
MIT Open Access Articles

A survey on graph kernels

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Applied Network Science. 2020 Jan 14;5(1):6

As Published: https://doi.org/10.1007/s41109-019-0195-3

Publisher: Springer International Publishing

Persistent URL: https://hdl.handle.net/1721.1/131599

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/131599
https://creativecommons.org/licenses/by/4.0/

Applied Network ScienceKriege et al. Applied Network Science (2020) 5:6
https://doi.org/10.1007/s41109-019-0195-3

REVIEW Open Access

A survey on graph kernels
Nils M. Kriege1* , Fredrik D. Johansson2 and Christopher Morris1

*Correspondence:
nils.kriege@tu-dortmund.de
1Department of Computer Science,
TU Dortmund University,
Otto-Hahn-Str. 14, 44227
Dortmund, Germany
Full list of author information is
available at the end of the article

Abstract
Graph kernels have become an established and widely-used technique for solving
classification tasks on graphs. This survey gives a comprehensive overview of
techniques for kernel-based graph classification developed in the past 15 years. We
describe and categorize graph kernels based on properties inherent to their design,
such as the nature of their extracted graph features, their method of computation and
their applicability to problems in practice. In an extensive experimental evaluation, we
study the classification accuracy of a large suite of graph kernels on established
benchmarks as well as new datasets. We compare the performance of popular kernels
with several baseline methods and study the effect of applying a Gaussian RBF kernel
to the metric induced by a graph kernel. In doing so, we find that simple baselines
become competitive after this transformation on some datasets. Moreover, we study
the extent to which existing graph kernels agree in their predictions (and prediction
errors) and obtain a data-driven categorization of kernels as result. Finally, based on our
experimental results, we derive a practitioner’s guide to kernel-based graph
classification.

Keywords: Supervised graph classification, Graph kernels, Machine learning

Introduction
Machine learning analysis of large, complex datasets has become an integral part of
research in both the natural and social sciences. Largely, this development was driven by
the empirical success of supervised learning of vector-valued data or image data. How-
ever, in many domains, such as chemo- and bioinformatics, social network analysis or
computer vision, observations describe relations between objects or individuals and can-
not be interpreted as vectors or fixed grids; instead, they are naturally represented by
graphs. This poses a particular challenge in the application of traditional data mining and
machine learning approaches. In order to learn successfully from such data, it is neces-
sary for algorithms to exploit the rich information inherent to the graphs’ structure and
annotations associated with their vertices and edges.
A popular approach to learning with graph-structured data is to make use of graph

kernels—functions which measure the similarity between graphs—plugged into a kernel
machine, such as a support vector machine. Due to the prevalence of graph-structured
data and the empirical success of kernel-based methods for classification, a large body
of work in this area exists. In particular, in the past 15 years, numerous graph ker-
nels have been proposed, motivated either by their theoretical properties or by their
suitability and specialization to particular application domains. Despite this, there are
no review articles aimed at comprehensive comparison between different graph kernels

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-019-0195-3&domain=pdf
http://orcid.org/0000-0003-2645-947X
mailto: nils.kriege@tu-dortmund.de
http://creativecommons.org/licenses/by/4.0/

Kriege et al. Applied Network Science (2020) 5:6 Page 2 of 42

nor at giving practical guidelines for choosing between them. As the number of meth-
ods grow, it is becoming increasingly difficult for both non-expert practitioners and
researchers new to the field to identify an appropriate set of candidate kernels for their
application.
This survey is intended to give an overview of the graph kernel literature, targeted at

the active researcher as well as the practitioner. First, we describe and categorize graph
kernels according to their design paradigm, the used graph features and their method
of computation. We discuss theoretical approaches to measure the expressivity of graph
kernels and their applicability to problems in practice. Second, we perform an extensive
experimental evaluation of state-of-the-art graph kernels on a wide range of bench-
mark datasets for graph classification stemming from chemo- and bioinformatics as well
as social network analysis and computer vision. Finally, we provide guidelines for the
practitioner for the successful application of graph kernels.

Contributions

We summarize our contributions below.
• We give a comprehensive overview of the graph kernel literature, categorizing

kernels according to several properties. Primarily, we distinguish graph kernels by
their mathematical definition and which graph features they use to measure
similarity. Moreover, we discuss whether kernels are applicable to (i) graphs
annotated with continuous attributes, or (ii) discrete labels, or (iii) unlabeled graphs
only. Additionally, we describe which kernels rely on the kernel trick as opposed to
being computed from feature vectors and what effects this has on the running time
and flexibility.

• We give an overview of applications of graph kernels in different domains and review
theoretical work on the expressive power of graph kernels.

• We compare state-of-the-art graph kernels in an extensive experimental study across
a wide range of established and new benchmark datasets. Specifically, we show the
strengths and weaknesses of the individual kernels or classes of kernels for specific
datasets.

– We compare popular kernels to simple baseline methods in order to assess the
need for more sophisticated methods which are able to take more structural
features into account. To this end, we analyze the ability of graph kernels to
distinguish the graphs in common benchmark datasets.

– Moreover, we investigate the effect of combining a Gaussian RBF kernel with
the metric induced by a graph kernel in order to learn non-linear decision
boundaries in the feature space of the graph kernel. We observe that with this
approach simple baseline methods become competitive to state-of-the-art
kernels for some datasets, but fail for others.

– We study the similarity between graph kernels in terms of their classification
predictions and errors on graphs from the chosen datasets. This analysis
provides a qualitative, data-driven means of assessing the similarity of
different kernels in terms of which graphs they deem similar.

• Finally, we provide guidelines for the practitioner and new researcher for the
successful application of graph kernels.

Kriege et al. Applied Network Science (2020) 5:6 Page 3 of 42

Related work

The most recent surveys of graph kernels are the works of Ghosh et al. (2018) and Zhang
et al. (2018a). Ghosh et al. (2018) place a strong emphasis on covering the fundamentals
of kernel methods in general and summarizing known experimental results for graph ker-
nels. The article does not, however, cover the most recent contributions to the literature.
Most importantly, the article does not provide a detailed experimental study comparing
the discussed kernels. That is, the authors do not perform (nor reproduce) original exper-
iments on graph classification and solely report numbers found in the corresponding
original paper. The survey by Zhang et al. (2018a) focuses on kernels for graphs without
attributes which is a small subset of the scope of this survey. Moreover, it does not discuss
themost recent developments in this area. Another survey was published in 2010 by Vish-
wanathan et al. (2010) but its main topic are random walk kernels and it does not include
recent advances. Moreover, various PhD theses give (incomplete or dated) overviews,
see, e.g., (Borgwardt 2007; Kriege 2015; Neumann 2015; Shervashidze 2012). None of the
papers provides compact guidelines for choosing a kernel for a particular dataset.
Compared to the existing surveys, we provide a more complete overview covering a

larger number of kernels, categorizing them according to their design, the extracted graph
features and their computational properties. The validity of comparing results from dif-
ferent papers depends on whether these were obtained using comparable experimental
setups (e.g., choices for hyperparameters, number of folds used for cross-validation, etc.),
which is not the case across the entire spectrum of the graph kernel literature. Hence, we
conducted an extensive experimental evaluation comparing a large number of graph ker-
nels and datasets going beyond comparing kernels just by their classification accuracy.
Another unique contribution of this article is a practitioner’s guide for choosing between
graph kernels.

Outline

In the “Fundamentals” section, we introduce notation and provide mathematical defini-
tions necessary to understand the rest of the paper. The “Graph kernels” section gives
an overview of the graph kernel literature. We start off by introducing kernels based
on neighborhood aggregation techniques. Subsequently, we describe kernels based on
assignments, substructures, walks and paths, and neural networks, as well as approaches
that do not fit into any of the former categories. In the “Expressivity of graph kernels”
section, we survey theoretical work on the expressivity of kernels and in the “Applica-
tions of graph kernels” section we describe applications of graph kernels in four domain
areas. Finally, in the “Experimental study” section we introduce and analyze the results of
a large-scale experimental study of graph kernels in classification problems, and provide
guidelines for the successful application of graph kernels.

Fundamentals
In this section, we cover notation and definitions of fundamental concepts pertaining to
graph-structured data, kernel methods, and graph kernels. In the “Graph kernels” section,
we use these concepts to define and categorize popular graph kernels.

Graph data

A graph G is a pair (V ,E) of a finite set of vertices V and a set of edges E ⊆ {{u, v} ⊆
V | u �= v}. A vertex is typically used to represent an object (e.g., an atom) and an edge

Kriege et al. Applied Network Science (2020) 5:6 Page 4 of 42

a relation between objects (e.g., a molecular bond). We denote the set of vertices and the
set of edges of G by V (G) and E(G), respectively. We restrict our attention to undirected
graphs in which no two edges with identical (unordered) end points, nor any self-cycles
exist. For ease of notation we denote the edge {u, v} in E(G) by (u, v) or (v,u). A labeled
graph is a graph G endowed with a label function l : V (G) → �, where � is some alpha-
bet, e.g., the set of natural or real numbers. We say that l(v) is the label of v. In the case
� = R

d for some d > 0, l(v) is the (continuous) attribute of v. In the “Applications
of graph kernels” section, we give examples of applications involving graphs with vertex
labels and attributes. The edges of a graph may also be assigned labels or attributes (e.g.,
weights representing vertex similarity), in which case the domain of the labeling function
l may be extended to the edge set.
We letN(v) denote the neighborhood of a vertex v ∈ G inV (G), i.e.,N(v) = {u ∈ V (G) |

(v,u) ∈ E(G)}. The degree of a vertex is the size of its neighborhood, deg(u) = |N(u)|.
A walk ω in a graph is an ordered sequence of vertices ω = (u, . . . , v) such that any
two subsequent vertices are connected by an edge. A (u, v)-path is a walk that starts in u
and ends in v with no repeated vertices. A graph G is called connected if there is a path
between any pair of vertices in V (G) and disconnected otherwise. Paths, vertices, edges
and neighborhoods are illustrated in Fig. 1.
We say that two unlabeled graphs G and H are isomorphic, denoted by G � H , if there

exists a bijection ϕ : V (G) → V (H), such that (u, v) ∈ E(G) if and only if (ϕ(u),ϕ(v)) ∈
E(H) for all u, v inV (G). For labeled graphs, isomorphism holds only if the bijectionmaps
only vertices and edges with the same label. Finally, a graph G′ = (V ′,E′) is a subgraph of
a graphG = (V ,E) if V ′ ⊆ V and E′ ⊆ E. Let S ⊆ V (G) be a subset of vertices inG. Then
G[S]= (S,ES) denotes the subgraph induced by S with ES = {(u, v) ∈ E(G) | u, v ∈ S}.
Graphs are often represented in matrix form. Perhaps most frequent is the adjacency

matrix A with binary elements auv = {1 iff(u, v) ∈ E}1. An alternative representation is
the graph Laplacian L, defined as L = D−A, whereD is the diagonal degree matrix, such
that duu = deg(u). Finally, the incidence matrixM of a graph is the binary n × n2 matrix
with vertex-edge-pair elements mue = {1 iff e = (u, v) ∈ E} representing the event that
the vertex u is incident on the edge e. It holds that L = MM�. The matrices A,L, and M
all carry the same information.

Kernel methods

Kernel methods refer tomachine learning algorithms that learn by comparing pairs of data
points using particular similarity measures—kernels. We give an overview below; for an
in-depth treatment, see (Schölkopf and Smola 2001; Shawe-Taylor and Cristianini 2004).
Consider a non-empty set of data points χ , such as Rd or a finite set of graphs, and let
k : χ × χ → R be a function. Then, k is a kernel on χ if there is a Hilbert spaceHk and a
feature map φ : χ → Hk such that k(x, y) = 〈φ(x),φ(y)〉 for x, y ∈ χ , where 〈·, ·〉 denotes
the inner product ofHk . Such a feature map exists if and only if k is a positive-semidefinite
function. A trivial example is where χ = R

d and φ(x) = x, in which case the kernel equals
the dot product, k(x, y) = x�y.
An important concept in kernel methods is theGrammatrixK , defined with respect to

a finite set of data points x1, ..., xm ∈ χ . The Gram matrix of a kernel k has elements Kij,

1Weighted graphs are represented by their corresponding edge weight matrix.

Kriege et al. Applied Network Science (2020) 5:6 Page 5 of 42

Fig. 1 Graph representation fundamentals. Illustration of a graph G in which each circle represents a different
vertex and each line connecting two circles an edge. Some edges and vertices are highlighted to illustrate
specific graph concepts. Here, π(y, z) represents the shortest path (sequence of vertices) between vertices y
and z. The neighborhood N(x) of a vertex x is the set of vertices adjacent to x

for i, j ∈ {0, ...,m} equal to the kernel value between pairs of data points, i.e.,Kij = k(xi, xj).
If the Gram matrix of k is positive semidefinite for every possible set of data points, k
is a kernel (Schölkopf et al. 1997). Kernel methods have the desirable property that they
do not rely on explicitly characterizing the vector representation φ(x) of data points, but
access data only via the Gram matrix K . The benefit of this is often illustrated using the
Gaussian radial basis function (RBF) kernel on R

d, d ∈ N, defined as

kRBF(x, y) = exp
(

−‖x − y‖2
2σ 2

)
, (1)

where σ is a bandwidth parameter. The Hilbert-space associated with the Gaussian
RBF kernel has infinite dimension but the kernel may be readily computed for any
pair of points (x, y) (see (Mohri et al. 2012) for further details). Kernel methods have
been developed for most machine learning paradigms, e.g., support vector machines
(SVM) for classification (Cortes and Vapnik 1995),Gaussian processes (GP) for regression
(Rasmussen 2004), kernel PCA, k-means for unsupervised learning and clustering
(Schölkopf et al. 1997), and kernel density estimation (KDE) for density estimation (Sil-
verman 1986). In this work, we restrict our attention to classification of objects in a
non-empty set of graphsG. In this setting, a kernel k : G×G → R is called a graph kernel.
Like kernels on vector spaces, graph kernels can be calculated either explicitly (by com-
puting φ) or implicitly (by computing only k). Traditionally, learning with implicit kernel
representations means that the value of the chosen kernel applied to every pair of graphs
in the training set must be computed and stored. Explicit computation means that we
compute a finite dimensional feature vector for each graph; the values of the kernel can
then be computed on-the-fly during learning as the inner product of feature vectors. If
explicit computation is possible, and the dimensionality of the resulting feature vectors is
not too high, or the vectors are sparse, then it is usually faster and more memory efficient
than implicit computation, see also (Kriege et al. 2014; Kriege et al. 2019).

Design paradigms for kernels on structured data

When working with vector-valued data, it is common practice for kernels to compare
objects x, y ∈ R

d using differences between vector components (see for example the

Kriege et al. Applied Network Science (2020) 5:6 Page 6 of 42

Gaussian RBF kernel in the “Kernel methods” section). The structure of a graph, however,
is invariant to permutations of its representation—the ordering by which vertices and
edges are enumerated does not change the structure—and vector distances between, e.g.,
adjacency matrices, are typically uninformative. For this reason, it is important to com-
pare graphs in ways that are themselves permutation invariant. As mentioned previously,
two graphs with identical structure (irrespective of representation) are called isomor-
phic, a concept that could in principle be used for learning. However, not only is there
no known polynomial-time algorithm for testing graph isomorphism (Johnson 2005) but
isomorphism is also typically too strict for learning—it is akin to learning with the equal-
ity operator. In practice, it is often desirable to have smoother metrics of comparison in
order to gain generalizable knowledge from the comparison of graphs.
The vast majority of graph kernels proposed in the literature are instances of so-called

convolution kernels. Given two discrete structures, e.g., two graphs, the idea of Haussler’s
Convolution Framework (Haussler 1999) is to decompose these two structures into sub-
structures, e.g., vertices or subgraphs, and then evaluate a kernel between each pair of
such substructures. The convolution kernel is defined below.

Definition 1 (Convolution Kernel) LetR = R1×· · ·×Rd denote a space of components
such that a composite object X ∈ X decomposes into elements ofR. Further, let R : R → X
denote the mapping from components to objects, such that R(x) = X if and only if the
components x ∈ R make up the object X ∈ X , and let R−1(X) = {x ∈ R : R(x) = X}.
Then, the R-convolution kernel is

kCV(X,Y) =
∑

x∈R−1(X)

∑
y∈R−1(Y)

d∏
i=1

ki(xi, yi)

︸ ︷︷ ︸
k(x,y)

, (2)

where ki is a kernel onRi for i in {1, . . . , d}.

In our context, we may view the inverse map R−1(G) of the convolution kernel as the
set of all components of a graph G that we wish to compare. A simple example of the R-
convolution kernel is the vertex label kernel for which the mapping R takes the attributes
xu ∈ R of each vertex u ∈ G ∪ H and maps them to the graph that u is a member of. We
expand on this notion in the “Subgraph patterns” section. A benefit of the convolution
kernel framework when working with graphs is that if the kernels on substructures are
invariant to orderings of vertices and edges, so is the resulting graph kernel.
A property of convolution kernels often regarded as unfavorable is that the sum

in Eq. (2) applies to all pairs of components. When the considered components become
more and more specific, each object becomes increasingly similar to itself, but no longer
to any other objects. This phenomenon is referred to as the diagonal dominance prob-
lem, since the entries on the main diagonal of the Gram matrix are much higher than the
others entries. This problem was observed for graph kernels, for which weights between
the components were introduced to alleviate the problem (Yanardag and Vishwanathan
2015a; Aiolli et al. 2015). In addition, the fact that convolution kernels compare all pairs of
components may be unsuitable in situations where each component of one object corre-
sponds to exactly one component of the other (such as the features of two faces). Shin and

Kriege et al. Applied Network Science (2020) 5:6 Page 7 of 42

Kuboyama (2008) studied mapping kernels, where the sum moves over a predetermined
subset of pairs rather than the entire cross product. It was shown that, for general prim-
itive kernels k, a valid mapping kernel is obtained if and only if the considered subsets of
pairs are transitive onR. This does not necessarily hold, when assigning the components
of two objects to each other such that a correspondence of maximum total similarity w.r.t.
k is obtained. As a consequence, this approach does not lead to valid kernels in general.
However, graph kernels following this approach have been studied in detail and are often
referred to as optimal assignment kernels, see in the “Assignment- and matching-based
approaches” section.

Graph kernels
The first methods for graph comparison referred to as graph kernels were proposed in
2003 (Gärtner et al. 2003; Kashima et al. 2003). However, several approaches similar to
graph kernels had been developed in the field of chemoinformatics, long before the term
graph kernel was coined. The timeline in Fig. 2 shows milestones in the development
of graph kernels and related learning algorithms for graphs. We postpone the discus-
sion of the latter to “Chemoinformatics” section. Following the introduction of graph
kernels, subsequent work focused for a long time on making kernels computationally
tractable for large graphs with (predominantly) discrete vertex labels. Since 2012, several
kernels specifically designed for graphs with continuous attributes have been proposed. It
remains a current challenge in research to develop neural techniques for graphs that are
able to learn feature representations that are clearly superior to the fixed feature spaces
used by graph kernels.
In the following, we give an overview of the graph kernel literature in order of popular

design paradigms. We begin our treatment with kernels that are based on neighborhood
aggregation techniques. The subsequent subsections deal with assignment- andmatching-
based kernels, and kernels based on the extraction of subgraph patterns, respectively. The
final subsections deal with kernels based on walks and paths, and kernels that do not fall
into either of the previous categories. Table 1 gives an overview of the discussed graph
kernels and their properties.

