 2015 with the CMS detector. The

measurements are performed over the photon transverse energy (E
γ

T ≡ p
γ

Tc) range of 25 <

E
γ

T < 200 GeV for the photon pseudorapidity |η| < 1.44. This E
γ

T range corresponds to

the kinematic region of 0.01 < xT < 0.08, where xT = 2E
γ

T/
√
s
NN

. Both shadowing and

anti-shadowing effects are expected in this region. The measurements are compared with

the pQCD next-to-leading order (NLO) calculations from jetphox [27] with free proton

PDFs and nuclear PDFs (nPDFs). The present results can be used in a global fit analysis of

nPDFs to constrain gluon parton densities in nuclei. In addition, the current measurements

provide baselines to find any modification of initial parton states by the nuclear medium for

jet events tagged by isolated photons. These data, which represent the first measurement
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of isolated photons for PbPb collisions at
√
s
NN

= 5.02 TeV, have a much higher statistical

significance and a larger E
γ

T range than the previous measurement in PbPb collisions at√
s
NN

= 2.76 TeV [23, 24].

2 The CMS detector

The central feature of the CMS detector system is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are silicon pixel

and strip trackers, which measure the charged-particle trajectories within the range of

|η| < 2.5, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and

scintillator hadron calorimeter (HCAL). Each detector element consists of a barrel and

two endcap sections. The barrel and endcap calorimeters provide |η| coverage out to 3.

The photon candidates used in this analysis are reconstructed using the energy de-

posited in the barrel region of the ECAL, which covers |η| < 1.442. In the barrel section of

the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting

photons that have energies in the range of tens of GeV. The remaining barrel photons have

a resolution of about 1.3% up to |η| = 1, rising to about 2.5% at |η| = 1.4 [28].

The hadron forward (HF) calorimeters extend the |η| coverage of the HCAL to |η| =
5.2. Each HF calorimeter consists of 432 readout towers, containing long and short quartz

fibers running parallel to the beam. The long fibers run the entire depth of the HF cal-

orimeter (165 cm, or approximately 10 interaction lengths), while the short fibers start at

a depth of 22 cm from the front of the detector. By reading out the two sets of fibers

separately, it is possible to distinguish showers generated by electrons and photons, which

deposit a large fraction of their energy in the long-fiber calorimeter segment, from those

generated by hadrons, which produce on average nearly equal signals in both calorimeter

segments. In PbPb collisions, the HF calorimeters are used to determine the centrality

of the collision, which is defined by the geometrical overlap of the two colliding Pb nu-

clei [29]. Muons are detected in gas-ionization chambers embedded in the steel flux-return

yoke outside the solenoid.

Events of interest are selected using a two-tiered trigger system [30]. The first level

(L1), composed of custom hardware processors, uses information from the calorimeters and

muon detectors to select events at a rate of around 100 kHz within a time interval of less

than 4µs. The second level, known as the high-level trigger (HLT), consists of a farm of

processors running a version of the full event reconstruction software optimized for fast

processing, and reduces the event rate to around 1 kHz before data storage.

A more detailed description of the CMS detector, together with a definition of the

coordinate system used and the relevant kinematic variables, can be found in ref. [31].

3 Analysis procedure

3.1 Monte Carlo simulation

Simulated Monte Carlo (MC) events samples of pp collisions are generated with pythia

8.212 [32] using tune CUETP8M1 [33]. For PbPb collisions, pythia events are embed-
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ded into events generated with hydjet 1.8 [34], which is tuned to reproduce global event

properties such as the charged-hadron pT spectrum and particle multiplicity. The prompt

photon, dijet, and Z → e+e− events are used in corrections for detector effects and back-

ground rejection. The generated events are propagated through the full CMS detector

using the Geant4 simulation package [35]. The energy of photon candidates in simula-

tions is smeared to account for the difference in photon energy resolution between data

and simulations.

3.2 Event selection

Events with photons are selected from photon-dedicated triggers. Offline, several event se-

lection criteria are used to remove non-hadronic events in pp and PbPb collisions. Events

are required to contain at least one reconstructed vertex with at least two tracks within

the vertex z position range of |z| < 15 cm. This requirement removes noncollision back-

ground events such as beam-gas interactions or beam scraping events near the interaction

point [5, 10]. Additionally, at least three detector elements with energies greater than

3 GeV in the HF on each side of the interaction point are required in PbPb events. This

condition rejects most of the electromagnetic interactions from ultra-peripheral heavy ion

collisions. In PbPb collisions, the cluster shapes of the silicon pixel detector are required

to be compatible with the vertex position.

The event selection efficiency in PbPb collisions is (99 ± 2)%. This number can be

above 100% because of remaining contamination from electromagnetic interactions in the

selected event sample [36]. The efficiency-corrected NMB for the 0–100% centrality range is

2.72×109, corresponding to a total integrated luminosity of 404 µb−1. The total integrated

luminosity of the pp event sample is 27.4 pb−1 with an uncertainty of 2.3% [37].

In PbPb collisions, the event centrality is estimated by the measured fraction of the

total inelastic hadronic cross section. The percentage starts from 0% for the most central

collisions, with the smallest impact parameter and the largest nuclear overlap, and goes

to 100% for the most peripheral collisions. Such peripheral collisions are the closest to a

pp-like environment [29].

Results of this analysis are presented in four centrality intervals: 0–10% (most central),

10–30%, 30–50% and 50–100% (most peripheral). The TAA values are determined from a

Glauber model calculation [13], and their averages are listed in table 1 for the four centrality

bins. Uncertainties in TAA are estimated by varying the Glauber model parameters [5].

3.3 Photon reconstruction and identification

Two different dedicated photon triggers are used in this analysis. For photons with E
γ

T >

40 GeV, candidates are selected online by L1 triggers by requiring an ECAL transverse

energy deposit larger than 21 (20) GeV in PbPb (pp) collisions. For photons with 20 <

E
γ

T < 40 GeV, all MB events are used for L1 trigger selection in PbPb collisions, which

requires a coincidence of signals above threshold in both sides of the HF calorimeters.

Events with an ECAL transverse energy deposit larger than 5 GeV are selected by the L1

trigger in pp collisions. The preselected photons are reconstructed by the HLT using the

“island” clustering algorithm in PbPb collisions, and the “hybrid” clustering algorithm in
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Centrality 〈TAA〉 [mb−1]

0–100% 5.61+0.16
−0.19

0–10% 23.22+0.43
−0.69

10–30% 11.51+0.30
−0.39

30–50% 3.82+0.21
−0.21

50–100% 0.44+0.05
−0.03

Table 1. Average numbers of the nuclear overlap function (〈TAA〉) and their uncertainties for

various centrality ranges used in this analysis.

pp collisions [23, 28]. Events with at least one reconstructed photon of E
γ

T > 40 (20) GeV

are selected by the HLT for high- (low-)E
γ

T photons. The HLT selections of both triggers are

found to be fully efficient for photons in PbPb events, while the HLT triggers for photons

in pp events are inefficient up to 5 GeV above the thresholds of 40 (20) GeV for high- (low-

)E
γ

T photons. Photons in pp collisions are reconstructed offline with the “Global Event

Description (GED)” algorithm detailed in ref. [28], while the “island” clustering algorithm

is used in PbPb collisions, which is optimized for high-multiplicity PbPb events as described

in ref. [23].

In order to reject electrons in |η| < 1.442 that are misidentified as photons, the photon

candidates are discarded if the differences in η or azimuthal angle (φ, in radians) between

the photon candidate and any electron candidate track with pT > 10 GeV/c are less than

0.03. [23]. Anomalous signals caused by highly ionizing particles interacting directly with

the silicon avalanche photodiodes in the ECAL barrel readout are removed using the pre-

scription given in ref. [23].

The energy of the reconstructed photons is corrected to account for the effects of

the material in front of the ECAL and for the incomplete containment of the shower

energy [28]. To account for underlying event (UE) contamination from soft collisions in

PbPb data, corrections obtained from the simulation using pythia and pythia+hydjet

photon events are applied.

Only photon candidates with the ratio of HCAL over ECAL energies (H/E) less than

0.1 inside a cone of radius ∆R =
√

(∆η)2 + (∆φ)2 = 0.15 around the photon candidate

are selected to reject high-pT hadrons. The remaining background contributions from

decay photons are suppressed by imposing the isolation requirement, resulting in a sample

enriched in prompt photons. The generator-level isolation (Igen) is defined as the Egen
T

sum of all the other final-state particles, excluding neutrinos, in a cone of radius ∆R = 0.4

around the photon candidates. The isolation variable (I) for a reconstructed photon is

given by the sum of transverse energies in ECAL and HCAL and the transverse momenta

of all tracks with pT > 2 GeV/c in trackers inside the cone of ∆R = 0.4 around the photon

candidates. The UE is corrected when measuring I in PbPb data by subtracting the average

value of the energy in a rectangular area with length of 2∆R in the η-direction around a

photon candidate and width of 2π in the φ-direction, while no UE correction is applied