Neighborhood aggregation approaches

One of the dominating paradigms in the design of graph kernels is representation and
comparison of local structure. Two vertices are considered similar if they have identi-
cal labels—even more so if their neighborhoods are labeled similarly. Expanding on this
notion, two graphs are considered similar if they are composed of vertices with similar
neighborhoods, i.e., that they have similar local structure. The different ways by which
local structure is defined, represented and compared form the basis for several influential
graph kernels. We describe a first example next.
Neighborhood aggregation approaches work by assigning an attribute to each vertex

based on a summary of the local structure around them. Iteratively, for each vertex, the
attributes of its immediate neighbors are aggregated to compute a new attribute for the
target vertex, eventually representing the structure of its extended neighborhood. Sher-
vashidze et al. (2011) introduced a highly influential class of neighborhood aggregation
kernels for graphs with discrete labels based on the 1-dimensionalWeisfeiler-Lehman (1-
WL) or color refinement algorithm—a well-known heuristic for the graph isomorphism

Kriege et al. Applied Network Science (2020) 5:6 Page 8 of 42

Fig. 2 Timeline. Selected techniques for graph classification with a focus on kernels. Techniques based on
fingerprints are marked in gray and methods using neural networks in brown. Methods proposed for
cheminformatics are shown in italics, kernels for attributed graphs in bold

problem, see, e.g., (Babai and Kucera 1979). We illustrate an application of the 1-WL
algorithm in Fig. 3.
Let G and H be graphs, and let l : V (G) ∪ V (H) → � be the observed vertex label

function of G and H.2 In a series of iterations i = 0, 1, . . ., the 1-WL algorithm computes
new label functions li : V (G) ∪ V (H) → �, each of which can be used to compare G and
H. In iteration 0 we set l0 = l and in subsequent iterations i > 0, we set

2If the graph is unlabeled, let l map to a constant.

Kriege et al. Applied Network Science (2020) 5:6 Page 9 of 42

Table 1 Summary of selected graph kernels: Computation by explicit (EX) and implicit (IM) feature
mapping and support for attributed graphs

Graph kernel Computation Labels Attributes

Shortest-Path (Borgwardt and Kriegel 2005) IM +† +†

Generalized Shortest-Path
(Hermansson et al. 2015)

IM + +†

Graphlet (Shervashidze et al. 2009) EX – –

Cycles and Trees (Horváth et al. 2004) EX +	 –

Tree Pattern Kernel (Ramon and Gärtner
2003; Mahé and Vert 2009)

IM + +	

Ordered Directed Acyclic Graphs (Da San
Martino et al. 2012a; 2012b)

EX + –

GraphHopper (Feragen et al. 2013) IM +† +

Graph Invariant (Orsini et al. 2015) IM + +

Subgraph Matching (Kriege and Mutzel
2012)

IM + +

Weisfeiler-Lehman Subtree (Shervashidze et
al. 2011)

EX + –

Weisfeiler-Lehman Edge (Shervashidze et al.
2011)

EX + –

Weisfeiler-Lehman Shortest-Path
(Shervashidze et al. 2011)

EX + –

k-dim. Local Weisfeiler-Lehman Subtree
(Morris et al. 2017)

EX + –

Neighborhood Hash Kernel (Hido and
Kashima 2009)

EX + –

Propagation Kernel (Neumann et al. 2016) EX + +

Neighborhood Subgraph Pairwise Distance
Kernel (Costa and De Grave 2010)

EX + –

RandomWalk (Gärtner et al. 2003; Kashima et
al. 2003; Mahé et al. 2004; Vishwanathan et al.
2010; Sugiyama and Borgwardt 2015; Kang
et al. 2012)

IM + +

Optimal Assignment Kernel (Fröhlich et al.
2005)

IM + +

Weisfeiler-Lehman Optimal Assignment
(Kriege et al. 2016)

IM + –

Pyramid Match (Nikolentzos et al. 2017b) IM + –

Matchings of Geometric Embeddings
(Johansson and Dubhashi 2015)

IM + +	

Descriptor Matching Kernel (Su et al. 2016) IM + +†

Graphlet Spectrum (Kondor et al. 2009) EX + –

Multiscale Laplacian Graph Kernel (Kondor
and Pan 2016)

IM + +	†

Global Graph Kernel (Johansson et al. 2014) EX – –

Deep Graph Kernels (Yanardag and Vish-
wanathan 2015a)

IM + –

Smoothed Graph Kernels (Yanardag and
Vishwanathan 2015b)

IM +	 –

Hash Graph Kernel (Morris et al. 2016) EX + +

Depth-based Representation Kernel (Bai et al.
2014)

IM – –

Aligned Subtree Kernel (Bai et al. 2015) IM + –

The column ’Labels’ refers to whether the kernels support comparison of graphs with discrete vertex and edge labels in a way that
depends on the interplay between structure and labels. The column ’Attributes’ refer to the same capability but for continuous or
more general vertex attributes. 	 —not considered in publication, but method can be extended; † — vertex annotations only

Kriege et al. Applied Network Science (2020) 5:6 Page 10 of 42

li(v) = relabel
((
li−1(v), sort

({{
li−1(u) | u ∈ N(v)

}})))
, (3)

for v ∈ V (G) ∪ V (H), where sort(S) returns a sorted tuple of the multiset S and the
injection relabel(p) maps the pair p to a unique value in � which has not been used in
previous iterations. Now ifG andH have an unequal number of vertices with label σ ∈ �,
we can conclude that the graphs are not isomorphic. Moreover, if the cardinality of the
image of li−1 equals the cardinality of the image of li, the algorithm terminates.
The idea of theWeisfeiler-Lehman subtree kernel is to compute the above algorithm for

h ≥ 0 iterations, and after each iteration i compute a feature vector φi(G) ∈ R
|�i| for

each graph G, where �i ⊆ � denotes the image of li. Each component φi(G)σ i
j
counts

the number of occurrences of vertices labeled with σ i
j ∈ �i. The overall feature vector

φWL(G) is defined as the concatenation of the feature vectors of all h iterations, i.e.,(
φ0(G)σ 0

1
, . . . ,φ0(G)σ 0|�0|

, . . . ,φh(G)
σ h
1
, . . . φh(G)

σ h|�h|

)
.

Then the Weisfeiler-Lehman subtree kernel for h iterations is kWL(G,H) =
〈φWL(G),φWL(H)〉. The running time for a single feature vector computation is inO(hm)

andO(Nhm+N2hn) for the computation of the Grammatrix for a set ofN graphs (Sher-
vashidze et al. 2011), where n and m denote the maximum number of vertices and edges
over all N graphs, respectively.
The WL subtree kernel suggests a general paradigm for comparing graphs at different

levels of resolution: iteratively relabel graphs using the WL algorithm and construct a
graph kernel based on a base kernel applied at each level. Indeed, in addition to the subtree
kernel, Shervashidze et al. (2011) introduced two other variants, the Weisfeiler-Lehman
edge and the Weisfeiler-Lehman shortest-path kernel. Instead of counting the labels of
vertices after each iteration the Weisfeiler-Lehman edge kernel counts the colors of the
two endpoints for all edges. The Weisfeiler-Lehman shortest-path kernel is the sum of
shortest-path kernels applied to the graphs with refined labels li for i ∈ {0, . . . , h}.
Morris et al. (2017) introduced a graph kernel based on higher dimensional variants

of the Weisfeiler-Lehman algorithm. Here, instead of iteratively labeling vertices, the
algorithm labels k-tuples or sets of cardinality k. Morris et al. (2017) also provide effi-
cient approximation algorithm to scale the algorithm up to large datasets. In (Hido and
Kashima 2009), a graph kernel similar to the 1-WL was introduced which replaces the
neighborhood aggregation function Eq. (3) by a function based on binary arithmetic. Sim-
ilarly, in Neumann et al. (2016) the propagation kernel is defined which propagates labels,
and real-valued attributes for several iterations while tracking their distribution for every
vertex. A randomized approach based on p-stable locality-sensitive hashing is used to
obtain unique features after each iteration. In recent years, graph neural networks (GNNs)
have emerged as an alternative to graph kernels. Standard GNNs can be viewed as a feed-
forward neural network version of the 1-WL algorithm, where colors (labels) are replaced
by continuous feature vectors and network layers are used to aggregate over vertex neigh-
borhoods (Hamilton et al. 2017; Kipf and Welling 2017). Recently, a connection between
the 1-WL and GNNs has been established (Morris et al. 2019), showing that any possi-
ble GNN architecture cannot be more powerful than the 1-WL in terms of distinguishing
non-isomorphic graphs.
Bai et al. (2014; 2015) proposed graph kernels based on depth-based representations,

which can be seen as a different form of neighborhood aggregation. For a vertex v the

Kriege et al. Applied Network Science (2020) 5:6 Page 11 of 42

Fig. 3 Weisfeiler-Lehman (WL) relabeling. Two iterations of Weisfeiler-Lehman vertex relabeling for a graph
with discrete labels in {A, B}. At initialization (left), vertex labels are left in their original state. In the first
iteration (middle), a new label is computed for each vertex, determined by the unique combination of its
own and its neighbors’ labels. For example, the top-left vertex with label B has neighbors with labels A and B.
This combination is renamed D and assigned to the top-left vertex in the first iteration. The second iteration
(right) proceeds analogously

m-layer expansion subgraph is the subgraph induced by the vertices of shortest-path
distance atmostm from the vertex v. In order to obtain a vertex embedding for v the Shan-
non entropy of these subgraphs is computed for all m ≤ h, where h is a given parameter
(Bai et al. 2014). A similar concept is applied in (Bai et al. 2015), where depth-based rep-
resentations are used to compute strengthened vertex labels. Both methods are combined
with matching-based techniques to obtain a graph kernel.

Assignment- andmatching-based approaches

A common approach to comparing two composite or structured objects is to identify the
best possible matching of the components making up the two objects. For example, when
comparing two chemical molecules it is instructive to map each atom in one graph to
the atom in the other graph that is most similar in terms of, for example, neighborhood
structure and attached chemical and physical measurements. This idea has been used
also in graph kernels, an early example of which was proposed by Fröhlich et al. (2005)
in the optimal assignment (OA) kernel. In the OA kernel, each vertex is endowed with a
representation (e.g., a label) that is compared using a base kernel. Then, a similarity value
for a pair of graphs is computed based on a mapping between their vertices such that the
total similarity between the matched vertices with respect to a base kernel is maximized.
An illustration of the optimal assignment kernel can be seen in Fig. 4. The OA kernel can
be defined as follows.

Definition 2 (Optimal assignment kernel) Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be
sets of components fromR and k : R×R → R a base kernel on components. The optimal
assignment kernel is

KA(X,Y) = max
π∈
n

n∑
i=1

k(xi, yπ(i)), (4)

where
n is the set of all possible permutations of {1, . . . , n}. In order to apply the assign-
ment kernel to sets of different cardinality, we fill the smaller set with objects z and define
k(z, x) = 0 for all x ∈ R.

Kriege et al. Applied Network Science (2020) 5:6 Page 12 of 42

Fig. 4 Assignment kernels. Illustration of optimal assignment kernels with vertex embeddings. The vertices of
two different graphs (left), G and H are embedded in a common spaceR (middle). For example, vertices
u ∈ VG , v ∈ VH are given embeddings xu , yv ∈ R. Finally, a bipartite graph with weights determined by the
distances between the vertex embeddings of the two graphs is constructed and used to compute an optimal
matching between the vertex sets. The weight of the matching is used to compute the kernel value k(G,H)

The careful reader may have noticed a superficial similarity between the OA kernel
and the R-convolution and mapping kernels (see in the “Design paradigms for kernels
on structured data” section). However, instead of summing the base kernel over a fixed
ordering of component pairs, the OA kernel searches for the optimal mapping between
components of two objects X,Y . Unfortunately, this means that Eq. 4 is not a positive-
semidefinite kernel in general (Vert 2008; Vishwanathan et al. 2010). This fact complicates
the use of assignment similarities in kernel methods, although generalizations of SVMs
for arbitrary similaritymeasures have been developed, see, e.g., (Loosli et al. 2015) and ref-
erences therein. Moreover, kernel methods, such as SVMs, have been found to work well
empirically also with indefinite kernels (Johansson and Dubhashi 2015), without enjoying
the guarantees that apply to positive definite kernels.
Several different approaches to obtain positive definite graph kernels from indefinite

assignment similarities have been proposed. Woźnica et al. (2010) derived graph kernels
from set distances and employed a matching-based distance to compare graphs, which
was shown to be a metric (Ramon and Bruynooghe 2001). In order to obtain a valid ker-
nel, the authors use so-called prototypes, an idea prevalent also in the theory of learning
with (non-kernel) similarity functions under the name landmarks (Balcan et al. 2008).
Prototypes are a selected set of instances (e.g., graphs) to which all other instances are
compared. Each graph is then represented by a feature vector in which each component
is the distance to a different prototype. Prototypes were used also by Johansson and Dub-
hashi (2015) who proposed to embed the vertices of a graph into the d-dimensional real
vector space in order to compute a matching between the vertices of two graphs with
respect to the Euclidean distance. Several methods for the embedding were proposed; in
particular, the authors used Cholesky decompositions of matrix representations of graphs
including the graph Laplacian and its pseudo-inverse. The authors found empirically that
the indefinite graph similarity matrix from the matching worked as well as prototypes. In
the “Experimental study” section, we use this, indefinite version.
Instead of generating feature vectors from prototypes, Kriege et al. (2016) showed

that Eq. 4 is a valid kernel for a restricted class of base kernels k. These, so-called
strong base kernels, give rise to hierarchies from which the optimal assignment kernels
are computed in linear time by histogram intersection. For graph classification, a base

Kriege et al. Applied Network Science (2020) 5:6 Page 13 of 42

kernel was obtained fromWeisfeiler-Lehman refinement. The derivedWeisfeiler-Lehman
optimal assignment kernel often provides better classification accuracy on real-world
benchmark datasets than theWeisfeiler-Lehman subtree kernel (see in the “Experimental
study” section). The weights of the hierarchy associated with a strong base kernel can be
optimized via multiple kernel learning (Kriege 2019).
Pachauri et al. (2013) studied a generalization of the assignment problem to more than

two sets, which was used to define transitive assignment kernels for graphs (Schiavinato
et al. 2015). The method is based on finding a single assignment between the vertices
of all graphs of the dataset instead of finding an optimal assignment for each pairs of
graphs. This approach satisfies the transitivity constraint of mapping kernels and there-
fore leads to positive-semidefinite kernels. However, non-optimal assignments between
individual pairs of graphs are possible. Nikolentzos et al. (2017b) proposed a matching-
based approach based on the EarthMover’s Distance, which results in an indefinite kernel
function. In order to deal with this they employ a variation of the SVM algorithm, special-
ized for learning with indefinite kernels. Additionally, they propose an alternative solution
based on the pyramid match kernel, a generic kernel for comparing sets of features (Grau-
man and Darrell 2007b). The pyramid match kernel avoids the indefiniteness of other
assignment kernels by comparing features through a multi-resolution histograms (with
bins determined globally, rather than for each pair of graphs).

Subgraph patterns

In many applications, a strong baseline for representations of composite objects such as
documents, images or graphs is one that ignores the structure altogether and represents
objects as bags of components. A well-known example is the so-called bag-of-words repre-
sentation of text—statistics of word occurrences without context—which remains a staple
in natural language processing. For additional specificity, it is common to compare statis-
tics also of bigrams (sequences of two words), trigrams, etc. A similar idea may be used to
compare graphs by ignoring large-scale structure and viewing graphs as bags of vertices
or edges. The vertex label kernel does precisely this by comparing graphs only at the level
of similarity between all pairs of vertex labels from two different graphs,

kVL(G,H) =
∑

u∈V (G)

∑
v∈V (G)

k(l(u), l(v)) .

With the base kernel k the equality indicator function, kVL is a linear kernel on the (unnor-
malized) distributions of vertex labels in G and H. Similar in spirit, the edge label kernel
is defined as the sum of base kernel evaluations on all pairs of edge labels (or triplets of
the edge label and incident vertex labels). Note that such kernels are a paramount exam-
ple for instances of the convolution kernel framework, see in the “Design paradigms for
kernels on structured data” section.
A downside of vertex and edge label kernels is that they ignore the interplay between

structure and labels and are almost completely uninformative for unlabeled graphs.
Instead of viewing graphs as bags of vertices or edges, we may view them as bags of
subgraph patterns. To this end, Shervashidze et al. (2009) introduced a kernel based
on counting occurrences of subgraph patterns of a fixed size—so called graphlets (see
Fig. 5). Every graphlet is an instance of an isomorphism type—a set of graphs that are
all isomorphic—such as a graph on three vertices with two edges. While there are three

Kriege et al. Applied Network Science (2020) 5:6 Page 14 of 42

graphs that connect three vertices with two edges, they are all isomorphic and considered
equivalent as graphlets.
Graphlet kernels count the isomorphism types of all induced (possibly disconnected)

subgraphs on k > 0 vertices of a graph G. Let φ(G)σi for 1 ≤ i ≤ N denote the number
of instances of isomorphism type σi where N denotes the number of different types. The
kernel computes a feature map φGR(G) for G,

φGR(G) = (
φ(G)σ1 , . . . ,φ(G)σN

)
.

The graphlet kernel is finally defined as kGR(G,H) = 〈φGR(G),φGR(H)〉 for two graphs G
and H.
The time required to compute the graphlet kernel scales exponentially with the size

of the considered graphlets. To remedy this, Shervashidze et al. (2009) proposed two
algorithms for speeding up the computation time of the feature map for k in {3, 4}. In par-
ticular, it is common to restrict the kernel to connected graphlets (isomorphism types).
Additionally, the statistics used by the graphlet kernel may be estimated approximately
by subgraph sampling, see, e.g., (Johansson et al. 2015; Ahmed et al. 2016; Chen and
Lui 2016; Bressan et al. 2017). Please note that the graphlet kernel as proposed by Sher-
vashidze et al. (2009) does not consider any labels or attributes. However, the concept (but
not all speed-up tricks) can be extended to labeled graphs by using labeled isomorphism
types as features, see, e.g., (Wale et al. 2008). Mapping (sub)graphs to their isomorphism
type is known as graph canonization problem, for which no polynomial time algorithm
is known (Johnson 2005). However, this is not a severe restriction for small graphs such
as graphlets and, in addition, well-engineered algorithms solving most practical instances
in a short time exist (McKay and Piperno 2014). Horváth et al. (2004) proposed a ker-
nel which decomposes graphs into cycles and tree patterns, for which the canonization
problem can be solved in polynomial time and simple practical algorithms for this are
known.
Costa and De Grave (2010) introduced the neighborhood subgraph pairwise distance

kernel which associates a string with every vertex representing its neighborhood up to
a certain depth. In order to avoid solving the graph canonization problem, they pro-
posed using a graph invariant that may, in rare cases, map non-isomorphic neighborhood
subgraphs to the same string. Then, pairs of these neighborhood graphs together with

Fig. 5 Graphlets. Illustration of graphlets on 3 vertices in a graph G. Each circle represents a vertex and each
line connecting two circles an edge. A 3-graphlet is an instance of an edge pattern on the induced subgraph
of 3 vertices. We highlight examples of empty (right), single-edge (top-left), and double-edge (bottom-left)
3-graphlets. No complete graphlets are present in the graph. The graphlet kernel is computed by comparing
the number of instances of each pattern in two graphs

Kriege et al. Applied Network Science (2020) 5:6 Page 15 of 42

the shortest-path distance between their central vertices are counted as features. The
approach is similar to the Weisfeiler-Lehman shortest-path kernel (see in the “Neighbor-
hood aggregation approaches” section).
An alternative to subgraph patterns, tree patterns may contain repeated vertices just

like randomwalks and were initially proposed for use in graph comparison by Ramon and
Gärtner (2003) and later refined byMahé and Vert (2009). Tree pattern kernels are similar
to the Weisfeiler-Lehman subtree kernel, but do not consider all neighbors in each step,
but also all possible subsets (Shervashidze et al. 2011), and hence do not scale to larger
datasets. Da San Martino et al. (2012b) proposed decomposing a graph into trees and
applying a kernel defined on trees. In (Da San Martino et al. 2012a), a fast hashing-based
computation scheme for the aforementioned graph kernel is proposed.

Walks and paths

A downside of the subgraph pattern kernels described in the previous section is that
they require the specification of a set of patterns, or subgraph size, in advance. To ensure
efficient computation, this often restricts the patterns to a fairly small scale, emphasiz-
ing local structure. A popular alternative is to compare the sequences of vertex or edge
attributes that are encountered through traversals through graphs. In this section, we
describe two families of traversal algorithms which yield different attribute sequences and
thus different kernels—shortest paths and random walks.

Shortest-path kernels

One of the very first, and most influential, graph kernels is the shortest-path (SP) kernel
(Borgwardt and Kriegel 2005). The idea of the SP kernel is to compare the attributes and
lengths of the shortest paths between all pairs of vertices in two graphs. The shortest path
between two vertices is illustrated in Fig. 1. Formally, let G and H be graphs with label
function l : V (G) ∪ V (H) → � and let d(u, v) denote the shortest-path distance between
the vertices u and v in the same graph. Then, the kernel is defined as

kSP(G,H) =
∑

(u,v)∈V (G)2
u �=v

∑
(w,z)∈V (H)2

w �=z

k((u, v), (w, z)), (5)

where

k((u, v), (w, z)) = kL(l(u), l(w)) · kL(l(v), l(z)) · kD(d(u, v), d(w, z)) .

Here, kL is a kernel for comparing vertex labels and kD is a kernel to compare shortest-path
distances, such that kD(d(u, v), k(w, z)) = 0 if d(u, v) = ∞ or d(w, z) = ∞.
The running time for evaluating the general form of the SP kernel for a pair of graphs is

in O(n4). This is prohibitively large for most practical applications. However, in the case
of discrete vertices and edge labels, e.g., a finite subset of the natural numbers, and k the
indicator function, we can compute the feature map φSP(G) corresponding to the kernel
explicitly. In this case, each component of the feature map counts the number of triples
(l(u), l(v), d(u, v)) for u and v inV (G) and u �= v. Using this approach, the time complexity
of the SP kernel is reduced to the time complexity of the Floyd-Warshall algorithm, which
is in O(n3). In (Hermansson et al. 2015) the shortest-path is generalized by considering
all shortest paths between two vertices.

Kriege et al. Applied Network Science (2020) 5:6 Page 16 of 42

Randomwalk kernels

Gärtner et al. (2003) and Kashima et al. (2003) simultaneously proposed graph ker-
nels based on random walks, which count the number of (label sequences along) walks
that two graphs have in common. The description of the random walk kernel by
Kashima et al. (2003) is motivated by a probabilistic view of kernels and based on the idea
of so-called marginalized kernels. The feature space of the kernel comprises all possible
label sequences produced by random walks; since the length of the walks is unbounded,
the space is of infinite dimension. Amethod of computation is proposed based on a recur-
sive reformulation of the kernel, which at the end boils down to finding the stationary state
of a discrete-time linear system. Since this kernel was later generalized by (Vishwanathan
et al. 2010) we do not go into the mathematical details of the original publication. The
approach fully supports attributed graphs, since vertex and edge labels encountered on
walks are compared by user-specified kernels.
Mahé et al. (2004) extended the original formulation of random walk kernels with a

focus on application in cheminformatics (Mahé et al. 2005) to improve the scalability and
relevance as similarity measure. A mostly unfavorable characteristic of random walks is
that they may visit the same vertex several times. Walks are even allowed to traverse an
edge from u to v and instantly return to u via the same edge, a problem referred to as
tottering. These repeated consecutive vertices do not provide useful information and may
even harm the validity as similarity measure. Hence, the marginalized graph kernel was
extended to avoid tottering by replacing the underlying first-order Markov random walk
model by a second-orderMarkov randomwalkmodel. This technique to prevent tottering
only eliminates walks (v1, . . . , vn) with vi = vi+2 for some i, but it does not require the
considered walks to be paths, i.e., repeated vertices still occur.
Like other random walk kernels, Gärtner et al. (2003) define the feature space of their

kernel as the label sequences derived from walks, but propose a different method of
computation based on the direct product graph of two labeled input graphs.

Definition 3 (Direct Product Graph) For two labeled graphs G = (V ,E) and H =
(V ′,E′) the direct product graph is denoted by G × H = (V , E) and defined as

V = {
(v, v′) ∈ V × V ′ | l(v) = l(v′)

}
E = {

((u,u′), (v, v′)) ∈ V | (u, v) ∈ E ∧ (u′, v′) ∈ E′ ∧ l((u, v)) = l((u′, v′))
}
.

A vertex (edge) in G × H has the same label as the corresponding vertices (edges) in
G and H.

The concept is illustrated in Fig. 6. There is a one-to-one correspondence betweenwalks
in G × H and walks in the graphs G and H with the same label sequence. The direct
product kernel is then defined as

KRW(G,H) =
|V|∑
i,j=1

[∞∑
l=0

λlAl×

]

ij

, (6)

where A× is the adjacency matrix of G × H and λ = (λ0, λ1, . . .) a sequence of weights
such that the above sum converges. This is the case for λi = γ i, i ∈ N, and γ < 1

a with

Kriege et al. Applied Network Science (2020) 5:6 Page 17 of 42

Fig. 6 Direct product graph. Two labeled graphs G, H and their direct product graph G × H. The vertices of G
and H are labeled with ’C’ (gray) and ’O’ (red). In the direct product graph, there is a vertex for all pairs of
vertices of G and H with the same label. Two vertices in the direct product graph are adjacent if and only if
the associated pairs of vertices are adjacent in G and H

a ≥ , where is the maximum degree of G × H . For this choice of weights and with I
the identity matrix, there exists a closed-form expression,

KGRW(G,H) =
|V|∑
i,j=1

[
(I − γA×)−1]

ij (7)

which can be computed by matrix inversion. Since the expression reminds of the geomet-
ric series transferred tomatrices, Eq. 7 is referred to as geometric randomwalk kernel. The
running time to compute the geometric random walk kernel between two graphs is dom-
inated by the inversion of the adjacency matrix associated with the direct product graph.
The running time is given as roughlyO(n6) (Vishwanathan et al. 2010).
Vishwanathan et al. (2010) propose a generalizing framework for random walk based

graph kernels and argue that the approach by Kashima et al. (2003) and Gärtner et al.
(2003) can be considered special cases of this kernel. The paper does not address vertex
labels and makes extensive use of the Kronecker product between matrices denoted by ⊗
and lifts it to the feature space associated with an (edge) kernel. Given an edge kernel κE
on attributes from the set A, let φ : A → H be a feature map. For an attributed graph
G, the feature matrix �(G) is then defined as �ij(G) = φ((vi, vj)) if (vi, vj) ∈ E(G) and 0
otherwise. Then,W× = �(G) ⊗ �(H) yields a weight matrix of the direct product graph
G × H3. The proposed kernel is defined as

KRW(G,H) =
∞∑
l=0

μlqT×W l×p×, (8)

where p× and q× are initial and stopping probability distributions andμl coefficients such
that the sum converges. Several methods of computation are proposed, which yield differ-
ent running times depending on a parameter l, specific to that approach. The parameter l
either denotes the number of fixed-point iterations, power iterations or the effective rank
of W×. The running times to compare graphs of order n also depend on the edge labels
of the input graphs and the desired edge kernel: For unlabeled graphs the running time
O(n3) is achieved and O(dln3) for labeled graphs, where d = |L| is the size of the label
alphabet. The same running time is attained by edge kernels with a d-dimensional fea-
ture space, while O(ln4) time is required in the infinite case. For sparse graphs, O(ln2) is

3Here vertex labels are ignored, i.e., V (G × H) = V (G) × V (H).

Kriege et al. Applied Network Science (2020) 5:6 Page 18 of 42

achieved in all cases, where a graph G is said to be sparse if |E(G)| = O(|V (G)|). Further
improvements of the running time were subsequently achieved by non-exact algorithms
based on low rank approximations (Kang et al. 2012). Recently, the phenomenon of halt-
ing in random walk kernels has been studied Sugiyama and Borgwardt (2015), which
refers to the fact that walk-based graph kernels may down-weight longer walks so much
that their value is dominated by walks of length 1.
The classical random walk kernels described above in theory take all walks without a

limitation in length into account, which leads to a high-dimensional feature space. Several
application-related papers used walks up to a certain length only, e.g., for the prediction
of protein functions (Borgwardt et al. 2005) or image classification (Harchaoui and Bach
2007). These walk based kernels are not susceptible to the phenomenon of halting. Kriege
et al. (2014); Kriege et al. (2019) systematically studied kernels based on all the walks
of a predetermined fixed length �, referred to as �-walk kernel, and all the walks with
length at most �, calledMax-�-walk kernel, respectively. For these, computation schemes
based on implicit and explicit feature maps were proposed and compared experimen-
tally. Computation by explicit feature maps provides a better performance for graphs with
discrete labels with a low label diversity and small walk lengths. Conceptually different,
Zhang et al. (2018b) derived graph kernels based on return probabilities of randomwalks.

Kernels for graphs with continuous labels

Most real-world graphs have attributes, mostly real-valued vectors, associated with their
vertices and edges. For example, atoms of chemical molecules have physical and chemical
properties; individuals in social networks have demographic information; and words in
documents carry semantic meaning. Kernels based on pattern counting or neighborhood
aggregation are of a discrete nature, i.e., two vertices are regarded as similar if and only if
they exactlymatch, structure-wise as well as attribute-wise. However, inmost applications
it is desirable to compare real-valued attributes with more nuanced similarity measures
such as the Gaussian RBF kernel defined in the “Kernel methods” section.
Kernels suitable for attributed graphs typically rely on user-defined kernels for the

comparison of vertex and edge labels. These kernels are then combined with kernels
on structure through operations that yield a valid kernel on graphs, such as addition
or multiplication. Two examples of this, the recently proposed kernels for attributed
graphs, GraphHopper (Feragen et al. 2013) and GraphInvariant (Orsini et al. 2015), can
be expressed as

kWV(G,H) =
∑

v∈V (G)

∑
v′∈V (H)

kW (v, v′) · kV (v, v′). (9)

Here, kV is a user-specified kernel comparing vertex attributes and kW is a kernel that
determines a weight for a vertex pair based on the individual graph structures. Ker-
nels belonging to this family are easily identifiable as instances of R-convolution kernels,
cf. Definition 1.
For graphs with real-valued attributes, one could set kV to the Gaussian RBF kernel.

The selection of the kernel kW is essential to take the graph structure into account and
allows to obtain different instances of weighted vertex kernels. One implementation of
kW motivated along the lines of GraphInvariant (Orsini et al. 2015) is

Kriege et al. Applied Network Science (2020) 5:6 Page 19 of 42

kW (v, v′) =
h∑

i=0
kδ(τi(v), τi(v′)),

where τi(v) denotes the discrete label of the vertex v after the i-th iteration of Weisfeiler-
Lehman label refinement of the underlying unlabeled graph. Intuitively, this kernel
reflects to what extent the two vertices have a structurally similar neighborhood.
Another graph kernel, which fits into the framework of weighted vertex kernels, is the

GraphHopper kernel (Feragen et al. 2013) with

kW (v, v′) = 〈M(v),M(v′)〉F .

Here M(v) and M(v′) are δ × δ matrices, where the entry M(v)ij for v in V (G) counts
the number of times the vertex v appears as the i-th vertex on a shortest path of discrete
length j in G, where δ denotes the maximum diameter over all graphs, and 〈·, ·〉F is the
Frobenius inner product.
Kriege andMutzel (2012) proposed the subgraphmatching kernel which is computed by

considering all bijections between all subgraphs on at most k vertices, and allows to com-
pare vertex attributes using a custom kernel. Moreover, in (Su et al. 2016) the Descriptor
Matching kernel is defined, which captures the graph structure by a propagation mecha-
nism between neighbors, and uses a variant of the pyramid match kernel (Grauman and
Darrell 2007a) to compare attributes between vertices. The kernel can be computed in
time linear in the number of edges.
Morris et al. (2016) introduced a scalable framework to compare attributed graphs. The

idea is to iteratively turn the continuous attributes of a graph into discrete labels using ran-
domized hash functions. This allows to apply fast explicit graph feature maps, which are
limited to graphs with discrete annotations such as the one associated with theWeisfeiler-
Lehman subtree kernel (Shervashidze et al. 2011). For special hash functions, the authors
obtain approximation results for several state-of-the-art kernels which can handle con-
tinuous information. Moreover, they derived a variant of the Weisfeiler-Lehman subtree
kernel which can handle continuous attributes.

Other approaches

Kondor et al. (2009) derived a graph kernel using graph invariants based on group rep-
resentation theory. In (Kondor and Pan 2016), a graph kernel is proposed which is able
to capture the graph structure at multiple scales, i.e., neighborhoods around vertices of
increasing depth, by using ideas from spectral graph theory. Moreover, the authors pro-
vide a low-rank approximation algorithm to scale the kernel computation to large graphs.
Johansson et al. (2014) define a graph kernel based on the the Lovász number (Lovász
2006) and provide algorithms to approximate this kernel.
In (Li et al. 2015), a kernel for dynamic graphs is proposed, where vertices and edges

are added or deleted over time. The kernel is based on eigen decompositions. Kriege et
al. (2014); Kriege et al. (2019) investigated under which conditions it is possible and more
efficient to compute the feature map corresponding to a graph kernel explicitly. They
provide theoretical as well as empirical results for walk-based kernels. Li et al. (2012)
proposed a streaming version of the Weisfeiler-Lehman algorithm using a hashing tech-
nique. Aiolli et al. (2015) andMassimo et al. (2016) applied multiple kernel learning to the

Kriege et al. Applied Network Science (2020) 5:6 Page 20 of 42

graph kernel domain. Nikolentzos et al. (2018) proposed to first build the k-core decom-
position of graphs to obtain a hierarchy of nested subgraphs, which are then individually
compared by a graph similarity measure. The approach has been combined with several
graph kernels such as the Weisfeiler-Lehman subtree kernel and was shown to improve
the accuracy on some datasets.
Yanardag and Vishwanathan (2015a) uses recent neural techniques from neural lan-

guage modeling, such as skip-gram (Mikolov et al. 2013). The authors build on known
state-of-the-art kernels, but allow to respect relationships between their features. This is
demonstrated by hand-designed matrices encoding the similarities between features for
selected graph kernels such as the graphlet and Weisfeiler-Lehman subtree kernel. Simi-
lar ideas were used in (Yanardag and Vishwanathan 2015b) where smoothing methods for
multinomial distributions were applied to the graph domain.

Expressivity of graph kernels
While a large literature has studied the empirical performance of various graph kernels,
there exists comparatively few works that deal with graph kernels exclusively from a the-
oretical point of view. Most works that provide learning guarantees for graph kernels
attempt to formalize their expressivity.
The expressivity of a graph kernel refers broadly to the kernel’s ability to distinguish

certain patterns and properties of graphs. In an early attempt to formalize this notion,
Gärtner et al. (2003) introduced the concept a complete graph kernel—kernels for which
the corresponding feature map is an injection. If a kernel is not complete, there are non-
isomorphic graphsG andH with φ(G) = φ(H) that cannot be distinguished by the kernel.
In this case there is no way any classifier based on this kernel can separate these two
graphs. However, computing a complete graph kernel is GI-hard, i.e., at least as hard as
deciding whether two graphs are isomorphic (Gärtner et al. 2003). For this problem no
polynomial time algorithm for general graphs is known (Johnson 2005). Therefore, none
of the graph kernels used in practice are complete. Note however, that a kernel may be
injective with respect to a finite or restricted family of graphs.
As no practical kernels are complete, attempts have been made to characterize expres-

sivity in terms of which graph properties can be distinguished by existing graph kernels.
In (Kriege et al. 2018), a framework to measure the expressivity of graph kernels based
on ideas from property testing was introduced. The authors show that graph kernels such
as the Weisfeiler-Lehman subtree, the shortest-path and the graphlet kernel are not able
to distinguish basic graph properties such as planarity or connectedness. Based on these
results they propose a graph kernel based on frequency counts of the isomorphism type
of subgraphs around each vertex up to a certain depth. This kernel is able to distinguish
the above properties and computable in polynomial time for graphs of bounded degree.
Finally, the authors provide learning guarantees for 1-nearest neighborhood classifiers.
Similarly, (Johansson and Dubhashi 2015) gave bounds on the classification margin
obtained when using the optimal assignment kernel, with Laplacian embeddings, to clas-
sify graphs with different densities or random graphs with and without planted cliques.
In Johansson et al. (2014), the authors studied global properties of graphs such as girth,
density and clique number and proposed kernels based on vertex embeddings associ-
ated with the Lovász-ϑ and SVM-ϑ numbers which have been shown to capture these
properties.