– 5 –



J
H
E
P
0
7
(
2
0
2
0
)
1
1
6

in pp data. An I value less than 1 GeV is required for reconstructed photon candidates,

which corresponds to an Igen value less than 5 GeV for generated photons. This tightened

criterion of I < 1 GeV compared to Igen < 5 GeV is optimized to minimize the impact of UE

fluctuations from studying the correlations of I and Igen in pythia and pythia+hydjet

samples. More detailed descriptions can be found in ref. [23].

After applying H/E and isolation requirements, the dominant background photons

come from the contribution from isolated neutral mesons, e.g., π
0, η, and ω, decaying into

two or three closely spaced photons and misidentified as a single isolated photon. This

background can be significantly reduced by a requirement on the shower shape, which is

a measure of how energy deposited in the ECAL is distributed in φ and η. The electro-

magnetic shower shape variable σηη is defined as a modified second moment of the ECAL

energy cluster distribution around its mean η position [19, 38]:

σ2ηη =

∑5×5
i wi(ηi − η5×5)

2∑5×5
i wi

, wi = max

(
0, 4.7 + ln

Ei
E5×5

)
. (3.1)

Here Ei and ηi are the energy deposit and η of the ith ECAL crystal within a 5×5 crystal

array centered around the electromagnetic cluster, and E5×5 and η5×5 are the total energy

and mean η of the 5×5 crystal matrix, respectively. Photon candidates are required to

have σηη less than 0.01 since most decay photons have larger values of σηη. Thus, this cut

further enriches the fraction of prompt photons in the sample.

3.4 Signal extraction

After the selection conditions are applied, the remaining backgrounds of decay photons

from hadrons are estimated by using a two-component template fit of σηη. The signal

template is obtained from simulations, and the background shape is obtained from the

data in a nonisolated sideband region (1 < I < 5 GeV). The sideband region is chosen to

be close to the signal region in order to reduce bias from the correlation between σηη and

I. The signal contamination in the sideband region is estimated by taking the signal shape

from simulation and normalizing with the fraction between the signal and the sideband

regions. The normalized signal shape is then subtracted from the background template.

The purity, which is the fraction of prompt photons within the remaining candidates, is

determined from the template fit. An example is shown in figure 1 for the photons with

40 < E
γ

T < 50 GeV in the 10–30% centrality class. The purity decreases in more central

collisions, reflecting an increase in background contributions. The raw signal yield (N γ

raw)

is defined as the number of photon candidates passing all selection criteria. In order to

correct for the remaining background, N γ

raw is reduced by the purity factor obtained from

the template fits.

3.5 Efficiency corrections

The efficiency to detect isolated photons using different reconstruction selection criteria is

extracted from simulations as a function of E
γ

T. Figure 2 shows the signal efficiency ob-

tained from pythia+hydjet and pythia for 0–10% centrality PbPb and for pp collisions,
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Figure 1. Template fit of the shower shape variable σηη for 40 < E
γ

T < 50 GeV in the 10–30%

centrality class. The black points show the PbPb experimental data. The red histogram is the signal

template obtained from pythia+hydjet simulations, and the green histogram is the background

template estimated from the data for the nonisolated sideband region. Purity values are estimated

in the range of σηη < 0.01.

respectively. The total efficiency is obtained by multiplying signal selection, trigger, and

reconstruction efficiencies. The reconstruction efficiency is calculated from simulations as

the ratio of reconstructed photon candidates by the reconstruction algorithms (“island” for

PbPb and “GED” for pp collisions) to generated photons. The reconstruction efficiency is

about 99.0 and 99.5% for pp and PbPb collisions, respectively, for all E
γ

T ranges, showing

no centrality dependence. The trigger efficiency is obtained from the data. The scale fac-

tors (SF), the efficiency ratio of data to simulations, are estimated with Z → e+e− events

using the “tag-and-probe” method [28] by matching electrons to photon candidates. The

SF are applied to the total efficiency to account for the efficiency difference between the

data and simulation. The total efficiency is applied as a correction to the N γ

raw values.