Kriege et al. Applied Network Science (2020) 5:6 Page 21 of 42

The expressivity of graph kernels has been studied also from statistical perspectives. In
particular, Oneto et al. (2017) use well-known results from statistical learning theory to
give results which bound measures of expressivity in terms of Rademacher complexity
and stability theory. Moreover, they apply their theoretical findings in an experimental
study comparing the estimated expressivity of popular graph kernels, confirming some
of their known properties. Finally, Johansson et al. (2015) studied the statistical tradeoff
between expressivity and differential privacy (Dwork et al. 2014).

Applications of graph kernels
The following section outlines a non-exhaustive list of applications of the kernels
described in the “Graph kernels” section, categorized by scientific area.

Chemoinformatics Chemoinformatics is the study of chemistry and chemical com-
pounds using statistical and computational resources (Brown 2009). An important appli-
cation is drug development in which new, untested medical compounds are modeled in
silico before being tested in vitro or in animal tests. The primary object of study—the
molecule—is well represented by a graph in which vertices take the places of atoms and
edges that of bonds. The chemical properties of these atoms and bonds may be repre-
sented as vertex and edge attributes, and the properties of the molecule itself through
features of the structure and attributes. The graphs derived from small molecules have
specific characteristics. They typically have less than 50 vertices, their degree is bounded
by a small constant (≤4 with few exceptions), and the distribution of vertex labels repre-
senting atom types is specific (e.g., most of the atoms are carbon). Almost all molecular
graphs are planar, most of them even outerplanar (Horváth et al. 2010), and they have
a tree-like structure (Yamaguchi et al. 2003). Molecular graphs are not only a common
benchmark dataset for graph kernels, but several kernels were specifically proposed for
this domain, e.g., (Horváth et al. 2004; Swamidass et al. 2005; Ceroni et al. 2007; Mahé
and Vert 2009; Fröhlich et al. 2005). The pharmacophore kernel was introduced by Mahé
et al. (2006) to compare chemical compounds based on characteristic features of vertices
together with their relative spatial arrangement. As a result, the kernel is designed to han-
dle with continuous distances. The pharmacophore kernel was shown to be an instance
of the more general subgraph matching kernel (Kriege and Mutzel 2012). Mahé and Vert
(2009) developed new tree pattern kernels for molecular graphs, which were then applied
in toxicity and anti-cancer activity prediction tasks. Kernels for chemical compounds such
as this have been successfully employed for various tasks in cheminformatics including
the prediction of mutagenicity, toxicity and anti-cancer activity (Swamidass et al. 2005).
However, such tasks have been addressed by computational methods long before the

advent of graph kernels, cf. Fig. 2. So-called fingerprints are a well-established classical
technique in cheminformatics to represent molecules by feature vectors (Brown 2009).
Commonly features are obtained by (i) enumeration of all substructures of a certain class
contained in the molecular graphs, (ii) taken from a predefined dictionary of relevant
substructures or (iii) generated in a preceding data-mining phase. Fingerprints are then
used to encode the number of occurrences of a feature or only its presence or absence
by a single bit per feature. Often hashing is used to reduce the fingerprint length to a
fixed size at the cost of information loss (see, e.g., (Daylight 2008)). Such fingerprints
are typically compared using similarity measures such as the Tanimoto coefficient, which

Kriege et al. Applied Network Science (2020) 5:6 Page 22 of 42

are closely related to kernels (Ralaivola et al. 2005). Approaches of the first category are,
e.g., based on all paths contained in a graph (Daylight 2008) or all subgraphs up to a
certain size (Wale et al. 2008), similar to graphlets. Ralaivola et al. (2005) experimentally
compared random walk kernels to kernels derived from path-based fingerprints and has
shown that these reach similar classification performance on molecular graph datasets.
Extended connectivity fingerprints encode the neighborhood of atoms iteratively similar
to the graph kernels discussed in the “Neighborhood aggregation approaches” section
and can be considered a standard tool in cheminformatics for decades (Rogers and Hahn
2010). Predefined dictionaries compiled by experts with domain-specific knowledge exist,
e.g., MACCS/MDL Keys for drug discovery (Durant et al. 2002).

Bioinformatics Understanding proteins, one of the fundamental building blocks of life,
is a central goal in bioinformatics. Proteins are complex molecules which are often rep-
resented in terms of larger components such as helices, sheets and turns. Borgwardt et
al. (2005) model protein data as graphs where each vertex represents such a component,
and each edge indicates proximity in space or in amino acid sequence. Both vertices and
edges are annotated by categorical and real-valued attributes. The authors used a modi-
fied random walk kernel to classify proteins as enzymes or non-enzymes. In related work,
Borgwardt et al. (2007) predict disease outcomes from protein-protein interaction net-
works. Here, each vertex is a protein and each edge the physical interaction between a
protein-protein pair. In order to take missing edges into account, which is crucial for
studying protein-protein-interaction networks, the kernel

KCP(G,H) = KRW(G,H) + KRW(G,H),

was proposed, which is the sum of a random walk kernel KRW applied to the origi-
nal graphs G and H as well as to their complement graphs G and H . Studying pairs of
complement graphs may be useful also in other applications.

Neuroscience The connectivity and functional activity between neurons in the human
brain are indicative of diseases such as Alzheimer’s disease as well as subjects’ reac-
tions to sensory stimuli. For this reason, researchers in neuroscience have studied the
similarities of brain networks among human subjects to find patterns that correlate
with known differences between them. Representing parts of the brain as vertices and
the strength of connection between them as edges, several authors have applied graph
kernels for this purpose (Vega-Pons et al. 2014; Takerkart et al. 2014; Vega-Pons and
Avesani 2013; Wang et al. 2016; Jie et al. 2016). Unlike many other applications, the ver-
tices in brain networks often have an identity, representing a specific part of the brain.
Jie et al. (2016) exploited this fact in learning to classify mild cognitive impairments
(MCI). They find that their proposed kernel, based on iterative neighborhood expansion
(similar to the Weisfeiler-Lehman kernel), which exploits the one-to-one mapping of ver-
tices (brain regions) between different graphs consistently outperforms baseline kernels
in this task.

Natural language processing Natural language processing is ripe with relational data:
words in a document relate through their location in text, documents relate through their

Kriege et al. Applied Network Science (2020) 5:6 Page 23 of 42

publication venue and authors, named entities relate through the contexts in which they
are mentioned. Graph kernels have been used to measure similarity between all of these
concepts. For example, Nikolentzos et al. (2017a) use the shortest-path kernel to compute
document similarity by converting each document to a graph in which vertices repre-
sent terms and two vertices are connected by an edge if the corresponding terms appear
together in a fixed-size window. Hermansson et al. (2013) used the co-occurrence net-
work of person names in a large news corpus to classify which names belong to multiple
individuals in the database. Each name was represented by the subgraph corresponding
to the neighborhood of co-occuring names and labeled by domain experts. The output
of the system was intended for use as preprocessing to an entity disambiguation system.
In (Li et al. 2016) the Weisfeiler-Lehman subtree kernel was used to define a similarity
function for call graphs of Java programs to identify similar call graphs. de Vries (2013)
extended the Weisfeiler-Lehman subtree kernel so that it can handle RDF data.

Computer vision Harchaoui and Bach (2007) applied kernels based on walks of a fixed
length to image classification and developed a dynamic programming approach for their
computation. The also modified tree pattern kernels for image classification, where
graphs typically have a fixed embedding in the plane. Wu et al. (2014) proposed graph
kernels for human action recognition in video sequences. To this end, they encode the
features of each frame as well as the dynamic changes between successive frames by sep-
arate graphs. These graphs are compared by a linear combination of random walk kernels
using multiple kernel learning, which leads to an accurate classification of human actions.
The propagation kernel was applied to predict object categories in order to facilitate robot
grasping (Neumann et al. 2013). To this end, 3D point cloud data was represented by
k-nearest neighbor graphs.

Experimental study
In our experimental study, we investigate various kernels considered to be state-of-the-
art in detail and compare them to simple baseline methods using vertex and edge label
histograms. We would like to answer the following research questions.

Q1 Expressivity. Are the proposed graph kernels sufficiently expressive to distinguish
the graphs of common benchmark datasets from each other according to their labels
and structure?

Q2 Non-linear decision boundaries. Can the classification accuracy of graph kernels
be improved by finding non-linear decision boundaries in their feature space?

Q3 Accuracy. Is there a graph kernel that is superior over the other graph kernels in
terms of classification accuracy? Does the answer to Q1 explain the differences in
prediction accuracy?

Q4 Agreement.Which graph kernels predict similarly? Do different graph kernels
succeed and fail for the same graphs?

Q5 Continuous attributes. Is there a kernel for graphs with continuous attributes that
is superior over the other graph kernels in terms of classification accuracy?

Methods

We describe the methods we used to answer the research questions and summarize our
experimental setup.

Kriege et al. Applied Network Science (2020) 5:6 Page 24 of 42

Classification accuracy

In order to answer several of our research questions, it is necessary to determine the
prediction accuracy achieved by the different graph kernels. We performed classifica-
tion experiments using the C-SVM implementation LIBSVM (Chang and Lin 2011). We
used nested cross-validation with 10 folds in the inner and outer loop. In the inner
loop the kernel parameters and the regularization parameter C were chosen by cross-
validation based on the training set for the current fold. In the sameway it was determined
whether the kernel matrix should be normalized. The parameter C was chosen from
{10−3, 10−2, . . . , 103}. We repeated the outer cross-validation ten times with different
random folds, and report average accuracies and standard deviations.

Complete graph kernels

The theoretical concept of complete graph kernels has little practical relevance and is not
suitable for answeringQ1. Therefore we generalize the concept of complete graph kernels.
For a given dataset D = {(G1, y1), . . . , (Gn, yn)} of graphs Gi with class labels yi ∈ Y for
all 1 ≤ i ≤ n, we say a graph kernel K with a feature map φ is complete for D if for all
graphs Gi,Gj the implication φ(Gi) = φ(Gj) =⇒ i = j holds; it is label complete for D if
for all graphs Gi,Gj the implication φ(Gi) = φ(Gj) =⇒ yi = yj holds. Note that we may
test whether φ(Gi) = φ(Gj) holds using the kernel trick without constructing the feature
vectors. For a kernel K on X with a feature map φ : X → H the kernel metric is

dK (x, y) = ‖φ(x) − φ(y)‖ (10)

= √
K(x, x) + K(y, y) − 2K(x, y). (11)

Therefore, φ(G) = φ(H) if and only if K(G,G)+K(H ,H)−2K(G,H) = 0. We define the
(label) completeness ratio of a graph kernel w.r.t. a dataset as the fraction of graphs in the
dataset that can be distinguished from all other graphs (with different class labels) in the
dataset.
We investigate how these measures align with the observed prediction accuracy. Note

that the label completeness ratio limits the accuracy of a kernel on a specific dataset.
Vice versa, classifiers based on complete kernels not necessarily achieve a high accu-
racy. A kernel that is one for two isomorphic graphs and zero otherwise, for example,
would achieve the highest possible completeness ratio, but is too strict for learning, cf.
“Design paradigms for kernels on structured data” section. Moreover, a complete graph
kernel not necessarily maps graphs in different classes to feature vectors that are linearly
separable. In this case (an additional) mapping in a high-dimensional feature space might
improve the accuracy.

Non-linear decision boundaries in the feature space of graph kernels

Many graph kernels explicitly compute feature vectors and thus essentially transform
graph data to vector data, cf. “Graph kernels” section. Typically, these kernels then just
apply the linear kernel to these vectors to obtain a graph kernel. This is surprising since
it is well-known that for vector data often better results can be obtained by a polynomial
or Gaussian RBF kernel. These, however, are usually not used in combination with graph
kernels. Sugiyama and Borgwardt (2015) observed that applying a Gaussian RBF kernel to
vertex and edge label histograms leads to a clear improvement over linear kernels. More-
over, for some datasets the approach was observed to be competitive with random walk

Kriege et al. Applied Network Science (2020) 5:6 Page 25 of 42

kernels. Going beyond the application of standard kernels to graph feature vectors, Kriege
(2015) proposed to obtain modified graph kernels also from those based on implicit
computation schemes by employing the kernel trick, e.g., by substituting the Euclidean
distance in the Gaussian RBF kernel by the metric associated with a graph kernel. Since
the kernel metric can be computed without explicit feature maps, any graph kernel can
thereby be modified to operate in a different (high-dimensional) feature space. However,
the approach was generally not employed in experimental evaluations of graph kernels.
Only recently, Nikolentzos and Vazirgiannis (2018) presented first experimental results of
the approach for the shortest-path, Weisfeiler-Lehman and pyramid match graph kernel
using a polynomial and Gaussian RBF kernel for successive embedding. Promising exper-
imental results were presented, in particular, for the Gaussian RBF kernel. We present an
in detail evaluation of the approach on a wide range of graph kernels and datasets.
We apply the Gaussian RBF kernel to the feature vectors associated with graph ker-

nels by substituting the Euclidean distance in Eq. (1) by the metric associated with graph
kernels. Note that the kernel metric can be computed from feature vectors according
to Eq. (10) or by employing the kernel trick according to Eq. (11). In order to study
the effect of this modification experimentally, we have modified the computed kernel
matrices as described above. The parameter σ was selected from

{
2−7, 2−6, . . . , 27

}
by

cross-validation in the inner cross-validation loop based on the training data sets.

Datasets

In our experimental evaluation, we have considered graph data from various domains,
most of which has been used previously to compare graph kernels. Moreover, we derived
new large datasets from the data published by the National Center for Advancing Trans-
lational Sciences in the context of the Tox21 Data Challenge 20144 initiated with the goal
to develop better toxicity assessment methods for small molecules. These datasets each
contain more than 7000 graphs and thus exceed the size of the datasets typically used to
evaluate graph kernels. We have made all datasets publicly available (Kersting et al. 2016).
Their statistics are summarized in Table 2.
The datasets AIDS, BZR, COX2, DHFR, Mutagenicity, MUTAG, NCI1, NCI109, PTC

and Tox21 are graphs derived from small molecules, where class labels encode a cer-
tain biological property such as toxicity and activity against cancer cells. The vertices
and edges of the graphs represent the atoms and their chemical bonds, respectively, and
are annotated by their atom and bond type. The datasets DD, ENZYMES and PRO-
TEINS represent macromolecules using different graph models. Here, the vertices either
represent protein tertiary structures or amino acids and the edges encode spatial prox-
imity. The class labels are the 6 EC top-level classes or encode whether a protein is an
enzyme. The datasets REDDIT-BINARY, IMDB-BINARY and IMDB-MULTI are derived
from social networks. The MSRC datasets are associated with computer vision tasks.
Images are encoded by graphs, where vertices represent superpixels with a semantic label
and edges their adjacency. Finally, SYNTHETICnew and Synthie are synthetically gener-
ated graphs with continuous attributes. FRANKENSTEIN contains graphs derived from
small molecules, where atom types are represented by high dimensional vectors of pixel
intensities of associated images.

4https://tripod.nih.gov/tox21/challenge/

https://tripod.nih.gov/tox21/challenge/

Kriege et al. Applied Network Science (2020) 5:6 Page 26 of 42

Ta
b
le

2
D
at
as
et

st
at
is
tic
s
an
d
pr
op

er
tie

s

D
at
as
et

Pr
op

er
tie

s
La
be

ls
A
tt
rib

ut
es

Re
f.

G
ra
ph

s
C
la
s.

A
vg
.|V

|
A
vg
.|E

|
Ve
rt
ex

Ed
ge

Ve
rt
ex

Ed
ge

A
ID
S

20
00

2
15
.6
9

16
.2
0

+
+

+
(4
)

–
(R
ie
se
n
an
d
Bu

nk
e
20
08
)

BZ
R

40
5

2
35
.7
5

38
.3
6

+
–

+
(3
)

–
(S
ut
he

rla
nd

et
al
.2
00
3)

C
O
X2

46
7

2
41
.2
2

43
.4
5

+
–

+
(3
)

–
(S
ut
he

rla
nd

et
al
.2
00
3)

D
H
FR

46
7

2
42
.4
3

44
.5
4

+
–

+
(3
)

–
(S
ut
he

rla
nd

et
al
.2
00
3)

D
D

11
78

2
28
4.
32

71
5.
66

+
–

–
–

(D
ob

so
n
an
d
D
oi
g
20
03
;S
he

rv
as
hi
dz
e
et

al
.2
01
1)

EN
ZY

M
ES

60
0

6
32
.6
3

62
.1
4

+
–

+
(1
8)

–
(B
or
gw

ar
dt

et
al
.2
00
5;
Sc
ho

m
bu

rg
et

al
.2
00
4)

FR
A
N
KE
N
ST
EI
N

43
37

2
16
.9
0

17
.8
8

–
–

+
(7
80
)

–
(O
rs
in
ie
ta
l.
20
15
)

IM
D
B-
BI
N
A
RY

10
00

2
19
.7
7

96
.5
3

–
–

–
–

(Y
an
ar
da
g
an
d
Vi
sh
w
an
at
ha
n
20
15
a)

IM
D
B-
M
U
LT
I

15
00

3
13
.0
0

65
.9
4

–
–

–
–

(Y
an
ar
da
g
an
d
Vi
sh
w
an
at
ha
n
20
15
a)

M
ut
ag
en

ic
ity

43
37

2
30
.3
2

30
.7
7

+
+

–
–

(R
ie
se
n
an
d
Bu

nk
e
20
08
;K
az
iu
s
et

al
.2
00
5)

M
SR
C
-9

22
1

8
40
.5
8

97
.9
4

+
–

–
–

(N
eu

m
an
n
et

al
.2
01
6)

M
SR
C
-2
1

56
3

20
77
.5
2

19
8.
32

+
–

–
–

(N
eu

m
an
n
et

al
.2
01
6)

M
SR
C
-2
1C

20
9

20
40
.2
8

96
.6
0

+
–

–
–

(N
eu

m
an
n
et

al
.2
01
6)

M
U
TA

G
18
8

2
17
.9
3

19
.7
9

+
+

–
–

(D
eb

na
th

et
al
.1
99
1;
Kr
ie
ge

an
d
M
ut
ze
l2
01
2)

N
C
I1

41
10

2
29
.8
7

32
.3
0

+
–

–
–

(S
he

rv
as
hi
dz
e
et

al
.2
01
1)

N
C
I1
09

41
27

2
29
.6
8

32
.1
3

+
–

–
–

(S
he

rv
as
hi
dz
e
et

al
.2
01
1)

PT
C
-F
M

34
9

2
14
.1
1

14
.4
8

+
+

–
–

(H
el
m
a
et

al
.2
00
1;
Kr
ie
ge

an
d
M
ut
ze
l2
01
2)

PT
C
-F
R

35
1

2
14
.5
6

15
.0
0

+
+

–
–

(H
el
m
a
et

al
.2
00
1;
Kr
ie
ge

an
d
M
ut
ze
l2
01
2)

PT
C
-M

M
33
6

2
13
.9
7

14
.3
2

+
+

–
–

(H
el
m
a
et

al
.2
00
1;
Kr
ie
ge

an
d
M
ut
ze
l2
01
2)