3.6 Unfolding

The photon signal yields corrected by efficiency and purity can be described as

N
γ

corrected =
N γ

rawP

ε
, (3.2)

where ε is the total efficiency, and P is the purity correction factor. The N
γ

corrected are

unfolded for detector resolution. Response matrices are constructed from pythia+hydjet

(pythia) for PbPb (pp) data in different centrality bins. A matrix inversion method is used

without regularization in the RooUnfold software package [39]. The unfolded spectra

(N
γ

unfolded) are used in the cross section determination.
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Figure 2. Efficiency of the isolated photon detection as a function of E
γ

T for PbPb collisions in

the 0–10% centrality range (left) and for pp data (right). The different colors represent various

selection criteria: H/E < 0.1, σηη < 0.01, I < 1 GeV and electron rejection criterion.

3.7 Systematic uncertainties

The systematic uncertainties are summarized in table 2 for the cross section of isolated

photons in pp and PbPb collisions, and in table 3 for the nuclear modification factors

of isolated photons. All systematic uncertainties are evaluated by varying the quantity

relevant to each source and propagating the change to the final observables, and then taking

the deviation from the nominal results. The total uncertainty is obtained as the quadratic

sum of systematic uncertainties from the different sources. The systematic uncertainties

from most of the sources partially cancel in the RAA analysis because the systematic

variations are applied to both pp and PbPb data.

One of the dominant sources of systematic uncertainty is the purity determination.

The sideband definition used for producing the background template is changed to tight

(1 < I < 3 GeV) or loose (5 < I < 10 GeV) nonisolated selection criteria to evaluate

this uncertainty.

After the electron rejection process, there are still electrons which are misidentified

as photons. The rejection rate is calculated from simulations, and the remaining num-

ber of misidentified electrons is subtracted from the N γ

raw values as an additional cor-

rection for the systematic uncertainty of electron rejection. The difference between the

nominal and subtracted N γ

raw values are propagated to the final results and quoted as

systematic uncertainty.

Pileup events have multiple interactions within a recorded event with corresponding

multiple primary vertices. For PbPb collisions, the effect of pileup events on the photon

spectra is negligible. The systematic uncertainty from the pileup contribution in pp col-

lisions is estimated by counting N γ

raw when the number of primary vertices in the events

is one.
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pp PbPb centrality

Source 0–100% 0–10% 10–30% 30–50% 50–100%

Purity 4–15% 5–15% 9–16% 11–14% 5–18% 5–17%

Electron rejection <0.4% 1–3% 1–10% 1–5% 1–3% 0–7%

Pileup 0–11% — — — — —

Energy scale 1–2% 3–8% 2–7% 2–10% 2–11% 1–12%

Energy resolution <0.2% 1–3% 1–7% 1–9% 1–8% 2–6%

Unfolding <0.2% 1–4% 0–9% 0–5% 0–3% 0–1%

Efficiency 1–2% 0–1% 0–4% 0–2% 0–1% 0–3%

Integrated luminosity 2.3% — — — — —

TAA — 4% 3% 4% 6% 11%

Total 4–16% 6–18% 14–21% 12–18% 10–20% 10–21%

Table 2. Summary of the contributions from various sources to the estimated systematic uncer-

tainties in the cross section of isolated photons in pp and PbPb collisions. When ranges are shown,

they indicate the E
γ

T-dependent variations of the uncertainties.

PbPb centrality

Source 0–100% 0–10% 10–30% 30–50% 50–100%

Purity 6–9% 7–13% 3–12% 4–8% 2–7%

Electron rejection 1–2% 0–10% 1–6% 0–3% 0–7%

Pileup 0–10% 0–10% 0–10% 0–10% 0–10%

Energy scale 2–4% 3–6% 1–9% 2–7% 1–10%

Energy resolution 0–3% 1–7% 0–9% 1–8% 2–6%

Unfolding 1–4% 1–9% 1–5% 0–3% 0–1%

Efficiency 0–2% 0–5% 0–2% 0–1% 0–2%

Integrated luminosity 2.3% 2.3% 2.3% 2.3% 2.3%

TAA 4% 3% 4% 6% 11%

Total 5–12% 10–17% 6–18% 7–15% 7–15%

Table 3. Summary of the contributions from various sources to the estimated systematic uncer-

tainties in the nuclear modification factors calculated from pp and PbPb data. When ranges are

shown, they indicate the E
γ

T-dependent variations of the uncertainties.