PT
C
-M

R
34
4

2
14
.2
9

14
.6
9

+
+

–
–

(H
el
m
a
et

al
.2
00
1;
Kr
ie
ge

an
d
M
ut
ze
l2
01
2)

PR
O
TE
IN
S

11
13

2
39
.0
6

72
.8
2

+
–

+
(1
)

–
(B
or
gw

ar
dt

et
al
.2
00
5;
D
ob

so
n
an
d
D
oi
g
20
03
)

RE
D
D
IT
-B
IN
A
RY

20
00

2
42
9.
63

49
7.
75

–
–

–
–

(Y
an
ar
da
g
an
d
Vi
sh
w
an
at
ha
n
20
15
b)

SY
N
TH

ET
IC
ne

w
30
0

2
10
0.
00

19
6.
25

–
–

+
(1
)

–
(F
er
ag
en

et
al
.2
01
3)

Sy
nt
hi
e

40
0

4
95
.0
0

17
3.
92

–
–

+
(1
5)

–
(M

or
ris

et
al
.2
01
6)

To
x2
1-
A
R

93
62

2
18
.3
9

18
.8
4

+
+

–
–

(T
ox
21

D
at
a
C
ha
lle
ng

e
20
14
)

To
x2
1-
M
M
P

73
20

2
17
.4
9

17
.8
3

+
+

–
–

(T
ox
21

D
at
a
C
ha
lle
ng

e
20
14
)

To
x2
1-
A
H
R

81
69

2
18
.0
9

18
.5
0

+
+

–
–

(T
ox
21

D
at
a
C
ha
lle
ng

e
20
14
)

Kriege et al. Applied Network Science (2020) 5:6 Page 27 of 42

Graph kernels

As a baseline we included the vertex label kernel (VL) and edge label kernel (EL), which
are the dot products on vertex and edge label histograms, respectively. An edge label
is a triplet consisting of the labels of the edge and the label of its two endpoints. We
used the Weisfeiler-Lehman subtree (WL) and Weisfeiler-Lehman optimal assignment
kernel (WL-OA), see in the “Neighborhood aggregation approaches” section. For both
the number of refinement operations was chosen from {0, 1, . . . , 8} by cross-validation.
In addition we implemented a graphlet kernel (GL3) and the shortest-path kernel (SP)
(Borgwardt and Kriegel 2005). GL3 is based on connected subgraphs with three vertices
taking labels into account similar to the approach used by Shervashidze et al. (2011). For
SP we used the indicator function to compare path lengths and computed the kernel by
explicit feature maps in case of discrete vertex labels, cf. (Shervashidze et al. 2011). These
kernels were implemented in Java based on the same common data structures and support
both vertex labels and—with exception of VL and SP—edge labels.
We compare three kernels based on matching of vertex embeddings, the matching

kernel of Johansson and Dubhashi (2015) with inverse Laplacian (MK-IL) and Lapla-
cian (MK-L) embeddings and the Pyramid Match (PM) kernel of (Nikolentzos et al.
2017b). TheMK kernels lack hyperparameters and for the PM-kernel, we used the default
settings—vertex embedding dimension (d = 6) and matching levels (L = 3)—in the
implementation by Nikolentzos (2016). Finally, we include the shortest-path variant of
the Deep Graph Kernel (DeepGK) (Yanardag and Vishwanathan 2015a) with parameters
as suggested in Yanardag (2015) (SP feature type, MLE kernel type, window size 5, 10
dimensions)5, the DBR kernel of Bai et al. (2014) (no parameters, code obtained through
correspondence) and the propagation kernel (Prop) (Neumann et al. 2016; Neumann
2016) for which we select the number of diffusion iterations by cross-validation and use
the settings recommended by the authors for other hyperparameters.
In a comparison of kernels for graphs with continuous vertex attributes we use the

shortest-path kernel (Borgwardt and Kriegel 2005) with a Gaussian RBF base kernel to
compare vertex attributes, see also “Shortest-path kernels” section, the GraphHopper ker-
nel (Feragen et al. 2013), the GraphInvariant kernel (Orsini et al. 2015), the Propagation
kernel (P2K) (Neumann et al. 2016), and the Hash Graph kernel (Morris et al. 2016).
We set the parameter σ of the Gaussian RBF kernel to

√
D/2 for the GraphHopper and

the GraphInvariant kernel, as reported in (Feragen et al. 2013; Orsini et al. 2015), where
D denotes the number of components of the vertex attributes. For datasets that do not
have vertex labels, we either used the vertex degree instead or uniform labels (selected
by (double) cross-validation). Following (Morris et al. 2016), we set the number of itera-
tion for the Hash Graph kernel to 20 for all datasets, excluding the Sythnie datasets where
we used 100.

Results and discussion

We present our experimental results and discuss the research questions.

Q1 Expressivity. For these experiments we only considered kernels that are
permutation-invariant and guarantee that two isomorphic graphs are represented by the

5We did not perform a parameter search for the parameters of the Deep Graph kernel and the accuracy of the kernel
may improve with a more tailored choice.

Kriege et al. Applied Network Science (2020) 5:6 Page 28 of 42

same feature vector. This is not the case for the MK-* and PM kernels because of the
vertex embedding techniques applied.
Figure 7 shows the completeness ratio of various permutation invariant graph kernels

with different parameters on the datasets as a heatmap. TheWL-OA kernels achieved the
same results as the WL kernels and are therefore not depicted. As expected, VL achieves
only a weak completeness ratio, since it ignores the graph structure completely. To a lesser
extent, this also applies to EL and GL3. The SP and the WLh kernels with h ≥ 2 provide a
high completeness ratio close to one for most datasets. However, for the IMDB-BINARY
dataset shortest-paths appear to be less powerful features than small local graphlets. This
indicates structural differences between this dataset and the molecular graph datasets,
where SP consistently achieves better results than GL3. As expected DeepGK performs
similar to the SP kernel. WL and Prop are both based on a neighborhood aggregation
mechanism, but WL achieves a higher completeness ratio on several datasets. This is
explained by the fact that Prop does not support edge labels and does not employ a rela-
beling function after each propagation step. DBR does not take labels into account and
consequently fails to distinguish many graphs of the datasets, for which vertex labels are
informative. The difficulty of distinguishing the graphs in a dataset varies strongly based
on the type of graphs. The computer vision graphs are almost perfectly distinguished
by just considering the vertex label multiplicities, molecular graphs often require multi-
ple iterations of Weisfeiler-Lehman or global features such as shortest paths. For social
networks, the REDDIT-BINARY graphs are also effectively distinguished by Weisfeiler-
Lehman refinement, while this is not possible for the two IMDB datasets. However, we
observed that all the graphs in these two datasets that cannot be distinguished by WL1

Fig. 7 Completeness ratio

Kriege et al. Applied Network Science (2020) 5:6 Page 29 of 42

are in fact isomorphic. Therefore, a higher completeness ratio cannot be achieved by any
permutation-invariant graph kernel.
We now consider the label completeness ratio depicted in Fig. 8. The label comple-

tion ratio generally shows the same trends, but higher values close to one are reached as
expected. For the datasets IMDB-BINARY and IMDB-MULTI we have already observed
that WL1 distinguishes all non-isomorphic graphs. As we see in Fig. 8 these datasets
contain a large number of isomorphic graphs that actually belong to different classes.
Apparently, the information contained in the dataset is not sufficient to allow perfect
classification. A general observations from the heatmaps is that WL (just as WL-OA)
effectively distinguish most graphs after only few iterations of refinement. For some non-
challenging datasets even VL and EL are sufficient expressive. Therefore, these kernels are
interesting baselines for accuracy experiments. In order to effectively learn with a graph
kernel, it is not sufficient to just distinguish graphs, which may lead to strong overfit-
ting, but to provide a smooth similarity measure that allows the classifier to generalize to
unseen data.

Q2 Non-linear decision boundaries. We discuss the accuracy results of the classifi-
cation experiments summarized in Tables 3 and 4. The classification accuracy of the
simple kernels VL and EL can be drastically improved by combining them with the
Gaussian RBF kernel for several datasets. A clear improvement is also achieved for
GL3 on an average. For WL and WL-OA the Gaussian RBF kernel only leads to minor
changes in classification accuracy for most datasets. However, a strong improvement
is observed for WL and the dataset ENZYMES, even lifting the accuracy above the

Fig. 8 Label completeness ratio

Kriege et al. Applied Network Science (2020) 5:6 Page 30 of 42

Ta
b
le

3
C
la
ss
ifi
ca
tio

n
ac
cu
ra
cy

an
d
st
an
da
rd

de
vi
at
io
n
fo
rs
ev
er
al
ke
rn
el
s
an
d
th
ei
rv
ar
ia
nt

w
he

n
pl
ug

ge
d
in
to

th
e
G
au
ss
ia
n
RB

F
ke
rn
el

D
at
as
et

VL
EL

SP
W
L

W
L-
O
A

G
L3

K l
in

K R
BF

K l
in

K R
BF

K l
in

K R
BF

K l
in

K R
BF

K l
in

K R
BF

K l
in

K R
BF

N
C
I1

64
.6
±0

.1
67
.2
±2

.8
66
.3
±0

.1
71
.8
±0

.3
73
.2
±0

.3
79
.3
±0

.4
85
.9
±0

.1
86
.2
±0

.1
86
.2
±0

.2
86

.6
±0

.2
70
.5
±0

.2
76
.5
±0

.4
N
C
I1
09

63
.6
±0

.2
68
.9
±1

.4
64
.9
±0

.1
71
.4
±0

.5
72
.7
±0

.3
77
.6
±0

.3
85
.9
±0

.3
86
.0
±0

.3
86
.2
±0

.2
86

.4
±0

.2
69
.3
±0

.2
76
.0
±0

.4
PT
C
-F
R

67
.9
±0

.4
66
.9
±0

.5
66
.8
±0

.5
65
.2
±1

.2
67
.1
±2

.0
63
.7
±2

.0
67
.1
±1

.2
66
.8
±1

.5
67
.8
±1

.1
67
.0
±1

.3
65
.5
±0

.9
65
.0
±1

.4
PT
C
-M

R
57
.8
±0

.9
59
.4
±1

.4
56
.7
±1

.6
60
.5
±1

.8
58
.8
±2

.2
62
.0
±1

.8
60
.4
±1

.5
62

.7
±2

.0
62
.6
±1

.5
62

.7
±1

.0
57
.4
±1

.6
60
.4
±1

.6
PT
C
-F
M

63
.9
±0

.5
62
.6
±0

.9
64
.5
±0

.4
60
.5
±1

.4
62
.7
±1

.0
60
.2
±1

.3
62
.8
±1

.2
60
.9
±0

.8
61
.6
±1

.2
61
.7
±1

.2
60
.2
±3

.0
60
.7
±0

.8
PT
C
-M

M
66
.6
±0

.8
64
.7
±0

.4
64
.1
±1

.0
62
.7
±1

.6
63
.3
±1

.2
63
.2
±0

.8
67

.8
±2

.1
67
.7
±1

.3
66
.4
±1

.1
66
.3
±1

.7
61
.4
±1

.7
61
.3
±1

.4
M
U
TA

G
85
.4
±0

.7
82
.9
±1

.0
83
.6
±1

.0
88
.4
±2

.2
83
.1
±1

.3
85
.2
±1

.4
86
.6
±0

.6
87
.9
±1

.0
87
.5
±2

.1
87
.3
±1

.7
87
.2
±1

.1
87
.8
±1

.1
M
ut
ag
en

ic
ity

67
.0
±0

.2
73
.9
±0

.3
72
.4
±0

.1
80
.3
±0

.3
77
.4
±0

.2
80
.1
±0

.2
83
.6
±0

.2
84
.5
±0

.3
84
.2
±0

.2
84

.7
±0

.4
79
.8
±0

.2
82
.7
±0

.3
A
ID
S

99
.7

±0
.0

99
.7

±0
.0

99
.5
±0

.0
99
.4
±0

.0
99
.6
±0

.0
99

.7
±0

.0
99

.7
±0

.0
99

.7
±0

.0
99

.7
±0

.0
99

.7
±0

.0
99
.2
±0

.1
99
.3
±0

.1
BZ

R
78
.8
±0

.1
86
.0
±0

.2
79
.1
±0

.5
86
.3
±0

.3
86
.5
±0

.9
88
.1
±0

.5
88

.5
±0

.7
87
.9
±0

.8
88
.2
±0

.4
88
.0
±0

.5
81
.6
±0

.7
85
.4
±1

.0
C
O
X2

78
.2
±0

.0
80
.6
±0

.3
82
.0
±0

.6
83

.9
±0

.7
80
.6
±0

.9
81
.7
±0

.8
81
.2
±1

.0
81
.7
±0

.7
80
.4
±0

.9
80
.8
±1

.3
81
.3
±0

.7
81
.9
±0

.5
D
H
FR

60
.9
±0

.2
74
.8
±1

.2
67
.9
±0

.6
73
.2
±0

.9
77
.5
±0

.6
80
.7
±0

.7
82
.7
±0

.4
83

.5
±0

.6
83
.0
±1

.0
83
.3
±0

.6
74
.7
±0

.6
81
.2
±1

.0
D
D

78
.2
±0

.4
80
.1
±0

.4
77
.5
±0

.6
78
.7
±0

.7
79
.5
±0

.6
74
.5
±0

.2
78
.9
±0

.4
80
.9
±0

.3
79
.2
±0

.4
79
.9
±0

.5
79
.7
±0

.7
79
.1
±0

.6
PR

O
TE
IN
S

71
.9
±0

.4
74
.7
±0

.4
73
.4
±0

.3
75
.2
±0

.5
75
.9
±0

.4
74
.0
±0

.3
75
.5
±0

.3
73
.9
±0

.7
76
.2
±0

.4
75
.9
±0

.6
72
.7
±0

.6
73
.0
±0

.6
EN

ZY
M
ES

23
.4
±1

.1
41
.7
±1

.1
27
.7
±0

.7
45
.1
±1

.2
41
.9
±1

.7
59
.5
±1

.3
53
.7
±1

.5
62
.6
±1

.2
59
.9
±1

.0
62
.3
±1

.1
30
.4
±1

.1
58
.6
±1

.0
IM
D
B-
BI
N
A
RY

46
.3
±0

.9
56
.5
±0

.6
46
.0
±0

.9
62
.6
±1

.2
57
.3
±0

.6
70
.2
±0

.8
72
.9
±0

.6
71
.3
±1

.0
73
.1
±0

.7
73

.5
±0

.6
59
.4
±0

.4
70
.1
±0

.8
IM
D
B-
M
U
LT
I

31
.9
±0

.5
39
.5
±0

.9
30
.8
±0

.9
46
.9
±0

.6
39
.6
±0

.2
46
.1
±0

.7
50
.3
±0

.4
50
.7
±0

.6
50
.4
±0

.5
50
.7
±0

.5
40
.6
±0

.4
47
.1
±0

.5
RE
D
D
IT
-B
IN
A
RY

75
.3
±0

.1
77
.6
±0

.2
75
.1
±0

.1
79
.4
±0

.1
81
.7
±0

.2
67
.8
±0

.2
80
.9
±0

.4
83
.9
±0

.5
89

.3
±0

.2
88
.9
±0

.1
60
.1
±0

.2
73
.6
±0

.1
M
SR
C
-9

88
.4
±1

.3
87
.7
±1

.0
92

.6
±0

.9
90
.2
±0

.7
91
.4
±0

.8
89
.2
±1

.0
90
.1
±0

.8
89
.1
±0

.9
90
.7
±0

.8
90
.1
±0

.7
91
.6
±0

.7
91
.6
±0

.9
M
SR
C
-2
1

89
.4
±0

.3
90
.0
±0

.5
89
.5
±0

.3
87
.3
±0

.4
89
.4
±0

.6
37
.4
±1

.2
89
.3
±0

.6
89
.8
±0

.4
90
.0
±0

.6
90
.5
±0

.4
90
.5
±0

.7
85
.1
±0

.6
M
SR
C
-2
1C

81
.2
±1

.2
80
.8
±1

.7
84
.5
±0

.8
81
.8
±1

.3
83
.8
±1

.2
78
.3
±1

.3
81
.9
±0

.9
82
.1
±1

.1
84
.9
±0

.8
84
.5
±1

.0
84
.0
±1

.7
82
.6
±1

.0
To
x2
1-
A
R

95
.9
±0

.0
96
.4
±0

.0
95
.9
±0

.0
97
.5
±0

.0
97
.1
±0

.0
97
.5
±0

.0
97
.9
±0

.0
98

.0
±0

.0
98

.0
±0

.0
98

.0
±0

.0
96
.4
±0

.0
97
.6
±0

.0
To
x2
1-
M
M
P

84
.3
±0

.0
86
.5
±0

.1
84
.5
±0

.0
89
.7
±0

.2
86
.4
±0

.1
90
.7
±0

.2
92
.5
±0

.1
93

.0
±0

.2
92
.7
±0

.1
92
.8
±0

.1
87
.3
±0

.1
91
.2
±0

.2
To
x2
1-
A
H
R

88
.4
±0

.0
89
.1
±0

.2
88
.6
±0

.1
91
.4
±0

.2
88
.4
±0

.0
91
.9
±0

.1
93
.4
±0

.1
93

.7
±0

.1
93
.5
±0

.1
93
.6
±0

.1
89
.7
±0

.1
92
.8
±0

.2

A
ve
ra
ge

71
.2

74
.5

72
.2

76
.2

75
.6

74
.9

79
.6

80
.2

80
.5

80
.6

73
.8

77
.5

Th
e
hi
gh

es
ta
cc
ur
ac
y
va
lu
e
is
hi
gh

lig
ht
ed

in
bo

ld
fo
re
ac
h
da
ta
se
t

Kriege et al. Applied Network Science (2020) 5:6 Page 31 of 42

Ta
b
le

4
C
la
ss
ifi
ca
tio

n
ac
cu
ra
cy

an
d
st
an
da
rd

de
vi
at
io
n
fo
rs
ev
er
al
ke
rn
el
s
an
d
th
ei
rv
ar
ia
nt

w
he

n
pl
ug

ge
d
in
to

th
e
G
au
ss
ia
n
RB

F
ke
rn
el

D
at
as
et

M
K-
IL

M
K-
L

PM
D
ee
pG

K
D
BR

a
Pr
op

K l
in

K R
BF

K l
in

K R
BF

K l
in

K R
BF

K l
in

K R
BF

K l
in

K R
BF

K l
in

K R
BF

N
C
I1

76
.8
±0

.3
78
.1
±0

.3
72
.8
±0

.3
75
.5
±0

.3
73
.3
±0

.3
80
.0
±0

.3
74
.9
±0

.2
78
.4
±0

.3
67
.4
±0

.3
76
.0
±0

.2
84
.6
±0

.2
85
.6
±0

.2
N
C
I1
09

75
.4
±0

.3
75
.9
±0

.3
71
.9
±0

.3
74
.1
±0

.4
71
.1
±0

.3
78
.8
±0

.2
73
.3
±0

.2
77
.7
±0

.3
66
.6
±0

.2
75
.3
±0

.2
84
.1
±0

.2
84
.7
±0

.2
PT
C
-F
R

69
.1

±0
.6

68
.6
±0

.7
68
.4
±0

.7
68
.1
±0

.9
65
.9
±0

.8
65
.0
±1

.1
66
.4
±1

.2
63
.8
±1

.5
65
.3
±0

.5
64
.0
±0

.7
66
.0
±1

.5
65
.6
±1

.0
PT
C
-M

R
60
.6
±1

.0
60
.5
±1

.1
59
.1
±1

.7
59
.7
±1

.4
61
.5
±1

.3
59
.5
±2

.0
59
.9
±1

.5
60
.9
±1

.7
53
.7
±1

.3
55
.1
±1

.9
59
.9
±1

.6
61
.3
±2

.1
PT
C
-F
M

58
.6
±1

.8
64

.7
±0

.6
60
.4
±0

.9
61
.4
±1

.6
59
.7
±1

.4
62
.2
±0

.8
62
.6
±0

.9
60
.9
±1

.1
56
.2
±1

.5
59
.8
±1

.5
60
.9
±1

.6
61
.7
±1

.6
PT
C
-M

M
62
.1
±1

.6
65
.0
±1

.4
63
.8
±1

.2
63
.1
±0

.7
62
.9
±1

.3
62
.2
±1

.0
63
.3
±0

.9
61
.8
±1

.4
59
.4
±1

.1
63
.5
±1

.0
63
.9
±1

.0
64
.6
±1

.9
M
U
TA

G
82
.8
±1

.4
83
.7
±0

.8
83
.1
±1

.3
83
.5
±1

.0
84
.9
±1

.2
86
.7
±0

.8
85
.1
±1

.5
84
.4
±0

.7
86
.2
±1

.6
84
.6
±0

.7
90

.3
±0

.9
86
.1
±1

.1
M
ut
ag
en

ic
ity

70
.7
±0

.3
75
.2
±0

.2
70
.9
±0

.3
75
.3
±0

.2
72
.1
±0

.2
75
.5
±0

.3
79
.4
±0

.3
80
.2
±0

.2
66
.2
±0

.1
66
.8
±0

.5
67
.5
±0

.2
76
.7
±0

.4
A
ID
S

99
.6
±0

.0
99
.6
±0

.1
99
.6
±0

.0
99
.6
±0

.0
99

.7
±0

.0
99

.7
±0

.0
99
.6
±0

.0
99
.6
±0

.0
99
.3
±0

.1
99

.7
±0

.0
99

.7
±0

.0
99

.7
±0

.0
BZ

R
88
.1
±0

.8
88
.2
±0

.8
88
.1
±0

.6
87
.8
±0

.7
84
.5
±1

.0
85
.5
±0

.7
86
.5
±0

.6
87
.8
±0

.6
82
.8
±0

.9
84
.1
±0

.8
87
.1
±0

.5
87
.7
±1

.0
C
O
X2

81
.2
±1

.0
81
.1
±0

.5
80
.5
±0

.8
80
.5
±0

.7
80
.7
±0

.5
80
.3
±0

.7
80
.4
±1

.1
81
.4
±0

.6
78
.1
±0

.1
77
.3
±0

.7
81
.7
±0

.8
81
.5
±0

.9
D
H
FR

81
.5
±0

.8
82
.1
±0

.3
79
.2
±0

.8
80
.0
±0

.7
75
.3
±0

.7
78
.1
±0

.8
80
.7
±1

.0
81
.0
±0

.8
75
.1
±0

.5
78
.3
±0

.7
82
.8
±0

.6
83
.2
±0

.7
D
D

78
.3
±0

.3
78
.2
±0

.3
77
.3
±0

.4
77
.3
±0

.4
78
.7
±0

.3
79
.2
±0

.9
79
.4
±0

.4
71
.0
±0

.2
78
.8
±0

.6
78
.2
±0

.6
78
.9
±0

.3
81

.6
±0

.5
PR

O
TE
IN
S

76
.6
±0

.6
76

.8
±0

.4
75
.1
±0

.2
74
.8
±0

.5
74
.5
±0

.4
74
.6
±0

.5
75
.7
±0

.3
74
.2
±0

.4
—

—
74
.3
±0

.5
74
.6
±0

.5
EN

ZY
M
ES

64
.1

±1
.3

63
.5
±1

.1
61
.6
±1

.2
62
.0
±1

.2
40
.2
±1

.0
49
.3
±1

.1
42
.3
±1

.0
58
.9
±1

.1
37
.6
±0

.7
39
.5
±1

.3
49
.0
±1

.6
62
.6
±0

.9
IM
D
B-
BI
N
A
RY

69
.4
±0

.6
69
.9
±0

.5
70
.6
±0

.5
70
.1
±0

.4
70
.7
±0

.6
71
.1
±0

.9
60
.5
±0

.3
70
.2
±0

.7
—

—
73

.5
±0

.3
71
.2
±0

.7
IM
D
B-
M
U
LT
I

46
.1
±0

.7
47
.0
±0

.5
47
.1
±0

.6
47
.6
±0

.4
47
.8
±0

.6
47
.8
±0

.6
40
.8
±1

.1
46
.1
±0

.7
—

—
49
.8
±0

.6
51

.0
±0

.7
RE
D
D
IT
-B
IN
A
RY

—
—

—
—

82
.3
±0

.2
82
.7
±0

.4
82
.4
±0

.1
67
.8
±0

.2
—

—
78
.2
±0

.3
85
.5
±0

.3
M
SR
C
-9

90
.9
±1

.0
90
.4
±0

.5
90
.4
±1

.2
90
.4
±0

.8
90
.4
±1

.4
90
.1
±1

.0
91
.8
±0

.8
88
.2
±1

.2
—

—
89
.4
±1

.3
89
.7
±0

.9
M
SR
C
-2
1

89
.0
±0

.6
89
.0
±0

.8
89
.3
±0

.5
89
.3
±0

.5
91

.3
±0

.5
91
.2
±0

.5
89
.9
±0

.5
27
.5
±1

.2
—

—
88
.6
±0

.5
89
.8
±0

.6
M
SR
C
-2
1C

85
.7

±0
.6

85
.6
±0

.9
85
.6
±0

.9
84
.8
±1

.1
84
.4
±0

.9
84
.6
±0

.9
85
.1
±1

.4
76
.8
±1

.3
—

—
81
.4
±1

.1
81
.8
±1

.1
To
x2
1-
A
R

97
.7
±0

.0
97
.7
±0

.0
97
.4
±0

.0
97
.4
±0

.0
97
.6
±0

.0
97
.7
±0

.0
97
.0
±0

.0
97
.6
±0

.0
—

—
97
.8
±0

.0
97
.8
±0

.0
To
x2
1-
M
M
P

86
.9
±0

.1
87
.2
±0

.1
86
.8
±0

.1
87
.2
±0

.1
86
.6
±0

.2
89
.7
±0

.1
86
.3
±0

.1
90
.4
±0

.1
—

—
84
.7
±0

.1
89
.6
±0

.2
To
x2
1-
A
H
R

89
.6
±0

.0
89
.6
±0

.0
89
.4
±0

.1
89
.5
±0

.0
89
.4
±0

.1
91
.7
±0

.1
88
.7
±0

.1
91
.8
±0

.1
—

—
89
.2
±0

.0
91
.1
±0

.1

A
ve
ra
ge

77
.4

78
.2

76
.9

77
.3

76
.1

77
.6

76
.3

74
.1

69
.5

71
.6

77
.6

78
.1

a C
om

pu
ta
tio

n
of

th
e
D
BR

ke
rn
el
di
d
no

tf
in
is
h
w
ith

in
48
h
on

so
m
e
da
ta
se
ts
,a
s
in
di
ca
te
d
by

a
lin
e
(—

).
Th

e
D
BR

ke
rn
el
do

es
no

tm
ak
e
us
e
of

la
be

li
nf
or
m
at
io
n

Th
e
hi
gh

es
ta
cc
ur
ac
y
va
lu
e
is
hi
gh

lig
ht
ed

in
bo

ld
fo
re
ac
h
da
ta
se
t.

Kriege et al. Applied Network Science (2020) 5:6 Page 32 of 42

value reached by WL-OA on the same dataset. However, for the dataset REDDIT-
BINARY the accuracy of WL is improved, but still far below the accuracy obtained
by WL-OA, which is based on the histogram intersection kernel applied to the WL
feature vectors. A surprising result is that the trivial EL kernel combined with the
Gaussian RBF kernel performs competitive to many sophisticated graph kernels. On
an average it provides a higher accuracy than the (unmodified) SP, GL3 and PM
kernel. The DBR kernel does not take labels into account and performs poorly on
most datasets.
The application of the Gaussian RBF kernel introduces the hyper-parameter σ , which

must be optimized, e.g., via grid search and cross-validation. This is computational
demanding for large datasets, in particular, when the graph kernel also requires param-
eters that must be optimized. Therefore, we suggest to combine VL, EL and GL3
with a Gaussian RBF kernel as a base line. For WL and WL-OA the parameter h
needs to be optimized and the accuracy gain is minor for most datasets, in partic-
ular for WL-OA. Therefore, their combination with an Gaussian RBF kernel cannot
be generally recommended. Note that the combination with an Gaussian RBF ker-
nel also complicates the application of fast linear classifiers, which are advisable for
large datasets.

Q3 Accuracy. Tables 3 and 4 show that for almost every kernel there is at least one
dataset, for which it provides the best accuracy. This is even true for the trivial kernels VL
and EL on the datasets AIDS andMSRC-9; and also COX2 when combined with an Gaus-
sian RBF kernel. Moreover, VL combined with the Gaussian RBF kernel almost reaches
the accuracy of the best kernels for DD. The dataset AIDS is almost perfectly classified
by VL, which suggests that this dataset is not an adequate benchmark dataset for graph
kernel comparison. For the other two datasets (MSRC-9 and COX2), there are two pos-
sible reasons for the observed results. Either these datasets can be classified optimally
without taking the graph structure into account, making them not adequate for graph ker-
nel comparison. This would mean that the remaining error is dominated by irreducible
error (label noise). Alternatively, current state-of-the-art kernels are not able to benefit
from their structure; the remaining error is due to bias. If the second reason is true, these
datasets are particularly challenging. In practice, for a finite dataset, it is hard to distin-
guish bias from noise conclusively, and it is likely that the full explanation is a combination
of the two.
The kernels WL and WL-OA provide the best accuracy results for most datasets. WL-

OA achieves the highest accuracy on an average even without combining it with the
Gaussian RBF kernel. Since these kernels are also efficiently computed, they represent
a suitable first approach when classifying new datasets. We suggest to use WL-OA for
small and medium-sized datasets with kernel support vector machines and WL for large
datasets with linear support vector machines.
The analysis of the label completeness ration depicted in Fig. 8 suggests that VL cannot

perform well on ENZYMES, IMDB-BINARY, IMDB-MULTI and REDDIT-BINARY. EL
shows weaknesses on IMDB-BINARY, IMDB-MULTI and REDDIT-BINARY and DBR
on Mutagenicity. The WL and WL-OA kernels can effectively distinguish most non-
isomorphic benchmark graphs. These observations are in accordance with the accuracy
results observed. However, there is no clear relation between the label completeness ratio

Kriege et al. Applied Network Science (2020) 5:6 Page 33 of 42

Fig. 9 Graph kernels embedded in 2D by tSNE projection of their predictions on MUTAG, ENZYMES and
PTC-MR. The results illustrate the similarities among, for example, short-length RW kernels (FL-RW l ≤ 4) and
small-graphlet GK kernels (GL3), as well as WL and Prop kernels

and the prediction accuracy. This suggests that the ability of graph kernels to take features
into account that allow to effectively distinguish graphs is only a minor issue for current
benchmark datasets. Instead taking the features into account that allow the classifier to
generalize to unseen data appears to be most relevant.

Q4 Agreement. The sheer number and variety of existing graph kernels suggest that
there may be groups of kernels that are more similar to each other than to other kernels.
In this section, we attempt to discover such groups by a qualitative comparison of the
predictions (and errors) made by different kernels for a fixed set of graphs. Additionally,
we examine the heterogeneity in errors made for the same set of graphs to assess the
overall agreement between rivalling kernels.
We embed each kernel into a common geometric space based on their predictions on a

set of benchmark graphs. Let each kernel k1, ..., km and each graphG1, ...,Gn in a datasetD
index the rows and columns of a matrix PD ∈ R

m×n, respectively. Then, let PDij represent
the prediction made by kernel ki on graph Gj after being trained on other graphs from
D. We construct such matrices Pl for multiple datasets {Dl}Nl=1 and concatenate them
to form P =[P1, ...,PN], a high-dimensional representation of the features captured by
each kernel. Similarly, we construct matrices {El}Nl=1 and E =[P1, ...,PN], representing
the prediction errors made by different kernels on different graphs. Specifically, we let
Elij = 1[Pij �= yl(Gj)], where yl(Gj) is the class label of Gj. Here, we construct P and E
from the predictions made by a large set of kernels and parameter settings (see Fig. 9 for
a list) applied to the datasets MUTAG, ENZYMES and PTC-MR.

Kriege et al. Applied Network Science (2020) 5:6 Page 34 of 42

In Fig. 9, we illustrate the predictions of different kernels by projecting the rows of the
prediction matrix P to R

2 using t-SNE (Maaten Lvd and Hinton 2008). The position of
each dot represents a projection of the predictions made by a single kernel. The color rep-
resents the kernel family and the size represents the average accuracy of the kernel in the
considered datasets. For comparison, we include two additional variants of the RW ker-
nel: one comparing only walks of a fixed length l (FL-RW), and one defined as the sum of
such kernels up to a fixed length l (MFL-RW). We see that WL optimal assignment (WL-
OA) and matching kernels (MK) predict similarly, compared to for example short-length
RW kernels. However, despite small random walks and WL-OA with h = 0 representing
very local features, they predict qualitatively different. We also see that RW kernels that
sum up kernels of length l < L walks are very similar to kernels based on just length L
walks and that EL, GL3 and short-length RW kernels predict similarly, as expected from
their local scope.
Similarity between two rows ei = Ei·, ei′ = Ei′· of the error matrix E indicate that ker-

nels ki and ki′ make similar predictive errors on the considered datasets. To assess the
overall extent to which particular graphs are “easy” or “hard” for many kernels, we studied
the variance of the columns of E. We find that the average zero-one loss across kernels on
MUTAG (0.14), ENZYMES (0.57) and PTC-MR (0.42) correlates strongly with the mean
absolute deviation around the median across kernels (0.07, 0.26, 0.23). The latter may
be interpreted as the fraction of instances for which kernels disagree with the majority
vote. We also evaluated the average inter-agreement between kernels as measured using
Fleiss’ kappa (Fleiss 1971). A high value of Fleiss’ kappa indicates that different raters
agree significantly more often than random raters with the same marginal label proba-
biltiy. On MUTAG, ENZYMES and PTC-MR, the kappa measure shows a trend similar
(but inverse) to the standard deviation with values of (0.60, 0.28, 0.36).
We conclude that, on these examples, the more difficult the classification task, the more

varied the predictive errors. Indeed, if the average error across kernels was 0.0, all mod-
els would agree everywhere. However, if different kernels had similar biases, the reverse
would not necessarily be true. Instead, these results confirm our intuition that different
kernels encode different biases and may be appropriate for different datasets as a result.

Q5 Continuous attributes. As can be seen in Table 5, on all datasets, excluding the
FRANKENSTEIN dataset, one variant of the hash graph kernel framework achieves
state-of-the-art results. This is in line with the theoretical results outlined in (Mor-
ris et al. 2016), i.e., they show how to approximate well-known graph kernels for

Table 5 Classification accuracies in percent and standard deviations (Number of iterations for
HGK-WL and HGK-SP: 20 (100 for SYNTHIE), OOM—Out of Memory

Kernel
Dataset

Average
ENZYMES FRANKENSTEIN PROTEINS SyntheticNew Synthie

SP+RBF 71.0±0.8 72.8±0.2 76.6±0.5 96.2±0.4 52.8±1.8 73.9

HGK-SP 71.3±0.9 70.1±0.3 77.5±0.4 96.5±0.6 94.3±0.5 81.9

HGK-WL 67.6±1.0 73.6±0.4 76.7±0.4 98.8±0.3 96.8±0.5 82.7

GH 68.8±1.0 68.5±0.3 72.3±0.3 85.1±1.0 73.2±0.8 73.6

GI 71.7±0.8 76.3±0.3 76.9±0.5 83.1±1.1 95.8±0.5 80.8

P2K 69.2±0.4 OOM 73.5±0.5 91.7±0.9 50.2±1.9 71.2

The highest accuracy value is highlighted in bold for each dataset

Kriege et al. Applied Network Science (2020) 5:6 Page 35 of 42

graphs with vertex attributes up to some arbitrarily small error (depending on the
number of iterations). However, the results are already achieved with a small num-
ber of iterations. This is likely a property of the employed datasets, i.e., a coarse-
grained comparison of the attributes is sufficient. Moreover, together with the prop-
agation kernel, the instances of the hash graph kernel framework achieve a much
lower running time compared to the other implicit approaches. The lower perfor-
mance of the hash graph kernel instances on the FRANKENSTEIN dataset is likely
due to the high-dimensional vertex attributes, which are hard to compare using
hash functions.

A practitioner’s guide

Because of the limited theoretical knowledge we have about the expressivity of dif-
ferent kernels and the challenge of assessing this a priori, it is difficult to pre-
dict which kernel will perform well for a given problem. Nevertheless, it is often
the case that some of the kernels in the literature are less or more well suited to
the problem at hand. For example, kernels with high time complexity w.r.t. vertex
count are expensive to compute for very large graphs; kernels that do not sup-
port vertex attributes are ill-suited in learning problems where these are highly
significant.
Below, we give and motivate general guidelines for prioritizing and deprioritizing ker-

nels based on four properties of the problem at hand: the importance and nature of vertex
attributes, the size and density of graphs, the importance of global structure, and the num-
ber of graphs in the available dataset. Examples of appropriate and unappropriate kernels
are given for extreme cases of each property, and the resulting guidelines are illustrated in
Fig. 10. The chosen set of properties is certainly a subset of those that may be predictive
of a kernel’s performance in a given task. For example, the density and number of vertices
of a graph are very crude measures of the graph’s structure. On the other hand, these fea-
tures are generally applicable and easy to compute for any sets of graphs. In some fixed
domain, more specific structural properties such as girth or diameter may be important

Fig. 10 Guidelines for prioritizing kernels for consideration based on known properties of the graph learning
problem. In the “A practitioner’s guide” section, we justify these recommendations based on the graph kernel
literature

Kriege et al. Applied Network Science (2020) 5:6 Page 36 of 42

and could guide the choice of kernel further. In this work, however, we limit ourselves to
the more general case.