The mean and width of the invariant mass distribution of Z bosons, where decay elec-

trons are reconstructed as photon candidates, are compared between data and simulation

for the estimation of photon energy systematic uncertainties. The residual difference of

the mean between data and simulation after the energy correction is considered as the

systematic uncertainty due to the energy scale. The energy resolution uncertainty is esti-

mated by additionally smearing photon candidates in simulation according to the resolution

uncertainties of data and simulation.
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The systematic uncertainty for unfolding, which comes from the finite size of the

simulated sample, is considered when constructing the response matrix. A study based on

pseudo-experiments is performed for each bin of the response matrix accounting for the

statistical uncertainties of the full simulated sample. Another variation for the response

matrix is performed because of its dependence on the shape of the MC spectrum inside

the true bins. The photon spectra in pythia+hydjet (pythia) are reweighted for the

jetphox photon spectra. The maximum difference between the nominal and the varied

response matrices is propagated to the final observables, and their differences to the nominal

values are quoted as the systematic uncertainty for unfolding.

Variations of SF obtained from the tag-and-probe method are accounted for as a sys-

tematic uncertainty of efficiency in the final results. Photons are measured only with events

passing the HLT trigger for low-E
γ

T photons with a threshold of 20 GeV for the systematic

uncertainty of the trigger efficiency. The maximum difference between the nominal and the

varied efficiencies is propagated to the final observables, and their difference to the nominal

values is quoted as the systematic uncertainty for efficiency.

4 Results

4.1 Differential cross section in pp and PbPb collisions

The E
γ

T-differential cross section scaled by the NN-equivalent integrated luminosity per

AA collision is defined as

1

〈TAA〉
1

NMB

d2N
γ

PbPb

dE
γ

Tdη
=

N
γ

unfolded

〈TAA〉NMB∆E
γ

T∆η
. (4.1)

For the pp data, the corrected yields are normalized by the integrated luminosity (Lpp) as

d2σ
γ

pp

dE
γ

Tdη
=

N
γ

unfolded

Lpp∆E
γ

T∆η
. (4.2)

Figures 3 and 4 show the E
γ

T differential isolated photon spectra in PbPb collisions for

different centrality bins and in pp collisions. The data are compared to the NLO pQCD

calculations with jetphox v1.3.1 4 for MB events. The CT14 [40] PDFs are used for pp

data. The EPPS16 [41] nPDFs based on CT14 PDFs for the free-nucleon parton densities

(EPPS16+CT14) and nCTEQ15 [42] nPDFs are used for PbPb data. In the calculations,

the BFG set II [43] is used for the fragmentation function. The renormalization (µR),

factorization (µF) and fragmentation (µf) scales are set to E
γ

T. Uncertainty in the jetphox

predictions consists of two components. First, CT14 PDFs, EPPS16+CT14 nPDFs, and

nCTEQ15 nPDFs are varied with their 56, 97, and 32 uncertainty sets, respectively. The

Hessian PDF uncertainties are derived for 90% confidence level (CL) and scaled down to

68% CL [44]. Second, the renormalization, factorization, and fragmentation scales are

varied up and down by a factor of two simultaneously. The envelope covered by these

variations is assigned as the scale systematic uncertainty. As seen in the lower panels

of figure 3 and 4, the data are consistent with the jetphox NLO predictions over the

– 10 –
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Figure 3. Isolated photon spectra (upper) measured as a function of E
γ

T for 0–10%, 10–30%, 30–

50%, 50–100%, and 0–100% PbPb collisions (scaled by TAA) at 5.02 TeV. The spectra are scaled

by the factors shown in the legend for clarity. The symbols are placed at the center of the bin.

The vertical bars associated with symbols indicate the statistical uncertainties and the horizontal

bars reflect the bin width. The statistical uncertainties are smaller than the symbols. The total

systematic uncertainties are shown as boxes in each E
γ

T bin. The spectra in the 0–100% centrality bin

are compared to the NLO jetphox calculations with EPPS16+CT14 nPDFs (left) and nCTEQ15

nPDFs (right). The ratio of the data in the 0–100% centrality class to jetphox is shown in the

lower panels. The gray boxes indicate the total systematic uncertainties of the data. The blue and

red hatched boxes correspond to the jetphox PDF and scale uncertainties, respectively.

entire E
γ

T range in both pp and PbPb collisions, considering the quoted statistical and

systematic uncertainties.