Vertex attributes Almost all established benchmarks for graph classification contain
vertex labels and almost all graph kernels support the use of them in someway. In fact, any
kernel can bemade sensitive to vertex and edge attribute throughmultiplication by a label
kernel, although this approach will not take into account the dependencies between labels
and structure. Hence, one of the great contributions of the Weisfeiler-Lehman (Sher-
vashidze et al. 2011) and related kernels (e.g. Propagation kernels (Neumann et al. 2016))
is that they capture such dependencies in transformed graphs that are beneficial to all
kernels that support vertex labels. It has therefore become standard practice to perform a
WL-like transform on labeled graphs before application of other kernels. For this reason,
we consider WL-kernels a first choice for applications where vertex labels are important.
Propagation kernels also naturally couple structure and attributes, but are generally more
expensive to compute. The assignment step of OA kernels matches vertices based on both
structure and attribute, depending on implementation. In contrast, the original Lovász,
SVM-theta and graphlet kernels have no standard way of incorporating vertex labels. The
graphlet kernel may be modified to do so by considering subgraph patterns as differ-
ent if they have different labels. An important special-case of attributed graphs is graphs
with non-discrete vertex attributes; these require special consideration. The GraphHop-
per, GraphInvariant and Hash Graph kernels as well as neural network-based approaches
excel at making use of such attributes. In contrast, subtree kernels and shortest-path
kernels become prohibitively expensive to compute when combined with continuous
attributes.

Large graphs Early graph kernels such as the RW and SP kernels were plagued by
worst-case running time complexities that were prohibitively high for large graphs:O(n6)
and O(n4) for pairs of graphs with n the largest number of vertices. Also expensive to
compute, the subgraph matching kernel has complexity O(kn2(k+1)) where k is the size
of the considered subgraphs. In practice, even a complexity quadratic in the number
of vertices is too high for large-scale learning—the goal is often to achieve complex-
ity linear in the largest number of edges, m. This goal puts fundamental limitations on
expressivity, as linear complexity is unachievable if the attributes of each edge of one
graph has to be independently compared to those of each edge in another. However,
when speed is of utmost importance, we recommend using efficient alternatives such
as fast subtree kernels with complexity O(hm) where h the depth of the deepest sub-
tree. Additionally, a single WL iteration may be computed in O(m) time and the WL
label propagation may be used as-is with an already fast kernel at a constant multiplica-
tive cost h, equal to the number of WL iterations. As a result, to improve a kernel’s
sensitivity to vertex label structure is often relatively cheap. Finally, for settings when a
particular kernel is preferred for its expressivity but not for its running time, authors
have proposed approximation schemes that reduce running time based on sampling or
approximate optimization. For example, the time to compute the k-graphlet spectrum
for a graph, with worst-case complexity O(ndk−1) and d the maximum degree, may be
significantly reduced for dense graphs by sampling subgraphs to produce an unbiased
estimate of the kernel; The Lovász kernel, with complexityO(n6), was approximated with
the SVM-theta kernel with O(n2); The random walk kernel may be approximated by the

Kriege et al. Applied Network Science (2020) 5:6 Page 37 of 42

p-random walk kernel where walks are limited to length p. Similar approximations may
be derived also for other kernels. For very large graphs, simple alternatives like the edge
label and vertex label kernels may be useful baselines but neglect the graph structure
completely.

Global structure Global properties of graphs are properties that are not well described
by statistics of (small) subgraphs (Johansson et al. 2014). It has been shown, for exam-
ple, that there exist graphs for which all small subgraphs are trees, but the overall graph
has high girth and high chromatic number (Alon and Spencer 2004). Although the graph
kernel literature has often left the precise interpretation of “global” to the reader, ker-
nels such as the Lovász kernels and the Glocalized WL kernel, have been proposed with
guarantees of capturing specific properties that are considered global by the authors (see
in the “Other approaches” section). Beside these kernels, if domain knowledge suggests
that global structure is important to the task at hand, we recommend prioritizing kernels
that compute features from larger subgraph patterns, walks or paths. This rules out the
use of Graphlet kernels, since counting large graphlets is often prohibitively expensive,
and (small) neighborhood aggregation methods such as the Weisfeiler-Lehman kernel
for small numbers of iterations. On the other hand, the shortest-path kernel, long-walk
RW and high-iteration WL kernels compute features based on patterns spanning large
portions of graphs.

Large datasets A drawback of kernel methods in general is that they require computa-
tion and storage of the full N × N kernel matrix for each pair of instances in a dataset
of N graphs. This can be alleviated significantly if the chosen kernel admits an explicit
d-dimensional representation with d � N , such as the vertex label, Weisfeiler-Lehman
and graphlet kernels. In this case, only the N × d feature matrix is necessary for learn-
ing. Thus, if many graphs are available to learn from, we recommend starting with
kernels that admit an explicit feature representation, such as the WL, GL and subtree
kernels. However, this is not always possible, such as when continuous vertex attributes
are important, and vertices are compared with a distance metric. Instead, computations
using implicit kernels may be approximated using the prototypes method described in the
“Assignment- and matching-based approaches” section in which a subset of d graphs are
selected and compared to each instance in the dataset. Under certain conditions on the
prototype selection, this gives an unbiased estimator of the kernel matrix which can be
used in place of its exact version. Finally, in most cases, more efficient learning methods
are applicable when explicit feature representations are available. For classification with
support vector machines, for example, the software package LIBSVM (Chang and Lin
2011) is commonly used for learning with (implicit) kernels. When explicit feature repre-
sentations are available, the software LIBLINEAR (Fan et al. 2008), which scales to very
large datasets, can be used as an alternative.

Conclusion
We gave an overview over the graph kernel literature. We hope that this survey will
spark further progress in the area of graph kernel design and graph classification in gen-
eral. Moreover, we hope that this article is valuable for the practitioner applying graph
classification methods to solve real-world problems.

Kriege et al. Applied Network Science (2020) 5:6 Page 38 of 42

Acknowledgements
We thank Pinar Yanardag, Lu Bai, Giannis Nikolentzos, Marion Neumann, and Franceso Orsini for providing their graph
kernel source code.

Authors’ contributions
NMK implemented several of the graph kernels used in the “Experimental study” section and was the main responsible
for the experimental evaluation regarding Q1, Q2 and Q3. FDJ was the main responsible for the implementation and/or
adaptation of the MK, PM, DeepGK, Prop and DBR kernels for use in the “Experimental study” section and for
experimental evaluation with regards to Q4. CM was the main responsible for the experimental evaluation regarding Q5.
All authors contributed to the writing of the manuscript, read and approved the final version.

Funding
NMK and CM have been supported by the German Research Foundation (DFG) within the Collaborative Research Center
SFB 876 “Providing Information by Resource-Constrained Data Analysis”, project A6 “Resource-efficient Graph Mining”.

Availability of data andmaterials
The datasets analyzed during the current study are available in the “Benchmark Data Sets for Graph Kernels” repository,
http://graphkernels.cs.tu-dortmund.de (Kersting et al. 2016).

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Computer Science, TU Dortmund University, Otto-Hahn-Str. 14, 44227 Dortmund, Germany. 2Department
of Computer Science and Engineering, Chalmers University of Technology, Rännvägen 6, 41258 Göteborg, Sweden.

Received: 21 March 2019 Accepted: 23 August 2019

References
Adamson GW, Bush JA (1973) A method for the automatic classification of chemical structures. Inf Storage Retrieval

9(10):561–568. http://dx.doi.org/10.1016/0020-0271(73)90059-4
Ahmed NK, Willke T, Rossi RA (2016) Estimation of local subgraph counts. In: IEEE International Conference on Big Data.

pp 1–10. https://doi.org/10.1109/bigdata.2016.7840651
Aiolli F, Donini M, Navarin N, Sperduti A (2015) Multiple graph-kernel learning. In: IEEE Symposium Series on

Computational Intelligence. pp 1607–1614. https://doi.org/10.1109/ssci.2015.226
Alon N, Spencer JH (2004) The probabilistic method. Wiley. https://doi.org/10.1002/0471722154.ch1
Babai L, Kucera L (1979) Canonical labelling of graphs in linear average time. In: Annual Symposium on Foundations of

Computer Science. pp 39–46. https://doi.org/10.1109/sfcs.1979.8
Bai L, Ren P, Bai X, Hancock ER (2014) A graph kernel from the depth-based representation. In: Joint IAPR International

Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition.
pp 1–11. https://doi.org/10.1007/978-3-662-44415-3_1

Bai L, Rossi L, Zhang Z, Hancock ER (2015) An aligned subtree kernel for weighted graphs. In: International Conference on
Machine Learning. pp 30–39. https://doi.org/10.1109/icpr.2016.7899666

Balcan MF, Blum A, Srebro N (2008) A theory of learning with similarity functions. Mach Learn 72(1-2):89–112
Borgwardt KM (2007) Graph kernels. Phd thesis, Ludwig Maximilians University Munich
Borgwardt KM, Kriegel HP (2005) Shortest-path kernels on graphs. In: IEEE International Conference on Data Mining.

pp 74–81. https://doi.org/10.1109/icdm.2005.132
Borgwardt KM, Ong CS, Schönauer S, Vishwanathan SVN, Smola AJ, Kriegel HP (2005) Protein function prediction via

graph kernels. Bioinformatics 21(Supplement 1):i47–i56
Borgwardt KM, Kriegel HP, Vishwanathan S, Schraudolphs NN (2007) Graph kernels for disease outcome prediction from

protein-protein interaction networks. In: Biocomputing 2007, World Scientific. pp 4–15. https://doi.org/10.1142/
9789812772435_0002

Bressan M, Chierichetti F, Kumar R, Leucci S, Panconesi A (2017) Counting graphlets: Space vs time. In: ACM International
Conference on Web Search and Data Mining. pp 557–566. https://doi.org/10.1145/3018661.3018732

Brown N (2009) Chemoinformatics – an introduction for computer scientists. ACM Comput Surv 41(2). https://doi.org/10.
1145/1459352.1459353

Ceroni A, Costa F, Frasconi P (2007) Classification of small molecules by two- and three-dimensional decomposition
kernels. Bioinformatics 23(16):2038–2045. http://dx.doi.org/10.1093/bioinformatics/btm298

Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27
Chen X, Lui JCS (2016) Mining graphlet counts in online social networks. In: IEEE International Conference on Data

Mining. pp 71–80. https://doi.org/10.1109/icdm.2016.0018
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
Costa F, De Grave K (2010) Fast Neighborhood Subgraph Pairwise Distance Kernel. In: Fürnkranz J, Joachims T (eds).

Proceedings of the 27th International Conference on Machine Learning (ICML-10). Omnipress, Haifa. pp 255–262.
http://www.icml2010.org/papers/347.pdf

Da San Martino G, Navarin N, Sperduti A (2012a) A memory efficient graph kernel. In: International Joint Conference on
Neural Networks. pp 1–7. https://doi.org/10.1109/ijcnn.2012.6252831

Da San Martino, G, Navarin N, Sperduti A (2012b) A tree-based kernel for graphs. In: SIAM Conference of Data Mining.
pp 975–986. https://doi.org/10.1137/1.9781611972825.84

http://graphkernels.cs.tu-dortmund.de
http://dx.doi.org/10.1016/0020-0271(73)90059-4
https://doi.org/10.1109/bigdata.2016.7840651
https://doi.org/10.1109/ssci.2015.226
https://doi.org/10.1002/0471722154.ch1
https://doi.org/10.1109/sfcs.1979.8
https://doi.org/10.1007/978-3-662-44415-3_1
https://doi.org/10.1109/icpr.2016.7899666
https://doi.org/10.1109/icdm.2005.132
https://doi.org/10.1142/9789812772435_0002
https://doi.org/10.1142/9789812772435_0002
https://doi.org/10.1145/3018661.3018732
https://doi.org/10.1145/1459352.1459353
https://doi.org/10.1145/1459352.1459353
http://dx.doi.org/10.1093/bioinformatics/btm298
https://doi.org/10.1109/icdm.2016.0018
http://www.icml2010.org/papers/347.pdf
https://doi.org/10.1109/ijcnn.2012.6252831
https://doi.org/10.1137/1.9781611972825.84

Kriege et al. Applied Network Science (2020) 5:6 Page 39 of 42

Daylight CIS (2008) Daylight theory manual v4.9. http://www.daylight.com/dayhtml/doc/theory
Debnath AK, Lopez de Compadre RL, Debnath G, Shusterman AJ, Hansch C (1991) Structure-activity relationship of

mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and
hydrophobicity. J Med Chem 34(2):786–797

de Vries GKD (2013) A fast approximation of the Weisfeiler-Lehman graph kernel for rdf data. In: European Conference on
Machine Learning & Principles and Practice of Knowledge Discovery in Databases. pp 606–621. https://doi.org/10.
1007/978-3-642-40988-2_39

Dobson PD, Doig AJ (2003) Distinguishing enzyme structures from non-enzymes without alignments. J Mol Biol
330(4):771–783

Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of mdl keys for use in drug discovery. J Chem Inf
Comput Sci 42(5):1273–1280

Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP (2015) Convolutional
networks on graphs for learning molecular fingerprints. In: Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada. pp 2224–2232

Dwork C, Roth A, et al. (2014) The algorithmic foundations of differential privacy. Found Trends® Theor Comput Sci
9(3–4):211–407

Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) Liblinear: A library for large linear classification. J Mach Learn Res
9:1871–1874

Feragen A, Kasenburg N, Petersen J, Bruijne MD, M BK (2013) Scalable kernels for graphs with continuous attributes. In:
Advances in Neural Information Processing Systems. pp 216–224. erratum available at http://image.diku.dk/aasa/
papers/graphkernels_nips_erratum.pdf

Fey M, Lenssen JE, Weichert F, Müller H (2018) SplineCNN: Fast geometric deep learning with continuous b-spline
kernels. In: IEEE Conference on Computer Vision and Pattern Recognition. pp 869–877. https://doi.org/10.1109/cvpr.
2018.00097

Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378
Fröhlich H, Wegner JK, Sieker F, Zell A (2005) Optimal assignment kernels for attributed molecular graphs. In: International

Conference on Machine learning. pp 225–232. https://doi.org/10.1145/1102351.1102380
Gärtner T, Flach P, Wrobel S (2003) On graph kernels: Hardness results and efficient alternatives. In: Learning Theory and

Kernel Machines. Springer. pp 129–143. https://doi.org/10.1007/978-3-540-45167-9_11
Ghosh S, Das N, Gonçalves T, Quaresma P, Kundu M (2018) The journey of graph kernels through two decades. Comput

Sci Rev 27:88–111
Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural Message Passing for Quantum Chemistry. In: Precup D,

Whye Teh Y (eds). Proceedings of the 34th International Conference on Machine Learning. PMLR, Sydney. http://
proceedings.mlr.press/v70/gilmer17a.html

Grauman K, Darrell T (2007a) Approximate correspondences in high dimensions. In: Advances in Neural Information
Processing Systems. pp 505–512. https://doi.org/10.7551/mitpress/7503.003.0068

Grauman K, Darrell T (2007b) The pyramid match kernel: Efficient learning with sets of features. J Mach Learn Res
8(Apr):725–760

Hamilton WL, Ying R, Leskovec J (2017) Inductive representation learning on large graphs. CoRR
abs/1706.02216:1025–1035. http://arxiv.org/abs/1706.02216

Harchaoui Z, Bach F (2007) Image classification with segmentation graph kernels. In: IEEE Conference on Computer
Vision and Pattern Recognition. pp 1–8. https://doi.org/10.1109/cvpr.2007.383049

Haussler D (1999) Convolution kernels on discrete structures. Tech. Rep. UCS-CRL-99-10, University of California at Santa
Cruz

Helma C, King RD, Kramer S, Srinivasan A (2001) The predictive toxicology challenge 2000–2001. Bioinformatics
17(1):107–108

Hermansson L, Kerola T, Johansson F, Jethava V, Dubhashi D (2013) Entity disambiguation in anonymized graphs using
graph kernels. In: ACM International Conference on Information & Knowledge Management. pp 1037–1046. https://
doi.org/10.1145/2505515.2505565

Hermansson L, Johansson FD, Watanabe O (2015) Generalized shortest path kernel on graphs. In: Discovery Science:
International Conference. pp 78–85. https://doi.org/10.1007/978-3-319-24282-8_8

Hido S, Kashima H (2009) A linear-time graph kernel. In: IEEE International Conference on Data Mining. pp 179–188.
https://doi.org/10.1109/icdm.2009.30

Horváth T, Gärtner T, Wrobel S (2004) Cyclic pattern kernels for predictive graph mining. In: ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp 158–167. https://doi.org/10.1145/1014052.1014072

Horváth T, Ramon J, Wrobel S (2010) Frequent subgraph mining in outerplanar graphs. Data Min Knowl Discov
21:472–508. https://doi.org/10.1007/s10618-009-0162-1

Jie B, Liu M, Jiang X, Zhang D (2016) Sub-network based kernels for brain network classification. In: ACM International
Conference on Bioinformatics, Computational Biology, and Health Informatics. pp 622–629. https://doi.org/10.1145/
2975167.2985687

Johansson FD, Dubhashi D (2015) Learning with similarity functions on graphs using matchings of geometric
embeddings. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp 467–476.
https://doi.org/10.1145/2783258.2783341

Johansson FD, Jethava V, Dubhashi DP, Bhattacharyya C (2014) Global graph kernels using geometric embeddings. In:
International Conference on Machine Learning. pp 694–702

Johansson FD, Frost O, Retzner C, Dubhashi D (2015) Classifying large graphs with differential privacy. In: Modeling
Decisions for Artificial Intelligence. Springer. pp 3–17. https://doi.org/10.1007/978-3-319-23240-9_1

Johnson DS (2005) The NP-completeness column. ACM Trans Algorithms 1(1):160–176. https://doi.org/10.1145/1077464.
1077476

Kang U, Tong H, Sun J (2012) Fast random walk graph kernel. In: SIAM International Conference on Data Mining.
pp 828–838. https://doi.org/10.1137/1.9781611972825.71

http://www.daylight.com/dayhtml/doc/theory
https://doi.org/10.1007/978-3-642-40988-2_39
https://doi.org/10.1007/978-3-642-40988-2_39
http://image.diku.dk/aasa/papers/graphkernels_nips_erratum.pdf
http://image.diku.dk/aasa/papers/graphkernels_nips_erratum.pdf
https://doi.org/10.1109/cvpr.2018.00097
https://doi.org/10.1109/cvpr.2018.00097
https://doi.org/10.1145/1102351.1102380
https://doi.org/10.1007/978-3-540-45167-9_11
http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://doi.org/10.7551/mitpress/7503.003.0068
http://arxiv.org/abs/1706.02216
https://doi.org/10.1109/cvpr.2007.383049
https://doi.org/10.1145/2505515.2505565
https://doi.org/10.1145/2505515.2505565
https://doi.org/10.1007/978-3-319-24282-8_8
https://doi.org/10.1109/icdm.2009.30
https://doi.org/10.1145/1014052.1014072
https://doi.org/10.1007/s10618-009-0162-1
https://doi.org/10.1145/2975167.2985687
https://doi.org/10.1145/2975167.2985687
https://doi.org/10.1145/2783258.2783341
https://doi.org/10.1007/978-3-319-23240-9_1
https://doi.org/10.1145/1077464.1077476
https://doi.org/10.1145/1077464.1077476
https://doi.org/10.1137/1.9781611972825.71

Kriege et al. Applied Network Science (2020) 5:6 Page 40 of 42

Kashima H, Tsuda K, Inokuchi A (2003) Marginalized kernels between labeled graphs. In: International Conference on
Machine Learning. pp 321–328

Kazius J, McGuire R, Bursi R (2005) Derivation and validation of toxicophores for mutagenicity prediction. J Med Chem
48(13):312–320

Kersting K, Kriege NM, Morris C, Mutzel P, Neumann M (2016) Benchmark data sets for graph kernels. http://graphkernels.
cs.tu-dortmund.de

Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: International Conference
on Learning Representations

Kondor R, Pan H (2016) The multiscale laplacian graph kernel. In: Advances in Neural Information Processing Systems.
pp 2982–2990

Kondor R, Shervashidze N, Borgwardt KM (2009) The graphlet spectrum. In: International Conference on Machine
Learning. pp 529–536. https://doi.org/10.1145/1553374.1553443

Kriege N, Mutzel P (2012) Subgraph matching kernels for attributed graphs. In: International Conference on Machine
Learning

Kriege N, Neumann M, Kersting K, Mutzel M (2014) Explicit versus implicit graph feature maps: A computational phase
transition for walk kernels. In: IEEE International Conference on Data Mining. pp 881–886. https://doi.org/10.1109/
icdm.2014.129

Kriege NM (2015) Comparing graphs: Algorithms & applications. Phd thesis, TU Dortmund University
Kriege NM (2019) Deep Weisfeiler-Lehman assignment kernels via multiple kernel learning. In: 27th European

Symposium on Artificial Neural Networks, ESANN 2019
Kriege NM, Giscard PL, Wilson RC (2016) On valid optimal assignment kernels and applications to graph classification. In:

Advances in Neural Information Processing Systems. pp 1615–1623
Kriege NM, Neumann M, Morris C, Kersting K, Mutzel P (2019) A unifying view of explicit and implicit feature maps of

graph kernels. Data Mining and Knowledge Discovery 33(6):1505–1547. https://doi.org/10.1007/s10618-019-00652-0
Kriege NM, Morris C, Rey A, Sohler C (2018) A property testing framework for the theoretical expressivity of graph kernels.