4.2 Nuclear modification factors

The nuclear modification factors are calculated by

RAA =
1

〈TAA〉
1

NMB

d2N
γ

PbPb/dE
γ

Tdη

d2σ
γ

pp/dE
γ

Tdη
. (4.3)

Figure 5 shows RAA as a function of the isolated photon E
γ

T in different centrality bins.

The nuclear modification factors exhibit little or no modifications of isolated photons in all

E
γ

T and centrality bins in PbPb collisions, considering the quoted statistical and systematic

uncertainties. This indicates that the isolated photons are not modified by the strongly

interacting medium produced in heavy ion collisions, which is in contrast to hadrons in

PbPb collisions [5–7] (i.e. 0.3 < RAA < 0.9 for charged hadrons [5] in the same pT range).

The RAA in the inclusive (0–100%) centrality bin is compared to the NLO jetphox

calculations with 3 PDFs in figure 6 by taking the ratio of jetphox predictions for PbPb

– 11 –
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Figure 4. Isolated photon cross section (upper) measured as a function of E
γ

T in pp collisions

at 5.02 TeV. The symbols are placed at the center of the bin. The vertical bars associated with

symbols indicate the statistical uncertainties and the horizontal bars reflect the bin width. The

statistical uncertainties are smaller than the symbols. The total systematic uncertainties are shown

as boxes in each E
γ

T bin. The data are compared to the NLO jetphox calculations with CT14

PDFs. The ratio of the data to jetphox is shown in the lower panel. The yellow boxes indicate the

total systematic uncertainties of the data. The blue and red hatched boxes correspond to jetphox

PDF and scale uncertainties, respectively.

to that for pp: (EPPS16+CT14)/CT14, nCTEQ15/CT14, and CT14(PbPb)/CT14(pp).

The CT14(PbPb)/CT14(pp) ratio shows the isospin effect which is caused by the different

ratios of u and d quarks in pp and PbPb collisions. The jetphox scale uncertainties for

RAA are canceled in the ratio. The Hessian PDF uncertainties for RAA are calculated for

68% CL. The RAA measurements are consistent with the jetphox prediction within the

quoted statistical and systematic uncertainties. The comparison of data and estimations

is limited by the uncertainties, barring any firm conclusions for the moment.

5 Summary

The differential cross sections of photons isolated from nearby particles are reported at

pseudorapidity |ηγ | < 1.44 for transverse energy from 25 to 200 GeV in proton-proton

(pp) and lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair
√
s
NN

=

5.02 TeV with the CMS detector. No significant modification of isolated photon cross

sections in PbPb collisions with respect to scaled pp collisions is observed in the explored

kinematic ranges at all collision centralities. Thus, isolated photons are not affected by the

strongly interacting medium produced in heavy ion collisions, and they can be a valuable

tool to access the initial pT of the associated parton in photon+jet events.
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Figure 5. Nuclear modification factors RAA as a function of the photon E
γ

T measured in the

0–10%, 10–30%, 30–50%, and 50–100% centrality ranges in PbPb. The symbols are placed at the

center of the bin. The vertical bars associated with symbols indicate the statistical uncertainties

and the horizontal bars reflect the bin width. The total systematic uncertainties without the TAA

uncertainty are shown as the colored boxes. The TAA uncertainty, common to all points for a given

centrality range, is indicated by the gray box centered at unity on the left side of each panel. The

2.3% integrated luminosity uncertainty for pp data is shown as the brown box at unity at the

leftmost position.

The data are compared with the next-to-leading order perturbative quantum chromo-

dynamics calculations using the generator jetphox with CT14 parton distribution func-

tions (PDFs) for pp data and EPPS16 and nCTEQ15 nuclear PDFs for PbPb data. The

predictions are found to be consistent with the cross sections for both pp and PbPb col-

lisions. The current measurements significantly improve the precision compared to the

previous CMS results at
√
s
NN

= 2.76 TeV and can be valuable inputs for global fits of

nuclear PDFs.
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IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri,

S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup,

B. Lenzi, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro14,

M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut

Polytechnique de Paris

S. Ahuja, C. Amendola, F. Beaudette, M. Bonanomi, P. Busson, C. Charlot, B. Diab,

G. Falmagne, R. Granier de Cassagnac, I. Kucher, A. Lobanov, C. Martin Perez,

M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois,

A. Zabi, A. Zghiche

– 21 –



J
H
E
P
0
7
(
2
0
2
0
)
1
1
6
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