In: International Joint Conference on Artificial Intelligence. pp 2348–2354. https://doi.org/10.24963/ijcai.2018/325
Li B, Zhu X, Chi L, Zhang C (2012) Nested subtree hash kernels for large-scale graph classification over streams. In: IEEE

International Conference on Data Mining. pp 399–408. https://doi.org/10.1109/icdm.2012.101
Li L, Tong H, Xiao Y, Fan W (2015) Cheetah: Fast graph kernel tracking on dynamic graphs. In: SIAM International

Conference on Data Mining. pp 280–288. https://doi.org/10.1137/1.9781611974010.32
Li W, Saidi H, Sanchez H, Schäf M, Schweitzer P (2016) Detecting similar programs via the Weisfeiler-Leman graph kernel.

In: International Conference on Software Reuse. pp 315–330. https://doi.org/10.1007/978-3-319-35122-3_21
Loosli G, Canu S, Ong CS (2015) Learning svm in krein spaces. IEEE Trans Pattern Anal Mach Intell PP(99):1–1. https://doi.

org/10.1109/TPAMI.2015.2477830
Lovász L (2006) On the shannon capacity of a graph. IEEE Trans Inf Theory 25(1):1–7
Maaten Lvd, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(Nov):2579–2605
Mahé P, Vert JP (2009) Graph kernels based on tree patterns for molecules. Mach Learn 75(1):3–35
Mahé P, Ueda N, Akutsu T, Perret JL, Vert JP (2004) Extensions of marginalized graph kernels. In: International Conference

on Machine Learning. pp 552–559. https://doi.org/10.1145/1015330.1015446
Mahé P, Ueda N, Akutsu T, Perret JL, Vert JP (2005) Graph kernels for molecular structure-activity relationship analysis with

support vector machines. J Chem Inf Model 45(4):939–951
Mahé P, Ralaivola L, Stoven V, Vert JP (2006) The pharmacophore kernel for virtual screening with support vector

machines. J Chem Inf Model 46(5):2003–2014
Massimo CM, Navarin N, Sperduti A (2016) Hyper-parameter tuning for graph kernels via multiple kernel learning. In:

Advances in Neural Information Processing. pp 214–223. https://doi.org/10.1007/978-3-319-46672-9_25
McKay BD, Piperno A (2014) Practical graph isomorphism, II. J Symb Comput 60(0):94–112. http://dx.doi.org/10.1016/j.jsc.

2013.09.003
Merkwirth C, Lengauer T (2005) Automatic generation of complementary descriptors with molecular graph networks. J

Chem Inf Model 45(5):1159–1168
Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. In: 1st

International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings. https://dblp.org/rec/bib/journals/corr/abs-1301-3781

Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of Machine Learning. MIT Press
Morris C, Kriege NM, Kersting K, Mutzel P (2016) Faster kernel for graphs with continuous attributes via hashing. In: IEEE

International Conference on Data Mining. pp 1095–1100. https://doi.org/10.1109/icdm.2016.0142
Morris C, Kersting K, Mutzel P (2017) Glocalized Weisfeiler-Lehman kernel: Global-local feature maps of graphs. In: IEEE

International Conference on Data Mining
Morris C, Ritzert M, Fey M, Hamilton WL, Lenssen JE, Rattan G, Grohe M (2019) Weisfeiler and Leman go neural:

Higher-order graph neural networks. In: AAAI Conference on Artificial Intelligence. p TBD. https://doi.org/10.1609/
aaai.v33i01.33014602

Neumann M (2015) Learning with graphs using kernels from propagated information. Phd thesis, University of Bonn
Neumann M (2016) Propagation kernel (code). https://github.com/marionmari/propagation_kernels.git
Neumann M, Moreno P, Antanas L, Garnett R, Kersting K (2013) Graph kernels for object category prediction in

task–dependent robot grasping. In: Adamic L, Getoor L, Huang B, Leskovec J, McAuley J (eds). Working Notes of the
International Workshop on Mining and Learning with Graphs at KDD 2013, Chicago

Neumann M, Garnett R, Bauckhage C, Kersting K (2016) Propagation kernels: Efficient graph kernels from propagated
information. Mach Learn 102(2):209–245

Nikolentzos G (2016) Pyramid match kernel. http://www.db-net.aueb.gr/nikolentzos/code/matchingnodes.zip
Nikolentzos G, Vazirgiannis M (2018) Enhancing graph kernels via successive embeddings. In: ACM International

Conference on Information and Knowledge Management. pp 1583–1586. https://doi.org/10.1145/3269206.3269289
Nikolentzos G, Meladianos P, Rousseau F, Stavrakas Y, Vazirgiannis M (2017a) Shortest-path graph kernels for document

similarity. In: Empirical Methods in Natural Language Processing. pp 1890–1900. https://doi.org/10.18653/v1/d17-
1202

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
https://doi.org/10.1145/1553374.1553443
https://doi.org/10.1109/icdm.2014.129
https://doi.org/10.1109/icdm.2014.129
https://doi.org/10.1007/s10618-019-00652-0
https://doi.org/10.24963/ijcai.2018/325
https://doi.org/10.1109/icdm.2012.101
https://doi.org/10.1137/1.9781611974010.32
https://doi.org/10.1007/978-3-319-35122-3_21
https://doi.org/10.1109/TPAMI.2015.2477830
https://doi.org/10.1109/TPAMI.2015.2477830
https://doi.org/10.1145/1015330.1015446
https://doi.org/10.1007/978-3-319-46672-9_25
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1016/j.jsc.2013.09.003
https://dblp.org/rec/bib/journals/corr/abs-1301-3781
https://doi.org/10.1109/icdm.2016.0142
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602
https://github.com/marionmari/propagation_kernels.git
http://www.db-net.aueb.gr/nikolentzos/code/matchingnodes.zip
https://doi.org/10.1145/3269206.3269289
https://doi.org/10.18653/v1/d17-1202
https://doi.org/10.18653/v1/d17-1202

Kriege et al. Applied Network Science (2020) 5:6 Page 41 of 42

Nikolentzos G, Meladianos P, Vazirgiannis M (2017b) Matching node embeddings for graph similarity. In: AAAI
Conference on Artificial Intelligence. pp 2429–2435

Nikolentzos G, Meladianos P, Limnios S, Vazirgiannis M (2018) A degeneracy framework for graph similarity. In:
International Joint Conference on Artificial Intelligenc, ijcai.org. pp 2595–2601. https://doi.org/10.24963/ijcai.2018/360

Oneto L, Navarin N, Donini M, Sperduti A, Aiolli F, Anguita D (2017) Measuring the expressivity of graph kernels through
statistical learning theory. Neurocomputing 268(Supplement C):4–16

Orsini F, Frasconi P, De Raedt L (2015) Graph invariant kernels. In: International Joint Conference on Artificial Intelligence.
pp 3756–3762

Pachauri D, Kondor R, Singh V (2013) Solving the multi-way matching problem by permutation synchronization. In:
Advances in Neural Information Processing Systems. pp 1860–1868

Ralaivola L, Swamidass SJ, Saigo H, Baldi P (2005) Graph kernels for chemical informatics. Neural Netw 18(8):1093–1110.
https://doi.org/10.1016/j.neunet.2005.07.009. Neural Networks and Kernel Methods for Structured Domains

Ramon J, Bruynooghe M (2001) A polynomial time computable metric between point sets. Acta Inform 37(10):765–780.
https://doi.org/10.1007/PL00013304

Ramon J, Gärtner T (2003) Expressivity versus efficiency of graph kernels. In: International Workshop on Mining Graphs,
Trees and Sequences. pp 65–74

Rasmussen CE (2004) Gaussian processes in machine learning. In: Advanced lectures on machine learning. Springer.
pp 63–71

Riesen K, Bunke H (2008) Iam graph database repository for graph based pattern recognition and machine learning. In:
Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshop. pp 287–297. https://doi.
org/10.1007/978-3-540-89689-0_33

Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754. http://dx.doi.org/10.1021/
ci100050t

Schiavinato M, Gasparetto A, Torsello A (2015) Transitive assignment kernels for structural classification. In: Similarity-Based
Pattern Recognition: Third International Workshop. pp 146–159. https://doi.org/10.1007/978-3-319-24261-3_12

Schölkopf B, Smola AJ (2001) Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.
MIT Press, Cambridge

Schölkopf B, Smola A, Müller KR (1997) Kernel principal component analysis. In: International Conference on Artificial
Neural Networks. Springer. pp 583–588

Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004) Brenda, the enzyme database:
updates and major new developments. Nucleic Acids Res 32:431–433. https://doi.org/10.1093/nar/gkh081

Shawe-Taylor J, Cristianini N (2004) Kernel Methods for Pattern Analysis. Cambridge University Press, New York
Shervashidze N (2012) Scalable graph kernels. Phd thesis
Shervashidze N, Vishwanathan SVN, Petri TH, Mehlhorn K, Borgwardt KM (2009) Efficient graphlet kernels for large graph

comparison. In: International Conference on Artificial Intelligence and Statistics. pp 488–495
Shervashidze N, Schweitzer P, van Leeuwen EJ, Mehlhorn K, Borgwardt KM (2011) Weisfeiler-Lehman graph kernels. J

Mach Learn Res 12:2539–2561
Shin K, Kuboyama T (2008) A generalization of haussler’s convolution kernel: mapping kernel. In: International conference

on Machine learning. ACM. pp 944–951. https://doi.org/10.1145/1390156.1390275
Silverman BW (1986) Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, London
Su Y, Han F, Harang RE, Yan X (2016) A fast kernel for attributed graphs. In: SIAM International Conference on Data Mining.

pp 486–494. https://doi.org/10.1137/1.9781611974348.55
Sugiyama M, Borgwardt KM (2015) Halting in random walk kernels. In: Advances in Neural Information Processing

Systems. pp 1639–1647
Sutherland JJ, O’Brien LA, Weaver DF (2003) Spline-fitting with a genetic algorithm: a method for developing classification

structure-activity relationships. J Chem Inf Comput Sci 43(6):1906–1915. https://doi.org/10.1021/ci034143r
Swamidass SJ, Chen J, Bruand J, Phung P, Ralaivola L, Baldi P (2005) Kernels for small molecules and the prediction of

mutagenicity, toxicity and anti-cancer activity. Bioinformatics 21(Suppl 1):i359–i368
Takerkart S, Auzias G, Thirion B, Ralaivola L (2014) Graph-based inter-subject pattern analysis of fmri data. PLoS ONE

9(8):1–14. https://doi.org/10.1371/journal.pone.0104586
Tox21 Data Challenge (2014). https://tripod.nih.gov/tox21/challenge/data.jsp
Vega-Pons S, Avesani P (2013) Brain decoding via graph kernels. In: Proceedings of the 2013 International Workshop on

Pattern Recognition in Neuroimaging, IEEE Computer Society, Washington, DC, USA, PRNI ’13. pp 136–139. https://
doi.org/10.1109/PRNI.2013.43

Vega-Pons S, Avesani P, Andric M, Hasson U (2014) Classification of inter-subject fmri data based on graph kernels. In:
International Workshop on Pattern Recognition in Neuroimaging. pp 1–4. https://doi.org/10.1109/PRNI.2014.6858549

Vert J (2008) The optimal assignment kernel is not positive definite. CoRR:abs/0801.4061. http://arxiv.org/abs/0801.4061
Vishwanathan SVN, Schraudolph NN, Kondor R, Borgwardt KM (2010) Graph kernels. J Mach Learn Res 11:1201–1242
Wale N, Watson IA, Karypis G (2008) Comparison of descriptor spaces for chemical compound retrieval and classification.

Knowl Inf Syst 14(3):347–375
Wang J, Wilson RC, Hancock ER (2016) fmri activation network analysis using bose-einstein entropy. In: Robles-Kelly A,

Loog M, Biggio B, Escolano F, Wilson R (eds) Structural, Syntactic, and Statistical Pattern Recognition. Springer
International Publishing, Cham. pp 218–228. https://doi.org/10.1007/978-3-319-49055-7_20

Willett P, Winterman V (1986) A comparison of some measures for the determination of inter-molecular structural
similarity measures of inter-molecular structural similarity. Quant Struct-Act Relationsh 5(1):18–25. https://doi.org/10.
1002/qsar.19860050105

Woźnica A, Kalousis A, Hilario M (2010) Adaptive matching based kernels for labelled graphs. In: Advances in Knowledge
Discovery and Data Mining, Lecture Notes in Computer Science, vol 6119. pp 374–385. https://doi.org/10.1007/978-
3-642-13672-6_37

Wu B, Yuan C, Hu W (2014) Human action recognition based on context-dependent graph kernels. In: IEEE Conference
on Computer Vision and Pattern Recognition. pp 2609–2616. https://doi.org/10.1109/CVPR.2014.334

https://doi.org/10.24963/ijcai.2018/360
https://doi.org/10.1016/j.neunet.2005.07.009
https://doi.org/10.1007/PL00013304
https://doi.org/10.1007/978-3-540-89689-0_33
https://doi.org/10.1007/978-3-540-89689-0_33
http://dx.doi.org/10.1021/ci100050t
http://dx.doi.org/10.1021/ci100050t
https://doi.org/10.1007/978-3-319-24261-3_12
https://doi.org/10.1093/nar/gkh081
https://doi.org/10.1145/1390156.1390275
https://doi.org/10.1137/1.9781611974348.55
https://doi.org/10.1021/ci034143r
https://doi.org/10.1371/journal.pone.0104586
https://tripod.nih.gov/tox21/challenge/data.jsp
https://doi.org/10.1109/PRNI.2013.43
https://doi.org/10.1109/PRNI.2013.43
https://doi.org/10.1109/PRNI.2014.6858549
http://arxiv.org/abs/0801.4061
https://doi.org/10.1007/978-3-319-49055-7_20
https://doi.org/10.1002/qsar.19860050105
https://doi.org/10.1002/qsar.19860050105
https://doi.org/10.1007/978-3-642-13672-6_37
https://doi.org/10.1007/978-3-642-13672-6_37
https://doi.org/10.1109/CVPR.2014.334

Kriege et al. Applied Network Science (2020) 5:6 Page 42 of 42

Yamaguchi A, Aoki KF, Mamitsuka H (2003) Graph complexity of chemical compounds in biological pathways. Genome
Inf 14:376–377

Yanardag P (2015) Deep graph kernels (code). http://www.mit.edu/pinary/kdd/DEEP_GRAPH_KERNELS_CODE.tar.gz
Yanardag P, Vishwanathan SVN (2015a) Deep graph kernels. In: ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. pp 1365–1374. https://doi.org/10.1145/2783258.2783417
Yanardag P, Vishwanathan SVN (2015b) A structural smoothing framework for robust graph comparison. In: Advances in

Neural Information Processing Systems. pp 2134–2142
Zhang Y, Wang L, Wang L (2018a) A comprehensive evaluation of graph kernels for unattributed graphs. Entropy

20(12):984
Zhang Z, Wang M, Xiang Y, Huang Y, Nehorai A (2018b) Retgk: Graph kernels based on return probabilities of random

walks. In: Advances in Neural Information Processing Systems. pp 3964–3974

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://www.mit.edu/ pinary/kdd/DEEP_GRAPH_KERNELS_CODE.tar.gz
https://doi.org/10.1145/2783258.2783417

	Abstract
	Keywords

	Introduction
	Contributions
	Related work
	Outline

	Fundamentals
	Graph data
	Kernel methods
	Design paradigms for kernels on structured data

	Graph kernels
	Neighborhood aggregation approaches
	Assignment- and matching-based approaches
	Subgraph patterns
	Walks and paths
	Shortest-path kernels
	Random walk kernels

	Kernels for graphs with continuous labels
	Other approaches

	Expressivity of graph kernels
	Applications of graph kernels
	Chemoinformatics
	Bioinformatics
	Neuroscience
	Natural language processing
	Computer vision

	Experimental study
	Methods
	Classification accuracy
	Complete graph kernels
	Non-linear decision boundaries in the feature space of graph kernels

	Datasets
	Graph kernels
	Results and discussion
	Q1 Expressivity.
	Q2 Non-linear decision boundaries.
	Q3 Accuracy.
	Q4 Agreement.
	Q5 Continuous attributes.

	A practitioner's guide
	Vertex attributes
	Large graphs
	Global structure
	Large datasets

	Conclusion
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

